
Central Lancashire Online Knowledge (CLoK)

Title Towards Trustworthy Experimental Replication in SLICES-RI
Type Article
URL https://clok.uclan.ac.uk/id/eprint/52751/
DOI doi:10.23919/ifipnetworking62109.2024.10619815
Date 2024
Citation Andreou, Panayiotis, Osmolovskiy, Artem, Hadjidemetriou, Panagiotis and

Fdida, Serge (2024) Towards Trustworthy Experimental Replication in
SLICES-RI. 2024 IFIP Networking Conference (IFIP Networking). pp. 672-677.

Creators Andreou, Panayiotis, Osmolovskiy, Artem, Hadjidemetriou, Panagiotis and
Fdida, Serge

It is advisable to refer to the publisher’s version if you intend to cite from the work.
doi:10.23919/ifipnetworking62109.2024.10619815

For information about Research at UCLan please go to http://www.uclan.ac.uk/research/

All outputs in CLoK are protected by Intellectual Property Rights law, including Copyright law.
Copyright, IPR and Moral Rights for the works on this site are retained by the individual authors
and/or other copyright owners. Terms and conditions for use of this material are defined in the
http://clok.uclan.ac.uk/policies/

http://www.uclan.ac.uk/research/
http://clok.uclan.ac.uk/policies/

Towards Trustworthy Experimental Replication in
SLICES-RI

Panayiotis Andreou
UCLan Cyprus

Larnaka, Cyprus
pgandreou@uclan.ac.uk

Artem Osmolovskiy
UCLan Cyprus

Larnaka, Cyprus
aosmolovskiy1@uclan.ac.uk

Panagiotis Hadjidemetriou
UCLan Cyprus

Larnaka, Cyprus
phadjidemetriou1@uclan.ac.uk

Serge Fdida
Sorbonne Université

Paris, France
serge.fdida@sorbonne-universite.fr

Abstract—Replication is crucial for maintaining the credibility
and integrity of scientific research and is one of Europe’s key
enablers for Open Science. Several challenges must be addressed
to facilitate replication, including applying robust methodologies,
holistic data sharing, and detailed data lineage and provenance to
allow researchers to leverage insights and findings from prior in-
vestigations and introduce novel perspectives or solutions in their
field. Research Infrastructures are an important catalyst towards
addressing the replication “crisis” by enforcing data sharing by
design/default, with appropriate protocols and procedures that
provide visibility and transparency to the whole data journey,
and compliance with national and international regulations.

SLICES Research Infrastructure will construct one of Eu-
rope’s most advanced scientific platforms in the field of digital
sciences, promoting scientific research replication through sophis-
ticated policies and services. SLICES-RI transcends traditional
data sharing of common digital objects, such as datasets, services
and tools, by introducing replication of complex digital objects,
such as experimental workflows, which orchestrate advanced
tools and services to perform sophisticated experiments in smart
networks and systems. This paper presents the preliminary design
of the SLICES-RI replication framework, providing insight into
its internal structures and mechanisms, and demonstrating how
experimental workflows can be replicated. The proposed SLICES
Trustworthy Experimental Replication Framework (STEF) pro-
vides visibility into the experiment workflow and the underlying
data journey, and demonstrates the potential integration of
sophisticated indicators, such as explainability, interpretability,
and safety, contributing to trustworthy experimentation.

Index Terms—experimental replication, trustworthiness, work-
flow management systems, ML pipelines

I. INTRODUCTION

Experimental replication is fundamental to ensure the reli-
ability and validity of research findings, enabling researchers
to repeat and reproduce experiments consistently. The repro-
ducibility of scientific results faces several key challenges
[1] in many disciplines, such as inadequate description of
experimental methodologies [2], proper accounting for vari-
ability in experimental design, execution, and analysis [3],
[4], misinterpretation of statistical results [5] and insufficient
data sharing [6]. Addressing these challenges is crucial for
maintaining the credibility and integrity of scientific research.

The above challenges are more evident in smart networks
and systems, due to the highly intricate and dynamic nature
of experiments and the complexity of interactions of diverse

underlying technologies. In addition, the heavy reliance on
big data and computational models, poses unique challenges
for replication, such as recording the specific configurations
of equipment, software, and analytical pipelines, preserving
privacy, ensuring the explainability of predictions, and justify-
ing recommendations. Addressing these challenges requires a
multifaceted approach, with greater emphasis on replication-
by-design of the full experimental lifecycle. However, replica-
tion alone does not necessarily build trust, unless it accounts
for several other factors, such as human agency and oversight,
technical robustness, security and privacy, and safety.

The SLICES research infrastructure [7] (SLICES-RI) aims
to overcome the above challenges and facilitate trustworthy
experimental replication, fostering and cultivating cutting-
edge research, data-driven science, and scientific data-sharing,
fully endorsing Open Science and FAIR principles. To this
end, SLICES-RI defines complex metadata models catering
to the end-to-end definition, management, and replication of
sophisticated experiments, that orchestrate intricate and dy-
namic AI workflows. The models are flexible to accommodate
trustworthiness indicators, which can be later used to assess
the trustworthiness of each step of the experimental workflow
and the workflow as a whole, thus identifying and evaluating
pre-, during, and post-anomalies and inconsistencies.

This paper presents the initial design of the SLICES Trust-
worthy Experimental Replication Framework, coined STEF.
We describe the underlying metadata models related to exper-
imentation replication focusing on AI workflows, and show
how each step integrates transparent data sharing by design,
with guaranteed lineage/provenance. Next, we demonstrate
how the models can improve an experimental workflow’s
trustworthiness, building trust for humans and services. The
paper is structured as follows: Section II presents related
work that was considered for the design and implementation
of STEF. Section III presents the proposed SLICES Trust-
worthy Experimental Replication Framework (STEF). Next,
Section IV presents a prototype implementation of STEF
using established frameworks and systems. Finally, Section V
concludes the paper and sets directions for future work.

II. BACKGROUND AND RELATED WORK

This section reviews pertinent literature, existing technolo-
gies and trends in workflow management systems (WMS),978-3-903176-63-8 ©2024 IFIP

Artificial Intelligence as a Service (AIaaS) paradigms, and
metadata for experimental workflows, setting a foundation for
the discussions and innovations proposed in this work.

A. Workflow Management Systems

Experimental workflows consist of structured definitions of
sequences of tasks, enabling equipment configuration, infor-
mation processing, and service provisioning. Complex exper-
imental workflows may include control structures, such as
conditional execution, parallel processes, and branching sub-
flows for enhanced flexibility. Workflow engines are essen-
tial tools to consistently automate, orchestrate, and optimize
complex experimental workflows, transforming cumbersome
experimental procedures into well-defined software-managed
operations. Furthermore, these engines integrate additional
tools to facilitate automation, efficient resource utilization,
optimization, and effective collaboration.

DS AF WF SM WEN BE EW PR CA WI

Open source Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Popular Yes Yes No Yes No No Yes Yes Yes Yes
Flexible Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Modular Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Version control No Yes No No Yes No No Yes Yes No
Customizable Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Scalable Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Designer UI Yes No Yes No Yes Yes Yes No Yes Yes
Drag and drop UI Yes No Yes No Yes No Yes No Yes Yes
Task Monitor UI Yes Yes Yes No Yes Yes Yes Yes Yes Yes
Pipeline view(DAG) Yes Yes Yes Yes Yes Yes Yes No Yes Yes
CLI Yes Yes No Yes No Yes No Yes Yes Yes

Runtime control Yes No Yes No No No Yes Yes Yes No
Long-running WFs No No Yes No Yes Yes Yes Yes Yes Yes
Event Triggers Yes Yes Yes No Yes Yes Yes Yes Yes Yes
Scheduling Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Dynamic Parameters Yes No Yes No No No Yes Yes Yes No

Parallel workflow Yes Yes No Yes Yes Yes Yes Yes Yes Yes
Branching logic Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
For-loops Yes Yes Yes Yes Yes Yes Yes No Yes Yes
Sub-flows Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

TABLE I
QUALITATIVE EVALUATION OF WORKFLOW ENGINES

DS:APACHE DOLPHIN SCHEDULER, AF:APACHE AIRFLOW, WF:WEXFLOW,
SM:SNAKEMAKE, WEN:WORKFLOWENGINE .NET, BE:BONITA-ENGINE,
EW:ELSA WORKFLOWS, PR:PREFECT, CA:CAMUNDA, WI:WINDMILL

Several open-source workflow engines, such as Apache
DolphinScheduler1, Apache Airflow2, Wexflow3, and ELSA
Workflows4, support complex workflows. We conducted a
qualitative analysis to compare these workflow engines based
on flexibility, modularity, version control, scalability, user
interface design, workflow control, and programming charac-
teristics. Our evaluation results are depicted in table I. Apache
DolphinScheduler and Apache Airflow lead in development
features with their extensive flexibility, modularity, and built-in
version control. Prefect5, Camunda6, Airflow, DolphinSched-
uler, and ELSA Workflows are geared towards scalability and
stand out for their robust capabilities in handling large-scale

1Apache Dolphin Scheduler, https://dolphinscheduler.apache.org/
2Apache Airflow, https://airflow.apache.org
3Wexflow, https://wexflow.github.io
4ELSA Workflows, https://v3.elsaworkflows.io/
5Prefect, https://www.prefect.io
6Camunda, https://camunda.com

workflows efficiently. DolphinScheduler features an intuitive
user interface design with a streamlined workflow designer
and task monitor features, closely followed by Camunda,
Windmill and ELSA Workflows. While these engines pri-
oritize user experience and workflow visualization, others
like Wexflow, Snakemake7, WorkflowEngine .NET8, bonita-
engine9, and Prefect have simpler designs or lack certain
features, such as drag and drop functionality. Furthermore,
engines like Airflow, DoplinScheduler, ELSA Workflows, and
Snakemake excel in precise control over execution, such as
runtime control, event trigger, and scheduling capability.

The choice of a workflow engine depends on application
requirements [8], considering the trade-offs between features
and functionalities. Open-source workflow engines offer a
cost-effective and flexible solution ideal for the dynamic
environment of modern RIs.

B. Artificial Intelligence as a Service
AIaaS allows researchers and practitioners to readily ac-

cess sophisticated AI tools, such as machine learning and
data mining models, natural language processing, and image
recognition, without requiring extensive expertise in AI. These
tools are robust, reliable, and efficient, and typically undergo
rigorous testing, validation, and optimization. In addition, they
provide several generic adaptation and customization options
to support expansion and tailoring for specific applications.

There are several computing paradigms to support the
implementation and integration of AIaaS into modern RIs.
The Platform as a Service (PaaS) paradigm, like Heroku 10 and
Google App Engine 11, is geared toward developing, managing
and running applications hiding the complexity of building and
maintaining the infrastructure. RIs can use the PaaS paradigm
to expose multiple “applications” to allow researchers to
orchestrate experiments under a unified platform. However,
this limits variability in experimental design, execution, and
analysis, which may require more fine-grained control over
the execution environment. Infrastructure as Code (IaC), such
as Terraform 12, AWS CloudFormation 13, and Pulumi 14, can
be used to manage the provision of cloud infrastructure using
code offering greater control and flexibility. However, there
are multiple experiment scenarios where code needs to be
executed in situ in any part of the network, even on individual
equipment.

Function as a Service (FaaS), such as AWS Lambda 15,
decouples individual AI-/ML- functions enabling code execu-
tion in response to events without managing the underlying
compute resources offering scalability, simplicity, and cost-
efficiency. In addition, FaaS enables individual researchers to

7Snakemake, https://snakemake.readthedocs.io/
8WorkflowEngine .Net, https://workflowengine.io
9Bonita-engine, https://documentation.bonitasoft.com/bonita/
10Heroku, https://www.heroku.com
11Google App Engine, https://cloud.google.com/appengine
12Terraform, https://www.terraform.io
13AWS CloudFormation, https://aws.amazon.com/cloudformation/
14Pulumi, https://www.pulumi.com/b/
15Amazon, Aws lambda-serverless compute-amazon web services, 2023

easily extend existing functions or create new functions ac-
commodating unique experiment requirements. Versioning of
functions is also seamlessly supported by all FaaS platforms. A
popular alternative to FaaS is Containers as a Service (CaaS),
such as Kubernetes 16, Docker Swarm 17, and OpenShift 18,
which allow developers to package AI models into containers.
CaaS offers more fine-grained control over the execution
environment than FaaS and benefits from the scalability and
management features. Serverless Containers, such as AWS
Fargate 19 and Google Cloud Run 20 go a step further by
abstracting away the server and cluster management tasks.

Finally, workflow automation platforms, such as AWS Step
Functions 21, Azure Logic Apps 22, and Google Cloud Work-
flows 23 allow the orchestration of multiple serverless functions
and services into complex workflows. This paradigm focuses
on orchestrating several microservices and serverless functions
to create more complex applications.

C. Metadata Models

The necessary metadata models to describe experimental
workflows consist of atomic digital objects, such as datasets
and services, and complex ones, such as experimental nodes,
and experiment workflows. Several established standards were
considered for defining the metadata profiles for experimental
workflows and experiment nodes. Workflows can process
raw and streaming datasets, and generate one or more final
datasets, representing the outcome of the workflow (e.g.,
scoring dataset). Data Lineage and provenance metadata infor-
mation is necessary to govern the workflow lifecycle [9], [10]
capturing the above and all results produced during/after every
workflow step, such as intermediate datasets and AI models
[11]. This also includes data handling, such as preparation,
metadata labelling [12], dataset split [13], feature extrac-
tion/engineering [14] and feature validation [15], and model
parameters tuning [16] and versioning [10].

D. Trustworthy factors

Trustworthy experimentation is crucial for ensuring the
reliability and validity of research. It is also essential for
compliance with the European Union’s AI Act and Ethics
Guidelines for Trustworthy AI . Several factors contribute to
building trust in the full experiment lifecycle, such as (i) trans-
parency, providing structured means to investigate any part of
the experiment, including generated data, component configu-
rations, and environment influence; (ii) explainability, showing
how each experiment step works and why, and unveiling the
internal operations of complex AI models understandably;
(iii) interpretability, providing human-centric interpretations

16Kubernetes, https://kubernetes.io
17Docker Swarm, https://docs.docker.com/engine/swarm
18OpenShift, https://docs.openshift.com/
19AWS Fargate, https://aws.amazon.com/fargate/
20Google Cloud Run, https://cloud.google.com/run
21AWS Step Functions, https://aws.amazon.com/step-functions/
22Azure Logic Apps, https://learn.microsoft.com/en-us/azure/logic-apps
23Google Cloud Workflows, https://cloud.google.com/workflows

of the reasoning behind AI decisions; (iv) privacy, ensuring
that experiment steps are privacy-preserving, compliant with
privacy-by-design/default (as defined by GDPR), and provide
indications to track anomalies [17] (e.g., potential model drifts
and data leakage; (v) bias ensuring that models are unbiased,
non-discriminatory, and fair; (vi) robustness, demonstrating
that experiment steps meet certain Quality of Service (QoS)
requirements, such as performance, throughput, and latency;
and safety, ensuring that experiments operate within safe pa-
rameters, especially when humans are involved. Transforming
these factors into indicators and fusing them using a formal
model [18] can contribute to a trustworthy evaluation of the
experiment, further promoting replication.

III. TRUSTWORTHY EXPERIMENTAL REPLICATION
FRAMEWORK

This section presents the proposed Trustworthy Experimen-
tal Replication Framework for the SLICES-RI, coined STEF,
including its architecture and main components.

A. Architecture

The proposed architecture of STEF is illustrated in Figure 1.
STEF utilizes the Metadata Registry System (MRS), which
provides discovery services for all digital objects, such as
datasets, experiment nodes and experimental workflows. MRS
supports versioning of metadata, which, in turn, allows for
multiple versions of all digital objects (e.g., several versions of
an AI algorithm). Experiment workflows are the definitions of
experiments, describing the interactions between experiment
nodes and other digital objects, such as datasets.

Infrastructure
Configuration

v3

SLICES-RI

Metadata Registry System

Experiment Nodes
Definitions

v1 v2
v3

Storage
Service

Basic
Infrastructure Services

Experiment
Orchestrator

Experiment Workflows

v3

Trustworthy Evaluation Framework

AI-as-a-Service

Experiment Nodes
Implementations

v1 v2
v3

main main main mainmain

Fig. 1. Trustworthy Experimental Replication Framework

AI-as-a-Service consists of the realization of experiment
nodes utilizing one of the serverless architecture paradigms
described in section II-B. AI algorithms are stored as atomic
units that can be executed as a service or transferred for execu-
tion in a specific device (virtual or physical). User-defined end-
to-end services are also supported, consisting of predefined AI
workflows. Basic Infrastructure Services are core services of
SLICES-RI offering management and monitoring of all soft-
ware and hardware resources. Within the context of SLICES-
RI, this includes non-traditional RI operations, such as multi-
site reservations, configurations, and orchestrations of multiple
heterogeneous geo-diverse resources. Storage Service is also
a core SLICES-RI service offering high-performance storage

services for all digital objects, such as datasets. Furthermore,
the Storage Service facilitates the integration of external data
sources (e.g., datasets from EOSC) in collaboration with the
data management services. The system’s heart is the Exper-
iment Orchestrator, responsible for the end-to-end execution
of experimental workflows, consisting of multiple experiment
nodes and workflow control (e.g., conditional execution, loops,
parallel processing, and events-based execution).

B. Facilitating Use Case

We utilize a simplified real-world use case of a scientific
experiment in smart agriculture, which consists of an exper-
iment workflow comprising four steps. The experiment starts
by ingesting data from a wireless sensor network, reserved
through the SLICES basic infrastructure service. Assume that
the WSN was configured to record environmental parameters
(e.g., temperature, humidity, light, wind speed) for a specific
period (e.g., one month) at predefined intervals (e.g., every
second) and also store the GPS value of each sensor node.
Second, the workflow executes a pre-processing node that
handles missing values by imputing them using a predefined
strategy (e.g., the mean value of each attribute) set by the
experimenter. Next, the data are fed into an ML clustering
model to detect regions with similarities in the deployment by
analyzing patterns. Finally, the processed data, including the
new features (i.e., the cluster label), are exported to a format
that was selected by the experimenter.

C. Metadata Registry System

The Metadata Registry System realizes the SLICES core
metadata schema (SFDO), harmonizing the metadata of all
digital objects, such as datasets, experiment nodes, and ex-
perimental workflows. In the following sections, we provide
insight into the schema of each metadata profile, drawing
references to our facilitating example.

Service

SFDO

SLICES Core
Level 1

Type-specific
Level 2

Domain-specific
Level 3

Dataset

Other

Experiment
Single-site

Multi-site
Exp. Node

Exp. Workflow

SigMF

HDF5

Fig. 2. SLICES Fair Digital Object (SFDO) Hierarchical Metadata Model

1) Digital Objects: SLICES implements a flexible hierar-
chical metadata model consisting of three levels as illustrated
in Figure 2. The first level consists of compulsory domain-
agnostic information that can describe any digital object (e.g.,
data, services, publications, tools), ensuring that it conforms
to FAIR principles and beyond. It includes basic information
(e.g., identification, creator, description), management infor-
mation (e.g., version, access), and the object type. SLICES
also employs a second level of compulsory metadata attributes,
which are type-specific, to enhance machine-actionability for

simple and complex types, such as datasets, services, and
experiments. Finally, the third level incorporates optional
domain-specific attributes to enhance interoperability for spe-
cific communities (e.g., incorporating attributes for compliance
with a standard, such as SigMF).

2) Experimental Nodes: Experimental nodes are essential
components of the experiment workflow, each serving a unique
function within the experimentation process. Experimental
nodes are designed to be applicable across diverse scientific
domains, providing researchers with the openness and flexi-
bility to perform a wide range of experiments and operations
transparently. Each node offers significant flexibility in its
usage, enabling researchers to create custom nodes and adapt
them to different experimental setups and data requirements.

The metadata schema of experiment nodes is a level-
2 SFDO object inheriting the metadata described in Sec-
tion III-C1. Additionally, it comprises experiment-specific
information: inputs, outputs, and configuration parameters.
Inputs provide essential information for the node to perform
its designated task effectively, including datasets and metadata.
Outputs consist of processed data, statistical results, visu-
alizations, or other relevant information derived from input
data. Configuration parameters enable users to customize the
behavior of each node (e.g., setting the k value for k-means),
ensuring adaptability to experimental requirements.

Fig. 3. Metadata for (left) Experiment Node (right) Experiment Workflow

An example of the Impute Node metadata is illustrated in
Figure 3 (left). Only a subset of the metadata is presented to
support the example. Lines 1-8 show a subset of the inherited
metadata from the SFDO model, enabling the findability and
accessibility of the digital object. Next, lines 10-26 provide
the type-specific metadata of the experiment node: (i) lines
9-16 list the input specifications; (ii) lines 19-21 list the
configuration of the node; and (iii) lines 23-26 list the output
specifications. The Impute Node consists of a required main
input dataset (line 10), the optional imputation method (line
12), and the optional attribute list that imputation will be
performed (line 15). The node’s output includes the imputed
main dataset (line 24) and the labeled output ImputeStatistics,
which can be used to interpret the node’s results.

3) Experimental Workflows: An experiment workflow con-
sists of interconnected experimental nodes orchestrated to ex-

ecute scientific experiments and operations. These workflows
are highly flexible and customizable, enabling researchers to
construct complex data processing pipelines tailored to specific
experimental requirements. Researchers can orchestrate exper-
imental nodes in various configurations, ranging from linear
workflows such as those observed in Machine Learning Op-
erations (MLOps), to more complex arrangements involving
multiple paths and programming aspects. In linear workflows,
experimental nodes are arranged sequentially, with data/results
linearly flowing through each node. In comparison, complex
workflows involve multiple paths and may have convoluted de-
pendencies between nodes. Researchers can design workflows
with branching paths, parallel processing, and conditional
execution, enabling the creation of advanced pipelines capable
of handling diverse data analysis and processing tasks.

The metadata schema of experimental workflows is a level-
2 SFDO object and, similar to the experiment node, inherits
the same metadata for discoverability and access. Additionally,
each definition comprises experimental workflow-specific in-
formation, such as variables and configuration parameters, ex-
periment nodes, and interactions between nodes. The workflow
metadata representing the facilitating example of Section III-B
is illustrated in Figure 3 (right). Lines 11-18 show that the
workflow initializes four experiment nodes, named IngestData,
ImputeValues, Clustering, and Evaluate, which are later con-
nected to form a pipeline in Lines 22-24.

D. Trustworthiness

Experimental nodes and workflows promote trustworthi-
ness through adhering to trustworthy-by-design principles and
monitoring selected factors mentioned in Section II-D. The
framework prioritizes lineage- and provenance-by-default by
employing automated procedures tracking the origin and his-
tory of data inputs, transformations, and outputs, ensuring
traceability. Provenance metadata captures contextual infor-
mation, such as experimental conditions and software ver-
sions. Furthermore, experiment nodes are designed to be
interpretable and explainable, providing meaningful insights
into underlying processes and decision-making logic through
carefully crafted data and metadata. These are extracted and
processed during the node’s processing, and geared to enhance
end-to-end interpretation (process, model, and results).

IV. PROTOTYPE WORKFLOW MANAGEMENT SYSTEM

This section provides an overview of the prototype imple-
mentation of the experimental workflow management proto-
type, realizing the metadata design presented in the previous
section. The prototype orchestrates experimental nodes to
construct and execute various scientific workflows, showcasing
the flexibility and effectiveness of our experimental model in
practical research scenarios. The prototype system is com-
posed of 4 main components: (i) the experiment orchestrator,
which serves as the entry and the heart of the system, (ii) the
FaaS service, which is responsible for executing the compute-
oriented experiment nodes, (iii) the storage service, which
is responsible for storing node-intermediary outputs and the

final results, and (iv) the MRS which is populated by the
orchestrator and enables long-term discovery of the various
digital objects. The entire system is deployed in a single
Kubernetes cluster. The following sections provide insight into
the implementation of each system component.

A. Orchestrator

The orchestrator is the entry point into the system for
experimenters. It presents a web-based UI for visual exper-
iment design, inspection and on-demand execution. When the
experimenter requests an execution of the experiment, the
orchestrator invokes the FaaS service for each experiment node
with execution-specific parameters (e.g., the dataset produced
by the previous node). The orchestrator then waits for the
function to complete and executes the following node. Several
nodes can execute in parallel depending on the configuration
of the experiment workflow. Once the experiment is complete,
the orchestrator invokes the MRS to register the results, the
generated datasets, etc. Currently, Elsa Workflows24 is used as
the basis for the orchestrator. It was selected as it is a proven
open-source project with significant out-of-box capabilities.
However, the full implementation of SLICES-RI, will require
a bespoke orchestrator to be implemented, to accommodate
the unique requirements of the SLICES-RI.

B. Workflow Engine Implementation

Custom activities within the ELSA environment represent
individual experimental nodes. These activities encapsulate
the functionality of each node, including its inputs, outputs,
configuration parameters, and the associated Python scripts.
By categorizing these activities under relevant domains and
categories, such as “SLICES” the implementation maintains
clarity and organization within the workflow.

C. Node Implementation

The core logic for data processing tasks is implemented
using Python scripts associated with each experimental node.
These scripts utilize libraries like pandas for efficient data
manipulation and follow predefined strategies tailored to spe-
cific experimental requirements. All nodes conform to the
same specification, which realizes all data: inputs, outputs,
and configuration parameters, as described in Section III-C2.
All data are implemented using key-value pairs for efficient
referencing, especially in the case of default inputs/outputs,
such as the main dataset of an ML pipeline. By separating the
data processing logic into Python scripts, the implementation
ensures modularity and flexibility, allowing for easy cus-
tomization and adaptation to different experimental scenarios.

D. Node Execution

To orchestrate the execution of Python scripts within the
ELSA environment, the experiment scripts are deployed to
a FaaS framework. The FaaS paradigm was selected as the
baseline configuration for experiment nodes as it supports

24https://v3.elsaworkflows.io/

versatile scenarios and separates the nodes into small, easily
reusable pieces while providing optimal use of the exper-
imenting infrastructure. Knative was selected as the FaaS
execution environment. When ELSA triggers the execution
of a particular node, it sends a JSON request to Knative,
containing information regarding inputs, outputs, and configu-
ration parameters. Knative then executes the Python script and
returns the results to ELSA, completing the workflow step.

E. Storage service

The Storage Service stores intermediary node outputs and
the final results. It is implemented using the object-storage
paradigm, which can be interfaced with using the de-facto
standard AWS S3 API. Due to its widespread popularity and
adoption, the Minio25 software was selected as for implemen-
tation. Is it possible to replace Minio due to the use of the
de-facto standard AWS S3 API. The API is also implemented
by other software packages, such as SeaweedFS with S3
gateway26, GarageHQ27 and OpenStack Swift with Swift3
middleware28. The orchestrator is responsible for managing the
layout of the stored data (e.g. names) and issuing temporary
access credentials to node executions with access scope limited
only to the specific files the node is expected to read/write.

F. Trustworthiness Evaluation

Trustworthiness evaluation is achieved by integrating the
outputs discussed in Section III-D with monitoring data gen-
erated within SLICES-RI by all collaborating services as
illustrated in Figure 1. The data are then transformed into
indicators based on predefined QoS requirements. The current
prototype adopts a naive approach where if an experiment
node supports a trustworthiness factor (e.g., the node supports
lineage and explainability if provisions were made to store
intermediate datasets and explain operations respectively) then
the indicator score is 100%. The indicators are then fused into
a trustworthiness index using an ensemble system. Assuming
I is the set of all indicators, every trustworthy indicator
i ∈ I is of equal weight (w(i) proportional to the number
of indicators (i.e., |I| = k,w(i) = 1

k ,∀i ∈ I). Finally, the
trustworthiness indicators and index are added to the metadata
of the experiment.

V. CONCLUSIONS AND FUTURE WORK

This paper presented the preliminary design of the SLICES-
RI replication framework, describing how experimental work-
flows can be defined with structured metadata conforming to
Open Science and FAIR principles. The proposed SLICES
Trustworthy Experimental Replication Framework (STEF)
provides visibility into the experiment workflow and the under-
lying data journey, and demonstrates the potential integration
of sophisticated factors, such as explainability, interpretability,

25https://min.io/
26https://github.com/seaweedfs/seaweedfs/wiki/Amazon-S3-API
27https://garagehq.deuxfleurs.fr/
28https://docs.openstack.org/mitaka/config-reference/object-

storage/configure-s3.html

and safety, contributing to trustworthy experimentation. We
show a prototype implementation of the STEF framework with
selected trustworthiness factors: lineage, explainability, and
interpretability. In the future, we plan to develop an enhanced
version of STEF that uses a formal framework to assess and
integrate the trustworthiness indicators.

ACKNOWLEDGMENT

This work was supported by the EU HE program under
grant agreement No 101079774 for the SLICES-PP project.

REFERENCES

[1] R. Moonesinghe, M. J. Khoury, and A. C. J. W. Janssens, “Most
published research findings are false—but a little replication goes a long
way,” PLOS Medicine, vol. 4, no. 2, pp. 1–4, 02 2007.

[2] E. Desjardins, J. Kurtz, N. Kranke, A. Lindeza, and S. H. Richter, “Be-
yond Standardization: Improving External Validity and Reproducibility
in Experimental Evolution,” BioScience, vol. 71(5), pp. 543–552, 2021.

[3] M. Lowe, R. Qin, and X. Mao, “A review on machine learning, artificial
intelligence, and smart technology in water treatment and monitoring,”
Water, vol. 14, no. 9, 2022.

[4] D. Lakens, “The practical alternative to the p value is the correctly used
p value,” Perspectives on Psychological Science, vol. 16, no. 3, pp. 639–
648, 2021.

[5] A. F. Markus, J. A. Kors, and P. R. Rijnbeek, “The role of explain-
ability in creating trustworthy artificial intelligence for health care: a
comprehensive survey of the terminology, design choices, and evaluation
strategies,” Journal of biomedical informatics, vol. 113, p. 103655, 2021.

[6] C. G. Begley and J. P. Ioannidis, “Reproducibility in science: improving
the standard for basic and preclinical research,” Circulation research,
vol. 116, no. 1, pp. 116–126, 2015.

[7] S. Fdida, N. Makris, T. Korakis, R. Bruno, A. Passarella, P. Andreou,
B. Belter, C. Crettaz, W. Dabbous, Y. Demchenko, and R. Knopp,
“Slices, a scientific instrument for the networking community,” Com-
puter Communications, vol. 193, pp. 189–203, 2022.

[8] T. Heinis, C. Pautasso, and G. Alonso, “Design and evaluation of an
autonomic workflow engine,” in Second International Conference on
Autonomic Computing (ICAC’05), 2005, pp. 27–38.

[9] H. Miao, A. Li, L. S. Davis, and A. Deshpande, “Towards unified data
and lifecycle management for deep learning,” in 2017 IEEE ICDE, 2017,
pp. 571–582.

[10] B. Derakhshan, A. R. Mahdiraji, T. Rabl, and V. Markl, “Continuous
deployment of ml pipelines.” in EDBT, 2019, pp. 397–408.

[11] G. Gharibi, V. Walunj, R. Nekadi, R. Marri, and Y. Lee, “Automated
end-to-end management of the modeling lifecycle in deep learning,”
Empirical Software Engineering, vol. 26, pp. 1–33, 2021.

[12] T. Fredriksson, J. Bosch, and H. H. Olsson, “Machine learning models
for automatic labeling: A systematic literature review.” ICSOFT, pp.
552–561, 2020.

[13] S. Schelter, F. Biessmann, T. Januschowski, D. Salinas, S. Seufert, and
G. Szarvas, “On challenges in ml model management,” IEEE Data
Engineering Bulletin, 2015.

[14] N. Polyzotis, S. Roy, S. E. Whang, and M. Zinkevich, “Data lifecycle
challenges in production machine learning: a survey,” ACM SIGMOD
Record, vol. 47, no. 2, pp. 17–28, 2018.

[15] D. Baylor, E. Breck, H.-T. Cheng et al., “Tfx: A tensorflow-based
production-scale machine learning platform,” in ACM SIGKDD, 2017,
pp. 1387–1395.

[16] L. E. Lwakatare, I. Crnkovic, and J. Bosch, “Devops for ai–challenges
in development of ai-enabled applications,” in 2020 SoftCOM. IEEE,
2020, pp. 1–6.

[17] C. Duckworth, F. P. Chmiel, D. K. Burns, Z. D. Zlatev, N. M. White,
T. W. Daniels, M. Kiuber, and M. J. Boniface, “Using explainable
machine learning to characterise data drift and detect emergent health
risks for emergency department admissions during covid-19,” Scientific
reports, vol. 11, no. 1, p. 23017, 2021.

[18] C. Agarwal, S. Krishna, E. Saxena, M. Pawelczyk, N. Johnson, I. Puri,
M. Zitnik, and H. Lakkaraju, “Openxai: Towards a transparent evaluation
of model explanations,” Advances in Neural Information Processing
Systems, vol. 35, pp. 15 784–15 799, 2022.

