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Abstract
The mix of technologies in a future energy system is an important area of research. As
the proportions of wind power and solar power generation capacities in the power
system increase, energy storage becomes necessary to complement their variability due
to weather. The subject of this thesis is how the wind/solar/storage mix will be impacted
due to changes in electricity demand caused by the electrification of heat and transport
using the UK as a case study.

To account for long-term weather effects, whilst keeping socioeconomic and
technological factors constant, a novel method has been developed for incorporating
heating electricity into the historic electricity demand. This enables the impact of heat
pumps alone to be studied. The research reveals that for predicted 2050 heat pump
penetration levels the monthly demand for electricity doubles in winter. This leads to
an increase of approximately 30 TWh for each winter month and a 37% increase in
year-to-year variability of electricity demand due to weather. Temperature dependent
electric vehicle time series incorporated into the electricity demand show a seasonal
variation far lower than for heat pumps, with annual demand varying over a range 14
TWh between years with EVs compared to only 10 TWh without.

These electricity demand time series were used in a novel high-level energy model to
calculate the minimum energy storage required for a generation mix including wind,
solar, base load and dispatchable power sources. To provide sufficient granularity and
variation in conditions, hourly demand and generation time series based on 40 years of
historic weather were used. The optimum wind/solar energy mix from perspectives of
storage, excess energy and cost were investigated. It was found that heating
electrification increases the proportion of wind energy required by between 3% and 5%.
In contrast, a change to providing most transport by electric vehicles does not
significantly change the optimum proportion of wind energy required. Providing all
heating with boilers fuelled by hydrogen generated via electrolysis would require 7
times as much renewable energy compared to all heating provided by electric heat
pumps. Energy lost due to curtailment exceeds energy lost to storage efficiency by an
order of magnitude.

A sensitivity analysis on alternative model inputs showed that different wind generation
time series have the most impact on predicted energy storage capacity. Simulated
offshore and onshore wind and actual national grid generation all have different
patterns. This can have a significant impact on storage requirements, a result that has
not been noted before. Although previous research has shown the impact that wind
turbine locations have on the amount of energy they generate, when they generate this
energy has had little attention.

A novel comparison of four heat demand methods found that the method used by the
when2heat dataset most accurately predicted the measured data which is an important
result considering it has already been used by several other studies. The methods were
validated against national gas time series, and measured data not previously used for
this purpose. It was also found that peak electricity demand is very sensitive to the
method of generating heat demand and hourly heat pump operating profiles, suggesting
inaccuracies of 25% in previous estimates of future peak demand.
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1 Introduction

The power system has always had to respond to an electricity demand that varies on an
hourly, daily, and seasonal basis. But as the proportions of wind power generation and
solar power generation increase, the supply side is also becoming more variable due to
its weather dependence. One solution to supply side variability is to store energy during
periods of high generation for use when the demand is high, but the generation is low.
An important area of research considers what mix of generation and storage
technologies are needed to balance supply and demand. This thesis is primarily
concerned with how the mix of wind and solar generation will be impacted by changes
in the electricity demand due to the electrification of heating and transport.

The rest of this chapter is structured as follows. Section 1.1 discusses the importance
of the subject, the motivation for the research and the main research questions. Section
1.2 contains background to the field of energy modelling. Section 1.3 contains a brief
literature review to establish the novelty of the research questions. Section 1.4 describes
the structure of the rest of the thesis and summarises the main contributions.

1.1 Motivation and Research Questions

In 1952 when my uncle Douglas participated in the British North Greenland Expedition
[1] which assessed glacial melting, it was known that global temperatures were rising,
but not why. By 2018 the International Panel on Climate Change [2] reported that
manmade emissions of greenhouse gases (GHG) are leading to dangerous changes to
the world’s climate. In response, in 2019, the UK government committed to net zero
greenhouse gas emissions by 2050 [3]. A net zero energy system [4] that does not add
any GHG to the atmosphere is an important step towards this goal. Emissions from
energy supply come predominantly from the burning of fossil fuels. To achieve a net
zero energy system, these need to be replaced by low carbon power sources such as
wind and solar. The intraday variability of wind and solar can be mitigated to a limited
extent by demand side management, but to cope with the seasonal variability, they need
to be complemented by energy storage. Therefore, it is important to study the capacities
of wind generation, solar generation and energy storage that might be needed in a future
power system. The technology mix and feasibility of the transition have been identified
as important research areas [5].

This change to renewable power sources such as wind and solar will result in a
migration away from burning fossil fuels for kinetic energy and heat energy to delivery
of energy in the form of electricity. The two most significant impacts on future
electricity demand in cooler countries will be the electrification of heating and transport
[6, 7]. Heating is the cause of 30% of primary energy demand in Europe [5] and 36%
in the UK [8]. The migration from heating provided from fossil fuels such as natural
gas to electricity is termed the electrification of heat. Similarly, transport, the largest
emitting sector of GHG emissions, producing 24% of the UK’s total emissions [9], is
likely to migrate from oil based to electric vehicles (EVs).

These changes mean that in the future, both power generation and electricity demand

will become more weather dependent. Wind power generation depends on windspeed,
and solar power generation depends primarily on solar irradiance. Heating demand
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depends on temperature so that a move to electric heating increases the sensitivity of
the power system to weather variation [7]. EVs also use more energy with extremes of
weather [10]. Therefore, it is also important to consider the effect of weather. However,
research has found that using only a single year is not enough to capture the variation
in renewable power generation caused by weather to fully test an energy model [11].
For this reason, it is important to consider at least 10 years of weather. The more
variation in weather conditions, the more likely that periods where high demand and
low generation occur at the same time are captured. For example, a model developed
using a warmer year with lower heating demand, or a windy year with high power
generation might not cope with a cold, calm year. In this study 40 years of historic
weather data are used, on the assumption that the weather patterns of the past give a
guide to those of the future. Other research [12] has found that the multi-decadal
variability of wind generation based on historic weather to be greater than climate
change impacts predicted by modelling, and [13] that the impacts of climate change on
PV generation in Europe will be lower than that of wind.

This work brings together these aspects of changes to electricity demand, generation,
and storage with sensitivity to weather. The research question in this thesis is how the
future decarbonization of heat and transport will impact the optimal mix of solar, wind
and storage in a power system with a high penetration of these technologies. To answer
this question a model of the electricity system will be required, which will need to
include wind power generation, solar power generation, electricity demand and energy
storage. It will have to do this accounting for long-term weather variation. Factors other
than weather must be kept constant, so that the impact of the changes to heating and
transport can be assessed alone. If heating technology were changing over the analysis
period, as it would be if historic electricity demand were used, then it would not be
possible to tell which changes were due to weather and which to technology. Although
the methodology developed here is used to study the impact of current heat pump
technology it could equally well be used to keep technology constant at future levels,
for example if heat pump COP and housing insulation improves.

Four subsidiary questions need to be asked:

e How should electricity demand time series incorporating heating electrification
under long-term weather variation be generated which allows heating alone to
be studied?

e How should an electricity demand time series incorporating electric vehicles
under long-term weather variation be generated which allows the impact of
EV’s alone to be studied?

e How should the required energy storage be found from the proportions of wind
and solar generation?

e How can the results be assessed?

This project will address these questions using the Great Britain energy system as a
case study.

1.2 Background

This section starts by discussing the technologies to be used to achieve the required
changes to the energy system. Background information on how the technologies will
be modelled is then presented.
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1.2.1 Power Generation

Historically the majority of UK electricity has been generated by thermal power plants
[14]. Thermal power plants use heat energy to drive a turbine that powers an electricity
generator. The heat is provided by combustion of fossil fuels such as gas, coal or oil, or
from nuclear energy. However, because burning fossil fuels emits GHG, to achieve a
net zero emissions energy system, either a switch to technologies which do not generate
GHG is required, or these gasses must be removed from the air. Broadly, there is a
combination of three options: remove the emissions, do not create the emissions in the
first place, reduce (or smooth out) the energy demand.

Options for removing the gasses [15] include:

e Carbon Capture and Storage (CCS) — COz is captured from the burning of fossil
fuels in a thermal power station and stored. The storage could, possibly be under
the sea, in old gas or oil wells. Chemical reactions could be used to convert the
CO2> into other compounds that could be stored more easily.

e Direct Air Capture (DAC) - CO» is captured directly from the air and stored in
a similar way to CCS.

e Bio energy - biomass that when burned only generates the same CO- that would
have been emitted from it rotting, can be considered carbon neutral.

¢ Bio energy and carbon capture (BECC) — this combines bio energy and carbon
capture, so theoretically could generate negative emissions.

e Other interventions outside the scope of the energy system such as planting
trees.

Common options for generating electricity without producing GHGs are shown in table

(1-1)

Table 1-1 Low carbon electricity generation technologies

Technology Pros Cons

Solar PV / thermal

Cheap, large resource

Variable, takes space

Wind

Cheap, large resource

Variable, takes space

Wave

Large potential

Expensive

Tidal (barrage / stream) Constant predictable Expensive
cycle

Hydro Predictable Small UK resource

Bio energy Use when needed Limited Resource

Nuclear Constant Expensive, cannot switch
off, waste disposal
problems

Geothermal Constant Limited UK Resource

Options for reducing electricity use include efficiency improvements and measures to
reduce demand such as home insulation. Options for reducing peak demand, include
demand response/shifting where consumers are incentivised to use energy at a different
time such as overnight EV charging.

21



1.2.2 Energy Storage

The characteristics of different storage technologies determine their role within the
power system. Short term storage for balancing the grid to maintain voltage and
frequency requires storage with a high energy throughput, but low capacity. Whereas
long-term storage to balance seasonal and interannual mismatches requires high
capacity but does not need such a high throughput. Some of the storage technologies
expected to play a role in the future are:

e Batteries: A chemical reaction generates electricity. The reaction is reversible so
that the battery can be charged with electrical input, storing energy [16].

e Pumped Hydro: water flowing from a lake driving a turbine to produce electricity.
Electricity used to run a pump to refill the lake, to store energy [16].

e Compressed Air Energy Storage (CAES): compressed air stored in a salt cavern
used to generate electricity via a gas turbine. To store energy, electricity drives a
compressor to compress air [16].

e Hydrogen Storage: Hydrogen stored in salt caverns, cylinders or tanks used to
generated electricity via a fuel cell. Energy stored using electricity to create
hydrogen via electrolysis of water [17].

A study on the economics of electrical storage [18] states that batteries are suitable for
a period of a few hours, CAES and pumped storage are suitable for 6-10 hours. Power
to gas such as Hydrogen are suitable for longer periods. All storage technologies can
be characterised using the same measures. For example:

e (Capacity: how much energy can be stored.
State of charge: how full the energy store is.
Charge rate: how quickly the energy can be stored.
Discharge rate: how quickly the energy can be used (related to power rating)
Efficiency: how much energy is lost in the process.
Lifetime: often measured in charge — discharge cycles.

Table (1-2) compares some of these characteristics for various storage technologies.
With pumped storage the rate at which energy can be stored is determined by the
capacity of the pump which pumps water from one lake into another higher up. The
amount of energy that can be stored is determined by the capacity of the lake and the
rate of discharge is determined by hydro-electric generation capacity. With hydrogen,
the charge rate is determined by the capacity of electrolysers which use electricity to
split water into hydrogen and oxygen. The amount of hydrogen that can be stored is
determined by the size of the salt caverns in which it is stored, and the discharge rate is
determined by the capacity of hydrogen electricity generation.
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Table 1-2 — Characteristics of energy storage technologies.

(Coulombs)

Storage Capacity Charge Rate Discharge Rate
Technology Determined by Determined by Determined by
Battery Stored Charge Current (Amps) Current (Amps)

Pumped Storage

Size of the lake

Pump capacity

Hydro generation
capacity

Hydrogen Size of salt caverns | Electrolyser Hydrogen
or gas storage capacity turbine
generator
capacity
CAES Size of salt caverns | Compressor Generator
or gas storage capacity capacity

The seven future plans for the UK power system reviewed in [19] all anticipate that
more long-term storage will be needed. The plans discussed use batteries, pumped
hydro, and Compressed Air Energy Storage (CAES) for short term storage. For long-
term storage 6 of these plans use hydrogen and 1 uses methane made from hydrogen
and biomass. The wind energy fraction, short term and long-term storage from these
plans are summarised in table (1-3). The capacity of long-term storage ranges from 600
GWh to 80 TWh whilst that of short-term storage is much less, ranging from 29 GWh
to 200 GWh. These plans were produced by:

e ESC — The Energy Systems Catapult — a body fostering links between the

energy industry and academia.

e FES — Future Energy Scenarios by National Grid.

e CAT — Centre For alternative Technology, ZCB Zero Carbon Britain.

e (CCC — Climate Change Committee.

Table 1-3 Seven Future UK Energy System Plans

Plan [19] Wind Energy Short term / Long Term Storage
Fraction batteries

ESC-C 80% — 99% 35 GWh 660 GWh Hydrogen

ECS-P 71% —98% 29 GWh 600 GWh Hydrogen

FES - LTW 86% 203 GWh 16 TWh Hydrogen

FES — ST 80% 146 GWh 18 TWh Hydrogen

FES—CT 86% 194 GWh 18 TWh Hydrogen

CAT-ZCB 90% 200 GWh 80 TWh Hydrogen

CCC-B 83% 200 GWh 80 TWh methane from
hydrogen and biomass

Vehicle to grid (V2G) systems where private electric vehicles loan out part of their
battery capacity could make a significant contribution to the short-term storage. For
example, 20 million cars (which is the low estimate of future car ownership) and a
typical 40 kWh car battery create a total of 800 GWh.
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1.2.3 Heating Technology

In 2018, 71% of Great Britain’s heating was provided by natural gas [8]. The gas is
burnt to heat water supplied directly as hot water or pumped through radiators to heat
buildings. Such fossil fuel heating systems which can also be fuelled by oil or biomass
emit carbon dioxide and therefore must be replaced. Possible alternative heating
technologies include:

e Traditional electric “resistive heating” and storage heaters

e (Combined Heat and Power (CHP)

e District Heating

e Electric Heat Pumps

e Using hydrogen as a fuel for boilers instead of natural gas

Resistive heating, such as a traditional electric bar fire, creates heat by passing an
electric current through a resistor which converts the electrical energy to heat. This heat
can be passed through bricks using overnight low-cost electricity in storage heaters to
store the heat energy thermally.

Combined Heat and Power (CHP) is a process that combines localised power
generation and heating. The waste heat from electricity generation is used to provide
heating. Although the electricity has been traditionally generated using fossil fuels,
some countries, for example Denmark [20] are planning a migration to using biomass
or waste as a fuel.

With district heating, hot water is delivered in pipes to buildings, instead of having a
heater in the building. The water can be heated via waste heat from power stations,
industrial processes or via other forms of heating such as heat pumps. District heating
is a promising technology for high housing densities [20], but its economic viability in
the UK is uncertain due to higher cost at lower housing densities and lack of experience.

A review of domestic heat pumps [21] explains that rather than converting electric
energy to heat energy directly heat pumps use electricity to pump heat from a colder
location to a warmer one in a similar way to a domestic fridge. A fluid called the
refrigerant is forced through an expansion valve, lowering its temperature so that it can
absorb heat from the surroundings. The fluid then passes through a compressor raising
its temperature, and then through a heat exchanger to heat water in the home. The ratio
of the electrical energy used to the heat energy obtained is called the Coefficient of
Performance (COP). This review concludes that in the future, most of the heat demand
will probably be provided by electric heat pumps being the most efficient way of
providing electric heating.

One alternative to fuel domestic boilers instead of natural gas is to use hydrogen. The
hydrogen could be generated using excess electricity from wind and solar to split water
into hydrogen and oxygen using electrolysis. This hydrogen would be piped through
the existing gas network. This domestic use of hydrogen in the UK was only in a trial
phase in 2019 [22].

A study analysing the impacts of future heating technologies [23] concludes that gas
boilers are one of the worst technologies considering GHG emissions, only exceeded
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by oil and LPG. They conclude that of the low carbon alternatives, the most economical
is electric heat pumps.

1.2.4 Transport

It is anticipated that transport will mostly move towards Electric Vehicles (EVs) [24]
apart from a small percentage fuelled by hydrogen. This is primarily due to the costs of
the vehicles themselves and the cost of hydrogen fuel and associated infrastructure.
However, the charging of the batteries for these vehicles will have a large impact on
the electricity grid.

1.2.5 National Energy System Modelling

Changes to a country’s energy demand, generation and storage can be investigated by
computer models [25] to find the required mix of technologies for a net zero power
system. For a country or region, questions such as how much wind generation, solar
generation and storage are needed can be answered. These models consider the balance
of energy supply, demand, and storage at hourly time steps to assess the generation mix
in terms of energy, cost, or emissions. The challenge is to ensure a balance of supply
and demand despite generation and demand all varying differently over time in different
geographical locations. One significant cause of this variation is the weather where
changes in wind speed, solar irradiance and temperature affect wind generation, solar
generation, and energy demand. Mixing different energy sources such as wind and solar
is known to reduce the variability of production [26] and improves the production /
demand match. However, research has found that a single year is not enough to capture
the variation in renewable power generation caused by weather to fully test an energy
model [11]. Therefore, this project will use 40 years of historic weather. Sources of
weather data are discussed in the next section.

Seven plans for the UK to reach a net zero energy system [19] produced by four
different groups use different modelling approaches. Two of the groups: energy
Systems Catapult and Climate Change Committee use a model called ESME. It is an
optimisation model that searches for a least cost combination considering emissions
targets, resource availability and deployment rates. National Grid FES consider each
sector separately according to factors such as the uptake of efficiency measures,
economic projections, historic demand, and feed the results into an optimisation model
called UK TIMES. The Centre for Alternative Technology (CAT) do not explicitly
calculate economic cost, but instead are guided by a set of principles such as net zero
and 100% renewable energy. They use a model including historic weather to prove that
the system they propose is viable.

Optimisation models search for an optimal design, usually based on costs. Whereas
simulation models compare several different designs. A study comparing different
modelling approaches [27] discusses the differences between the first two approaches
and the latter one. They say that the advantage of the latter approach is that the public
can be involved in a decision between several alternatives, whereas the optimisation
approach is based on market values themselves subject to implicit political choices.

The models considered by this study are a simplified subset of simulation models which
only consider energy when allocating sources of generation to satisfy demand. They
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consider the national energy system as a single node and do not take into account that
it is a complex network connecting sources of supply and demand with varying
transmission capacities. For example, wind generation in the north of the UK, might be
needed to supply demand in the southeast and the network needs the capacity to do this.
In rural areas, there may not be enough transmission capacity for houses to have both
electric vehicles and heat pumps. The results of the models would be less accurate if
the transmission network were not upgraded to have the necessary capacity. These
simplified models will be referred to as energy balance models.

1.2.6 Weather Data

Weather data are needed to model both the energy demand and the energy supply.
Temperature is used to estimate heat demand and hence electricity demand. Wind speed
and solar irradiance determine the power generated from wind turbines and solar panels
respectively. Weather measurements have been collected at UK weather stations for
many years. These include hourly values of parameters such as temperature, solar
irradiance, precipitation, humidity, and wind speed at the earth’s surface. UK weather
observations data is recorded in the Met Office Integrated Data Archive System
(MIDAS) [28] . However, this data has the disadvantage that it is only available at the
locations of weather stations, and only has surface parameters. This means for example
that the wind speed at the height of a wind turbine is not available.

An alternative to surface measurements is weather reanalysis data which provides these
parameters at different heights. Reanalysis uses a forecasting model of atmosphere,
winds, ground (including surface roughness), and ocean to assimilate and compare data
from different sources [29]. This includes observed data such as temperatures at
weather stations, and wind speeds from satellites. Additional parameters not measured
at certain locations can be derived such as soil moisture and cloud properties in such a
way that all the parameters are consistent with physics. The result is a global
atmospheric model constrained by the values of actual physical measurements at
specific times and locations. Reanalysis data has the benefits that:

e It has values at height (e.g., wind turbine hub height), not just at the surface.

e The values are available on a regular grid, rather than the locations of weather
stations which makes computation easier. This is because the population grid is
mapped onto the weather grid to establish how much of the national heat
demand is caused by a particular set of weather parameters.

e The data is consistent over time and geographical location (whole world)

e All measurement sources are consistent with each other and the laws of physics.

The disadvantages of reanalysis data are that some smoothing occurs and the influence
of local terrain is not always captured. The data may not match actual measured values.
However, most recent studies are choosing to use reanalysis data. Two reanalysis data
sources commonly used for energy modelling are:
e Modern Era Retrospective Reanalysis for Research and Applications
(MERRAZ2)[29] produced by NASA used in these energy system studies [30-
36]
e FERAS5 [37]- European Reanalysis produced by the European Centre for
Medium Range Weather Forecasts (ECMWF) used by these energy system
studies [26, 38, 39]
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As well as historic weather data, weather predictions are available. These can be either
hindcast: weather that could have occurred, or future predictions of weather that may
happen. It is difficult to know what future weather might look like and therefore this
project will confine itself to using historic weather.

ERAS was used to generate electricity demand time series in chapters 2 and 3.
MERRA?2 was used to generate wind and solar power time series discussed in the
following sections 1.2.7 and 1.2.8 respectively.

It would have been desirable to use the same reanalysis data to model both the demand
and generation. However, this would have required more work because the program to
generate the heat demand was adapted from an existing program which used ERAS
whilst the available generation data used MERRAZ2.

1.2.7 Modelling Wind Power Generation

Although historic wind power generation time series are available for recent years, they
do not cover the whole 40-year period of this study, and they are based on a constantly
increasing generation capacity. Simulated wind generation time series are often used as
they can keep the capacity constant and incorporate wind farms that have not yet been
built. National wind power generation time series can be simulated by combining the
contributions of individual wind turbines. To assess the potential power generation
from one wind turbine, wind speed measurements at a particular site can be used with
the turbine manufacture’s power curve to create a generation time series [40] . Some
previous studies [34, 41, 42] have used this approach with wind speed measurements
from weather stations to model the national onshore wind power time series. Generation
time series are created as though a particular type of turbine existed at the geographical
location of a weather station. They argue that this can be scaled up to represent the
national fleet. However, for weather station data, the wind speed is only available at the
surface, so it has to be estimated at the hub height of a wind turbine. This is commonly
done using the log law [43], equation (1) to calculate the wind speed U at one height Z
from the wind speed at a reference height Zer

Z (1)

Zy

Where U(Z:er) 1s the wind speed at reference height Z..r and Zy is the surface roughness.
Typically offshore turbines are much higher (up to 300m [44]) where the log law is not
valid on its own [45-47] for extrapolating surface wind speed. Most studies therefore
use reanalysis data so that they can model offshore wind. In one such example [34]
MERRA? is used to model national time series of wind power generation based on
wind power at 97 different geographic locations around the UK, both onshore and
offshore.

However, rather than generate their own wind power data, some studies use publicly
available time series. Renewables Ninja [48] provides hourly time series of wind
generation for the UK based on historic weather from 1980 to 2020. Wind speeds from
MERRA?2 weather reanalysis at 2m, 10m and 50m are used with the log law to estimate
Zo and wind shear to create a regression equation to extrapolate wind speed to hub
height. The values at weather grid points are used to get the windspeed at the specific
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geographic location of the wind farm using LOESS (Locally Estimated Scatter plot
Smoothing) regression (a generalization of polynomial regression and moving
average). Individual turbines are combined using a virtual wind farm model. These are
created based on the actual locations of UK wind farms. The virtual wind farm converts
wind speed to power using manufacturers power curves and smooths individual
turbines to represent a farm. Separate time series of capacity factors are available for
onshore and offshore based on near- and long-term projections of actual wind turbines
and their locations servicing the UK. This dataset has been validated extensively against
the actual power output of wind turbines and corrected for biases [33]. It has been used
in several previous studies [30-36]. Separate time series for current, near-term future,
and long-term future are available. The near-term future series includes wind farms that
are newly built, under construction or approved and has been used in the study. The
long-term future series also includes planned wind farms but was not used because it
does not separate onshore and offshore wind.

1.2.8 Modelling Solar Power Generation

National solar PV electricity generation time series can be simulated by modelling
individual solar PV panels and scaling up to represent the whole country. Standard
methods [49] using solar irradiance time series can be used to create solar power
generation time series. They use the orientation of the panel and the angle of the sun
based on the hour of the year to estimate the power generated. For example, in one
study [34] hourly solar PV time series are generated at 11 regions in the UK using
MIDAS data on the assumption that the power generated is proportional to the solar
irradiance. In another [41], daily time series are generated based on 4 geographic
locations in the UK chosen as sunny locations where the most energy might be
generated.

However, some studies use publicly available time series of solar power generation.
Renewables Ninja [48] provides hourly time series of capacity factors of UK solar
generation from 40 years weather. They are generated by modelling a solar power plant
at each MERRA?2 grid point in the UK [32]. Each panel has a latitude dependent tilt
angle and azimuth distributed according to actual installations. They include a
correction for bias because otherwise the mean capacity factor of the simulated PV
generation does not match that at actual sites. Unlike the two studies mentioned above
they also use hourly temperatures to model the increase in efficiency of solar panels at
lower temperatures using panel efficiency curves. The Renewables Ninja solar time
series will be used in this study.

1.2.9 Time Series Metrics
Methods to compare two time series are needed in the validation of electricity demand

and of power generation time series. The three metrics used for comparison of time
series in this project are shown in table (1-4): nBRMSE, R?, and R.

Metric Description Calculation Method

nRMSE normalised Root Mean Square Error. RMSE = 1 (A F)?
A; is the actual (normalised) time n T An i
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series and Fi the modelled time
series.n is the mean value of 4;
R? Coefficient of determination [50]
R Pearson’s Correlation coefficient [50]
MAPE Mean Absolute Percentage Error 1w A, — F
MAPE = —z |—|
n e~ Ai

Table 1-4- Time Series Metrics

nRMSE is a measure of the error when comparing a series of actual values A;with a
forecast value F; . It is used in preference to other error metrics such as Mean Absolute
Percentage Error (MAPE) in this project because the squared term penalises large
errors. Large errors in an electricity system model can have high consequence possibly
leading to too much power (wasted costs) or too little power (outages).

The coefficient of determination R? is a measure of how well a regression model
explains the observed data. It is used because it is desirable for the variation of the time
series to be as accurate as possible as the amount of energy storage required depends
on the variation of supply and demand. Using R? also allows a comparison to be made
with other studies. What is considered as a good value of R? varies for different domains
of study. For example, a study comparing heat demand time series [38] states that “Both
time series and load duration curves show a high consistency (R?=0.95)”. Similarly, a
study comparing a regression equation using temperature to the National Grid gas time
series [51] says “R? of 0.95 shows the model predicts with good accuracy”. Some
inaccuracy is tolerable because storage is measured at high granularity of days and
generation capacity in multiples of the mean daily demand. Everywhere in this report
where a value of R?, is quoted the residuals plots have been checked for bias. The
residual is the difference between the predicted value and the observed value. An
example residuals plot is shown in figure (2-8) in chapter 2. It could be for example
that the model accuracy varies seasonally or at high or low values.

Pearson’s Correlation coefficient R measures a linear correlation between two
variables. It is used here in addition to R? because when it is negative it shows an anti-
correlation, whereas R? is always positive. R is also useful for comparison with other
studies.

1.3 Novelty of the research question

Whilst most researchers agree that a net zero energy system [4] is possible, there is
much debate on how best to achieve it [5]. Seven plans for achieving a net zero UK
from four different groups, are reviewed in [19]. All contain high proportions of
electricity generation from wind and solar PV, but all vary in their proposed mix of
technologies. All the plans propose energy storage to cope with periods of low
renewable generation and high demand, both on a short-term basis at the scale of hours
and days and on a long-term basis of seasons or years. Heating is provided by electric
heat pumps, hydrogen boilers or by district heating. The plans model all sectors, not
just heating and transport.

The plans mentioned above are either prescriptive, ie they propose a certain technology
mix and prove that it will work, or they do some optimisation, but only using a single
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year of data. However research has found that 10 years or more is required to capture
the variation in renewable power generation caused by weather to fully test an energy
model [11]. One UK study considering all sectors, that used 10 years of data [34] only
considers one mix of technologies and proves that it is viable. There are two UK studies
that look at different amounts of storage required for long term weather fluctuations.
One study uses 9 years weather data [52] and one uses 30 years [41]. However, both
these studies use only the historic electricity demand and do not include changes to
demand such as electrification of heat. One study that did consider varying amounts of
wind, solar and storage, and also included weather dependent electrification of heating
and transport [53], concentrated only on a 3-year period between 2009 and 2011

In summary, most previous studies fall into two groups:
e Those that try to model the whole energy system or electricity system for a small
number of years and prove that a certain configuration is feasible.
e Those that model a smaller subset of the system for a large number of years
looking for optimum configurations of energy storage.

Those studies that look at energy storage for a large number of weather years have not
generally considered electrification of heating. And those that do consider
electrification of heating have either used a small number of weather years or did not
consider storage. Also, they look at the feasibility of a complete 2050 scenario, rather
consider the impact of one sector, such as heating. But to make a policy decision in one
sector it is important to understand the impact of a change to it on the whole system.
This study addresses that gap. This project uses 40 years of historic weather to study
how the future decarbonization of heat and transport will impact the mix of solar, wind
and storage in a power system with a high penetration of these technologies.

More detailed discussions on some of the references mentioned above are available in
other parts of the thesis as listed below:

e A study on how the UK could be powered by 100% renewable energy [34] is
also discussed in section 2.1 in the background to heat demand and the HDD
12.8 method.

e A study of seven plans for a UK net zero energy system [19] has already been
mentioned in table (1-3) in the context of energy storage. It also features in a
discussion on energy modelling in 1.2.5 and the relative proportions of wind
and solar generation in 5.1.

e The two previous studies on the wind/solar/storage mix for the historic demand
[41] and [52] are discussed in detail in 5.1 and chapter 7.
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1.4 Brief Introduction to Thesis Methods and Results

To provide a context for the next chapter on the novelty of the work, a very brief
summary of the main work of the thesis is presented. This also serves as a guide to the
reader as to where the first 6 chapters are headed. Figure (1-1) provides a concise
introduction to the main process in this thesis to identify the impact of heating
electrification alone on shares of wind, solar and energy storage. It shows the main steps
which are:

Remove the heating electricity from the 2018 historic electricity demand time
series illustrated by the graph on the top left. This gives a base line electricity
demand without heating so that technology and socioeconomic factors are fixed
at 2018 levels. This will allow us to study the impact of heating alone.

Add in the heating electricity based on 40 years historic temperatures, illustrated
by the weather reanalysis grid on the top right.

Create two 40-year UK electricity demand time series. Everything other than
heating is the same as for 2018. One time series includes heating based on
today’s heating technology and 40 years weather. The other includes 41% of
heating provided by heat pumps for 40 years weather. These two time series are
shown in the middle plot of figure (1-1)

Feed these two electricity demand time series into a model that balances the
demand with generation from wind, solar, base load and dispatchable power
sources. For a range of wind and solar generation capacities the minimum
required energy storage is calculated. This is shown by the two 3D plots at the
bottom of figure (1-1) for a future electricity system with generation consisting
only of baseload, wind and solar PV.

Perform a detailed comparison of the data behind these two 3D plots to enable
part of the main research question of the thesis to be answered: how the future
decarbonization of heat and transport will impact the optimum mix of solar,
wind and storage in a power system with a high penetration of these
technologies. This comparison is based on the amount of storage and the wind
energy fraction. Wind energy fraction is the proportion of the combined wind
and solar energy generation which came from wind.
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Figure 1-1 Modelling the impact of heating electrification on wind, solar and storage in this thesis.
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1.5 Novelty of the approach

The novel aspects of this work are:

a comparison of heat demand methods, linear regression on the gas time series
to identify what portion is heat and validation against measured data not
previously used for this purpose.

a modification of the when2heat heat demand method using hourly temperatures
and UK COP curves

the inclusion of hybrid heat pumps

the method of generation of electricity demand time series from the heat demand
via proportions of heat pumps

derivation of a heat pump hourly profile from trial data

using a generated heating electricity time series to remove the heating
electricity, rather than linear regression.

analysis of the seasonal and interannual variation, rather than peak demand.
investigation to establish if heating is the only significant weather dependency
in the electricity demand time series.

the algorithm to find the minimum storage, and the use of more accurate model
inputs than those used in previous studies.

investigation of the impact of heating and transport electrification on optimum
UK wind energy fraction and energy storage capacity.

updates to the findings of previous studies into UK energy storage mix

a sensitivity analysis of the required storage to different model inputs from this
and two previous studies.

assessing the impact on wind energy fraction of green hydrogen boilers under
long term weather variation.

1.6 Thesis Structure

Some of the chapters make use of results from previous chapters. See figure (1-2) for a
diagram of this relationship. The three chapters that follow the introduction, shown in
red on the diagram are concerned with how to generate an electricity demand time series
incorporating the change to heat pumps alone. Most of this material is also published
as a paper [54] in the Applied Energy journal.

Chapter 2 is concerned with creating national heat demand time series. The heat
demand is used in chapter 3.

Chapter 3 —is concerned with creating a heating electricity time series using the
heat demand from chapter 2. This heating electricity time series is then used in
chapter 4.

Chapter 4 — uses the heating electricity demand from chapter 3 to generate
national electricity demand time series including the impact of heating alone.
The resulting time series are then used to study the impact of heating
electrification on UK electricity demand. They are also used in the remaining
chapters to study the impact on storage and generation.

Chapters 5 and 7, shown in green, consider the energy storage model itself and chapter
6, shown in blue uses the model to find the impact of heating electrification on the mix
of wind, solar and storage capacities.
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e Chapter 5 defines the methods used to find the required energy storage from
different generation capacities. The model is validated against that used in a
previous study and against today’s energy system. The model is then used to
show that many configurations of wind and solar capacity with energy storage
can satisfy the UK electricity demand with the existing heating technology from
chapter 4. Energy and cost are used to identify which of these configurations to
study in more detail. Section 5.3.1 contains a standard way of summarising
experiments used throughout the thesis.

e Chapter 6 combines the electricity demand from chapter 4 and the storage model
from chapter 5 to investigate the impact of the electrification of heat. Different
ways of comparing results are discussed and illustrate this impact.

e Chapter 7 uses the energy storage model and improved model inputs defined in
chapter 5 to perform a sensitivity analysis of these different model inputs on
capacities of storage, wind and solar. Some investigations on the impact of
length and resolution of time series are done.

The final chapters consider the impact of other changes to demand and generation

on storage and shares of wind and solar.

e Chapter 8 investigates the impact of two changes to demand on generation and
storage. The first is Electric Vehicles with the novel aspect of weather
dependent EV charging. The second introduces a modification to the storage
model to compare the impacts of heating using hydrogen boilers or heat pumps.

e Chapter 9 includes some case studies on power generation with the model:

o The transition from a system with a high proportion of dispatchable
generation to one with a high wind and solar penetration.

The relationship between storage and wind and solar.

Baseload and storage

Lost Energy

Long term pattern of energy store state of charge

Alternative ways of estimating the optimum wind energy fraction

Chapter 10 presents the overall conclusions. All the models are programmed in the

Python programming language by the author. Some of the software developed during

the project is described in appendix A. Appendix B describes participation in a

competition to forecast electricity demand peaks and troughs from historic demand and

weather data. Appendix C lists the corrections requested by the examiners.

O O O O O
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2 National Heat Demand

A national heat demand time series is the first step towards the generation of heating
electricity demand. This will help answer one of the subsidiary research questions: How
should an electricity demand time series incorporating heating electrification alone
under long-term weather fluctuations be generated? This national heat demand time
series must vary from day to day and year to year only according to weather. All other
factors such as population, internal temperatures, insulation, and the number of
buildings should be kept constant. Generating this heat demand time series is the subject
of this chapter.

The chapter will start by reviewing previous work. Four different methods of generating
40-year daily heat demand time series will be described. They will be compared and
validated against historic national gas time series and measurements from gas smart
meters and heat pump trials. The chapter concludes by identifying the best heat demand
method from the four which will be then used in the following chapter to generate
electricity demand time series.

2.1 Background

Whilst estimating the heat demand of one building is possible by measuring internal
and external temperatures and the input fuel energy, knowing the heat demand of an
entire country is very difficult [51]. Various methods of modelling heat demand have
been used in previous work. For example, a regression model based on district heating
measurements in Norway [55] was used to aggregate the heating loads of several
buildings to represent a region within a city, but not an entire country. In a UK study
[56], national gas demand for the years 1998-2010 was used to create a linear regression
model to predict gas usage and hence heat demand from external temperature. Gas
smart meter trial data from over 6000 homes from May 2009 to July 2010 were used to
create a model to predict UK half hourly domestic gas demand [51]. However, these
bottom-up statistical models all represent the housing stock as it was at the time of the
measurements, limiting their use. An alternative approach is to use simulations. A
building thermal model [57] was used to simulate heat pumps at 2-minute intervals for
960 buildings which were then aggregated to represent the national demand based on
2011 climate data. However, bottom up aggregated thermal models have uncertainty
over the many different parameters that need to be specified [58] and have difficulty
capturing diversity on a national scale[59] .

Multi-year daily national heat demand time series are typically generated top down as
part of the procedure to generate a synthetic electricity demand. In one study of a 100%
renewable UK electricity system [34] a specific heat space loss of 4.4 GW/K and a base
temperature of 12.8 °C combined with UK national temperatures were used to create
10 year daily heat demand. Heating degree days with a base temperature of 15.5 °C
with UK population weighted temperatures were used to generate 30 years heat demand
time series in [30]. The when2heat dataset [38] contains time series of heat demand for
2008-2013 created using population weighted temperatures and a method based on
German gas usage. Nothing was found in the previous literature comparing these
different heat demand methods against each other. Therefore, a comparison of four heat
demand methods based on the three references above and a regression equation from
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[51] in the previous paragraph was undertaken. These four methods of generating daily
heat demand time series were compared for the years 2016 to 2019 and reported in a
conference paper[60]. For convenience the heat demand methods have been given the
names BDEW, Watson, HDD 15.5 and HDD 12.8. They are listed below, along with
a reference to the previous work they were based on.
e BDEW The German gas company’s equation to estimate consumers gas usage
from the when2heat dataset [38].
e Watson: a method based on a regression equation based on UK building
measurements from Watson et. al. [51] .
e HDD 15.5: Heating Degree Days (HDD) with a base temperature of 15.5° as
used in two previous studies [30, 61].
e HDD 12.8: HDD with a base temperature of 12.8° as used in a study of a
100% renewable UK energy system [34].

The comparison and validation of these methods performed in this study uses not only
historic national gas time series, as typically done in previous works [38], but also
measurements of heat and gas usage from actual buildings, data sets that have not been
used previously for this type of validation. The next section describes the methods used
to create these time series.

2.2 Methods

A standard method of assessing heating demand is the concept of heating degree days
(HDD). HDD are a measure of how long in days and how much in degrees the outside
temperature was below a certain level called the base temperature. The definition is
given by equation (2).

N Tbase - Td : Td < Tbase (2)
oo = 3 |

=1 0: Td = Tbase

Where T,is the mean temperature for day d, Tj 4. 1S the base temperature (generally
15.5 °C for the UK), ND is the number of days in the year. HDD will be used in the
following sections.

The procedure to create the heat demand time series is split into two parts expanded on
in the next two sub-sections.

1. Calculate the annual heat demand for Great Britain from fuel use.
Split this annual demand geographically amongst weather grid squares and
temporally between days. Sum up all the grid squares to generate a daily
national heat demand time series.

2.2.1 Calculate annual Great Britain heat demand.

The first step is to calculate the Great Britain annual heat demand. Annual energy
demand for space heating and hot water broken down by fuel use was taken from table
U2 inenergy 2019 end use by fuel.xlsx [8]. This data is based on consumer surveys,
annual fuel sales and monitoring. For the years 2016 - 2018 the data includes a more
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detailed breakdown of space and water heating by fuel. This enables a more detailed
validation of the gas time series. Therefore, the year 2018 was chosen as the most recent
of these years to represent the existing heating technology. This data is shown in table
(2-1) converted to heat energy assuming the following efficiencies: gas 80%, electricity
100%, other made up of: oil 85%, solid fuel 76%, heat (eg combined heat and power)
100%, bioenergy and waste 87%.

Table 2-1 Annual UK Heat Energy for 2018

Heat Use A, a(a) | Annual Heat Energy by Fuel (TWh)

Gas Electricity | Other | Total
Domestic Space Ags space | 191 18 50 259
Services Space A space | 56 16 (¥) 27 99
Domestic Water Agw water | 56 5 6 67
Services Water Agw water | 7 2 4 13
Total 310 41 87 438
(*) Note that the services space also includes industrial space because this is included in the historic
electricity time series (whereas industrial gas is not)

This gives a UK annual heat demand for 2018 of 438 TWh. However, the process of
generating a daily heat demand time series in the next section will use the individual
values for each heat use 4, determined by a(a). The column of values from table (2-
1) that is used depends on the objective:
e For generating a heat demand time series for the whole country, values from
the total column would be used.
e For generating a heat demand time series for validation against daily gas
demand, the gas column would be used.
e To generate a heat demand time series representing the heating in the historic
electricity demand, the electricity column would be used.

To get the values of these annual demands for years other than 2018, they are factored
by the ratio of heating degree days to that year. This fixes heating and insulation levels
at 2018 levels but keeps the impact of weather.

HDD, (3)

Agy = mAa,ZMS

Where HDD,, is the number of heating degree days for year y calculated from the UK
population weighted temperature and A ,, is the annual heat demand for heat use a for
year y. The parameter A, ;015 1s one of (Ags , Ass » Agw > Asw ) taken from table (2-

1).
2.2.2 Calculate Daily Heat demand.

The next step is to calculate the heat demand for each UK weather grid square. The
0.25° x 0.25° grid is defined by the ERAS weather reanalysis [37] and contains hourly
2m ambient air temperatures for the UK for the years 1980 to 2019. The population for
each of these grid squares was taken from Eurostat [62] for 2011. The four annual heat
demands for the UK calculated in the previous section in table (2-1) were split up
amongst these weather grid squares by population weighting as follows.
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_Aa By 4)
a,g Z Rg
Where A, 4is the annual heat demand for grid square g for heat use a. The parameter a

is used to look up A, the annual heat demand from table (2-1) and Fjis the population

in grid square g. Note that this is repeated for each year, but the y subscript from
equation (3) is not shown for clarity. This annual demand was then split into days using
equation (5).

A

H _ Aa,g -fd,g,zx(a) (5)

a9 —

i 216\1121 fd,g,a(a)

Where ND is the number of days in the year, f4 g o(q) the daily demand factor for heat

use a, day d and grid point g. Each of the four methods of calculating daily heat demand
has two versions of f; 5 #(a) one for space heating and one for water heating. The
parameter o(a) indicates which of the two equations for the method in table (2-2) is
used to calculate the demand factor fy 4 o(q)for heating use a. For a=ds or a=ss the space
heating version fy g spacels used. For a=dw or a=sw the water heating version
fa,gwateris used. There are different sets of these two equations, one set for each of the
four methods as shown in table (2-2).

Table 2-2 Temperature dependent equations to factor annual heat demand

Method Demand factor equation (f) N
BDEW _ A Mspace — Tg;f*'bspace 4
space [38] | Ja.g.space = ¢+ D+ max <mwam ~ T3 +bwater
1+{%} 9
Td,g -To
BDEW p D+ Myacer-Tyy + buater Tog > 15°C 4
water [38 =
B8l Jagwater =\ arer 15+ Byager T," <15°C

Watson y —6.71 T, +111, for Ty < 14.1°C 2
space [51 d.g, = ' :

pace [31] 7opece | —1.21 TR + 33, for TfY > 14.1°C

Watson fagwater = —0.0458T;¢ + 1.8248 2
water [51] '

HDD 15.5 _ Ref Ref o 1
space [30] | fagspace = 155~ Tag forlay <155°C

9P 0, for T;e) > 15.5°C
HDD 15.5 fagwater = 1.0
water[30]
Ref Ref o
:ipzlzel[g.j . _ (128 =Ty forTy, <12.8°C 1
,g,space
7P 0, for Tpe) > 12.8°C
HDD 12.8 fagwater = 1.0
water[34]

Where Ty 1s 40°C and 4, B, C, D, Mmspace, Mwater, bspace, bwarer are factors taken from the
code download for [38]. These factors depend on:
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e UK 40-year mean wind speed — a different value for the factor is used depending
on weather the grid point is classed as windy (90 grid points) or normal (12 grid
points). This classification comes from the German gas company. Monthly
mean 10m wind speeds for 1979 to 2018 from ERAS5 weather reanalysis [63]
were used to identify these windy and non-windy locations.

e Type of building which is determined by a=ds or a=dw (domestic: multi-family
house 30% / single family house 70%) or a=ss or a=sw commercial building.

The reference temperature T(f ;f in table (2-2) was calculated using equation (6) based

on the mean daily ambient temperatures of the N previous days to account for the
thermal inertia of buildings.

TRef _ Zg:o O'SnTg—n;LI?g (6)
<9 YN _,0.5"
Where T(f ;f is the reference temperature for day d at grid point g and T(ﬁrg"b is the mean

ambient air temperature for that grid point and day. The value of N depends on the heat
demand method used as shown in table (2-2) (for d<N, N=d). For each of the four heat
demand methods there will be four heat demand time series H, 4 4 from equation (5)
where a represents the heating use from table (2-1). The domestic and services series
were added together to end up with two series, one for space heating:
Hspace,d,g = Hg5q49 t Hds,d,g (7)
and one for water heating

Hwater,d,g = Hdw,d,g + st,d,g- (8)
Where Hgpgeeagls the space heating time series for day d and grid point g, and
Hyater,a,g1s the water heating time series. These two daily heat time series at each
weather grid point are used as input to the process of generating a heating electricity
demand time series in chapter 3. However, for validation, the contributions from each
grid point are added together to create a daily heat demand time series H; for the whole
country.

NG (9)
Hy = z O(Hspace,d,g + Hwater,d,g )
g:
Where NG is the number of grid points. The process defined by equations (2-8) is
repeated for each of the 40 years of weather.

Two limitations of this method should be noted:
e Itassumes that all regions of the country have similar standards of buildings and
thus heat demand for a given temperature.
e Population distribution is not changed significantly from 2011.

2.3 Validation of Heat Demand Generation Methods

This section describes how the four methods of generating heat demand time series
listed in section 2.1 were validated. The four heat demand methods were compared
and validated against:

e National gas time series

e Heat demand measurements from domestic houses

e Gas usage measurements from public buildings in a smart meter trial.
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2.3.1 Validation against national Gas

The objective of this section is to validate the four heat demand methods against UK
national gas demand. Natural gas provides a large proportion of UK heating.
Measurements of gas usage in over 6000 UK homes [51] showed that it is highly
correlated with heat demand and can be used to predict it. Some studies [7] have even
used it to generate their heat demand time series, using the simplifying assumption that
all gas is used for heating. Therefore, gas usage can provide a validation of the heat
demand time series generated here from weather.

Various historic gas time series are available from national grid gas data explorer [64].
The Non-Daily Metered (NDM) daily gas demand time series comes closest to
including all heating. It was therefore used in this study to validate heat demand time
series. However a previous study [38] which used the 2013 UK gas demand for
validating heat demand time series identified that there is some uncertainty about how
much of this is actually used for heating. This is because the time series also contains
an unspecified amount of non-heat uses, as reported in government figures [65]. This
discrepancy is shown as unknown use in table (2-3) for 2018. Using the unmodified gas
time series as a ground truth for validation is potentially inaccurate. Therefore, the gas
time series was investigated to ascertain how much of it is used for heating.

Table 2-3 - portion of the 2018 historic gas time series for which it is not known if it is used for heating or not

Sum of the 2018 gas time series converted to heat using an efficiency | 435 TWh
of 0.8 [64]

Gas heating energy for space and water heating derived from 310 TWh
government surveys and sales figures [8], table(2-1)
Unknown use 125TWh

Figure (2-1) shows a strong correlation for 2018 between gas energy use and heating
degree days. It was assumed that the part of the gas demand that is dependent on
heating degree days is used for heating and that the remainder is not.

Relationship between daily gas consumption and HDD

401 — Ordinary Least Squares Regression (Rd) °

—e— Daily gas demand 2018 (Gd)
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Figure 2-1 Relationship between daily Great Britain gas consumption and heating degree days 2018

A standard method of estimating the proportion of the electricity demand time series
used for heating is to use linear regression on heating degree days [13, 66]. The same
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procedure was used here on the daily gas time series, to find the constants ap and a; in
equation (10). This was done separately for 2016, 2017 and 2018, the years for which
detailed gas data is available.

Rd =ag+ alhddd (10)
Where Ry is the daily (d) gas time series found by the regression, and hddg is the heating
degree days for day d calculated using a population weighted mean daily UK air
temperature and a base temperature of 15.5°C. The time series of gas used for heating
is therefore given by ajhddq so the gas not used for heating can then be estimated as
equation (11)

Dd = Gd - alhddd (11)
Where Dy is the daily gas time series without the gas used for heat and Gg is the historic
daily gas time series, which are plotted in figure (2-2) showing that its use as a method
of removing the heating energy looks plausible.

Daily gas demand 2018 base using HDD

401 —— Daily total gas demand 2018 (Gd)

—— Daily Gas demand with heating removed (Dd)
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Figure 2-2 Daily gas demand and daily gas demand with gas used for heating removed

The sum of Dq4 from equation (11) is 162 TWh for 2018 and provides an estimation of
the non-heat gas. To convert to heat demand, it is multiplied by 0.8, consistent with
table (2-1) for gas boiler efficiency giving 129.6 TWh. This is close to the unknown
125 TWh from table (2-3) therefore, it was concluded that this unknown use portion is
not used for heating. A similar result was found for 2016 and 2017 with the percentage
of heat in the gas time series varying by 2% between the years 2016-2018 and the linear
regression having a coefficient of determination R? between 0.90 and 0.94.

It should be noted that HDD are used to estimate space heating, not water heating. Some
of the methods being validated listed in table (2-2) assume that hot water is constant
throughout the year. However, some of the methods assume hot water is dependent on
external temperature, but not HDD. This does cast some doubt on the justification for
assuming that all the unknown portion is not heating. But since only 20% of gas heating
use is for hot water (table 2-1), it does not compromise the validation too much, and is
certainly more accurate than assuming it is all used for heating.
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Using this result that the unknown use portion of the gas is not used for heating, a time
series of heat for 2016-2018 was generated from the gas time series using equation (12)
Ho— 08C 125 (12)
a = 9-86a =

Where Hy is heat demand from gas for day d, Gy is the daily gas demand, 0.8 is the
conversion efficiency of gas energy to heat, 125 is the amount of gas not used for
heating, which was deduced above, and ND, the number of days splits this equally
amongst days of the year. This heat demand series was then used to validate and
compare the four methods described in section 2.2.2

Figure (2-3) shows all four methods of splitting the annual heating energy into days for
2018 along with a blue line for the gas heat demand time series. It can be seen that the
HDD 12.8 method matches the gas time series less well, overpredicting at periods of
high demand. In contrast, the other three heat demand methods over predict in summer
and consequently under predict in winter. The graphs for 2016 and 2017 (not shown
here) show a similar pattern.

Comparison of Heat Demand Methods
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—— Heat Demand BDEW

—— Heat Demand Watson

—— Heat Demand HDD 12.8
Heat Demand HDD 15.5
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Day of the year
Figure 2-3 Heat demand methods compared to heat demand from gas for 2018

The quantitative results of this validation against the gas time series are discussed
further in section 2.3.4 following the validations against the other data sources.

2.3.2 Validation of heat demand vs heat pump trial data

Measured heat pump heat demand was used to validate the four heat demand methods.
The heat demand measurements were taken from the Renewable Heat Premium
Payment (RHPP) Scheme [67] which monitored 418 UK houses in the period 2012 to
2015. The heat demand was the heat to the hot water cylinder added to the heat from
the pump (if not already included in the heat to the hot water cylinder). It was measured
by a heat meter consisting of sensors to measure flow of the heat transfer fluid and
temperature rise at 2-minute intervals. The original trial report [68] found data quality
problems, so only those houses which were part of the validated “B sample (cropped)”
were included in this analysis. There were monitoring problems with the trial data
where the space heating and water heating values were switched round, so space heating
and water heating are considered together in this analysis. The houses were monitored

43



at different time periods so that at any time a different number of houses were being
monitored. Figure (2-4) shows how many houses were being monitored each day over
the period of the trial. Each horizontal line in figure (2-5) represents the period over
which one house was monitored.
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Figure 2-4 Number of monitored houses in the RHPP trial against time
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Figure 2-5 Monitoring period for each house in the RHPP trial

Instead of splitting annual demand of the whole country into days, the 4 methods are
used to split the total heat demand for each house into days. The total heat demand is
calculated by summing the houses’ heat time series over the period that particular house
was monitored. The objective is not to use these houses to estimate the UK annual
demand, but rather to use them to compare how well the different methods work at
generating a time series by splitting a total demand over a period into days. Population
weighted average air temperature for the whole UK are used from ERAS reanalysis as
the exact location of these houses is not available. This provides five time series for
each house: a measured heat demand time series and a synthetic time series for each of
the 4 methods in table (2-2). The individual heat demand time series of the houses were
merged and aggregated to daily. These time series represent different numbers of
houses at different points over the 4-year period.
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Figure (2-6) shows the measured heat demands of all the houses from the heat pump
trial over the monitoring period compared to that predicted by the four methods of
splitting the annual heat demand into days. All the methods predict the pattern of the
measured heat demand well. The HDD 12.8 method has some large differences in
winter. Note that although some seasonal variation is visible, there is also variation due
to the number of houses being monitored at that time. Quantitative results are shown in
section 2.3.4 along with the other heat demand validations.

Comparison of Synthetic Heat Demand Series and Measured heat series
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Figure 2-6 Comparison of methods of splitting total heat demand for a group of houses over a period into days
using measured heat pump data (7 day rolling average).

Two limitations with this trial data should be noted:

e Some older heat pumps contain a backup immersion heater for hot water to
ensure the temperature stays above 60°C for health reasons [21] which would
reduce the COP.

e Some of the properties involved in the RHPP had log burners. This would not
change the total heat demand measured by the heat pumps. However, it could
lead to the heat pump being used less on certain days which would make
splitting the annual demand into days based on the weather incorrect.

2.3.3 Validation of heat demand vs gas smart meter data

The four methods of heat demand were also validated using gas meter readings for
commercial and public UK buildings. The data comes from a Smart Meter trial [69] by
The Carbon Trust. It consists of half hourly gas meter readings in kWh for the period
2004 to 2006 from 51 gas meters in public and industrial buildings. The purpose of the
trial was to get customers to try out smart meters and to see if it prompted energy saving
behaviour.

The data was processed to remove duplicate values and replace missing values by linear
interpolation from surrounding values. The gas meter data from the different public
buildings was combined in the same way as the heat pump data in 2.3.2. The gas
demand time series from each building were combined and converted to heat demand
assuming that all their gas boilers have the same efficiency (0.8) and that all the gas is
used for space heating, which is mostly the case[69].
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Figure (2-7) shows the heat demand time series derived from the commercial buildings’
gas smart meters compared to that predicted by the four methods of splitting the annual
heat demand into days. The 2" winter shows a higher heat demand as more buildings
were monitored during this period.

Comparison of Heat Demand Series generated from temperature and Gas data
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Figure 2-7 Comparison of methods of splitting heat demand over a period into days using gas smart meter data (7
day rolling average).

Two limitations from the study report [69] should be noted:
e The participants in the trial were self-selected and had a greater than average
gas demand, and so were not entirely representative of the whole country.
e Some of the buildings were not used at weekends, yet it has been assumed for
this analysis that they were.

2.3.4 Summary of heat demand validation

The results of the heat demand validations from the previous 3 sections are summarised
in table (2-4). The BDEW method is shown to be better in all cases apart from the gas
smart meter validation where the Watson method has the best R%. However, it should
be noted that neither the group of houses in the heat pump trial nor the commercial
buildings in the gas smart meter trial are fully representative of the national stock which
may explain discrepancies between the modelled results and those from trials.

Table 2-4 Validation of 4 heat demand methods using 3 different data sources

National Gas RHPP Heat Pumps | Gas Smart

Heat 2016-2018 | 2013-2015 Meters 2005-
2006

nRMSE | R? nRMSE | R? nRMSE | R?

BDEW 0.12 0.989 0.25 0.977 0.57 0.880
Watson | 0.13 0.987 0.26 0.974 0.59 0.896
HDD15.5 | 0.16 0.982 0.33 0.964 0.63 0.859
HDD12.8 | 0.30 0.953 0.59 0.912 0.87 0.789
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Figure (2-8) shows the residuals plots for the comparison against gas demand. The
green line of best fit compared to the red horizontal line shows that the BDEW fit has
the least bias.
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Figure 2-8 Residuals plots for the 4 heat demand methods validated against heat demand from historic gas

2.3.5 Sensitivity to modelling changes.

An experiment was done to compare heat demand time series created using the most
accurate ERAS weather grid of 0.25° x 0.25° with a grid of 0.75° x 0.75° which was
that available on the ERAS5 interim reanalysis as used in the original paper [38] for the
when2heat dataset. It was found that in general the R? was unchanged, but that in some
cases the nRMSE reduced by about 0.01, showing a small benefit in using a finer grid.
The 0.75°,0.75° was grid was used because the benefit of the finer grid was not
considered to be worth the additional computational resources required.

Experimental time series were also created with simplified models using no population
weighting and using no previous days of temperature. These resulted in a decrease in
accuracy (R? reducing from 0.982 to 0.970 when validated against gas). It was therefore
decided to retain these parts of the model.

2.4 Summary and Conclusions

Daily heat demand time series have been created using four different heat demand
methods. The methods have been validated against national gas demand time series,
including a regression to show that the unknown portion of the time series is not
heating. The methods were also validated against heat pump measurements and gas
smart meter data, data sources not previously used for this purpose. The BDEW method
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based on the when2heat dataset [38] performed best and was therefore chosen. This is
an important result because this method has already been used to provide the UK heat
demand input for several previous studies by other authors [70-73]. It was also found
that using a finer weather grid did not bring significant improvements. However, using
previous days temperatures to account for thermal inertia of buildings and population
weighting all improved the results and should be included in the method.

The heat demand time series for the chosen BDEW method will be used in chapter 3
to generate heating electricity demand time series.
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3 Creating Heating Electricity Demand Time Series

This chapter concerns the generation of heating electricity time series. Daily heat
demand time series from chapter 2 will be used to generate hourly heating electricity
time series. The objective is to help answer one of the subsidiary research questions:
How should an electricity demand time series incorporating heating electrification
alone for long-term weather be generated? The aim is to generate time series for both
existing resistive heating and heating provided by heat pumps.

The rest of the chapter is structured as follows. Some background on generating
electricity time series, is followed by a description of the method and the assumptions
used. The validation against electricity measurements from a heat pump trial is
described followed by conclusions.

3.1 Background

Converting a daily heat demand to an hourly heat pump electricity demand involves
two steps:
e Use an hourly profile which specifies what proportion of the daily demand
occurs during each hour to convert the daily demand to hourly.
e Use heat pump COP to convert heat demand to electricity demand.

Previous work such as the when2heat dataset [38] have used hourly profiles based on
gas usage. However, heat pump hourly electricity profiles have lower peaks and a more
even spread than gas usage profiles [59]. For this reason, a heat demand profile was
derived from UK measurements of heat pump demand and used instead.

Heat pump COP is used to convert heat demand to electricity demand. For example, in
a study of a 100% renewable UK energy system [34] a constant COP of 3.0 is assumed.
The DESSTINEE model [6] uses a more sophisticated approach with a quadratic based
on population weighted daily temperature. The when2heat dataset [38] uses German
manufacturers’ COP curves to calculate the COP using four temperatures a day at
weather grid points. COP is dependent on AT, the difference between the temperature
of the source (from which the heat energy is taken) and the temperature of the sink (to
which the heat energy is delivered). COP curves are produced by measuring COP
values at different ATs and deriving a quadratic regression equation from the points. In
contrast with previous work, COP will be calculated using hourly temperatures at
weather model grid points and using UK COP curves.

3.2 Methods

This is the second part of a process that follows on from chapter 2 and finishes with
chapter 4. Figure (3-1) shows the whole process.
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Figure 3-1 Process to incorporate heating electricity for different years into the 2018 historic demand

The process covered in this chapter to convert the daily heat demand to hourly

electricity demand consists of five steps:
1. Convert daily heat demand to hourly demand.
2. Calculate hourly heat pump COP for each grid point.
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3. Using the results from (1) and (2), calculate heating electricity demand time
series due to historic weather at each grid square for both (a) the existing heating
and (b) future heating with many more heat pumps. Sum up the contribution
from all the grid squares, weighting by population.

4. Calculate the contribution from hybrid heat pumps.

Combine all the electricity time series.

N

3.2.1 Convert the daily heat demand to hourly heat demand.

An hourly profile which specifies what proportion of the daily demand occurs during
each hour is used to convert daily heat demand to hourly heat demand. A UK heat pump
profile was created using the RHPP heat pump trial data [67]. The heat demand
measurements at 2-minute intervals for each individual house were aggregated up to
hourly. The data for all houses was then combined into one time series along with the
hourly mean population weighted UK temperature. This enabled each heat demand
value to be added to a bin representing one of the 24 hours of the day and one of the
thirteen 5° temperature bands from -15°C to 40°C. The values were converted to
percentages by dividing by the total heat demand for each temperature band. This
profile is referred to as the RHPP profile and J(i, T2™") in equation (13) below.

The RHPP profile and the BDEW profile from the when2heat dataset [38] for the
temperature bands -5 °C to 0°C are shown in figure (3-2) and those for 10 °C to 15°C
are shown in figure (3-3). Both these profiles are a combination of space and water
heating. It can be seen that the BDEW based on gas shows a higher peak in the first
half of the day. Since there are other studies on German heat pumps showing a similar
pattern [74] it would seem reasonable to assume that this is a difference in consumer
behaviour between the UK and Germany, rather than a difference between heat pumps
and gas boilers. The impact on the final demand of using a different profile is
investigated in 4.5, including the flat profile shown below.
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Figure 3-2 Hourly heat demand profiles for external temperature between -5°C and 0°C
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Figure 3-3 Hourly heat demand profiles for external temperature between 10°C and 15°C

These hourly profiles are used to convert the two daily heat demands to hourly. The
hourly heat demand time series at each weather grid point (g) are calculated using
equations (13) and (14).

Hspace,h,g = Hspace,d,g-](i: Titllmb)(i = 1,24) (13)

Hwater,h,g = water,d,g-](i' Ti?mb)(i = 1'24) (14)
Where Hgpqce,n, g 18 the hourly space heating demand time series for hour / at grid point
g, Hspacea,g1s the daily space heating demand time series from chapter 2 equation (7)
for day d and grid point g. The function J is the proportion of the daily demand for hour
i based on the ambient temperature T*™? for that hour (i=0,1,2 ... ie i is the remainder
from £/24). Similarly, Hygter n g 1s calculated using Hy,qter 4,4 from equation (8).

3.2.2 Calculate Hourly COP at each weather grid point

An RHPP COP curve was derived using UK heat pump trial data [67]. The heat demand
measurements at 2-minute intervals for each individual house were aggregated up to
hourly. The hourly COP for each house was calculated by dividing the measured heat
demand from the heat pumps by the measured electricity demand. The temperature
difference AT for each hour was calculated as the difference between the measured
temperature of the hot water leaving the heat pump and the population weighted UK
temperature calculated using the ERAS reanalysis 2m ambient temperature. In the case
of GSHP this was the soil temperature and in the case of ASHP this was the 2m ambient
air temperature.

Figure (3-4) shows these RHPP COP curves (in yellow) compared with the COP curves
from other studies.
e Staffell [21] equations (15) and (16) which were chosen for the final model
because they are representative of the UK
Kelly [75],
Fischer [76] based on industry standard data (2011, 2014, 2016)
Ruhnau [38] from industry standard data
RHPP derived in this study from UK heat pump trial data [67].
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In general, GSHP (dotted lines) perform better than ASHP and since ground
temperature tends to be higher and more constant than air temperature so the AT tends
to be lower.
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Figure 3-4 Relationship between heat pump COP and difference between source and sink temperatures from
different studies.

As can be seen in figure (3-4) the shape of the RHPP derived COP curve (yellow) is
different from the other curves. The COP should increase as the temperature difference
declines, but this does not happen for lower temperature differences. Therefore, the
RHPP curve was not used in the analysis. Instead, in this study, the COP curves from
Staffell [21] shown on figure (3-4) in blue were used. These were calculated at each
weather grid point using equations (15) and (16). For ordinary resistive heating the COP
is assumed to be 1.0, equation (17)

COPy g asup = 6.08 — 0.09ATT0 + 0.0005AT,g;nb2 (15)
COPy g osup = 10.29 — 0.21ATS%! + 0.0012AT; 9 (16)
COPh,g,RH = 10 (17)

Where ATg‘ﬂl"b =5- T;;l”b , T;hmb is the ambient air temperature for grid point g at
hour of the year h, AT;%” =S5 - T;‘;lil, T;‘,’l”is the 10m ground temperature for grid
point g and hour of the year h. Both temperature values were taken from the ERAS

weather reanalysis [37]. S is the sink temperature from table (3-1).

Table 3-1 - Source temperature and sink temperature assumptions [38]

Sink Sink temperature (S)

Radiators 40°C - TP (or 15°C if TR >25°C)
Underfloor heating 30°C - 0.5TP (or 15°C if TFP>3°C)
Hot water 50°C

It should be noted that here COP is used to represent the whole system and not just
the heat pumps. The electricity used to pump water to radiators is not considered
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because it is similar to that used by a gas boiler and so will not affect the impact of
heat pumps on the size of the electricity demand.

3.2.3 Calculate heating electricity demand for the whole country.

The hourly heat demands from equation (13,14) and the COP from equations (15-17)
are now used to calculate a heat demand for the whole country.

For the purposes of this model, it is assumed that heating is supplied by either traditional
resistive heating where the COP is assumed to be 1.0, an air source heat pump or a
ground source heat pump. This heat is used for water heating or for space heating via
radiators or underfloor heating. This gives 9 possible heating configurations (s) for
which the heating electricity needs to be calculated as shown in table (3-2). The 9
different heating configurations arise from the different combinations of source and
sink shown there. In table (3-2) the 2018 fraction represents 2018 proportions from
National Grid[24] and the simplifying assumption is that all existing heating not
provided by heat pumps is provided by resistive heating with efficiency 100%. The
future fraction is based on the assumptions that all electric heating is provided by heat
pumps (90% ASHP, 10% GSHP based on current proportions [24]) and that 90% of
heating is provided by radiators and 10% by underfloor heating.

Table 3-2 - Assumptions and COP equations for different types (s) of heating electricity demand

Heating Configuration: use-source-sink Indices Proportions of
heating
configurations

s | Heat Use Source Sink a(s) B(s) 2018 Future
Fraction Fraction
(Ks) [24] | (Ks) [24]

1 | Space Heating | Ground Radiator | space | GSHP | 0.0045 0.09

2 | Space Heating | Ground Floor space | GSHP | 0.0005 0.01

3 | Space Heating | Air Radiator | space | ASHP | 0.0378 0.81

4 | Space Heating | Air Floor space | ASHP | 0.0042 0.09

5 | Space Heating | Resistive | Radiator | space | RH 0.8577 0.0

6 | Space Heating | Resistive | Floor space | RH 0.0953 0.0

7 | Hot Water Ground Water water | GSHP | 0.005 0.1

8 | Hot Water Air Water water | ASHP | 0.042 0.9

9 | Hot Water Resistive | Water water | RH 0.953 0.0

The daily heat demand time series at each weather grid point from equations (13,14)
was converted to an hourly electricity time series and summed using equation (18) over
the whole country.

K, NG
Eps =——

Nup 9=0COPpgp(s)
Where Ens is the heating electricity demand for hour of the year h and heating
configuration s representing different types of heating as shown in table (3-2), nyp is a
correction factor set to 1 for resistive heating or 0.85 for heat pumps to account for real
world inefficiencies as per [38] and Ky is the proportion of heating configuration s in

He(s)n,g (18)
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the country as shown in table (3-2) Hy(s)ng 1 the heat demand for hour 7 at weather
grid point g for heating configuration s, COPy, 4 g(s) 1s the heat pump COP for hour of
the year 4, grid point g .The parameter B(s) indicates which of the equations (15-17) is
used to calculate COP for heating configuration s in table (3-2). The parameter o(s)
indicates weather equation (13) or (14) is used for Hy(s) p,g-

3.2.4 Hybrid heat pumps

Hybrid heat pumps are envisaged to provide 13% of heating by UK National Grid
Future energy scenarios [24]. Hybrid heat pumps combine a smaller heat pump with a
boiler for the coldest days. Initially this would be a boiler powered by natural gas. In
their net zero scenario, from which the figures used in this study are taken, a transition
from natural gas to hydrogen is envisaged. The hydrogen would be generated by
electrolysis from water using excess renewable energy and pumped into the existing
gas network. The objective of a hybrid heat pump is to reduce peak electricity demand
by switching entirely to hydrogen below a threshold temperature ( set here as 4.15°C
in order to meet the requirement of the proportion of energy specified in [24] ). The
hourly heating electricity M}, ¢ for hybrid heat pumps is calculated using equation (19).

Epg: TP > Ty (19)
My = <(): T,fmb <TF>

Where Ej, ¢ is the heating electricity from equation (18) for heating configuration s from
an ordinary heat pump, Tris 4.15°C the hybrid heat pump threshold temperature and
T#™P s the population weighted ambient air temperature.

The operation of a hybrid heat pump using this model is shown in figure (3-5). The red
horizontal line shows the threshold temperature below which the hydrogen boiler is
used instead of the electric heat pump. The other red line shows the outdoor
temperature. The green line shows the electricity demand for ordinary heat pumps and
the blue line that of a hybrid heat pump which goes to zero as the hydrogen boiler
(yellow line) kicks in. Note that the blue line exactly follows the green line so is not

visible when the temperature is above the threshold when the boiler kicks in.
2018 weather hybrid heat pumps
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Figure 3-5 Hybrid heat pumps compared to ordinary heat pumps — electricity demand and gas demand.
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The graph above (for 2018) shows a similar pattern to figure (4.14) from National Grid
Future Energy Scenarios 2019 [24] (not shown here) for 2017 data, providing some
validation for the model. One of the objectives of Future Energy Scenarios is as a
starting point for academic studies. However, no previous mention of hybrid heat
pumps being included in long term national energy models has been found in the
academic literature.

3.2.5 Combine heating electricity demand for all configurations

All the heating configurations from table (3-2) and equation (18) and (19) are then
added together as per equation (20)

En=P; ) EnetPu ) Fug (20
S S

Where Py is the proportion of heating from ordinary heat pumps and Py, is the
proportion of heating from hybrid heat pumps. Pz=0.29, P, = 0.13 from national grid
Future Energy Scenarios 2019 [24] .

This process described in equations (13-20) was repeated for each weather year y,
giving E,, , as the electricity demand for year y and hour 4. This gives a multi-year
electricity demand time series including heating, using either the heating technology of
2018 or future technology using heat pumps. These two electricity demand time series
created for use in chapter 4 are shown in table (3-3).

Table 3-3 Summary of the simulated electricity demand time series

Time Series (E,, ;, ) years Annual demand Fraction K;
from table (2-1) table (3-2)
a) 40 years heating electricity 1980 - 2019 Electricity column | 2018

with 2018 technology
b) 40 years heating electricity | 1980-2019 | Total column Future
with 41% heat pumps

3.3 Validation of heat pump electricity demand time series

Electricity demand measurements were used to validate the method of simulating
heating electricity time series. The electricity demand measurements were taken from
the same RHPP trial used in 2.3.2 to validate heat demand. Two time series were
generated:

e An electricity demand time series created by merging the 2-minute electricity
measurements from each house in the trial and aggregating to hourly.

e A heat demand time series created using the BDEW heat demand method to
split the total heat demand from 2.3.2 into days. Population weighted ERAS
reanalysis temperatures from the years of the trial data were used. This heat
demand was then converted to an electricity demand time series using the
methods from section 3.2.3. For each house in the trial, the appropriate heat
pump type (GSHP or ASHP) was used according to the trial data [67]. The sink
temperature was determined by weather the heating was provided by radiators
or underfloor heating which is also specified in the trial data. In the case of those
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having both heating types, 50% underfloor heating is assumed. The time series
for all houses were then merged.

These two time series where then compared. Figure (3-6) shows that the actual
electricity demand measured from the heat pump trial data is higher than that predicted.

Comparison of predicted electricty demand and measured from heat pumps

—— Modelled Electricity Time Series
5000 1 —— Actual Measured Electricity Time Series
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Figure 3-6 Comparison of predicted electricity demand from weather with actual hourly electricity demand from
measured heat pumps in the RHPP trial (7 day rolling average)

The modelled electricity demand time series compared to the measured one with
R?=0.994 reflecting the fact that both time series follow a similar pattern, but the high
nRMSE of 0.70 reflects the under prediction in the model.

The reason for the higher heat pump electricity demand from the heat pump trial data
could be the fact that the sample of housing in the trial is mostly social housing [67] not
representative of the UK housing stock and containing heat pumps not representative
of the typical heat pumps sold. Another reason could be that UK heat pumps perform
less well than German installations [21] possibly due to lack of experience amongst
installers. Another possible explanation is inaccuracy of the RHPP trial data, although
a previous study [59] expressed doubts about the accuracy of the heat measurements
rather than the electricity measurements. Finally, another cause could be that the
method used here assumes that all the hot water is provided by heat pumps alone, but
this is not the case for at least 4% of the houses [67].

It is clear from figure (3-4) that the temperature dependent COP calculated here from
the RHPP heat pump trial data is very poor compared to those used in other studies. For
ASHP an average COP of 2.4 was calculated from the trial data, compared to the annual
population weighted COP of 2.9 calculated using equations (15) and (16) based on the
weather of 2010 to 2019. For comparison, a review of available heat pump data [77]
notes a large variation in COP from 2 to 4, and that one trial of retrofitted homes in
Northern Ireland reported a COP as low as 1.4. This variability in heat pump
performance obtained from heat pump trials suggests that heat pump trial data should
be used with caution in research.
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3.4 Summary and Conclusions

A method has been developed to convert daily heat demand time series into an hourly
national heating electricity demand. The electricity demand can be generated either on
assumptions of future heat pump penetration or the existing 2018 heating technology.
Validation against measured heat pump trial data shows the method underpredicts.
However, there is uncertainty about the accuracy of the trial data. This chapter includes
the following novel contributions:
e An hourly heat pump electricity profile derived in this study using trial data.
¢ A modification of the when2heat method using hourly temperatures and UK
COP curves
e The inclusion of hybrid heat pumps
e Method of generation of electricity demand time series from the heat demand
via proportions of heat pumps
e Derivation of RHPP COP curve.

Two electricity demand time series have been generated which will be used in the
next chapter:

e 1980-2019 heating electricity (based on 2018 technology)

e 1980-2019 heating electricity (based on 41% heat pumps)
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4 The impact of heating electrification on national
electricity demand

This chapter completes the process of creating an electricity demand time series
incorporating heating electrification alone for long-term weather. It is the third step
shown in figure (3-1). The heating electricity time series created in chapter 3 will be
incorporated into the historic 2018 time series, to keep technology constant at 2018
levels, so that the impact of heating electrification alone can be studied for 40 years
weather. The resulting time series is analysed to assess the impact that heating
electrification will have on Great Britain’s electricity demand.

The remainder of the chapter is structured as follows. The background section reviews
other studies on the impact of heating electrification and introduces the concept behind
the method to be used. The method itself is described. The validation section uses the
method to generate a different year’s time series and compares them with those obtained
using linear regression and historical demand. There is also a sub-section justifying the
assumption that temperature is the only weather parameter that needs to be used in this
model. The generated electricity demand time series are used to assess the seasonal and
interannual impact of heat pumps. Finally, there is a sensitivity analysis followed by
overall conclusions.

4.1 Background

Previous research has assessed the future impact of heating electrification on UK
electricity demand in several different ways. One study [78] used the historic gas series
as a proxy for heat demand to predict the impact on electricity demand if all gas heating
were electrified. A regression model with historic gas demand and weather was used in
[7] to modify the historic electricity demand time series. In another study, heat pump
simulations of 960 buildings [57] were used to predict net peak demand. Heat pump
trial data was upscaled in [59] to represent the national housing stock. These studies
focus mainly on the peak hourly demand with little attention given to the impact on the
seasonal and interannual variation. A study that investigates such effects on electricity
demand [15] incorporating long term weather effects too, is based on projections of
demand into the future and does not isolate the effect of heat electrification from other
developments. It is this impact of heat electrification alone on seasonal and interannual
electricity demand that is the focus of this chapter. It is analysed and quantified for the
case of Great Britain.

Some studies linearly scale one year of hourly historic electricity demand [42, 61, 79]
to account for future changes to demand such as electric heating and vehicles. However,
over the 40-year period used in this project to capture weather variation, changes in the
demand pattern need to be considered. Figure (4-1) illustrates how the annual UK
electricity demand has changed over the years.
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Figure 4-1 Change in historic annual electricity demand (TWh) over 40-year period from 1980 - 2019

Technological and economic changes over a long time period [80] have led to an overall
reduction in the UK electricity demand in the last decade. An analysis of the impact of
weather on the UK electricity demand from 1974 to 1990 [81] also found that the
demand pattern has changed with correlation between demand and temperature
weakening over time which might be explained by a move towards gas heating, or
improved thermal insulation. Using historic electricity demand could make it difficult
to distinguish these changes from those due to the model. Some studies scale historic
electricity demand time series so that all years have the same annual energy [41, 52],
but this has the disadvantage of removing the effect of weather: cooler years generally
have higher demand due to heating.

This work introduces a method to isolate and study the impact of a specific change to
the electricity demand. It will be used to keep current technological and socioeconomic
conditions constant and account only for the anticipated implementation of electric heat
pumps. Rather than use the historic electricity demand, or generate a purely synthetic
demand, an alternative approach will be used. The electricity demand is based on a
single year, 2018 from which the significant weather impact of electric heating has been
removed. This concept of removing the heat demand and assuming it to be the weather
dependent demand has been used previously in research: for characterising the response
of the power system to weather [66] and for identifying events of simultaneous high
demand and low renewable generation [82]. The method relies on the assumption that
removing heating electricity removes the dependency on weather, which has been
shown by previous studies [7, 81]. However, the previous work has removed the heating
electricity using linear regression from the time series. Instead of using linear
regression, the novel aspect of the method used here is to generate the heating electricity
from historic weather, annual fuel use and proportions of heating technology. The
advantage of using this method is that it is only necessary to simulate the heating
electricity and no other sectors. This heating electricity was generated in chapters 2 and
3. It will now be used to modify the historic 2018 electricity demand.

4.2 Methods

This section describes the method used to generate two forty-year national electricity
demand time series: one with the existing heating technology of 2018 and one with
41% of heating provided by heat pumps. The method allows the impact of heating
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electrification to be studied in isolation to changes due to other socio economic and
technological factors. The process uses the electricity demands from table (3-3) in
chapter 3 as follows:

1. Take only the year 2018 from the existing heating electricity table (3-3) (a) and
subtract it from the 2018 historic time series to give a baseline electricity
demand (without heating).

2. Add the heating electricity from table (3-3) (a) for each of the 40 years to the
baseline demand from above. This creates a 40-year electricity demand time
series with the existing heating electricity technology.

3. Add the heating electricity from table (3-3) (b) for each of the 40 years to the
baseline demand from above. This creates a 40-year electricity demand time
series with the future heating electricity technology.

This procedure will be referred to as the baseline method. These processes are further
explained in the following sections.

4.2.1 Baseline electricity demand time series

A baseline electricity demand time series is created which represents 2018, but with no
heating electricity. This is done by simply subtracting a time series of heating electricity
for 2018 from the historic 2018 electricity demand using equation (21).
By = Fy — Ezo18n (21)

Where Bi is the baseline electricity demand, Frn is the half hourly historic 2018
electricity time series for Great Britain from [83] converted to hourly by summing up
pairs of half hourly values and Exo1gn is the heating electricity for 2018. This 2018
heating electricity time series was calculated using the 2018 fraction from table (3-2)
and the weather of 2018 using the methods from section 3.2 with equation (20). This
baseline Bn represents sources of demand other than heating, allowing the study of the
impact of heating alone by adding in the electricity demand for each year of weather
including future heating with heat pumps.

4.2.2 40-year electricity demand for existing heating technology

An electricity demand time series with the existing heating technology is created. This
is done using equation (22).

(22)

40
Rh S U(By'h + Ey,h)
y=1

The union operator signifies that the time series for each year y from 1 to 40 are
concatenated end to end to form the 40-year hourly electricity demand time series Rj,.
Where B, ), is the hourly baseline time series for year y and E,, , the hourly heating
electricity demand time series. B,, pis calculated from Byin 4.2.1 by simply copying the
values in each year, apart from leap years where a February 29" is made up by linear
interpolation from the day before and the day after. E,, j, is taken from section 3.2.5
equation (20) using the 2018 fraction Ks from table (3-2) and the 40 years weather.

Each year of this time series represents the electricity demand that 2018 would have

had if it had had the weather of that year. It allows us to keep technology constant and
look at the impact of weather alone.
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4.2.3 40-year electricity demand for future heating technology

Similarly, to create an electricity demand time series with future heating technology,
the future heating electricity is added to the baseline. This is done using equation (23).

40 (23)
Sh = U(By'h + Ey,h)
y=1
Where S;, is the 40-year hourly electricity demand time series with future heating
technology and E, ,, the hourly electricity demand time series from equation (20) using
the future fraction K from table (3-2). B, j, is the baseline as in the section 4.2.1.

Each year of this time series represents the electricity demand that 2018 would have
had if it had had the weather of that year and 41% of heating had been provided by heat
pumps. It allows us to keep technology constant and look at the impact of weather alone.

4.3 Validation of adding in weather dependent heating electricity

The objective of this section is to validate the process of removing the heating
electricity for the reference year 2018 and adding in the heating electricity for a
particular weather year. First the baseline electricity demand method itself is validated.
Then for comparison, the linear regression method from previous work is validate using
the same method. Some investigations are done to justify the underlying assumption
that removing heating electricity removes weather dependence. Finally, the baseline
and linear regression methods are compared.

4.3.1 Validation of Baseline Method

As described in section 4.2.1, the baseline method removes the heating electricity from
the 2018 historic electricity demand which should make it independent of the weather.
The heating electricity based on a particular year’s weather is then added back in as
described in 4.2.2 and 4.2.3. Heating electricity demands for 2017 and 2019 were
generated using this method. These generated demands were then compared to the
historic ones. The investigation is restricted to just these two years to ensure similar
technoeconomic conditions with 2018. The synthetic 2017 electricity demand time
series is created by removing the 2018 heating electricity from the historic 2018
electricity time series and adding in the 2017 heating electricity. This approximates the
historic 2017 electricity demand time series as per equation (24)
Ezo17n = Bn+ Ezo17n (24)

Where E,y;, is predicted 2017 historic electricity demand time series, Bj, is the
baseline electricity demand time series and E,q7p is the generated time series of
heating electricity for 2017 from equation (20).

This predicted timeseries compares well with the actual 2017 electricity demand giving
R?=0.994. For the 2019 time series it was R?=0.995. Both years have nRMSE=0.08.
This has shown that the baseline method can generate recent years electricity demand
from weather with high accuracy. Figure (4-2) shows how the electricity demand
predicted by this method (red) compares to the historic electricity demand (blue) and
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the linear regression method (green) described in the next section. It can be seen that
although the baseline method is an improvement on linear regression, that there are a
few times when it over predicts the historic electricity demand.

Adding heating electricity by different methods - Daily
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Figure 4-2 Comparison of predicting the 2017 electricity demand using the baseline method from this thesis and by
linear regression.

4.3.2 Validation using linear regression.

Instead of using generated heating electricity demand time series as was done in the
previous section, previous work has used linear regression. One previous study [66]
found the heating electricity for all European countries using linear regression in a
similar way to what was done with the gas demand in section 2.3.1 but including
cooling degree days (CDD) as well as HDD. To compare the accuracy of this method
with this study, linear regression was used to estimate the coefficients b, c, h in equation
(25). This allows an estimate of the amount of heating and cooling in the electricity
demand time series to be made.
Ei =b+ CCi + hHl (25)

Where E; is the electricity demand time series, C; is a time series of Cooling Degree
Hours (CDH) using a base temperature of 20°C, H; is a time series of Heating Degree
Hours (HDH) using a base temperature of 14.8°C. Note that an hourly series is being
used here, so that HDH and CDH are used rather than HDD and CDD. The heat demand
from this standard linear regression was also used to validate the heating electricity
demand: using equation (24) from the previous section, but with Byand E,4,7, being
calculated using this linear regression model instead of using the generated heating
electricity demand.

The electricity demand time series generated in this way compared to the actual historic
one for 2017 with R?=0.993 and nRMSE=0.08. This linear regression also provides an
important additional validation of the heat demand method itself using the electricity
time series, as relying only on the gas time series alone could lead to some doubt as to
if we are validating heat demand or gas usage. The heat energy in the time series given
by hH; was 36.9 TWh which compares to 41 TWh estimate of annual heating energy
for electricity from table (2-1).

63



4.3.3 Electricity demand regression coefficients

The previous work on which the above linear regression model is based [84] quote their
linear regression coefficients. Therefore, as an additional validation, the regression of
equation (25) was repeated for the years 2017-2019 as a comparison. The regression
coefficients are shown in table (4-1) compared to the previous study.

Table 4-1 - comparison of electricity demand regression coefficients with another study [66]

Study h (HDD) Years
Supplemental material of [84] | 0.75 2016-2017
This study 0.79 2017
This study 0.77 2018
This study 0.77 2019

The HDD coefficients compare quite well. The CDD coefficients for the UK were not
quoted in the that study because there is only a small amount of cooling energy in the
UK electricity demand. The number of HDD in 2018 was 1882, whereas the number of
CDD was 22.

4.3.4 Prove heating is the most significant part of electricity demand.

The method of generating electricity demand time series being used in section 4.2 relies
on the assumption that by removing heating electricity from the historic time series, the
significant weather dependence (ie on temperature) has been removed. Although this
method has been used in previous work using the UK electricity demand [66, 85] they
do not say if they have validated the method in a UK context. The method is derived
from US studies [86] using a limited number of variables at weather stations. However,
this study is using UK not US weather and using reanalysis instead of weather stations.
Therefore, an investigation was done to establish if:

e Any other weather variable is comparably significant to temperature.

e I[fthe baseline electricity demand still has any weather dependence remaining

which should be removed.

The literature contains several relevant studies.

A study using monthly regression models applied to the UK electricity demand time
series from 1970 to 1995 [81] looked at heating degree days, cooling degree days,
enthalpy latent days (which is an alternative measure of cooling), wind speed, rainfall
and hours of sunshine. They found a strong corelation between temperature and
demand, some correlation between humidity and demand in the summer months and a
weak correlation with rainfall.

A previous study [7] used Lasso regression to investigate the relationship between net
(of renewables) electricity demand and various parameters including weather variables.
The Lasso method [87] is a common method of identifying important features for a
machine learning model. It is a regression analysis method favouring the smallest
number of features. In that study, they only look at the winter months and conclude that
the only important weather variable is temperature (hourly and mean daily). They find
that population weighted wind chill and cold spell uptick are not significant. Wind chill
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is defined as a relationship between the wind speed being above a certain value at the
same time the temperature is below a certain value. Cold spell uptick is defined as max
(T-3,0), where T is temperature in °C.

To predict electricity demand, the UK National Grid use composite variables which are
weighted averages from a few selected weather stations for effective temperature,
cooling power of the wind (CP) and effective illumination (EI) [88]. EI used to be a
complex function of radiation levels and types of cloud cover but has recently been
replaced by a cubic function of the ground solar radiation. It should also be noted that
government figures [8] show that lighting energy use in the UK has declined from 7375
ktoe in 2007 to 1215 ktoe in 2018, so its significance has probably declined also. CP is
defined in [89] by equation (26).

_ 183 - TO,if TO, < 18.3) (26)
CPe = W( 0 if TO, =18.3

Where TO is the mean temperature for the previous 4 hours in °C and W is the wind

speed in m/s.

To summarise, the previous work on which the method of removing the electricity for
heating is based used hourly US electricity demand. Other studies looked at monthly
regression on the UK demand or at just the winter months, but not at hourly UK
electricity demand for the whole year. The purpose of this section is to fill that gap.

Various weather variables were taken from the ERAS reanalysis 2017 - 2019 covering
the same recent years used as the electricity demand baseline. Only three years are
considered to avoid technological changes that would occur over a long period. The
variables used were chosen based on the previous work referenced above as those
considered most likely to influence electricity demand. They are listed in table (4-2),
along with additional derived variables. A new variable ghi w (weather dependent ghi)
was derived, as the difference between the theoretical maximum “clear sky” Global
Horizontal Irradiance (GHI) and the actual GHI. Clear sky GHI is the theoretical GHI
based on the geometric position of the sun in the absence of any cloud cover. The square
and cube of ghi w were included because National Grid’s EI variable (see above) is
defined as a cubic function of solar irradiance.
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Table 4-2 - Correlation of weather parameters with electricity demand

Variable Description Daily R Daily R | Daily Daily
historic | baseline | Lasso Lasso
demand | demand | historic | baseline

demand | demand

dailytemp Mean daily -0.806 -0.605 0.14 0.148

temperature

tempyd Yesterday’s dailytemp | -0.787 -0.579 0.072 0.139

tempdb 2 days ago mean temp | -0.774 -0.585 -0.078 -0.067

temp_dp Dew point -0.772 -0.576 0.0 -0.0

temperature

hdd Heating Degree Days 0.831 0.631 0.241 0.246

wind Wind speed 0.367 0.351 0.064 0.071

ghi Global Horizontal -0.597 -0.493 -0.024 -0.009

Irradiance (GHI)
clear_sky Clear Sky GHI -0.662 -0.554 -0.065 -0.075
ghi_w Weather Dependent -0.391 -0.34 -0.060 -0.056
GHI

ghi_w2 Ghi_w squared -0.32 -0.297 0.006 0.052

ghi_w3 Ghi_w to the power 3 | -0.28 -0.27 -0.07 -0.109

cp Wind Cooling Power 0.827 0.064 0.003 0.045

equation (26)

thermal Thermal Irradiance -0.625 -0.459 0.215 0.225

pressure Surface atmospheric -0.340 -0.337 -1.046 -1.389

pressure

cloud Cloud cover 0.195 0.151 -0.00 0.0

precipitation | Precipitation rainand | 0.131 0.11 -0.040 0.05

snow

cdd Cooling degree days -0.213 -0.13 0.073 0.038

Both the historic electricity demand and the baseline electricity demand (section 4.2)
were analysed to determine the daily correlation (R) of each variable and its
significance in Lasso regression. The results of this investigation are shown in table (4-
2). The values of R range from -1 completely negatively correlated through 0 no
correlation to +1 completely correlated. Lasso regression is similar, but those variables
that are deemed not useful because they are correlated with something else are set to
zero. Columns 3 and 5 show that the most significant parameters shown in bold
affecting the historic demand are indeed those that are related to temperature, such as
daily temperature, yesterday’s temperature, and heating degree days. This supports the
idea of heating degree days being the most significant part of the weather dependent
demand.

For example, figure (4-3) shows a correlation between hdh, one of these temperature
dependent variables and the 2017-2019 daily historic electricity demand.
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Relationship between hdh and historic electricity demand
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Figure 4-3 Correlation between HDH per day and 2017-2019 daily historic electricity demand

Columns 4 and 6 in table (4-2) relate to the baseline demand. From R, it appears that
dew point temperature (which includes humidity) correlates well with demand,
however the Lasso Regression shows that this parameter is not needed in a model
because of correlations with other parameters, presumably temperature in this case.
Similarly, GHI seems to correlate well, but the Lasso shows it is not important in a
model, possibly because GHI also correlates with time. Surface pressure is highlighted
as being significant by the lasso analysis of the time series after removal of heat. It
might be thought that the high correlation of GHI indicates some relationship to lighting
since annual lighting energy of 37.9 TWh is comparable to heat energy. However, it
should be noted that the amount of sunlight is also correlated with the day of the year.
Therefore, the variable ghi w was included to investigate only the effect of weather and
shows a weaker correlation to the electricity demand than ghi. Figure (4-4) does not
show any obvious relationship between ghi w and the baseline electricity demand (with
electricity for heating removed).

Relationship between ghi_w and baseline electricity demand

o
@
<]

:
°
~ 0.75 0% ° o o o o
e %o
° rﬂ.‘ :‘".’ . o . o
© e A o © .. ° Y O.
GEJo7o- .ﬁ .’ ® l.'” - i o. ¢
a ..f’o: 0.00 A ~ e o °® °
Fo ﬁ.‘o.oﬁ 0e® o ¢ °
(9] o ® °
'S 065 i o 8
O ) o . J
u% -2 .?‘.o :.:.~ o .o. LIPS
> °g % § ° ° $ o ®
= 0.60 ® e0ee 0 ,° °
© o ° °
o) % ® [)
°
0.55 | L
0 200 400 600 800
ghi_w per day

Figure 4-4 Correlation between weather dependent GHI and baseline electricity demand 2017-2019
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With a linear regression, such as the model used in the previous section, the form of the
model is fixed. This has the advantage that as in the case of the HDD and CDD model
equation (25) that the portions of the time series that are heating, and cooling can be
extracted. However, if the assumption about the form of the model were incorrect, then
better results might be obtained from a model with a different form. Therefore, an
investigation was done using the Random Forest (RF) machine learning method. RF is
an ensemble method which takes the average of many decision trees [90]. A decision
tree is a method of subdividing the data based on the values of certain variables.
Individual decision trees tend to overfit, but RF overcomes this limitation by averaging
the predictions of many trees. The objective of the investigation was to see if including
any of the parameters identified as significant from table (4-2) improved a model to
predict electricity demand from weather. This might indicate that the variable should
have been considered in generating baseline electricity demand. The results of this
analysis are shown in table (4-3). The variables used in the prediction are shown in
brackets. These models do not perform better than the regression model from section
4.3.2 or the heat demand model from 4.3.1. However, it can be seen that the addition
of ghi_w into the model made a small improvement in the R? values.

Table 4-3 Comparison of Random Forrest models for predicting electricity demand from weather

Comparison to the daily 2017 electricity demand of R? nRMSE
2017 Random Forests (RF) prediction (hdh,cdh) 0.993 | 0.09
2017 Random Forests prediction (hdh,cdh,ghi_w) 0.994 | 0.08
2017 RF (hdh,cdh,ghi_w,temp_dp) 0.994 | 0.08
2017 RF (hdh,cdh,ghi_w,temp_dp,surface_pressure) 0.994 | 0.08

If the baseline demand after the removal of heat, still contains some weather
dependency then one possible improvement might be to train a model to forecast the
baseline line demand from the weather, ie B, from equation (21), instead of just using
the baseline of 2018 directly. This was tried using the variables ghi w, temp_dp and
surface_pressure, but made no improvement to the assessment in table (4-3).

The conclusion is that we do not need to add any more weather parameters to the
calculation of weather dependent demand. Removing heating electricity is sufficient to
remove weather dependence.

4.3.5 Summary of validation

The previous section provides a justification for the assumption that removing heating
electricity from the historic demand removes its weather dependency. Section 4.3.1
validated the method of using a baseline electricity demand. Section 4.3.2 investigated
the alternative method of linear regression. These two methods are compared in table
(4-4) and figure (4-5).

Table 4-4 Comparison of generated 2017 electricity time series to the actual historic data

Comparison to the 2017 electricity demand time series R? nRMSE
2017 synthetic time series using the heat demand method 0.994 | 0.08

from section 4.3.1 to calculate H2o1s and Hao17
2017 synthetic time series using linear regression model 0.993 |0.08
from 4.3.2 to calculate Hao13 and Hoo17
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Validating removal of eixsting heat from 2018 - Daily
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Figure 4-5 Removal of heating from weekly electricity demand time series

It can be seen that the method used in this study is slightly better than the linear
regression method used in previous work. The method is also better than some methods
which generate the whole electricity demand time series, rather than just replacing the
heating electricity. For example, the DESSTINEE model time series for 2010 compares
to the actual time series with R? = 0.92.

4.4 Results of Electrification of Heat

The previous section validated the methods of incorporating the electrification of
heating via electric heat pumps into the electricity time series. This section will use
these time series to look at the impact heating electrification will have. Two 40-year
electricity demand time series were created using the methods from section 4.2: one
representing the heating technology of 2018 and one representing future heating
technology with 41% heat pumps. Although hourly time series have been generated,
only the daily series are shown in the following plots for clarity.

Figure (4-6) shows the daily historic electricity time series for 2018 (in blue) with the
portion of that which was heating (in red) subtracted from it to give the baseline
electricity demand without heating electricity (purple). This demonstrates the method
of creating a baseline electricity demand described in section 4.2.1.
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Removing existing heating electricity from the daily electricty demand series
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Figure 4-6 Removing the electricity for heating from the historic electricity demand of 2018 to obtain the baseline
electricity demand.

Figure (4-7) shows generated electricity demand time series from 10 arbitrary
consecutive years of weather from the total 40. The purple line of figure (4-7) shows
the baseline electricity demand which is the same time series repeated as the influence
of weather has been removed. The orange line shows the effect of adding in the
electricity demand for heat pumps assuming all heating was provided by heat pumps.
The heating is based on weather, so this line is different for each year. As expected, all
heating provided by heat pumps would have a very large impact as currently most UK
heating is provided by gas.

Daily Electricity demand

—— Daily Electricity Demand 2018 with heating electricity removed
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Figure 4-7 Baseline electricity demand (2018 time series without the electricity used for heating) compared with
generated electricity demand assuming all heating is provided by heat pumps

Note that despite the removal of the weather dependence due to heating, the baseline
electricity demand still shows some variation between months also visible in figure (4-
6). December has a mean daily demand of 0.7 TWh where there is a noticeable dip in
the holiday period at the end of month. The mean electricity demand of the other months
varies between May with 0.67 TWh, July with 0.71 TWh and January with 0.75 TWh.
A weekly cycle is also visible in figure (4-6), where demand varies within a week by
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0.23 TWh compared to the variation between weeks of only 0.09 TWh. Section 4.3.4
showed that the baseline demand is only weakly correlated with heating degree days
per hour and temperature, and no correlation with weather dependent GHI. Therefore,
it seems reasonable to conclude that most of the weather dependency has been removed,
and that the pattern is due to time dependent consumer behaviour.

Figure (4-8) shows a similar period with two different electricity demand time series
that will later be used to investigate the impact on the required energy storage: the
existing heating technology (4.2.2, orange) and 41% heat pumps (4.2.3, blue). The
increase in winter demand seen here and its day-to-day and year-to-year variability will
impact the required shares of weather dependent renewables and the storage found in
chapter 6.

Daily Electricity demand

—— Daily Electricity Demand 41% heating is provided by heat pumps
Daily Electricity Demand The heating technology of 2018
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Figure 4-8 Existing Heating Technology compared to 41% heat pumps

Figure (4-9) shows the 2018 historic electricity demand (blue line) compared to what it
would have been if all heating were provided by electric heat pumps (red line), where
the annual electricity demand would increase from 299 TWh to 391 TWh. The green
line represents a more realistic scenario of 41% heat pumps from the 2050 prediction
from Future Energy Scenarios [24] where the annual electricity demand would be 323
TWh. As expected, there is a noticeable increase in winter demand and the day-to-day
variability of this demand. However, it is also important to note the advantage of using
heat pumps over traditional electric heating. The purple line in figure (4-8) shows the
electricity demand for 2018 if the existing electric heating had been provided by heat
pumps. This would have resulted in a reduction in the annual demand of 16 TWh and
a reduction in hourly peak demand from 54GW to 48GW.
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Impact of heat pumps on 2018 daily electricity demand

2.0 —— Historic 2018 electricity demand
—— 2018 electricity demand with all heating as heat pumps
—— 2018 electricity demand with 41% heating as heat pumps
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Figure 4-9 The impact on the 2018 electricity demand if all heating were provided by electric heat pumps

Figure (4-10) shows the daily electricity demands generated from 40 consecutive years
weather all overlaid on the same graph. The case assuming 41% of heating provided by
heat pumps is compared with the case when the electricity demand includes only the
existing heating electricity. This shows a very large variation in the electricity demand
in the winter months for different years and a much smaller variation in the summer for
the case of 41% heating from heat pumps. The monthly electricity demand has doubled
leading to an increase in about 30TWh for each winter month (December, January,
February).

Daily variation of electricity demand with 40 years weather
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Figure 4-10 40 years generated daily electricity demand time series incorporating 41% of heating provided by
heat pumps compared to existing heating

Figure (4-11) shows how the annual electricity demand varies amongst different years.
With the existing heating technology, it varies over a range of 19 TWh, whereas with

41% of heating provided by heat pumps this variation increases by 37% to a range of
26 TWh.
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Figure 4-11 Annual demand with 41% heat pumps compared with heating electricity at 2018 levels

The decline in Great Britain’s annual electricity demand with 41% of heating provided
by heat pumps visible in figure (4-11) is caused by a decline in annual heat demand of
70 TWh over the 40-year period due to approximately 1°C increase in the population
weighted Great Britain temperature over the years 1980 — 2019. No attempt has been
made to correct for this because including more extremes of heat demand will better
stress the energy system model ensuring that there is enough minimum storage.
However, it was found that it is possible to correct for climate change by increasing the
temperature at each weather grid point by about 1/40™ of a degree per year as suggested
in[91].

4.5 Sensitivity analysis of electricity demand.

Both the method used to generate daily heat demand time series from section 2.2.1 and
the selection of the hourly profile of heat pump operation from figures (3-2) and (3-3)
in section 3.2.1 will impact the final electricity demand time series. The objective of
this section is to study their effect on peak demand, annual demand, and ramp rates.
Peak demand is important for estimating the required generation capacity and ramp
rates are important for the stability of the electricity system as it has to react to the
sudden addition or loss of load. Although this study is primarily concerned with long-
term variations, peak demand and ramp rates are examined in order to do a comparison
with other studies.

Previous work on generating hourly heat pump electricity demand time series [6] has
used hourly profiles derived from gas boilers. Flat profiles [92] have also been
suggested assuming that heat pumps would be configured this way as the best way of
reducing peak demand whilst ensuring thermal comfort. This study has used an hourly
profile derived from actual heat pump data. However, different trials have shown heat
pump profiles with different shapes [93] due to the way the heat pumps are configured.
To investigate the impact the different choice of hourly profile can have on the final
results, three different hourly profiles were tried with the same heat demand method.
The results are shown in table (4-5). The higher peak demands for the RHPP profile
will have been caused by its higher afternoon peak shown on figure(3-2) because the
time of peak demand in the historic series also occurs in the later afternoon.
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Table 4-5 Hourly electricity time series comparisons if 2018 had heat electrification

Electricity Time Series Hourly | Hourly | Hourly | Hourly | Annual

Profile | Peak Ramp | Ramp | Demand
Demand | up down

Historic (existing heating) 54 GW 7GW |6 GW | 266 TWh

BDEW method (heat BDEW | 94 GW 12GW | 11 GW | 397 TWh

pumps)

BDEW method (heat Flat 89 GW 7GW | 5GW | 380 TWh

pumps)

BDEW method (heat RHPP 100 GW |20 GW | 15GW | 379 TWh

pumps)

To investigate the impact of the choice of heat demand method, four heat demand
methods were used with the same hourly profile. The results of varying the daily heat
demand method but keeping the same hourly profile are shown in table (4-6).

The choice of heat demand method (splitting the annual heat demand into days) and
hourly profile only have a small impact on the annual electricity demand. However, the
hourly peak demand values vary over a range of 25 GW (25%) which is quite significant
compared to estimates of what the future peak demand might be. For example a study
into electricity demand and weather variability [94] predicts that electrification of heat
will double peak demand from about 50 GW to 100 GW and in a study including other
sectors as well as heat [30] hourly ramp rates of =15 GW are predicted by 2030. This
suggests that estimates of peak demand are very inaccurate if they can vary so much
depending on the method of generating the heat demand time series.

Table 4-6 - Sensitivity of the hourly electricity demand to heat demand method

Electricity Time Series Hourly | Hourly | Hourly | Hourly | Annual

Profile | Peak Ramp | Ramp | Demand
Demand | up down

Historic (existing heating) 54 GW 7GW |6GW | 266 TWh

BDEW method (heat pumps) | RHPP | 100 GW | 20GW | 15GW | 379 TWh

Watson method (heat pumps) | RHPP | 95 16 GW | 13GW | 378 TWh

HDD 12.8 method (heat RHPP | 120GW |24 GW | 18 GW | 381 TWh

pumps)

HDD 15.5 method (heat RHPP | 102GW | 19GW | 15GW | 380 TWh

pumps)

Despite being based on the same annual heat demand, the annual electricity demands
estimated from the different methods and shown in table (4-6), differ, because the
methods assume both different hourly heat pump operation profiles and daily total heat
demand. The intraday temperature variations mean different COP for each hourly
profile of heat pump operation and hence the total amount of electricity required to
generate the same heat varies accordingly.
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4.6 Summary and Conclusions

Two UK electricity demand time series have been created based on 40 years’ weather:
one with the existing heating technology of 2018 and one with 41% of heating provided
by heat pumps. These time series allow us to study the impact of heating electrification
with heat pumps alone on electricity demand, independently from all other factors.
Previous work has done this either by using linear regression to replace the electricity
for the heating sector in one year’s historic electricity demand based on multiple years
weather or has simulated all sectors. In contrast the method used here replaces the
electricity for the heating sector with a heating electricity time series from chapter 3
based on detailed calculations for current or future heating. The new method can
generate time series for recent years more accurately than those used in previous work.
Analysis of the dependence of the historic electricity demand justifies the assumption
that removing the heating electricity removes its weather dependence.

The research reveals that the difference between the largest and smallest annual
electricity demand for weather years 1980-2019 increases from 19 TWh to 26 TWh. It
also reveals the sensitivity of generated peak electricity demand to the hourly profiles
used in modelling leading to uncertainties in the estimations of peak electricity demand
which vary over a range of 25 GW. This is quite significant compared to estimates of
future peak demand of between 40 and 100 GW reported in research. Such inaccuracies
have not been quantified in previous work.

It was found that the electrification of heat expected by 2050 with the introduction of
heat pumps, modifies the seasonal profile of electricity demand doubling the monthly
demand for electricity leading to an increase in about 30TWh for each winter month.
The evidence of the generated time series shows that year to year variability of
electricity demand due to weather will increase by 37%.

The impact of these two factors on the role of wind generation, solar generation, and
energy storage requirements in a future highly renewable electricity system are the
subject of chapter 6. But first the method by which energy storage is modelled is
described in chapter 5.
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5 Finding the minimum energy storage needed

This chapter will aim to answer one of the subsidiary research questions posed in
section 1.1: How should the required energy storage be found? A model is needed to
find the minimum energy storage required for a given electricity generation capacity.
This can then be used to study the impact of changes to electricity demand on storage
and generation capacities.

The chapter starts with a review of previous work. The method used to find the
minimum storage is then described. To help identify which configurations are important
a method of calculating the cost of electricity generation taken from another paper is
described. The results section describes how the method can be applied to a system with
today’s demand but a supply with a high renewable energy penetration. The model is
validated by comparison to that used by another study and against today’s energy
system. The chapter concludes with a summary of how the model will be applied in the
remainder of the thesis.

5.1 Background

Previous studies on future UK energy systems have proposed different capacities of
wind generation, solar generation, and energy storage to achieve a net zero UK. For
example, seven different plans from four different groups, are reviewed in [19]. All
contain high proportions of electricity generation from wind and solar PV, but all vary
in their proposed mix of technologies. The ratio of wind energy to solar energy
generation capacity ranges from 0.80 in the plan with least wind capacity to 0.99 in the
plan with most wind capacity. Several previous studies have investigated the ideal mix
of wind and solar needed to satisfy the historic electricity demand. These studies make
different assumptions about what the energy storage might be and hence its efficiency.
For example a study assuming a round trip efficiency of 80% for pumped storage [95]
found the ideal mix for Europe was 55% wind. Another study which assumed a round
trip efficiency of 36% for hydrogen storage [96] and assuming an excess generation of
50% found the ideal mix for Europe was 70% wind. A UK study looking at efficiency
of 75%-85% for pumped storage [41] found that for a system with 25 TWh storage that
30% more energy generation above the demand was required for a system which had
81% wind. The proportion of wind energy for a purely wind and solar system for the
UK was found to be 84% assuming a round trip efficiency of 70% for compressed air
storage [52] by finding the minimum cost configuration at today’s prices. Despite the
electricity system being a complex network of interconnected consumers and
generators, these studies use a simplified model to capture the essential features needed
to study the interaction of demand, generation, and storage at a high level.

Some energy models have energy stores of fixed capacity, and it is up to the user to
optimize the system by varying the storage capacities. Energy Plan [97] has a thermal
store and an electricity store which can be pumped storage, batteries, V2G or CAES.
The electrical energy store starts 50% full, and an iterative procedure is used until the
amount of energy stored at the end is at least that stored at the start. A model of' a 100%
renewable UK [34] has multiple fixed sized stores used in a merit order of heat, V2G,
electrical, hydrogen and synthetic fuel.
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Other models using a single energy store attempt to find the amount of storage required.
Energy is taken from the store during periods of high demand and low generation and
added to it during periods of high generation and low demand. Fragaki et. al [41],
discussed below, assume that the energy store is full at the start, and define the required
store size by the maximum amount of energy taken from it. A study of the optimal wind
solar mix for Europe [95] uses a similar algorithm but the energy store is allowed to
overfill, and the initial state of charge is determined by increasing the energy generated
to ensure that it contains more energy at the end than it did at the start. In a later study
by the same author [96] the algorithm is modified to constrain the capacity. A study for
Germany [18] iteratively moves the storage pattern up and down to find the minimum
storage where the store ends up with more energy than it started with. Cardenas et. al.
[52], discussed below, use a similar algorithm, but make no assumption about how full
the store is to start with. The initial state of charge is determined using an iterative
procedure which ensures that the amount of energy in the store at the end is at least
equal to how full it is at the start. This “no free lunch” assumption of the store having
more energy than it started with is common to most studies [52, 95, 97]. Some studies
vary the generation to achieve this. Some assume an initial state of charge, and for some
it emerges from the algorithm. It is not clear if all these different algorithms find the
same optimum storage which is possibly a question for future study.

Previous studies on the amount of energy storage needed have yielded a wide range of
results. A review of such studies [98] found that for renewable energy penetrations of
greater than 80% storage requirements varying between 0.2-6 TWh for the US, 0.2-22
TWh for Europe and 0.05-83 TWh for Germany. These variations are 187%, 196% and
91% respectively. No firm conclusions were drawn on the reasons for the wide variation
in results, although they found that high PV penetration tended to lead to high storage
requirements. No UK studies were included in that review. However, two previous
studies into running the UK on purely wind and solar have been found and investigated
here. The aim is to improve on their methods. The differences made by these new
methods is investigated in chapter 7.

Fragaki et al. [41] show that the historic electricity demand can be satisfied by wind
and solar generating 30% more energy than the existing system complemented by 30
days storage. Wind speeds from MIDAS were used to model a typical wind turbine at
6 onshore weather stations using standard methods. A solar panel was modelled at the
location of 4 weather stations. These daily time series were scaled up to represent power
generation for the whole UK for the weather of 1984 — 2013. Electricity demand was
modelled using the historic electricity demand scaled by adding a different constant for
each year to each day’s demand, so that each year had the same annual demand. The
required energy storage was found assuming round-trip efficiencies of 75% - 85%
representing pumped storage. This study was examined because the original idea of this
research was to build on it to include the impact of the electrification of heat.

Cardenas et. al. [52] show that 15% excess energy minimizes the total cost of electricity
generation and requires a minimum storage size is of 43.2 TWh (which equates to 35
days) and has 84% of energy from wind. The cost is based on CAES with a 70% round
trip efficiency at today’s prices. They use the simulated PV generation from
Renewables Ninja, but the actual wind generation from Elexon / National grid and
normalise it on a quarterly basis to account for the increase in generation capacity over
the years. For the years 2011-2019, the hourly historic electricity demand for each year

71



is multiplied by a different constant so that it has a total demand of 335 TWh, the annual
demand for 2018. This approach is questioned in another study looking at peak demand
[6] because it changes the pattern of the demand curve. This study was examined
because the cost model used in this project was taken from it.

Cardenas used a different algorithm to find the required amount of storage. First, they
define the amount of excess generation allowed. Then for different proportions of wind
energy and solar energy they create power generation series from the time series of
wind and solar capacity factors that generate this amount of energy. A net demand time
series was then produced to which losses due to the store round-trip efficiency have
been applied. So, the round-trip efficiency is applied once, rather than separate charge
and discharge steps. Iterative procedures were used to find (i) the required energy, (ii)
the required storage (by increasing it from zero until the energy curtailed equals the
excess generation allowed) and (iii) the initial state of charge (by generating more
energy) until the store ends up with the same energy as it started with. This means that
the initial amount of energy in the store is an output of the model.

Both these studies tried to keep the economic changes constant by scaling the historic
electricity demand time series so that each year uses the same amount of energy.
However, this removes the difference in the heating energy requirement between
warmer and colder years. Both studies try different proportions of energy generation
from wind and solar to find the energy storage needed.

To improve on these two previous UK studies, this study will:

1. Use wind generation time series from Renewables Ninja because being based
on all UK wind farms they should be more accurate than using just 6 MIDAS
weather stations and will not change over time like the current national grid
wind.

2. Use PV generation time series from Renewables Ninja which would be

expected to be more accurate as they are hourly, rather than daily.

Use hourly time series, rather than daily throughout for improved accuracy.

4. More accurate electricity demand time series combining National Grid
generation and the balancing mechanism from Elexon.

5. Use electricity demand time series from chapter 4’s baseline method which
include the different heating energy between years, rather than scaling which
removes it.

6. Use an algorithm to find the minimum storage which ensures that the SOC at
the end of the period is at least that at the start, but without adding additional
generated energy to achieve it, which might lead to finding a non-optimal
solution.

7. Cover a complete range of generation capacities in a grid which allows
interpolation of in between points and avoids having to guess at the excess
energy generation needed.

8. Use 40 years of weather data to capture more variation.

9. Consider cost, rather than just energy.

[98)

A summary of the differences between this project and these two studies is shown in
table (5-1).
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Table 5-1 Comparison of methods of two previous studies with those used here

find storage

store capacities

maximum deficit

Method or Study
data This Project Fragaki Cardenas
Wind Renewables Ninja | 6 MIDAS weather | National Grid onshore
generation combined stations onshore | and offshore
offshore and
onshore
Solar PV Renewables Ninja | 4 MIDAS weather | Renewables Ninja
generation stations
Frequency Hourly Daily Hourly
Electricity Pre-processed National grid National grid
demand data | from [83]
Electricity Baseline with Historic: each Historic: each year
Demand heating electricity | year scaled to the | scaled to the same
added for the same energy by energy by multiplying
weather adding a constant | by a constant
Algorithm to Iteratively try Store capacity is Iteratively find energy,

capacity and initial SOC

Configurations | Range of Range of wind Range of wind energy

chosen capacities on a energy fractions | fractions and over
regular grid and over sizing sizing factor

factor
Initial SOC 70% 100% Emerges from
algorithm

Final SOC 2 Initial SOC No limit 2 Initial SOC

Cost As Cardenas None Cardenas

years 1980-2019 1984-2013 2011-2019

1dayenergy | 818.386 GWh 835.616 GWh 917.808 GWh

Mean daily 34 GW 34.8 GW 38 GW

power

5.2 Methods

This section contains the methods for:

¢ Finding the energy storage for a given capacity of wind and solar generation

e (alculating the cost of electricity for a configuration

5.2.1 Finding the minimum required energy storage

This section describes how time series of renewable generation are combined with an
electricity demand time series to estimate the required energy storage capacity. One 40-
year hourly time series models the electricity supply, and one time series models the
electricity demand. The model calculates the minimum energy storage that is needed to
balance it, so that the electricity demand is supplied without interruption. The electricity
supply is generated from time series of wind and solar power generation capacity
factors. These represent what power would have been generated for historic weather
and are scaled up to represent different generation capacities. The electricity demand is
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an hourly time series generated for the whole country based on the same historic
weather. For each generated electricity demand time series, a whole set of possible
electricity supply time series were investigated. Each supply time series is based on a
configuration having a different capacity of wind and solar power. The objective is to
identify the minimum energy storage required for the system to balance without loss of
load. The model consists of a simplified system where the energy generated consists
solely of wind, solar PV, base load and dispatchable generation. A time series of
demand net of generation is created using equation (27)

Ne=Di— Wy — Pe=Xe =V (27)
where N, is the net electricity demand at time ¢, and W, , P;, X, V; are the energy
generated at time ¢ from wind, solar PV, base load and dispatchable sources
respectively. D, is the electricity demand. The time period ¢ is typically hourly, for
example S; generated in section 4.2, or in some experiments it is converted to daily by
aggregation.

For convenience, and in line with previous studies, generation capacities and storage
capacities are specified in units of days related to the mean daily energy in the 2018
historic electricity demand time series of 818.38 GWh per day. Thus, a wind generation
capacity of 1 day means 34 GW (=818.38/24) and 1 day of storage is 818.38 GWh.

The base load X; is defined as a constant daily amount Cp, with the simplifying
assumption that it is always on. Base load could be nuclear power. Or at a high-level
tidal power could be considered as another form of baseload since it is independent of
weather, although it varies according to daily and lunar cycles (not being modelled
here). Geothermal could also be considered as constant base load although there is not
very much potential for this in the UK.

The dispatchable generation V; is power that can be brought online at the request of
grid operators, in contrast to baseload (which cannot be turned off) and wind and solar
whose availability is subject to weather. It encompasses all thermal power plants using
fossil fuels such as natural gas, oil, coal, and biomass. To simplify the model, it is
assumed that it will always be used in preference to stored energy up to its maximum
capacity C,. For time ¢, V; is the amount of energy needed to make N; zero up to a
maximum specified value C,.
C,+ N;, (0> N, > —C,) (28)
V= 0,(N; =20)
Cy, (Nt < - Cv)

In this model this dispatchable generation is assumed to be brought online as needed
although in practice some power stations must be on stand-by. Note that the distinction
between dispatchable and storage is slightly nuanced, because although in theory
natural gas could be created using electricity via the Sabatier process [34] and thus be
a form of energy storage, it is only considered as dispatchable in the model used in this
thesis.

The power generation time series for wind W; is calculated by multiplying the input

time series of capacity factors from section 1.2.7 by the generation capacity C,, as
shown in equation (29)
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w, = wc, (29)
Where Wtcf is the time series of wind capacity factors from Renewables Ninja. The

near-term future time series is used which includes wind farms which are under
construction and planned in addition to those that already exist.

The power generation time series for solar PV P; is calculated by multiplying the input
time series of capacity factors from section 1.2.8 by the generation capacity C, as shown
in equation (30)

P, = P7c, (30)

Where Ptcf is the time series of PV capacity factors from Renewables Ninja.

The many different types of energy storage in the actual power system are all
represented in the model by a single energy store of capacity C,, and round-trip
efficiency of 7.

Thus, we have a model of the UK energy system with energy storage defined by C,,
and 7 with a net demand time series N; defined by these four values: C,, , G}, , C,, , Cp.
For fixed values of €, and C, the values of C,, and C, are varied in steps by fixed
amounts starting from zero creating a 2D grid of wind and PV capacities. For these
different power system configurations, the task is to find the amount of energy storage

C,, for a specific efficiency #. There must always be enough energy to supply the load
Dy.

For one such system, this can be calculated using equation (31). Using a storage
variable (§) modified according to the sign of N; at each time point t, assuming a storage
charge efficiency of . and discharge efficiency of n4
1 (31)
—N;, N >0
Na
NeNg, Ny <0
Where S, is the amount of energy stored at time ¢. The algorithm marches through the
net demand time series N;. There are two cases:
e If N, is positive, demand exceeds supply. Energy is removed from the store.
More energy is needed to supply the demand, so divide by 7,.
e If N; is negative, supply exceeds demand. Energy is added to the store. Less
energy is put into the store due to storage efficiency so multiply by 7.
S is subject to the constraints that S, = C; (the store starts off containing an initial
amount of energy C; ) and that 0 < S; < C,,, where C,,, is the maximum size of the
store. The maximum charge rate was calculated as max(S; — S;_;) (t = 1, NT ) where
NT is the number of points in the store history S. The maximum discharge rate similarly.

The model has several limitations. It is based on the energy balance alone with no
account taken of losses due to transmission, start-up time and thermal power plants on
standby. Wind and solar generation outages are taken account via the capacity factor.
The only renewable energy curtailment is due to the energy store being full. There is
no constraint on the rate at which the energy store can fill and empty (ie power
curtailment). Delays to discharge are not modelled. For example, if the energy store
were hydrogen, then there could be a delay for start-up time to the power station
generating electricity from hydrogen, for discharge of the store. Also, loss of charge is
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not modelled eg hydrogen leaking out. However, other work has shown that these
models do provide a rough estimate of storage and provided a basis for comparison of
different scenarios [25].

In contrast to the studies mentioned in 5.1 above, in this project an iterative procedure
is used to find the minimum value of Ci, so that the constraints are satisfied. The novel
algorithm for finding the required storage capacity Cm for a given PV capacity C,, and
wind capacity C,, is described below, where SL is a lower bound for the storage and
SU is an upper bound. SU starts at 80 days, a value arrived at by trial and error as the
largest storage required to capture the comparison points for the models used in this
study. SL starts at zero. The lower bound is gradually increased if there is not enough
storage. The upper bound is reduced if there is more storage than needed. When the
upper and lower bounds are within a tolerance §,the minimum storage has been found.
The algorithm is illustrated as pseudo code below and as a flow chart in figure (5-1).

Table 5-2 Algorithm for finding the minimum energy storage for a given net demand time series.

e SetSL=0, SU=80
e Repeat until the difference between SL and SU is less than a threshold
value (65 =0.01):

o check if we have enough energy with storage capacity C=0.5(SL+SU)
by going through the N time series adding and removing energy as
in equation (31) and stopping if the energy runs out (ie is not
enough to satisfy the demand at any time point)

o if we have enough energy, set SU=C

o if we don’t have enough energy, set SL=C

At the end of this process Cn, is set equal to SL

Start
5|_E:0 Try anotherstore size
= & — 05 (SL -SU)
SU=80 t=0
G, = 80 L = C;
=G . No AddE t
v ] T nergy
- | s=5-nM
\
¥ Yes Next
Update Remove Energy stare t
Store B N, size Solution
§=8— ﬂ Found
Next i i
time “,‘ e « No‘
point Yes _— T~ /
S Gy ~ § > Cp? ] - 'TS:EI! 8})7?; =
L el / i— U= e
¥ =
o | i st=n] [=a]
s . N6 4 | Yes
< t>NT? < Yes <@l =020 No ‘ v
\\T{’ g — —— Yes | No
es T S
»=__  SL-SU<6? Solution
o Found

Figure 5-1 Flow chart showing the algorithm to find the minimum storage for a given net demand time series



5.2.2 Calculating the cost of electricity generation

To provide a guide as to which power system configurations might be important, a cost
is calculated for each one. This section describes how the cost of electricity for a
particular experiment is calculated. The cost model used here is exactly the same as that
used in a previous study [52] The cost is defined to be the total system cost of
generating electricity. Each configuration is specified by a certain amount of wind
generation capacity (C, ), an amount of PV generation capacity (C,) and amount of
energy storage Cg. The aim here is to not to predict the actual cost, but to provide a
guide as to which configurations to use to assess the impact of changes to the demand
pattern. One overall figure for the cost of the system based on today’s costs was
calculated and one for projected future costs.

Table 5-3 Cost model parameters with references to the studies they were taken from

Technology Value Unit Variable Future Cost
LCOE Offshore 57.5[52] £/MWh Ly 40

Wind

LCOE Onshore 46 [52] £/MWh L, 44

Wind

Offshore % 46.7 [52] % P 77
Onshore % 53.3 [52] % P, 23

LCOE PV 60 [52] £/MWh L, 33

LCOE Gas 66 [52] £/MWh Lg 120

Cost CAES 3[52] £/kWh a 15% reduction
capacity

Cost rated 300 [52] £/kW Ly 15% reduction
power

Lifetime 30 [52] Years A

Hydrogen Store | 0.67 [52] £/kWh o

Hydrogen 1100 [52] £/kW S

electrolysis

Hydrogen 450 [52] £/kW y

electricity

generation

Pumped 66.4 [100] £/kWh o

Storage

capacity

Pumped storage | 1188 [100] £/kW Ly

rated power

LCOE Nuclear 95 [65] £/MWh L,

The values used in that cost model are shown in table (5-3). They define the cost metric
using estimates from other studies derived from government figures or projections
based on the Levelized Cost of Energy (LCOE). LCOE is a the discounted lifetime cost
of building and operating a generating asset expressed as a cost per unit of electricity
generated [99] (£/MWh). It provides a simple way of comparing the costs of different
technologies. The costs of the generation and storage capacities are then added up to
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provide a total system cost that is expressed as a cost per MWh of the electricity
demand, not the electricity generated. This is because we are comparing configurations
where more energy may be generated to satisfy the same demand. This means that
energy curtailment will result in a higher system cost.

The values for pumped storage in table (5-3) have been taken from a study on the
levelized cost of storage technologies [100] and those for nuclear/base load from
government figures [65]. For the purpose of calculating system cost, baseload is costed
as nuclear. The rest of the values are taken from Cardenas et. al. [52] where this cost
model was taken from.

The total cost of the system T is calculated using equation (32).

K,+ Ky, + K, + K, + K, (32)
c =
Eq
Where K, = E4Lg is the cost of dispatchable (fossil fuel) generation, K,, = E,, (P;Ls +
P,L;) is the cost of wind generation, K;,, = E, L, is the cost of PV generation, K}, =
CpLy 1s the cost of baseload based on nuclear, E; is the total electricity demand, Ej is
the dispatchable energy generation, E,, is the wind energy generated, E,, is the PV

energy generated and K is the cost of storage given by equation (33)

Ke= "2 (aCp + B+ yP) >3

where P. is the maximum storage charge rate, Pq is the maximum storage discharge
rate, Cp,is the capacity of the storage in kWh, N, is the number of years of generation
and A is the lifetime of the asset (all assumed to be 30 years). a, B, and y are the cost of
storage capacity, storage charging power, and storage discharging power. They depend
on the type of storage from table (5-3).

Note that this cost model has several limitations. The discount rate and life of the
generating plants are accounted for in these figures for 30-years, although degradation
due to the number of charge/discharge cycles for storage has been neglected. The cost
for large scale solar has been used, but rooftop solar is more expensive. If future
curtailment of wind and solar varies from today, for example because the energy is
stored then this could impact the LCOE, and it is not clear how this is accounted for in
the study from which the cost model was taken. However, rather than actually trying to
calculate cost, the main interest here is to use it to define which configurations to
compare.

5.2.3 Wind energy fraction

As well as looking at the amount of energy storage, we will assess the mix of solar
using the wind energy fraction which is the proportion of the total energy generated
from wind and solar that comes from wind. Wind energy fraction Wy is defined by
equation (34).

__Ew (34)

~ E,+ E

Where E,, is the total energy generated from wind and E,, is the total energy generated
from Solar PV.

Wy
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5.3 Results and discussion

5.3.1 Standard way of summarising experiments in the thesis

To make it easier to keep track of what is changing in these experiments, a table of the
form of table (5-4) is included at the start of each section. This format will be used in
the remainder of the thesis.

Table 5-4 Example of an experimental objectives’ summary table

Experiment Objective

The aim of the experiment

Frequency

n Demand Storage Wind PV Years

Hourly

50% Baseline New ninja Ninja | 1980-2019

The values that can be contained in this table are explained briefly below:
e Frequency: of the time series — hourly or daily
e 1: round trip efficiency of the storage
e Demand: electricity demand source and scaling method:

(@)

(@)

(@)
O

(@)
O

0 O O O

(@)

O
(@)
O

Baseline: adding in heat for the weather as per the model used in this
project

Historic Add: historic electricity demand scaled by adding a constant
amount onto the historic time electricity demand to make each year the
same energy as per Fragaki et. al.

Historic Mult: historic electricity demand scaled by multiplying the
historic electricity demand so that each year contains the same energy
as per Cardenas et. al.

Storage: algorithm for finding the minimum storage:

Iterative: storage algorithm from this project
Max Deficit: storage algorithm from Fragaki et. al.

Wind: wind generation source

Ninja on: Renewables Ninja onshore wind

Ninja S: Renewables Ninja onshore wind scaled to the capacity factor
of offshore.

Ninja off: Renewables Ninja offshore wind

Ninja C: Renewables Ninja combined wind (offshore and onshore)
Fragaki: Wind generation from Fragaki et. al.

Fragaki S: Wind generation from Fragaki et. al. scaled to Ninja
offshore capacity factor.

NGrid: Wind generation from National Grid as per Cardenas et. al.

PV: PV generation source:

Ninja: Renewables Ninja

Fragaki: Generation from Fragaki et. al.

Fragaki S: Generation from Fragaki et. al. scaled to Ninja capacity
factor.

e Years: years of the analysis period.
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5.3.2 Investigation to establish model parameter values

A preliminary investigation was done using only 4 years of weather to be able to
consider a very wide range of generation configurations in a reasonable computing
time. A 50% round trip efficiency and baseload of 0.4 was used, with the electricity
demand from chapter 4 for the existing heating technology of 2018. The aim is not to
draw any definite conclusions but to illustrate the range of possible solutions, and to
decide where to look in more detail. This section also explains the values of some of
the specific constants used in the model to define the experiments.

The single energy store in the model is defined using one round-trip efficiency.
However, the future power system is likely to be made up of different types of storage,
to cover different requirements. This study will consider Compressed Air Storage
(CAES) with round trip efficiency n=70% [52], pumped hydro storage with round trip
efficiency n=75% - 85% [41] and hydrogen storage with round-trip efficiency of
n1=50% [61] ( to specify . = 14 = Vn in equation (31))

For convenience, and in line with previous studies [41], generation capacities and
storage capacities are specified in units of days related to the mean daily energy in the
2018 historic electricity demand time series of 818.38 GWh per day. Thus, a wind
generation capacity of 1 day means 34 GW (=818.38/24) and 1 day of storage is 818.38
GWh. The daily energy from the generated electricity time series from chapter 4 is not
used because it varies between years and between the existing heating technology and
the 41% heat pumps.

A baseload capacity (Cp) of 0.4 days is assumed based on the sum of possible future
UK nuclear and tidal power generation. The current UK nuclear capacity is 0.3 days
[101], actual generation in 2018 was 0.2 days [102] and the potential future capacity
ranges from 0.13 days to 0.42 days [103]. A figure of 0.3 for nuclear as assumed being
between these two extremes. Potential UK tidal power generation is 0.8 days [19]
consisting of tidal barrages, lagoons and stream generation. Here it as assumed that 0.1
days is built. Tidal is considered to be baseload because of its predictability and low
seasonal and interannual variation. This gives a combined nuclear and tidal value of 0.4
days. The consequences of varying this baseload are investigated in section 9.4. The
minimum demand for 2018 was 0.7 days so the model will never store baseload
generated energy.

The experimental parameters are summarised in table (5-5) following the format
described in section 5.3.1.
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Table 5-5 Experiment to assess the whole range of possible configurations to satisfy the electricity demand with
the existing heating technology (see 5.3.1 for terminology)

Experiment Objective: Investigate the whole range of possible configurations to
satisfy the electricity demand with 2018 heating technology under 4 years weather
variation.

Baseload: C;,= 0.4 Dispatchable: C,,= 0.0 Wind 0.0< C,, < 11.9 Solar 0.0< (}, < 11.9
Electricity | Frequency | n Demand | Storage | Wind | PV Years
Demand
Existing Hourly 50% | Baseline | Iterative | Ninja | Ninja | 2016 - 2019
Heating
technology

Figure (5-2) indicates the minimum amount of energy storage needed for each
combination of wind capacity (C,,), and PV capacity (C,). Each of these possible
combinations will be referred to as a configuration. Each configuration will either be
able to meet the demand with a minimum amount of storage which has been found
using the model described in section 5.2.1 or will run out of energy and not be viable.
They are coloured according to the capacity of energy storage required. Those
configurations with low generation in the bottom left-hand corner have no colour
because they were not viable and there was not enough energy to satisfy the load. The
electricity demand could be satisfied by a wide range of configurations ranging from
those in red with a large amount of storage to those on the right in yellow with very low
storage, to those in grey with zero storage. The large amounts of renewable generation
for the zero storage configurations are well within the potential for offshore wind of
6700 GW [19]. However, the optimal configurations will lie somewhere in between
these extremes. It is noted that 30 days storage is approximately in the middle of the
range of storage capacities and so it will be used as a comparison point later.

baseload 0.4, large range of generation capacities (existing heating technology ).
Wind Generation Capacity (GW)
200 250

0 50 100 300 350 400

Not Needed

12 l ..!Storage 400
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w

r 300
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o
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Solar PV generation capacity (days)
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Amount of energy storage (days)
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1 Energy
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wind generation capacity (days)

Figure 5-2 Minimum storage for full range of possible configurations of wind and solar to satisfy the load for 2018
heating technology for 40-years weather variation

Figure (5-3) shows the same combinations of wind and solar capacities but instead of
showing the minimum storage, shows the cost of electricity at today’s prices. Although
cost is not the focus of this study, it is used as a guide as to which configurations should
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be investigated. Those configurations with large capacities of wind and PV are clearly
the most expensive, and the cost optimal configuration is in the bottom left-hand corner.
The high cost of the configurations with large amounts of wind and PV is due to
curtailment. This is used as a justification for concentrating the analysis on wind and
solar capacities below 6 days. The minimum cost configuration is 43 days hydrogen
storage for a wind generation capacity of 1.6 days and a PV generation capacity of 1.4
days. The minimum cost configurations for CAES are also well within this region.

baseload 0.4, large range of generation capacities (existing heating technology ).
Wind Generation Capacity (GW)
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Figure 5-3 Cost of electricity generation for each combination of wind and solar capacity to supply electricity
demand with the 2018 heating technology for 40 years’ weather variation.

5.3.3 Parameter Values

Based on the discussion in the previous section. for the remaining experiments in this
project, the minimum storage was calculated for a set of configurations on a 60x60 2D
grid. These were defined by wind (0 < C,,< 5.9) and PV (0 < C, <5.9) in steps of 0.1.
The lower computational requirement allows us to use the whole 40 years of data. Those
configurations with very high generation, but low energy storage were ignored. This
gives 360 points (Cy, C,) for which the minimum storage required Cm has been
calculated. Other quantities that were calculated for each of these points were the
Renewable Energy generated (the sum of the Wind energy and PV energy generated),
the wind energy fraction and the maximum charge and discharge rates.

The initial state of charge of the energy store was set to 70%. This value was chosen
from an analysis of the model with the 40-year electricity time series with the existing
heating technology from section 4.2.2. Considering all these possible combinations of
wind and solar capacities it was found that the size of the store at the start of each year
varies between 27% full and 100% full and that average value at the start of each year
is 70% full. Therefore, it was assumed at the start of the 40-year period that the store
was 70% full i.e., Cin. Sg = 0.7C,,.

Values which will be varied during the experiments are summarised in table (5-6).
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Table 5-6 Model parameter values varied during the experiments.

Parameter Symbol | Value Equation
Round trip efficiency hydrogen storage n V0.5 (31)
Round trip efficiency CAES n V0.7 (31)
Round trip efficiency pumped storage n V0.8 (31)
Wind Capacity Cw 0<C,<59days |(29)
Solar PV Capacity Gy 0<C,<59days |(30)
Initial state of charge So 0.7 days (31)
Base load capacity Cp 0, 0.2,0.4 days (27)
Dispatchable capacity C, 0<C,<1.2 (28)

Values which remain fixed during these experiments are listed in table (5-7).

Table 5-7 Model parameter values fixed during the experiments.

Parameter Symbol | Value Where Used
Hybrid heat pump threshold Tg 4.15°C Equation (19)
temperature

Threshold for considering 2 o 0.01 Table (5-2)
values of storage as the same

Initial Store Size So 0.7 Cm (70% full) Equation (31)

5.4 Validation

This section validates the storage model against the maximum deficit storage model
used by a previous study. The first step is reproducing that study to prove that its storage
model has been implemented correctly. This also allows one weakness of the previous
model that it does not ensure a full energy store at the end of the analysis period to be
investigated to prove that it does not impact its use as a validation. Then it is used to
validate the iterative model used by this study.

5.4.1 Validate re-implementation of max deficit storage model

The results from the Fragaki et. al. study were reproduced using the same methods from
table (5-1) and the same 30 year period. The objective of reproducing the results is to
prove that the storage model of that study has been re-implemented correctly, so that it
can be compared with the model used in this project. The daily time series of wind and
solar generation and the historical electricity demand were made available by the author
of the study. The algorithm to find the required storage was re-implemented
independently. In contrast to the algorithm defined in 5.2 for this project, it assumes
that the energy store starts full, and that the maximum deficit is the required size of the
store. It is implemented as follows. The store capacity S from equation (31) is subject
to the constraints: Sy = 0.0, S; < 0. The algorithm marches through the net demand
time series adding and subtracting energy as per equation (31). At the end of the period,
the capacity of the store is set C,,, = — S;. No check was made to ensure that the store
was full at the end of the period. A range of different configurations is generated using
different proportions of wind and solar energy combined with an over sizing factor.

&9



Table 5-8 Experiment to reproduce Fragaki et. al exactly (see 5.3.1 for terminology)

Experiment Objective: Reproduce Fragaki et. al.
Baseload: C;, = 0.0 Dispatchable: C;, = 0.0 Wind 0.0< (,, 5.9 Solar 0.0 < (};, < 5.9

Frequency | n Demand Storage Wind PV Years
Daily 75% Historic Add | Max Deficit | Fragaki | Fragaki | 1984-2013
85%

Figure (5-4) shows the results of this experiment presented in the same format as those
of the original study which is shown in figure (5-5) below. Points on this graph
represent the different proportions of wind and solar PV generation capacity. The lines
join points with the same energy storage requirements (the minimum amount for
storage needed for the system to supply the load). The size of energy store needed was
normalised by the mean daily energy demand so that one day of energy storage is
835.616 GWh. The generation capacities for wind and PV are also normalised to this
value, so that 1 on the Y axis is 34.8 GW. The dotted lines are for a round trip efficiency
of 85% and the solid lines 75% representative of a range of values for pumped hydro
storage.

Lines of constant energy storage for different wind and pv capacity

—— Efficiency 75 days storage 25
Efficiency 75 days storage 30

—— Efficiency 75 days storage 40
— Efficiency 75 days storage 60
----- Efficiency 85 days storage 25
. Y 5 Efficiency 85 days storage 30
44 Nl Efficiency 85 days storage 40
N e Efficiency 85 days storage 60

Solar PV ( capacity in proportion to normalised demand)
w

2.0 2.5 3.0 35 4.0 45 5.0
Wind ( capacity in proportion to nomarlised demand)

Figure 5-4 Recreation of Figure (8) from Fragaki et. al. using the same data inputs and model.

It can be seen from figure (5-5) which is taken from Fragaki et. al. that the same results
have been reproduced. This provides confidence that the same data and methods have
been used. The black star represents an illustrative configuration from that study which
has 30 days storage and 30% excess energy generation. In contrast to the linear
interpolation used to create the contours in figure (5-4), figure (5-5) used a threshold
value where, for example 30 days storage means 29.95 < storage < 30.05.
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Figure 5-5 Figure (8) from Fragaki et. al. showing lines of constant storage for different wind (x-axis) and solar
(v-axis) generation capacities.

Figure (5-6) shows the results from Fragaki et. al. (labelled as Storage KF) for 75%
round trip efficiency plotted on the same graph as those from the reimplementation of
the algorithm in this project (labelled as Storage MP). It is clear that they match
almost exactly.
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Figure 5-6 Lines of constant storage from the re-coded Fragaki et. al. model plotted on the same graph as the
original results.
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5.4.2 Validation of the method of finding the minimum storage

The model used in the Fragaki et. al. study assumes that the energy store starts full, and
it is sized according to its maximum deficit. In contrast, the model used in this study
assumes that the store starts 70% full and uses an iterative procedure to find the
minimum storage such that the demand is satisfied and that the store ends up with more
energy than it had at the start. This section looks at the difference made to the results
depending on which of these models is used. All other aspects are kept the same, apart
from the method of finding the storage required. The experimental parameters are
summarised in table (5-9).

Table 5-9 Experiment to assess the impact of using a different method to find the storage capacity (see 5.3.1 for
terminology)

Experiment Objective: What is the impact of the different method of finding the
required energy storage capacity?
Baseload: C;, = 0.0 Dispatchable: C;, = 0.0 Wind 0.0 < (,, 5.9 Solar 0.0 < (}, 5.9

Frequency | n Demand Storage Wind PV Years
Daily 85% Baseline Max Deficit | Ninja C Ninja | 1980-2019
Daily 85% Baseline Iterative Ninja C Ninja | 1980-2019

Figure (5-7) shows lines of constant storage found using the maximum deficit method
compared to the iterative method from this thesis (dotted lines). It can be seen that they
are almost identical at most configurations, but that there are slight differences at high
PV configurations. This is probably explained by the energy store emptying, as shown
in figure (5-8) and discussed in the following section. The energy generated and wind
energy fractions for the minimum energy points marked by a black star are all the same,
apart from for the 25 days line where 82% wind is used for the maximum deficit method
compared to 84% wind for the iterative method used here.

Constant storage lines Compare iterative model from this thesis with max deficit model
Wind Generation Capacity (GW)
80 90
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% storage 30.00 (days). Storage model max deficit
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Figure 5-7 Comparison of the maximum deficit and iterative methods of finding the minimum storage using lines
of constant storage.
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5.4.3 Validation of final State of Charge

Most models of energy storage in previous studies [18, 52, 95, 97] ensure that the
energy store contains at least as much energy at the end of the analysis period as it did
at the start. In contrast to this “no free lunch” assumption, the model used by Fragaki
et. al. does not enforce this condition. However, a small final store size could mean that
the solution is not viable because the store started full, and just kept going down over
time. In the extreme case with very large storage the system could run for 40 years with
no generation at all. The objective of this section is to examine if the energy store does
empty over time, and if the lack of this condition is causing a problem. This is to justify
using the maximum deficit method as a validation of this project’s method.

Table 5-10 Experiment to check how full the energy store is at the end (see 5.3.1 for terminology)

Experiment Objective: How full is the energy store at the end?
Baseload: C;, = 0.0 Dispatchable: C;, = 0.0 Wind 0.0< (,, 5.9 Solar 0.0 < (};, < 5.9

Frequency | n Demand Storage Wind PV Years
Daily 85% Baseline Max Deficit | Ninja C Ninja | 1980-2019
Daily 85% Baseline Iterative Ninja C Ninja | 1980-2019

Figure (5-8) shows for different wind and solar capacities how full the energy store was
at the end. It can be seen that whilst the energy store ended up full, or nearly full for
those configurations to the right of the plot, the final state of charge is very low for low
generation configurations in the bottom left-hand corner of the plot. For example, 1.7
days wind 4.5 days solar has 47 days storage and is in range of configurations we are
looking at in figure (5-7) but has only 60% charge at the end. This could explain the
discrepancies in figure (5-7) at high PV.

Compare iterative model from this thesis with max deficit model (Storage model max deficit ).
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Figure 5-8 The fraction of the initial energy remaining in the store at the end of 40 years using the maximum
deficit model.

To address this potential weakness, a different model was adopted in this study that
ensure that there is more energy in the store than it started with. To achieve this the
store does not start full. It starts 70% full. Figure (5-9) below shows a similar plot of
the results using the model in this study. It can be seen that for some configurations the
store ends up almost full whereas for others if can be as low as 70% full.
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Figure 5-9 The fraction of initial energy remaining in the store after 40 years using the iterative model from this
study.

This experiment has shown that the energy store is not empty enough with the
maximum deficit storage model to cast doubt on its use as a validation method, but
there are some configurations where it causes different results. The iterative model does
not have this potential weakness.

5.4.4 Cost Model Validation

Table 5-11 Calculations to verify the cost model

Quantity Symbol | Day units Ordinary units
One day’s energy 1.0 days 0.923297 TWh
Total Demand E,4 1.0 3035 TWh
Energy generated over 9 years 1.15 relative to load | 3490 TWh
Wind Fraction Wy 84% 84%

Wind energy over 9 years E,, 0.966 days 2931.9 TWh
PV energy over 9 years E, 0.184 days 558.5 TWh
Storage Capacity Cnm 46.57 days 43 TWh

One hour’s energy 1/24 days 38.47 GWh
Maximum Charge rate P, 3.09 hours/hour 119 GW
Maximum discharge rate Py 1.586 hours/hour 61 GW

Cost of storage K, £ 5.488 x 10%°
Generation Cost K,+ K, £1.85x 10!
Total Cost of Electricity T, 79.037 £/MWh

The study from which this cost model was taken [52] found that the cost optimal
configuration for the UK was for a wind energy fraction of 84% with 15% energy
generated over the load requiring energy storage of 43 TWh. The maximum charge rate
was 119 GW and the maximum discharge rate was 61 GW. They found that the cost
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was £80 / MWh. Table (5-11) shows calculations to verify the cost model defined by
equations (32,33) using this configuration. These calculations result in a cost of £79 per
MWh compared to the cost of £80 per MWh found by that study.

5.4.5 Validation of the model with today’s energy system

The model defined in 5.2.1 was used to represent today’s energy system. The 2018 UK
annual electricity demand of 298 TWh required generation of average daily energy of
818.8 GWh which we equate to a unit of 1 day and use this as a measure of storage and
normalised capacity. Table (5-12) shows estimated UK capacity and actual generation
for 2018. Using the first two columns as a guide, the third column of that table defines
the values used to model today’s energy system in this chapter.

Table 5-12 Existing power generation capacities for 2018, those used to test out the model, and the energy
generation shown by the model

Energy Source Actual 2018 | Actual 2018 | Model input | Model
capacity Generation | capacity generated
(days) (days) (days) energy

(days)

Base Load Generation | 0.3 [101] 0.2 [102] 0.2 0.2

— nuclear or tidal (Cp)

Dispatchable 2.0 [101] 0.60[102] 2.0 0.81

Generation, eg gas (C,,)

Wind Generation (C,,) | 0.63 [104] 0.19 [104] 0.63 0.24

Solar Generation (Cp) 0.38 [104] 0.04 [104] 0.38 0.04

Pumped Storage (C,,) 0.03 [101] 0.008 [102]

With the inputs to the model defined as (C,, = 0.63, C,, = 0.38, €, = 2.0. C,=0.2), a
round-trip storage efficiency of 80%, and using hourly time series, the model was used
to find the required energy storage. The experiment is summarised in table (5-13) using
the format described in 5.3.1.

Table 5-13 Experiment with the model on today's energy system (see 5.3.1 for terminology)

Experiment Objective: Test the model with values comparable to today’s energy
system.
Baseload: C;, = 0.2, Dispatchable: C,, = 2.0, Wind: C,, =0.63 PV: C}, = 0.38

Frequency | n Demand Storage Wind PV Years

Daily 80% Baseline Iterative Ninja C Ninja | 1980-2019

The required storage was found to be 0.03 days which is the actual storage available in
2018. The final column of table (5-12) shows that the model used more dispatchable
energy and wind energy than was actually used in 2018, and a similar amount of PV
energy. This is a very simplified model, so it is not surprising that there are differences.
Not all the generators are being modelled and actual usage is determined by the energy
market, rather than the simplified model used here. However, the fact that the wind
generation and storage are comparable with the values from the real system provides
some validation.
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Assuming that the storage is all pumped storage, the cost model from section 5.2.2
calculates the system cost as 97 £/ MWh which is more expensive than the actual cost
of electricity in 2019 of 65 £/ MWh [52] . One possible explanation is that the model
used more dispatchable (gas) generation than was actually used. Also the model does
not include generation from biomass, hydro, coal or waste.

This experiment has shown how the simplified model compares to the real system. The
energy use compares quite well; however, the modelled cost is higher. The objective
here is not to cost the system but to assess the impact of changes such as heating
electrification on that cost, and on the shares of renewables and storage.

5.5 Summary and Conclusions

A simplified power system model including 10 improvements over previous UK studies
has been described. This includes a novel algorithm to find the minimum required
energy storage ensuring that the energy store contains at least as much energy at the
end of the analysis period than it started with. In contrast to previous work [41, 52]
which applies different amounts of overgeneration, the algorithm from this study uses
a series of regularly spaced generation capacities. It was found that the iterative
algorithm for finding the required amount of storage used in this thesis gave results that
matched those from the maximum deficit algorithm used by a previous study almost
exactly, apart from at high PV generation. These discrepancies at high PV match those
configurations where the energy store falls below 60% full in the max deficit model.
The iterative algorithm used here ensures the store ends up with more energy than it
started with so does not have this potential weakness.

Using generation capacities close to today’s energy system, it was found using the
model that enough energy was generated to satisfy the demand. The storage
requirement was the same as the existing pumped hydro storage. However, the cost
model calculates an electricity cost much higher than today’s.

The model has been used to show that there is a wide range of possible combinations
of wind, solar and energy storage that will meet the electricity demand with the heating
technology of 2018. However, wind and solar generation capacities between 0 and 6
days capture those configurations likely to be important on both grounds of avoiding
excessive energy generation and minimizing cost.

A future improvement to the model used by this study might be to find the optimum
initial state of charge for the energy store which minimizes the required storage

capacity. Comparing the findings of this algorithm with those used in other work would
be useful.
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6 The impact of the electrification of heating on shares of
storage, wind and solar.

This chapter brings together the work on heating electricity with the energy storage
model. In chapters 2-4 two 40-year electricity demand time series were produced, one
for the existing heating technology and one for 41% of heating provided by heat pumps.
In chapter 5 the model used to find the minimum energy storage for different wind and
solar generation capacities was defined and tested. In this chapter that model is applied
to the two electricity demand time series to investigate the impact of heating
electrification. This will answer part of the main research question in this project which
is how heating electrification will impact shares of wind, solar and energy storage. It
will also answer the question: how can the results be assessed?

The chapter starts with some background and methods. The minimum energy storage
required for different combinations of wind and solar generation is calculated. The
results section discusses how to assess the impact of the electrification of heating on
shares of wind, solar and storage. The chapter concludes with a summary of the findings
on heating electrification.

6.1 Background

30% of primary energy demand in Europe is for the heat sector [5]. To reduce the
burning of fossil fuels it is likely that in the future this heating will be provided by
electric heat pumps which are the most efficient way of providing electric heating [21].
There are two previous UK studies reviewed in chapter 5 looking at different amounts
of storage required for purely wind and solar PV systems under long term weather
variation. One study uses 9 years’ weather data [52] and one uses 30 years’ [41].
However, both these studies use only the historic electricity demand and do not include
the electrification of heat. One study was found that did consider varying amounts of
wind, solar and storage, and also included weather dependent electrification of heating
and transport [53]. The variation in wind and solar was limited to five different
capacities, with no attempt to identify the ideal mix and it concentrated on a 3-year
period between 2009 and 2011. However research has found that 10 years or more is
required to capture the variation in renewable power generation caused by weather to
fully test an energy model [11]. This chapter addresses that gap by studying the impact
of heating electrification on wind, solar and storage using 40-years’ weather data.

The simplified model of the power system used in this project contains a single energy
store defined using one round-trip efficiency. However, the future power system is
likely to be made up of different types of storage, to cover different requirements. A
study on the economics of electrical storage [18] states that batteries are suitable for a
period of a few hours, Compressed Air Energy Storage (CAES) and pumped hydro
storage are suitable for 6-10 hours and power to gas such as hydrogen are suitable for
long term storage. However previous studies into the amount of long term energy
storage required in the UK have made the assumption of pumped storage (efficiency
80%) [41] and CAES (efficiency 70%) [52] finding requirements for 25 TWh and 43
TWh respectively. Seven plans for a net zero UK energy system from four different
groups [19] use hydrogen generated from electrolysis of water for long-term storage.
Another study [105] states that there is limited evidence that hydrogen is the most cost
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effective option for long term inter seasonal storage and study power to methane
(efficiency 39%) with CCS or Direct Air Capture to store the CO». It can be seen from
these examples that there is some doubt as to what the future long term storage
technology might be. As found in chapter 5, a large storage capacity will be required,
but the potential availability of UK pumped storage is only about 0.5 TWh [61], so only
a small proportion of it could be pumped hydro storage. In common with most plans of
future UK net zero power systems [19] the assumption is made in this chapter that the
storage will be mostly hydrogen. CAES will also be considered for comparison.

6.2 Methods

The two electricity demand time series generated in chapter 4 were compared using the
model defined in chapter 5 to find the minimum energy storage. The model was run
twice: one with the demand D, in equation (27) using the existing heating technology
and once with heating provided by 41% heat pumps. These two demand time series are:
o Existing: A 40-year electricity demand time series including the existing
heating technology of 2018 based on 40 years of weather. From equation (22)
chapter 4.
e 41% Heat Pumps: A 40-year electricity demand time series including 13% of
heating provided by hybrid heat pumps and 29% by ordinary heat pumps based
on 40 years of weather. From equation (23) chapter 4.

The electricity generation part of equation (27) was defined to be zero dispatchable
generation (C, = 0.0), different combinations of wind generation (C,) and solar
generation (C,) capacities, and a fixed baseload. A baseload capacity (Cp) of 0.4 days
is assumed based on possible future UK nuclear and tidal power generation as in chapter
5.

In line with the discussion in the previous section, it is assumed that the round trip
efficiency is 50% for hydrogen storage [61] ( to specify #=V0.5 in equation (31)) .
However, for comparison with other studies, a round-trip efficiency of 70% for CAES
is also used.

The experimental parameters are summarised in table (6-1)

Table 6-1 Experiment to assess the impact of heating electrification on shares of wind and solar generation
capacity (see 5.3.1 for terminology)

Experiment Objective: Assess the impact of heating electrification on storage and
shares of wind and solar generation.
Baseload: C;, = 0.4 Dispatchable: C;, = 0.0 Wind 0.0< (,, 5.9 Solar 0.0 < (};, < 5.9

Electricity | Frequency | n% | Demand | Storage | Wind | PV Years
Demand

Existing Hourly 50, | Baseline | Iterative | Ninja | Ninja | 1980 -2019
Heating 70

technology

41% Heat | Hourly 50, | Baseline | Iterative | Ninja | Ninja | 1980 —2019
pumps 70
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6.3 Results

Figure (6-1) shows the electricity demand time series for the existing heating
technology compared to 41% heat pumps based on 40 years of weather. It can be seen
that with heat pumps there would be large increase in the winter electricity demand.

Daily Electricity demand

1.6
—— Electricity Demand Base load 0.4 existing heating
Electricity Demand Base load 0.4 41% heat pumps

144

i 1\ jI M\u\' \Ilh ‘ ‘H MM |H || | \\\ h h 'I\ ,|| 1
er.“'“ 'R H.\I.”, ””'UWJ*.L M' LM\'

19'85 19'90 19'95 20'00
weather year

Figure 6-1 The impact of 41% of heating provided by heat pumps on the UK electricity demand

In the following sections the impact of this change to the electricity demand on
capacities of wind generation, solar generation and energy storage will be investigated.

6.3.1 Minimum required storage for the existing heating technology and 41%
heat pumps

Figure (6-2) shows for each combination of wind and solar PV capacities, the amount
of energy storage required. A similar pattern can be seen for both with and without heat

pumps. For large generation capacities, very little storage is needed.

Base load 0.4 electrified heat 41% heat pumps

Base load 0.4 existing heating

energy storage (days)
energy storage (days)

Figure 6-2 The impact of 41% of heating provided by heat pumps on capacities of wind, solar and storage.
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It is difficult to tell the difference between the two images in figure (6-2). Therefore, to
assess the change caused by heating electrification quantitatively, two quantities will
be considered:

e the amount of energy storage

e the wind energy fraction: equation (34)

Figure (6-3) shows the difference between the storage requirements for the same
configuration between the existing heating and 41% of heating provided by heat pumps.
For each configuration the storage for 41% heat pumps has been subtracted from the
storage for the existing heating technology, so that the result is always negative. As
would be expected heating electrification always requires more storage for the same
generation capacity because the demand is higher, apart from at very high generation
where both tend to zero (indicated by yellow colours). For the lower generation
configurations, the difference in storage is above 30 days, shown by purple. The bottom
left corner is empty where there is not enough energy generated to satisfy the load for
41% of heating provided by heat pumps.

difference in storage (between Base load 0.4 electrified heat 41% heat pumps and Base load 0.4 existing heating ).
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Figure 6-3 Energy storage (days) needed with 41% heat pumps subtracted from storage needed with the existing
heating technology for different combinations of wind and solar generation capacity

The wind energy fraction will be considered in the next section.

6.3.2 Comparison of Experiments

This section describes how the results of the experiment with the electricity demand
with the existing heating technology were compared with that with 41% heat pumps.
To assess the impact of such a change to the system, a way is needed of comparing one
set of 360 configurations with another. The 360 configurations arise from combinations
of wind and solar PV capacities defined in table (6-1) and shown in figure (6-2). This
same method will be used throughout the rest of the thesis to compare two experiments.

Some previous studies have compared cost [18], CO emissions [61] or fuel used [61].
Some have minimized the amount of storage for configurations which generate less
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than 50% excess energy [96]. Fragaki et. al. [41] which is explored further in chapter 7
chose an illustrative example with an intermediate amount of 30 days of storage.
Research has found that looking for minimum excess energy generation (curtailment)
results in the requirement for large storage [18] and not likely to be a low cost option.
Using a cost metric has the disadvantage that future costs are unknown and that it is
difficult to define. Using a particular amount of storage or excess energy generation
have the disadvantage that the figure chosen is arbitrary. Trying to assess all the
configurations at once, such as looking at the mean, might give too much weight to less
important configurations. A combination of these measures from previous work was
used allowing the results to be assessed from several different perspectives, and to see
if any common trends become apparent.

For example, if there are two experiments, to compare experiment A which is the
existing heating with experiment B which is 41% heat pumps, then there will be 360
configurations in each scenario. The following methods were used to choose a
configuration from experiment A to compare with experiment B:

e Configurations with equal for minimum storage. Given a particular value of
minimum value of storage, find configurations of wind and solar PV generation
capacities that require that minimum storage, and join them with a contour line
on a graph, for example figure (5-6).

e (Configuration with least storage for given excess energy. Using the
configuration with least storage from those generating less than a certain excess
energy.

e (Configuration with minimum cost of electricity generation. The wind and
solar generation capacity that gives the least cost of electricity generation at
today’s prices (including storage cost).

These are expanded in the following sections using the comparison of the existing
heating technology with 41% heat pumps to illustrate their use.

6.3.3 Configurations needing the same minimum storage

For a range of regularly spaced storage capacities: 10,20,30,40,50 days, the wind and
solar PV generation capacities that require this minimum storage were found. For each
wind capacity, the configurations with storage above and below the given storage
requirement (for example, 30 days) were identified. Linear interpolation between these
surrounding grid points was then used to find the values of wind and solar generation
capacity. This set of storage capacities was chosen because above about 60 days there
are not enough points to perform the linear interpolation. This set of points having equal
storage can then be sorted by wind and solar capacity and plotted.

Figure (6-4) shows how the pattern of the 30, 40 and 50 days changes because of heating
electrification. The 10-day and 20-day lines are not shown for clarity. As well as the
wind and solar generation capacities, the following values were calculated by linear
interpolation:

e Renewable energy generated (sum of wind and solar) expressed as a fraction of
the load.

e Wind energy fraction expressed as a percentage of the renewable energy
generated using equation (34).
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e (Cost of electricity generation.

For heating electrification, the lines for the same number of days of storage move to the
right indicating a higher capacity of wind required for the same generation.

Constant storage lines The impact of electrification of heating
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Figure 6-4 The impact of 41% heat pumps on energy storage with a 50% round-trip efficiency.

The black star in figure (6-4) indicates the location of the configuration requiring
minimum energy generation which we look at because assuming equal costs for wind
and solar this might be expected to be the cheapest and therefore optimum configuration
of those with the same storage since they have similar levelized costs of energy [99].

Figure (6-5) shows the energy generated plotted against the wind energy fraction for
the same lines of constant storage. The flatness of the lines near the minimum energy
configurations shows that there is a wide range of wind energy fractions for similar
energy, something that would be missed if we just searched for the minimum energy
solution.
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Figure 6-5 Wind energy fraction using the minimum energy generation configuration for different amounts of
storage comparing the existing heating and 41% heat pumps.

Table (6-2) compares the minimum energy configurations requiring 30 days storage for
the existing heating technology and for 41% heat pumps. This example of 30 days
storage is used chosen as the half way point between 0 and 60, and also used as an
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illustrative example from previous work. [41]. Because the minimum storage is the
same (30 days) and with heating electrification, the electricity demand is higher, more
renewable energy must be generated. The wind energy fraction for heating
electrification is higher because more heating energy is required in winter when more
wind energy is available.

Table 6-2 Comparison of existing heating and 41% heat pumps for 30 days minimum storage

Measure Electricity Demand
Existing heating technology 41% heat pumps
Wind capacity (days) 1.7 2.0
PV capacity (days) 1.3 1.1
Wind Energy Fraction 83% 87%
Renewable energy 0.80 0.89
generated in proportion
to load

Figure (6-6) shows the wind energy fractions for different amounts of storage based on
the same method as figure (6-5). For low amounts of storage, energy must be used close
to when it is generated, so it makes sense that low storage equates to a high percentage
of wind. This is because there is more wind energy available in winter at the same time
as when demand is higher.

Relationship between minimum storage and wind energy fraction

50 4 : —¥— existing heating
—+—  41% heat pumps

storage (days)
S »n 8 u 8 &
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'

10 A

80 85 % 95
Wind Energy Fraction
Figure 6-6 Relationship between minimum storage and wind energy fraction for existing heating and heat pumps

The difference in storage between the existing heating technology and 41% heat pumps
is greater for higher storage (and hence the lower generation) capacities. Heating
electrification increases the wind energy fraction by up to 10%, depending on the
capacity of energy storage.

6.3.4 The least storage configuration for 50% excess energy generation

Previous research has shown that neither minimizing storage nor minimizing energy
generation are likely to give an optimum solution to the question of how much storage,
and generation capacity is required. Therefore, to calculate optimum wind energy
fractions, a previous study [96] considered those configurations generating 50% excess

103



energy above the load and chose the one requiring the least storage. Other research has
used 15% excess energy [52] which was the minimum cost configuration at today’s
prices. This method of choosing an excess energy is used as a comparison method here.

From those configurations that generate the given amount of excess energy over the
load or less, the one that has the minimum storage is chosen from one experiment. Then
linear interpolation on the configurations in the other experimental run is used to find a
configuration with same wind and PV capacity.

Table (6-3) shows this 50% excess energy configuration for the existing heating
technology and compares it with that for 41% heat pumps. It has 2.7 days wind capacity
and 0.4 days PV capacity. The energy column indicating the total wind and solar
generation shows 1.09 which when added to the baseload of 0.4 gives 1.49 which (with
rounding) is 50% excess energy. With 41% of heating provided by heat pumps, 13 days
of storage is required, compared to only 8 days with the existing heating technology.

Table 6-3 Comparison of the existing heating and 41% heat pumps for the configuration generating 50% excess
energy that has the least storage.

Electricity Wind | PV Wind Renewable | Storage

Demand (days) | (days) | Energy Energy (days)
Fraction | (days)

Existing 2.7 0.4 96% 1.09 8

heating

technology

41% Heat 2.7 0.4 96% 1.09 13

Pumps

Minimum storage from configurations generating less than 50% excess energy over the
load is 5 days greater for 41% heat pumps than with the existing heating.

6.3.5 Minimum Cost of electricity generation

This section uses the cost of electricity based on today’s costs for each configuration
(of wind, solar and storage capacities) as a method of comparing the results using
electricity demand with the existing heating technology with those for 41% of heating
provided by heat pumps. The cost was calculated using equations (32) and (33) from
section 5.2.2. Figure (6-7) shows the cost of electricity generation for each combination
of wind and solar generation capacities using the electricity demand with the existing
heating technology. The cheaper configurations are those with lower energy generation
in the bottom left hand corner. To compensate for the lower generation these
configurations would have higher energy storage. Where there is no coloured dot there
was not enough energy available (either from generation or storage) to satisfy the load
at each hour of the 40 years.
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The impact of electrification of heating (Base load 0.4 existing heating ).
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Figure 6-7 Cost of generating electricity at today’s prices for 0,4 days base load and different wind and solar
capacities for the existing heating

Figure (6-8) shows a similar pattern for the electricity demand including 41% of
hetaing provided by heat pumps.

The impact of electrification of heating (Base load 0.4 electrified heat 41% heat pumps ).
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Figure 6-8 Cost of electricity generation at today’s prices for base load 0.4 days and different capacities of wind
and solar to satisfy the UK electricity demand but with 41% of heating provided by heat pumps

The reason that there are configurations with higher cost in figure (6-7) with the existing
heating technnology than in figure (6-8) with 41% heat pumps is that the cost is
expressed in £/kWh. Although more electricity is generated for heating electrification,
the cost per kWh can be cheaper, for example if the demand pattern changes so that less
energy needs to be stored.
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Table (6-4) shows the minimum cost configurations for the existing heating and for
41% heat pumps. At today’s costs the minimum cost configuration for heating
electrification has a wind energy fraction of 91%. Compared to the existing heating
technology more energy has to be generated from wind and more storage is required.
However, using the anticipated future costs of wind and solar show that these lower
generation costs lead to both cases requiring lower wind generation and more storage.
Because the future costs in table (5-3) anticipate solar being cheaper, the wind energy
fraction declines.

The configuration having the minimum cost of electricity at today’s prices of those
needing 30 days of storage is quite close in cost to the minimum energy configuration
shown in section 6.3.3. However, the wind energy fraction is 4% higher for the
minimum cost, compared to the minimum energy. This is because wind is cheaper in
the cost model used in table (5-3)

Table 6-4 Impact of heating electrification on the minimum cost configuration for hydrogen storage

Configuration | Measure Electricity Demand
Existing heating | 41% heat
technology pumps

Configuration | Wind capacity (days) 1.7 1.9

with minimum | PV capacity (days) 0.8 0.7

cost of Wind Energy Fraction 88% 91%

electricity at Renewable energy generated | 0.75 0.81

today’s prices | in proportion to load

Storage 59 72
Cost of electricity at today’s 0.088 0.088
prices (£/kWh)

Configuration | Wind capacity (days) 1.5 1.7

with minimum | PV capacity (days) 1.4 1.3

cost of Wind Energy Fraction 79% 82%

electricity at Renewable energy generated | 0.73 0.80

future prices | in proportion to load

Storage 63 75
Cost of electricity at today’s 0.079 0.078
prices £/kWh

Configuration | Wind capacity (days) 1.8 2.0

requiring 30 PV capacity (days) 0.9 0.75

days storage Wind Energy Fraction 87% 91%

with minimum | Renewable energy generated | 0.80 0.89

cost of in proportion to load

electricity Cost of electricity at today’s 0.091 0.097

generation at prices £/kWh

today’s prices
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Considering the minimum cost configuration for hydrogen storage, heating
electrification increases the wind energy fraction by 3% and the amount of storage by
13 days (12 days for future costs).

Figure (6-9) shows lines of constant storage for the existing heating technology only
with the minimum energy configuration marked by a black star. It can be seen that the
minimum cost configuration marked by a black cross is close to it, but not the same.

Constant storage lines Base load 0.4 (50% round trip efficiency)
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Figure 6-9 Minimum cost configuration at today’s prices compared to minimum energy configuration for
configurations with the same minimum storage capacity

6.3.6 Electrification of heat with CAES

So far, this section has been concentrating on a round-trip efficiency and cost for
hydrogen storage. The analysis from sections 6.3.3 to 6.3.5 is now repeated, but for

compressed air storage (CAES) instead. The experimental parameters are summarised
in table (6-5).

Table 6-5 Experiment to assess heating electrification impact with CAES (see 5.3.1 for terminology)

Experiment Objective: Assess the impact of heating electrification on CAES
capacity and shares of wind and solar generation.
Baseload: C;, = 0.4 Dispatchable: C;, = 0.0 Wind 0.0 < (,, 5.9 Solar 0.0< (}, 5.9

Electricity | Frequency | n Demand | Storage | Wind | PV Years
Demand

Existing Hourly 70% | Baseline | Iterative | Ninja | Ninja | 1980 -
Heating 2019
technology

41% Heat Hourly 70% | Baseline | Iterative | Ninja | Ninja | 1980 -
pumps 2019

The results are shown in table (6-6). Coincidentally the minimum cost configuration
for CAES with a round-trip efficiency of 70% has approximately the same cost as that
for hydrogen storage with a round-trip efficiency of 50%. CAES has similar wind
fractions, and lower amounts of storage. Similar to hydrogen storage, heating
electrification increases wind energy fraction.
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Table 6-6 The impact of 41% heat pumps on a system with 0.4 base load, wind, solar and compressed Air Storage

Configuration Measure Electricity Demand
Existing 41% heat
heating pumps
technology

Equal minimum Wind energy fraction 84% 85%

storage (30 days | Renewable energy generated % of | 0.73 0.82

min energy) load

Least storage of Minimum storage (days) 7 9

those generating | Wind capacity 2.7 2.7

50% excess PV capacity 0.4 0.4

energy above the

load

Minimum cost of | Wind energy fraction 87% 92%

electricity Renewable energy generated % of | 0.76 0.84

generation at load

today’s prices storage (days) 23 25

cost £/kWh 0.088 0.088

6.4 Summary and Conclusions

The configurations of wind generation capacity, solar generation capacity and energy
storage from the model developed in chapter 5 have been used to investigate the impact
of heating electrification. This compares the power system needed to meet the
electricity demand with the existing heating technology to that with 41% heat pumps.
Heating electrification always needs more storage for the same generation capacity.
With 41% heat pumps, if the PV capacity is zero, then viable configurations range from
2.3 days (78 GW) wind with 47 days (38 TWh) of storage to 5.6 days (190 GW) wind
with 6 days (5 TWh) of storage. The minimum cost configuration for hydrogen storage
is the former, with a large storage capacity. For zero wind, 10 days (340 GW) PV
capacity requires 127 days (104 TWh) storage with the existing heating and 159 days
(130 TWh) after heating electrification. Whereas 80 days (2.7 TW) of PV generation
capacity requires 2 days (1.6 TWh) storage with the existing heating and 3.5 days 2.8
TWh) with heating electrification. A PV only solution with a large amount of storage
is possible, but the optimal solution will depend on the relative cost of wind and PV.

The overall patterns in the relationships between shares of wind, PV and storage are
similar for both 41% heat pumps and the existing heating technology. However, the
wind energy fraction is higher for heating electrification. This is logical because more
heating energy is required in the winter when there is also more wind and less PV
energy available. With 41% heat pumps and 30 days (25 TWh) storage, both the
minimum energy and minimum cost configurations have a 4% higher wind energy
fraction. The overall minimum cost configurations with both current and future costs
have 3% higher wind energy fractions. For 41% of heating provided by heat pumps, the
wind energy fraction of the minimum cost configuration is similar for both CAES
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(92%) and hydrogen storage (91%). In contrast to previous work finding that CAES is
cheaper than hydrogen storage, it was found that the minimum cost configuration for
CAES had the same cost as that for hydrogen storage.

The configuration with the least storage of those generating 50% excess energy above
the load is wind 2.7 days (92 GW) and PV 0.4 days (15 GW). With the existing heating
it requires 8 days (6.5 TWh) of storage, but 13 days (10.6 TWh) storage with 41% heat
pumps. The minimum cost configuration with 41% heat pumps requires 13 days (10.6
TWh) more hydrogen storage at today’s prices and 12 days more at projected future
prices.

For both the existing heating technology and 41% heat pumps, the amount of storage
increases if less energy is generated and the wind energy fraction decreases. For lower
amounts of storage, the difference in wind energy fractions between the existing heating
technology and 41% heat pumps is greater.

One area for future research would be to define a cost model in terms of relative costs
and investigate the implications on the optimal solution as the relative costs change.

A standard method of comparing two sets of results from the model has been developed
and illustrated in this chapter using heating electrification as an example. The
comparison method identifies configurations to compare using three methods: lines of
constant storage, 50% excess energy generation and minimum cost. Two quantities are
compared: the storage capacity and the wind energy fraction. This comparison method
will be used throughout the rest of the thesis.
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7 Sensitivity of storage model to inputs and previous
studies

In this chapter results of two previous studies to find the required UK energy storage
for a purely wind and solar system are examined to see how they would change had the
methods from this thesis been used. The sensitivity of the model results to different
inputs is investigated. The results of this sensitivity analysis are then used to identify
what the main cause of the changes is in the results from two previous studies.

The background to the two studies was discussed in chapter 5, so this chapter starts
with a discussion of the methods, followed by the sensitivity analysis. The results
section shows how these two studies would have been different had this project’s model
been used. The sensitivity analysis to assess the impact of these different model inputs
shows that wind generation time series have a high impact on the results, so there is a
section investigating this further. The chapter concludes by summarising the findings.

7.1 Methods

The two UK studies previously discussed in chapter 5 will be examined in this chapter:
Cardenas et al. [52] and Fragaki et. al. [41]. The latter study was reproduced in chapter
5 for validation purposes. This chapter will examine the following:

e Updating Fragaki with the methods from this study

e Updating Cardenas with the methods from this study

e Sensitivity analysis of the different inputs

e Extra study of wind generation time series pattern by scaling them so that they

have the same capacity factor.

The Fragaki study was updated using chapter 5’s methods but using a round trip
efficiency of 85% for pumped storage. The objective is to see how this project’s
methods would change the results of that study.

Then the Cardenas study was updated using the methods from this study as specified in
chapter 5, but for CAES at a round trip efficiency of 70%.

Differences in wind or PV generation time series could be due to either the mean
capacity factor or a difference in the pattern of when the energy is generated compared
to when it is needed. To assess this the generation time series with the lower mean
capacity factor was scaled so it had the same capacity factor as the other time series
using equation (35). In effect capacity is added to compensate for the lower capacity
factor so that the same energy is generated.
Y. GSy, (35)
GSy, = S oL, (GLy)

Where GSj, is the hourly (4) wind time series scaled to the higher capacity factor, GH},
is the wind time series with the higher capacity factor and GLyis the wind time series
with the lower capacity factor. The scaled time series then generates the same energy
as the time series with the higher capacity factor, but at different times due to the
pattern. Therefore, any difference seen is due to the difference in the temporal pattern.
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7.2 Sensitivity to time period and frequency

In this section, the sensitivity of the results to the time period and frequency of data
used is investigated.

7.2.1 Hourly or Daily time series

The objective of this section is to investigate the amount of energy storage needed for
a system with an electricity demand like that of today, but with a high penetration of
renewable generation. Also, the impact of using daily or hourly time series is
investigated. It is normal practice for energy models of the type used in this study to be
run at hourly resolution [25, 97]. One review paper on the amount of energy storage
required [106] only considers other studies that have hourly resolution. However, other
research has found that the temporal resolution required depends on the research
question being answered [107] with models incorporating storage reducing the
importance of high time resolution. One study of the storage and balancing needs of the
European power system [96] found differences in optimal wind fraction and storage
capacity between using hourly and daily time series. Therefore, the difference between
using hourly and daily time series is investigated here.

The model defined in section 5.2 was used with a 50% round trip storage efficiency.
The electricity supply consists of base load 0.4 days, and various capacities of wind and
solar. The electricity demand represents the existing heating technology from 4.2.2. All
other factors are the same apart from using hourly or daily time series. The inputs are
summarised in table (7-1).

Table 7-1 Experiment to compare hourly and daily time series (see 5.3.1 for terminology)

Experiment Objective: Compare hourly or daily time series, generation wind, solar
Baseload: (;, =0.4 Wind 0.0< (,, 5.9 Solar 0.0< C,, < 5.9

Frequency | n Demand Storage | Wind PV Years
Daily 50% Baseline Iterative | Ninja C Ninja 1980-2019
Hourly 50% Baseline Iterative | Ninja C Ninja 1980-2019

The following plot figure (7-1) shows constant storage lines for different capacities of
wind and solar generation. Whilst the 30 day and 10-day contours match almost exactly,
there is a significant difference for the 3-day contour. This suggests that using hourly
time series (as opposed to daily) are less important for larger amounts of storage.
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Figure 7-1 Lines of constant storage showing the difference between using daily or hourly time series
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Table (7-2) compares hourly time series and daily time series according to the criteria
defined in section 6.3. For the minimum energy configuration of those requiring 30
days storage, the hourly time series has a wind energy fraction 3% higher and generates
3% more energy above the load. For the configuration with wind capacity 2.7 days and
PV capacity 0.4 days, the required energy storage is the same. The minimum cost
configurations are quite different between daily and hourly time series. The cost is 85
£/MWh compared to 88 £/MWh. This is because most of the cost of hydrogen storage
comes from the discharging or charging the store which is dependent on the charge rate.

Table 7-2 The difference between using daily or hourly time series using 3 comparison methods from 5.2.6

Comparison Configuration | Measure Time Series Frequency
Daily Hourly
30 days minimum storage | Wind capacity (days) | 1.6 1.7
(minimum energy) PV capacity (days) 1.4 1.3
Wind energy fraction | 80% 83%
energy generated 0.77 0.80
Least storage for 50% Wind capacity (days) | 2.7 2.7
excess energy generation | PV capacity (days) 0.4 0.4
Storage (days) 8 8
Minimum cost of Wind capacity (days) | 1.4 1.7
electricity generation at PV capacity (days) 1.5 0.8
today’s prices Wind energy fraction | 77% 88%
energy generated 0.71 0.75
storage (days) 65 59
cost £/kWh 0.085 0.088
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For daily time series the charge and discharge rates will be averaged over a longer time
period and so their maximum values will be smaller. Using daily time series averages
the charge rate across the whole day leading to lower calculated ramp rates. For daily,
the wind energy fraction is 77% compared to hourly of 88%.

The conclusion is that using hourly time series is important for configurations with a
small amount of storage or when calculating cost or wind energy fraction. For
calculating the minimum required storage, daily time series are adequate.

7.2.2 Sensitivity to using a subset of the data

The objective of this section is to investigate if the results of the study would be
different if only part of the data were used. The same experiment was run on four
distinct decades of the 40 years of data. The input parameters used are shown in table
(7-3).

Table 7-3 Experiment to compare the impact of using different decades of data (see 5.3.1 for terminology)

Experiment Objective: Compare different decades of weather.

Baseload: C;, = 0.2 Dispatchable: C;, = 0.0 Wind 0.0 < (,, 5.9 Solar 0.0 < (}, 5.9
Frequency | n Demand Storage Wind PV Years

Daily 50% Baseline Iterative Ninja C Ninja | 1980-1989
Daily 50% Baseline Iterative Ninja C Ninja | 1990-1999
Daily 50% Baseline Iterative Ninja C Ninja | 2000-2009
Daily 50% Baseline Iterative Ninja C Ninja | 2010-2019

Each plot below shows constant storage lines for 4 distinct decades of data. The first
plot shows the 50 days storage lines, the second 30 days and the third 10 days storage.
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Figure 7-2 Comparison of 50 days storage lines for 4 distinct decades
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Constant storage lines 4 distinct decades
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Figure 7-3 Comparison of 30 days storage lines for 4 distinct decades
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Figure 7-4 Comparison of 10 days storage lines for 4 distinct decades

It can be seen that for smaller storage capacities there is a bigger variation amongst the
results for the different decades. For example, for configurations with PV capacity 5.0
days, the configurations requiring 30 days of storage range from wind 1.9 to wind 2. 1..
However, with 10 days of storage, the wind capacity ranges from 2.6 days to 3.2 days.
This experiment suggests that the time period doesn’t make much difference to the
results apart from for small capacities of storage. The bigger difference at small storage
capacities is probably due to variations becoming smoothed out a large amounts of
storage because there is more energy available to cope with short term variation.

7.2.3 Comparing 4 years with an extreme cold year to 40

Some studies choose a single year or a short period of years which includes a cold year
with the assumption that this would adequately provide a suitable range of conditions
to test the model. However, high heating requirements may not coincide with low
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generation. A study quantifying the sensitivity of the power system to climate
variability [85] statues that even 36 years is a relatively short period for quantifying
climate extremes. They study the impact of randomly sampling different number of
years and different years on a model to minimize the long-term economic cost of a
particular wind power scenario. Looking at 1000 different samples of years they find a
difference of 50% with single years down to 15% with 10 years. In this experiment the
4 years 2009-2012 which includes a particularly cold year of 2010 is compared to using
the full 40 years of data.

Table 7-4 Experiment to compare 40 years data with 4 years that includes a cold spell (see 5.3.1 for terminology)

Experiment Objective: Compare 40 years with a cold spell.
Baseload: C;, = 0.2 Dispatchable: C;, = 0.0 Wind 0.0 < (,, 5.9 Solar 0.0 < (}, 5.9

Frequency | n Demand Storage Wind PV Years
Daily 50% Baseline Iterative Ninja C Ninja | 2009-2012
Hourly 50% Baseline Iterative Ninja C Ninja | 1980-2019

The plot below shows that for 10 days of storage there are significant differences in the
results. For larger amounts of storage between 20 and 50 days, the differences are small.
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Figure 7-5 Lines of constant storage using 4 years with a cold spell compared to using 40 years

The wind energy fraction for the minimum cost configuration and its cost for hydrogen
storage is the same for both experiments. However, for the 50% excess generation
configuration needing the minimum storage, which is wind 2.4 days and PV 2.1 days,
the 40-year case needs 4.5 days (80%) more storage. This example shows that the using
only a few years with a cold spell can yield inaccurate results.

7.3 Sensitivity to model inputs Fragaki et. al.

Different model inputs are used in this project to those of two previous UK studies. In
the following sections the impact that these different inputs have will be examined
individually. They are grouped together by the two studies because of the data used by
the two studies being available in different time periods. This also has the advantage
that it will be possible to comment on why the inputs used by this study give different
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results. The impact of the different time period itself to the 1980-2019 period of this
study is also investigated. This section considers the inputs to Fragaki et. al.:

Time period of 1984-2013, compared to 1980-2019 used in this thesis
Electricity demand time series (scaled by adding a constant)

Solar PV Generation data

Wind power generation data (offshore and onshore)

7.3.1 Sensitivity to time period 1980-2019 compared to 1984-2013

The Fragaki et. al. study uses the period 1984 — 2013, whereas this study uses 1980 —
2019. The objective of this section is to look at the impact of keeping all other aspects
the same, but to use different time periods. The experimental parameters are
summarised in table (7-5)

Table 7-5 Experiment to compare the different time periods of the two studies (see 5.3.1 for terminology)

Experiment Objective: Compare the effect of using different time periods.
Baseload: C;, = 0.0 Dispatchable: C;, = 0.0 Wind 0.0 < (,, £5.9 Solar 0.0 < (}, 5.9

Frequency | n Demand Storage Wind PV Years
Daily 85% Baseline Iterative Ninja C Ninja | 1984-2013
Daily 85% Baseline Iterative Ninja C Ninja | 1980-2019

Figure (7-6) shows the same constant lines of storage for 85% efficiency shown in
figure (5-4) with the addition of a 50 days line (to replace the 60 day line that the
previous study had). The solid lines for the period 1984 — 2013 are compared to dotted
lines for the period 1980 — 2019. It can be seen that the impact of the time period alone
causes the lines to move to the left indicating lower wind generation requirements for
the same storage for the longer time period. The points with minimum energy generated
for constant storage are shown with a black star. For 30 days storage using the shorter
time period causes the wind energy fraction to rise from 80% to 81% and the amount
of energy generated to rise from 1.14 times the load to 1.19 times the load.
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Figure 7-6 Lines of constant energy storage modelled using the time period of 1984-2013 compared with those
modelled using 1980-2019.
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7.3.2 Sensitivity to electricity demand time series created by different
processes

The objective of this section is to investigate the impact of using electricity demand
time series created using the baseline method of chapter 4 compared to a scaled historic
electricity demand. The historic electricity demand was scaled by subtracting a constant
amount from each day of the year so that every year generates the same amount of
energy, to remove the effect of socio-economic and technological changes over the
years. This has the disadvantage of also removing differences due to the amount of
heating electricity in the time series due to the temperature of different years. Since the
aim of the current work is to compare the impact of heating electrification it is important
to address this issue. That is why the baseline method in this study was developed. It
uses a baseline electricity demand created by removing heating electricity from a recent
year and then adding in the heating electricity for each year based on the weather. The
experimental parameters are summarised in the table (7-6). The years 1984-2013 were
used due to the data being available for that year.

Table 7-6 Experiment to assess the impact of electricity demand time series created in different ways (see 5.3.1 for
terminology)

Experiment Objective: Assess impact of scaling historic demand.
Baseload: C;, = 0.0 Dispatchable: C;, = 0.0 Wind 0.0 < (,, 5.9 Solar 0.0< (}, 5.9

Frequency | n Demand Storage Wind PV Years
Daily 85% | Baseline Iterative Ninja C Ninja | 1984-2013
Daily 85% | Historic Add Iterative Ninja C Ninja | 1984-2013

Figure (7-7) shows that the same storage line is quite close in both time series although
moved slightly to the right implying more wind generation capacity required for the
same amount of storage for the scaled historic time series. The configuration with
minimum energy generation shown with a black star for the 30 days storage line occurs
at a wind energy fraction of 85% for the baseline method compared to 80% for the
scaled historic demand. The baseline demand requires energy generated of 1.14 times
the load compared to 1.13 for the scaled historic demand.
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Figure 7-7 Constant storage lines using electricity demand time series created in two different ways.
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It is difficult to assess the exact reasons for these differences because modifying the
historic time series to have the same demand each year will have lowered the demand
for cool years, whilst raising the demand for warmer years, yet some of this change was
due to socioeconomic variation. The advantage of using the baseline method is we
know the variation is all due to weather.

The impact on energy generated for fixed storage size of using an electricity time series
generated using the baseline method, rather than the scaled historic time series is small.
The impact on the wind energy fraction is more significant.

7.3.3 Sensitivity to solar PV Power generation data

The objective of this section is to investigate the impact of using different PV
generation data. The PV generation time series used in Fragaki et. al. was generated by
modelling south facing PV panels at optimal angles at 4 MIDAS weather stations
without including temperature affects. It was a daily time series from 1984 to 2013. It
was converted to time series of capacity factors. The mean capacity factor is 0.116 over
the 30-year period.

In contrast, Renewables Ninja, models a panel at each MERRA?2 reanalysis weather
grid point taking into account temperature effects. No population weighting is done.
However, the density of PV installations is likely to be influenced by the climate of the
area as well as its population. The hourly time series was converted to daily. The mean
capacity factor is 0.1085 over the same 30-year period.

Figure (7-8) shows part of these two solar PV generation time series. The Ninja
generation appears to have fewer extreme values. Possibly because it is based on a
wider range of geographic locations (each weather grid point), and also perhaps because
reanalysis weather data tends to have fewer extreme values. How well either of these
capture the actual pattern of solar installations in the UK is difficult to know because
domestic embedded solar is only metered quarterly. However, they compare well with
each other with nRMSE 0.31 and R? 0.932.

Comparison of daily UK PV generation

—— PV Generation from Fragaki et. al
—— PV Generation from ninja
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Figure 7-8 - UK PV generation using MIDAS stations compared to a PV panel at each weather grid point from
Renewables Ninja - Zoomed in (10 day rolling average)
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Another PV time series was generated by scaling the Fragaki time series to have the
same capacity factor as the Ninja time series using equation (35). This PV series would
generate the same energy as the Ninja PV series but at different times. The objective is
to see how much of the difference is down to capacity factors and how much to the
pattern of generation.

An investigation was done to see what impact using these different PV generation time
series had on the amount of energy storage required. Whilst using different PV time
series, these three experiments all use Ninja combined wind generation, and a storage
efficiency of 85%. The experimental parameters are summarised in table (7-7).

Table 7-7 Experiment to compare the impact of using different PV generation time series (see 5.3.1 for
terminology)

Experiment Objective: Compare PV generation time series.

Baseload: C;, = 0.0 Dispatchable: C;, = 0.0 Wind 0.0 < (,, £5.9 Solar 0.0 < (}, 5.9
Frequency | n Demand Storage | Wind PV Years
Daily 85% Baseline Iterative | Ninja C Ninja 84-2013
Daily 85% Baseline Iterative | Ninja C Fragaki 84-2013
Daily 85% Baseline Iterative | Ninja C FragakiS | 84-2013

Figure (7-9) shows lines join configurations needing 30, and 50 days of storage in
different colours. There are three sets of lines for each colour representing the Ninja PV
series, the Fragaki PV series and the Fragaki PV series scaled to the Ninja PV capacity
factor. Only the 30-day and 50-day contours are shown as the others overlap. The
Renewables Ninja configurations require more wind energy for the same storage
compared to the Fragaki generation. The storage lines for the Fragaki generation scaled
to the same capacity factor as the Ninja time series are very close to the unscaled line
which suggests that most of the difference between these two generation models is due
to the pattern, rather than the capacity factors. It can be seen that as would be expected
the difference becomes greater at larger proportions of PV. At high PV, the Renewables
Ninja time series need more wind capacity to compensate for the lower PV generation.
This could be because the Fragaki time series model more PV panels in the south where
the weather is sunnier, whereas Renewables Ninja model a PV panel at each weather
grid point.
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Figure 7-9 - Comparison of constant storage lines modelled using PV generation from MIDAS weather stations
with those modelled using PV generation data from Renewables Ninja with one PV panel at each weather grid
point

119




The black star in figure (7-9) shows the minimum energy configuration of those
requiring the same amount of storage. For 30 days storage it was 85% wind for the ninja
PV series whereas for the Fragaki series it is 83% wind. The scaled Fragaki series has
the same wind energy fraction, so this difference is due to the generation pattern and
not the difference in capacity factor. The Ninja PV series required energy generation of
1.14 above the load compared to 1.17.

Neither of these PV capacity factor time series is the actual PV generation. It is not
known which is more accurate, but they do not differ that much. The difference seems
to be mainly caused by the generation pattern, rather than capacity factors.

7.3.4 Sensitivity to wind power generation data

The objective of this section is to assess the impact of using different wind generation
data. In contrast to using the hourly generation data from Renewables Ninja used in this
study, Fragaki et. al. used a typical wind turbine power curve to generate daily wind
power generation time series at the locations of 6 UK land-based weather stations using
observations from MIDAS. First the Renewables Ninja generation data for the same
years 1984 — 2013 was converted from hourly to daily and the mean capacity factors
compared. Table (7-8) shows that whilst the Ninja Current onshore wind has a capacity
factor only slightly higher than the Fragaki one, that offshore wind is much higher. It
also shows how capacity factors are expected to evolve into near the future.

Table 7-8- Wind Generation Capacity Factors

Capacity Factors Renewables Ninja Fragaki et. al.
Current | Near Long term
Future Future
Onshore Wind 0.2924 | 0.3379 (Not available) 0.28
Offshore Wind 0.3835 | 0.3927 (Not available) N/A
Combined 0.3277 | 0.3878 0.3961 0.28

First the difference between the wind generation in the Fragaki study (onshore) and this
thesis (Ninja onshore and offshore combined) is investigated. Then this will be broken
down in subsequent sections to compare differences between:
e Onshore from Renewables Ninja and onshore from 6 MIDAS weather stations.
¢ Ninja onshore and offshore

The experimental parameters for the comparison between Ninja combined (onshore
and offshore) compared to 6 MIDAS weather stations (onshore only) are summarised
in table (7-9) below.

Table 7-9 Experiment to assess the impact of wind generation from 6 MIDAS weather stations compared to
Renewables Ninja (see 5.3.1 for terminology)

Experiment Objective: Assess the impact of Wind generation data source.
Baseload: C;, = 0.0 Dispatchable: C;, = 0.0 Wind 0.0< (,, 5.9 Solar 0.0 < (}, < 5.9

Frequency | n Demand Storage Wind PV Years
Daily 85% | Baseline Iterative Fragaki Ninja 1984-2013
Daily 85% | Baseline Iterative Ninja On Ninja 1984-2013
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Figure (7-10) shows lines requiring the same amount of storage. The impact of the
higher wind capacity factor of the Ninja data is seen in a move of the contours to the
left. Not so much wind capacity is needed to balance the system for the same amount
of storage.

The black star shows the configuration with the minimum energy generation. For the
30-day storage line this configuration has 83% wind for Renewables Ninja, whereas it
has 87% for MIDAS weather stations. The energy generated for Ninja is 1.14 times the
load compared to 1.35 for the same amount of storage.
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Figure 7-10 Constant storage lines modelled using 6 turbines at MIDAS onshore weather stations compared with
those modelled using Renewables Ninja wind generation data (onshore and offshore)

7.3.5 Onshore wind generation from MIDAS stations compared with
Renewables Ninja

To assess how much of the difference with the Renewables Ninja time series is due to
offshore wind and how much is due to using 6 MIDAS weather stations, the two are
investigated separately. This section looks at onshore wind only comparing Renewables
Ninja with MIDAS weather stations. The experimental parameters are summarised in
table (7-10)

Table 7-10 Experiment to compare the difference between using onshore wind from MIDAS stations with onshore
wind from Renewables Ninja (see 5.3.1 for terminology)

Experiment Objective: Compare onshore wind generation from 6 MIDAS stations v
Renewables Ninja onshore.
Baseload: C;, = 0.0 Dispatchable: C;, = 0.0 Wind 0.0 < (,, 5.9 Solar 0.0 < (}, < 5.9

Frequency | n Demand Storage Wind PV Years
Daily 85% | Baseline Iterative Fragaki Ninja 1984-2013
Daily 85% | Baseline Iterative Ninja On | Ninja 1984-2013

Figure (7-11) shows the difference between these two on lines of constant storage. The
50-day contour is not shown because it overlaps the others. For the Ninja data the
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contours move to the left indicating more wind capacity is needed to balance the system
for the same amount of storage. The difference is not as large as that for combined
onshore and offshore seen in the previous section. The black star shows the
configuration with the minimum energy generation. For the 30-day storage line this
configuration has 85% wind for Renewables Ninja, whereas it has 87% for MIDAS
weather stations.
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Figure 7-11 Lines of constant storage modelled using onshore wind generation from Renewables Ninja compared
with those modelled using MIDAS weather stations.

The figure below compares the wind generation from Fragaki et. al. with that from
Renewables Ninja. It appears to be showing fewer low values for the Ninja time series.

Comparison of daily UK Wind genreation

0.9

—— Wind Generation from Fragaki et. al
0.5 —— Wind Generation from ninja
0.7 1

19‘85 19I90 19'95 20|00 20'05 20'10
Time
Figure 7-12 Wind generation from Renewables Ninja compared to Fragaki et. al. 20 day rolling average.

The generation from Renewables Ninja has fewer time points with low wind generation
and no days when it is zero, perhaps because it is derived from a far larger number of
geographical locations and turbine types. This would be expected to result in lower
storage requirements. The ninja time series incorporate all the current and near future
wind farms, so would be expected to reflect the actual wind generation more accurately.
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They have been bias corrected to account for the fact that reanalysis weather data
smooths out terrain details and so does not model local wind conditions well.

7.3.6 Onshore wind compared to offshore wind

The objective of this section is to compare the difference between using onshore and
offshore wind. All other aspects are kept constant. Three Ninja wind generation time
series are compared: onshore, offshore, and onshore scaled to the offshore capacity
factor. The experimental parameters are summarised in table (7-11).

Table 7-11 Experiment to compare onshore and offshore wind (see 5.3.1 for terminology)

Experiment Objective: Compare onshore and offshore wind.

Baseload: C;, = 0.0 Dispatchable: C;, = 0.0 Wind 0.0 < (,, 5.9 Solar 0.0< (}, 5.9
Frequency | n Demand Storage | Wind PV Years
Daily 85% Baseline Iterative | Ninja Off | Ninja | 84-2013
Daily 85% Baseline Iterative | NinjaOn | Ninja | 84-2013
Daily 85% Baseline Iterative | Ninja S Ninja | 84-2013

Figure (7-13) shows constant lines of 10 days and 50 days storage. The 20, 30 and 40
lines are not shown because the storage contours overlap. There is a much larger
separation between the 10-day storage contours than the 50-day storage contours
indicating a large difference in wind generation between the three cases. The position
of the middle of the three lines in each set representing onshore scaled to the capacity
factor of offshore, shows that approximately one third of the difference appears to be
due to the pattern of generation and the rest due to the capacity factor.
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Figure 7-13 Lines of 10 days and 50 days energy storage modelled with offshore wind compared to those modelled
using onshore wind.

Figure (7-14) shows the 30-days of storage line, but with the energy generated plotted
against the wind energy fraction. The green and orange lines overlap because they have
the same pattern of energy generation. The minimum energy point is shown using a
black star. The wind energy fraction for offshore is 78%, for onshore it is 85% and for
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onshore scaled to the offshore capacity factor it is 87%. This suggests that most of the
difference in wind energy fraction is due to the difference between the patterns of
offshore and onshore wind, rather than the capacity factor. Plotting energy against
fraction makes it easier to see where the minimum occurs, and how distinct it is
compared to other configurations with the same amount of storage.
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Figure 7-14 Comparison of wind energy fraction found using 30 day storage lines modelled with the onshore wind
generation from Renewables Ninja compared with those from Fragaki et. al.

That difference in the wind generation pattern has resulted in energy generation of 1.27
in proportion to the load compared to 1.15 for the same amount of energy storage. The
correlations between the different wind series are discussed in 9.6.

7.3.7 Summary of impact of the model differences

The previous sections have examined the sensitivity of the results to different modelling
inputs. This section compares all these various inputs. They are:

e the time period of the data: 1980-2019 or 1984-2013

e clectricity demand time series created by a different process

e PV generation data

e wind generation data (MIDAS stations and onshore v offshore)

Figure (7-15) shows the 30-day storage contour for the model and data from this study
(light green) compared to all the other differences listed above. The difference made by
the method used to find the required storage (from the validation in 5.4.2) is also shown.
It can be seen that the largest impact is caused by the wind generation data (red). The
same wind generation data scaled to the Ninja capacity factor (purple line) shows that
most of this difference is due to the capacity factor and not the different patterns of
generation. However, the difference caused by the pattern is still significant.
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Figure 7-15 30-day storage lines generated using the model and data in this study compared to those modelled using
all the individual modelling differences between this study and Fragaki et. al.

Figure (7-16) shows the same contour lines but with energy generated plotted against
the wind energy fraction. This shows that using the different wind generation time
series leads to larger energy generation for the same amount of storage and higher wind
energy fractions. The flatter lines, for example using the scaled historic demand show
less distinct optimum wind energy fractions.
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Figure 7-16 Wind energy fractions found using minimum energy points for 30 days storage compared for all
modelling differences.

Table (7-12) shows the impacts of these differences in modelling. The differences in
model inputs are listed along the top and they are compared according to the criteria
defined in section 6.3 listed down the left-hand side. These criteria define which
configurations from the range of wind and solar capacities shown in figure (7-15) are
compared.
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Table 7-12 Sensitivity of the wind/solar/storage mix to different modelling inputs

Criteria for Measure Result | Modelling Input Difference from thesis
choosing from | Time Electrical | PV Wind
Configuration This Period | Demand | MIDAS | MIDAS
Thesis
Equal wind energy | 80% 81% 82% 80% 87%
Minimum fraction
Storage (30 energy 1.14 1.19 1.13 1.17 1.35
days min generated %
energy) of load
Least Storage | Storage 10 11 11 13 47
for excess (days)
energy 50% Wind 3.7 3.7 3.7 3.7 3.7
PV 0.8 0.8 0.8 0.8 0.8
Minimum cost | Wind energy | 95% 96% 97% 96% 86%
of electricity fraction
generation at | energy 1.41 1.53 1.4 1.49 1.92
today’s prices | generated %
of load
storage 11 11 12 11 12
(days)
cost £/kWh 0.149 | 0.157 0.158 0.157 0.194

The first comparison method in table (7-12) is to examine those configurations needing
a minimum storage of 30 days and find the configuration that generates the minimum
amount of energy during the period of the experiment. This configuration is marked by
a black star in figures (7-15, 7-16). The most significant differences are shown for using
MIDAS wind generation where the wind energy fraction is 87% and energy generation
of 1.35 times the load.

The second comparison method in table (7-12) is to compare a particular capacity of
3.7 days wind and generation 0.8 days solar PV generation. This was chosen as the
configuration in the model for this study with the minimum storage requirement of
those which generate 50% excess energy above the load. The largest difference to the
amount of storage required for this configuration (10 days) is caused by using different
wind generation data (47 days). No study has been found that remarks on the large
difference in energy storage modelled from difference methods of modelling renewable
generation.

The third comparison method in table (7-12) is to find the configuration that has the
lowest cost of electricity generation. The cost is calculated using the capacities of wind
generation, solar generation and pumped hydro storage at today’s prices as defined in
section 5.2.2. The minimum cost configurations all have storage of 11 or 12 days.
However, using the MIDAS weather stations wind generation series requires much
higher energy generation and a lower wind energy fraction.

The differences found illustrate the significant impact to the model of using wind
generation time series created in a different way.
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7.4 Sensitivity to model inputs from Cardenas et. al.

Another previous study to find the minimum energy storage required for the UK was
done by Cardenas et. al. [52]. Cardenas et. al. also found the minimum energy storage
required for a purely wind and PV system, using the historic electricity time series.
However, they used different power generation data, scaled the electricity demand in a
different way, and used a different algorithm to find the minimum energy storage. This
section looks at the impact of these modelling differences. There are four main
differences between the Cardenas model and that used in this study:

e FEach day of the historic electricity demand was multiplied by a different factor
for each year so that all the years had the same annual demand of 335 TWh.
Whereas in this study the baseline method is used.

e National grid wind generation was used instead of Renewables Ninja

e The time period was 2011 — 2019 instead of 1980 — 2019.

e A different algorithm was used to calculate the required energy storage.

The storage algorithm has not been reproduced but, the first three changes were all
investigated individually to see what impact they had.

The experiments are summarised in table (7-13) using the terms defined in section
5.3.1. The time period 2011 — 2019 was used as that was when the electricity demand
data and wind capacities for scaling the national grid wind generation data were
available.

Table 7-13 Experiments to compare the impact of different model inputs of wind generation and electricity demand
on the results of Cardenas et al. (see 5.3.1 for terminology)

Experiment Objective: Investigate the impacts of modelling differences between

Cardenas et. al. and this project’s model.

Baseload: C;, = 0.0 Dispatchable: C;, = 0.0 Wind 0.0 < (,, 5.9 Solar 0.0 < (}, 5.9

Experiment | Frequency | n Demand | Storage | Wind PV Years

This thesis Hourly 70% | Baseline | Iterative | Ninja C | Ninja | 1980-2019

Time period | Hourly 70% | Baseline | Iterative | Ninja C | Ninja | 2011-2019

Demand Hourly 70% | Historic | Iterative | Ninja C | Ninja | 2011-2019
Mult

Wind Hourly 70% | Baseline | Iterative | NGrid | Ninja | 2011-2019

Figure (7-17) shows the impact of the different modelling methods on the 30-day
storage line for the methods used in this study (blue), compared to different methods
used by Cardenas. It can be seen that the different wind generation data (green) makes
the largest difference. The time period of the data (yellow) and the method of scaling
the historic demand (red) only make a small difference. The configuration on the 30-
day storage line which generates the least energy is shown by a black star.
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Figure 7-17 Lines of 30 days energy storage showing the impact of different modelling methods

Figure (7-18) shows the same lines, but with energy generated plotted against wind
energy fraction. It can be seen that the national grid wind generation data (green line)
is flat indicating no distinct minimum energy and hence optimal wind energy fraction
for 30 days storage. The time period of data and the scaling method of Cardenas both
cause an increase in wind energy fraction. These first two results are summarised as the
first two rows of table (7-14). Of the configurations requiring 30 days of storage, the
one with the minimum energy generation is shown.
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Figure 7-18 Impact of different methods used by Cardenas on the 30-day storage line wind energy fraction

The second comparison method in table (7-14) is to compare a particular capacity of
3.7 days wind and generation 0.8 days solar PV generation. This was chosen as the
configuration in the model for this study with the minimum storage requirement of
those which generate 50% excess energy above the load. The largest difference to the
amount of storage required for this configuration (10 days) is caused by using different
wind generation data (43 days).
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Table 7-14 The impact on the results of the modelling methods used by Cardenas

Comparison Modelling Difference
Configuration Measure This Time | Electricity | National
Thesis | Period | Demand | Grid
wind
Equal Minimum | wind energy fraction | 81% 85% 83% 77%
Storage (30 energy generated 1.19 1.12 11 1.19
days min
energy)
Least Storage storage (days) 11 12 10 38
Configuration wind capacity (days) | 3.7 3.7 3.7 3.7
for excess PV capacity (days) 0.6 0.6 0.6 0.6
energy of 50%
Minimum cost | wind energy fraction | 82% 88% 85% 82%
of electricity energy generated 1.15 1.14 1.12 1.23
generation at storage (days) 29 24 25 17
today’s prices | cost £/kWh 0.072 |0.070 |0.070 0.074
with CAES

The third comparison method in table (7-14) is to find the configuration that has the
lowest cost of electricity generation. The cost is calculated using the capacities of wind
generation, solar generation and CAES at today’s prices as defined in section 5.2.2. The
minimum cost configuration also shows that using the national grid wind generation
series instead of Renewables Ninja has the largest impact on the results, requiring more
energy generation and a lower storage.

7.5 Wind patterns and storage

Both comparisons with previous studies show that different wind generation data cause
a large difference in the results. This is investigated further in this section using the
example of the Renewables Ninja onshore wind generation compared to their offshore
wind generation data. Not only is the capacity factor for offshore wind higher than
onshore, but the patterns are also different. At daily resolution offshore wind compares
to onshore wind with nRMSE=0.31 and R?>=0.94.

Looking in detail at the 30 days storage line figure (7-19) below shows the effect of
scaling the onshore wind to the same capacity factor as offshore. It can be seen that
there is still a difference in that offshore needs a lower capacity for the same storage.
Approximately two thirds of the reduction in wind generation needed for the same
storage is explained by the difference in capacity factors. The remainer must be due to
the generation pattern (how peaks of generation coincide with high periods of demand).
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Figure 7-19 - Comparison of 30 day storage lines modelled using onshore wind, offshore wind and onshore wind
scaled to the mean offshore capacity factor.

As well as the importance of how much energy is generated it is also important when it
is generated. The pattern seems to be significant for 30 days storage, but what about
other amounts of storage? The following table (7-15) shows how the wind fraction of
the minimum energy configuration varies for different amounts of storage. In general,
more solar is required for offshore wind, although for 15 days of storage it is the other
way round. This suggests some sensitivity to the times when the store becomes full for
different amounts of storage relative to the times when either PV or wind is generating
more energy. Offshore wind requires less energy to be generated (between 10% and
39% of the mean daily load per day)

Table 7-15 Impact of wind pattern on wind fraction and energy generated.

Storage | Wind energy fraction Energy Generated

(days)
Onshore scaled | Offshore | Onshore scaled | Offshore | Difference
to offshore to offshore

5 78 78 2.82 2.82 0.0

10 99 93 1.88 1.49 0.39

15 90 92 1.46 1.3 0.16

20 94 86 1.36 1.21 0.15

25 89 83 1.3 1.16 0.14

30 87 78 1.25 1.13 0.12

To investigate the findings from the previous section further, a wind only configuration
was examined in more detail. Rather than looking at a whole set of wind and PV
configurations, a wind capacity of 6.0 days and a PV capacity of 0.0 days was
examined. This configuration is approximately that requiring 10 days storage i.e. the
configurations showing a larger difference in section 7.3.6.
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Table 7-16 Experiment to assess the impact of wind pattern without PV (see 5.3.1 for terminology)

Experiment Objective: Assess the impact of wind generation pattern without PV.
Baseload: C;, = 0.0 Dispatchable: C;, = 0.0 PV: (;, = 0.0 Wind: C,, = 6.0

Frequency | n Demand Storage Wind PV Years

Daily 50% Baseline Iterative NinjaOff |0 1984-2013
Daily 50% Baseline Iterative Ninja On 0 1984-2013
Daily 50% Baseline Iterative Ninja S 0 1984-2013

The figure (7-20) below shows how the state of charge of the store varies over a period
of 30 years. The store stays full for a long time apart from for a few extreme events.
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Figure 7-20 State of charge: Comparison of wind generation offshore, onshore, and onshore scaled to offshore

capacity factor.

Figure (7-21) below shows a zoomed in view of figure (7-20) at the start of the period.
The store quickly fills up at the start of the period due to high wind generation. It can
be seen that because of the different patterns of onshore and offshore wind that at some
times the store is emptier with onshore wind and at others it is emptier with offshore

wind.
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Investigating the point when the store is most empty will determine how much storage
is needed. It can be seen from the figure (7-22) below that in this case with onshore
wind the store is more depleted (lowest point of orange line in January 1990). The low
points in the store occur at different times for the different wind generation patterns,

and their lowest points lead to different minimum storage requirements.
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Figure 7-22 Lowest state of charge: Comparison of wind generation offshore, onshore, and onshore scaled to
offshore capacity factor.

The following figure (7-23) shows the variation in the amount of wind generation and
energy storage for a purely wind configuration at 85% round trip efficiency. For large
amounts of storage, the onshore wind scaled to the same capacity factor as offshore
wind requires more wind capacity, however for smaller amounts of energy storage, the
scaled onshore wind requires less wind capacity. The difference in the pattern of
offshore wind causes the wind capacity requirement to climb more steeply as storage
capacity declines. Low storage and high generation favour a pattern where energy is
generated close to when it is required. For higher storage the generation pattern needs
to be able to charge the store at the right time. A comparison been the pattern of supply
and demand is shown in 9.6.

Wind capacity vs Storage (zero PV, 85% round-trip efficiency)

—a&— Offshore wind
--q- Onshore scaled to offshore CF

wind capacity (days)

10 20 30 40 50
Storage (days)
Figure 7-23 Wind capacity vs storage for offshore wind and onshore wind scaled to the same mean capacity factor
as offshore wind.

The most extreme differences caused by the pattern shown in figure (7-23) is illustrated
by table (7-17).
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Table 7-17 Most extreme differences in storage requirements between onshore and offshore wind

Wind generation Storage (days)

capacity (days) Offshore Onshore Difference
7.2 6.5 5.2 +1.3

3.1 40.8 49.5 -8.6

This section has shown that different wind generation patterns can cause significant
differences in the amount of energy storage required. In other words, the impact of
when the energy is generated compared to when it is needed. However, the significance
of this effect depends on the particular configuration being studied.

A further implication from the impact of the pattern of the generation curve is that the
more closely the locations of actual wind farms are modelled the more accurate the
pattern would be expected to be, but this has not been tested. Perhaps there might even
be a consideration as to where it would be best to site wind generation? In fact this was
one of the conclusions of a Europe wide study which experimented with varying the
siting of wind turbines between countries [12] although they only considered
maximizing the amount of generation and reducing the interannual variation rather than
the demand net of renewables or energy storage. They note the difference between
turbines at different sites but do not specifically make a distinction between onshore
and offshore. Other studies find that offshore wind has smoother generation patterns
and higher capacity factors than onshore [18], although no study mentioning the impact
of the different pattern of onshore and offshore generation on storage has been found.

Also, it should be noted that the Renewables Ninja offshore and onshore wind are bias
corrected separately [33], so it could be a feature of the way the data was generated,
although the methods have been extensively validated. Another factor is that more
onshore wind is located in sparsely populated areas or on high ground which leads to a
different geographical distribution from offshore which is located around the coasts of
the country. See figure (7-24) for the locations of UK wind farms.
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Figure 7-24 Locations of UK wind farms

Since the differences between onshore and offshore are similar in magnitude to the
differences between different wind time series due to difference turbine locations it
seems likely that differences in the pattern of onshore wind compared to offshore is due
to the geographical location of the turbines rather than any difference between onshore
and offshore generation. Even if there were a difference favouring offshore wind, the
potential for offshore wind is much greater, so a future net zero energy system must
have more offshore wind anyway. The existing onshore capacity is approximately 0.3
days with a future potential of 1.5 days. The existing capacity of offshore is 0.3 days
with a potential 23 days [19] in the future. Also, offshore wind is expected to get
cheaper and therefore this may not appear a very significant finding as the UK would
likely go for more offshore wind anyway. Another factor to note is that this could just
be a result of geography unique to the UK or wind patterns which could alter with
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climate change. Wind patterns are due to a complex interaction of many factors, so
there is a danger in searching for patterns which are not there. But the impact pattern
has in general, means that not correctly modelling the location of actual turbines gives
significantly inaccurate results regarding the required energy storage for configurations
with smaller amounts of energy storage. Some locations might have wind generation
patterns such that power is generated at times when it is needed more, but there could
be a trade off as they might have lower wind speeds and so generate less power and
require more turbines.

One possible area of future work might be to analyse the patterns in store state of charge
shown in fig (7-20) and fig (7-21) using Fourier series to see if there are any underlying
cycles (such as yearly).

Because of the potential significant differences, comparisons between energy models
using different wind generation time series should be treated with caution.

7.6 Results

This section presents the results of repeating the analysis from two previous studies but
using the model inputs from this project from chapter 5 instead. The results of the
comparison with these two studies use the same comparison criteria and format of
chapter 6.

7.6.1 Update to 30-30 rule: running all UK on wind and photovoltaics

A previous study [41] found that the UK could be powered fully on various
combinations of wind and solar for 30 years. Round trip storage efficiencies of 75%
and 85% were used to represent pumped hydro storage. The differences in the
modelling methods between that study and those used in this thesis are shown in the
Fragaki column in table (5-1). They found that generating 30 days more energy than
the current supply combined with 30 days storage was sufficient. This result was
confirmed by reproducing the study in section 5.4.1.

The purpose of this section is to find out what this study would have shown differently
had the improved methods of this thesis been used. This includes the electricity demand
time series generated using the baseline method from chapter 4. Electricity generation
data is from Renewables Ninja and the energy store starts 70% full and ends up more
than 70% full. The parameters are summarised in table (7-18).

Table 7-18 Experiment to update the results of Fragaki et. al. with methods from this project (see 5.3.1 for
terminology)

Experiment Objective: Assess how the modelling methods from this study change
the result of the previous study
Baseload: C;, = 0.0 Dispatchable: C;, = 0.0 Wind 0.0< (,, 5.9 Solar 0.0 < (};, < 5.9

Frequency | n Demand Storage | Wind PV Years

Daily 75%,85% | Baseline Iterative | Ninja C Ninja | 80-2019

Figure (7-25) shows the results of this experiment. The curves occur in different places
compared to Fragaki et. al figures (5-4,5-5). The proportion of wind needed is much
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less. There is no 60-day storage contour because there are no configurations where 60
days is the minimum storage requirement.
Constant storage lines How the new model changes the results of Fig (8) from Fragaki et. al.

Wwind Generation Capacity (GW)
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Figure 7-25 Results using the modelling methods of this thesis but presented in the same way as figure (8) from
Fragaki et. al.

In figure (7-25) one day of energy is the mean daily energy of a year. The “Historic
Add” method used there scales each year of the historic electricity demand time series
to the same annual energy, so it is the same for each year. However, the baseline method
used in this project includes the heating electricity and therefore there is a different total
energy each year and so the size of a day of storage would change. Therefore, in figure
(7-26) below both are scaled to the historic 2018 electricity demand and so days of
storage in this graph are not compatible with figure (5-4). The different values of “1
day” are summarised in table (7-19).

Table 7-19 Units of days for energy and power in Fragaki et. al. and this study

Measure Fragaki et. al. Historic 2018 (this study)
Mean Daily energy and 835.616 GWh 818.386

size of 1 day’s storage.

Generation Capacity of 1 34.8 GW 34 GW

day

We now concentrate on the 85% round-trip efficiency configuration and investigate the
impact of these differences in modelling methods in more detail.

Figure (7-26) below shows the lines of 30 days constant storage using the modelling
methods of this thesis (orange line) on the same plot as the 30-day storage line for the
Fragaki et. al. model (blue line) from figure (5-5). The configuration which generates
the least energy is marked by a black star. The increase in wind capacity needed for the
same storage is apparent.
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Figure 7-26 Comparison of 30 days storage line using the methods from this thesis with those of Fragaki et. al.

Figure (7-27) shows the same lines but with energy generated plotted against the wind
energy fraction. For the methods from this thesis 80% of the energy is generated by
wind and the amount of energy generated is 14% above the load. In contrast using the

Fragaki model 32% more energy is generated and 92% of it comes from wind.

Constant storage lines Comparison of methods from this thesis with Fragaki et. al.
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Figure 7-27 - Minimum energy configuration from those requiring a minimum of for 30 days of energy storage

The above result is summarised as “30-days minimum energy” in table (7-20). This
table also shows a comparison of the two studies using the other comparison methods

defined in section 6.3.2.

The “30-days minimum cost” configuration in table (7-20) shows that for those

configurations that need a minimum storage of 30 days,

the one with lowest cost of

electricity generation has the same wind energy fraction and energy as the “30-day
storage minimum energy’” configuration. In contrast to the illustrative configuration

from the original study which found that generating 30

days more energy than the

current supply combined with 30 days storage was sufficient, this study has found that

only 15 days more energy is needed.
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Table 7-20 Comparison of this project’s methods to Fragaki et. al. for 85% round trip storage efficiency

Configuration Measure Model Inputs
This thesis | Fragaki et. al.
Equal Minimum Wind energy fraction 80% 92%
Storage: 30-days Energy (proportion of load) | 1.14 1.32
minimum energy
Equal Minimum Wind energy fraction 80% 92%
Storage: 30-days Energy (proportion of load) | 1.14 1.32
storage minimum
cost
Least Storage Wind capacity (days) 3.7 3.7
Configuration for PV capacity (days) 0.8 0.8
excess energy Wind energy fraction 94% 92%
generation: 50% Storage capacity (days) 10 82
Minimum cost of Cost (£/kWh) 0.149 0.203
electricity Wind capacity (days) 3.5 5.9
generation at PV capacity (days) 0.7 1.2
today'’s prices. Energy (proportion of load) | 1.41 1.8
Wind energy fraction 95% 92%
Storage capacity (days) 11 14

Of all the configurations from the model used in this study that generate 50% excess
energy above that required by the load, the one that has the least storage has a wind
capacity of 3.7 days and a PV capacity of 0.8 days. This is shown as the “Least storage
configuration for excess energy generation” table (7-20). It requires 10 days storage.
However, using the methods from the Fragaki model requires 82 days storage. The

wind energy fraction of 92% compares to 94% from this thesis.

Table (7-20) also shows the configuration from each study’s model that generates
electricity at the lowest cost using today’s prices assuming that the storage is pumped
hydro storage. The model used in this thesis requires 3 days less storage capacity, has

a 3% higher wind energy fraction and lower cost.
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7.6.2 Update to cost optimal storage for CAES

Another previous study was to find the cost optimal configuration for CAES at today’s
prices. This used the modelling methods shown in the Cardenas column of table (5-1)
This section uses the inputs and methods from this project to find the same thing, but
using the model inputs from this study.

Table 7-21 Experiment to compare hydrogen storage with CAES (see 5.3.1 for terminology)

Experiment Objective: Compare results of Cardenas et. al. with this projects model
using hydrogen storage.
Baseload: C;, = 0.0 Dispatchable: C;, = 0.0 Wind 0.0 < (,, 5.9 Solar 0.0 < (}, 5.9

Experiment | Frequency | n | Demand | Storage | Wind PV Years
%

1 Hourly 70 | Baseline | Iterative | NinjaC | Ninja | 1980 -
2019

The result is shown in table (7-22) compared to that found by this study. It shows the
amount of energy generated in proportion to the load, the wind energy fraction, and the
storage capacity for the configuration with the lowest total cost of energy. It is
compared to the cost optimal solution found by the algorithm from this study. Note that
the conversion from days to TWh is based on the mean daily energy from Cardenas of
0.917808 TWh per day for comparison purposes. Only 11 TWh of storage was needed,
compared to the 43 TWh found by Cardenas. The generation capacities were 3.7 days
wind and 1.8 days PV. Because the storage was lower, more energy needed to be
generated (1.21 days compared to 1.15).

Table 7-22 Cost optimal configuration found here compared to that found by Cardenas et. al.

Study Wind Energy Storage | Storage | Charge | Discharge | Cost

fraction | (proportion | (days) | (TWh) | rate rate (GW) | £/kWh
of load) (GW)

Cardenas | 84% 1.15 46 43 119 61 0.080

et. al

[52]

This 84% 1.21 18 11 119 94 0.073

project

The most significant input difference in the sensitivity analysis was shown to be the
National Grid wind data. This could be one cause of the difference. However, the
algorithm to find the required storage has not been reproduced and so could be a cause
of the difference. It is possible that the Cardenas algorithm did not consider the cost
optimal solution found here.

7.7 Summary and Conclusions
The sensitivity of the storage model to different inputs was investigated.

It was found that using hourly time series is important for configurations with a small
amount of storage or when calculating cost or wind energy fraction. For calculating the
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minimum required storage, daily time series are adequate. Experiments suggest that for
large amounts of storage, using a few years data including a cold spell is adequate and
that it does not matter which decade of data is used. However, for small capacities of
storage, these choices in the data make a much larger difference to the results.
Differences were also seen for small storage capacities when using different decades
from the 40-year time series, but for larger amounts of storage the results were not much
different.

A sensitivity analysis to using different model inputs used by Fragaki et. al. showed
that they only made a small difference to the results, apart from the wind generation
data from Renewables Ninja which made a large difference. The experiments in this
section have shown that the main cause in the difference in results is that the
Renewables Ninja wind generation data has a higher capacity factor, particularly for
offshore wind which was not modelled in that study. Because the Renewables Ninja
wind generation data is based on the actual locations and turbine types of wind farms
and has been extensively validated, it seems reasonable that this new result is more
accurate than the previous study. The difference for PV is much less marked than with
wind generation, which is expected considering the lower variability in the pattern [12]
and the lower correlation with the demand profile in table (9-4). However, with PV the
difference in pattern was more significant than the difference in capacity factor. The
overall pattern of the results using the modelling methods from this thesis is similar to
the previous study.

A similar sensitivity analysis on the inputs to Cardenas et. al. also showed that wind
generation data caused the most significant difference in the results. Not only does the
National Grid wind time series vary with the weather, but the actual wind turbines in it
will have evolved over time. Despite scaling it to maintain a constant generation
capacity this will have caused a change to the pattern of generation.

Both comparisons with previous studies show that different wind generation data
patterns cause significant differences in the results. It was found that different patterns
in wind generation as well as capacity factors can have a large impact on the amount of
storage required, a result that has not been mentioned in the literature before. In other
words, the impact of when the energy is generated compared to when it is needed.
However, the significance of this effect depends on the particular configuration being
studied. For example, with 30 days storage, offshore wind requires less energy to be
generated (between 10% and 39% of the mean daily load per day). With a wind capacity
of 3.1 days, onshore requires 8.6 days more storage, but with a wind capacity of 7.2,
offshore requires 1.2 days more storage. Although previous work has considered how
different siting of wind turbines might result in higher capacity factors, no previous
study has been found that notes the impact that a different pattern of generation can
have. The differences between using onshore wind in the model compared to offshore
wind are more significant at lower amounts of storage. The debate between offshore
and onshore wind tends to consider cost, capacity factors and political reasons such as
public opposition. The generation pattern has been identified here as a significant fourth
factor to consider. Because of the potential significant differences, comparisons
between energy models using different wind generation time series should be treated
with caution.
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The results from two previous studies to find the amount of energy storage required by
the UK for different proportions and of wind and solar have been recreated but using
the modelling methods of this thesis.

The 80% wind energy fraction for 30 days storage found here compares to 90% using
the methods from Fragaki et al. The cost calculation in this study illustrates that the
optimum solution might be for lower amounts of storage in the region of 10 days and
consequently higher energy generation, than the illustrative example of 30 days storage
used in Fragaki et. al. Using the methods from this thesis it was found that for 30 days
storage only 15 days additional generation would be required compared to the 30 days
found by Fragaki et. al.

The wind energy fraction found here of 84% was the same as that found by Cardenas.
However, using the model from this thesis the cost optimal configuration for CAES at
today’s prices is 11 TWh of storage generating an excess generation of 21% above the
load, compared to the 43 TWh and 15% excess generation found by Cardenas.

Future work on this project could be to try and reproduce the actual algorithm used by
Cardenas to find the required energy storage capacity and then investigate the impact
of their different assumptions.

Another point of interest is that although the storage algorithms for both studies work
in terms of energy generation, Fragaki et. al. plot their results in terms of generation
capacities, whereas Cardenas plot their results in terms of energy. Both studies quote
results in terms of generation capacities which are dependent on the mean capacity
factors of the wind and solar generation time series used, and thus not comparable. The
algorithm used in this thesis works in capacities, and results are plotted in both capacity
and energy. For comparison purposes, it might be desirable for all studies to use energy.
However, it is understandable that policy makers want results in terms of generation
capacity and cost.
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8 Demand Case Studies

Chapter 6 looked at the change in wind, solar and storage due to the electrification of
heating. In this chapter other future changes to electricity demand are considered as
shown in figure (8-1). The alternative heating possibility of using hydrogen boilers is
discussed. But first the impact of electric vehicle charging is investigated which will
contribute to the answer to the main research question of the thesis: the impact of
transport electrification on the mix of wind, solar and storage.

Model Case Studies

Electricity Electricity o
Generation from Generationfrom S 4 ydrogen
Baseload and Wind and Solar Storage

Dispatchable

Other Storage (eg

Pumped Hydro, CAES)

Electricity
Generation from

hydrogen
v
{ ‘ Electric Heat Pumps
v
‘ Other Electricity ‘ Electric
Heat Demand

Demand Vehicles
Figure 8-1 Flow of energy from supply to demand in the model used in this thesis

Hydrogen Boilers

8.1 The Impact of Electric Vehicles

Chapter 6 showed what the impact of heating electrification would be on shares of wind
generation, solar generation, and storage. In this section the impact of electric vehicles
(EVs) is considered. An EV charging time series is created and combined with the
electricity demand time series with the existing heating technology from chapter 4. This
is used with the storage model from chapter 5 to study the impact of EVs alone on
shares of wind generation, solar generation, and energy storage.

The section starts with some background and a description of the methods. The results
section presents the impact of EVs on the electricity demand, generation, and energy
storage. This is followed by the conclusions.

8.1.1 Background

Previous studies incorporating EVs into generated electricity demand time series tend
to focus on the impact on peak demand. For example, in a study of a 100% renewable
UK electricity system [34] hourly fluctuations of EV charging are modelled, but the
same energy is used each day. Energy Plan [108] allows the user to supply an hourly
profile, but no seasonal variation. The DESSTINEE model [6] includes seasonal
factors, but does not link EV electricity usage directly to the weather. However the
Customer-Lead Network Revolution trial [109] found that domestic EV energy use is
seasonal. Petrol sales [110] however show no such seasonal trend. It therefore seems
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that this seasonal difference is due to the performance of the vehicles, rather than
consumer behaviour. A Chinese study of electric taxis [10] found that energy
consumption increases when the temperature is lower than 10°C and when the
temperature is higher than 28°C. This chapter models EV charging electricity time
series by including weather dependency using the findings from that study to address
this gap.

8.1.2 Methods

First an hourly 40-year electricity demand time series was created for EV charging.
Then this was added to the electricity demand with the existing heating technology
generated in chapter 4.

To generate the EV time series an annual EV energy of 95.83 TWh is used. This is
based on the assumption that most road transport is electrified apart from a small
number of heavy vehicles including buses that run on 31 TWh of hydrogen [24]. It does
not include rail transport. This annual demand is split into days equally and then
modified using the finding from a study of Chinese taxis [10] that electricity
consumption normally at 14.4 kWh per 100 km, increases when the temperature is
lower than 10°C by 2.4 kWh per 100 km for each 5°C below 10°C and also that when
the temperature is higher than 28°C that electricity consumption increases by 2.3 kWh
per 100 km for each 5°C. The mean day time temperature for Great Britain between the
hours of 8am and 8pm was used on the assumption that most driving occurs during the
day. To convert the daily series to hourly it is assumed that 60% of charging occurs at
night between lam to 3am and 40% during the day 2pm and 6pm. The EV electricity
is added to the generated electricity demand with the existing heating technology from
chapter 4 assuming that the electricity used by electric vehicles in 2018 was negligible
and therefore can be ignored. The hourly electricity demand including EVs is given by
equation (36)

(36)

A
Uh:(ﬁ-}_ Id>ei+ Rh

Where Uy, is the hourly electricity demand with the existing heating technology but
including electricity due to vehicle charging, 4 is the annual electric vehicle energy of
95.83 TWh for 2050, N is the number of days in the year, e; is the hourly charging
profile for hour i set to 0.2 for i=1,2,3 0.1 for #=14,15,16,17, R, is the generated
electricity demand including the existing heating technology from 4.2.2 and Iq4 is the
increase in daily electricity due to extreme temperatures given by equation (37)

24N\ (10-T
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100 5
I, = (0),10.0 <T < 28 (37)
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Where I;is the daily additional electricity due to extremes of temperature, T is the UK
population weighted daily temperature in °C, and r is the daily range of electric
vehicles in km. The range, r is calculated using equation (38)

A 100 (38)

"= 36525 14.4
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Where A is the annual EV energy of 95.83 TWh from above and 14.4 is the electricity
consumption in kWh per 100 km from above.

8.1.3 Results

Figure (8-2) shows the electricity for EV charging (red) compared to the historic 2018
electricity demand (blue) to which it will be added. The daily EV electricity demand is
modelled as constant apart from those days that have exceptionally high or low
temperatures. The seasonal impact is noticeable, but less pronounced than for
electrification of heating seen in chapter 4.

Daily Electricity with existing heating and EVs
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Figure 8-2 EV charging electricity demand time series for 2018 compared to the historic electricity demand with
the existing heating technology.

Figure (8-3) shows the electricity time series for 10 arbitrary years including the heating
electricity for the existing heating technology based on weather in orange. In purple is
the result of adding the weather dependent EV electricity time series to this. The
electricity demand is much higher, but the seasonal pattern appears quite similar.
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Figure 8-3 The impact of electrification of transport for 10 years historic weather on a time series incorporating
the existing heating technology of 2018

Figure (8-4) shows the variation in yearly demand. Without EVs it varies between 367
TWh and 377 TWh. Whereas with EVs it varies between 483 TWh and 497 TWh,
only a 1% increase in variability.
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Figure 8-4 Interannual variation in electricity demand including EVs

The EV charging time series that has been generated shows that electrification of
transport increases the annual electricity demand from 371 TWh to 489 TWh. The
seasonal impact is less significant than for that of heating electrification: with electricity
demand varying over a range of 10 TWh between years without EVs and 14 TWh with
EV’s included.

An experiment was done to assess the impact on shares of wind generation, solar
generation and energy storage using the model from chapter 5. The results are compared
with those for the existing heating technology from chapter 6.
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Table 8-1 Experiment to assess the impact of EVs on shares of wind generation, solar generation and hydrogen
storage (see 5.3.1 for terminology)

Experiment Objective: Assess the impact of transport electrification on shares of
wind and solar generation, and hydrogen energy storage.

Baseload: C;, = 0.4 Dispatchable: C;, = 0.0 Wind 0.0< (,, 5.9 Solar 0.0 < (}, < 5.9
Electricity | Frequency | n Demand | Storage | Wind | PV Years
Demand

Existing Hourly 50% | Baseline | Iterative | Ninja | Ninja | 1980 - 2019
Heating

technology

Existing Hourly 50% | Baseline | Iterative | Ninja | Ninja | 1980 —-2019
heating

technology

with EVs

41% heat Hourly 50% | Baseline | Iterative | Ninja | Ninja | 1980 - 2019
pumps, no

EVs

Figure (8-5) below shows lines joining configurations with 30 days storage with and
without the impact of EVs, the black star showing the minimum energy configuration.
It can be seen that the green line representing most transport being EVs requires much
more energy to be generated for the same storage, compared to the orange line
representing 41% heat pumps or the blue line representing the existing heating.

Constant storage lines Impact of electricifcation of heating and transport
Wind Generation Capacity (GW)
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Wind generation capacity (days)

Figure 8-5 The impact of electrification of most transport on lines of constant storage

Table (8-2) compares these three cases of no EVs, and mostly EVs with the impact of
41% of heating provided by heat pumps. For 30 days storage heat pumps increase wind
energy fraction from 83% to 87%, but EVs leave it unchanged. This is probably because
the EV charging demand is spread more evenly throughout the year, and only changes
due to extremes of weather which are unusual in the UK climate.

146



Table 8-2 Impact of EVs using the comparison methods defined in section 6.3.2

Comparison Electricity Demand

Configuration Measure No EVs, | Mostly EVs, | No EVs,
existing | existing 41% heat
heating | heating pumps

Equal minimum wind energy fraction | 83% 83% 87%

storage 30 days energy generated 0.8 131 0.89

minimum energy

Least storage of those | storage (days) 6 21 8

generating 80% Wind capacity 3.2 3.2 3.2

excess energy above | Solar PV capacity 1.4 1.4 1.4

the load

Minimum cost of wind energy fraction | 88% 72% 91%

electricity generation | energy generated 0.75 0.8 0.81

at assuming hydrogen | storage (days) 59 44 72

storage today’s prices | cost £/kWh 0.088 | 0.091 0.088

In chapter 6 on the impact of heating electrification, configurations requiring 50%
excess energy generated over the load were considered as a comparison point.
However, for EVs it was found that this wasn’t enough energy. So, table (8-2) shows
configurations needing 80% energy above the 2018 electricity demand. Both heat
pumps and EVs require more storage. However, EVs require a lot more storage.

Table (8-2) shows that the minimum cost configuration for EVs has a lower wind
energy fraction, which makes sense because the EV load will be spread more evenly
throughout the year.

8.1.4 Conclusions

Weather dependent EV charging electricity demand time series have been incorporated
into electricity demand time series with the heating technology of 2018 and 40 years
weather. This allows us to study the impact of transport electrification alone. The model
has shown that electrification of transport increases the annual electricity demand from
371 TWh to 489 TWh. The seasonal and interannual impact is less significant than for
that of heating electrification: with electricity demand varying over a range of 10 TWh
between years without EVs and 14 TWh with EV’s included. Previous work including
EVs into generated electricity demand time series do not take the weather into account.

The minimum cost configuration for EVs occurs with a 72% wind as opposed to 88%
without EVs and uses 15 fewer days of storage but generates more energy. This
contrasts with heating where the proportion of wind increases. This could be because
most of the cost of hydrogen storage is due to charging and discharging. Heat pumps
have a big impact on peak demand and so could lead to high charge rates, whereas EVs
are being modelled as charging partly overnight. The minimum energy point on the 30
days storage contour also occurs at higher proportion of PV with electric vehicles. This
is likely to be due to heat pumps requiring more energy in the winter, but EV charging
is spread more evenly across the year.
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No other studies have been found that quantify the impact of electric vehicles on the
proportions of wind, solar and energy storage.

8.2 Hydrogen Boilers or Heat Pumps

8.2.1 Introduction

The scenario used as basis for chapter 6 assumes 41% of heating provided by heat
pumps, but what about the remainder? If it is not heat pumps, then how do we reach net
zero? This section looks at the proposal to provide that heating using hydrogen boilers.
The hydrogen would be delivered to buildings via the existing gas network.

The remainer of the section is structured as follows. The background section discusses
previous work on hydrogen boilers. The methods section describes a simple way of
expanding the model to include heating with hydrogen boilers. This is followed by a
presentation of the results and conclusions.

8.2.2 Background

National Grid’s future energy scenarios 2019 [24] Net Zero scenario assumes that the
heating not provided by heat pumps is provided by boilers fuelled by hydrogen. This
hydrogen would be piped through the existing gas network. This domestic use of
hydrogen in the UK was only in a trial phase in 2019. The industry led Leeds City Gate
Project [22] proposed that the hydrogen could be produced from steam methane
reforming of natural gas (called grey hydrogen). The report states that both the medium
pressure and low-pressure gas distribution networks have been modelled using network
analysis software and that the gas networks “have the capacity to be 100% hydrogen
with relatively minor upgrades”. A new transmission system to connect hydrogen
production into the gas network at a cost of £230 million would be required. Appliances
need converting and there are already hydrogen ready gas boilers on the market. Whilst
the approach seems to be practical, since this process emits CO;, it would be difficult
to achieve a net zero energy system. It has to be combined with CCS to capture the
emissions, which is described as blue hydrogen. A previous study on blue hydrogen
[23] found that boilers using hydrogen from natural gas with CCS cannot achieve net
zero. The alternative is to use hydrogen produced by electrolysis of water which is
termed green hydrogen. This is what is assumed here. It should be noted that in a review
of the evidence [111] (conducted after the work described below was completed), it
was found that none of the 32 independent studies identified hydrogen as a viable
solution for decarbonizing space and water heating in buildings.

The only previous UK energy model study found that included hydrogen boilers [53]
compared them with the alternatives of district heating and electric heat pumps. They
used an optimisation model ESTIMO which includes the impacts of climate change,
building heat and cooling, transport, synthetic fuels and energy storage. They modelled
the UK as one node and Europe as three nodes, enabling interconnectors and market
simulation. However, they only used the years 2009-2011 identifying 2010 as a stress
year due to extreme cold weather, which was shown in chapter 5 to give different results
from using 40 years. District heating is also considered, so that excess heat from
generating electricity from stored hydrogen can be used in conjunction with thermal
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storage. They found that systems with consumer or district heat pumps require about
four times less electricity per unit of heat than hydrogen boilers. They only modelled
five different wind and PV generation capacities.

No previous study was found that includes hydrogen boilers into an energy model under
long term weather variation. This section addresses that gap.

8.2.3 Methods

To incorporate heating from hydrogen boilers, a small change is made to the model
from chapter 5. The energy store used by the model is considered to be hydrogen with
a 50% round-trip efficiency as used in chapter 6 for modelling heating electrification
with heat pumps. The hydrogen is created by excess wind and solar PV electricity using
electrolysis from water and is therefore green hydrogen. As well as using this hydrogen
as an energy storage mechanism, the hydrogen could also be piped through the gas
network to run a heating boiler. In contrast to the heating electrification scenario from
chapter 6 which accounts for 41% of heating with heat pumps, this one accounts for all
heating. The process is illustrated in figure (8-1)

First a hydrogen demand time series is created from the heat demand using equation
(39)

NG (39)
Zy = NPy Z Hsh,h,g + Hwh,h,g

g=0
Where Z,is the hourly hydrogen demand, 7y is the hydrogen boiler efficiency (0.8),
NG is the number of weather grid points and Hgp, p, 4 and H,y,p, p, 4 are heat demand time
series from section 3.2.1 equations (13,14) for hour 4 and grid point g. Pyis the
proportion of heating provided by hydrogen boilers and is calculated on the assumption
that it is all heating not provided by heat pumps.

Py=1— Pg— Py (40)

Where Py and Py, are the proportions of ordinary heat pumps and hybrid heat pumps
respectively from section 3.2.5 equation (20).

Then the energy storage model is modified, so that this hydrogen is removed from the
energy store on each hourly cycle. The hydrogen is removed from the energy store
following equation (30) in section 5.2.1 by using equation (41)

Se= St — Z; (41)
Where S, is the energy store from equation (31).

A similar analysis to that from chapter 6 was performed, except that as well as having
an electricity demand, there is also a hydrogen demand.

Three heating scenarios were compared:
e All electric heat pumps, no hydrogen boilers
e Half electric heat pumps, half hydrogen boilers
e All hydrogen boilers
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The cost calculation was modified so that instead of calculating the system cost per unit
of electricity demand, it was calculated per unit of energy, based on the total energy
over the 40-year period as per table (8-3). This is because some of the heating demand
is not provided by electricity. This gives a new value of E; to be used in equation (32).

Table 8-3 Total energy demand over the 40-year period combining baseline electricity with heat demand.

Baseline electricity demand (with no heating) 18426 TWh
Heat demand 12580 TWh
Total energy (E; ) 31006 TWh

Because so much more electricity is needed to generate the hydrogen, a much greater
range of generation capacities must be considered. Consequently, a larger difference
between capacities (0.5 days as opposed to 0.1 days) was used. The experimental
parameters are summarised in table (8-4).

Table 8-4 Experiment to assess the impact of heating with hydrogen boilers on electricity generation and storage
(see 5.3.1 for terminology)

Experiment Objective: Assess the difference between heating with electric heat
pumps and heating with hydrogen boilers and their impact on hydrogen storage
capacity and shares of wind and solar generation.

Baseload: C;, = 0.4 Dispatchable: C,, = 0.0 Wind 0.0 < ,, £29.5 Solar 0.0 < C), <
29.5

Electricity Frequency | n Demand | Storage | Wind | PV Years
Demand

All hydrogen | Hourly 50% | Baseline | Iterative | Ninja | Ninja | 1980 -
boilers 2019
Half Hourly 50% | Baseline | Iterative | Ninja | Ninja | 1980 -
hydrogen 2019
boilers and

half heat

pumps

All heat Hourly 50% | Baseline | Iterative | Ninja | Ninja | 1980 -
pumps 2019

8.2.4 Results

Figure (8-6) shows the three electricity demands for four arbitrary years. For all
hydrogen boilers, the electricity demand for heating is zero and so this plot shows the
baseline electricity demand without any heating (see chapter 4). Of course, a lot more
electricity is generated than is shown here because it is used to create hydrogen for
heating and storage. However, the amount of electricity that must be generated to fill
the energy store with hydrogen also depends on how much is used to satisfy electricity
demand net of renewables, which depends on the particular combination of wind and
PV capacities.
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Figure 8-6 Electricity demand comparing heat pumps and hydrogen boilers

Figure (8-7) shows the hydrogen demand for gas boiler heating. For the “all heat
pumps” scenario there is no hydrogen. More hydrogen than this is created because some
of it is used as a storage medium to satisfy the electricity demand net of renewable
generation which depends on the particular configuration of generation capacities.
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Figure 8-7 Hydrogen demand for heat pumps and hydrogen boilers

The 30 days of storage used to compare scenarios for heating electrification is not
enough for hydrogen boilers because the hydrogen is being used to run the boilers as
well as for an energy store. Therefore, in this chapter configurations requiring a
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minimum of 40 days storage are examined. Figure (8-8) shows lines representing

configurations which all require a minimum of 40 days storage. It can be seen that the

wind generation capacity needed is much greater for hydrogen boilers than heat pumps.
Constant storage lines for hydrogen boilers vs heat pumps
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Figure 8-8 Comparison of heat pumps or hydrogen boilers for configurations needing 40 days hydrogen storage

Table (8-5) compares the three experiments of all hydrogen boilers, all heat pumps, and
half of each. It shows the minimum cost configurations and the configurations needing
40 days of storage. Note that the cost includes the storage and generation for the
electricity to generate the hydrogen. There is no comparison of the cost of installing
heat pumps with the cost of converting the gas network and appliances to use hydrogen,
so the comparison is only made on the basis of the electricity system. It can be seen that
using all hydrogen boilers has over four times the electricity cost. The minimum cost
configurations have very high wind fractions (92% - 100%). The minimum energy
configuration with 40 days of storage for all boilers occurs at 85% wind fraction, for
half heat pumps and half boilers it occurs at a wind fraction of 97% and for all heat
pumps at a wind fraction of 99%. However, it can be seen from figure (8-9) below that
there is little difference between the minimum energy point and the energy of other
points so there is not a very distinct ideal wind energy fraction in this case. This could
be because with a large amount of storage, the advantages of generating energy at the
time it is needed are less. Providing all heating with hydrogen boilers requires seven
times as much renewable electricity generation as all heat pumps.

Table 8-5 Comparison of hydrogen boilers and heat pumps

Comparison Heating

Configuration Measure All Half heat All
Heat pumps half | hydrogen
pumps | hydrogen boilers

boilers

Equal minimum wind energy fraction | 99% 97% 85%

storage 40 days min | energy generated 1.36 5.39 11.36

energy (days)

Minimum cost of wind energy fraction | 92% 100% 99%

electricity energy generated 1.18 4.0 8.0

generation assuming | (days)

hydrogen storage at | storage (days) 76 77 80

today’s prices cost £/kWh 0.046 0.114 0.281
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Unlike other chapters, no 50% excess generation case is shown. This is because the all
boilers case has no viable 50% excess generation configurations — it needs 750%
excess. However, that all heat pumps case does not have any configurations that need
that amount of energy generation, so it is not a very meaningful comparison point.

Constant storage lines for hydrogen boilers vs heat pumps
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Figure 8-9 Comparison of heat pumps and hydrogen boilers wind energy fraction for 40 days storage

It is not surprising that using hydrogen boilers requires a lot more wind for the same
amount of storage considering that electric heat pumps produce more heating for the
same amount of energy. Table (8-6) shows estimates of annual energy based on
conversion efficiencies between hydrogen and electricity. For hydrogen boilers,
assuming 95% efficiency for transmission through pipes (using the existing gas
network), and 85% conversion efficiency to heat gives 54% overall. For heat pumps,
assuming an efficiency of 45% converting hydrogen to electricity and heat pump COP
of 3.0 gives overall 86%. The 2018 annual electricity demand was 298 TWh and the
heat demand was 448 TWh which equates to 521 TWh at 86% for heat pumps and 830
TWh at 54% for hydrogen boilers.

Table 8-6 Annual electricity and hydrogen demand for heat pumps or hydrogen boilers

Heating Supply Annual Annual Hydrogen | Total
Electricity for boilers Energy
All hydrogen boilers 337 TWh 703 TWh 1040 TWh
Half Heat pumps half boilers 411 TWh 351 TWh 962 TWh
All heat pumps 486 TWh 0 486 TWh

A previous study using only 3 years data, comparing hydrogen with heat pumps [53]
found that architectures based on district heating and electric heat pumps need about
four times less electricity per unit of heat and have a whole system cost 33% lower than
those providing 70% of heating using hydrogen boilers.

8.2.5 Summary and Conclusions

The energy storage model has been updated so that if the energy storage is hydrogen,
then the hydrogen can also be used to supply heating using hydrogen boilers. It was
found that for hydrogen boilers there is no obvious optimum wind energy fraction. Heat
pumps use about 7 times less electricity and an energy cost less than 25%. Heat pumps
use about 10 times less electricity and have an electricity cost less than 20%. However,
this model does not take account of the cost of upgrading boilers and the gas network
to use hydrogen and installing heat pumps for all heating to be provided by heat pumps.
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No previous work that quantifies the impact of hydrogen boilers on wind energy
fraction has been found. However, the one study doing a similar comparison, all be it
with only 3 years weather, also found that hydrogen boilers were much more expensive.
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9 Generation Case Studies

This chapter contains several case studies related to changes in the energy supply, rather
than the demand. These are:

e the transition away from an energy system with a high capacity of dispatchable

generation like that of today to a system based on base load, wind and solar.

e The relationship between wind and solar generation and storage

e Baseload

e Lostenergy

e How long the energy store stays full for.

Two sections look at the time series of generation and demand from a more
mathematical perspective, rather than an energy model. The first section looks at the
correlation between demand and supply. The second section looks at two mathematical
methods of finding the optimum wind energy fraction and then compares them with the
other wind fractions found in the thesis.

9.1 The transition away from dispatchable generation

How will storage requirements change as the UK power system moves away from a
large amount of gas power generation to a large fraction of wind and solar? In this
section the dispatchable generation capacity is gradually reduced to model the transition
away from fossil fuels towards wind and solar.

Table (5-12) in section 5.4.5 shows values for the generation capacities needed for this
model to approximate the energy system of 2018. A base load of 0.2 days was used
since that was the actual generation for 2018 and the theoretical capacity 0.3 would
probably not have been available due to maintenance and outages. The amount of
storage was set to 0.03 days which is approximately the amount of storage available in
2018. To balance supply and demand using the existing wind and solar capacities it was
found that a dispatchable generation capacity of 1.2 days was required. Starting at that
point, the dispatchable generation capacity was gradually reduced. The experimental
inputs are summarised in table (9-1).

Table 9-1 Experiment to assess the impact of reducing dispatchable generation (see 5.3.1 for terminology)

Experiment Objective: Find out how storage requirements and wind fraction
change as dispatchable generation is gradually reduced.

Baseload: C}, = 0.2, Dispatchable: 1.2 > C,, > 0.0

Wind 0.0<C,, £5.9 Solar0.0< (}, <5.9

Frequency | n Demand Storage Wind PV Years

Daily 80% Baseline Iterative Ninja C Ninja | 1980-2019

Figure (9-1) shows contours of constant storage of 0.03 days. The y-axis shows the
amount of energy generated (the sum of dispatchable, wind and solar). The x axis shows
the wind energy fraction: the proportion of the energy that came from wind. The
dispatchable generation is reduced from its current value of 1.2 (where no storage is
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needed) down to 0.7. It is clear that if the dispatchable portion of the energy supply is
reduced (representing a reduction in coal and gas power stations), then the amount of
wind and solar must increase markedly, but what about their relative proportions? The
black star shows the minimum energy point on the contour. In contrast to figure (6-5)
where the same style of plot was used to illustrate ideal proportions of wind and solar
for the same storage for a system with no dispatchable generation, there is no obvious
pattern here.
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Figure 9-1 Wind energy fraction for configurations needing 0.03 days storage for different amounts of
dispatchable generation

Table (9-2) shows the wind energy fraction with storage of 0.03 days (as we have
currently) compared to 0.6 days. Neither shows a consistent pattern in wind energy
fraction. It is noteworthy that these configurations have large amounts of PV, in contrast
to the high wind configurations with no dispatchable generation in the previous section.
These two configurations have a small amount of storage, and a large capacity of
dispatchable generation which can be supplied at any time of year. Therefore, the
dominating factor in determining the optimal wind solar mix becomes how much
energy is curtailed, rather than generating energy close to when it is need as has been
seen in previous sections. The amount of curtailed energy is determined by how long
the generation exceeds the demand.

Table 9-2 Wind energy fraction with decline in dispatchable generation for fixed storage of 0.03 days and 0.6

Dispatchable Generation | Wind Energy Fraction Wind Energy Fraction
Capacity (days) for 0.03 days storage for 0.6 days generation
1.1 48% 47%

1.0 58% 23%

0.9 44% 96%

0.8 55% 46%

0.7 75% 72%

Figure (9-2) shows how storage requirements based on 50% excess energy generation
increase as dispatchable generation is reduced. The 50% excess energy point defined in
section 5.4.2 is the configuration with minimum storage requirement from those wind
and PV capacities where the sum of the baseload, wind and solar energy generated is
less than 1.5 times the load. For some experimental runs it is not possible to identify
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the configuration with the minimum storage of those configurations generating 50%
excess or less because there are many with a storage of 0.01 which is the threshold for
minimum storage (see methods section 5.2), ie there is no storage requirement. The
50% excess energy configuration used in the plot below is 1.7 wind and 5.7 solar. It is
the first configuration where there is some storage required. It can be seen from figure
(9-2) that storage is needed after about 20% renewables. Other research, not specific to
the UK has found that above 30% renewable penetration, storage is usually required
[112].

Transition away from dispatchable
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1.0 A

0.8 1
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Storage (days)

Figure 9-2 Increase of storage needed with transition away from dispatchable generation to renewables

9.2 The relationship between storage capacity and Wind and Solar

In this section, rather than considering configuration with the same amount of storage
as was done in section 6.3.3, constant amounts of wind and solar capacity are
considered. Figure (9-3) shows lines of constant wind capacity. This shows that the
point at which storage requirements climb steeply occurs at a higher PV value for 41%
heat pumps than it does for the existing heating technology. Passed this inflection point,
adding move PV generation only reduces storage by a small amount.
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Figure 9-3 Lines of constant wind capacity showing points at which storage requirements climb sharply as PV
capacity drops.
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Figure (9-4) shows lines of constant PV capacity. For heating electrification, the
amount of energy storage required starts to climb at a lower amount of wind energy
also reflecting the higher wind share for heating electrification. After these inflection
points, adding more wind capacity does not reduce the storage requirement very much.
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Figure 9-4 Lines of constant PV capacity showing the point at which storage capacity increases sharply as wind
capacity declines.

Increased wind capacity reduces storage required more than increased PV for both the
existing heating technology and 41% heat pumps.

9.3 Baseload

The configurations analysed to far have a baseload of 0.4 based on likely projections of
future base load. In this section the effect of different amounts of baseload capacity is
considered.

In figure (9-5) each line joins configurations requiring 30 days minimum storage. It can
be seen that as the base load capacity reduces, the lines move to the right showing that
more wind generation is required.
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Figure 9-5 Lines of constant storage for different base load for existing heating and 41% heat pumps

Table (9-3) shows how different base load impacts storage requirements, cost and wind
energy fraction. For the minimum cost configuration assuming hydrogen storage at
today’s cost, it shows the storage, cost and wind energy fraction for each base load. It
can be seen that as the base load increases, the minimum storage requirement declines.
However, the cost increases as the amount of base load capacity increases because the
base load cost is using the cost of nuclear from table (5-3) which is about twice as
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expensive as wind. Also, increases in hydrogen storage capacity only make a small
difference to cost because most of the cost is due to charge, and discharge equipment
(ie rate of charge and discharge, rather than capacity). As the baseload capacity
increases, the wind energy fraction increases. This is because the storage also decreases,
so more energy must be used when it is generated, and demand is greater in winter
when there is more wind. The fact that baseload 0.0 and baseload 0.3 for heat pumps
have the same wind energy fraction is showing that there is not really an optimum wind
energy fraction in this case.

Table 9-3 How variation in base load affects storage, cost and wind energy fraction.

Storage for the Cost £/kWh for Wind Energy Fraction
minimum cost hydrogen storage at for minimum cost
configuration (days) | todays costs. configuration
Baseload | Existing | heat Existing | heat pumps | Existing heat
heating | pumps heating heating pumps
0.0 80 79 0.073 0.070 70% 75%
0.3 64 77 0.082 0.080 75% 75%
0.5 58 69 0.088 0.086 78% 83%
0.7 45 56 0.094 0.093 83% 89%

Figure (9-6) shows the relationship between baseload and storage requirements for the
minimum cost configuration in table (9-3). As baseload increases the required amount
of storage for both the existing heating technology and for 41% heat pumps declines.
In general, a 0.1 day increase in baseload capacity, reduces storage requirements by
about 5 days.
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Figure 9-6 Relationship between base load and storage requirements for the configurations with the minimum cost
of electricity at today’s prices.

Figure (9-7) shows that as base load increases the wind energy fraction on the minimum
energy point for the 30-day storage contour changes. However, for higher base loads
there is no obvious optimal wind energy fraction as the lines are fairly flat. The existing
heating technology always has a lower wind energy fraction than the 41% heat pumps
case.
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Constant storage lines The impact of electrification of heating for different base loads

16

storage 30.00 (days). Base load 0.7 existing heating

--¥-- storage 30.00 (days). Base load 0.7 41% heat pumps
storage 30.00 (days). Base load 0.5 existing heating

141 _4- storage 30.00 (days). Base load 0.5 41% heat pumps

storage 30.00 (days). Base load 0.3 existing heating

-
B
2
2
e
2
g *
2 15 -4 storage 30.00 (days). Base load 0.3 41% heat pumps *
a ™ storage 30.00 (days). Base load 0.0 exsting heating el *
-E —w— storage 30.00 (days). Base load 0.0 41% heat pumps T Uteen e
° - minimumenergy e e L *
BagCA TRERey ) TTTTTSeep.. T TSRS i ki R
® —— * Y SEUPSEE 2 4
o Ty
S ) *
g 0.8 Wen. 00000000 SSwage. 00 TR NS ————.. A
i T e = PO - —
g | = iy | 2 < ~
o | s  EeniEG L R *
e O Emssan eeiibeasagmmie
2 0.6 Wessreneeniiiianena. L T v
........................ W

z *x
c
& 04 *

0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Wind er;ergy fraction
Figure 9-7 Wind energy fraction for 30 days storage and different base loads

The results of this section have shown that a lack of energy storage can be compensated
for by increase in baseload, for both the existing heating technology and 41% heat
pumps. The cost model used in this project which assumes the baseload to be nuclear
with current costs, shows a similar increase in the cost of electricity for both the existing
heating technology and for 41% heat pumps when using base load instead of storage.

9.4 Lost Energy

There are two reasons that energy generated may not be used to satisfy the load.

1. Energy is lost or wasted due to curtailment when more energy is generated than
can be used or stored. The energy curtailed is calculated using equation (42)
from 6.3.4. This occurs as a consequence of design choice in the power system
to have additional generation capacity for periods of high demand or low
generation due to weather.

2. The additional energy that must be generated due to the inefficiency of charging
and discharging the energy store using equation (43). This occurs because of a
design choice in the power system to store energy when it is generated for use
in the future.

Excess energy (curtailed) was calculated using equation (42):

Eexcess = Cb + Erenewable + Edispatchable - Esl - 1.0 (42)
Where E,, s 1S the excess energy not required to service the load, Cpis the baseload
generation capacity = 0.4 days, 1.0 is the demand, Egisparchabie 18 the mean daily

dispatchable energy generated and E,cpewaniels the sum of the mean daily wind energy
and mean daily solar energy generated. Eis the energy lost due to the round-trip
efficiency of the store, and is given by equation (43)

1-1
Esl = Echarge( n C) + Edischarge(l - nd)
c

Where E¢pqrge is the mean daily energy added to the store, 7.is the charge efficiency,
Egischarge 15 the mean daily energy taken from the store and 7, is the discharge

(43)

efficiency. Unless otherwise stated, n, = ny4 = \/ﬁ (round-trip efficiency).

Figure (9-8) shows the additional energy that must be generated to the efficiency of
charge and discharge to the store. More additional energy is required at configurations
of very high solar generation and low wind generation. This is because more solar
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energy is generated in the summer, but more energy is used in the winter, and therefore
more energy needs to be stored, and so there is more additional energy needed to be
generated due to the storage inefficiency.
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Figure 9-8 Additional energy needed due to the inefficiency of the energy storage for different wind and solar
capacities.

Figure (9-9) shows the energy curtailed for different combinations of wind and solar
generation capacity for the existing heating technology. It can be seen that more energy
is curtailed at large generation capacities which will have low amounts of storage. With
small installed capacity, less energy is curtailed. The amount of energy curtailed with
increasing solar generation capacity is less because mean solar capacity factors are
lower. It can also be seen that compared to figure (9-8) above that the energy lost due
to curtailment far exceeds the additional energy that needs to be generated due to the
inefficiency of the energy storage.
Base load 0.4 (50% round trip efficiency) (existing heating ).
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Figure 9-9 Energy curtailed for different wind and solar capacities.
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Figure (9-10) shows the relationship between storage capacity and the energy lost
through curtailment. This was generated using the minimum energy configurations
from those that have storage of 10,20,30,40 and 50 days. It can be seen that as storage
capacity increases, less energy is required to be generated and therefore less is curtailed.

Impact of heat pumps on energy curtailed
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Energy curtailed (days)

Figure 9-10 Variation in energy lost due to curtailment with storage capacity.

The energy lost due to curtailment exceeds the additional energy required to overcome
the inefficiency of the energy store by an order of magnitude. This suggests that the
efficiency of the storage might be less important than its capacity. If the capacity were
greater, then this curtailed energy could be stored. If the charge efficiency were lower,
there is still a lot of curtailed energy available to charge the store. However, lower
discharge efficiency effectively means less energy is stored for the same capacity.
Charge efficiency and discharge efficiency would need to be modelled separately to
study this further.

9.5 How long the energy store stays full

The objective of this section is to investigate the state of charge of the store over time.
Does the energy store spend most of the time full or is the store empty for long periods?
If the store is empty for a long period, then this is of interest from an economic
perspective because there is an underused, possibly expensive asset. If the store is full
for a long time, then there are technical implications. For example, if part of the energy
store were 10 pumped hydro storage lakes, and 9 of them were full for several years, is
this technically feasible? would there be evaporation of water? If the storage were
hydrogen, would it be better to use it for another purpose and then replenish it later?

Figure (9-11) below shows the store history for a configuration with wind capacity 1.7
and PV capacity 1.3 with the existing heating and wind capacity 2.0 and PV capacity
1.1 with 41% heat pumps chosen so that they have similar storage requirements (28.9
and 29.1 days respectively). It can be seen that there are long periods when the store is
at a high state of charge, but others where it is almost empty.
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Figure 9-11 Example of the energy store state of charge over 40 years for configurations needing about 29 days
storage capacity (wind 1.7, PV 1.3 existing heating), (wind 2.0, PV 1.1 41% heat pumps)

Figure (9-12) below shows the store history sorted by state of charge, rather than time,
so it shows a load duration curve showing how many days the store was at a particular
energy level (state of charge) for this same configuration. It stays at a high level most
of the time for example above 25 days of storage for 250,000 hours which is 28 years
out of the 40-year time period.

Store history sorted by state of charge
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Figure 9-12 Load duration curve created by sorting the store history by the state of charge. Shows the number of
hours that the store was at a particular state of charge for the same configurations as figure (7-18)

Figure (9-13) shows how long the energy needs to be stored for. It can be seen that for
most of the time, the store is full.
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Figure 9-13 How long the energy store was at a particular state of charge for sample configurations with a
storage capacity of 29 days for both the existing heating technology and with 41% of heating provided by heat
pumps.

The energy store is full most of the time. The implications of this are:

e Energy loss through storage inefficiency may be less important because there is
plenty of time to top it up. This is particularly true of charge efficiency.
Discharge efficiency effectively means that less energy if stored for the same
capacity.

e There could be loss through self-discharge if energy is stored for a long time.

e The storage medium must be capable of storing energy for long periods of
multiple years.

The simplified model used here only has one energy store. The real power system will
consist of a number of different storage technologies with different characteristics. As
discussed in the background section, batteries are suitable for a period of a few hours,
CAES and pumped storage are suitable for 6-10 hours, and power to gas such as
hydrogen are suitable for long term storage. The implication of the energy store in the
model being full most of the time, suggests that the real power system should contain
more long-term storage such as hydrogen, than shorter duration storage technologies.

Limitations of the model being used are that it does not take into account the rate at
which stored energy is lost (self-discharge) or consider the charge and discharge
efficiencies separately. These should be considered in future research.

No other study has been found that quantifies how long energy needs to be stored for.
Storage duration is discussed in [52] but it refers to how long it would take to discharge
the energy store at its maximum discharge capacity.

9.6 Correlation between supply and demand

9.6.1 Background

The capacity of energy storage required in an energy system is related to the correlation
between the demand and supply. In other words when the energy is needed compared
to when the energy is generated. In a purely renewable power system or one including
a baseload below the minimum demand, if the pattern of renewables generation
matched the demand curve exactly then it would only be necessary to install enough
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capacity to generate the energy to satisfy the demand and no storage would be required,
or excess energy generated (curtailed). When there is a mismatch between the pattern
of supply and the pattern of demand then this must be compensated for by either larger
generation capacity or energy storage or a combination of the two. More storage is
required for a purely solar PV system than wind because wind matches the demand
curve better [52].

9.6.2 Methods

The correlation of the two electricity demand time series from chapter 4 with each of
the various generation time series used in this thesis was calculated using Pearson’s
Correlation Coefticient R. The objective is to see if there is any relationship between
the findings regarding wind energy fractions and correlation.

9.6.3 Results

The table (9-4) below shows how closely the normalised generation curves match the
normalised demand curves for the existing heating, 41% heat pumps and all heat pumps.
It includes Wind and PV generation time series from Fragaki et. al. (section 6.3) and
those from Renewables Ninja (section 1.2.7 and 1.2.8). As well as the near-term wind
generation from Renewables Ninja used in this study it also shows the current and
future wind generation time series.

The Fragaki et. al. data is only available as a daily time series, hence hourly correlation
is not shown in this table. Also, this project is more concerned with long-term storage,
so the intra-day correlations are of less importance. However, the hourly wind time
series are less correlated with the demand (eg 0.13 to 0.15), but the PV series are more
correlated 0.23 for the existing heating.

Table 9-4 - Correlation of renewable generation and electricity demand

Generation Correlation (R) of demand to generation 1984-2013
Existing heating 41% heat pumps All heat pumps
Daily Monthly | Daily Monthly | Daily Monthly

Wind Fragaki et, 0.19 0.56 0.16 0.53 0.13 0.50

al.

PV Fragaki et. al. -0.53 -0.78 -0.55 -0.80 -0.54 -0.77

PV Renewables -0.64 -0.82 -0.67 -0.85 -0.65 -0.81

Ninja

Wind Onshore 0.22 0.61 0.19 0.58 0.16 0.55

Ninja near term

Wind Offshore 0.26 0.66 0.24 0.64 0.21 0.60

Ninja near term

Wind combined 0.26 0.66 0.24 0.64 0.20 0.60

Ninja near term

Wind Ninja future | 0.25 0.66 0.23 0.64 0.20 0.61

Wind Ninja 0.24 0.64 0.22 0.61 0.18 0.58

combined current
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From this table we can see that with the addition of 41% heat pumps the demand curve
would become less correlated with both wind and PV and so we would expect more
storage to be needed based on the pattern as well as the increased generation.

The daily correlation of the Ninja near term offshore wind of R=0.26 to the demand
curve is greater than that of onshore with R=0.22. A similar pattern is seen with the
monthly corelation. For this reason it might be expected that less storage would be
needed for offshore wind even when scaling to account for the lower capacity factor of
onshore wind. This was indeed what was found in chapter 6.

The last 3 rows of the above table indicate that when near term future wind farms come
online that the wind generation will become slightly more correlated (R=0.26 compared
to R=0.24) with the demand curve, but then as the long-term future wind farms come
online the correlation will decline (R=0.25). The monthly correlation of demand with
wind generation is higher suggesting that being able to store energy over monthly
periods might ease the mismatch between demand and generation.

A similar exercise was done to compare the 9-year wind generation time series created
in section 7.4. This used the actual national grid wind farm generation for 2011-2019
factored by the quarterly increase in generation capacity [113]. This time series was
found to have the same correlation values as the Wind combined Ninja time series. It
is not added to the table above because since it is for a different (shorter) time period
all the correlation values are different. In fact, although they show the same trend that
offshore wind correlates better than onshore wind with the demand, using this shorter
time period, the correlation coefficients R are all about 0.08 lower.

The renewable power generation time series is a combination of different capacities of
the wind and PV time series. Using the Renewables Ninja combined near term wind
and PV generation time series the correlation with demand was investigated for
different wind energy fractions. Figure (9-14) shows how the correlation of the
normalised demand time series with the generation time series varies for different wind
energy fractions. It can be seen that the higher the proportion of wind energy the greater
the correlation. With the addition of 41% heat pumps, the demand becomes less
correlated with the generation, so that we might expect more energy storage to be
required.

Daily correlation of wind fraction in the supply to the demand

—— existing heating
024 —— 41% heat pumps

0.0

Pearsons correlation coefficient (R)
I
N

00 02 0.4 06 08 10
Wind Energy Fraction
Figure 9-14 Correlation of normalised demand with power generation time series based on different wind energy
fractions.
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9.6.4 Summary and Conclusions

Wind correlates better with the demand than PV and the addition of heat pumps reduces
the correlation with demand. The reduced correlation would be expected to lead to
increased storage. This matches the findings in earlier chapters that the addition of heat
pumps needs more storage.

9.7 Wind Energy Fraction

This section investigates methods of finding the wind energy fraction without using an
energy balance model. It compares two alternative methods against the various wind
energy fractions found using the energy model in this thesis. The different wind energy
fractions and their assumptions are reviewed.

The section starts with a brief review of previous work determining the optimal wind
/solar generation ratio. This is followed by two mathematical methods for estimating
this ratio. The results section then compares all the optimal wind energy fractions from
this thesis with these methods. The chapter finishes with some conclusions about the
wind energy faction.

9.7.1 Background

The optimal mix of wind and solar PV depends on the assumptions and objectives. It is
usually expressed as a percentage of the combined wind and solar generation as in
equation (33). Previous studies that use energy balance models including energy
supply, demand and storage have found:

e That 55% wind is the ideal mix for Europe by using an energy model with the
historic electricity demand [95] assuming pumped hydro storage.

e 84% wind is the optimal mix for the UK by finding the minimum cost
configuration at today’s prices [52] assuming a round trip efficiency of 70% for
compressed air storage.

e The ideal mix for Europe is 70% wind assuming an excess generation of 50%
and assuming the round trop efficiency of hydrogen storage is 36%.[96]

The energy balance models in this thesis have also found different mixes of wind and
solar based on different assumptions, such as using a constant value of storage, excess
generation, and optimum cost.

Some studies did not use an energy model at all. One study that had the objective of
reducing the variability of generation [12] calculated the combination of wind and solar
PV that minimized the standard deviation of simulated power generation time series.
They found that on a seasonal basis the optimum for the UK was 67% wind and over a
multidecadal time scale that the optimum was 46%. However, that study did not look
at the seasonal variation of demand which tends to be larger in winter. Another study
[95] that did consider demand, used the same method of minimising the standard
deviation. However, they used the time series of demand net of wind and solar
generation instead of just the generation time series. They found that 62% wind is the
ideal mix for Europe. However, with energy storage, it is not just the extremes of net
demand that are important but how long these extremes last. In this section another
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possible method of identifying the optimal wind-solar mix without using an energy
model is investigated.

The optimal mix of wind and solar generation is determined by the mismatch between
electricity supply and demand. This mismatch is illustrated in figure (9-15) which
shows a small part of the normalised demand net of renewable generation N; from
equation (28) from section 5.2

Net demand for wind fraction 0.8

0.6
0.4

0.2 1

a M .ﬂAIA N

Normalised net demand

]l;| A\jg Selp O;:t Ntl)v Déc Jaln Féb Mlar
1990
Day of the year

Figure 9-15 Normalised net demand with the existing heating technology, net of renewable generation with 80%
wind and 20% solar PV

In this example the generation is made up of 20% Ninja PV and 80% Ninja wind. When
the net demand (blue line) rises above zero (red line), energy needs to be taken from
the energy store. For example, it can be seen that net demand stays positive in December
1990 for a period of about 1 month, indicating that the demand would be met from
energy perhaps stored in August. This suggests energy needs to be stored for periods of
at least months. The higher the net demand is, combined with the longer it stays above
zero, determines how much energy needs to be stored and leads to the idea of using the
area under the curve as an indicator of how much storage is required. This will be tested
out in this chapter.

9.7.2 Methods

A set of different hourly net demand time series were created for different wind energy
fractions using equation (44).

N, =D, — W;W7 + W, — )P (44)

Where N, is the net demand time series, D, is the 40 year electricity demand time series
with the existing heating technology from 4.2.2, Ws is the wind energy fraction given

by equation (33), Wtcf is the time series of wind generation capacity factors from
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Renewables Ninja combined (onshore and offshore) near term future (1.2.7) and Ptcf is
the time series of PV generation capacity factors from Renewables Ninja (1.2.8). Dy,
W, and P were all normalised to that their values ranged between 0 and 1. The wind
energy fraction was varied 0 < Wy < 1 in steps of 0.01 creating a set of different net
demand time series. For each net demand time series, the following were calculated:
(Ne—u)?
L=
N,is the net demand time series from equation (44), u is the mean of N,and NT
is the number of values in N; .
e The area between the blue curve and red zero line from figure (9-15). First each
negative value in the time series was set to zero and then the trapezium method
was used to calculate the area.

e The standard deviation of the net demand time series g = where

9.7.3 Results

Figure (9-16) shows the first of these methods of identifying the optimal wind fraction.
This method used in previous work is to minimize the standard deviation of the
normalised demand net of renewable generation. In figure (9-16) it is plotted against
the wind energy fraction. The idea is that the minimum standard deviation indicates less
extremes. Less extreme values in the net demand time series mean either lower
additional generation or lower energy storage requirements. For the existing heating the
minimum occurs at a wind energy fraction of 95% and for 41% heat pumps it occurs at
92%.

Wind fraction vs standard deviation of the net demand curve
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Figure 9-16 Optimum wind energy fraction from the standard deviation of the net demand time series

Figure (9-17) shows the area under the normalised demand net of renewable generation
plotted against the wind energy fraction. The minimum area for the existing heating
occurs at a wind fraction of 93% whereas for 41% heat pumps it occurs at 94%. It makes
sense intuitively for more wind to be needed. Since wind is more correlated with the
demand than PV, a generation mix containing more wind will correlate better with the
demand, leading to lower energy storage.
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Wind fraction vs area under the net demand curve

1.0 4 - —— existing heating
~——— 41% heat pumps

0.8 4

0.6 1

0.4 1

0.2 4

Area under net demand curve

0.0 02 04 0.6 0.8 10
Wind Energy Fraction
Figure 9-17 Using the area under the normalised net demand curve to estimate the ideal ratio of wind to solar PV
energy generation.
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Figure (9-18) shows wind energy fraction found using lines of constant storage
minimum energy point plotted against that found using the area under the net demand
curve. It can be seen that although they do not match, that these is a fairly linear
relationship. This shows that this is useful method for identifying the wind energy
fraction.
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Figure 9-18 Wind energy fraction found using minimum energy compared to using area under the net demand curve
for lines of constant storage

Table (9-5) compares these two mathematical methods of finding the wind energy
fraction with the other methods used in this study. This illustrates the range of different
wind energy fractions found in this thesis. These would not be expected to be the same
because they are based on different assumptions. For example, the Fragaki 30 days
storage has a large 90% fraction because of using onshore wind and large energy
generation of 30% excess. The 50% excess is a lot of energy, which leads to lower
storage, so that energy must be used closer to when it is needed. Since more energy is
used in winter, when more wind energy is generated, this leads to a higher wind energy
fraction. Increasing baseload has more impact in the summer because summer has lower
energy requirements and therefore means less PV is needed. All these methods are
based on different assumptions, but they consistently find that 41% heat pumps require
a higher wind energy fraction.
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Table 9-5 Different methods and assumptions of finding the optimal wind energy fraction produce a range of
values. Those from this thesis have the section they occurred in shown in brackets.

Method Thesis Wind Energy Fraction
Section | Existing 41% Heat
Heating Pumps

Minimum standard deviation of the 9.7 95% 92%
normalised demand net of renewable

generation

Minimum area under the normalised 9.7 93% 94%
demand net of renewable generation

30 days storage. minimum energy 6.3.3 83% 87%
This study 30 days storage, minimum cost | 6.3.3 87% 91%
50% excess energy 6.3.4 96% 99%
Hydrogen Cost Optimal 6.3.5 88% 91%
CAES Cost Optimal 6.3.6 87% 92%
Baseload 0.0 min cost hydrogen 9.3 70% 75%
Baseload 0.3 min cost hydrogen 9.3 75% 75%
Baseload 0.5 min cost hydrogen 9.3 78% 83%
Baseload 0.7 min cost hydrogen 9.3 83% 89%

The method using the standard deviation calculates a high looking value for the wind
energy fraction for the existing heating of 95%. However, the wind fraction of 92% for
41% heat pumps is lower which contradicts all the other results in the table. This could
be because the addition of heat pumps to the demand increases its standard deviation
and if the peaks in the wind generation do not match the demand peaks then the optimal
wind fraction could be in less.

The new method of using the area under the net demand curve is consistent with the
other methods in finding that 41% heat pumps need more wind. However, it is also
slightly high compared to the other values. Therefore, the conclusion is that using the
area under the curve is a better method of finding optimal wind energy fraction than
using the standard deviation. Finding the area under the net demand curve requires
much less computational power than running the full hourly model. It runs in seconds
on an ordinary PC, compared to a few hours for the daily energy model or a few days
for the hourly energy model. It provides a useful quick method of estimating the
optimum wind energy fraction.

However, neither the standard deviation nor the area under the curve method take
account of efficiency. An energy balance model will produce a more accurate result if
it considers energy lost for efficiency of storage and the timing of when the periods of
high demand occur relative to those of high generation and if the energy store can be
refilled before the next such period. The methods using the standard deviation and the
area under the curve are using normalised time series, which means that they are
equivalent to a minimum over generation case.
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9.7.4 Summary and Conclusions

As an alternative to using an energy model, a new mathematical method of finding the
optimum wind fraction has been proposed. This is to minimize the area under the
demand net of renewables. It has been shown to be more accurate than minimizing the
standard deviation, a method proposed in previous work. It runs much faster than an
energy model and has a approximately linear relationship with the optimum wind
energy fraction found using constant lines of storage. The new method finds that
heating electrification increases the wind energy fraction by 5% whereas other
experiments in this thesis have shown the energy fraction increasing by between 4%
and 6%. All configurations from table (9-5) show that the UK should have more than
70% wind and that the addition of electric heat pumps increases this fraction.

9.8 Summary and Conclusions

To simulate the migration away from today’s system, the capacity of dispatchable
generation was gradually reduced with a varying mix of wind and solar. In contrast to
the system with only baseload, wind and solar, there is no clear optimal wind energy
fraction. However, as dispatchable generation is reduced with today’s amount of
storage, more wind energy is needed. As the amount of dispatchable generation is
reduced, modelling a migration towards renewable generation, it was found that energy
storage is required after about 20% renewables with 50% excess generation.

Heating electrification does not change the relationship between energy curtailment and
storage. The efficiency of the energy storage might be less important than its capacity,
due to two factors: (i) the energy lost due to curtailment exceeds the additional energy
required to overcome the inefficiency of the energy store by an order of magnitude (ii)
the energy store is full most of the time. A full energy store implies curtailment, so a
lower charge efficiency does not matter if there is plenty of excess energy. However, a
low discharge efficiency effectively reduces storage capacity. The energy store must
consist of technology storing energy for long periods of multiple years suggesting that
there could be loss through self-discharge. It should also be noted that storage capacity
tends to be determined by extreme events. Future research should consider charge and
discharge efficiency separately.

A lack of energy storage can be compensated for by increase in baseload, for both the
existing heating technology and 41% heat pumps. The cost model used in this project
which assumes the baseload to be nuclear with current costs, shows a similar increase
in the cost of electricity for both the existing heating technology and for 41% heat
pumps. An increase in baseload increases the wind energy fraction for both the existing
heating and 41% heat pumps.
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10 Conclusions, contributions, and further work

The main research question in this thesis is: How the future decarbonization of heat and
transport will impact the mix of solar, wind and storage in a power system with a high
penetration of these technologies? To answer this question three 40-year UK electricity
demand time series were created: for the existing technology, with 41% of heating
provided by heat pumps, and with most transport as EVs. A novel method for
incorporating heating electricity into the historic electricity demand was developed
allowing the impact of heat pumps alone to be studied. The method accounts for long-
term weather effects, whilst keeping socioeconomic and technological factors constant.
These electricity demand time series were used in a high-level energy model to
calculate the minimum energy storage required for a generation mix including wind,
solar, base load and dispatchable power sources. It was found that heating
electrification increases the proportion of wind energy required by between 3% and 5%.
In contrast, a change to providing most transport by electric vehicles does not
significantly change the optimum proportion of wind energy required. For an example
configuration generating 80% excess energy above the load, 41% of heating provided
by heat pumps requires 2 days more storage, whereas most transport provided by EVs
requires 15 more days storage.

Before the main research question could be answered, four subsidiary questions were
posed. The main conclusions for each are summarised below, followed by the main
question. Then the conclusions from the additional case studies are summarised. The
main contributions to knowledge are listed. This final chapter concludes with
suggestions for further work.

10.1 Electricity demand incorporating changes to heating alone.

The first subsidiary research question was: how electricity demand including changes
to heat pumps alone could be generated. This was answered by chapters 2-4.

Chapter 2 compared four methods of generating daily heat demand time series which
has not been done before. The methods have been validated against national gas
demand time series, including a regression to show that the unknown portion of the
time series is not heating. The methods were also validated against heat pump
measurements and gas smart meter data, data sources not previously used for this
purpose. It was found that using previous days’ temperatures to account for thermal
inertia of buildings and population weighting all improved the results, but that using a
finer weather grid did not bring significant improvements. The BDEW method based
on the when2heat dataset performed best and was therefore chosen. This is an import
result because this method has already been used to provide the UK heat demand input
for several previous studies by other authors.

Chapter 3 used the daily heat demand series from the best method identified in chapter
2 to generate 40-year hourly electricity demand time series for both the existing heating
technology of 2018 and future technology with electric heat pumps. UK COP curves
were used, and an hourly profile derived from UK heat pump trial data instead of one
derived from gas boilers as had been used in previous work. Heat demand was
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converted to electricity demand based on assumptions about current and future
proportions of heat pumps and hybrid heat pumps from UK National Grid Future
Energy Scenarios. Actual measurements from a UK heat pump trial show higher
electricity demand than that predicted by the model. However, there is a large
variability in heat pump trial COP making comparisons difficult.

Chapter 4 used the two heating electricity time series created in chapter 3 to generate
two 40-year UK electricity demand time series enabling the impact of heating
electrification to be studied independently of other factors. Previous work has kept
socioeconomic and technological factors constant either by using linear regression to
replace the electricity for the heating sector in one year’s historic electricity demand
based on multiple years weather or has simulated all sectors. In contrast the method
used here replaces the electricity for the heating sector with a heating electricity time
series from chapter 3 based on detailed calculations for current or future heating. The
new method can generate time series for recent years more accurately than those used
in previous work. Analysis of the historic electricity demand justifies the assumption
that removing the heating electricity removes its weather dependence. These generated
time series show that 41% of heating provided by electric heat pumps would double
monthly demand for electricity leading to an increase in about 30TWh for each winter
month. Year to year variability of electricity demand due to weather will increase by
37%. The research also revealed that the sensitivity of generated peak electricity
demand to the hourly profiles and heat demand methods used in modelling leads to
uncertainties in the estimations of peak electricity demand which vary over a range of
25 GW. This is quite significant compared to estimates of future peak demand of
between 40 and 100 GW reported in research. Such inaccuracies have not been
quantified in previous research.

10.2 Finding the minimum energy storage

The subsidiary research question: how should the required energy storage be found?
was answered in chapter 5. A simplified power system model including 10
improvements over previous UK studies was developed. This included a new algorithm
to find the minimum required energy storage for a simplified power system model. The
model includes a specified amount of baseload and dispatchable generation combined
with different proportions of simulated wind and solar power generation from 40-years’
historic weather. The algorithm for finding the storage was validated against a model
used by a previous study and found to match apart from small differences which can be
explained by the differences between the two models. The model accurately predicts
the amount of storage used by today’s energy system. The model has been used to show
the pattern of energy storage requirements for a range of different wind and solar
generation capacities for a system with a base load capacity of 0.4 days.

Chapter 7 investigated the sensitivity of the model to different inputs. It was shown that
whilst daily time series are adequate for estimating the required storage, that hourly
time series are needed for estimating wind energy fraction and system cost.
Experiments suggest that for large amounts of storage, using a few years’ data including
a cold spell is adequate and that it does not matter which decade of data is used.
However, for small capacities of storage, these choices in the data make a much larger
difference to the results. A sensitivity analysis on the impact of the different model
inputs from two previous studies found that the most significant difference was caused
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by using different wind generation data. Using a comparison between onshore and
offshore wind as an example, it was also found that as well as the higher capacity factor
from offshore wind, that the pattern of wind generation modelled in different ways can
have a large impact on the amount of storage required. Although previous work has
considered how different siting of wind turbines might result in higher capacity factors,
no previous study has been found that notes the impact that a different pattern of
generation can have on storage requirements. In other words, the impact of when the
energy is generated compared to when it is needed. However, the significance of this
effect depends on the particular configuration being studied. For example, a power
system with 105 GW wind generation capacity based on the pattern of onshore wind
requires 7 TWh more storage than one based on the offshore wind pattern. But with a
wind capacity of 245 GW, it requires 1| TWh less storage. Energy modellers need to be
wary of this possibility because it may mean that their models are less accurate and not
comparable with models using different wind generation data.

Chapter 7 also used the new model from this thesis to update the results of two previous
UK studies. Whilst Fragaki et. al found that 30% more energy generated for 30 days
pumped hydro storage could power the UK for 30 years, here it was found that only
15% more energy is needed. This difference is mainly attributed to the different wind
generation data used. Whilst Cardenas et. al. found that the cost optimal configuration
for CAES at today’s prices generated 15% excess energy and required the 43 TWh
storage, using the methods from this project found 11 TWh of storage with 21% excess
energy generated. The wind energy fraction found here of 84% was the same as that
found by Cardenas. Although they also used different wind generation time series, it
does not fully explain the difference and further work is needed.

10.3 Assessing the results

The subsidiary research question: How can the results be assessed was discussed in
chapter 6. Chapter 6 used the electricity demand time series generated in chapter 4 to
investigate the impact of heating electrification alone on the UK power system model
developed in chapter 5. The 40-year electricity demand with the existing heating
technology was compared to that with 41% heat pumps. There is a wide range of
different combinations of wind generation, solar generation and energy storage
capacities that can supply both these alternative UK electricity demands. Two quantities
were used to assess the impact of heating electrification: energy storage capacity and
wind energy fraction. The configurations to compare were identified using
configurations with the same storage, the same excess energy, or minimum cost. The
wind energy fractions between 83% and 96% for these different comparison
configurations, show a similar variation to those of the 7 different plans from other
studies discussed in the background section. The minimum energy generation
configurations for constant storage are close to but not the same as the minimum cost
configurations.

10.4 The impact of the electrification of heat

The heating part of the main research question: how does electrification of heating
impact shares of wind, solar and storage? was also answered in chapter 6. It was found
that heating electrification requires a higher wind energy fraction for the same amount
of storage, for example an increase by 4% for 25 TWh storage. For a baseload of 13.6
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GW and hydrogen storage, the lowest costs configuration of the model representing
today’s demand is for a wind capacity of 48 GW, PV capacity of 58 GW and 39 TWh
of storage. With heating electrification this is wind 54 GW, PV 68 GW and storage 47
TWh or 58 days. For comparison the UK currently has 9 days of gas storage. For CAES
or hydrogen storage, 41% of heating provided by heat pumps increases wind energy
fraction by 3% and storage by 11 TWh. Conversely, with a fixed wind energy fraction,
for example the configuration that generates 50% excess energy, 41% heat pumps
requires 5 days more storage. To look at it another way, increased wind capacity
reduces storage required more than increased PV. This is logical because more heating
energy is required in the winter when there is also more wind and less PV energy
available. For both the existing heating technology and 41% heat pumps, the amount of
storage required increases if less energy is generated and the wind energy fraction
decreases. For lower amounts of storage, the difference in wind energy fractions
between the existing heating technology and 41% heat pumps is greater.

With 41% heat pumps, if the PV capacity is zero, then viable configurations include 78
GW wind with 38.5 TWh of storage and 190 GW wind with 5 TWh of storage. The
minimum cost configuration for hydrogen storage is the former. For zero wind, 340
GW PV capacity requires 104 TWh of storage with the existing heating and 130 TWh
after heating electrification. Whereas 2.7 TW of PV generation capacity requires 1.6
TWh of storage with the existing heating and 2.9 TWh with heating electrification. So,
if PV and storage were sufficiently cheap, a solution with PV only and a large amount
of storage would be possible. However, the optimal solutions are a combination of wind
and PV.

Chapter 8 updated the energy storage model to enable a comparison between supplying
heating with electric heat pumps and hydrogen boilers to be made. It was assumed that
if the energy storage medium is hydrogen, then the hydrogen can also be used to supply
heating using hydrogen boilers. It was found that for hydrogen boilers there is no
obvious optimum wind energy fraction. If the electricity to create green hydrogen is
included, then heat pumps use about 10 times less electricity than hydrogen boilers and
have an electricity cost less than 20%. However, this model does not take account of
the cost of upgrading boilers and the gas network to use hydrogen and installing heat
pumps for all heating to be provided by heat pumps. No previous work including
hydrogen boilers under long-term weather variation has been found. However, a
previous study of a 3-year period found that architectures based on district heating and
electric heat pumps need about four times less electricity per unit of heat and have a
whole system cost 33% lower than those providing 70% of heating using hydrogen
boilers.

10.5 Electric vehicle time series

Chapter 8 also answered the subsidiary research question: how should an electricity
demand time series incorporating the impact of EVs alone be generated? Weather
dependent EV electricity demand time series were added into an electricity demand
with the heating technology of 2018. This enabled the storage model from chapter 5 to
be used to study the impact of transport electrification alone. The model has shown that
electrification of transport increases the annual electricity demand from 371 TWh to
489 TWh. The seasonal impact is less significant for that of heating electrification: with
electricity demand varying over a range of 10 TWh between years without EVs and 14
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TWh with EV’s included. Previous work including EVs into generated electricity
demand time series does not take the weather into account. The power system
configuration with the minimum cost for EVs occurs with a 72% wind as opposed to
88% without EVs and uses 15 fewer days (12 TWh) of storage. This contrasts with
heating where the proportion of wind increases. This could be because most of the cost
of hydrogen storage is due to charging and discharging. Heat pumps have a big impact
on peak demand and so could lead to high charge rates, whereas EVs are being modelled
as charging partly overnight. The minimum energy point on the 30 days’ storage
contour also occurs at higher proportion of PV with electric vehicles. This is likely to
be due to heat pumps requiring more energy in the winter, but EV charging is spread
more evenly across the year. No other studies have been found that look at the impact
of electric vehicles on the proportions of wind and solar.

10.6 Changes to power generation

Chapter 9 included several case studies using the model. It was found that:

e Energy lost due to curtailment exceeds the additional energy required to
overcome the inefficiency of the energy store by an order of magnitude. This
excess energy could compensate for losses due to charging the energy store and
losses due to self-discharge. This suggests that the charge efficiency of the
energy storage is less important than its discharge efficiency. The energy store
is full most of the time, suggesting its storage capacity tends to be determined
by extreme events.

e There is no clear optimal wind energy fraction with today’s generation mix.
Nevertheless, as the capacity of dispatchable generation is reduced, modelling
a higher proportional of renewable generation with today’s amount of storage,
more wind energy is needed. Energy storage is required after about 20%
renewables with 50% excess generation.

e For both the existing heating technology and 41% heat pumps, a lack of energy
storage can be compensated for by an increase in baseload. Both heating
technologies show a similar increase in the cost of electricity for increasing
proportion of base load assuming nuclear power at today’s prices.

e Wind generation correlates better with electricity demand than PV generation,
so it would be expected that more wind generation would be needed. The
addition of heat pumps reduces the correlation of electricity demand with both
wind generation and PV generation and consequently more storage is needed.
Increased wind capacity reduces storage required more than increased PV for
both the existing heating technology and 41% heat pumps.

¢ A new method of finding the optimum wind energy fraction by minimizing the
area under the demand net of renewables was proposed and shown to be more
accurate than minimizing the variance, a method used in earlier work. The wind
energy fraction found by this new method and the other three comparison
methods used in this thesis, with different assumptions about base load and
storage technology all show a 4% increase due to heat pumps.
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10.7 Original Contributions to Knowledge
The original contributions to knowledge from this thesis are listed below:

e The heat demand method used by the when2heat dataset was found to be the
best from four heat demand methods tested. This is a useful result as this
method has already been used for several studies.

e The heat demand methods were validated against measurements from heat
pump trials and smart meters, data not previously used for this purpose.

e The novel method of incorporating heating electricity into the historic demand
was developed allowing the study of the impact of heat pumps alone.

e The hourly profile derived from measured heat pump data rather than gas
boilers was used.

e The finding that peak demand is very sensitive to the hourly profile or heat
demand method used.

e The seasonal and interannual impact of heat pumps were quantified, rather
than just the peak demand as is usual in most studies.

e The finding that heating is the only significant weather dependence of the UK
electricity demand.

e The new iterative algorithm to find the minimum required storage, and
improved modelling inputs over previous studies.

e The impact of the electrification of heat and transport on wind energy fraction
and storage

e The methodology to assess the impact of changes to demand from the
perspectives of energy, cost and storage.

e The sensitivity analysis of different modelling inputs used by this, and two
previous studies found that different wind generation time series had the most
significant impact. Different wind generation time series can have a significant
impact on storage requirements. This could apply to actual wind turbine
locations.

e The updates to the findings of two previous studies using the new methods.

e The study of the impact of hydrogen boilers on wind energy fraction.

e Showing that area under the net demand curve is a useful alternative way of
finding optimum wind energy fraction.

e The finding that energy lost due to curtailment exceeds storage losses by an
order of magnitude.

e That storage becomes necessary after about 20% renewables.

e That the energy store is full most of the time

10.8 Further Work

This section lists possible future work that could be undertaken in this project.

10.8.1 Heating

More realistic heat pump measurements are required in the future to be able to properly
validate time series of heating electricity from electric heat pumps.
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10.8.2 Storage

The energy storage algorithm defined in chapter 5 could be improved to find the optimal
initial state of charge, rather than specifying it.

One limitation of the energy storage model is that although it finds the minimum storage
capacity it does not try and minimize storage power. Since the cost of some long-term
energy storage technology, for example hydrogen is much more dependent on the cost
of the charging and discharge equipment, than the actual capacity, modelling power
curtailment might give cheaper solutions. The energy store could be charged up more
slowly. This could also be the case for transmission line constraints.

Based on previous work, this study has assumed that much more long-term storage is
required than short-term. However, the model could be improved to consider two types
of storage in a merit order: one short-term with high cost and high throughput, one long-
term with lower cost and lower throughput. This might enable the optimal proportion
of long- and short-term storage to be established.

Rather than choosing to base the cost model on today’s costs for a particular technology,
a more technology agnostic approach could be taken considering the relative costs of
wind, solar, energy storage, charge, and discharge. This could give an indication of the
relationships between the costs of different technologies might influence the optimal
configurations. The costs of geothermal and tidal power could be used rather than
nuclear. It would be interesting to find out if there are many configurations close to the
cost optimal one, and to provide a range of wind energy fractions.

Some previous studies have found that storage efficiency is important. However, others
say that cost is the most important factor. A new model combining relative costs,
storage power curtailment and efficiency could establish how important round-trip
efficiency is, considering the findings here that the energy lost due to efficiency is an
order of magnitude lower than that lost due to curtailment.

Rather than finding the minimum cost configuration, another method of looking at the
optimum wind energy fraction would be to find the configuration with the minimum
CO2 emissions. This could use an estimate of the current lifecycle emissions of wind,
solar and nuclear.

Another improvement that could be made to the model is to consider self-discharge.
Thermal storage could also be included in the model.

This work makes the implicit assumption that the weather of the past is a guide to the
weather of the future. The methods used in this study could be used with climate
projections.

The model used in this study treats the energy system as a single node. It could be

expanded to use different supply and demand time series for different parts of the
country and include transmission constraints in the model.
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10.8.3 Reproduction of Cardenas

An experiment was done to try to reproduce the Cardenas model as closely as possible
using the methods described in chapter 5. It is recorded in the future work section
because the result did not agree with the model used in this thesis, and further work is
required to explain it. Table (10-1) summarises the input parameters.

First the Cardenas et. al study was repeated as closely as possible without any assistance
from the authors. The same solar PV generation data from Renewables Ninja was used.
The wind generation data was derived from national grid figures in the same way. The
actual wind generation data from Elexon [114] was added to the embedded half hourly
wind generation from National Grid [83] and converted to capacity factors by dividing
by the quarterly capacity from government figures [104]. It was then converted to
hourly by aggregating. The power generation data for the years 2011-2019 was created
in the same was as Cardenas did. The historic electricity demand for 2011 — 2019 taken
from [83], was scaled by multiplying each year so that it had 335 TWh annual demand.
The cost model from Cardenas was copied exactly. The algorithm from Cardenas to
calculate the minimum storage was not reproduced here due to the uncertainty of being
able to replicate the complex algorithm without access to the computer code. Instead,
the algorithm from this study was used.

Table 10-1 Experiment to reproduce the results of Cardenas (see 5.3.1 for terminology)

Experiment Objective: Reproduce results of Cardenas et. al. as closely as possible.
Baseload: C;, = 0.0 Dispatchable: C;, = 0.0 Wind 0.0 < (,, 5.9 Solar 0.0 < (}, 5.9

Experiment | Frequency | n Demand | Storage | Wind | PV Years
1 Hourly 70% | Historic Iterative | NGrid | Ninja | 2011-2019
Mult

Figure (10-1) shows the results of this experiment. The amount of energy storage
required is plotted against the wind energy fraction for lines of constant energy
generation. Figure (10-2) shows a copy of Fig. 17 from Cardenas et. al which shows
the same thing. The pattern of the lines is similar to Cardenas et. al. with the minimum
storage occurring at the same wind energy fraction, but some of the actual storage
values are different. For the energy 1.10 line (10% over generation) the minimum is 65
days storage which at 60 TWh matches what Cardenas found. The 1.15 energy line
(15% over generation) has a minimum of about a 40 days storage which translates to
37 TWh which is not far off the 43 TWh of their cost optimal solution. However, for
the 1.25 energy line (25% over generation) Cardenas get just under 40 TWh whereas
here 5 TWh was found sufficient.
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1.0

Table (10-2) summarises these findings. It seems that the more excess energy is
generated, the more the findings of Cardenas diverge from that found in this thesis. The
amount of energy storage found by the model in this thesis compares well to that found
by Fragaki et. al. Also it seems strange that as the amount of over generation in figure
(10-2) increases that the required storage does not decrease by more. It would be
expected that generating more energy would eventually lead to needing no storage at
all. It therefore seems possible that the Cardenas model is not finding the most optimal
solutions for higher energy generation.
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Table 10-2 Comparison of storage required in this thesis to the findings of Cardenas et. al.

Energy generated This thesis Cardenas et. al.
1.10 60 TWh 60 TWh
1.15 37 TWh 43 TWh
1.25 5 TWh 40 TWh

Other possible factors which could account for the difference in the results found here

arc:
°

The electricity generation data used here is taken from [83] rather than directly
from Elexon and National Grid. However, when plotted, it appears that the
difference is small.

The wind generation data may have been scaled in a slightly different way.
The energy store is assumed to start 70% full in this model and it is not known
how full it was in the Cardenas model. However, experimenting with starting
the store between 50% and 90% full at the start did not make any difference to
the storage requirements. Having the store start 30% full increased the storage
requirement to 43 days, and 20% full increased it to 65 days.

Cardenas et. al. use a more complicated procedure to find the minimum storage
which involves modifying the net demand time series to account for the energy
lost due to storage round trip efficiency in one go, rather than splitting it up into
charge and discharge. The model used here simply applies an equal charge and
discharge efficiency calculated as the square root of the round-trip efficiency
when adding or removing energy from the store. It is noticeable that the
Cardenas result has the same charge rate, but a lower discharge rate. Here the
discharge rate has been calculated based on the energy removed from the store,
not the energy supplied to the load which is lower due to efficiency losses.

In summary, although the amount of storage found here for an excess energy generation
of 15% above the load matched that found by Cardenas, it diverged more from the result
found by the model used here the more the excess energy generation. Yet section 5.4.2
showed that the model used here gives almost the same energy storage requirement as
the Fragaki study. It seems more likely therefore that the Cardenas model is not finding
the most optimal solutions for higher energy generation. Further research is required to
confirm this.
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Appendix A Developed Software
In the course of this work, many python programs were developed. The three main
programs are briefly described here:

e Heat and heating electricity time series generation

e Modelling of net demand, generation, and storage requirements

e Comparison of output from storage modelling and plotting.

Appendix A.1 Heat and heating electricity time series generation

The python program used for generating heat and electricity demand time series is
available at https://github.com/malcolmpeacock/heat

The software generating the heating electricity demand time series can use any historic
year’s weather available from the ERA 5 reanalysis on two different grid resolutions.
It can also read the adverse weather scenarios files from the UK met office. It can
generate heat demand using four different methods, using a specified number of days
previous temperature. The hourly profile and the proportions of different types of
heating are a user supplied input. It can generate hourly heat demand, COP or heating
electricity demand time series for any European country provided an annual heat
demand is supplied as in input. The input parameters are summarised in table (11-1).

Parameter Description
ref Reference year
weather Weather year

version VERSION
method METHOD

Version - subdirectory to store output in, defaults to year.
Heat demand calculation method: B BDEW, W :Watson, S:
HDD 15.5, H: HDD 12.8

grid GRID Grid 1=0.75,0.75; 5=0.25,0.25

profile PROFILE Hourly profile

adverse ADVERSE UK Met office adverse weather scenario file in the adverse
sub director within the weather directory

country COUNTRY Country one of: AT BE BG CZ DE FR GB UK NI HR HU IE LU
NL PL RO SI SK

nopop No weighting by population

plot Show diagnostic plots

climate Account for climate change

electric Generate an eletricity time series

interim Use ERA-Interim instead of ERAS

tdays TEMP_DAYS

Number of previous days temperature to use (1 to just use
current day).

eta EFFICIENCY

Factor to multiple by annual demand by to take account of
efficiency.

ceta CETA

Factor to multiple COP demand by to take account of real
World conditions

Figure 11-1 Parameters for the program to generate heat and electricity demand time series
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Appendix A.2 Modelling of net demand, generation, and storage requirements

The software implementing the storage model can already be used to read in different
sources of wind and solar power generation data, including future adverse weather
scenarios from the Met Office. It has 3 different algorithms for finding the minimum
storage. It can read electricity demand from two different sources and scale it in three
different ways. The program writes out a file containing various parameters for each
combination of wind and solar generation, including the amount of storage required and
energy generated. The input parameters are summarised in table (11-2)

start START Start Year
end END End Year
reference REFERENCE Reference Year
adverse ADVERSE Use specified Adverse scenario file of the form
a5s1 where a=warming, 5=return period,
s=severity or d=duration, 1=event. The possible
warmings are: a=12-3, b=12-4, c=4
scenario e P All Heat Pumps
o F FES Net Zero Hybrid Heat Pumps
e G 41 percent Heat Pumps
e H Half Heat Pumps
e R Existing heating provided by Heat
Pumps
e B All Hydrogen Boilers
e N No heating
e E Existing Heating based on weather
dir DIR Output directory
plot Show diagnostic plots
cplot Show climate related plots
dmethod Method of creating a multiyear demand series:
e Add: add a varying amount to each year
as per Fragaki et. al.
e Multiply: multiply by a varying amount as
per Cardenas et. al.
e Baseline: add the heating electricity to
baseline demand.
hourly Use hourly time series
climate Use climate change adjusted time series
base Use range of baseload shares
Ev Include Electric Vehicles
genh Assume hydrogen made from electricity and
stored in the same store
Normalise Factor to normalise by (ie converting to days):

e annual: mean annual demand.
e peak: the peak demand
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e scale: use the value passed in

scale SCALE

How to scale:
e average (energy over the period)
e reference (by the reference year)
e oravalue passedin.

storage STORAGE

Storage model:
e Kf Fragaki et. al
e New iteratively find the wind and solar for
each value of storage
e All iteratively find the storage for each
combination of wind and solar

constraints CONSTRAINTS

Constraints on new storage model: new or old

eta ETA Round Trip Efficiency.

etad ETAD Discharge Efficiency. If this is specified nonzero,
then eta is the charge efficiency

npv NPV Number of points in pv grid

nwind NWIND Number of points in wind grid.

baseload BASELOAD

Base load capacity.

step STEP

Step size. Between different wind and solar
capacities.

cfpv CFPV

PV capacity factor to scale to, default is to leave
unchanged

cfwind CFWIND

Wind capacity factor to scale to, default is to leave
unchanged

shore SHORE

Wind time series to use:
e On Use only onshore wind
e Off only offshore,

e allall
ninja Which ninja to use: near, current, future
kfpv Use PV generation from Fragaki et. al.
Kfwind Use wind generation from Fragaki et.al.
ngwind Use National grid wind generation scaled by
quarterly capacity
demand Electricity demand data source: espini, kf or
national grid
shift Shift the days to match weather calendar
wind WIND Wind value of store history to output
pv PV Pv value of store history to output
days DAYS Example store size to find for store hist plotting
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Threshold THRESHOLD

Threshold for considering 2 wind values the
same in new storage model

variable VARIABLE

Amount of variable generation, default-0.0

store_max STORE_MAX

Maximum value of storage in days, default=80.0

heat_electric HEAT_ELECTRIC

Proportion of heat in electricity demand,
default=0.11

contours CONTOURS

Set of values to use for contour lines

Figure 11-2Parameters for the program to calculate storage requirements for different demand and generation

Appendix A.3 Comparison of output from storage modelling and plotting.

This program reads in the files created by the previous program and creates plots.

rolling ROLLING Rolling average window

decimals DECIMALS Number of decimal places

plot Show diagnostic plots

inrate Base the charge rate on the energy
input, not energy stored

mcolour MCOLOUR Plot min point marker in black

nolines Do not plot the contour lines

markevery MARKEVERY Marker frequency

compare Output comparison stats

pstore Plot the sample store history

features Print feature correlations

pdemand Plot the demand

pnet Plot the net demand

heatdiff Create a heat map as difference of 2
scenarios

pfit Show 2d plots

pmin PMIN Plot minimum point of given variable

dcolour Use same colour for same number of
days

yearly Show Yearly plots

rate Plot the charge and discharge rates

stype Type of Storage for cost calculation:
pumped, hydrogen, caes.

min Plot the minimum generation line

annotate Annotate the shares heat map

scenario SCENARIO Scenario to plot

days DAYS Days of storage line to plot

sline Method of creating storage lines:
interpolation from x-variable or y-
variable or both, option to smooth, or
just take the nearest value.

cvariable CVARIABLE Variable to contour, default is storage

194




cx CX X Variable for contour creation, default
is f_wind

cy CY Y Variable for contour creation, default
isf_pv

sx SX Variable to plot on the X axis, default is
f_wind

sy SY Variable to plot on the Y axis, default is
f pv

adverse ADVERSE Adverse file mnemonic

last LAST Only include configs which ended with
store: any, full, p3=3 percent full

shore SHORE Wind to base cost on both, on, off.

default = both

excess EXCESS

Excess value to find minimum storage
against

normalise NORMALISE

Normalise factor to override the one
from settings

tenergy TENERGY

Total energy to pass to cost calculation
instead of total electricity demand.

variable VARIABLE

Variable to plot from scenario

heat HEAT Variable to plot a heat map of
surface SURFACE Variable to plot 3d surface with
pwind PWIND Print points with this wind proportion
ppv PPV Print points with this PV proportion
costmodel Cost model: current or future costs

Figure 11-3 Input Parameters for program to compare outputs and plot contour lines
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Appendix B POD challenge energy forecasting competition

The author took part in the Presumed Open Data (POD) Challenge energy forecasting
competition. Organised by The Energy Systems Catapult which is a publicly funded
body set up to improve collaboration between academia and industry and Western
Power Distribution (WPD) which is a Distribution Network Operator (DNO). The
details and results of the competition are available at
https://codalab.lisn.upsaclay.fr/competitions/213#learn_the details-overview

Appendix B.1 Background

High resolution monitoring of electricity usage can be expensive and requires
processing of large amounts of data. The features important to power system modelling
are the peaks and troughs in electricity demand. The aim of the challenge is to find out
if some of the features of high-resolution demand, particularly the maximum and
minimum can be estimate accurately given only the 30-minute averages and weather
data. The aim is to estimate the maximum and minimum demand at minute resolution
for each 30-minute period for a whole month. Figure (11-4) shows the mean demand
(in blue) over a half hour period in blue from a substation which has a large amount of
embedded PV generation attached. The objective is to use this, along with weather data
to estimate the maximum and minimum demand (shown in orange and green
respectively).

demand

2.5
—— demand

—— max_demand

&0 ‘ —— min_demand

Demand (MWh)

03
Jul
2021

Hour of the year
Figure 11-4 Half hourly demand, maximum and minimum for a period in July 2021

The data values supplied are summarised in table (11-1).
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Table 11-1 Data supplied to POD challenge participants

Data Value Availability

Half-hourly mean demand 2 years of consecutive values, followed by
the forecast month

Half-hourly minimum demand 2 years of consecutive values

Half-hourly maximum demand 2 years of consecutive values

Hourly Temperature 2 years, followed by the forecast month

Hourly Solar irradiance 2 years, followed by the forecast month

Hourly Windspeed north component | 2 years, followed by the forecast month

Hourly Windspeed east component | 2 years, followed by the forecast month

Hourly Pressure 2 years, followed by the forecast month

Hourly Specific humidity 2 years, followed by the forecast month

The weather parameters were supplied for 5 geographic locations. The objective of the
competition was to predict the half hourly maximum and minimum value for the
forecast month that were not supplied. Participants were allowed several attempts to
estimate these values. Each attempt was assigned a skill score defined as the ratio
between the RMSE of the forecast divided by the RMSE of a benchmark. The
benchmark was to use the half hourly mean values as both the maximum and the
minimum. 35 teams took part. The author competed as a team of 1 person.

Appendix B.2 Methods

Additional variables were created (engineered features) by combining the given
parameters in conjunction with the time stamps. For example:
e demand_lagl means the demand for the previous half-hour period.
e Solar_irradiancel means the solar irradiance measured at weather location 1
e (s ghi means clear sky global horizontal irradiance. The solar irradiance
expected at the earth’s surface based on the position of the sun calculated from
the time of day and day of the year and geographic location of the substation.

Since it was known that there was a lot of PV generation attached to the substation, it
was thought that this might be affected by cloud cover. Therefore, an engineered feature
called cloud was created defined as the difference between cs_ghi, the theoretical solar
irradiance and the actual solar irradiance. The features used in the final prediction are
listed in table (11-2)
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Table 11-2 Features used in the machine learning forecast.

Variable Description Used For
Demand Half hourly demand Both
demand diff Difference between successive demand values [Max
demand lagl Previous half hour demand Both
cs ghi Clear sky global horizontal irradiance Max
demand lag?2 Demand from 2 half hours back Max
Trend Monotonically increasing counter Max
Zenith Solar zenith angle Max
Cloud Cloud estimate. Cs_ghi —solar_irradiancel  [Both
solar irradiancel diff Differenced between successive solar Max
irradiancel values.
Presyd Pressure from yesterday Max
demand lag4 Demand from 4 K periods back Max
Presdb Pressure from day before Max
K Half hour of the day Both
solar_irradiance var lagl [Variance of solar irradiance amongst weather [Both
stations for previous k
spec_humidity var lagl [Variance of humidity Max
windspeed var lagl Variance of windspeed previous k Max
windspeed var 'Windspeed variance Max
Wd Day of the week Max
spec_humidity var Variance of speculative humidity Max
Solar _irradiancel Solar irradiance at weather location 1 Min
Solar_irradiance var Variance of solar irradiance at different Min
locations
Wind speed eastl East component of windspeed at location 1 Min
Wind speedl Magnitude of windspeed at location 1 min
Dailyhume Daily humidity at location 1 Min
Solar irradiance2 Solar irradiance at location 2 Min

Windspeed1 diff

Difference between successive wind speeds at

weather location 1

Min

The features were chosen by systematically adding those features suggested by the
Lassoo method to see which ones improved the forecast. Figure (11-5) shows those
the important features positively and negatively correlated with the maximum half-

hourly demand.
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Feature importance using Lasso Model

leman
solar_irradiancel 4
windspeed_east1 4
windspeed] -

spec_humidityl _lagl 4
solar_irradiance2 +
solar_irradiancel Iagl
~ windspeed3 4
demand_lagl
solar_irradiance3
month -
doy

wd
. windspeed4
windspeed_northl 4
windspeed_east5 1
spec_humidity5

ok

windspeed2 +
windspeed_east2
ason +

windspeed_eastl_lagl 4
solarirradiances

ype
temperature2 4
pressurel +
pressure2 4
ressure3 +
spec_humidity3
windspeed_east4 4

pressures
windspeed_northS
Tempyd 4
windspeed5 -
solar_irradiance4

ressured 4
spec_humidity4 4
mpdb

windspeed_north4 ]
spec_humidity2 4
temperature4

s kA
windspeed_northB_la(jﬁ 4

kA
temperaturé5 4

. demand_lagz
windspeed_north2 4
temperaturé3 lagl -
demand_lag4

temperaturel 4
dai ytemg 1
spec_humidityl 4

0.0 0.2 0.4 0.6 0.8

Figure 11-5 Feature importance using the Lasso Model

The following machine learning methods were tried to see which one gave the best
forecast:

e A Multilayer Perceptron (MLP)

e Gaussian Process Regression (GPR)

e Random Forest (RF)

e Light GBM (Gradient Boosting Machines)

To use these methods, the engineered features had to be supplied to the method along
with various tuning parameters. All the features were normalised. Success in the
competition would therefore be a combination of method selection, tuning and choice
of which features to use. Solutions were programmed in Python. The methods were
trained by trying to predict the maximum and minimum values from the previous

supplied data.

A Multilayer Perceptron (MLP) is a type of feedforward Artificial Neural Network
(ANN). The MLP used in this project had a linear input layer, a sigmoid layer equation
(A1) and a leak- relu layer equation (A2)

1 (A1)
T = e
C( xifx=0 (A2)
L) = {s x, otherwise

Where slope s=0.01

Gaussian Process Regression (GPR)[115] is a supervised learning method. Its
advantage is that it produces a probabilistic prediction in terms of a value and a
confidence interval and can refit parts of the model if the confidence interval is too low.
It can be interpreted as a baysian version of Support Vector Machines (SVR). Its
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disadvantage is it is not sparse (ie uses all samples) and inefficient with a large number
of features.

Random Forest (RF) is an ensemble method which takes the average of many decision
trees. A decision tree is a method of subdividing the data based on the values of certain
variables. Individual decision trees tend to overfit, but RF overcomes this limitation by
averaging the predictions of many trees.

Light GBM (Gradient Boosting Machines) is an open source framework for predictions
originally developed by Microsoft. Like RF it is also based on decision trees, but with
histogram-based algorithms that bucket continuous feature values into discrete bins.

Appendix B.3 Results

Figure (11-6) shows an example of one of the forecasts. The maximum half hourly
demand is shown in blue compared to the actual maximum in orange.

Forecast and actual min and max demand

A m f‘ \,\V‘ \_//\

?

|

Demand (MW)

—— actual max_demand
—— forecast min_demand
—— actual min_demand
204 — half hourly demand

-15

/— forecast max_demand

08 09 10 11 12
Jul
2021

Half Hour of the month
Figure 11-6 Example of forecast minimum and maximum demand

It was found that LGBM gave the best forecast. The competition took place over a
period of 2 weeks. During the practice sessions 36 teams from all over the world took
part. By the time of the actual competition this was down to 17 as those who were not
doing well dropped out. On Monday of the 2™ week the author was in the lead in the
competition as shown in figure (11-7)
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Results

malcolm
2 alefianrahman
3 burrowsej

4 satrughna
5  wpd_challenges
6  AyrtonB

1

1

12/02/21

11/30/21

11/30/21

12/02/21
11/26/21
11/28/21

u_cvml
ESDA Dream Team

ghd-not-the-hair-straightener

code_green

Figure 11-7 POD Challenge standings on Monday of the 2nd week

0473 (1)

0480 (2)

0483 (3)

0.493 (4)
1.000 (5)
1.545 (6)

However, during the last week several of the other teams improved their forecasts. So,

the author dropped to 6 place at the end as shown in figure (11-8)

flziel 6
2 jw99 6
3 satrughna 6
4 AyrtonB 6
5 burrowsej 5
6 malcolm 5
7/ arvinlim 4
8 alefianrahman 1
g ecureuil 5
10  Daniel 6
1" matthias 2
12 mklienz 3

12/10/21

12/10/21

12/03/21

12/10/21
12/10/21
12/08/21
12/08/21
11/30/21
12/09/21
12/10/21
12/02/21
12/09/21

Figure 11-8 Final POD Challenge standings

LFCE - Load Forecasting Crew Essen
WOoJJ

code_green

Random Forresters
ghd-not-the-hair-straightener
u_cvml

The Bad Bois

ESDA Dream Team

The Resistance

nzlads

0426 (1)

0436 (2)

0437 (3)

0443 (4)
0459 (5)
0.460 (6)
0.466 (7)
0480 (8)
0.486 (9)
0511 (10)
0520 (11)
0537 (12)

The winning team consisting of a professor and two PhD students from Essen
University using Generalized Additive Methods (GAM) models, which performed
better than their two MLPs. The 2™ placed team, 4 PhD students from Imperial College

also used GAMS. A team of 5 from a company in Pune India was 3.

Appendix B.4

Conclusions

The competition was a good learning experience, and 6 place was not bad considering
I was a team of 1 competing against multi-person teams who were perhaps machine

learning experts.
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Appendix C  Corrections following viva.

This appendix contains a list of the changes made to the thesis following the viva.
There are three tables:

e (11-3) Minor corrections listed in the examiner’s response.

e (11-4) Table of corrections arising from the external examiner's annotated

copy.
e (11-5) Other corrections identified by the author.

Table 11-3 List of minor corrections to the thesis requested by the examiners.

Comment from the examiners How this has been addressed in the
thesis
Pg. 20 Paragraph 4: Heating share “and 36% in the UK” added to the
of primary energy demand in the paragraph with reference.

UK needs to be provided on top of
the Europe figures to align with the
context of the thesis

Pg. 21 Paragraph 1: A clear The more variation in weather
justification of how 40 years of conditions, the more likely that periods
data contribute to the accuracy where high demand and low generation
and reliability of the developed occur at the same time are captured.
models needed. Discuss why such For example, a model developed using a
dataset does not add to the warmer year with lower heating
uncertainties of the models demand, or a windy year with high
considering drastically changing power generation might not cope with a
weather patterns in the recent cold, calm year. In this study 40 years of
years. historic weather data are used, on the

assumption that the weather patterns
of the past give a guide to those of the
future. Other research [12] has found
the multi-decadal variability of wind
generation based on historic weather to
be greater than climate change impacts
predicted by modelling, and [13] that
the impacts on PV generation in Europe
will be lower.

Pg. 21 Paragraph 2: Discuss If heating technology were changing
with clarity what is the over the analysis period, as it would be
rationale behind keeping all if historic electricity demand were used,
factors constant other than then it would not be possible to tell
weather. Focus on which changes were due to weather and
technological advances that if which to technology. Although the
ignored, can affect reliability of methodology developed here is used to
the developed methodology. study the impact of current heat pump

technology it could equally well be used
to keep technology constant at future
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levels, for example if heat pump COP
and housing insulation improves.

Pg. 25 Last Paragraph: More
clarification needed on what a
single node national energy system
means and what are the
implications of such simplification
on model outputs.

Pg. 27, paragraph 3 expanded: They
consider the national energy system as
a single node and do not take into
account that it is a complex network
connecting sources of supply and
demand with varying transmission
capacities. For example, wind
generation in the north of the UK, might
be needed to supply demand in the
southeast and the network needs the
capacity to do this. In rural areas, there
may not be enough transmission
capacity for houses to have both electric
vehicles and heat pumps. The results of
the models would be less accurate if the
transmission network were not
upgraded to have the necessary
capacity. These simplified models will be
referred to as energy balance models.

Pg. 27 Last Paragraph:
Description of near- and
long-term future series with
reference to the source.

Page 29, paragraph 1:

The near-term future series includes
wind farms that are newly built, under
construction or approved and has been
used in the study. The long-term future
series also includes planned wind farms
but was not used because it does not
separate onshore and offshore wind.

Pg. 29 Last Paragraph: cross-
reference to detailed and critical
analysis of the references
mentioned would be useful in
helping the reader navigate
through the thesis.

Page 31: More detailed discussions on
some of the references mentioned
above are available in other parts of the
thesis as listed below:

e A study on how the UK could be
powered by 100% renewable
energy [34] is also discussed in
section 2.1 in the background to
heat demand and the HDD 12.8
method.

e A study of seven plans for a UK
net zero energy system [19] has
already been mentioned in table
(1-3) in the context of energy
storage. It also features in a
discussion on energy modelling in
1.2.5 and the relative proportions
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of wind and solar generation in
5.1

The two previous studies on the
wind/solar/storage mix for the
historic demand [41] and [52] are
discussed in more detail in 5.1
and chapter 7.

Figure 2-3: The text above the
figure needs modification to
reflect HDD12.8 behaves
differently to the rest of the
methods

It can be seen that the HDD 12.8 method
matches the gas time series less well,
overpredicting at periods of high
demand. In contrast, the other three
heat demand methods over predict in
summer and consequently under predict
in winter.

Figure 3-4: The text below the figure
needs modification to provide more
details on

why the yellow line doesn’t look right.

As can be seen in figure (3-4) the shape
of the RHPP derived COP curve (yellow)
is different from the other curves. The
COP should increase as the temperature
difference declines, but this does not
happen for lower temperature
differences. Therefore, the RHPP curve
was not used in the analysis.

Pg. 55 Last Paragraph: ‘were used’
repeated

3.3 Paragraph 1: Fixed

Pg. 77 Last Paragraph item 1: need
modification ‘... and more will not
change..)

Page 79. Fixed

Pg. 84 Table 5-4: Last column needs
modification to reflect years in correct
format.

Page 86. Done

Pg 85: Discussion needed
around how realistic a
baseload of 0.4 is, and cross
reference to the sensitivity
section discussing
implications

Page 87 5.3.2:

A figure of 0.3 for nuclear as assumed
being between these two extremes.
Potential UK tidal power generation is
0.8 days [19] consisting of tidal
barrages, lagoons and stream
generation. Here it as assumed that 0.1
days is built. This gives a combined
nuclear and tidal value of 0.4 days. The
consequences of varying this baseload
are investigated in section 9.4.

Section 8.2.1 Pg.147: More
discussion and clearer statement
supported with evidence required
around delivery of the hydrogen
through existing gas pipelines.

Page 149 8.2. paragraph 1 extended:
The industry led Leeds City Gate Project
[22] proposed that the hydrogen could
be produced from steam methane
reforming of natural gas (called grey
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What are the changes necessary, is
it cost effective, is the whole
approach practical or probable?

hydrogen). The report states that both
the medium pressure and low-pressure
gas distribution networks have been
modelled using network analysis
software and that the gas networks
“have the capacity to 100% hydrogen
with relatively minor upgrades”. A new
transmission system to connect
hydrogen production into the gas
network at a cost of £230 million would
be required. Appliances need converting
and there are already hydrogen ready
gas boilers on the market. Whilst the
approach seems to be practical, since
this process emits CO,, it would be
difficult to achieve a net zero energy
system. It has to be combined with CCS
to capture the emissions, which is
described as blue hydrogen. A previous
study on blue hydrogen [23] found that
boilers using hydrogen from natural gas
with CCS cannot achieve net zero. The
alternative is to use hydrogen produced
by electrolysis of water which is termed
green hydrogen. This is what is assumed
here. It should be noted that in a review
of the evidence [111] (conducted after
the work described below was
completed), it was found that none of
the 32 independent studies identified
hydrogen as a viable solution for
decarbonizing space and water heating
in buildings.

Possibly renaming the section
conclusions and summary and
having a one main conclusion
for the thesis towards the end.

Done

In addition, marked up comments
and corrections to be addressed
are provided on an electronic
copy of the thesis provided by the
external examiner.

See table (11-4) below
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Table 11-4 Corrections arising from the external examiner's annotated copy.

Examiners comment How it was addressed

Page 3, para 5. Best in terms of what? “was the best” changed to most
accurately predicted the measured data

Page 20, para 4, what about demand The intraday variability of wind and

side management? solar can be mitigated to a limited
extent by demand side management,
but to cope with the seasonal variability,
they need to be complemented by
energy storage.

Page 20, para 4, rephrase This move to renewable power sources
such as wind and solar will result in a
migration away from burning fossil fuels
for kinetic energy and heat energy to
delivery of energy in the form of
electricity.

Page 21, para 2, rephrase Page 21:

e How should electricity demand
time series incorporating heating
electrification under long-term
weather variation be generated
which allows heating alone to be
studied?

e How should an electricity
demand time series
incorporating electric vehicles
under long-term weather
variation be generated which
allows the impact of EV’s alone
to be studied?

Page 23, para 1, power rating 1.2.2

e Charge rate: how quickly the
energy can be stored.

e Discharge rate: how quickly the
energy can be used (related to
power rating)

Correct capitalisation of kWh, MWh, Checked all

GWh, TWh

Page 23, para 3, write out plans Page 24: New table (3-1) added

Fig 2-2 Y axis should just be TWh Page 43: Plot fixed

Comment for Fig 2-6 Page 46: Amended seasonality and
mentioned HDD 12.8

Axis labelling For Fig 2-8 bias plots Page 48: Axis labels modified
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2.3.5

Comment added to explain grid
resolution

Fig 3-1 “ERA 5 reanalysis weather”

Page 51: Changed to “ERAS reanalysis
data”

P54 fig (3-5) show FES hybrid heat
pump plot?

Page 57, paragraph 1:

Reworded to include figure number
from referenced report, since it is not
clear if there is permission to reproduce
the plot from the government report.

P56 any info about if hot water by heat
pumps alone?

Page 58:
but this is not the case for at least 4% of
the houses

Equations (22), (23) summation?

Page 26:

Changed to use a union operator
although it seems unclear what the
correct mathematical notation for
concatenation of 2 time series is.

4.3.1 need to add nRMSE for 2017. Are
plots available?

Page 63:

Reworded to show nRMSE applies to
both years. New plot added as Fig (4-2)
resulting in renumbering of remaining
figures in chapter (4)

Text below fig (4-6), now (4-7)

Page 72:
Expanded to mention weather
dependent GHI

P76, para 2: express in percentages,
rather than TWh. Added a sentence

Page 78:
These variations are 187%, 196% and
91% respectively.

P79 reference to Natural gas generated
from electricity

Page 81:
Reference added to Sabatier process in
comment following equation (28)

Renewables ninja future changes?
Sentence added after equation (29)

Page 82:

The near-term future time series is used
which includes wind farms which are
under construction and planned in
addition to those that already exist.

Fig (5-1) add more arrows

Page 83:
More arrows added

Consistency of n as %

Updated tables at start of sections.

Which other studies use days?

Page 87, 5.3.2, paragraph 4:
Reference added

Fig (5-3) scale £/kWh

Page 89: Scale corrected

Fig (5-3) Question about production of
too much energy.

Page 89:

The high cost of the configurations with
large amounts of wind and PV is due to
curtailment.
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Fig (5-4) overplot both sets of results?

Page 92: New fig (5-6) added and
remaining figures in chapter 5
renumbered.

5.4.2 Why is max deficit different at
high PV?

Page 93: This is probably explained by
the energy store emptying, as shown in
figure (5-8) and discussed in the
following section.

5.4.4 charge rate GWh /h ??

Page 94: Changed to GW

Check apostrophe in years’ 6.1

Page 98: Checked

Fig (6-7), (6-8) common axis scale?

Page 106: Plots amended to show cost
on the same scale

Table (7-2) comment on effect of finite
ramp rates (w.r.t daily vs hourly)

Page 114: For daily time series the
charge and discharge rates will be
averaged over a longer time period and
so their maximum values will be smaller.
Using daily time series averages the
charge rate across the whole day
leading to lower calculated ramp rates.

Comment after (fig 7-4) — why does
decade make more difference at
smaller storage capacities.

Page 115: The bigger difference at small
storage capacities is probably due to
variations becoming smoothed out a
large amounts of storage because there
is more energy available to cope with
short term variation.

Fig (7-9) comment on large PV
difference at large PV configurations.

Page 120: This could be because the
Fragaki time series model more PV
panels in the south where the weather
is sunnier, whereas Renewables Ninja
model a PV panel at each weather grid
point.

Fig (7-11) different scale so can’t tell it
is not as large a difference as onshore
vs off?

Page 122: Fig (7-11) and Fig (7-10)
redone so they have the same contour
lines and comparable scale.

Fig (7-12) implications for storage?

Page 123: This would be expected to
result in lower storage requirements.

Fig (7-14) how does pattern vary?

Page 125: Reference forward to 9.6

Fourier Transforms to confirm storage
pattern? Comment added in 7.5
penultimate paragraph.

Page 135: One possible area of future
work might be to analyse the patterns in
store state of charge shown in fig (7-20)
and fig (7-21) using Fourier series to see
if there are any underlying cycles (such as

yearly).

Fig (7-23) Onshore offshore patterns vs
demand?

Page 133: Reference forward to 9.6
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13.67 days future wind potential seems
small? P133

Page 135: The existing capacity of
offshore is 0.3 days with a potential 23
days [19] in the future.

Wind is very unpredictable - rephrase
P133

Page 136 Wind patterns are due to a
complex interaction of many factors

Table (9-2), why no consistent pattern?
New paragraph added.

Page 157: These two configurations
have a small amount of storage, and a
large capacity of dispatchable
generation which can be supplied at any
time of year. Therefore, the dominating
factor in determining the optimal wind
solar mix becomes how much energy is
curtailed, rather than generating energy
close to when it is need as has been
seen in previous sections. The amount
of curtailed energy is determined by
how long the generation exceeds the
demand.

Figure (9-8) storage scale should have
units

Page 162: Units added

Figure (9-9) storage scale should have
units

Page 162: Units added

Figure (9-12) should units be days?

Page 164: Units changed to days on the
X axis

9.6.3 what happens with hourly
correlation, table (9.4)?

Page 166: The Fragaki et. al. data is only
available as a daily time series, hence
hourly correlation is not shown. Also,
this project is more concerned with
long-term storage, so the intra-day
correlations are of less importance.

9.6.3 where have | shown that offshore
wind correlates more closely with
demand curve?

Page 167: Paragraph extended to
reference specific values from table (9-
4) in paragraph below

Figure (9-16) 83% and 75% comment,
don’t seem to match the plot. Also plot
says all heat pumps not 41%.

Page 170: Fig (9-16) and Fig (9-17)
changed to be the 41% heat pumps ones
to match the text. Values of wind energy
fraction updated in text, table (9-5), and
conclusions.

Why is standard deviation a worse
method for heat pumps?

Page 172: This could be because the
addition of heat pumps to the demand
increases its standard deviation and if
the peaks in the wind generation do not
match the demand peaks then the
optimal wind fraction could be in less.

Future work 10.0.2

Page 180: Ramp rate, transmission
constraints.
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Table 11-5 other corrections identified by the author.

P62 Paragraph 2. 4.3.4 “cooling degreed days” changed to “cooling degree days”

P70 Fig 4-7 Y axis scale should be TWh

P93 Table 5-11 One day’s energy should have TWh as units.

P103 Table 6-3 41% fraction should be also 96%

P144 Fig 8-3 Y axis scale should be TWh

P128 table 7-14 had some incorrect values and has been updated.

Equation (35) corrected. In 7.1

Fig (9-14) had all heat pumps, yet text described 41% heat pumps. Figure
corrected.
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