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Abstract 
The mix of technologies in a future energy system is an important area of research. As 
the proportions of wind power and solar power generation capacities in the power 
system increase, energy storage becomes necessary to complement their variability due 
to weather. The subject of this thesis is how the wind/solar/storage mix will be impacted 
due to changes in electricity demand caused by the electrification of heat and transport 
using the UK as a case study. 
 
To account for long-term weather effects, whilst keeping socioeconomic and 
technological factors constant, a novel method has been developed for incorporating 
heating electricity into the historic electricity demand. This enables the impact of heat 
pumps alone to be studied. The research reveals that for predicted 2050 heat pump 
penetration levels the monthly demand for electricity doubles in winter. This leads to 
an increase of approximately 30 TWh for each winter month and a 37% increase in 
year-to-year variability of electricity demand due to weather. Temperature dependent 
electric vehicle time series incorporated into the electricity demand show a seasonal 
variation far lower than for heat pumps, with annual demand varying over a range 14 
TWh between years with EVs compared to only 10 TWh without. 
 
These electricity demand time series were used in a novel high-level energy model to 
calculate the minimum energy storage required for a generation mix including wind, 
solar, base load and dispatchable power sources. To provide sufficient granularity and 
variation in conditions, hourly demand and generation time series based on 40 years of 
historic weather were used. The optimum wind/solar energy mix from perspectives of 
storage, excess energy and cost were investigated. It was found that heating 
electrification increases the proportion of wind energy required by between 3% and 5%. 
In contrast, a change to providing most transport by electric vehicles does not 
significantly change the optimum proportion of wind energy required. Providing all 
heating with boilers fuelled by hydrogen generated via electrolysis would require 7 
times as much renewable energy compared to all heating provided by electric heat 
pumps. Energy lost due to curtailment exceeds energy lost to storage efficiency by an 
order of magnitude.  
 
A sensitivity analysis on alternative model inputs showed that different wind generation 
time series have the most impact on predicted energy storage capacity. Simulated 
offshore and onshore wind and actual national grid generation all have different 
patterns. This can have a significant impact on storage requirements, a result that has 
not been noted before. Although previous research has shown the impact that wind 
turbine locations have on the amount of energy they generate, when they generate this 
energy has had little attention.  
 
A novel comparison of four heat demand methods found that the method used by the 
when2heat dataset most accurately predicted the measured data which is an important 
result considering it has already been used by several other studies. The methods were 
validated against national gas time series, and measured data not previously used for 
this purpose. It was also found that peak electricity demand is very sensitive to the 
method of generating heat demand and hourly heat pump operating profiles, suggesting 
inaccuracies of 25% in previous estimates of future peak demand. 



4 
 

Table of Contents 
1 Introduction .......................................................................................................... 19 

1.1 Motivation and Research Questions .............................................................. 19 

1.2 Background ................................................................................................... 20 

1.2.1 Power Generation................................................................................... 21 

1.2.2 Energy Storage ....................................................................................... 22 

1.2.3 Heating Technology ............................................................................... 24 

1.2.4 Transport ................................................................................................ 25 

1.2.5 National Energy System Modelling ....................................................... 25 

1.2.6 Weather Data ......................................................................................... 26 

1.2.7 Modelling Wind Power Generation ....................................................... 27 

1.2.8 Modelling Solar Power Generation ....................................................... 28 

1.2.9 Time Series Metrics ............................................................................... 28 

1.3 Novelty of the research question ................................................................... 29 

1.4 Brief Introduction to Thesis Methods and Results ........................................ 31 

1.5 Novelty of the approach ................................................................................ 33 

1.6 Thesis Structure ............................................................................................. 33 

2 National Heat Demand ......................................................................................... 36 

2.1 Background ................................................................................................... 36 

2.2 Methods ......................................................................................................... 37 

2.2.1 Calculate annual Great Britain heat demand. ........................................ 37 

2.2.2 Calculate Daily Heat demand. ............................................................... 38 

2.3 Validation of Heat Demand Generation Methods ......................................... 40 

2.3.1 Validation against national Gas ............................................................. 41 

2.3.2 Validation of heat demand vs heat pump trial data................................ 43 

2.3.3 Validation of heat demand vs gas smart meter data .............................. 45 

2.3.4 Summary of heat demand validation ..................................................... 46 

2.3.5 Sensitivity to modelling changes. .......................................................... 47 

2.4 Summary and Conclusions ............................................................................ 47 

3 Creating Heating Electricity Demand Time Series .............................................. 49 

3.1 Background ................................................................................................... 49 

3.2 Methods ......................................................................................................... 49 

3.2.1 Convert the daily heat demand to hourly heat demand. ......................... 51 

3.2.2 Calculate Hourly COP at each weather grid point ................................. 52 

3.2.3 Calculate heating electricity demand for the whole country. ................ 54 

3.2.4 Hybrid heat pumps ................................................................................. 55 

3.2.5 Combine heating electricity demand for all configurations ................... 56 



5 
 

3.3 Validation of heat pump electricity demand time series ............................... 56 

3.4 Summary and Conclusions ............................................................................ 58 

4 The impact of heating electrification on national electricity demand .................. 59 

4.1 Background ................................................................................................... 59 

4.2 Methods ......................................................................................................... 60 

4.2.1 Baseline electricity demand time series ................................................. 61 

4.2.2 40-year electricity demand for existing heating technology .................. 61 

4.2.3 40-year electricity demand for future heating technology ..................... 62 

4.3 Validation of adding in weather dependent heating electricity ..................... 62 

4.3.1 Validation of Baseline Method .............................................................. 62 

4.3.2 Validation using linear regression. ........................................................ 63 

4.3.3 Electricity demand regression coefficients ............................................ 64 

4.3.4 Prove heating is the most significant part of electricity demand. .......... 64 

4.3.5 Summary of validation ........................................................................... 68 

4.4 Results of Electrification of Heat .................................................................. 69 

4.5 Sensitivity analysis of electricity demand. .................................................... 73 

4.6 Summary and Conclusions ............................................................................ 75 

5 Finding the minimum energy storage needed ...................................................... 76 

5.1 Background ................................................................................................... 76 

5.2 Methods ......................................................................................................... 79 

5.2.1 Finding the minimum required energy storage ...................................... 79 

5.2.2 Calculating the cost of electricity generation......................................... 83 

5.2.3 Wind energy fraction ............................................................................. 84 

5.3 Results and discussion ................................................................................... 85 

5.3.1 Standard way of summarising experiments in the thesis ....................... 85 

5.3.2 Investigation to establish model parameter values ................................ 86 

5.3.3 Parameter Values ................................................................................... 88 

5.4 Validation ...................................................................................................... 89 

5.4.1 Validate re-implementation of max deficit storage model .................... 89 

5.4.2 Validation of the method of finding the minimum storage.................... 92 

5.4.3 Validation of final State of Charge ........................................................ 93 

5.4.4 Cost Model Validation ........................................................................... 94 

5.4.5 Validation of the model with today’s energy system............................. 95 

5.5 Summary and Conclusions ............................................................................ 96 

6 The impact of the electrification of heating on shares of storage, wind and solar.
 97 

6.1 Background ................................................................................................... 97 



6 
 

6.2 Methods ......................................................................................................... 98 

6.3 Results ........................................................................................................... 99 

6.3.1 Minimum required storage for the existing heating technology and 41% 
heat pumps ........................................................................................................... 99 

6.3.2 Comparison of Experiments ................................................................ 100 

6.3.3 Configurations needing the same minimum storage ............................ 101 

6.3.4 The least storage configuration for 50% excess energy generation ..... 103 

6.3.5 Minimum Cost of electricity generation .............................................. 104 

6.3.6 Electrification of heat with CAES ....................................................... 107 

6.4 Summary and Conclusions .......................................................................... 108 

7 Sensitivity of storage model to inputs and previous studies .............................. 110 

7.1 Methods ....................................................................................................... 110 

7.2 Sensitivity to time period and frequency..................................................... 111 

7.2.1 Hourly or Daily time series .................................................................. 111 

7.2.2 Sensitivity to using a subset of the data ............................................... 113 

7.2.3 Comparing 4 years with an extreme cold year to 40 ........................... 114 

7.3 Sensitivity to model inputs Fragaki et. al. ................................................... 115 

7.3.1 Sensitivity to time period 1980-2019 compared to 1984-2013 ........... 116 

7.3.2 Sensitivity to electricity demand time series created by different 
processes ............................................................................................................ 117 

7.3.3 Sensitivity to solar PV Power generation data ..................................... 118 

7.3.4 Sensitivity to wind power generation data ........................................... 120 

7.3.5 Onshore wind generation from MIDAS stations compared with 
Renewables Ninja .............................................................................................. 121 

7.3.6 Onshore wind compared to offshore wind ........................................... 123 

7.3.7 Summary of impact of the model differences ...................................... 124 

7.4 Sensitivity to model inputs from Cardenas et. al. ....................................... 127 

7.5 Wind patterns and storage ........................................................................... 129 

7.6 Results ......................................................................................................... 135 

7.6.1 Update to 30-30 rule: running all UK on wind and photovoltaics ....... 135 

7.6.2 Update to cost optimal storage for CAES ............................................ 139 

7.7 Summary and Conclusions .......................................................................... 139 

8 Demand Case Studies ........................................................................................ 142 

8.1 The Impact of Electric Vehicles .................................................................. 142 

8.1.1 Background .......................................................................................... 142 

8.1.2 Methods................................................................................................ 143 

8.1.3 Results .................................................................................................. 144 

8.1.4 Conclusions .......................................................................................... 147 



7 
 

8.2 Hydrogen Boilers or Heat Pumps................................................................ 148 

8.2.1 Introduction .......................................................................................... 148 

8.2.2 Background .......................................................................................... 148 

8.2.3 Methods................................................................................................ 149 

8.2.4 Results .................................................................................................. 150 

8.2.5 Summary and Conclusions .................................................................. 153 

9 Generation Case Studies .................................................................................... 155 

9.1 The transition away from dispatchable generation ..................................... 155 

9.2 The relationship between storage capacity and Wind and Solar ................. 157 

9.3 Baseload ...................................................................................................... 158 

9.4 Lost Energy ................................................................................................. 160 

9.5 How long the energy store stays full ........................................................... 162 

9.6 Correlation between supply and demand .................................................... 164 

9.6.1 Background .......................................................................................... 164 

9.6.2 Methods................................................................................................ 165 

9.6.3 Results .................................................................................................. 165 

9.6.4 Summary and Conclusions .................................................................. 167 

9.7 Wind Energy Fraction ................................................................................. 167 

9.7.1 Background .......................................................................................... 167 

9.7.2 Methods................................................................................................ 168 

9.7.3 Results .................................................................................................. 169 

9.7.4 Summary and Conclusions .................................................................. 172 

9.8 Summary and Conclusions .......................................................................... 172 

10 Conclusions, contributions, and further work .................................................... 173 

10.1 Electricity demand incorporating changes to heating alone. ................... 173 

10.2 Finding the minimum energy storage ...................................................... 174 

10.3 Assessing the results ................................................................................ 175 

10.4 The impact of the electrification of heat .................................................. 175 

10.5 Electric vehicle time series ...................................................................... 176 

10.6 Changes to power generation .................................................................. 177 

10.7 Original Contributions to Knowledge ..................................................... 178 

10.8 Further Work ........................................................................................... 178 

10.8.1 Heating ................................................................................................. 178 

10.8.2 Storage ................................................................................................. 179 

10.8.3 Reproduction of Cardenas.................................................................... 180 

11 References .......................................................................................................... 183 

 



8 
 

  



9 
 

Acknowledgements 

I am lucky in that I was encouraged to learn from an early age by my father who was a 
Professor of Chemistry and my mother who had a degree in biochemistry.  Thirty years 
after completing first my degree in Applied Mathematics and Computer science, my 
new academic career began when I attended a post graduate open day with my late wife 
Poppy. As I am writing up my thesis, I am planning to move in with my new girlfriend 
Sue. I thank them all for their encouragement on this journey. 
 
Having a geologist uncle aged 95 and still writing a paper, provides inspiration that 
finishing a PhD aged 61 might still leave me some time to continue the new career. 
 
I would like to thank my supervisors for all the time they spent discussing and reviewing 
my work, and the other staff and students for welcoming an old PhD student into the 
university. 
 
 
Publications 

M. Peacock, A. Fragaki, and B. Matuszewski, "Review of heat demand time series 
generation for energy system modelling," in Energy and Sustainable Futures 
Proceedings of 2nd ICESF 2020, University of Hertfordshire / Online, 2020: 
Springer.  

 
Malcolm Peacock and Aikaterini Fragaki and Bogdan Matuszewski, "The impact of 

heat electrification on the seasonal and interannual electricity demand of Great 
Britain," Applied Energy, vol. 337, p. 120885, 2023, doi: 
https://doi.org/10.1016/j.apenergy.2023.120885. 

 
  



10 
 

Table of Figures 

Figure 1-1 Modelling the impact of heating electrification on wind, solar and storage 
in this thesis.................................................................................................................. 32 
Figure 1-2 Thesis Chapter Relationships ..................................................................... 34 
Figure 2-1 Relationship between daily Great Britain gas consumption and heating 
degree days 2018.......................................................................................................... 41 
Figure 2-2 Daily gas demand and daily gas demand with gas used for heating 
removed........................................................................................................................ 42 
Figure 2-3 Heat demand methods compared to heat demand from gas for 2018 ........ 43 
Figure 2-4 Number of monitored houses in the RHPP trial against time .................... 44 
Figure 2-5 Monitoring period for each house in the RHPP trial .................................. 44 
Figure 2-6 Comparison of methods of splitting total heat demand for a group of 
houses over a period into days using measured heat pump data (7 day rolling 
average). ....................................................................................................................... 45 
Figure 2-7 Comparison of methods of splitting heat demand over a period into days 
using gas smart meter data (7 day rolling average). .................................................... 46 
Figure 2-8 Residuals plots for the 4 heat demand methods validated against heat 
demand from historic gas ............................................................................................. 47 
Figure 3-1 Process to incorporate heating electricity for different years into the 2018 
historic demand ............................................................................................................ 50 
Figure 3-2 Hourly heat demand profiles for external temperature between -5°C and 
0°C ............................................................................................................................... 51 
Figure 3-3 Hourly heat demand profiles for external temperature between 10°C and 
15°C ............................................................................................................................. 52 
Figure 3-4 Relationship between heat pump COP and difference between source and 
sink temperatures from different studies...................................................................... 53 
Figure 3-5 Hybrid heat pumps compared to ordinary heat pumps – electricity demand 
and gas demand. ........................................................................................................... 55 
Figure 3-6 Comparison of predicted electricity demand from weather with actual 
hourly electricity demand from measured heat pumps in the RHPP trial (7 day rolling 
average) ........................................................................................................................ 57 
Figure 4-1 Change in historic annual electricity demand (TWh) over 40-year period 
from 1980 - 2019 ......................................................................................................... 60 
Figure 4-2 Comparison of predicting the 2017 electricity demand using the baseline 
method from this thesis and by linear regression......................................................... 63 
Figure 4-3  Correlation between HDH per day and 2017-2019 daily historic electricity 
demand ......................................................................................................................... 67 
Figure 4-4 Correlation between weather dependent GHI and baseline electricity 
demand 2017-2019....................................................................................................... 67 
Figure 4-5  Removal of heating from weekly electricity demand time series ............. 69 
Figure 4-6 Removing the electricity for heating from the historic electricity demand of 
2018 to obtain the baseline electricity demand. ........................................................... 70 
Figure 4-7 Baseline electricity demand (2018 time series without the electricity used 
for heating) compared with generated electricity demand assuming all heating is 
provided by heat pumps ............................................................................................... 70 
Figure 4-8 Existing Heating Technology compared to 41% heat pumps .................... 71 
Figure 4-9 The impact on the 2018 electricity demand if all heating were provided by 
electric heat pumps ...................................................................................................... 72 
Figure 4-10 40 years generated daily electricity demand time series incorporating 
41% of heating provided by heat pumps compared to existing heating ...................... 72 



11 
 

Figure 4-11 Annual demand with 41% heat pumps compared with heating electricity 
at 2018 levels ............................................................................................................... 73 
Figure 5-1 Flow chart showing the algorithm to find the minimum storage for a given 
net demand time series ................................................................................................. 82 
Figure 5-2 Minimum storage for full range of possible configurations of wind and 
solar to satisfy the load for 2018 heating technology for 40-years weather variation . 87 
Figure 5-3 Cost of electricity generation for each combination of wind and solar 
capacity to supply electricity demand with the 2018 heating technology for 40 years’ 
weather variation. ......................................................................................................... 88 
Figure 5-4 Recreation of Figure (8) from Fragaki et. al.  using the same data inputs 
and model. .................................................................................................................... 90 
Figure 5-5 Figure (8) from Fragaki et. al. showing lines of constant storage for 
different wind (x-axis) and solar (y-axis) generation capacities. ................................. 91 
Figure 5-6 Lines of constant storage from the re-coded Fragaki et. al. model plotted 
on the same graph as the original results. .................................................................... 91 
Figure 5-7 Comparison of the maximum deficit and iterative methods of finding the 
minimum storage using lines of constant storage. ....................................................... 92 
Figure 5-8  The fraction of the initial energy remaining in the store at the end of 40 
years using the maximum deficit model. ..................................................................... 93 
Figure 5-9 The fraction of initial energy remaining in the store after 40 years using the 
iterative model from this study. ................................................................................... 94 
Figure 6-1 The impact of 41% of heating provided by heat pumps on the UK 
electricity demand ........................................................................................................ 99 
Figure 6-2 The impact of 41% of heating provided by heat pumps on capacities of 
wind, solar and storage. ............................................................................................... 99 
Figure 6-3 Energy storage (days) needed with 41% heat pumps subtracted from 
storage needed with the existing heating technology for different combinations of 
wind and solar generation capacity ............................................................................ 100 
Figure 6-4 The impact of 41% heat pumps on energy storage with a 50% round-trip 
efficiency.................................................................................................................... 102 
Figure 6-5 Wind energy fraction using the minimum energy generation configuration 
for different amounts of storage comparing the existing heating and 41% heat pumps.
.................................................................................................................................... 102 
Figure 6-6 Relationship between minimum storage and wind energy fraction for 
existing heating and heat pumps ................................................................................ 103 
Figure 6-7 Cost of generating electricity at today’s prices  for 0,4 days base load and 
different wind and solar capacities for the existing heating ...................................... 105 
Figure 6-8 Cost of electricity generation at today’s prices for base load 0.4 days and 
different capacities of wind and solar to satisfy the UK electricity demand but with 
41% of heating provided by heat pumps .................................................................... 105 
Figure 6-9 Minimum cost configuration at today’s prices compared to minimum 
energy configuration for configurations with the same minimum storage capacity .. 107 
Figure 7-1 Lines of constant storage showing the difference between using daily or 
hourly time series ....................................................................................................... 112 
Figure 7-2 Comparison of 50 days storage lines for 4 distinct decades .................... 113 
Figure 7-3 Comparison of 30 days storage lines for 4 distinct decades .................... 114 
Figure 7-4 Comparison of 10 days storage lines for 4 distinct decades .................... 114 
Figure 7-5 Lines of constant storage using 4 years with a cold spell compared to using 
40 years ...................................................................................................................... 115 



12 
 

Figure 7-6 Lines of constant energy storage modelled using the time period of 1984-
2013 compared with those modelled using 1980-2019. ............................................ 116 
Figure 7-7 Constant storage lines using electricity demand time series created in two 
different ways............................................................................................................. 117 
Figure 7-8 - UK PV generation using MIDAS stations compared to a PV panel at each 
weather grid point from Renewables Ninja - Zoomed in (10 day rolling average) ... 118 
Figure 7-9 - Comparison of constant storage lines modelled using PV generation from 
MIDAS weather stations with those modelled using PV generation data from 
Renewables Ninja with one PV panel at each weather grid point ............................. 119 
Figure 7-10 Constant storage lines modelled using 6 turbines at MIDAS onshore 
weather stations compared with those modelled using Renewables Ninja wind 
generation data (onshore and offshore)...................................................................... 121 
Figure 7-11 Lines of constant storage modelled using onshore wind generation from 
Renewables Ninja compared with those modelled using MIDAS weather stations. . 122 
Figure 7-12 Wind generation from Renewables Ninja compared to Fragaki et. al. 20 
day rolling average. .................................................................................................... 122 
Figure 7-13 Lines of 10 days and 50 days energy storage modelled with offshore wind 
compared to those modelled using onshore wind. ..................................................... 123 
Figure 7-14 Comparison of wind energy fraction found using 30 day storage lines 
modelled with the onshore wind generation from Renewables Ninja compared with 
those from Fragaki et. al. ........................................................................................... 124 
Figure 7-15 30-day storage lines generated using the model and data in this study 
compared to those modelled using all the individual modelling differences between 
this study and Fragaki et. al. ...................................................................................... 125 
Figure 7-16 Wind energy fractions found using minimum energy points for 30 days 
storage compared for all modelling differences......................................................... 125 
Figure 7-17 Lines of 30 days energy storage showing the impact of different 
modelling methods ..................................................................................................... 128 
Figure 7-18 Impact of different methods used by Cardenas on the 30-day storage line 
wind energy fraction .................................................................................................. 128 
Figure 7-19 - Comparison of 30 day storage lines modelled using onshore wind, 
offshore wind and onshore wind scaled to the mean offshore capacity factor. ......... 130 
Figure 7-20  State of charge: Comparison of wind generation offshore, onshore, and 
onshore scaled to offshore capacity factor. ................................................................ 131 
Figure 7-21  State of charge: Comparison of wind generation offshore, onshore, and 
onshore scaled to offshore capacity factor. ................................................................ 131 
Figure 7-22 Lowest state of charge: Comparison of wind generation offshore, 
onshore, and onshore scaled to offshore capacity factor. .......................................... 132 
Figure 7-23 Wind capacity vs storage for offshore wind and onshore wind scaled to 
the same mean capacity factor as offshore wind. ...................................................... 132 
Figure 7-24 Locations of UK wind farms .................................................................. 134 
Figure 7-25 Results using the modelling methods of this thesis but presented in the 
same way as figure (8) from Fragaki et. al. ............................................................... 136 
Figure 7-26 Comparison of 30 days storage line using the methods from this thesis 
with those of Fragaki et. al. ........................................................................................ 137 
Figure 7-27 - Minimum energy configuration from those requiring a minimum of for 
30 days of energy storage .......................................................................................... 137 
Figure 8-1 Flow of energy from supply to demand in the model used in this thesis . 142 
Figure 8-2 EV charging electricity demand time series for 2018 compared to the 
historic electricity demand with the existing heating technology. ............................. 144 



13 
 

Figure 8-3 The impact of electrification of transport for 10 years historic weather on a 
time series incorporating the existing heating technology of 2018 ........................... 145 
Figure 8-4 Interannual variation in electricity demand including EVs ...................... 145 
Figure 8-5 The impact of electrification of most transport on lines of constant storage
.................................................................................................................................... 146 
Figure 8-6 Electricity demand comparing heat pumps and hydrogen boilers ........... 151 
Figure 8-7 Hydrogen demand for heat pumps and hydrogen boilers ........................ 151 
Figure 8-8 Comparison of heat pumps or hydrogen boilers for configurations needing 
40 days hydrogen storage ........................................................................................... 152 
Figure 8-9 Comparison of heat pumps and hydrogen boilers wind energy fraction for 
40 days storage ........................................................................................................... 153 
Figure 9-1 Wind energy fraction for configurations needing 0.03 days storage for 
different amounts of dispatchable generation ............................................................ 156 
Figure 9-2 Increase of storage needed with transition away from dispatchable 
generation to renewables............................................................................................ 157 
Figure 9-3 Lines of constant wind capacity showing points at which storage 
requirements climb sharply as PV capacity drops. .................................................... 157 
Figure 9-4 Lines of constant PV capacity showing the point at which storage capacity 
increases sharply as wind capacity declines. ............................................................. 158 
Figure 9-5 Lines of constant storage for different base load for existing heating and 
41% heat pumps ......................................................................................................... 158 
Figure 9-6 Relationship between base load and storage requirements for the 
configurations with the minimum cost of electricity at today’s prices. ..................... 159 
Figure 9-7 Wind energy fraction for 30 days storage and different base loads ......... 160 
Figure 9-8 Additional energy needed due to the inefficiency of the energy storage for 
different wind and solar capacities. ........................................................................... 161 
Figure 9-9 Energy curtailed for different wind and solar capacities. ........................ 161 
Figure 9-10 Variation in energy lost due to curtailment with storage capacity. ........ 162 
Figure 9-11 Example of the energy store state of charge over 40 years for 
configurations needing about 29 days storage capacity (wind 1.7, PV 1.3 existing 
heating), (wind 2.0, PV 1.1 41% heat pumps) ........................................................... 163 
Figure 9-12 Load duration curve created by sorting the store history by the state of 
charge. Shows the number of hours that the store was at a particular state of charge 
for the same configurations as figure (7-18) .............................................................. 163 
Figure 9-13 How long the energy store was at a particular state of charge for sample 
configurations with a storage capacity of 29 days for both the existing heating 
technology and with 41% of heating provided by heat pumps. ................................. 164 
Figure 9-14 Correlation of normalised demand with power generation time series 
based on different wind energy fractions. .................................................................. 166 
Figure 9-15  Normalised net demand with the existing heating technology, net of 
renewable generation with 80% wind and 20% solar PV .......................................... 168 
Figure 9-16 Optimum wind energy fraction from the standard deviation of the net 
demand time series ..................................................................................................... 169 
Figure 9-17 Using the area under the normalised net demand curve to estimate the 
ideal ratio of wind to solar PV energy generation. .................................................... 170 
Figure 9-18 Wind energy fraction found using minimum energy compared to using 
area under the net demand curve for lines of constant storage .................................. 170 
Figure 10-1 Reproduction of Figure 17 From Cardenas et. al. .................................. 181 
Figure 10-2 Figure 17 from Cardenas et. al. by permission from Elsevier: Order no 
5522081314340.......................................................................................................... 181 



14 
 

Figure 11-1 Parameters for the program to generate heat and electricity demand time 
series .......................................................................................................................... 191 
Figure 11-2Parameters for the program to calculate storage requirements for different 
demand and generation .............................................................................................. 194 
Figure 11-3 Input Parameters for program to compare outputs and plot contour lines
.................................................................................................................................... 195 
Figure 11-4 Half hourly demand, maximum and minimum for a period in July 2021
.................................................................................................................................... 196 
Figure 11-5 Feature importance using the Lasso Model ........................................... 199 
Figure 11-6 Example of forecast minimum and maximum demand ......................... 200 
Figure 11-7 POD Challenge standings on Monday of the 2nd week ........................ 201 
Figure 11-8 Final POD Challenge standings ............................................................. 201 
 
  



15 
 

Abbreviations 

ASHP Air Source Heat Pump 
BDEW Bundersverbend der Engie und Wasserwirtschaftk – used for the name of a 

heat demand method based on the German gas company’s equation for 
estimating consumers gas usage  

BECC Bio Energy and Carbon Capture 
CAES Compressed Air Energy Storage 
CAT Centre for Alternative Technology 
CCS Carbon Capture and Storage 
CDD Cooling Degree Days 
CDH Cooling Degree Hours 
CHP Combined Heat and Power 
COP Coefficient of Performance (ratio of heat pump heat output to electricity 

use) 
CO2 Carbon Dioxide 
CP Cooling Power of the wind 
DAC Direct Air Capture – extracting CO2 from the atmosphere.  
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α Cost of storage capacity  £/kWh 
𝐵௛  Hourly baseline electricity demand time series TWh 
β Cost of storage charging equipment £/kW 

𝐶௕ Capacity of base load days * 
𝐶௜  Initial amount of energy stored in the energy store days * 
𝐶௠ Capacity of the energy store days * 
𝐶௣ Capacity of Solar Photo Voltaic Generation days * 
𝐶௩ Capacify of dispatchable generation days * 
𝐶௪ Capacity of Wind Generation days * 
𝐶𝑃௧ Cooling Power °C (m/s)0.5

𝐷௧ the electricity demand at time t. 𝐷ௗ is daily electricity deman TWh 
𝛿௦ Threshold for considering to storage capacities as the same days * 

∆𝑇௛,௚
௔௠௕ Difference between the ambient air temperature and sink temperature for 

ASHP for hour h and weather grid point g 
°C 

∆𝑇௛,௚
௦௢௜௟ Difference between the soil temperature and sink temperature for GSHP for 

hour h and weather grid point g 
°C 

𝐸ௗ Total Electricity Demand over the period TWh 
𝐸௘௫௖௘௦௦ Excess (curtailed) energy TWh 

𝐸௛ Hourly electricity demand time series TWh 
𝐸෠௬ Predicted electricity time series for year y TWh 
𝐸௣ Energy generated from solar PV  TWh 
𝐸௪ Energy generated from wind TWh 
𝐸௦௟ Energy lost due to efficiency of the energy store TWh 
η Storage round tip efficiency =  𝜂௖𝜂ௗ  
𝜂௖  Storage charge efficiency  
𝜂ௗ Storage discharge efficiency  

𝑓ௗ,௚,ఈ(௔) Demand factor for the proportion of the annual demand allocated to grid 
point g for day d and heat use 𝛼(𝑎) 

 

𝐹௛ Historic hourly electricity demand time series TWh 
g Weather grid point  

𝐺ௗ Daily historic gas demand time series TWh 
γ Cost of storage discharge capacity £/kW 

𝐻௔,ௗ,௚ Daily heat demand time series for heat use a and grid point g TWh 
𝐻ௗ Daily heat demand time series TWh 

𝐻ଶ଴ଵ଼ Heat demand for 2018 TWh 
𝐻𝐷𝐷௬ Heating Degree Days for year y °C 

i Hour of the day TWh 
𝐼ௗ Additional daily EV electricity due to extremes of temperature TWh 
𝐽௜  Hourly heat profile – proportion of the daily heat allocated to hour i  

𝐾௕ Cost of baseload generation £ 
𝐾௘ Cost of energy storage £ 
𝐾௣ Cost of solar PV generation £ 
𝐾௩ Cost of dispatchable generation £ 
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𝐾௪ Cost of wind generation £ 
𝐾௦ Proportion of heating from configuration s  
𝐿௚ LCOE for gas generation £/kWh 
𝐿௟  LCOE for onshore wind generation £/kWh 
𝐿௡ LCOE for nuclear generation £/kWh 
𝐿௣ LCOE for Solar PV generation £/kWh 
𝐿௦ LCOE for offshore wind £/kWh 
𝑀௛ Hourly hybrid heat pump electricity demand TWh 
ND Number of days in the year  
NG Number of weather grid points  
𝑁௧ net electricity demand at time t TWh 
𝑃௖  Maximum storage charge rate GW 
𝑃ௗ Maximum storage discharge rate GW 
𝑃ா Proportion of heating from ordinary heat pumps   
𝑃௟  Proportion of onshore wind  
𝑃௦ Proportion of offshore wind  
𝑃ெ Proportion of heating from hybrid heat pumps   
𝑃௚  Population at grid point g  
𝑃௧ PV Energy generated at time t days * 

𝑃௧
௖௙ Time series of solar PV generation capacity factors  

𝑅ௗ  Daily gas time series from linear regression TWh 
𝑅௛  Hourly electricity time series for existing heating technology TWh 
s Heating configuration. A combination of use (space heating or water heating), 

source (eg ASHP or resistance heating) and sink (eg radiators or underfloor) 
 

SL Storage lower bound Days 
SU Storage upper bound days 
𝑆௛  Hourly electricity demand time series with heating provided by heat pumps  TWh 
𝑆௧ Amount of energy stored at time t days * 
𝑆଴ Initial state of charge of the energy store days 

𝑇ௗ,௚
௔௠௕  Mean daily ambient external temperature for day d and grid point g °C 

𝑇ௗ,௚
ோ௘௙ Reference temperature for day d and grid point g °C 

T Temperature (Ok population weighted)  °C 
𝑇௖ Total Cost of electricity generation £/kWh 
𝑇ௗ Mean daily temperature for day °C 

𝑇௕௔௦௘ HDD base temperature °C 
𝑇௙ Threshold temperature below which a hybrid heat pump switches to a gas or 

hydrogen boiler  
°C 

𝑈௛ Hourly electric vehicle time series TWh 
𝑉௧ Dispatchable energy generated at time t days * 
𝑊௧ Wind energy generation at time t (in days *) TWh 

𝑊௧
௖௙ Time series of wind generation capacity factors  

𝑊௙  Wind energy fraction  
𝑋௧ Base load energy generation at time t (in days *) = 𝐶௕  
𝑍௧ Hydrogen demand time series TWh 

* One day of energy is the mean daily energy of the 2018 historic electricity 
time series 818.8 GWh 
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1 Introduction 
 
The power system has always had to respond to an electricity demand that varies on an 
hourly, daily, and seasonal basis. But as the proportions of wind power generation and 
solar power generation increase, the supply side is also becoming more variable due to 
its weather dependence. One solution to supply side variability is to store energy during 
periods of high generation for use when the demand is high, but the generation is low. 
An important area of research considers what mix of generation and storage 
technologies are needed to balance supply and demand. This thesis is primarily 
concerned with how the mix of wind and solar generation will be impacted by changes 
in the electricity demand due to the electrification of heating and transport.  
 
The rest of this chapter is structured as follows. Section 1.1 discusses the importance 
of the subject, the motivation for the research and the main research questions. Section 
1.2 contains background to the field of energy modelling. Section 1.3 contains a brief 
literature review to establish the novelty of the research questions. Section 1.4 describes 
the structure of the rest of the thesis and summarises the main contributions. 
 

1.1 Motivation and Research Questions 
 
In 1952 when my uncle Douglas participated in the British North Greenland Expedition 
[1] which assessed glacial melting, it was known that global temperatures were rising, 
but not why. By 2018 the International Panel on Climate Change [2] reported that 
manmade emissions of greenhouse gases (GHG) are leading to dangerous changes to 
the world’s climate. In response, in 2019, the UK government committed to net zero 
greenhouse gas emissions by 2050 [3]. A net zero energy system [4] that does not add 
any GHG to the atmosphere is an important step towards this goal. Emissions from 
energy supply come predominantly from the burning of fossil fuels. To achieve a net 
zero energy system, these need to be replaced by low carbon power sources such as 
wind and solar. The intraday variability of wind and solar can be mitigated to a limited 
extent by demand side management, but to cope with the seasonal variability, they need 
to be complemented by energy storage. Therefore, it is important to study the capacities 
of wind generation, solar generation and energy storage that might be needed in a future 
power system. The technology mix and feasibility of the transition have been identified 
as important research areas [5]. 
 
This change to renewable power sources such as wind and solar will result in a 
migration away from burning fossil fuels for kinetic energy and heat energy to delivery 
of energy in the form of electricity. The two most significant impacts on future 
electricity demand in cooler countries will be the electrification of heating and transport 
[6, 7]. Heating is the cause of 30% of primary energy demand in Europe [5] and 36% 
in the UK [8]. The migration from heating provided from fossil fuels such as natural 
gas to electricity is termed the electrification of heat. Similarly, transport, the largest 
emitting sector of GHG emissions, producing 24% of the UK’s total emissions [9], is 
likely to migrate from oil based to electric vehicles (EVs). 
 
These changes mean that in the future, both power generation and electricity demand 
will become more weather dependent. Wind power generation depends on windspeed, 
and solar power generation depends primarily on solar irradiance. Heating demand 
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depends on temperature so that a move to electric heating increases the sensitivity of 
the power system to weather variation [7]. EVs also use more energy with extremes of 
weather [10]. Therefore, it is also important to consider the effect of weather. However, 
research has found that using only a single year is not enough to capture the variation 
in renewable power generation caused by weather to fully test an energy model [11]. 
For this reason, it is important to consider at least 10 years of weather. The more 
variation in weather conditions, the more likely that periods where high demand and 
low generation occur at the same time are captured. For example, a model developed 
using a warmer year with lower heating demand, or a windy year with high power 
generation might not cope with a cold, calm year. In this study 40 years of historic 
weather data are used, on the assumption that the weather patterns of the past give a 
guide to those of the future. Other research [12] has found that the multi-decadal 
variability of wind generation based on historic weather to be greater than climate 
change impacts predicted by modelling, and [13] that the impacts of climate change on 
PV generation in Europe will be lower than that of wind. 
 
This work brings together these aspects of changes to electricity demand, generation, 
and storage with sensitivity to weather. The research question in this thesis is how the 
future decarbonization of heat and transport will impact the optimal mix of solar, wind 
and storage in a power system with a high penetration of these technologies. To answer 
this question a model of the electricity system will be required, which will need to 
include wind power generation, solar power generation, electricity demand and energy 
storage. It will have to do this accounting for long-term weather variation. Factors other 
than weather must be kept constant, so that the impact of the changes to heating and 
transport can be assessed alone. If heating technology were changing over the analysis 
period, as it would be if historic electricity demand were used, then it would not be 
possible to tell which changes were due to weather and which to technology. Although 
the methodology developed here is used to study the impact of current heat pump 
technology it could equally well be used to keep technology constant at future levels, 
for example if heat pump COP and housing insulation improves.  
 
Four subsidiary questions need to be asked: 

 How should electricity demand time series incorporating heating electrification 
under long-term weather variation be generated which allows heating alone to 
be studied?  

 How should an electricity demand time series incorporating electric vehicles  
under long-term weather variation be generated which allows the impact of 
EV’s alone to be studied? 

 How should the required energy storage be found from the proportions of wind 
and solar generation? 

 How can the results be assessed? 
This project will address these questions using the Great Britain energy system as a 
case study.  
 

1.2 Background 
 
This section starts by discussing the technologies to be used to achieve the required 
changes to the energy system. Background information on how the technologies will 
be modelled is then presented. 
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1.2.1 Power Generation 
 
Historically the majority of UK electricity has been generated by thermal power plants 
[14]. Thermal power plants use heat energy to drive a turbine that powers an electricity 
generator. The heat is provided by combustion of fossil fuels such as gas, coal or oil, or 
from nuclear energy. However, because burning fossil fuels emits GHG, to achieve a 
net zero emissions energy system, either a switch to technologies which do not generate 
GHG is required, or these gasses must be removed from the air. Broadly, there is a 
combination of three options: remove the emissions, do not create the emissions in the 
first place, reduce (or smooth out) the energy demand. 
 
Options for removing the gasses [15] include: 

 Carbon Capture and Storage (CCS) – CO2 is captured from the burning of fossil 
fuels in a thermal power station and stored. The storage could, possibly be under 
the sea, in old gas or oil wells. Chemical reactions could be used to convert the 
CO2 into other compounds that could be stored more easily. 

 Direct Air Capture (DAC) - CO2 is captured directly from the air and stored in 
a similar way to CCS. 

 Bio energy - biomass that when burned only generates the same CO2 that would 
have been emitted from it rotting, can be considered carbon neutral.  

 Bio energy and carbon capture (BECC) – this combines bio energy and carbon 
capture, so theoretically could generate negative emissions.  

 Other interventions outside the scope of the energy system such as planting 
trees. 

 
Common options for generating electricity without producing GHGs are shown in table 
(1-1) 
 
Table 1-1 Low carbon electricity generation technologies 

Technology Pros Cons 
Solar PV / thermal Cheap, large resource Variable, takes space 
Wind Cheap, large resource Variable, takes space 
Wave Large potential Expensive 
Tidal (barrage / stream) Constant predictable 

cycle 
Expensive 

Hydro Predictable Small UK resource 
Bio energy Use when needed Limited Resource 
Nuclear Constant Expensive, cannot switch 

off, waste disposal 
problems 

Geothermal Constant Limited UK Resource 
 
Options for reducing electricity use include efficiency improvements and measures to 
reduce demand such as home insulation. Options for reducing peak demand, include 
demand response/shifting where consumers are incentivised to use energy at a different 
time such as overnight EV charging. 
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1.2.2 Energy Storage 
 
The characteristics of different storage technologies determine their role within the 
power system. Short term storage for balancing the grid to maintain voltage and 
frequency requires storage with a high energy throughput, but low capacity. Whereas 
long-term storage to balance seasonal and interannual mismatches requires high 
capacity but does not need such a high throughput. Some of the storage technologies 
expected to play a role in the future are: 
 
 Batteries: A chemical reaction generates electricity. The reaction is reversible so 

that the battery can be charged with electrical input, storing energy [16]. 
 Pumped Hydro: water flowing from a lake driving a turbine to produce electricity. 

Electricity used to run a pump to refill the lake, to store energy [16]. 
 Compressed Air Energy Storage (CAES): compressed air stored in a salt cavern 

used to generate electricity via a gas turbine. To store energy, electricity drives a 
compressor to compress air [16]. 

 Hydrogen Storage: Hydrogen stored in salt caverns, cylinders or tanks used to 
generated electricity via a fuel cell. Energy stored using electricity to create 
hydrogen via electrolysis of water [17]. 
 

A study on the economics of electrical storage [18] states that batteries are suitable for 
a period of a few hours, CAES and pumped storage are suitable for 6-10 hours. Power 
to gas such as Hydrogen are suitable for longer periods. All storage technologies can 
be characterised using the same measures. For example: 

 Capacity: how much energy can be stored. 
 State of charge: how full the energy store is. 
 Charge rate: how quickly the energy can be stored. 
 Discharge rate: how quickly the energy can be used (related to power rating) 
 Efficiency: how much energy is lost in the process. 
 Lifetime: often measured in charge – discharge cycles. 

 
Table (1-2) compares some of these characteristics for various storage technologies. 
With pumped storage the rate at which energy can be stored is determined by the 
capacity of the pump which pumps water from one lake into another higher up. The 
amount of energy that can be stored is determined by the capacity of the lake and the 
rate of discharge is determined by hydro-electric generation capacity. With hydrogen, 
the charge rate is determined by the capacity of electrolysers which use electricity to 
split water into hydrogen and oxygen. The amount of hydrogen that can be stored is 
determined by the size of the salt caverns in which it is stored, and the discharge rate is 
determined by the capacity of hydrogen electricity generation. 
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Table 1-2 – Characteristics of energy storage technologies. 

Storage 
Technology 

Capacity 
Determined by 

Charge Rate 
Determined by  

Discharge Rate 
Determined by 

Battery Stored Charge 
(Coulombs) 

Current (Amps) Current (Amps) 

Pumped Storage Size of the lake Pump capacity Hydro generation 
capacity 

Hydrogen Size of salt caverns 
or gas storage 

Electrolyser 
capacity 

Hydrogen 
turbine 
generator 
capacity 

CAES Size of salt caverns 
or gas storage 

Compressor 
capacity 

Generator 
capacity 

 
The seven future plans for the UK power system reviewed in [19] all anticipate that 
more long-term storage will be needed. The plans discussed use batteries, pumped 
hydro, and Compressed Air Energy Storage (CAES) for short term storage. For long-
term storage 6 of these plans use hydrogen and 1 uses methane made from hydrogen 
and biomass. The wind energy fraction, short term and long-term storage from these 
plans are summarised in table (1-3). The capacity of long-term storage ranges from 600 
GWh to 80 TWh whilst that of short-term storage is much less, ranging from 29 GWh 
to 200 GWh. These plans were produced by: 

 ESC – The Energy Systems Catapult – a body fostering links between the 
energy industry and academia. 

 FES – Future Energy Scenarios by National Grid. 
 CAT – Centre For alternative Technology, ZCB Zero Carbon Britain. 
 CCC – Climate Change Committee. 

 
Table 1-3 Seven Future UK Energy System Plans 

Plan [19] Wind Energy 
Fraction 

Short term / 
batteries 

Long Term Storage 

ESC – C 80% – 99% 35 GWh 660 GWh Hydrogen 
ECS – P 71% – 98% 29 GWh 600 GWh Hydrogen 
FES – LTW 86% 203 GWh 16 TWh Hydrogen 
FES – ST 80% 146 GWh 18 TWh Hydrogen 
FES – CT 86% 194 GWh 18 TWh Hydrogen 
CAT – ZCB 90% 200 GWh 80 TWh Hydrogen 
CCC – B 83% 200 GWh 80 TWh methane from 

hydrogen and biomass 
 
 
Vehicle to grid (V2G) systems where private electric vehicles loan out part of their 
battery capacity could make a significant contribution to the short-term storage. For 
example, 20 million cars (which is the low estimate of future car ownership) and a 
typical 40 kWh car battery create a total of 800 GWh. 
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1.2.3 Heating Technology 
 
In 2018, 71% of Great Britain’s heating was provided by natural gas [8]. The gas is 
burnt to heat water supplied directly as hot water or pumped through radiators to heat 
buildings. Such fossil fuel heating systems which can also be fuelled by oil or biomass 
emit carbon dioxide and therefore must be replaced. Possible alternative heating 
technologies include: 

 Traditional electric “resistive heating” and storage heaters 
 Combined Heat and Power (CHP) 
 District Heating 
 Electric Heat Pumps 
 Using hydrogen as a fuel for boilers instead of natural gas  

 
Resistive heating, such as a traditional electric bar fire, creates heat by passing an 
electric current through a resistor which converts the electrical energy to heat. This heat 
can be passed through bricks using overnight low-cost electricity in storage heaters to 
store the heat energy thermally.  
 
Combined Heat and Power (CHP) is a process that combines localised power 
generation and heating. The waste heat from electricity generation is used to provide 
heating. Although the electricity has been traditionally generated using fossil fuels, 
some countries, for example Denmark [20] are planning a migration to using biomass 
or waste as a fuel.    
 
With district heating, hot water is delivered in pipes to buildings, instead of having a 
heater in the building. The water can be heated via waste heat from power stations, 
industrial processes or via other forms of heating such as heat pumps. District heating 
is a promising technology for high housing densities [20], but its economic viability in  
the UK is uncertain due to higher cost at lower housing densities and lack of experience. 
  
A review of domestic heat pumps [21] explains that rather than converting electric 
energy to heat energy directly heat pumps use electricity to pump heat from a colder 
location to a warmer one in a similar way to a domestic fridge. A fluid called the 
refrigerant is forced through an expansion valve, lowering its temperature so that it can 
absorb heat from the surroundings. The fluid then passes through a compressor raising 
its temperature, and then through a heat exchanger to heat water in the home. The ratio 
of the electrical energy used to the heat energy obtained is called the Coefficient of 
Performance (COP). This review concludes that in the future, most of the heat demand 
will probably be provided by electric heat pumps being the most efficient way of 
providing electric heating. 
 
One alternative to fuel domestic boilers instead of natural gas is to use hydrogen. The 
hydrogen could be generated using excess electricity from wind and solar to split water 
into hydrogen and oxygen using electrolysis. This hydrogen would be piped through 
the existing gas network. This domestic use of hydrogen in the UK was only in a trial 
phase in 2019 [22]. 
 
A study analysing the impacts of future heating technologies [23] concludes that gas 
boilers are one of the worst technologies considering GHG emissions, only exceeded 
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by oil and LPG. They conclude that of the low carbon alternatives, the most economical 
is electric heat pumps.  
 
1.2.4 Transport 
 
 It is anticipated that transport will mostly move towards Electric Vehicles (EVs) [24] 
apart from a small percentage fuelled by hydrogen. This is primarily due to the costs of 
the vehicles themselves and the cost of hydrogen fuel and associated infrastructure. 
However, the charging of the batteries for these vehicles will have a large impact on 
the electricity grid.  
 
1.2.5 National Energy System Modelling 
 
Changes to a country’s energy demand, generation and storage can be investigated by 
computer models [25] to find the required mix of technologies for a net zero power 
system. For a country or region, questions such as how much wind generation, solar 
generation and storage are needed can be answered. These models consider the balance 
of energy supply, demand, and storage at hourly time steps to assess the generation mix 
in terms of energy, cost, or emissions. The challenge is to ensure a balance of supply 
and demand despite generation and demand all varying differently over time in different 
geographical locations. One significant cause of this variation is the weather where 
changes in wind speed, solar irradiance and temperature affect wind generation, solar 
generation, and energy demand. Mixing different energy sources such as wind and solar 
is known to reduce the variability of production [26] and improves the production / 
demand match. However, research has found that a single year is not enough to capture 
the variation in renewable power generation caused by weather to fully test an energy 
model [11]. Therefore, this project will use 40 years of historic weather. Sources of 
weather data are discussed in the next section. 
 
Seven plans for the UK to reach a net zero energy system [19] produced by four 
different groups use different modelling approaches. Two of the groups: energy 
Systems Catapult and Climate Change Committee use a model called ESME. It is an 
optimisation model that searches for a least cost combination considering emissions 
targets, resource availability and deployment rates. National Grid FES consider each 
sector separately according to factors such as the uptake of efficiency measures, 
economic projections, historic demand, and feed the results into an optimisation model 
called UK TIMES. The Centre for Alternative Technology (CAT) do not explicitly 
calculate economic cost, but instead are guided by a set of principles such as net zero 
and 100% renewable energy. They use a model including historic weather to prove that 
the system they propose is viable.  
 
Optimisation models search for an optimal design, usually based on costs. Whereas 
simulation models compare several different designs. A study comparing different 
modelling approaches [27] discusses the differences between the first two approaches 
and the latter one. They say that the advantage of the latter approach is that the public 
can be involved in a decision between several alternatives, whereas the optimisation 
approach is based on market values themselves subject to implicit political choices. 
 
The models considered by this study are a simplified subset of simulation models which 
only consider energy when allocating sources of generation to satisfy demand. They 
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consider the national energy system as a single node and do not take into account that 
it is a complex network connecting sources of supply and demand with varying 
transmission capacities. For example, wind generation in the north of the UK, might be 
needed to supply demand in the southeast and the network needs the capacity to do this. 
In rural areas, there may not be enough transmission capacity for houses to have both 
electric vehicles and heat pumps. The results of the models would be less accurate if 
the transmission network were not upgraded to have the necessary capacity. These 
simplified models will be referred to as energy balance models. 
 
1.2.6 Weather Data 
 
Weather data are needed to model both the energy demand and the energy supply. 
Temperature is used to estimate heat demand and hence electricity demand. Wind speed 
and solar irradiance determine the power generated from wind turbines and solar panels 
respectively. Weather measurements have been collected at UK weather stations for 
many years. These include hourly values of parameters such as temperature, solar 
irradiance, precipitation, humidity, and wind speed at the earth’s surface. UK weather 
observations data is recorded in the Met Office Integrated Data Archive System 
(MIDAS) [28] . However, this data has the disadvantage that it is only available at the 
locations of weather stations, and only has surface parameters. This means for example 
that the wind speed at the height of a wind turbine is not available.  
 
An alternative to surface measurements is weather reanalysis data which provides these 
parameters at different heights. Reanalysis uses a forecasting model of atmosphere, 
winds, ground (including surface roughness), and ocean to assimilate and compare data 
from different sources [29]. This includes observed data such as temperatures at 
weather stations, and wind speeds from satellites. Additional parameters not measured 
at certain locations can be derived such as soil moisture and cloud properties in such a 
way that all the parameters are consistent with physics. The result is a global 
atmospheric model constrained by the values of actual physical measurements at 
specific times and locations. Reanalysis data has the benefits that: 

 It has values at height (e.g., wind turbine hub height), not just at the surface. 
 The values are available on a regular grid, rather than the locations of weather 

stations which makes computation easier. This is because the population grid is 
mapped onto the weather grid to establish how much of the national heat 
demand is caused by a particular set of weather parameters.  

 The data is consistent over time and geographical location (whole world) 
 All measurement sources are consistent with each other and the laws of physics. 

 
The disadvantages of reanalysis data are that some smoothing occurs and the influence 
of local terrain is not always captured. The data may not match actual measured values. 
However, most recent studies are choosing to use reanalysis data. Two reanalysis data 
sources commonly used for energy modelling are: 

 Modern Era Retrospective Reanalysis for Research and Applications 
(MERRA2)[29] produced by NASA used in these energy system studies  [30-
36] 

 ERA5 [37]– European Reanalysis produced by the European Centre for 
Medium Range Weather Forecasts (ECMWF) used by these energy system 
studies [26, 38, 39] 
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As well as historic weather data, weather predictions are available. These can be either 
hindcast: weather that could have occurred, or future predictions of weather that may 
happen. It is difficult to know what future weather might look like and therefore this 
project will confine itself to using historic weather. 
 
ERA5 was used to generate electricity demand time series in chapters 2 and 3. 
MERRA2 was used to generate wind and solar power time series discussed in the 
following sections 1.2.7 and 1.2.8 respectively.  
 
It would have been desirable to use the same reanalysis data to model both the demand 
and generation. However, this would have required more work because the program to 
generate the heat demand was adapted from an existing program which used ERA5 
whilst the available generation data used MERRA2.    
 
1.2.7 Modelling Wind Power Generation 
 
Although historic wind power generation time series are available for recent years, they 
do not cover the whole 40-year period of this study, and they are based on a constantly 
increasing generation capacity. Simulated wind generation time series are often used as 
they can keep the capacity constant and incorporate wind farms that have not yet been 
built. National wind power generation time series can be simulated by combining the 
contributions of individual wind turbines. To assess the potential power generation 
from one wind turbine, wind speed measurements at a particular site can be used with 
the turbine manufacture’s power curve to create a generation time series [40] . Some 
previous studies [34, 41, 42] have used this approach with wind speed measurements 
from weather stations to model the national onshore wind power time series. Generation 
time series are created as though a particular type of turbine existed at the geographical 
location of a weather station. They argue that this can be scaled up to represent the 
national fleet. However, for weather station data, the wind speed is only available at the 
surface, so it has to be estimated at the hub height of a wind turbine. This is commonly 
done using the log law [43], equation (1) to calculate the wind speed U at one height Z  
from the wind speed at a reference height Zref  

𝑈(𝑍) = ൮
ln

𝑍
𝑍଴

ln
𝑍௥௘௙

𝑍଴

൲  𝑈(𝑍௥௘௙) 

(1) 

Where U(Zref) is the wind speed at reference height Zref and Z0 is the surface roughness. 
Typically offshore turbines are much higher (up to 300m [44]) where the log law is not 
valid on its own [45-47] for extrapolating surface wind speed. Most studies therefore 
use reanalysis data so that they can model offshore wind. In one such example [34] 
MERRA2 is used to model national time series of wind power generation based on 
wind power at 97 different geographic locations around the UK, both onshore and 
offshore.  
 
However, rather than generate their own wind power data, some studies use publicly 
available time series. Renewables Ninja [48] provides hourly time series of wind 
generation for the UK based on historic weather from 1980 to 2020. Wind speeds from 
MERRA2 weather reanalysis at 2m, 10m and 50m are used with the log law to estimate 
Z0 and wind shear to create a regression equation to extrapolate wind speed to hub 
height. The values at weather grid points are used to get the windspeed at the specific 
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geographic location of the wind farm using LOESS (Locally Estimated Scatter plot 
Smoothing) regression (a generalization of polynomial regression and moving 
average). Individual turbines are combined using a virtual wind farm model. These are 
created based on the actual locations of UK wind farms. The virtual wind farm converts 
wind speed to power using manufacturers power curves and smooths individual 
turbines to represent a farm. Separate time series of capacity factors are available for 
onshore and offshore based on near- and long-term projections of actual wind turbines 
and their locations servicing the UK. This dataset has been validated extensively against 
the actual power output of wind turbines and corrected for biases [33]. It has been used 
in several previous studies [30-36]. Separate time series for current, near-term future, 
and long-term future are available. The near-term future series includes wind farms that 
are newly built, under construction or approved and has been used in the study. The 
long-term future series also includes planned wind farms but was not used because it 
does not separate onshore and offshore wind.  
 
1.2.8 Modelling Solar Power Generation 
 
National solar PV electricity generation time series can be simulated by modelling 
individual solar PV panels and scaling up to represent the whole country. Standard 
methods [49] using solar irradiance time series can be used to create solar power 
generation time series. They use the orientation of the panel and the angle of the sun 
based on the hour of the year to estimate the power generated. For example, in one 
study [34] hourly solar PV time series are generated at 11 regions in the UK using 
MIDAS data on the assumption that the power generated is proportional to the solar 
irradiance. In another [41], daily time series are generated based on 4 geographic 
locations in the UK chosen as sunny locations where the most energy might be 
generated.    
 
However, some studies use publicly available time series of solar power generation. 
Renewables Ninja [48] provides hourly time series of capacity factors of UK solar 
generation from 40 years weather. They are generated by modelling a solar power plant 
at each MERRA2 grid point in the UK [32]. Each panel has a latitude dependent tilt 
angle and azimuth distributed according to actual installations. They include a 
correction for bias because otherwise the mean capacity factor of the simulated PV 
generation does not match that at actual sites. Unlike the two studies mentioned above 
they also use hourly temperatures to model the increase in efficiency of solar panels at 
lower temperatures using panel efficiency curves. The Renewables Ninja solar time 
series will be used in this study. 
 
 
1.2.9 Time Series Metrics 
 
Methods to compare two time series are needed in the validation of electricity demand 
and of power generation time series. The three metrics used for comparison of time 
series in this project are shown in table (1-4): nRMSE, R2, and R. 
 

Metric Description Calculation Method 
nRMSE normalised Root Mean Square Error. 

𝐴௜  is the actual (normalised) time  𝑛𝑅𝑀𝑆𝐸 = ට
ଵ

௡
∑(𝐴௜ − 𝐹௜)

ଶ  
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series and Fi the modelled time 
series. 𝑛 is the mean value of 𝐴௜  

R2 Coefficient of determination  [50] 
R Pearson’s Correlation coefficient [50] 
MAPE Mean Absolute Percentage Error 

𝑀𝐴𝑃𝐸 =  
1

𝑛
෍ ฬ

𝐴௜ − 𝐹௜

𝐴௜
ฬ

௡

௜ୀଵ

 

Table 1-4- Time Series Metrics 

nRMSE is a measure of the error when comparing a series of actual values 𝐴௜with a 
forecast value 𝐹௜ . It is used in preference to other error metrics such as Mean Absolute 
Percentage Error (MAPE) in this project because the squared term penalises large 
errors. Large errors in an electricity system model can have high consequence possibly 
leading to too much power (wasted costs) or too little power (outages).  
 
The coefficient of determination R2 is a measure of how well a regression model 
explains the observed data. It is used because it is desirable for the variation of the time 
series to be as accurate as possible as the amount of energy storage required depends 
on the variation of supply and demand. Using R2 also allows a comparison to be made 
with other studies. What is considered as a good value of R2 varies for different domains 
of study. For example, a study comparing heat demand time series [38] states that “Both 
time series and load duration curves show a high consistency (R2=0.95)”. Similarly, a 
study comparing a regression equation using temperature to the National Grid gas time 
series [51] says “R2 of 0.95 shows the model predicts with good accuracy”. Some 
inaccuracy is tolerable because storage is measured at high granularity of days and 
generation capacity in multiples of the mean daily demand. Everywhere in this report 
where a value of R2, is quoted the residuals plots have been checked for bias. The 
residual is the difference between the predicted value and the observed value. An 
example residuals plot is shown in figure (2-8) in chapter 2. It could be for example 
that the model accuracy varies seasonally or at high or low values. 
  
Pearson’s Correlation coefficient R measures a linear correlation between two 
variables. It is used here in addition to R2 because when it is negative it shows an anti-
correlation, whereas R2 is always positive. R is also useful for comparison with other 
studies. 
 

1.3 Novelty of the research question 
 
Whilst most researchers agree that a net zero energy system [4] is possible, there is 
much debate on how best to achieve it [5]. Seven plans for achieving a net zero UK 
from four different groups, are reviewed in [19]. All contain high proportions of 
electricity generation from wind and solar PV, but all vary in their proposed mix of 
technologies. All the plans propose energy storage to cope with periods of low 
renewable generation and high demand, both on a short-term basis at the scale of hours 
and days and on a long-term basis of seasons or years. Heating is provided by electric 
heat pumps, hydrogen boilers or by district heating. The plans model all sectors, not 
just heating and transport.  
 
The plans mentioned above are either prescriptive, ie they propose a certain technology 
mix and prove that it will work, or they do some optimisation, but only using a single 
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year of data. However research has found that 10 years or more is required to capture 
the variation in renewable power generation caused by weather to fully test an energy 
model [11]. One UK study considering all sectors, that used 10 years of data [34] only 
considers one mix of technologies and proves that it is viable. There are two UK studies 
that look at different amounts of storage required for long term weather fluctuations. 
One study uses 9 years weather data [52] and one uses 30 years [41]. However, both 
these studies use only the historic electricity demand and do not include changes to 
demand such as electrification of heat. One study that did consider varying amounts of 
wind, solar and storage, and also included weather dependent electrification of heating 
and transport [53], concentrated only on a 3-year period between 2009 and 2011 
 
In summary, most previous studies fall into two groups: 

 Those that try to model the whole energy system or electricity system for a small 
number of years and prove that a certain configuration is feasible. 

 Those that model a smaller subset of the system for a large number of years 
looking for optimum configurations of energy storage. 

Those studies that look at energy storage for a large number of weather years have not 
generally considered electrification of heating. And those that do consider 
electrification of heating have either used a small number of weather years or did not 
consider storage. Also, they look at the feasibility of a complete 2050 scenario, rather 
consider the impact of one sector, such as heating. But to make a policy decision in one 
sector it is important to understand the impact of a change to it on the whole system. 
This study addresses that gap. This project uses 40 years of historic weather to study 
how the future decarbonization of heat and transport will impact the mix of solar, wind 
and storage in a power system with a high penetration of these technologies. 
 
More detailed discussions on some of the references mentioned above are available in 
other parts of the thesis as listed below: 

 A study on how the UK could be powered by 100% renewable energy [34] is 
also discussed in section 2.1 in the background to heat demand and the HDD 
12.8 method. 

 A study of seven plans for a UK net zero energy system [19] has already been 
mentioned in table (1-3) in the context of energy storage. It also features in a 
discussion on energy modelling in 1.2.5 and the relative proportions of wind 
and solar generation in 5.1. 

 The two previous studies on the wind/solar/storage mix for the historic demand 
[41] and [52] are discussed in detail in 5.1 and chapter 7. 
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1.4 Brief Introduction to Thesis Methods and Results 
 
To provide a context for the next chapter on the novelty of the work, a very brief 
summary of the main work of the thesis is presented. This also serves as a guide to the 
reader as to where the first 6 chapters are headed. Figure (1-1) provides a concise 
introduction to the main process in this thesis to identify the impact of heating 
electrification alone on shares of wind, solar and energy storage. It shows the main steps 
which are: 

 Remove the heating electricity from the 2018 historic electricity demand time 
series illustrated by the graph on the top left. This gives a base line electricity 
demand without heating so that technology and socioeconomic factors are fixed 
at 2018 levels. This will allow us to study the impact of heating alone. 

 Add in the heating electricity based on 40 years historic temperatures, illustrated 
by the weather reanalysis grid on the top right. 

 Create two 40-year UK electricity demand time series. Everything other than 
heating is the same as for 2018. One time series includes heating based on 
today’s heating technology and 40 years weather. The other includes 41% of 
heating provided by heat pumps for 40 years weather. These two time series are 
shown in the middle plot of figure (1-1) 

 Feed these two electricity demand time series into a model that balances the 
demand with generation from wind, solar, base load and dispatchable power 
sources. For a range of wind and solar generation capacities the minimum 
required energy storage is calculated. This is shown by the two 3D plots at the 
bottom of figure (1-1) for a future electricity system with generation consisting 
only of baseload, wind and solar PV. 

 Perform a detailed comparison of the data behind these two 3D plots to enable 
part of the main research question of the thesis to be answered: how the future 
decarbonization of heat and transport will impact the optimum mix of solar, 
wind and storage in a power system with a high penetration of these 
technologies. This comparison is based on the amount of storage and the wind 
energy fraction. Wind energy fraction is the proportion of the combined wind 
and solar energy generation which came from wind. 



32 
 

 
Figure 1-1 Modelling the impact of heating electrification on wind, solar and storage in this thesis. 
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1.5 Novelty of the approach 
 
The novel aspects of this work are: 

 a comparison of heat demand methods, linear regression on the gas time series 
to identify what portion is heat and validation against measured data not 
previously used for this purpose. 

 a modification of the when2heat heat demand method using hourly temperatures 
and UK COP curves 

 the inclusion of hybrid heat pumps 
 the method of generation of electricity demand time series from the heat demand 

via proportions of heat pumps  
 derivation of a heat pump hourly profile from trial data 
 using a generated heating electricity time series to remove the heating 

electricity, rather than linear regression.  
 analysis of the seasonal and interannual variation, rather than peak demand. 
 investigation to establish if heating is the only significant weather dependency 

in the electricity demand time series.  
 the algorithm to find the minimum storage, and the use of more accurate model 

inputs than those used in previous studies. 
 investigation of the impact of heating and transport electrification on optimum 

UK wind energy fraction and energy storage capacity.  
 updates to the findings of previous studies into UK energy storage mix 
 a sensitivity analysis of the required storage to different model inputs from this 

and two previous studies. 
 assessing the impact on wind energy fraction of green hydrogen boilers under 

long term weather variation. 
 

1.6 Thesis Structure 
 
Some of the chapters make use of results from previous chapters. See figure (1-2) for a 
diagram of this relationship. The three chapters that follow the introduction, shown in 
red on the diagram are concerned with how to generate an electricity demand time series 
incorporating the change to heat pumps alone. Most of this material is also published 
as a paper [54] in the Applied Energy journal. 
 

 Chapter 2 is concerned with creating national heat demand time series. The heat 
demand is used in chapter 3. 

 Chapter 3 – is concerned with creating a heating electricity time series using the 
heat demand from chapter 2. This heating electricity time series is then used in 
chapter 4.  

 Chapter 4 – uses the heating electricity demand from chapter 3 to generate 
national electricity demand time series including the impact of heating alone. 
The resulting time series are then used to study the impact of heating 
electrification on UK electricity demand. They are also used in the remaining 
chapters to study the impact on storage and generation.  

Chapters 5 and 7, shown in green, consider the energy storage model itself and chapter 
6, shown in blue uses the model to find the impact of heating electrification on the mix 
of wind, solar and storage capacities. 
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Figure 1-2 Thesis Chapter Relationships 
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 Chapter 5 defines the methods used to find the required energy storage from 
different generation capacities. The model is validated against that used in a 
previous study and against today’s energy system. The model is then used to 
show that many configurations of wind and solar capacity with energy storage 
can satisfy the UK electricity demand with the existing heating technology from 
chapter 4.  Energy and cost are used to identify which of these configurations to 
study in more detail. Section 5.3.1 contains a standard way of summarising 
experiments used throughout the thesis.  

 Chapter 6 combines the electricity demand from chapter 4 and the storage model 
from chapter 5 to investigate the impact of the electrification of heat. Different 
ways of comparing results are discussed and illustrate this impact.  

 Chapter 7 uses the energy storage model and improved model inputs defined in 
chapter 5 to perform a sensitivity analysis of these different model inputs on 
capacities of storage, wind and solar. Some investigations on the impact of 
length and resolution of time series are done. 

 
The final chapters consider the impact of other changes to demand and generation 
on storage and shares of wind and solar. 
 Chapter 8 investigates the impact of two changes to demand on generation and 

storage. The first is Electric Vehicles with the novel aspect of weather 
dependent EV charging. The second introduces a modification to the storage 
model to compare the impacts of heating using hydrogen boilers or heat pumps.  

 Chapter 9 includes some case studies on power generation with the model: 
o The transition from a system with a high proportion of dispatchable 

generation to one with a high wind and solar penetration. 
o The relationship between storage and wind and solar. 
o Baseload and storage 
o Lost Energy 
o Long term pattern of energy store state of charge 
o Alternative ways of estimating the optimum wind energy fraction 

Chapter 10 presents the overall conclusions. All the models are programmed in the 
Python programming language by the author. Some of the software developed during 
the project is described in appendix A. Appendix B describes participation in a 
competition to forecast electricity demand peaks and troughs from historic demand and 
weather data. Appendix C lists the corrections requested by the examiners. 
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2 National Heat Demand 
 
A national heat demand time series is the first step towards the generation of heating 
electricity demand. This will help answer one of the subsidiary research questions: How 
should an electricity demand time series incorporating heating electrification alone 
under long-term weather fluctuations be generated? This national heat demand time 
series must vary from day to day and year to year only according to weather. All other 
factors such as population, internal temperatures, insulation, and the number of 
buildings should be kept constant. Generating this heat demand time series is the subject 
of this chapter. 
 
The chapter will start by reviewing previous work. Four different methods of generating 
40-year daily heat demand time series will be described. They will be compared and 
validated against historic national gas time series and measurements from gas smart 
meters and heat pump trials. The chapter concludes by identifying the best heat demand 
method from the four which will be then used in the following chapter to generate 
electricity demand time series.  
 

2.1 Background 
 
Whilst estimating the heat demand of one building is possible by measuring internal 
and external temperatures and the input fuel energy, knowing the heat demand of an 
entire country is very difficult [51]. Various methods of modelling heat demand have 
been used in previous work. For example, a regression model based on district heating 
measurements in Norway [55] was used to aggregate the heating loads of several 
buildings to represent a region within a city, but not an entire country. In a UK study 
[56], national gas demand for the years 1998-2010 was used to create a linear regression 
model to predict gas usage and hence heat demand from external temperature. Gas 
smart meter trial data from over 6000 homes from May 2009 to July 2010 were used to 
create a model to predict UK half hourly domestic gas demand [51]. However, these 
bottom-up statistical models all represent the housing stock as it was at the time of the 
measurements, limiting their use. An alternative approach is to use simulations. A 
building thermal model [57] was used to simulate heat pumps at 2-minute intervals for 
960 buildings which were then aggregated to represent the national demand based on 
2011 climate data. However, bottom up aggregated thermal models have uncertainty 
over the many different parameters that need to be specified [58] and have difficulty 
capturing diversity on a national scale[59] .  
 
Multi-year daily national heat demand time series are typically generated top down as 
part of the procedure to generate a synthetic electricity demand. In one study of a 100% 
renewable UK electricity system [34] a specific heat space loss of 4.4 GW/K and a base 
temperature of 12.8 °C combined with UK national temperatures were used to create 
10 year daily heat demand. Heating degree days with a base temperature of 15.5 °C 
with UK population weighted temperatures were used to generate 30 years heat demand 
time series in [30]. The when2heat dataset [38] contains time series of heat demand for 
2008-2013 created using population weighted temperatures and a method based on 
German gas usage. Nothing was found in the previous literature comparing these 
different heat demand methods against each other. Therefore, a comparison of four heat 
demand methods based on the three references above and a regression equation from 
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[51] in the previous paragraph was undertaken. These four methods of generating daily 
heat demand time series were compared for the years 2016 to 2019 and reported in a 
conference paper[60]. For convenience the heat demand methods have been given the 
names BDEW, Watson, HDD 15.5 and HDD 12.8. They are listed below, along with 
a reference to the previous work they were based on. 

 BDEW The German gas company’s equation to estimate consumers gas usage 
from the when2heat dataset [38].  

 Watson: a method based on a regression equation based on UK building 
measurements from Watson et. al. [51] . 

 HDD 15.5: Heating Degree Days (HDD) with a base temperature of 15.5° as 
used in two previous studies [30, 61]. 

 HDD 12.8: HDD with a base temperature of 12.8° as used in a study of a 
100% renewable UK energy system [34]. 

The comparison and validation of these methods performed in this study uses not only 
historic national gas time series, as typically done in previous works [38], but also 
measurements of heat and gas usage from actual buildings, data sets that have not been 
used previously for this type of validation. The next section describes the methods used 
to create these time series. 
 

2.2 Methods 
 
A standard method of assessing heating demand is the concept of heating degree days 
(HDD). HDD are a measure of how long in days and how much in degrees the outside 
temperature was below a certain level called the base temperature. The definition is 
given by equation (2). 
  

𝐻𝐷𝐷 =  ෍ ൬
𝑇௕௔௦௘ −  𝑇ௗ ∶ 𝑇ௗ <  𝑇௕௔௦௘ 

0 ∶ 𝑇ௗ ≥  𝑇௕௔௦௘
൰

ே஽

ௗୀଵ

 
(2) 

   
Where 𝑇ௗis the mean temperature for day d, 𝑇௕௔௦௘ is the base temperature (generally 
15.5 °C for the UK), ND is the number of days in the year. HDD will be used in the 
following sections. 
 
The procedure to create the heat demand time series is split into two parts expanded on 
in the next two sub-sections. 
 

1. Calculate the annual heat demand for Great Britain from fuel use. 
2. Split this annual demand geographically amongst weather grid squares and 

temporally between days. Sum up all the grid squares to generate a daily 
national heat demand time series. 

 
2.2.1 Calculate annual Great Britain heat demand. 
 
The first step is to calculate the Great Britain annual heat demand. Annual energy 
demand for space heating and hot water broken down by fuel use was taken from table 
U2 in energy_2019_end_use_by_fuel.xlsx [8]. This data is based on consumer surveys, 
annual fuel sales and monitoring. For the years 2016 - 2018 the data includes a more 
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detailed breakdown of space and water heating by fuel. This enables a more detailed 
validation of the gas time series. Therefore, the year 2018 was chosen as the most recent 
of these years to represent the existing heating technology. This data is shown in table 
(2-1) converted to heat energy assuming the following efficiencies: gas 80%, electricity 
100%, other made up of: oil 85%, solid fuel 76%, heat (eg combined heat and power) 
100%, bioenergy and waste 87%. 
 
Table 2-1 Annual UK Heat Energy for 2018 

Heat Use 𝐴௔  α(a) Annual Heat Energy by Fuel (TWh) 
Gas Electricity Other Total 

Domestic Space 𝐴ௗ௦ space 191 18 50 259 
Services Space 𝐴௦௦ space 56 16 (*) 27 99 
Domestic Water 𝐴ௗ௪  water 56 5 6 67 
Services Water 𝐴௦௪ water 7 2 4 13 
Total    310 41 87 438 
(*) Note that the services space also includes industrial space because this is included in the historic 
electricity time series (whereas industrial gas is not) 

 
This gives a UK annual heat demand for 2018 of 438 TWh. However, the process of 
generating a daily heat demand time series in the next section will use the individual 
values for each heat use 𝐴௔ determined by α(a). The column of values from table (2-
1) that is used depends on the objective: 

 For generating a heat demand time series for the whole country, values from 
the total column would be used.  

 For generating a heat demand time series for validation against daily gas 
demand, the gas column would be used.  

 To generate a heat demand time series representing the heating in the historic 
electricity demand, the electricity column would be used.  

 
To get the values of these annual demands for years other than 2018, they are factored 
by the ratio of heating degree days to that year. This fixes heating and insulation levels 
at 2018 levels but keeps the impact of weather. 
 

𝐴௔,௬ =
𝐻𝐷𝐷௬

𝐻𝐷𝐷ଶ଴ଵ଼
𝐴௔,ଶ଴ଵ଼ 

(3) 

Where 𝐻𝐷𝐷௬ is the number of heating degree days for year y calculated from the UK 
population weighted temperature and  𝐴௔,௬ is the annual heat demand for heat use a for 
year y. The parameter  𝐴௔,ଶ଴ଵ଼ is one of (𝐴ௗ௦ , 𝐴௦௦  ,  𝐴ௗ௪ , 𝐴௦௪ ) taken from table (2-
1). 
 
2.2.2 Calculate Daily Heat demand. 
 
The next step is to calculate the heat demand for each UK weather grid square. The 
0.25° x 0.25° grid is defined by the ERA5 weather reanalysis [37] and contains hourly 
2m ambient air temperatures for the UK for the years 1980 to 2019. The population for 
each of these grid squares was taken from Eurostat [62] for 2011. The four annual heat 
demands for the UK calculated in the previous section in table (2-1) were split up 
amongst these weather grid squares by population weighting as follows.   
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𝐴௔,௚ =
𝐴௔  . 𝑃௚

∑ 𝑃௚
 

(4) 

Where 𝐴௔,௚is the annual heat demand for grid square g for heat use a. The parameter a 
is used to look up 𝐴௔ the annual heat demand from table (2-1) and 𝑃௚is the population 
in grid square g. Note that this is repeated for each year, but the y subscript from 
equation (3) is not shown for clarity. This annual demand was then split into days using 
equation (5). 
 

𝐻௔,ௗ,௚ =
𝐴௔,௚ . 𝑓ௗ,௚,ఈ(௔)

 ∑ 𝑓ௗ,௚,ఈ(௔)
ே஽
ௗୀଵ

 
(5) 

Where ND is the number of days in the year, 𝑓ௗ,௚,ఈ(௔) the daily demand factor for heat 
use a, day d and grid point g. Each of the four methods of calculating daily heat demand 
has two versions of 𝑓ௗ,௚,ఈ(௔)  one for space heating and one for water heating. The 
parameter α(a) indicates which of the two equations for the method in table (2-2) is 
used to calculate the demand factor 𝑓ௗ,௚,ఈ(௔)for heating use a. For a=ds or a=ss the space 
heating version 𝑓ௗ,௚,௦௣௔௖௘is used. For a=dw or a=sw the water heating version 
𝑓ௗ,௚,௪௔௧௘௥is used. There are different sets of these two equations, one set for each of the 
four methods as shown in table (2-2). 
 
Table 2-2 Temperature dependent equations to factor annual heat demand 

Method Demand factor equation (f) N 
BDEW 
space [38] 𝑓ௗ,௚,௦௣௔௖௘ =  

஺

ଵାቐ
ಳ

೅
೏,೒
ೃ೐೑

ష೅బ

ቑ

಴ + 𝐷 + 𝑚𝑎𝑥 ቆ
௠ೞ೛ೌ೎೐ ି ೏்,೒

ೃ೐೑
ା௕ೞ೛ೌ೎೐

௠ೢೌ೟೐ೝ ି 
೏்,೒
ೃ೐೑

ା௕ೢೌ೟೐ೝ

ቇ  
4 

BDEW 
water [38] 𝑓ௗ,௚,௪௔௧௘௥ =  ൭

𝐷 + 𝑚௪௔௧௘௥ . 𝑇ௗ,௚
௥௘௙

+  𝑏௪௔௧௘௥   𝑇ௗ,௚
௥௘௙

> 15°𝐶

𝐷 +  𝑚௪௔௧௘௥ . 15 + 𝑏௪௔௧௘௥   𝑇ௗ,௚
௥௘௙

≤ 15°𝐶
൱ 

4 

Watson 
space [51] 𝑓ௗ,௚,௦௣௔௖௘ =  ൝

−6.71 𝑇ௗ,௚
ோ௘௙

+ 111, 𝑓𝑜𝑟 𝑇ௗ,௚
ோ௘௙

< 14.1°𝐶

−1.21 𝑇ௗ,௚
ோ௘௙

+ 33, 𝑓𝑜𝑟 𝑇ௗ,௚
ோ௘௙

> 14.1°𝐶
 

2 

Watson 
water [51] 

𝑓ௗ,௚,௪௔௧௘௥ =  −0.0458𝑇ௗ,௚
ோ௘௙

+ 1.8248 2 

HDD 15.5 
space [30]  𝑓ௗ,௚,௦௣௔௖௘ =  ൝

15.5 − 𝑇ௗ,௚
ோ௘௙

, 𝑓𝑜𝑟 𝑇ௗ,௚
ோ௘௙

< 15.5°𝐶

0, 𝑓𝑜𝑟 𝑇ௗ,௚
ோ௘௙

> 15.5°𝐶
 

1 

HDD 15.5 
water[30] 

𝑓ௗ,௚,௪௔௧௘௥ =  1.0  

HDD 12.8 
space[34] 𝑓ௗ,௚,௦௣௔௖௘ =  ൝

12.8 − 𝑇ௗ,௚
ோ௘௙

, 𝑓𝑜𝑟 𝑇ௗ,௚
ோ௘௙

< 12.8°𝐶

0, 𝑓𝑜𝑟 𝑇ௗ,௚
ோ௘௙

> 12.8°𝐶
 

1 

HDD 12.8 
water[34] 

𝑓ௗ,௚,௪௔௧௘௥ =  1.0  

 
Where T0 is 40°C and A, B, C, D, mspace, mwater, bspace, bwater are factors taken from the 
code download for [38]. These factors depend on: 
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 UK 40-year mean wind speed – a different value for the factor is used depending 
on weather the grid point is classed as windy (90 grid points) or normal (12 grid 
points). This classification comes from the German gas company. Monthly 
mean 10m wind speeds for 1979 to 2018 from ERA5 weather reanalysis [63] 
were used to identify these windy and non-windy locations. 

 Type of building which is determined by a=ds or a=dw (domestic: multi-family 
house 30% / single family house 70%) or a=ss or a=sw commercial building. 

The reference temperature 𝑇ௗ,௚
ோ௘௙ in table (2-2) was calculated using equation (6) based 

on the mean daily ambient temperatures of the N previous days to account for the 
thermal inertia of buildings. 

𝑇ௗ,௚
ோ௘௙

=
∑ 0.5௡𝑇ௗି௡,௚

௔௠௕ே
௡ୀ଴  

∑ 0.5௡ே
௡ୀ଴

 
(6) 

Where 𝑇ௗ,௚
ோ௘௙ is the reference temperature for day d at grid point g and 𝑇ௗ,௚

௔௠௕ is the mean 
ambient air temperature for that grid point and day. The value of N depends on the heat 
demand method used as shown in table (2-2) (for d<N, N=d). For each of the four heat 
demand methods there will be four heat demand time series 𝐻௔,ௗ,௚ from equation (5) 
where a represents the heating use from table (2-1). The domestic and services series 
were added together to end up with two series, one for space heating: 

𝐻௦௣௔௖௘,ௗ,௚ =  𝐻௦௦,ௗ,௚ +  𝐻ௗ௦,ௗ,௚ (7) 
  and one for water heating  

𝐻௪௔௧௘௥,ௗ,௚ =  𝐻ௗ௪,ௗ,௚ +  𝐻௦௪,ௗ,௚. (8) 
Where 𝐻௦௣௔௖௘,ௗ,௚is the space heating time series for day d and grid point g, and 
𝐻௪௔௧௘௥,ௗ,௚is the water heating time series. These two daily heat time series at each 
weather grid point are used as input to the process of generating a heating electricity 
demand time series in chapter 3. However, for validation, the contributions from each 
grid point are added together to create a daily heat demand time series 𝐻ௗ for the whole 
country. 
 

𝐻ௗ =  ෍ ൫𝐻௦௣௔௖௘,ௗ,௚ +  𝐻௪௔௧௘௥,ௗ,௚ ൯
ேீ

௚ୀ଴
 

(9) 

Where NG is the number of grid points. The process defined by equations (2-8) is 
repeated for each of the 40 years of weather. 
 
Two limitations of this method should be noted: 

 It assumes that all regions of the country have similar standards of buildings and 
thus heat demand for a given temperature. 

 Population distribution is not changed significantly from 2011. 
 

2.3 Validation of Heat Demand Generation Methods 
 
This section describes how the four methods of generating heat demand time series 
listed in section 2.1 were validated. The four heat demand methods were compared 
and validated against: 

 National gas time series 
 Heat demand measurements from domestic houses 
 Gas usage measurements from public buildings in a smart meter trial. 
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2.3.1 Validation against national Gas 
 
The objective of this section is to validate the four heat demand methods against UK 
national gas demand. Natural gas provides a large proportion of UK heating. 
Measurements of gas usage in over 6000 UK homes [51] showed that it is highly 
correlated with heat demand and can be used to predict it. Some studies [7] have even 
used it to generate their heat demand time series, using the simplifying assumption that 
all gas is used for heating. Therefore, gas usage can provide a validation of the heat 
demand time series generated here from weather.  
 
Various historic gas time series are available from national grid gas data explorer [64]. 
The Non-Daily Metered (NDM) daily gas demand time series comes closest to 
including all heating. It was therefore used in this study to validate heat demand time 
series. However a previous study [38] which used the 2013 UK gas demand for 
validating heat demand time series identified that there is some uncertainty about how 
much of this is actually used for heating. This is because the time series also contains 
an unspecified amount of non-heat uses, as reported in government figures [65]. This 
discrepancy is shown as unknown use in table (2-3) for 2018. Using the unmodified gas 
time series as a ground truth for validation is potentially inaccurate. Therefore, the gas 
time series was investigated to ascertain how much of it is used for heating. 
 
Table 2-3 - portion of the 2018 historic gas time series for which it is not known if it is used for heating or not 

Sum of the 2018 gas time series converted to heat using an efficiency 
of 0.8 [64] 

435 TWh 

Gas heating energy for space and water heating derived from 
government surveys and sales figures [8], table(2-1) 

310 TWh 

Unknown use 125TWh 
 
Figure (2-1) shows a strong correlation for 2018 between gas energy use and heating 
degree days. It was assumed that the part of the gas demand that is dependent on 
heating degree days is used for heating and that the remainder is not. 

 
Figure 2-1 Relationship between daily Great Britain gas consumption and heating degree days 2018 

A standard method of estimating the proportion of the electricity demand time series 
used for heating is to use linear regression on heating degree days [13, 66]. The same 
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procedure was used here on the daily gas time series, to find the constants a0 and a1 in 
equation (10). This was done separately for 2016, 2017 and 2018, the years for which 
detailed gas data is available. 

𝑅ௗ = 𝑎଴ + 𝑎ଵℎ𝑑𝑑ௗ (10) 
Where Rd is the daily (d) gas time series found by the regression, and hddd is the heating 
degree days for day d calculated using a population weighted mean daily UK air 
temperature and a base temperature of 15.5°C. The time series of gas used for heating 
is therefore given by a1hddd so the gas not used for heating can then be estimated as 
equation (11) 

𝐷ௗ = 𝐺ௗ − 𝑎ଵℎ𝑑𝑑ௗ (11) 
Where Dd is the daily gas time series without the gas used for heat and Gd is the historic 
daily gas time series, which are plotted in figure (2-2) showing that its use as a method 
of removing the heating energy looks plausible. 

 
Figure 2-2 Daily gas demand and daily gas demand with gas used for heating removed 

The sum of Dd from equation (11) is 162 TWh for 2018 and provides an estimation of 
the non-heat gas. To convert to heat demand, it is multiplied by 0.8, consistent with 
table (2-1) for gas boiler efficiency giving 129.6 TWh. This is close to the unknown 
125 TWh from table (2-3) therefore, it was concluded that this unknown use portion is 
not used for heating. A similar result was found for 2016 and 2017 with the percentage 
of heat in the gas time series varying by 2% between the years 2016-2018 and the linear 
regression having a coefficient of determination R2 between 0.90 and 0.94.  
 
It should be noted that HDD are used to estimate space heating, not water heating. Some 
of the methods being validated listed in table (2-2) assume that hot water is constant 
throughout the year. However, some of the methods assume hot water is dependent on 
external temperature, but not HDD. This does cast some doubt on the justification for 
assuming that all the unknown portion is not heating. But since only 20% of gas heating 
use is for hot water (table 2-1), it does not compromise the validation too much, and is 
certainly more accurate than assuming it is all used for heating.   
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Using this result that the unknown use portion of the gas is not used for heating, a time 
series of heat for 2016-2018 was generated from the gas time series using equation (12) 

𝐻ௗ =  0.8𝐺ௗ − 
125

𝑁𝐷
 

(12) 

Where Hd is heat demand from gas for day d, Gd is the daily gas demand, 0.8 is the 
conversion efficiency of gas energy to heat, 125 is the amount of gas not used for 
heating, which was deduced above, and ND, the number of days splits this equally 
amongst days of the year. This heat demand series was then used to validate and 
compare the four methods described in section 2.2.2 
 
Figure (2-3) shows all four methods of splitting the annual heating energy into days for 
2018 along with a blue line for the gas heat demand time series. It can be seen that the  
HDD 12.8 method matches the gas time series less well, overpredicting at periods of 
high demand. In contrast, the other three heat demand methods over predict in summer 
and consequently under predict in winter. The graphs for 2016 and 2017 (not shown 
here) show a similar pattern. 

 
Figure 2-3 Heat demand methods compared to heat demand from gas for 2018 

The quantitative results of this validation against the gas time series are discussed 
further in section 2.3.4 following the validations against the other data sources. 
 
2.3.2 Validation of heat demand vs heat pump trial data 
 
Measured heat pump heat demand was used to validate the four heat demand methods. 
The heat demand measurements were taken from the Renewable Heat Premium 
Payment (RHPP) Scheme [67] which monitored 418 UK houses in the period 2012 to 
2015. The heat demand was the heat to the hot water cylinder added to the heat from 
the pump (if not already included in the heat to the hot water cylinder). It was measured 
by a heat meter consisting of sensors to measure flow of the heat transfer fluid and 
temperature rise at 2-minute intervals. The original trial report [68] found data quality 
problems, so only those houses which were part of the validated “B sample (cropped)” 
were included in this analysis. There were monitoring problems with the trial data 
where the space heating and water heating values were switched round, so space heating 
and water heating are considered together in this analysis. The houses were monitored 
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at different time periods so that at any time a different number of houses were being 
monitored. Figure (2-4) shows how many houses were being monitored each day over 
the period of the trial. Each horizontal line in figure (2-5) represents the period over 
which one house was monitored.  

 
Figure 2-4 Number of monitored houses in the RHPP trial against time 

 
Figure 2-5 Monitoring period for each house in the RHPP trial 

Instead of splitting annual demand of the whole country into days, the 4 methods are 
used to split the total heat demand for each house into days. The total heat demand is 
calculated by summing the houses’ heat time series over the period that particular house 
was monitored. The objective is not to use these houses to estimate the UK annual 
demand, but rather to use them to compare how well the different methods work at 
generating a time series by splitting a total demand over a period into days. Population 
weighted average air temperature for the whole UK are used from ERA5 reanalysis as 
the exact location of these houses is not available. This provides five time series for 
each house: a measured heat demand time series and a synthetic time series for each of 
the 4 methods in table (2-2). The individual heat demand time series of the houses were 
merged and aggregated to daily. These time series represent different numbers of 
houses at different points over the 4-year period. 
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Figure (2-6) shows the measured heat demands of all the houses from the heat pump 
trial over the monitoring period compared to that predicted by the four methods of 
splitting the annual heat demand into days. All the methods predict the pattern of the 
measured heat demand well. The HDD 12.8 method has some large differences in 
winter. Note that although some seasonal variation is visible, there is also variation due 
to the number of houses being monitored at that time. Quantitative results are shown in 
section 2.3.4 along with the other heat demand validations.  
 

 
Figure 2-6 Comparison of methods of splitting total heat demand for a group of houses over a period into days 
using measured heat pump data (7 day rolling average). 

Two limitations with this trial data should be noted: 
 Some older heat pumps contain a backup immersion heater for hot water to 

ensure the temperature stays above 60°C for health reasons [21] which would 
reduce the COP. 

 Some of the properties involved in the RHPP had log burners. This would not 
change the total heat demand measured by the heat pumps. However, it could 
lead to the heat pump being used less on certain days which would make 
splitting the annual demand into days based on the weather incorrect. 

 
2.3.3 Validation of heat demand vs gas smart meter data 
 
The four methods of heat demand were also validated using gas meter readings for 
commercial and public UK buildings. The data comes from a Smart Meter trial [69] by 
The Carbon Trust. It consists of half hourly gas meter readings in kWh for the period 
2004 to 2006 from 51 gas meters in public and industrial buildings.  The purpose of the 
trial was to get customers to try out smart meters and to see if it prompted energy saving 
behaviour.  
 
The data was processed to remove duplicate values and replace missing values by linear 
interpolation from surrounding values. The gas meter data from the different public 
buildings was combined in the same way as the heat pump data in 2.3.2. The gas 
demand time series from each building were combined and converted to heat demand 
assuming that all their gas boilers have the same efficiency (0.8) and that all the gas is 
used for space heating, which is mostly the case[69]. 
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Figure (2-7) shows the heat demand time series derived from the commercial buildings’ 
gas smart meters compared to that predicted by the four methods of splitting the annual 
heat demand into days. The 2nd winter shows a higher heat demand as more buildings 
were monitored during this period.  

 
Figure 2-7 Comparison of methods of splitting heat demand over a period into days using gas smart meter data (7 
day rolling average). 

Two limitations from the study report [69] should be noted: 
 The participants in the trial were self-selected and had a greater than average 

gas demand, and so were not entirely representative of the whole country. 
 Some of the buildings were not used at weekends, yet it has been assumed for 

this analysis that they were. 
 
2.3.4 Summary of heat demand validation 
 
The results of the heat demand validations from the previous 3 sections are summarised 
in table (2-4). The BDEW method is shown to be better in all cases apart from the gas 
smart meter validation where the Watson method has the best R2. However, it should 
be noted that neither the group of houses in the heat pump trial nor the commercial 
buildings in the gas smart meter trial are fully representative of the national stock which 
may explain discrepancies between the modelled results and those from trials. 
 
Table 2-4 Validation of 4 heat demand methods using 3 different data sources 

 National Gas 
Heat 2016-2018 

RHPP Heat Pumps 
2013-2015 

Gas Smart 
Meters 2005-
2006 

 nRMSE R2 nRMSE R2 nRMSE R2 
BDEW 0.12 0.989 0.25 0.977 0.57 0.880 
Watson 0.13 0.987 0.26 0.974 0.59 0.896 
HDD15.5 0.16 0.982 0.33 0.964 0.63 0.859 
HDD12.8 0.30 0.953 0.59 0.912 0.87 0.789 
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Figure (2-8) shows the residuals plots for the comparison against gas demand. The 
green line of best fit compared to the red horizontal line shows that the BDEW fit has 
the least bias.  

  

 
 

Figure 2-8 Residuals plots for the 4 heat demand methods validated against heat demand from historic gas 

2.3.5  Sensitivity to modelling changes. 
 
An experiment was done to compare heat demand time series created using the most 
accurate ERA5 weather grid of 0.25° x 0.25° with a grid of 0.75° x 0.75° which was 
that available on the ERA5 interim reanalysis as used in the original paper [38] for the 
when2heat dataset. It was found that in general the R2 was unchanged, but that in some 
cases the nRMSE reduced by about 0.01, showing a small benefit in using a finer grid. 
The 0.75°,0.75° was grid was used because the benefit of the finer grid was not 
considered to be worth the additional computational resources required. 
 
Experimental time series were also created with simplified models using no population 
weighting and using no previous days of temperature. These resulted in a decrease in 
accuracy (R2 reducing from 0.982 to 0.970 when validated against gas). It was therefore 
decided to retain these parts of the model. 
 

2.4 Summary and Conclusions 
 
Daily heat demand time series have been created using four different heat demand 
methods. The methods have been validated against national gas demand time series, 
including a regression to show that the unknown portion of the time series is not 
heating. The methods were also validated against heat pump measurements and gas 
smart meter data, data sources not previously used for this purpose. The BDEW method 
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based on the when2heat dataset [38] performed best and was therefore chosen. This is 
an important result because this method has already been used to provide the UK heat 
demand input for several previous studies by other authors [70-73]. It was also found 
that using a finer weather grid did not bring significant improvements. However, using 
previous days temperatures to account for thermal inertia of buildings and population 
weighting all improved the results and should be included in the method. 
 
The heat demand time series for the chosen BDEW method will be used in chapter 3 
to generate heating electricity demand time series.  
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3 Creating Heating Electricity Demand Time Series 
 
This chapter concerns the generation of heating electricity time series. Daily heat 
demand time series from chapter 2 will be used to generate hourly heating electricity 
time series. The objective is to help answer one of the subsidiary research questions: 
How should an electricity demand time series incorporating heating electrification 
alone for long-term weather be generated? The aim is to generate time series for both 
existing resistive heating and heating provided by heat pumps. 
 
The rest of the chapter is structured as follows. Some background on generating 
electricity time series, is followed by a description of the method and the assumptions 
used. The validation against electricity measurements from a heat pump trial is 
described followed by conclusions.  
 

3.1 Background 
 
Converting a daily heat demand to an hourly heat pump electricity demand involves 
two steps: 

 Use an hourly profile which specifies what proportion of the daily demand 
occurs during each hour to convert the daily demand to hourly. 

 Use heat pump COP to convert heat demand to electricity demand. 
 
Previous work such as the when2heat dataset [38] have used hourly profiles based on 
gas usage. However, heat pump hourly electricity profiles have lower peaks and a more 
even spread than gas usage profiles [59]. For this reason, a heat demand profile was 
derived from UK measurements of heat pump demand and used instead. 
 
Heat pump COP is used to convert heat demand to electricity demand. For example, in 
a study of a 100% renewable UK energy system [34] a constant COP of 3.0 is assumed. 
The DESSTINEE model [6] uses a more sophisticated approach with a quadratic based 
on population weighted daily temperature. The when2heat dataset [38] uses German 
manufacturers’ COP curves to calculate the COP using four temperatures a day at 
weather grid points. COP is dependent on ΔT, the difference between the temperature 
of the source (from which the heat energy is taken) and the temperature of the sink (to 
which the heat energy is delivered). COP curves are produced by measuring COP 
values at different ΔTs and deriving a quadratic regression equation from the points. In 
contrast with previous work, COP will be calculated using hourly temperatures at 
weather model grid points and using UK COP curves. 
 

3.2 Methods 
 
This is the second part of a process that follows on from chapter 2 and finishes with 
chapter 4. Figure (3-1) shows the whole process.  
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Figure 3-1 Process to incorporate heating electricity for different years into the 2018 historic demand 

The process covered in this chapter to convert the daily heat demand to hourly 
electricity demand consists of five steps: 

1. Convert daily heat demand to hourly demand. 
2. Calculate hourly heat pump COP for each grid point. 
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3. Using the results from (1) and (2), calculate heating electricity demand time 
series due to historic weather at each grid square for both (a) the existing heating 
and (b) future heating with many more heat pumps. Sum up the contribution 
from all the grid squares, weighting by population. 

4. Calculate the contribution from hybrid heat pumps. 
5. Combine all the electricity time series. 

 
3.2.1 Convert the daily heat demand to hourly heat demand. 
 
An hourly profile which specifies what proportion of the daily demand occurs during 
each hour is used to convert daily heat demand to hourly heat demand. A UK heat pump 
profile was created using the RHPP heat pump trial data [67].  The heat demand 
measurements at 2-minute intervals for each individual house were aggregated up to 
hourly. The data for all houses was then combined into one time series along with the 
hourly mean population weighted UK temperature. This enabled each heat demand 
value to be added to a bin representing one of the 24 hours of the day and one of the 
thirteen 5° temperature bands from -15°C to 40°C. The values were converted to 
percentages by dividing by the total heat demand for each temperature band. This 
profile is referred to as the RHPP profile and  𝐽൫𝑖, 𝑇௛

௔௠௕൯ in equation (13) below. 
 
The RHPP profile and the BDEW profile from the when2heat dataset [38] for the 
temperature bands -5 °C to 0°C are shown in figure (3-2) and those for 10 °C to 15°C 
are shown in figure (3-3). Both these profiles are a combination of space and water 
heating. It can be seen that the BDEW based on gas shows a higher peak in the first 
half of the day. Since there are other studies on German heat pumps showing a similar 
pattern [74] it would seem reasonable to assume that this is a difference in consumer 
behaviour between the UK and Germany, rather than a difference between heat pumps 
and gas boilers. The impact on the final demand of using a different profile is 
investigated in 4.5, including the flat profile shown below. 
 

 
Figure 3-2 Hourly heat demand profiles for external temperature between -5°C and 0°C 
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Figure 3-3 Hourly heat demand profiles for external temperature between 10°C and 15°C 

These hourly profiles are used to convert the two daily heat demands to hourly. The 
hourly heat demand time series at each weather grid point (g) are calculated using 
equations (13) and (14). 

𝐻௦௣௔௖௘,௛,௚ = 𝐻௦௣௔௖௘,ௗ,௚. 𝐽൫𝑖, 𝑇௛
௔௠௕൯(𝑖 = 1,24) (13) 

 
𝐻௪௔௧௘௥,௛,௚ = 𝐻௪௔௧௘௥,ௗ,௚. 𝐽൫𝑖, 𝑇௛

௔௠௕൯(𝑖 = 1,24) (14) 
Where 𝐻௦௣௔௖௘,௛,௚ is the hourly space heating demand time series for hour h at grid point 
g, 𝐻௦௣௔௖௘,ௗ,௚is the daily space heating demand time series from chapter 2 equation (7) 
for day d and grid point g. The function J is the proportion of the daily demand for hour 
i based on the ambient temperature 𝑇௜

௔௠௕ for that hour (i=0,1,2 … ie i is the remainder 
from h/24). Similarly, 𝐻௪௔௧௘௥,௛,௚ is calculated using 𝐻௪௔௧௘௥,ௗ,௚ from equation (8). 
 
3.2.2 Calculate Hourly COP at each weather grid point 
 
An RHPP COP curve was derived using UK heat pump trial data [67]. The heat demand 
measurements at 2-minute intervals for each individual house were aggregated up to 
hourly. The hourly COP for each house was calculated by dividing the measured heat 
demand from the heat pumps by the measured electricity demand. The temperature 
difference ΔT for each hour was calculated as the difference between the measured 
temperature of the hot water leaving the heat pump and the population weighted UK 
temperature calculated using the ERA5 reanalysis 2m ambient temperature. In the case 
of GSHP this was the soil temperature and in the case of ASHP this was the 2m ambient 
air temperature.  
 
Figure (3-4) shows these RHPP COP curves (in yellow) compared with the COP curves 
from other studies. 

 Staffell  [21] equations (15) and (16) which were chosen for the final model 
because they are representative of the UK 

 Kelly [75],  
 Fischer [76] based on industry standard data (2011, 2014, 2016) 
 Ruhnau [38] from industry standard data  
 RHPP derived in this study from UK heat pump trial data [67].  
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In general, GSHP (dotted lines) perform better than ASHP and since ground 
temperature tends to be higher and more constant than air temperature so the ΔT tends 
to be lower. 
 

 
Figure 3-4 Relationship between heat pump COP and difference between source and sink temperatures from 
different studies. 

As can be seen in figure (3-4) the shape of the RHPP derived COP curve (yellow) is 
different from the other curves. The COP should increase as the temperature difference 
declines, but this does not happen for lower temperature differences. Therefore, the 
RHPP curve was not used in the analysis. Instead, in this study, the COP curves from 
Staffell [21] shown on figure (3-4) in blue were used. These were calculated at each 
weather grid point using equations (15) and (16). For ordinary resistive heating the COP 
is assumed to be 1.0, equation (17) 

𝐶𝑂𝑃௛,௚,஺ௌு௉ = 6.08 − 0.09∆𝑇௛,௚
௔௠௕ + 0.0005∆𝑇௛,௚

௔௠௕ଶ
  (15) 

𝐶𝑂𝑃௛,௚,ீௌு௉ = 10.29 − 0.21∆𝑇௛,௚
௦௢௜௟ + 0.0012∆𝑇௛,௚

௦௢௜௟ଶ
  (16) 

𝐶𝑂𝑃௛,௚,ோு = 1.0  (17) 

Where ∆𝑇௚,௛
௔௠௕ = 𝑆 − 𝑇௚,௛

௔௠௕   , 𝑇௚,௛
௔௠௕is the ambient air temperature for grid point g at 

hour of the year h, ∆𝑇௚,௛
௦௢௜௟ = 𝑆 − 𝑇௚,௛

௦௢௜௟, 𝑇௚,௛
௦௢௜௟is the 10m ground temperature for grid 

point g and hour of the year h. Both temperature values were taken from the ERA5 
weather reanalysis [37]. S is the sink temperature from table (3-1).  
 
Table 3-1 - Source temperature and sink temperature assumptions [38] 

Sink Sink temperature (S) 
Radiators 40°C – 𝑇௛,௚

௔௠௕  (or 15°C if 𝑇௛,௚
௔௠௕>25°C) 

Underfloor heating 30°C – 0.5𝑇௛,௚
௔௠௕  (or 15°C if 𝑇௛,௚

௔௠௕>3°C) 
Hot water 50°C 

 
It should be noted that here COP is used to represent the whole system and not just 
the heat pumps. The electricity used to pump water to radiators is not considered 
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because it is similar to that used by a gas boiler and so will not affect the impact of 
heat pumps on the size of the electricity demand.   
 
3.2.3 Calculate heating electricity demand for the whole country. 
 
The hourly heat demands from equation (13,14) and the COP from equations (15-17) 
are now used to calculate a heat demand for the whole country. 
 
For the purposes of this model, it is assumed that heating is supplied by either traditional 
resistive heating where the COP is assumed to be 1.0, an air source heat pump or a 
ground source heat pump. This heat is used for water heating or for space heating via 
radiators or underfloor heating. This gives 9 possible heating configurations (s) for 
which the heating electricity needs to be calculated as shown in table (3-2). The 9 
different heating configurations arise from the different combinations of source and 
sink shown there. In table (3-2) the 2018 fraction represents 2018 proportions from 
National Grid[24] and the simplifying assumption is that all existing heating not 
provided by heat pumps is provided by resistive heating with efficiency 100%. The 
future fraction is based on the assumptions that all electric heating is provided by heat 
pumps (90% ASHP, 10% GSHP based on current proportions [24]) and that 90% of 
heating is provided by radiators and 10% by underfloor heating.  
 
Table 3-2 - Assumptions and COP equations for different types (s) of heating electricity demand 

Heating Configuration: use-source-sink Indices Proportions of 
heating 
configurations 

s Heat Use Source Sink α(s) β(s) 2018 
Fraction 
(Ks) [24] 

Future 
Fraction 
(Ks) [24] 

1 Space Heating Ground Radiator space GSHP 0.0045 0.09 
2 Space Heating Ground Floor space GSHP 0.0005 0.01 
3 Space Heating Air Radiator space ASHP 0.0378 0.81 
4 Space Heating Air Floor space ASHP 0.0042 0.09 
5 Space Heating Resistive Radiator space RH 0.8577 0.0 
6 Space Heating Resistive Floor space RH 0.0953 0.0 
7 Hot Water Ground Water water GSHP 0.005 0.1 
8 Hot Water Air Water water ASHP 0.042 0.9 
9 Hot Water Resistive Water water RH 0.953 0.0 

 
The daily heat demand time series at each weather grid point from equations (13,14) 
was converted to an hourly electricity time series and summed using equation (18) over 
the whole country.  
 

𝐸௛,௦ =
𝐾௦

𝜂ு௉ 
 ෍

𝐻∝(௦),௛,௚ 

𝐶𝑂𝑃௛,௚,ఉ(௦)

ேீ

௚ୀ଴
 

(18) 

Where Eh,s is the heating electricity demand for hour of the year h and heating 
configuration s representing different types of heating as shown in table (3-2), 𝜂ு௉ is a 
correction factor set to 1 for resistive heating or 0.85 for heat pumps to account for real 
world inefficiencies as per [38] and Ks is the proportion of heating configuration s in 
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the country as shown in table (3-2) 𝐻∝(௦),௛,௚ is the heat demand for hour h at weather 
grid point g for heating configuration s,  𝐶𝑂𝑃௛,௚,ఉ(௦) is the heat pump COP for hour of 
the year h, grid point g .The parameter β(s) indicates which of the equations (15-17) is 
used to calculate COP for heating configuration s in table (3-2). The parameter α(s) 
indicates weather equation (13) or (14) is used for 𝐻∝(௦),௛,௚. 
 
3.2.4 Hybrid heat pumps  
 
Hybrid heat pumps are envisaged to provide 13% of heating by UK National Grid 
Future energy scenarios [24]. Hybrid heat pumps combine a smaller heat pump with a 
boiler for the coldest days. Initially this would be a boiler powered by natural gas. In 
their net zero scenario, from which the figures used in this study are taken, a transition 
from natural gas to hydrogen is envisaged. The hydrogen would be generated by 
electrolysis from water using excess renewable energy and pumped into the existing 
gas network. The objective of a hybrid heat pump is to reduce peak electricity demand 
by switching entirely to hydrogen below a threshold temperature ( set here as 4.15°C 
in order to meet the requirement of the proportion of energy specified in [24] ). The 
hourly heating electricity 𝑀௛,௦ for hybrid heat pumps is calculated using equation (19). 

𝑀௛,௦ = ቆ
𝐸௛,௦: 𝑇௛

௔௠௕ ≥ 𝑇ி

0 ∶  𝑇௛
௔௠௕ < 𝑇ி

ቇ 
(19) 

Where 𝐸௛,௦ is the heating electricity from equation (18) for heating configuration s from 
an ordinary heat pump, 𝑇ிis 4.15°C the hybrid heat pump threshold temperature and 
𝑇௛

௔௠௕ is the population weighted ambient air temperature. 
 
The operation of a hybrid heat pump using this model is shown in figure (3-5). The red 
horizontal line shows the threshold temperature below which the hydrogen boiler is 
used instead of the electric heat pump. The other red line shows the outdoor 
temperature. The green line shows the electricity demand for ordinary heat pumps and 
the blue line that of a hybrid heat pump which goes to zero as the hydrogen boiler 
(yellow line) kicks in. Note that the blue line exactly follows the green line so is not 
visible when the temperature is above the threshold when the boiler kicks in.  

 
Figure 3-5 Hybrid heat pumps compared to ordinary heat pumps – electricity demand and gas demand. 
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The graph above (for 2018) shows a similar pattern to figure (4.14) from National Grid 
Future Energy Scenarios 2019 [24] (not shown here) for 2017 data, providing some 
validation for the model. One of the objectives of Future Energy Scenarios is as a 
starting point for academic studies. However, no previous mention of hybrid heat 
pumps being included in long term national energy models has been found in the 
academic literature. 
 
3.2.5 Combine heating electricity demand for all configurations 
 
All the heating configurations from table (3-2) and equation (18) and (19) are then 
added together as per equation (20) 

𝐸௛ = 𝑃ா  ෍ 𝐸௛,௦ + 𝑃ெ  ෍ 𝐹௛,௦
௦௦

 (20) 

Where 𝑃ா is the proportion of heating from ordinary heat pumps and 𝑃ெ is the 
proportion of heating from hybrid heat pumps.  𝑃ா= 0.29, 𝑃ெ = 0.13 from national grid 
Future Energy Scenarios 2019 [24] . 
 
This process described in equations (13-20) was repeated for each weather year y, 
giving 𝐸௬,௛ as the electricity demand for year y and hour h. This gives a multi-year 
electricity demand time series including heating, using either the heating technology of 
2018 or future technology using heat pumps. These two electricity demand time series 
created for use in chapter 4 are shown in table (3-3). 
 
Table 3-3 Summary of the simulated electricity demand time series 

Time Series (𝑬𝒚,𝒉 ) years Annual demand 
from table (2-1)  

Fraction Ks 
table (3-2) 

a) 40 years heating electricity 
with 2018 technology 

1980 - 2019 Electricity column 2018 

b) 40 years heating electricity 
with 41% heat pumps 

1980 – 2019 Total column Future 

 

3.3 Validation of heat pump electricity demand time series 
 
Electricity demand measurements were used to validate the method of simulating 
heating electricity time series. The electricity demand measurements were taken from 
the same RHPP trial used in 2.3.2 to validate heat demand. Two time series were 
generated:  

 An electricity demand time series created by merging the 2-minute electricity 
measurements from each house in the trial and aggregating to hourly. 

 A heat demand time series created using the BDEW heat demand method to 
split the total heat demand from 2.3.2 into days. Population weighted ERA5 
reanalysis temperatures from the years of the trial data were used. This heat 
demand was then converted to an electricity demand time series using the 
methods from section 3.2.3. For each house in the trial, the appropriate heat 
pump type (GSHP or ASHP) was used according to the trial data [67]. The sink 
temperature was determined by weather the heating was provided by radiators 
or underfloor heating which is also specified in the trial data. In the case of those 
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having both heating types, 50% underfloor heating is assumed. The time series 
for all houses were then merged. 

 
These two time series where then compared. Figure (3-6) shows that the actual 
electricity demand measured from the heat pump trial data is higher than that predicted. 
 

 
Figure 3-6 Comparison of predicted electricity demand from weather with actual hourly electricity demand from 
measured heat pumps in the RHPP trial (7 day rolling average) 

The modelled electricity demand time series compared to the measured one with 
R2=0.994 reflecting the fact that both time series follow a similar pattern, but the high 
nRMSE of 0.70 reflects the under prediction in the model. 
 
The reason for the higher heat pump electricity demand from the heat pump trial data 
could be the fact that the sample of housing in the trial is mostly social housing [67] not 
representative of the UK housing stock and containing heat pumps not representative 
of the typical heat pumps sold. Another reason could be that UK heat pumps perform 
less well than German installations [21] possibly due to lack of experience amongst 
installers. Another possible explanation is inaccuracy of the RHPP trial data, although 
a previous study [59] expressed doubts about the accuracy of the heat measurements 
rather than the electricity measurements. Finally, another cause could be that the 
method used here assumes that all the hot water is provided by heat pumps alone, but 
this is not the case for at least 4% of the houses [67]. 
 
It is clear from figure (3-4) that the temperature dependent COP calculated here from 
the RHPP heat pump trial data is very poor compared to those used in other studies. For 
ASHP an average COP of 2.4 was calculated from the trial data, compared to the annual 
population weighted COP of 2.9 calculated using equations (15) and (16) based on the 
weather of 2010 to 2019. For comparison, a review of available heat pump data [77] 
notes a large variation in COP from 2 to 4, and that one trial of retrofitted homes in 
Northern Ireland reported a COP as low as 1.4. This variability in heat pump 
performance obtained from heat pump trials suggests that heat pump trial data should 
be used with caution in research. 
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3.4 Summary and Conclusions 
 
A method has been developed to convert daily heat demand time series into an hourly 
national heating electricity demand. The electricity demand can be generated either on 
assumptions of future heat pump penetration or the existing 2018 heating technology. 
Validation against measured heat pump trial data shows the method underpredicts. 
However, there is uncertainty about the accuracy of the trial data. This chapter includes 
the following novel contributions: 

 An hourly heat pump electricity profile derived in this study using trial data. 
 A modification of the when2heat method using hourly temperatures and UK 

COP curves 
 The inclusion of hybrid heat pumps 
 Method of generation of electricity demand time series from the heat demand 

via proportions of heat pumps  
 Derivation of RHPP COP curve. 

 
Two electricity demand time series have been generated which will be used in the 
next chapter: 

 1980-2019 heating electricity (based on 2018 technology) 
 1980-2019 heating electricity (based on 41% heat pumps) 
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4 The impact of heating electrification on national 
electricity demand 

 
This chapter completes the process of creating an electricity demand time series 
incorporating heating electrification alone for long-term weather. It is the third step 
shown in figure (3-1). The heating electricity time series created in chapter 3 will be 
incorporated into the historic 2018 time series, to keep technology constant at 2018 
levels, so that the impact of heating electrification alone can be studied for 40 years 
weather. The resulting time series is analysed to assess the impact that heating 
electrification will have on Great Britain’s electricity demand. 
 
The remainder of the chapter is structured as follows. The background section reviews 
other studies on the impact of heating electrification and introduces the concept behind 
the method to be used. The method itself is described. The validation section uses the 
method to generate a different year’s time series and compares them with those obtained 
using linear regression and historical demand. There is also a sub-section justifying the 
assumption that temperature is the only weather parameter that needs to be used in this 
model. The generated electricity demand time series are used to assess the seasonal and 
interannual impact of heat pumps. Finally, there is a sensitivity analysis followed by 
overall conclusions. 
 

4.1 Background 
 
Previous research has assessed the future impact of heating electrification on UK 
electricity demand in several different ways. One study [78] used the historic gas series 
as a proxy for heat demand to predict the impact on electricity demand if all gas heating 
were electrified. A regression model with historic gas demand and weather was used in 
[7] to modify the historic electricity demand time series. In another study, heat pump 
simulations of 960 buildings [57] were used to predict net peak demand. Heat pump 
trial data was upscaled in [59] to represent the national housing stock. These studies 
focus mainly on the peak hourly demand with little attention given to the impact on the 
seasonal and interannual variation. A study that investigates such effects on electricity 
demand [15] incorporating long term weather effects too, is based on projections of 
demand into the future and does not isolate the effect of heat electrification from other 
developments. It is this impact of heat electrification alone on seasonal and interannual 
electricity demand that is the focus of this chapter. It is analysed and quantified for the 
case of Great Britain. 
 
Some studies linearly scale one year of hourly historic electricity demand [42, 61, 79] 
to account for future changes to demand such as electric heating and vehicles. However, 
over the 40-year period used in this project to capture weather variation, changes in the 
demand pattern need to be considered. Figure (4-1) illustrates how the annual UK 
electricity demand has changed over the years. 
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Figure 4-1 Change in historic annual electricity demand (TWh) over 40-year period from 1980 - 2019 

Technological and economic changes over a long time period [80] have led to an overall 
reduction in the UK electricity demand in the last decade. An analysis of the impact of 
weather on the UK electricity demand from 1974 to 1990 [81] also found that the 
demand pattern has changed with correlation between demand and temperature 
weakening over time which might be explained by a move towards gas heating, or 
improved thermal insulation. Using historic electricity demand could make it difficult 
to distinguish these changes from those due to the model. Some studies scale historic 
electricity demand time series so that all years have the same annual energy [41, 52], 
but this has the disadvantage of removing the effect of weather: cooler years generally 
have higher demand due to heating. 
  
This work introduces a method to isolate and study the impact of a specific change to 
the electricity demand. It will be used to keep current technological and socioeconomic 
conditions constant and account only for the anticipated implementation of electric heat 
pumps. Rather than use the historic electricity demand, or generate a purely synthetic 
demand, an alternative approach will be used. The electricity demand is based on a 
single year, 2018 from which the significant weather impact of electric heating has been 
removed. This concept of removing the heat demand and assuming it to be the weather 
dependent demand has been used previously in research: for characterising the response 
of the power system to weather [66] and for identifying events of simultaneous high 
demand and low renewable generation [82]. The method relies on the assumption that 
removing heating electricity removes the dependency on weather, which has been 
shown by previous studies [7, 81]. However, the previous work has removed the heating 
electricity using linear regression from the time series. Instead of using linear 
regression, the novel aspect of the method used here is to generate the heating electricity 
from historic weather, annual fuel use and proportions of heating technology. The 
advantage of using this method is that it is only necessary to simulate the heating 
electricity and no other sectors. This heating electricity was generated in chapters 2 and 
3. It will now be used to modify the historic 2018 electricity demand. 
 

4.2 Methods 
 
This section describes the method used to generate two forty-year national electricity 
demand time series:  one with the existing heating technology of 2018 and one with 
41% of heating provided by heat pumps. The method allows the impact of heating 
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electrification to be studied in isolation to changes due to other socio economic and 
technological factors. The process uses the electricity demands from table (3-3) in 
chapter 3 as follows: 

1. Take only the year 2018 from the existing heating electricity table (3-3) (a) and 
subtract it from the 2018 historic time series to give a baseline electricity 
demand (without heating). 

2. Add the heating electricity from table (3-3) (a) for each of the 40 years to the 
baseline demand from above. This creates a 40-year electricity demand time 
series with the existing heating electricity technology. 

3. Add the heating electricity from table (3-3) (b) for each of the 40 years to the 
baseline demand from above. This creates a 40-year electricity demand time 
series with the future heating electricity technology. 

This procedure will be referred to as the baseline method. These processes are further 
explained in the following sections. 
 
4.2.1 Baseline electricity demand time series 
 
A baseline electricity demand time series is created which represents 2018, but with no 
heating electricity. This is done by simply subtracting a time series of heating electricity 
for 2018 from the historic 2018 electricity demand using equation (21).  

𝐵௛ =  𝐹௛ − 𝐸ଶ଴ଵ଼,௛ (21) 
Where Bh is the baseline electricity demand, Fh is the half hourly historic 2018 
electricity time series for Great Britain from [83] converted to hourly by summing up 
pairs of half hourly values and E2018,h is the heating electricity for 2018. This 2018 
heating electricity time series was calculated using the 2018 fraction from table (3-2) 
and the weather of 2018 using the methods from section 3.2 with equation (20). This 
baseline Bh represents sources of demand other than heating, allowing the study of the 
impact of heating alone by adding in the electricity demand for each year of weather 
including future heating with heat pumps. 
 
4.2.2 40-year electricity demand for existing heating technology 
 
An electricity demand time series with the existing heating technology is created. This 
is done using equation (22).  
 

𝑅௛ = ራ൫𝐵௬,௛ +  𝐸௬,௛൯

ସ଴

௬ୀଵ

  
(22) 

The union operator signifies that the time series for each year y from 1 to 40 are 
concatenated end to end to form the 40-year hourly electricity demand time series 𝑅௛. 
Where 𝐵௬,௛ is the hourly baseline time series for year y and 𝐸௬,௛ the hourly heating 
electricity demand time series. 𝐵௬,௛is calculated from 𝐵௛in 4.2.1 by simply copying the 
values in each year, apart from leap years where a February 29th is made up by linear 
interpolation from the day before and the day after. 𝐸௬,௛ is taken from section 3.2.5 
equation (20) using the 2018 fraction Ks from table (3-2) and the 40 years weather.  
 
Each year of this time series represents the electricity demand that 2018 would have 
had if it had had the weather of that year. It allows us to keep technology constant and 
look at the impact of weather alone. 
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4.2.3 40-year electricity demand for future heating technology 
 
Similarly, to create an electricity demand time series with future heating technology, 
the future heating electricity is added to the baseline. This is done using equation (23).  
 

𝑆௛ = ራ൫𝐵௬,௛ +  𝐸௬,௛൯

ସ଴

௬ୀଵ

  
(23) 

Where 𝑆௛ is the 40-year hourly electricity demand time series with future heating 
technology and 𝐸௬,௛ the hourly electricity demand time series from equation (20) using 
the future fraction Ks from table (3-2).  𝐵௬,௛ is the baseline as in the section 4.2.1. 
 
Each year of this time series represents the electricity demand that 2018 would have 
had if it had had the weather of that year and 41% of heating had been provided by heat 
pumps. It allows us to keep technology constant and look at the impact of weather alone. 
 

4.3 Validation of adding in weather dependent heating electricity 
 
The objective of this section is to validate the process of removing the heating 
electricity for the reference year 2018 and adding in the heating electricity for a 
particular weather year. First the baseline electricity demand method itself is validated. 
Then for comparison, the linear regression method from previous work is validate using 
the same method. Some investigations are done to justify the underlying assumption 
that removing heating electricity removes weather dependence. Finally, the baseline 
and linear regression methods are compared. 
 
4.3.1 Validation of Baseline Method 
 
As described in section 4.2.1, the baseline method removes the heating electricity from 
the 2018 historic electricity demand which should make it independent of the weather. 
The heating electricity based on a particular year’s weather is then added back in as 
described in 4.2.2 and 4.2.3. Heating electricity demands for 2017 and 2019 were 
generated using this method. These generated demands were then compared to the 
historic ones. The investigation is restricted to just these two years to ensure similar 
technoeconomic conditions with 2018. The synthetic 2017 electricity demand time 
series is created by removing the 2018 heating electricity from the historic 2018 
electricity time series and adding in the 2017 heating electricity. This approximates the 
historic 2017 electricity demand time series as per equation (24) 

𝐸෠ଶ଴ଵ଻,௛ =  𝐵௛ + 𝐸ଶ଴ଵ଻.௛ (24) 

Where 𝐸෠ଶ଴ଵ଻  is predicted 2017 historic electricity demand time series, 𝐵௛ is the 
baseline electricity demand time series and 𝐸ଶ଴ଵ଻.௛ is the generated time series of 
heating electricity for 2017 from equation (20). 
 
This predicted timeseries compares well with the actual 2017 electricity demand giving 
R2=0.994. For the 2019 time series it was R2=0.995. Both years have nRMSE=0.08. 
This has shown that the baseline method can generate recent years electricity demand 
from weather with high accuracy. Figure (4-2) shows how the electricity demand 
predicted by this method (red) compares to the historic electricity demand (blue) and 
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the linear regression method (green) described in the next section. It can be seen that 
although the baseline method is an improvement on linear regression, that there are a 
few times when it over predicts the historic electricity demand.  
 

 
Figure 4-2 Comparison of predicting the 2017 electricity demand using the baseline method from this thesis and by 
linear regression. 

 
4.3.2 Validation using linear regression. 
 
Instead of using generated heating electricity demand time series as was done in the 
previous section, previous work has used linear regression. One previous study [66] 
found the heating electricity for all European countries using linear regression in a 
similar way to what was done with the gas demand in section 2.3.1 but including 
cooling degree days (CDD) as well as HDD. To compare the accuracy of this method 
with this study, linear regression was used to estimate the coefficients b, c, h in equation 
(25). This allows an estimate of the amount of heating and cooling in the electricity 
demand time series to be made. 

𝐸௜ = 𝑏 + 𝑐𝐶௜ + ℎ𝐻௜ (25) 
Where Ei is the electricity demand time series, Ci is a time series of Cooling Degree 
Hours (CDH) using a base temperature of 20°C, Hi is a time series of Heating Degree 
Hours (HDH) using a base temperature of 14.8°C. Note that an hourly series is being 
used here, so that HDH and CDH are used rather than HDD and CDD. The heat demand 
from this standard linear regression was also used to validate the heating electricity 
demand: using equation (24) from the previous section, but with  𝐵௛and 𝐸ଶ଴ଵ଻,௛ being 
calculated using this linear regression model instead of using the generated heating 
electricity demand.  
 
The electricity demand time series generated in this way compared to the actual historic 
one for 2017 with R2=0.993 and nRMSE=0.08. This linear regression also provides an 
important additional validation of the heat demand method itself using the electricity 
time series, as relying only on the gas time series alone could lead to some doubt as to 
if we are validating heat demand or gas usage. The heat energy in the time series given 
by hHi was 36.9 TWh which compares to 41 TWh estimate of annual heating energy 
for electricity from table (2-1). 
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4.3.3 Electricity demand regression coefficients 
 
The previous work on which the above linear regression model is based [84] quote their 
linear regression coefficients. Therefore, as an additional validation, the regression of 
equation (25) was repeated for the years 2017-2019 as a comparison. The regression 
coefficients are shown in table (4-1) compared to the previous study.  
 
Table 4-1 - comparison of electricity demand regression coefficients with another study [66] 

Study h (HDD ) Years 
Supplemental material of [84] 0.75  2016-2017 
This study 0.79 2017 
This study 0.77  2018 
This study 0.77 2019 

 
The HDD coefficients compare quite well. The CDD coefficients for the UK were not 
quoted in the that study because there is only a small amount of cooling energy in the 
UK electricity demand. The number of HDD in 2018 was 1882, whereas the number of 
CDD was 22. 
 
4.3.4 Prove heating is the most significant part of electricity demand. 
 
The method of generating electricity demand time series being used in section 4.2 relies 
on the assumption that by removing heating electricity from the historic time series, the 
significant weather dependence (ie on temperature) has been removed. Although this 
method has been used in previous work using the UK electricity demand [66, 85] they 
do not say if they have validated the method in a UK context. The method is derived 
from US studies [86] using a limited number of variables at weather stations. However, 
this study is using UK not US weather and using reanalysis instead of weather stations. 
Therefore, an investigation was done to establish if: 

 Any other weather variable is comparably significant to temperature. 
 If the baseline electricity demand still has any weather dependence remaining 

which should be removed. 
The literature contains several relevant studies. 
 
A study using monthly regression models applied to the UK electricity demand time 
series from 1970 to 1995 [81] looked at heating degree days, cooling degree days, 
enthalpy latent days (which is an alternative measure of cooling), wind speed, rainfall 
and hours of sunshine. They found a strong corelation between temperature and 
demand, some correlation between humidity and demand in the summer months and a 
weak correlation with rainfall. 
 
A previous study [7] used Lasso regression to investigate the relationship between net 
(of renewables) electricity demand and various parameters including weather variables. 
The Lasso method [87] is a common method of identifying important features for a 
machine learning model. It is a regression analysis method favouring the smallest 
number of features. In that study, they only look at the winter months and conclude that 
the only important weather variable is temperature (hourly and mean daily). They find 
that population weighted wind chill and cold spell uptick are not significant. Wind chill 
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is defined as a relationship between the wind speed being above a certain value at the 
same time the temperature is below a certain value. Cold spell uptick is defined as max 
(T-3,0), where T is temperature in °C. 
 
To predict electricity demand, the UK National Grid use composite variables which are 
weighted averages from a few selected weather stations for effective temperature, 
cooling power of the wind (CP) and effective illumination (EI) [88]. EI used to be a 
complex function of radiation levels and types of cloud cover but has recently been 
replaced by a cubic function of the ground solar radiation. It should also be noted that 
government figures [8] show that lighting energy use in the UK has declined from 7375 
ktoe in 2007 to 1215 ktoe in 2018, so its significance has probably declined also. CP is 
defined in [89] by equation (26).  
 

𝐶𝑃௧ =  √𝑊 ൬
18.3 −  𝑇𝑂௧ 𝑖𝑓 𝑇𝑂௧ < 18.3

0  𝑖𝑓 𝑇𝑂௧ ≥ 18.3
൰ (26) 

Where TO is the mean temperature for the previous 4 hours in °C and W is the wind 
speed in m/s. 
 
To summarise, the previous work on which the method of removing the electricity for 
heating is based used hourly US electricity demand. Other studies looked at monthly 
regression on the UK demand or at just the winter months, but not at hourly UK 
electricity demand for the whole year. The purpose of this section is to fill that gap. 
 
Various weather variables were taken from the ERA5 reanalysis 2017 - 2019 covering 
the same recent years used as the electricity demand baseline. Only three years are 
considered to avoid technological changes that would occur over a long period. The 
variables used were chosen based on the previous work referenced above as those 
considered most likely to influence electricity demand. They are listed in table (4-2), 
along with additional derived variables. A new variable ghi_w (weather dependent ghi) 
was derived, as the difference between the theoretical maximum “clear sky” Global 
Horizontal Irradiance (GHI) and the actual GHI. Clear sky GHI is the theoretical GHI 
based on the geometric position of the sun in the absence of any cloud cover. The square 
and cube of ghi_w were included because National Grid’s EI variable (see above) is 
defined as a cubic function of solar irradiance. 
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Table 4-2 - Correlation of weather parameters with electricity demand 

Variable Description Daily R 
historic 
demand 

Daily R 
baseline 
demand 

Daily 
Lasso 
historic 
demand 

Daily 
Lasso 
baseline 
demand 

dailytemp Mean daily 
temperature 

-0.806 -0.605 0.14 0.148 

tempyd Yesterday’s dailytemp -0.787 -0.579 0.072 0.139 
tempdb 2 days ago mean temp -0.774 -0.585 -0.078 -0.067 
temp_dp Dew point 

temperature 
-0.772 -0.576 0.0 -0.0 

hdd Heating Degree Days 0.831 0.631 0.241 0.246 
wind Wind speed 0.367 0.351 0.064 0.071 
ghi Global Horizontal 

Irradiance (GHI) 
-0.597 -0.493 -0.024 -0.009 

clear_sky Clear Sky GHI -0.662 -0.554 -0.065 -0.075 
ghi_w Weather Dependent 

GHI 
-0.391 -0.34 -0.060 -0.056 

ghi_w2 Ghi_w squared -0.32 -0.297 0.006 0.052 
ghi_w3 Ghi_w to the power 3 -0.28 -0.27 -0.07 -0.109 
cp Wind Cooling Power 

equation (26) 
0.827 0.064 0.003 0.045 

thermal Thermal Irradiance -0.625 -0.459 0.215 0.225 
pressure Surface atmospheric 

pressure 
-0.340 -0.337 -1.046 -1.389 

cloud Cloud cover 0.195 0.151 -0.00 0.0 
precipitation Precipitation rain and 

snow 
0.131 0.11 -0.040 0.05 

cdd Cooling degree days -0.213 -0.13 0.073 0.038 
 
Both the historic electricity demand and the baseline electricity demand (section 4.2) 
were analysed to determine the daily correlation (R) of each variable and its 
significance in Lasso regression. The results of this investigation are shown in table (4-
2). The values of R range from -1 completely negatively correlated through 0 no 
correlation to +1 completely correlated. Lasso regression is similar, but those variables 
that are deemed not useful because they are correlated with something else are set to 
zero. Columns 3 and 5 show that the most significant parameters shown in bold 
affecting the historic demand are indeed those that are related to temperature, such as 
daily temperature, yesterday’s temperature, and heating degree days. This supports the 
idea of heating degree days being the most significant part of the weather dependent 
demand. 
 
For example, figure (4-3) shows a correlation between hdh, one of these temperature 
dependent variables and the 2017-2019 daily historic electricity demand. 
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Figure 4-3  Correlation between HDH per day and 2017-2019 daily historic electricity demand 

Columns 4 and 6 in table (4-2) relate to the baseline demand. From R, it appears that 
dew point temperature (which includes humidity) correlates well with demand, 
however the Lasso Regression shows that this parameter is not needed in a model 
because of correlations with other parameters, presumably temperature in this case. 
Similarly, GHI seems to correlate well, but the Lasso shows it is not important in a 
model, possibly because GHI also correlates with time. Surface pressure is highlighted 
as being significant by the lasso analysis of the time series after removal of heat. It 
might be thought that the high correlation of GHI indicates some relationship to lighting 
since annual lighting energy of 37.9 TWh is comparable to heat energy. However, it 
should be noted that the amount of sunlight is also correlated with the day of the year. 
Therefore, the variable ghi_w was included to investigate only the effect of weather and 
shows a weaker correlation to the electricity demand than ghi. Figure (4-4) does not 
show any obvious relationship between ghi_w and the baseline electricity demand (with 
electricity for heating removed). 

 
Figure 4-4 Correlation between weather dependent GHI and baseline electricity demand 2017-2019 
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With a linear regression, such as the model used in the previous section, the form of the 
model is fixed. This has the advantage that as in the case of the HDD and CDD model 
equation (25) that the portions of the time series that are heating, and cooling can be 
extracted. However, if the assumption about the form of the model were incorrect, then 
better results might be obtained from a model with a different form. Therefore, an 
investigation was done using the Random Forest (RF) machine learning method. RF is 
an ensemble method which takes the average of many decision trees [90]. A decision 
tree is a method of subdividing the data based on the values of certain variables. 
Individual decision trees tend to overfit, but RF overcomes this limitation by averaging 
the predictions of many trees. The objective of the investigation was to see if including 
any of the parameters identified as significant from table (4-2) improved a model to 
predict electricity demand from weather. This might indicate that the variable should 
have been considered in generating baseline electricity demand. The results of this 
analysis are shown in table (4-3). The variables used in the prediction are shown in 
brackets. These models do not perform better than the regression model from section 
4.3.2 or the heat demand model from 4.3.1. However, it can be seen that the addition 
of ghi_w into the model made a small improvement in the R2 values. 
 
Table 4-3 Comparison of Random Forrest models for predicting electricity demand from weather 

Comparison to the daily 2017 electricity demand of R2 nRMSE 
2017 Random Forests (RF) prediction (hdh,cdh) 0.993 0.09 
2017 Random Forests prediction (hdh,cdh,ghi_w) 0.994 0.08 
2017 RF (hdh,cdh,ghi_w,temp_dp) 0.994 0.08 
2017 RF (hdh,cdh,ghi_w,temp_dp,surface_pressure) 0.994 0.08 

 
If the baseline demand after the removal of heat, still contains some weather 
dependency then one possible improvement might be to train a model to forecast the 
baseline line demand from the weather, ie Bh from equation (21), instead of just using 
the baseline of 2018 directly. This was tried using the variables ghi_w, temp_dp and 
surface_pressure, but made no improvement to the assessment in table (4-3).  
The conclusion is that we do not need to add any more weather parameters to the 
calculation of weather dependent demand. Removing heating electricity is sufficient to 
remove weather dependence. 
 
4.3.5 Summary of validation 
 
The previous section provides a justification for the assumption that removing heating 
electricity from the historic demand removes its weather dependency. Section 4.3.1 
validated the method of using a baseline electricity demand. Section 4.3.2 investigated 
the alternative method of linear regression. These two methods are compared in table 
(4-4) and figure (4-5). 
 
Table 4-4 Comparison of generated 2017 electricity time series to the actual historic data 

Comparison to the 2017 electricity demand time series R2 nRMSE 
2017 synthetic time series using the heat demand method 
from section 4.3.1 to calculate H2018 and H2017 

0.994 0.08 

2017 synthetic time series using linear regression model 
from 4.3.2 to calculate H2018 and H2017 

0.993 0.08 
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Figure 4-5  Removal of heating from weekly electricity demand time series 

It can be seen that the method used in this study is slightly better than the linear 
regression method used in previous work. The method is also better than some methods 
which generate the whole electricity demand time series, rather than just replacing the 
heating electricity. For example, the DESSTINEE model time series for 2010 compares 
to the actual time series with R2 = 0.92.    
 
 

4.4 Results of Electrification of Heat 
 
The previous section validated the methods of incorporating the electrification of 
heating via electric heat pumps into the electricity time series. This section will use 
these time series to look at the impact heating electrification will have. Two 40-year 
electricity demand time series were created using the methods from section 4.2: one 
representing the heating technology of 2018 and one representing future heating 
technology with 41% heat pumps. Although hourly time series have been generated, 
only the daily series are shown in the following plots for clarity. 
 
Figure (4-6) shows the daily historic electricity time series for 2018 (in blue) with the 
portion of that which was heating (in red) subtracted from it to give the baseline 
electricity demand without heating electricity (purple). This demonstrates the method 
of creating a baseline electricity demand described in section 4.2.1.   
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Figure 4-6 Removing the electricity for heating from the historic electricity demand of 2018 to obtain the baseline 
electricity demand. 

Figure (4-7) shows generated electricity demand time series from 10 arbitrary 
consecutive years of weather from the total 40. The purple line of figure (4-7) shows 
the baseline electricity demand which is the same time series repeated as the influence 
of weather has been removed. The orange line shows the effect of adding in the 
electricity demand for heat pumps assuming all heating was provided by heat pumps. 
The heating is based on weather, so this line is different for each year. As expected, all 
heating provided by heat pumps would have a very large impact as currently most UK 
heating is provided by gas. 

 
Figure 4-7 Baseline electricity demand (2018 time series without the electricity used for heating) compared with 
generated electricity demand assuming all heating is provided by heat pumps 

Note that despite the removal of the weather dependence due to heating, the baseline 
electricity demand still shows some variation between months also visible in figure (4-
6). December has a mean daily demand of 0.7 TWh where there is a noticeable dip in 
the holiday period at the end of month. The mean electricity demand of the other months 
varies between May with 0.67 TWh, July with 0.71 TWh and January with 0.75 TWh. 
A weekly cycle is also visible in figure (4-6), where demand varies within a week by 
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0.23 TWh compared to the variation between weeks of only 0.09 TWh. Section 4.3.4 
showed that the baseline demand is only weakly correlated with heating degree days 
per hour and temperature, and no correlation with weather dependent GHI. Therefore, 
it seems reasonable to conclude that most of the weather dependency has been removed, 
and that the pattern is due to time dependent consumer behaviour. 
 
Figure (4-8) shows a similar period with two different electricity demand time series 
that will later be used to investigate the impact on the required energy storage: the 
existing heating technology (4.2.2, orange) and 41% heat pumps (4.2.3, blue). The 
increase in winter demand seen here and its day-to-day and year-to-year variability will 
impact the required shares of weather dependent renewables and the storage found in 
chapter 6.  
 
 

 
Figure 4-8 Existing Heating Technology compared to 41% heat pumps 

Figure (4-9) shows the 2018 historic electricity demand (blue line) compared to what it 
would have been if all heating were provided by electric heat pumps (red line), where 
the annual electricity demand would increase from 299 TWh to 391 TWh. The green 
line represents a more realistic scenario of 41% heat pumps from the 2050 prediction 
from Future Energy Scenarios [24] where the annual electricity demand would be 323 
TWh. As expected, there is a noticeable increase in winter demand and the day-to-day 
variability of this demand. However, it is also important to note the advantage of using 
heat pumps over traditional electric heating. The purple line in figure (4-8) shows the 
electricity demand for 2018 if the existing electric heating had been provided by heat 
pumps. This would have resulted in a reduction in the annual demand of 16 TWh and 
a reduction in hourly peak demand from 54GW to 48GW. 
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Figure 4-9 The impact on the 2018 electricity demand if all heating were provided by electric heat pumps 

Figure (4-10) shows the daily electricity demands generated from 40 consecutive years 
weather all overlaid on the same graph. The case assuming 41% of heating provided by 
heat pumps is compared with the case when the electricity demand includes only the 
existing heating electricity. This shows a very large variation in the electricity demand 
in the winter months for different years and a much smaller variation in the summer for 
the case of 41% heating from heat pumps. The monthly electricity demand has doubled 
leading to an increase in about 30TWh for each winter month (December, January, 
February). 

 
Figure 4-10 40 years generated daily electricity demand time series incorporating 41% of heating provided by 
heat pumps compared to existing heating 

Figure (4-11) shows how the annual electricity demand varies amongst different years. 
With the existing heating technology, it varies over a range of 19 TWh, whereas with 
41% of heating provided by heat pumps this variation increases by 37% to a range of 
26 TWh. 
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Figure 4-11 Annual demand with 41% heat pumps compared with heating electricity at 2018 levels 

The decline in Great Britain’s annual electricity demand with 41% of heating provided 
by heat pumps visible in figure (4-11) is caused by a decline in annual heat demand of 
70 TWh over the 40-year period due to approximately 1°C increase in the population 
weighted Great Britain temperature over the years 1980 – 2019. No attempt has been 
made to correct for this because including more extremes of heat demand will better 
stress the energy system model ensuring that there is enough minimum storage. 
However, it was found that it is possible to correct for climate change by increasing the 
temperature at each weather grid point by about 1/40th of a degree per year as suggested 
in [91] .  
 

4.5 Sensitivity analysis of electricity demand. 
 
Both the method used to generate daily heat demand time series from section 2.2.1 and 
the selection of the hourly profile of heat pump operation from figures (3-2) and (3-3) 
in section 3.2.1 will impact the final electricity demand time series. The objective of 
this section is to study their effect on peak demand, annual demand, and ramp rates. 
Peak demand is important for estimating the required generation capacity and ramp 
rates are important for the stability of the electricity system as it has to react to the 
sudden addition or loss of load. Although this study is primarily concerned with long-
term variations, peak demand and ramp rates are examined in order to do a comparison 
with other studies. 
 
Previous work on generating hourly heat pump electricity demand time series [6] has 
used hourly profiles derived from gas boilers. Flat profiles [92] have also been 
suggested assuming that heat pumps would be configured this way as the best way of 
reducing peak demand whilst ensuring thermal comfort. This study has used an hourly 
profile derived from actual heat pump data. However, different trials have shown heat 
pump profiles with different shapes [93] due to the way the heat pumps are configured. 
To investigate the impact the different choice of hourly profile can have on the final 
results, three different hourly profiles were tried with the same heat demand method. 
The results are shown in table (4-5). The higher peak demands for the RHPP profile 
will have been caused by its higher afternoon peak shown on figure(3-2) because the 
time of peak demand in the historic series also occurs in the later afternoon.  
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Table 4-5 Hourly electricity time series comparisons if 2018 had heat electrification 

Electricity Time Series Hourly 
Profile 

Hourly 
Peak 
Demand 

Hourly 
Ramp 
up 

Hourly 
Ramp 
down 

Annual 
Demand 

Historic (existing heating)  54 GW 7 GW 6 GW 266 TWh 
BDEW method (heat 
pumps) 

BDEW 94 GW 12 GW 11 GW 397 TWh 

BDEW method (heat 
pumps) 

Flat 89 GW 7 GW 5 GW 380 TWh 

BDEW method (heat 
pumps) 

RHPP 100 GW 20 GW 15 GW 379 TWh 

 
To investigate the impact of the choice of heat demand method, four heat demand 
methods were used with the same hourly profile. The results of varying the daily heat 
demand method but keeping the same hourly profile are shown in table (4-6). 
 
The choice of heat demand method (splitting the annual heat demand into days) and 
hourly profile only have a small impact on the annual electricity demand. However, the 
hourly peak demand values vary over a range of 25 GW (25%) which is quite significant 
compared to estimates of what the future peak demand might be. For example a study 
into electricity demand and weather variability [94] predicts that electrification of heat 
will double peak demand from about 50 GW to 100 GW and in a study including other 
sectors as well as heat [30] hourly ramp rates of ±15 GW are predicted by 2030. This 
suggests that estimates of peak demand are very inaccurate if they can vary so much 
depending on the method of generating the heat demand time series. 
 
Table 4-6 - Sensitivity of the hourly electricity demand to heat demand method 

Electricity Time Series Hourly 
Profile 

Hourly 
Peak 
Demand 

Hourly 
Ramp 
up 

Hourly 
Ramp 
down 

Annual 
Demand 

Historic (existing heating)  54 GW 7 GW 6 GW 266 TWh 
BDEW method (heat pumps) RHPP 100 GW 20 GW 15 GW 379 TWh 
Watson method (heat pumps) RHPP 95 16 GW 13 GW 378 TWh 
HDD 12.8 method (heat 
pumps) 

RHPP 120 GW 24 GW 18 GW 381 TWh 

HDD 15.5 method (heat 
pumps) 

RHPP 102 GW 19 GW 15 GW 380 TWh 

 
Despite being based on the same annual heat demand, the annual electricity demands 
estimated from the different methods and shown in table (4-6), differ, because the 
methods assume both different hourly heat pump operation profiles and daily total heat 
demand. The intraday temperature variations mean different COP for each hourly 
profile of heat pump operation and hence the total amount of electricity required to 
generate the same heat varies accordingly. 
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4.6 Summary and Conclusions 
 
Two UK electricity demand time series have been created based on 40 years’ weather: 
one with the existing heating technology of 2018 and one with 41% of heating provided 
by heat pumps. These time series allow us to study the impact of heating electrification 
with heat pumps alone on electricity demand, independently from all other factors. 
Previous work has done this either by using linear regression to replace the electricity 
for the heating sector in one year’s historic electricity demand based on multiple years 
weather or has simulated all sectors. In contrast the method used here replaces the 
electricity for the heating sector with a heating electricity time series from chapter 3 
based on detailed calculations for current or future heating. The new method can 
generate time series for recent years more accurately than those used in previous work. 
Analysis of the dependence of the historic electricity demand justifies the assumption 
that removing the heating electricity removes its weather dependence.  
 
The research reveals that the difference between the largest and smallest annual 
electricity demand for weather years 1980-2019 increases from 19 TWh to 26 TWh. It 
also reveals the sensitivity of generated peak electricity demand to the hourly profiles 
used in modelling leading to uncertainties in the estimations of peak electricity demand 
which vary over a range of 25 GW. This is quite significant compared to estimates of 
future peak demand of between 40 and 100 GW reported in research. Such inaccuracies 
have not been quantified in previous work. 
 
It was found that the electrification of heat expected by 2050 with the introduction of 
heat pumps, modifies the seasonal profile of electricity demand doubling the monthly 
demand for electricity leading to an increase in about 30TWh for each winter month. 
The evidence of the generated time series shows that year to year variability of 
electricity demand due to weather will increase by 37%.  
 
The impact of these two factors on the role of wind generation, solar generation, and 
energy storage requirements in a future highly renewable electricity system are the 
subject of chapter 6. But first the method by which energy storage is modelled is 
described in chapter 5. 
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5 Finding the minimum energy storage needed  
 
This chapter will aim to answer one of the subsidiary research questions posed in 
section 1.1: How should the required energy storage be found? A model is needed to 
find the minimum energy storage required for a given electricity generation capacity. 
This can then be used to study the impact of changes to electricity demand on storage 
and generation capacities. 
 
The chapter starts with a review of previous work. The method used to find the 
minimum storage is then described. To help identify which configurations are important 
a method of calculating the cost of electricity generation taken from another paper is 
described. The results section describes how the method can be applied to a system with 
today’s demand but a supply with a high renewable energy penetration. The model is 
validated by comparison to that used by another study and against today’s energy 
system. The chapter concludes with a summary of how the model will be applied in the 
remainder of the thesis. 
 

5.1 Background 
 
Previous studies on future UK energy systems have proposed different capacities of 
wind generation, solar generation, and energy storage to achieve a net zero UK. For 
example, seven different plans from four different groups, are reviewed in [19]. All 
contain high proportions of electricity generation from wind and solar PV, but all vary 
in their proposed mix of technologies. The ratio of wind energy to solar energy 
generation capacity ranges from 0.80 in the plan with least wind capacity to 0.99 in the 
plan with most wind capacity. Several previous studies have investigated the ideal mix 
of wind and solar needed to satisfy the historic electricity demand. These studies make 
different assumptions about what the energy storage might be and hence its efficiency. 
For example a study assuming a round trip efficiency of 80% for pumped storage [95] 
found the ideal mix for Europe was 55% wind. Another study which assumed a round 
trip efficiency of 36% for hydrogen storage [96] and assuming an excess generation of 
50% found the ideal mix for Europe was 70% wind. A UK study looking at efficiency 
of 75%-85% for pumped storage [41] found that for a system with 25 TWh storage that 
30% more energy generation above the demand was required for a system which had 
81% wind. The proportion of wind energy for a purely wind and solar system for the 
UK was found to be 84% assuming a round trip efficiency of 70% for compressed air 
storage [52] by finding the minimum cost configuration at today’s prices. Despite the 
electricity system being a complex network of interconnected consumers and 
generators, these studies use a simplified model to capture the essential features needed 
to study the interaction of demand, generation, and storage at a high level. 
 
Some energy models have energy stores of fixed capacity, and it is up to the user to 
optimize the system by varying the storage capacities. Energy Plan [97] has a thermal 
store and an electricity store which can be pumped storage, batteries, V2G or CAES. 
The electrical energy store starts 50% full, and an iterative procedure is used until the 
amount of energy stored at the end is at least that stored at the start. A model of a 100% 
renewable UK [34] has multiple fixed sized stores used in a merit order of heat, V2G, 
electrical, hydrogen and synthetic fuel.  
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Other models using a single energy store attempt to find the amount of storage required. 
Energy is taken from the store during periods of high demand and low generation and 
added to it during periods of high generation and low demand. Fragaki et. al [41], 
discussed below, assume that the energy store is full at the start, and define the required 
store size by the maximum amount of energy taken from it. A study of the optimal wind 
solar mix for Europe [95] uses a similar algorithm but the energy store is allowed to 
overfill, and the initial state of charge is determined by increasing the energy generated 
to ensure that it contains more energy at the end than it did at the start. In a later study 
by the same author [96] the algorithm is modified to constrain the capacity. A study for 
Germany [18] iteratively moves the storage pattern up and down to find the minimum 
storage where the store ends up with more energy than it started with. Cardenas et. al. 
[52], discussed below, use a similar algorithm, but make no assumption about how full 
the store is to start with. The initial state of charge is determined using an iterative 
procedure which ensures that the amount of energy in the store at the end is at least 
equal to how full it is at the start. This “no free lunch” assumption of the store having 
more energy than it started with is common to most studies [52, 95, 97]. Some studies 
vary the generation to achieve this. Some assume an initial state of charge, and for some 
it emerges from the algorithm. It is not clear if all these different algorithms find the 
same optimum storage which is possibly a question for future study. 
 
Previous studies on the amount of energy storage needed have yielded a wide range of 
results. A review of such studies [98] found that for renewable energy penetrations of 
greater than 80% storage requirements varying between 0.2-6 TWh for the US, 0.2-22 
TWh for Europe and 0.05-83 TWh for Germany. These variations are 187%, 196% and 
91% respectively. No firm conclusions were drawn on the reasons for the wide variation 
in results, although they found that high PV penetration tended to lead to high storage 
requirements. No UK studies were included in that review. However, two previous 
studies into running the UK on purely wind and solar have been found and investigated 
here. The aim is to improve on their methods. The differences made by these new 
methods is investigated in chapter 7. 
 
Fragaki et al. [41] show that the historic electricity demand can be satisfied by wind 
and solar generating 30% more energy than the existing system complemented by 30 
days storage. Wind speeds from MIDAS were used to model a typical wind turbine at 
6 onshore weather stations using standard methods. A solar panel was modelled at the 
location of 4 weather stations. These daily time series were scaled up to represent power 
generation for the whole UK for the weather of 1984 – 2013. Electricity demand was 
modelled using the historic electricity demand scaled by adding a different constant for 
each year to each day’s demand, so that each year had the same annual demand. The 
required energy storage was found assuming round-trip efficiencies of 75% - 85% 
representing pumped storage. This study was examined because the original idea of this 
research was to build on it to include the impact of the electrification of heat. 
 
Cardenas et. al. [52] show that 15% excess energy minimizes the total cost of electricity 
generation and requires a minimum storage size is of 43.2 TWh (which equates to 35 
days) and has 84% of energy from wind. The cost is based on CAES with a 70% round 
trip efficiency at today’s prices. They use the simulated PV generation from 
Renewables Ninja, but the actual wind generation from Elexon / National grid and 
normalise it on a quarterly basis to account for the increase in generation capacity over 
the years. For the years 2011-2019, the hourly historic electricity demand for each year 
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is multiplied by a different constant so that it has a total demand of 335 TWh, the annual 
demand for 2018. This approach is questioned in another study looking at peak demand 
[6] because it changes the pattern of the demand curve. This study was examined 
because the cost model used in this project was taken from it. 
 
Cardenas used a different algorithm to find the required amount of storage. First, they 
define the amount of excess generation allowed. Then for different proportions of wind 
energy and solar energy they create power generation series from the time series of 
wind and solar capacity factors that generate this amount of energy. A net demand time 
series was then produced to which losses due to the store round-trip efficiency have 
been applied. So, the round-trip efficiency is applied once, rather than separate charge 
and discharge steps.  Iterative procedures were used to find (i) the required energy, (ii) 
the required storage (by increasing it from zero until the energy curtailed equals the 
excess generation allowed) and (iii) the initial state of charge (by generating more 
energy) until the store ends up with the same energy as it started with. This means that 
the initial amount of energy in the store is an output of the model.  
  
Both these studies tried to keep the economic changes constant by scaling the historic 
electricity demand time series so that each year uses the same amount of energy. 
However, this removes the difference in the heating energy requirement between 
warmer and colder years. Both studies try different proportions of energy generation 
from wind and solar to find the energy storage needed. 
 
To improve on these two previous UK studies, this study will: 

1. Use wind generation time series from Renewables Ninja because being based 
on all UK wind farms they should be more accurate than using just 6 MIDAS 
weather stations and will not change over time like the current national grid 
wind. 

2. Use PV generation time series from Renewables Ninja which would be 
expected to be more accurate as they are hourly, rather than daily. 

3. Use hourly time series, rather than daily throughout for improved accuracy. 
4. More accurate electricity demand time series combining National Grid 

generation and the balancing mechanism from Elexon.  
5. Use electricity demand time series from chapter 4’s baseline method which 

include the different heating energy between years, rather than scaling which 
removes it. 

6. Use an algorithm to find the minimum storage which ensures that the SOC at 
the end of the period is at least that at the start, but without adding additional 
generated energy to achieve it, which might lead to finding a non-optimal 
solution. 

7. Cover a complete range of generation capacities in a grid which allows 
interpolation of in between points and avoids having to guess at the excess 
energy generation needed. 

8. Use 40 years of weather data to capture more variation. 
9. Consider cost, rather than just energy. 

 
A summary of the differences between this project and these two studies is shown in 
table (5-1).  
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Table 5-1 Comparison of methods of two previous studies with those used here 

Method or 
data 

Study 
This Project Fragaki Cardenas 

Wind 
generation 

Renewables Ninja 
combined 
offshore and 
onshore 

6 MIDAS weather 
stations onshore 

National Grid onshore 
and offshore 

Solar PV 
generation 

Renewables Ninja 4 MIDAS weather 
stations 

Renewables Ninja 

Frequency Hourly Daily Hourly 
Electricity 
demand data 

Pre-processed   
from [83] 

National grid National grid 

Electricity 
Demand 

Baseline with 
heating electricity 
added for the 
weather 

Historic: each 
year scaled to the 
same energy by 
adding a constant 

Historic: each year 
scaled to the same 
energy by multiplying 
by a constant 

Algorithm to 
find storage 

Iteratively try 
store capacities  

Store capacity is 
maximum deficit 

Iteratively find energy, 
capacity and initial SOC 

Configurations 
chosen 

Range of 
capacities on a 
regular grid 

Range of wind 
energy fractions 
and over sizing 
factor 

Range of wind energy 
fractions and over 
sizing factor 

Initial SOC 70% 100% Emerges from 
algorithm 

Final SOC ≥ Initial SOC No limit ≥ Initial SOC 
Cost As Cardenas None Cardenas 
years 1980-2019 1984-2013 2011-2019 
1 day energy 818.386 GWh 835.616 GWh 917.808 GWh 
Mean daily 
power 

34 GW 34.8 GW 38 GW 

 

5.2 Methods 
 
This section contains the methods for: 

 Finding the energy storage for a given capacity of wind and solar generation 
 Calculating the cost of electricity for a configuration 

  
5.2.1 Finding the minimum required energy storage 
 
This section describes how time series of renewable generation are combined with an 
electricity demand time series to estimate the required energy storage capacity. One 40-
year hourly time series models the electricity supply, and one time series models the 
electricity demand. The model calculates the minimum energy storage that is needed to 
balance it, so that the electricity demand is supplied without interruption. The electricity 
supply is generated from time series of wind and solar power generation capacity 
factors. These represent what power would have been generated for historic weather 
and are scaled up to represent different generation capacities. The electricity demand is 
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an hourly time series generated for the whole country based on the same historic 
weather. For each generated electricity demand time series, a whole set of possible 
electricity supply time series were investigated. Each supply time series is based on a 
configuration having a different capacity of wind and solar power. The objective is to 
identify the minimum energy storage required for the system to balance without loss of 
load. The model consists of a simplified system where the energy generated consists 
solely of wind, solar PV, base load and dispatchable generation. A time series of 
demand net of generation is created using equation (27) 
 

𝑁௧ =  𝐷௧ −  𝑊௧ −  𝑃௧ − 𝑋௧ −  𝑉௧ (27) 
where 𝑁௧ is the net electricity demand at time t, and 𝑊௧ , 𝑃௧, 𝑋௧, 𝑉௧ are the energy 
generated at time t from wind, solar PV, base load and dispatchable sources 
respectively. 𝐷௧  is the electricity demand. The time period t is typically hourly, for 
example 𝑆௛ generated in section 4.2, or in some experiments it is converted to daily by 
aggregation. 
 
For convenience, and in line with previous studies, generation capacities and storage 
capacities are specified in units of days related to the mean daily energy in the 2018 
historic electricity demand time series of 818.38 GWh per day. Thus, a wind generation 
capacity of 1 day means 34 GW (=818.38/24) and 1 day of storage is 818.38 GWh.  
 
The base load 𝑋௧ is defined as a constant daily amount 𝐶௕, with the simplifying 
assumption that it is always on. Base load could be nuclear power. Or at a high-level 
tidal power could be considered as another form of baseload since it is independent of 
weather, although it varies according to daily and lunar cycles (not being modelled 
here). Geothermal could also be considered as constant base load although there is not 
very much potential for this in the UK. 
 
The dispatchable generation 𝑉௧ is power that can be brought online at the request of 
grid operators, in contrast to baseload (which cannot be turned off) and wind and solar 
whose availability is subject to weather. It encompasses all thermal power plants using 
fossil fuels such as natural gas, oil, coal, and biomass. To simplify the model, it is 
assumed that it will always be used in preference to stored energy up to its maximum 
capacity 𝐶௩. For time t, 𝑉௧ is the amount of energy needed to make 𝑁௧ zero up to a 
maximum specified value 𝐶௩. 

𝑉௧ =  ቐ

𝐶௩ +  𝑁௧ , (0 >  𝑁௧ >  − 𝐶௩) 

0 , (𝑁௧ ≥ 0)
𝐶௩ , (𝑁௧ <  − 𝐶௩)

 
(28) 

 
In this model this dispatchable generation is assumed to be brought online as needed 
although in practice some power stations must be on stand-by. Note that the distinction 
between dispatchable and storage is slightly nuanced, because although in theory 
natural gas could be created using electricity via the Sabatier process [34] and thus be 
a form of energy storage, it is only considered as dispatchable in the model used in this 
thesis. 
 
The power generation time series for wind 𝑊௧ is calculated by multiplying the input 
time series of capacity factors from section 1.2.7 by the generation capacity 𝐶௪ as 
shown in equation (29) 
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𝑊௧ =  𝑊௧
௖௙

𝐶௪ (29) 

Where 𝑊௧
௖௙is the time series of wind capacity factors from Renewables Ninja. The 

near-term future time series is used which includes wind farms which are under 
construction and planned in addition to those that already exist. 
 
The power generation time series for solar PV 𝑃௧ is calculated by multiplying the input 
time series of capacity factors from section 1.2.8 by the generation capacity 𝐶௣ as shown 
in equation (30) 

𝑃௧ =  𝑃௧
௖௙

𝐶௣ (30) 

Where 𝑃௧
௖௙is the time series of PV capacity factors from Renewables Ninja. 

 
The many different types of energy storage in the actual power system are all 
represented in the model by a single energy store of capacity 𝐶௠ and round-trip 
efficiency of η.  
 
Thus, we have a model of the UK energy system with energy storage defined by 𝐶௠  
and η with a net demand time series 𝑁௧ defined by these four values: 𝐶௩ , 𝐶௕ , 𝐶௪ , 𝐶௣. 
For fixed values of 𝐶௕ and 𝐶௩ the values of 𝐶௪ and 𝐶௣ are varied in steps by fixed 
amounts starting from zero creating a 2D grid of wind and PV capacities. For these 
different power system configurations, the task is to find the amount of energy storage 
𝐶௠ for a specific efficiency η. There must always be enough energy to supply the load 
𝐷௧. 
 
For one such system, this can be calculated using equation (31). Using a storage 
variable (S) modified according to the sign of Nt at each time point t, assuming a storage 
charge efficiency of 𝜂௖  and discharge efficiency of 𝜂ௗ 

𝑆௧ = 𝑆௧ିଵ − ቐ

1

𝜂ௗ
𝑁௧, 𝑁௧ > 0

𝜂௖𝑁௧ , 𝑁௧ ≤ 0

 
(31) 

Where 𝑆௧ is the amount of energy stored at time t. The algorithm marches through the 
net demand time series 𝑁௧. There are two cases: 

 If 𝑁௧ is positive, demand exceeds supply. Energy is removed from the store. 
More energy is needed to supply the demand, so divide by  𝜂ௗ.  

 If 𝑁௧ is negative, supply exceeds demand. Energy is added to the store. Less 
energy is put into the store due to storage efficiency so multiply by  𝜂௖. 

S is subject to the constraints that 𝑆଴ =  𝐶௜  (the store starts off containing an initial 
amount of energy 𝐶௜ ) and that 0 < 𝑆௧ <  𝐶௠ where 𝐶௠ is the maximum size of the 
store. The maximum charge rate was calculated as max(𝑆௧ − 𝑆௧ିଵ) (𝑡 = 1, 𝑁𝑇 ) where 
NT is the number of points in the store history S. The maximum discharge rate similarly. 
 
The model has several limitations. It is based on the energy balance alone with no 
account taken of losses due to transmission, start-up time and thermal power plants on 
standby. Wind and solar generation outages are taken account via the capacity factor. 
The only renewable energy curtailment is due to the energy store being full. There is 
no constraint on the rate at which the energy store can fill and empty (ie power 
curtailment). Delays to discharge are not modelled. For example, if the energy store 
were hydrogen, then there could be a delay for start-up time to the power station 
generating electricity from hydrogen, for discharge of the store. Also, loss of charge is 
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not modelled eg hydrogen leaking out. However, other work has shown that these 
models do provide a rough estimate of storage and provided a basis for comparison of 
different scenarios [25]. 
 
In contrast to the studies mentioned in 5.1 above, in this project an iterative procedure 
is used to find the minimum value of Cm so that the constraints are satisfied. The novel 
algorithm for finding the required storage capacity Cm for a given PV capacity 𝐶௣ and 
wind capacity 𝐶௪ is described below, where SL is a lower bound for the storage and 
SU is an upper bound. SU starts at 80 days, a value arrived at by trial and error as the 
largest storage required to capture the comparison points for the models used in this 
study. SL starts at zero. The lower bound is gradually increased if there is not enough 
storage. The upper bound is reduced if there is more storage than needed. When the 
upper and lower bounds are within a tolerance 𝛿௦the minimum storage has been found. 
The algorithm is illustrated as pseudo code below and as a flow chart in figure (5-1). 
 
Table 5-2 Algorithm for finding the minimum energy storage for a given net demand time series. 

 Set SL=0, SU=80 
 Repeat until the difference between SL and SU is less than a threshold 

value (𝛿௦ =0.01):  
o check if we have enough energy with storage capacity C=0.5(SL+SU) 

by going through the Nt time series adding and removing energy as 
in equation (31) and stopping if the energy runs out (ie is not 
enough to satisfy the demand at any time point) 

o if we have enough energy, set SU = C 
o if we don’t have enough energy, set SL = C 

At the end of this process Cm is set equal to SL 
 

 

 
Figure 5-1 Flow chart showing the algorithm to find the minimum storage for a given net demand time series 
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5.2.2 Calculating the cost of electricity generation 
 
To provide a guide as to which power system configurations might be important, a cost 
is calculated for each one. This section describes how the cost of electricity for a 
particular experiment is calculated. The cost model used here is exactly the same as that 
used in a previous study  [52] The cost is defined to be the total system cost of 
generating electricity. Each configuration is specified by a certain amount of wind 
generation capacity (𝐶௪), an amount of PV generation capacity (𝐶௣) and amount of 
energy storage 𝐶௦. The aim here is to not to predict the actual cost, but to provide a 
guide as to which configurations to use to assess the impact of changes to the demand 
pattern. One overall figure for the cost of the system based on today’s costs was 
calculated and one for projected future costs.  
 
Table 5-3 Cost model parameters with references to the studies they were taken from 

Technology Value Unit Variable Future Cost  
LCOE Offshore 
Wind 

57.5 [52] £/MWh 𝐿௦  40 

LCOE Onshore 
Wind 

46  [52] £/MWh 𝐿௟  44 

Offshore % 46.7  [52] % 𝑃௦ 77 
Onshore % 53.3 [52] % 𝑃௟  23 
LCOE PV 60 [52] £/MWh 𝐿௣  33 
LCOE Gas 66 [52] £/MWh 𝐿௚  120 
Cost CAES 
capacity 

3 [52] £/kWh α 15% reduction 

Cost rated 
power 

300 [52] £/kW β γ 15% reduction 

Lifetime 30  [52] Years λ  
Hydrogen Store 0.67 [52] £/kWh α  
Hydrogen 
electrolysis 

1100  [52] £/kW β  

Hydrogen 
electricity 
generation 

450  [52] £/kW γ  

Pumped 
Storage 
capacity 

66.4 [100] £/kWh α  

Pumped storage 
rated power 

1188 [100] £/kW β γ  

LCOE Nuclear 95 [65] £/MWh 𝐿௡   
 
The values used in that cost model are shown in table (5-3). They define the cost metric 
using estimates from other studies derived from government figures or projections 
based on the Levelized Cost of Energy (LCOE). LCOE is a the discounted lifetime cost 
of building and operating a generating asset expressed as a cost per unit of electricity 
generated [99] (£/MWh). It provides a simple way of comparing the costs of different 
technologies. The costs of the generation and storage capacities are then added up to 
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provide a total system cost that is expressed as a cost per MWh of the electricity 
demand, not the electricity generated. This is because we are comparing configurations 
where more energy may be generated to satisfy the same demand. This means that 
energy curtailment will result in a higher system cost. 
 
The values for pumped storage in table (5-3) have been taken from a study on the 
levelized cost of storage technologies [100] and those for nuclear/base load from 
government figures [65]. For the purpose of calculating system cost, baseload is costed 
as nuclear. The rest of the values are taken from Cardenas et. al. [52] where this cost 
model was taken from. 
The total cost of the system 𝑇௖ is calculated using equation (32). 
 

𝑇௖ =  
𝐾௩ +  𝐾௪ +  𝐾௣ +  𝐾௕ +  𝐾௘

𝐸ௗ
 

(32) 

Where 𝐾௩ =  𝐸௚𝐿௚ is the cost of dispatchable (fossil fuel) generation, 𝐾௪ =  𝐸௪(𝑃௦𝐿௦ +

 𝑃௟𝐿௟) is the cost of wind generation, 𝐾௣ =  𝐸௣𝐿௣ is the cost of PV generation, 𝐾௕ =

 𝐶௕𝐿௡ is the cost of baseload based on nuclear, 𝐸ௗ is the total electricity demand, 𝐸௚ is 
the dispatchable energy generation, 𝐸௪ is the wind energy generated, 𝐸௣ is the PV 
energy generated and 𝐾௦ is the cost of storage given by equation (33) 
 

𝐾௘ =  
𝑁௬

𝜆
 (𝛼𝐶௠ +  𝛽𝑃௖ +  𝛾𝑃ௗ) 

(33) 

where Pc is the maximum storage charge rate, Pd is the maximum storage discharge 
rate, 𝐶௠is the capacity of the storage in kWh, 𝑁௬ is the number of years of generation 
and 𝜆 is the lifetime of the asset (all assumed to be 30 years). α, β, and γ are the cost of 
storage capacity, storage charging power, and storage discharging power. They depend 
on the type of storage from table (5-3). 
 
Note that this cost model has several limitations. The discount rate and life of the 
generating plants are accounted for in these figures for 30-years, although degradation 
due to the number of charge/discharge cycles for storage has been neglected. The cost 
for large scale solar has been used, but rooftop solar is more expensive. If future 
curtailment of wind and solar varies from today, for example because the energy is 
stored then this could impact the LCOE, and it is not clear how this is accounted for in 
the study from which the cost model was taken. However, rather than actually trying to 
calculate cost, the main interest here is to use it to define which configurations to 
compare. 
 
5.2.3 Wind energy fraction 
 
As well as looking at the amount of energy storage, we will assess the mix of solar 
using the wind energy fraction which is the proportion of the total energy generated 
from wind and solar that comes from wind. Wind energy fraction 𝑊௙ is defined by 
equation (34). 
 

𝑊௙ =  
𝐸௪

𝐸௪ +  𝐸௣
 

(34) 

Where 𝐸௪ is the total energy generated from wind and 𝐸௣ is the total energy generated 
from Solar PV.  
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5.3 Results and discussion 
 
5.3.1 Standard way of summarising experiments in the thesis 
 
To make it easier to keep track of what is changing in these experiments, a table of the 
form of table (5-4) is included at the start of each section. This format will be used in 
the remainder of the thesis. 
 
Table 5-4 Example of an experimental objectives’ summary table 

Experiment Objective The aim of the experiment 
Frequency η Demand Storage Wind PV Years 
Hourly 50% Baseline New ninja Ninja 1980-2019 

 
The values that can be contained in this table are explained briefly below: 

 Frequency: of the time series – hourly or daily 
 η: round trip efficiency of the storage 
 Demand:  electricity demand source and scaling method: 

o Baseline: adding in heat for the weather as per the model used in this 
project 

o Historic Add: historic electricity demand scaled by adding a constant 
amount onto the historic time electricity demand to make each year the 
same energy as per Fragaki et. al. 

o Historic Mult: historic electricity demand scaled by multiplying the 
historic electricity demand so that each year contains the same energy 
as per Cardenas et. al. 

 Storage: algorithm for finding the minimum storage: 
o Iterative: storage algorithm from this project 
o Max Deficit: storage algorithm from Fragaki et. al. 

 Wind: wind generation source 
o Ninja on: Renewables Ninja onshore wind 
o Ninja S: Renewables Ninja onshore wind scaled to the capacity factor 

of offshore. 
o Ninja off: Renewables Ninja offshore wind 
o Ninja C: Renewables Ninja combined wind (offshore and onshore) 
o Fragaki: Wind generation from Fragaki et. al. 
o Fragaki S: Wind generation from Fragaki et. al. scaled to Ninja 

offshore capacity factor. 
o NGrid: Wind generation from National Grid as per Cardenas et. al. 

 PV: PV generation source: 
o Ninja: Renewables Ninja 
o Fragaki: Generation from Fragaki et. al. 
o Fragaki S: Generation from Fragaki et. al. scaled to Ninja capacity 

factor. 
 Years: years of the analysis period. 
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5.3.2 Investigation to establish model parameter values 
 
A preliminary investigation was done using only 4 years of weather to be able to 
consider a very wide range of generation configurations in a reasonable computing 
time. A 50% round trip efficiency and baseload of 0.4 was used, with the electricity 
demand from chapter 4 for the existing heating technology of 2018. The aim is not to 
draw any definite conclusions but to illustrate the range of possible solutions, and to 
decide where to look in more detail. This section also explains the values of some of 
the specific constants used in the model to define the experiments. 
 
The single energy store in the model is defined using one round-trip efficiency. 
However, the future power system is likely to be made up of different types of storage, 
to cover different requirements. This study will consider Compressed Air Storage 
(CAES) with round trip efficiency η=70% [52], pumped hydro storage with round trip  
efficiency η=75% - 85% [41] and hydrogen storage with round-trip efficiency of 
η=50% [61] ( to specify 𝜂௖ =  𝜂ௗ = √η in equation (31))  
 
For convenience, and in line with previous studies [41], generation capacities and 
storage capacities are specified in units of days related to the mean daily energy in the 
2018 historic electricity demand time series of 818.38 GWh per day. Thus, a wind 
generation capacity of 1 day means 34 GW (=818.38/24) and 1 day of storage is 818.38 
GWh. The daily energy from the generated electricity time series from chapter 4 is not 
used because it varies between years and between the existing heating technology and 
the 41% heat pumps.  
 
A baseload capacity (𝐶௕) of 0.4 days is assumed based on the sum of possible future 
UK nuclear and tidal power generation. The current UK nuclear capacity is 0.3 days 
[101], actual generation in 2018 was 0.2 days [102] and the potential future capacity 
ranges from 0.13 days to 0.42 days [103]. A figure of 0.3 for nuclear as assumed being 
between these two extremes. Potential UK tidal power generation is 0.8 days [19] 
consisting of tidal barrages, lagoons and stream generation. Here it as assumed that 0.1 
days is built. Tidal is considered to be baseload because of its predictability and low 
seasonal and interannual variation. This gives a combined nuclear and tidal value of 0.4 
days. The consequences of varying this baseload are investigated in section 9.4. The 
minimum demand for 2018 was 0.7 days so the model will never store baseload 
generated energy.  
 
The experimental parameters are summarised in table (5-5) following the format 
described in section 5.3.1. 
 
 
 
 
 
 
 



87 
 

Table 5-5 Experiment to assess the whole range of possible configurations to satisfy the electricity demand with 
the existing heating technology (see 5.3.1 for terminology) 

Experiment Objective: Investigate the whole range of possible configurations to 
satisfy the electricity demand with 2018 heating technology under 4 years weather 
variation. 
Baseload: 𝐶௕= 0.4 Dispatchable: 𝐶௩= 0.0 Wind 0.0 ≤ 𝐶௪ ≤ 11.9 Solar 0.0 ≤ 𝐶௣ ≤ 11.9 
Electricity 
Demand 

Frequency η Demand Storage Wind PV Years 

Existing 
Heating 
technology 

Hourly 50% Baseline  Iterative Ninja Ninja 2016 - 2019 

 
Figure (5-2) indicates the minimum amount of energy storage needed for each 
combination of wind capacity (𝐶௪), and PV capacity (𝐶௣). Each of these possible 
combinations will be referred to as a configuration. Each configuration will either be 
able to meet the demand with a minimum amount of storage which has been found 
using the model described in section 5.2.1 or will run out of energy and not be viable. 
They are coloured according to the capacity of energy storage required. Those 
configurations with low generation in the bottom left-hand corner have no colour 
because they were not viable and there was not enough energy to satisfy the load. The 
electricity demand could be satisfied by a wide range of configurations ranging from 
those in red with a large amount of storage to those on the right in yellow with very low 
storage, to those in grey with zero storage. The large amounts of renewable generation 
for the zero storage configurations are well within the potential for offshore wind of 
6700 GW [19]. However, the optimal configurations will lie somewhere in between 
these extremes. It is noted that 30 days storage is approximately in the middle of the 
range of storage capacities and so it will be used as a comparison point later. 
 

 
Figure 5-2 Minimum storage for full range of possible configurations of wind and solar to satisfy the load for 2018 
heating technology for 40-years weather variation 

Figure (5-3) shows the same combinations of wind and solar capacities but instead of 
showing the minimum storage, shows the cost of electricity at today’s prices. Although 
cost is not the focus of this study, it is used as a guide as to which configurations should 
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be investigated. Those configurations with large capacities of wind and PV are clearly 
the most expensive, and the cost optimal configuration is in the bottom left-hand corner. 
The high cost of the configurations with large amounts of wind and PV is due to 
curtailment. This is used as a justification for concentrating the analysis on wind and 
solar capacities below 6 days. The minimum cost configuration is 43 days hydrogen 
storage for a wind generation capacity of 1.6 days and a PV generation capacity of 1.4 
days. The minimum cost configurations for CAES are also well within this region.  
 
 

 
Figure 5-3 Cost of electricity generation for each combination of wind and solar capacity to supply electricity 
demand with the 2018 heating technology for 40 years’ weather variation. 

5.3.3 Parameter Values 
 
Based on the discussion in the previous section. for the remaining experiments in this 
project, the minimum storage was calculated for a set of configurations on a 60x60 2D 
grid. These were defined by wind (0 < 𝐶௪< 5.9) and PV (0 < 𝐶௣ < 5.9) in steps of 0.1. 
The lower computational requirement allows us to use the whole 40 years of data. Those 
configurations with very high generation, but low energy storage were ignored. This 
gives 360 points (𝐶௪, 𝐶௣) for which the minimum storage required Cm has been 
calculated. Other quantities that were calculated for each of these points were the 
Renewable Energy generated (the sum of the Wind energy and PV energy generated), 
the wind energy fraction and the maximum charge and discharge rates. 
 
The initial state of charge of the energy store was set to 70%. This value was chosen 
from an analysis of the model with the 40-year electricity time series with the existing 
heating technology from section 4.2.2. Considering all these possible combinations of 
wind and solar capacities it was found that the size of the store at the start of each year 
varies between 27% full and 100% full and that average value at the start of each year 
is 70% full. Therefore, it was assumed at the start of the 40-year period that the store 
was 70% full i.e., Cm. 𝑆଴ = 0.7𝐶௠. 
 
Values which will be varied during the experiments are summarised in table (5-6).  
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Table 5-6 Model parameter values varied during the experiments. 

Parameter Symbol Value Equation 
Round trip efficiency hydrogen storage η √0.5 (31) 
Round trip efficiency CAES η √0.7 (31) 
Round trip efficiency pumped storage η √0.8 (31) 
Wind Capacity 𝐶௪ 0 < 𝐶௪< 5.9 days (29) 
Solar PV Capacity 𝐶௣ 0 < 𝐶௣ < 5.9 days (30) 
Initial state of charge 𝑆଴ 0.7 days (31) 
Base load capacity 𝐶௕ 0, 0.2, 0.4 days (27) 
Dispatchable capacity 𝐶௩  0 < 𝐶௩< 1.2 (28) 

Values which remain fixed during these experiments are listed in table (5-7). 
 
Table 5-7 Model parameter values fixed during the experiments. 

Parameter Symbol Value Where Used 
Hybrid heat pump threshold 
temperature 

𝑇ி 4.15 °C Equation (19) 

Threshold for considering 2 
values of storage as the same 

𝛿௦ 0.01 Table (5-2) 

Initial Store Size S0 0.7 Cm (70% full) Equation (31) 
 

5.4 Validation 
 
This section validates the storage model against the maximum deficit storage model 
used by a previous study. The first step is reproducing that study to prove that its storage 
model has been implemented correctly. This also allows one weakness of the previous 
model that it does not ensure a full energy store at the end of the analysis period to be 
investigated to prove that it does not impact its use as a validation. Then it is used to 
validate the iterative model used by this study. 
 
5.4.1 Validate re-implementation of max deficit storage model 
 
The results from the Fragaki et. al. study were reproduced using the same methods from 
table (5-1) and the same 30 year period. The objective of reproducing the results is to 
prove that the storage model of that study has been re-implemented correctly, so that it 
can be compared with the model used in this project. The daily time series of wind and 
solar generation and the historical electricity demand were made available by the author 
of the study. The algorithm to find the required storage was re-implemented 
independently. In contrast to the algorithm defined in 5.2 for this project, it assumes 
that the energy store starts full, and that the maximum deficit is the required size of the 
store. It is implemented as follows. The store capacity S from equation (31) is subject 
to the constraints: 𝑆଴ = 0.0, 𝑆௧ ≤ 0. The algorithm marches through the net demand 
time series adding and subtracting energy as per equation (31). At the end of the period, 
the capacity of the store is set 𝐶௠ =  − 𝑆௧. No check was made to ensure that the store 
was full at the end of the period. A range of different configurations is generated using 
different proportions of wind and solar energy combined with an over sizing factor.   
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Table 5-8 Experiment to reproduce Fragaki et. al exactly (see 5.3.1 for terminology) 

Experiment Objective: Reproduce Fragaki et. al.  
Baseload: 𝐶௕ = 0.0 Dispatchable: 𝐶௩ = 0.0 Wind 0.0 ≤ 𝐶௪ ≤ 5.9 Solar 0.0 ≤ 𝐶௣ ≤ 5.9 
Frequency η Demand Storage Wind PV Years 
Daily 75% 

85% 
Historic Add Max Deficit Fragaki Fragaki 1984-2013 

 
Figure (5-4) shows the results of this experiment presented in the same format as those 
of the original study which is shown in figure (5-5) below. Points on this graph 
represent the different proportions of wind and solar PV generation capacity. The lines 
join points with the same energy storage requirements (the minimum amount for 
storage needed for the system to supply the load). The size of energy store needed was 
normalised by the mean daily energy demand so that one day of energy storage is 
835.616 GWh. The generation capacities for wind and PV are also normalised to this 
value, so that 1 on the Y axis is 34.8 GW.  The dotted lines are for a round trip efficiency 
of 85% and the solid lines 75% representative of a range of values for pumped hydro 
storage.  
 

 
Figure 5-4 Recreation of Figure (8) from Fragaki et. al.  using the same data inputs and model. 

It can be seen from figure (5-5) which is taken from Fragaki et. al. that the same results 
have been reproduced. This provides confidence that the same data and methods have 
been used. The black star represents an illustrative configuration from that study which 
has 30 days storage and 30% excess energy generation. In contrast to the linear 
interpolation used to create the contours in figure (5-4), figure (5-5) used a threshold 
value where, for example 30 days storage means 29.95 ≤ storage ≤ 30.05. 
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Figure 5-5 Figure (8) from Fragaki et. al. showing lines of constant storage for different wind (x-axis) and solar 
(y-axis) generation capacities. 

Figure (5-6) shows the results from Fragaki et. al. (labelled as Storage KF) for 75% 
round trip efficiency plotted on the same graph as those from the reimplementation of 
the algorithm in this project (labelled as Storage MP). It is clear that they match 
almost exactly.  
 

 
Figure 5-6 Lines of constant storage from the re-coded Fragaki et. al. model plotted on the same graph as the 
original results. 
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5.4.2 Validation of the method of finding the minimum storage 
 
The model used in the Fragaki et. al. study assumes that the energy store starts full, and 
it is sized according to its maximum deficit. In contrast, the model used in this study 
assumes that the store starts 70% full and uses an iterative procedure to find the 
minimum storage such that the demand is satisfied and that the store ends up with more 
energy than it had at the start. This section looks at the difference made to the results 
depending on which of these models is used. All other aspects are kept the same, apart 
from the method of finding the storage required. The experimental parameters are 
summarised in table (5-9).  
 
Table 5-9 Experiment to assess the impact of using a different method to find the storage capacity (see 5.3.1 for 
terminology) 

Experiment Objective: What is the impact of the different method of finding the 
required energy storage capacity? 
Baseload: 𝐶௕ = 0.0 Dispatchable: 𝐶௩ = 0.0 Wind 0.0 ≤ 𝐶௪ ≤ 5.9 Solar 0.0 ≤ 𝐶௣ ≤ 5.9 
Frequency η Demand Storage Wind PV Years 
Daily 85% Baseline Max Deficit Ninja C Ninja 1980-2019 
Daily 85% Baseline Iterative Ninja C Ninja 1980-2019 

 
Figure (5-7) shows lines of constant storage found using the maximum deficit method 
compared to the iterative method from this thesis (dotted lines). It can be seen that they 
are almost identical at most configurations, but that there are slight differences at high 
PV configurations. This is probably explained by the energy store emptying, as shown 
in figure (5-8) and discussed in the following section. The energy generated and wind 
energy fractions for the minimum energy points marked by a black star are all the same, 
apart from for the 25 days line where 82% wind is used for the maximum deficit method 
compared to 84% wind for the iterative method used here. 
 

   
 
Figure 5-7 Comparison of the maximum deficit and iterative methods of finding the minimum storage using lines 
of constant storage. 
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5.4.3 Validation of final State of Charge 
 
Most models of energy storage in previous studies [18, 52, 95, 97] ensure that the 
energy store contains at least as much energy at the end of the analysis period as it did 
at the start. In contrast to this “no free lunch” assumption, the model used by Fragaki 
et. al. does not enforce this condition. However, a small final store size could mean that 
the solution is not viable because the store started full, and just kept going down over 
time. In the extreme case with very large storage the system could run for 40 years with 
no generation at all. The objective of this section is to examine if the energy store does 
empty over time, and if the lack of this condition is causing a problem. This is to justify 
using the maximum deficit method as a validation of this project’s method. 
 
Table 5-10 Experiment to check how full the energy store is at the end (see 5.3.1 for terminology) 

Experiment Objective: How full is the energy store at the end? 
Baseload: 𝐶௕ = 0.0 Dispatchable: 𝐶௩ = 0.0 Wind 0.0 ≤ 𝐶௪ ≤ 5.9 Solar 0.0 ≤ 𝐶௣ ≤ 5.9 
Frequency η Demand Storage Wind PV Years 
Daily 85% Baseline Max Deficit Ninja C Ninja 1980-2019 
Daily 85% Baseline Iterative Ninja C Ninja 1980-2019 

 
Figure (5-8) shows for different wind and solar capacities how full the energy store was 
at the end. It can be seen that whilst the energy store ended up full, or nearly full for 
those configurations to the right of the plot, the final state of charge is very low for low 
generation configurations in the bottom left-hand corner of the plot. For example, 1.7 
days wind 4.5 days solar has 47 days storage and is in range of configurations we are 
looking at in figure (5-7) but has only 60% charge at the end. This could explain the 
discrepancies in figure (5-7) at high PV. 
 

 
 
Figure 5-8  The fraction of the initial energy remaining in the store at the end of 40 years using the maximum 
deficit model. 

To address this potential weakness, a different model was adopted in this study that 
ensure that there is more energy in the store than it started with. To achieve this the 
store does not start full. It starts 70% full. Figure (5-9) below shows a similar plot of 
the results using the model in this study. It can be seen that for some configurations the 
store ends up almost full whereas for others if can be as low as 70% full. 
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Figure 5-9 The fraction of initial energy remaining in the store after 40 years using the iterative model from this 
study. 

This experiment has shown that the energy store is not empty enough with the 
maximum deficit storage model to cast doubt on its use as a validation method, but 
there are some configurations where it causes different results. The iterative model does 
not have this potential weakness.  
 
5.4.4 Cost Model Validation 
 
Table 5-11 Calculations to verify the cost model 

Quantity Symbol Day units Ordinary units 
One day’s energy  1.0 days 0.923297 TWh 
Total Demand 𝐸ௗ  1.0 3035 TWh 
Energy generated over 9 years  1.15 relative to load 3490 TWh 
Wind Fraction 𝑊௙ 84% 84% 
Wind energy over 9 years 𝐸௪  0.966 days 2931.9 TWh 
PV energy over 9 years 𝐸௣  0.184 days 558.5 TWh 
Storage Capacity 𝐶௠  46.57 days 43 TWh 
One hour’s energy  1/24 days 38.47 GWh 
Maximum Charge rate 𝑃௖  3.09 hours/hour 119 GW 
Maximum discharge rate 𝑃ௗ  1.586 hours/hour 61 GW 
Cost of storage 𝐾௘   £ 5.488 x 1010 
Generation Cost 𝐾௣+ 𝐾௪   £ 1.85 x 1011 

Total Cost of Electricity 𝑇௖   79.037 £/MWh 
 
The study from which this cost model was taken [52] found that the cost optimal 
configuration for the UK was for a wind energy fraction of 84% with 15% energy 
generated over the load requiring energy storage of 43 TWh. The maximum charge rate 
was 119 GW and the maximum discharge rate was 61 GW. They found that the cost 
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was £80 / MWh. Table (5-11) shows calculations to verify the cost model defined by 
equations (32,33) using this configuration. These calculations result in a cost of £79 per 
MWh compared to the cost of £80 per MWh found by that study. 
 
5.4.5 Validation of the model with today’s energy system 
 
The model defined in 5.2.1 was used to represent today’s energy system. The 2018 UK 
annual electricity demand of 298 TWh required generation of average daily energy of 
818.8 GWh which we equate to a unit of 1 day and use this as a measure of storage and 
normalised capacity. Table (5-12) shows estimated UK capacity and actual generation 
for 2018. Using the first two columns as a guide, the third column of that table defines 
the values used to model today’s energy system in this chapter. 
 
Table 5-12 Existing power generation capacities for 2018, those used to test out the model, and the energy 
generation shown by the model 

Energy Source Actual 2018 
capacity 
(days) 

Actual 2018 
Generation 
(days) 

Model input 
capacity 
(days) 

Model 
generated 
energy 
(days) 

Base Load Generation 
– nuclear or tidal (𝐶௕) 

0.3 [101] 0.2 [102] 0.2 0.2 

Dispatchable 
Generation, eg gas (𝐶௩) 

2.0 [101] 0.60 [102] 2.0 0.81 

Wind Generation (𝐶௪) 0.63 [104] 0.19 [104] 0.63 0.24 
Solar Generation (𝐶௣) 0.38 [104] 0.04 [104] 0.38 0.04 
Pumped Storage (𝐶௠) 0.03 [101] 0.008  [102]   

 
With the inputs to the model defined as (𝐶௪ = 0.63, 𝐶௣ = 0.38, 𝐶௩ = 2.0. 𝐶௕= 0.2), a 
round-trip storage efficiency of 80%, and using hourly time series, the model was used 
to find the required energy storage. The experiment is summarised in table (5-13) using 
the format described in 5.3.1. 
 
Table 5-13 Experiment with the model on today's energy system (see 5.3.1 for terminology) 

Experiment Objective: Test the model with values comparable to today’s energy 
system. 
Baseload: 𝐶௕ = 0.2, Dispatchable: 𝐶௩ = 2.0, Wind: 𝐶௪ = 0.63 PV: 𝐶௣ = 0.38 
Frequency η Demand Storage Wind PV Years 
Daily 80% Baseline Iterative Ninja C Ninja 1980-2019 

 
The required storage was found to be 0.03 days which is the actual storage available in 
2018. The final column of table (5-12) shows that the model used more dispatchable 
energy and wind energy than was actually used in 2018, and a similar amount of PV 
energy. This is a very simplified model, so it is not surprising that there are differences. 
Not all the generators are being modelled and actual usage is determined by the energy 
market, rather than the simplified model used here. However, the fact that the wind 
generation and storage are comparable with the values from the real system provides 
some validation. 
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Assuming that the storage is all pumped storage, the cost model from section 5.2.2 
calculates the system cost as 97 £/MWh which is more expensive than the actual cost 
of electricity in 2019 of 65 £/MWh [52] . One possible explanation is that the model 
used more dispatchable (gas) generation than was actually used. Also the model does 
not include generation from biomass, hydro, coal or waste.  
 
This experiment has shown how the simplified model compares to the real system. The 
energy use compares quite well; however, the modelled cost is higher. The objective 
here is not to cost the system but to assess the impact of changes such as heating 
electrification on that cost, and on the shares of renewables and storage.  
 

5.5 Summary and Conclusions 
 
A simplified power system model including 10 improvements over previous UK studies 
has been described. This includes a novel algorithm to find the minimum required 
energy storage ensuring that the energy store contains at least as much energy at the 
end of the analysis period than it started with. In contrast to previous work [41, 52] 
which applies different amounts of overgeneration, the algorithm from this study uses 
a series of regularly spaced generation capacities. It was found that the iterative 
algorithm for finding the required amount of storage used in this thesis gave results that 
matched those from the maximum deficit algorithm used by a previous study almost 
exactly, apart from at high PV generation. These discrepancies at high PV match those 
configurations where the energy store falls below 60% full in the max deficit model. 
The iterative algorithm used here ensures the store ends up with more energy than it 
started with so does not have this potential weakness.   
 
Using generation capacities close to today’s energy system, it was found using the 
model that enough energy was generated to satisfy the demand. The storage 
requirement was the same as the existing pumped hydro storage. However, the cost 
model calculates an electricity cost much higher than today’s. 
 
The model has been used to show that there is a wide range of possible combinations 
of wind, solar and energy storage that will meet the electricity demand with the heating 
technology of 2018. However, wind and solar generation capacities between 0 and 6 
days capture those configurations likely to be important on both grounds of avoiding 
excessive energy generation and minimizing cost. 
 
A future improvement to the model used by this study might be to find the optimum 
initial state of charge for the energy store which minimizes the required storage 
capacity. Comparing the findings of this algorithm with those used in other work would 
be useful. 
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6 The impact of the electrification of heating on shares of 
storage, wind and solar. 

 
This chapter brings together the work on heating electricity with the energy storage 
model. In chapters 2-4 two 40-year electricity demand time series were produced, one 
for the existing heating technology and one for 41% of heating provided by heat pumps. 
In chapter 5 the model used to find the minimum energy storage for different wind and 
solar generation capacities was defined and tested. In this chapter that model is applied 
to the two electricity demand time series to investigate the impact of heating 
electrification. This will answer part of the main research question in this project which 
is how heating electrification will impact shares of wind, solar and energy storage. It 
will also answer the question: how can the results be assessed?  
 
The chapter starts with some background and methods. The minimum energy storage 
required for different combinations of wind and solar generation is calculated. The 
results section discusses how to assess the impact of the electrification of heating on 
shares of wind, solar and storage. The chapter concludes with a summary of the findings 
on heating electrification. 
 

6.1 Background 
 
30% of primary energy demand in Europe is for the heat sector [5]. To reduce the 
burning of fossil fuels it is likely that in the future this heating will be provided by 
electric heat pumps which are the most efficient way of providing electric heating [21]. 
There are two previous UK studies reviewed in chapter 5 looking at different amounts 
of storage required for purely wind and solar PV systems under long term weather 
variation. One study uses 9 years’ weather data [52] and one uses 30 years’ [41]. 
However, both these studies use only the historic electricity demand and do not include 
the electrification of heat. One study was found that did consider varying amounts of 
wind, solar and storage, and also included weather dependent electrification of heating 
and transport [53]. The variation in wind and solar was limited to five different 
capacities, with no attempt to identify the ideal mix and it concentrated on a 3-year 
period between 2009 and 2011. However research has found that 10 years or more is 
required to capture the variation in renewable power generation caused by weather to 
fully test an energy model [11]. This chapter addresses that gap by studying the impact 
of heating electrification on wind, solar and storage using 40-years’ weather data. 
 
The simplified model of the power system used in this project contains a single energy 
store defined using one round-trip efficiency. However, the future power system is 
likely to be made up of different types of storage, to cover different requirements. A 
study on the economics of electrical storage [18] states that batteries are suitable for a 
period of a few hours, Compressed Air Energy Storage (CAES) and pumped hydro 
storage are suitable for 6-10 hours and power to gas such as hydrogen are suitable for 
long term storage. However previous studies into the amount of long term energy 
storage required in the UK have made the assumption of pumped storage (efficiency 
80%) [41] and CAES (efficiency 70%) [52] finding requirements for 25 TWh and 43 
TWh respectively. Seven plans for a net zero UK energy system from four different 
groups [19] use hydrogen generated from electrolysis of water for long-term storage. 
Another study [105] states that there is limited evidence that hydrogen is the most cost 



98 
 

effective option for long term inter seasonal storage and study power to methane 
(efficiency 39%) with CCS or Direct Air Capture to store the CO2. It can be seen from 
these examples that there is some doubt as to what the future long term storage 
technology might be. As found in chapter 5, a large storage capacity will be required, 
but the potential availability of UK pumped storage is only about 0.5 TWh [61], so only 
a small proportion of it could be pumped hydro storage. In common with most plans of 
future UK net zero power systems [19] the assumption is made in this chapter that the 
storage will be mostly hydrogen. CAES will also be considered for comparison.  
 

6.2 Methods 
 
The two electricity demand time series generated in chapter 4 were compared using the 
model defined in chapter 5 to find the minimum energy storage. The model was run 
twice: one with the demand 𝐷௧ in equation (27) using the existing heating technology 
and once with heating provided by 41% heat pumps. These two demand time series are:  

 Existing: A 40-year electricity demand time series including the existing 
heating technology of 2018 based on 40 years of weather. From equation (22) 
chapter 4. 

 41% Heat Pumps: A 40-year electricity demand time series including 13% of 
heating provided by hybrid heat pumps and 29% by ordinary heat pumps based 
on 40 years of weather. From equation (23) chapter 4.  

The electricity generation part of equation (27) was defined to be zero dispatchable 
generation (𝐶௩ = 0.0), different combinations of wind generation (𝐶௪) and solar 
generation (𝐶௣) capacities, and a fixed baseload. A baseload capacity (𝐶௕) of 0.4 days 
is assumed based on possible future UK nuclear and tidal power generation as in chapter 
5.  

In line with the discussion in the previous section, it is assumed that the round trip 
efficiency is 50% for hydrogen storage [61] ( to specify η=√0.5 in equation (31)) . 
However, for comparison with other studies, a round-trip efficiency of 70% for CAES 
is also used. 
 
The experimental parameters are summarised in table (6-1) 
 
Table 6-1 Experiment to assess the impact of heating electrification on shares of wind and solar generation 
capacity (see 5.3.1 for terminology) 

Experiment Objective: Assess the impact of heating electrification on storage and 
shares of wind and solar generation. 
Baseload: 𝐶௕ = 0.4 Dispatchable: 𝐶௩ = 0.0 Wind 0.0 ≤ 𝐶௪ ≤ 5.9 Solar 0.0 ≤ 𝐶௣ ≤ 5.9 
Electricity 
Demand 

Frequency η% Demand Storage Wind PV Years 

Existing 
Heating 
technology 

Hourly 50, 
70 

Baseline  Iterative Ninja Ninja 1980 - 2019 

41% Heat 
pumps 

Hourly 50, 
70 

Baseline Iterative Ninja Ninja 1980 – 2019 
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6.3 Results 
 
Figure (6-1) shows the electricity demand time series for the existing heating 
technology compared to 41% heat pumps based on 40 years of weather. It can be seen 
that with heat pumps there would be large increase in the winter electricity demand. 
 

 
Figure 6-1 The impact of 41% of heating provided by heat pumps on the UK electricity demand 

In the following sections the impact of this change to the electricity demand on 
capacities of wind generation, solar generation and energy storage will be investigated. 
 
6.3.1 Minimum required storage for the existing heating technology and 41% 

heat pumps 
 
Figure (6-2) shows for each combination of wind and solar PV capacities, the amount 
of energy storage required. A similar pattern can be seen for both with and without heat 
pumps. For large generation capacities, very little storage is needed.  
 

 
Figure 6-2 The impact of 41% of heating provided by heat pumps on capacities of wind, solar and storage. 
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It is difficult to tell the difference between the two images in figure (6-2). Therefore, to 
assess the change caused by heating electrification quantitatively, two quantities will 
be considered: 

 the amount of energy storage 
 the wind energy fraction: equation (34) 

 
Figure (6-3) shows the difference between the storage requirements for the same 
configuration between the existing heating and 41% of heating provided by heat pumps. 
For each configuration the storage for 41% heat pumps has been subtracted from the 
storage for the existing heating technology, so that the result is always negative. As 
would be expected heating electrification always requires more storage for the same 
generation capacity because the demand is higher, apart from at very high generation 
where both tend to zero (indicated by yellow colours). For the lower generation 
configurations, the difference in storage is above 30 days, shown by purple. The bottom 
left corner is empty where there is not enough energy generated to satisfy the load for 
41% of heating provided by heat pumps.  
 

 
Figure 6-3 Energy storage (days) needed with 41% heat pumps subtracted from storage needed with the existing 
heating technology for different combinations of wind and solar generation capacity 

The wind energy fraction will be considered in the next section. 
 
6.3.2 Comparison of Experiments 
 
This section describes how the results of the experiment with the electricity demand 
with the existing heating technology were compared with that with 41% heat pumps. 
To assess the impact of such a change to the system, a way is needed of comparing one 
set of 360 configurations with another. The 360 configurations arise from combinations 
of wind and solar PV capacities defined in table (6-1) and shown in figure (6-2). This 
same method will be used throughout the rest of the thesis to compare two experiments. 
 
Some previous studies have compared cost [18], CO2 emissions [61] or fuel used [61]. 
Some have minimized the amount of storage for configurations which generate less 
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than 50% excess energy [96]. Fragaki et. al. [41] which is explored further in chapter 7 
chose an illustrative example with an intermediate amount of 30 days of storage. 
Research has found that looking for minimum excess energy generation (curtailment) 
results in the requirement for large storage [18] and not likely to be a low cost option. 
Using a cost metric has the disadvantage that future costs are unknown and that it is 
difficult to define. Using a particular amount of storage or excess energy generation 
have the disadvantage that the figure chosen is arbitrary. Trying to assess all the 
configurations at once, such as looking at the mean, might give too much weight to less 
important configurations. A combination of these measures from previous work was 
used allowing the results to be assessed from several different perspectives, and to see 
if any common trends become apparent.  
 
For example, if there are two experiments, to compare experiment A which is the 
existing heating with experiment B which is 41% heat pumps, then there will be 360 
configurations in each scenario. The following methods were used to choose a 
configuration from experiment A to compare with experiment B: 

 Configurations with equal for minimum storage. Given a particular value of 
minimum value of storage, find configurations of wind and solar PV generation 
capacities that require that minimum storage, and join them with a contour line 
on a graph, for example figure (5-6). 

 Configuration with least storage for given excess energy. Using the 
configuration with least storage from those generating less than a certain excess 
energy. 

 Configuration with minimum cost of electricity generation. The wind and 
solar generation capacity that gives the least cost of electricity generation at 
today’s prices (including storage cost). 

These are expanded in the following sections using the comparison of the existing 
heating technology with 41% heat pumps to illustrate their use. 
 
6.3.3 Configurations needing the same minimum storage 
 
For a range of regularly spaced storage capacities: 10,20,30,40,50 days, the wind and 
solar PV generation capacities that require this minimum storage were found. For each 
wind capacity, the configurations with storage above and below the given storage 
requirement (for example, 30 days) were identified. Linear interpolation between these 
surrounding grid points was then used to find the values of wind and solar generation 
capacity. This set of storage capacities was chosen because above about 60 days there 
are not enough points to perform the linear interpolation. This set of points having equal 
storage can then be sorted by wind and solar capacity and plotted. 

Figure (6-4) shows how the pattern of the 30, 40 and 50 days changes because of heating 
electrification. The 10-day and 20-day lines are not shown for clarity. As well as the 
wind and solar generation capacities, the following values were calculated by linear 
interpolation: 

 Renewable energy generated (sum of wind and solar) expressed as a fraction of 
the load. 

 Wind energy fraction expressed as a percentage of the renewable energy 
generated using equation (34). 
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 Cost of electricity generation. 

For heating electrification, the lines for the same number of days of storage move to the 
right indicating a higher capacity of wind required for the same generation. 
 

 
Figure 6-4 The impact of 41% heat pumps on energy storage with a 50% round-trip efficiency.   

The black star in figure (6-4) indicates the location of the configuration requiring 
minimum energy generation which we look at because assuming equal costs for wind 
and solar this might be expected to be the cheapest and therefore optimum configuration 
of those with the same storage since they have similar levelized costs of energy [99].   

Figure (6-5) shows the energy generated plotted against the wind energy fraction for 
the same lines of constant storage. The flatness of the lines near the minimum energy 
configurations shows that there is a wide range of wind energy fractions for similar 
energy, something that would be missed if we just searched for the minimum energy 
solution. 

 
Figure 6-5 Wind energy fraction using the minimum energy generation configuration for different amounts of 
storage comparing the existing heating and 41% heat pumps. 

Table (6-2) compares the minimum energy configurations requiring 30 days storage for 
the existing heating technology and for 41% heat pumps. This example of 30 days 
storage is used chosen as the half way point between 0 and 60, and also used as an 
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illustrative example from previous work. [41]. Because the minimum storage is the 
same (30 days) and with heating electrification, the electricity demand is higher, more 
renewable energy must be generated. The wind energy fraction for heating 
electrification is higher because more heating energy is required in winter when more 
wind energy is available. 

Table 6-2 Comparison of existing heating and 41% heat pumps for 30 days minimum storage 

Measure Electricity Demand 
Existing heating technology 41% heat pumps 

Wind capacity (days) 1.7 2.0 
PV capacity (days) 1.3 1.1 
Wind Energy Fraction 83% 87% 
Renewable energy 
generated in proportion 
to load 

0.80 0.89 

 
Figure (6-6) shows the wind energy fractions for different amounts of storage based on 
the same method as figure (6-5). For low amounts of storage, energy must be used close 
to when it is generated, so it makes sense that low storage equates to a high percentage 
of wind. This is because there is more wind energy available in winter at the same time 
as when demand is higher. 
. 

 
Figure 6-6 Relationship between minimum storage and wind energy fraction for existing heating and heat pumps 

The difference in storage between the existing heating technology and 41% heat pumps 
is greater for higher storage (and hence the lower generation) capacities. Heating 
electrification increases the wind energy fraction by up to 10%, depending on the 
capacity of energy storage. 
 
6.3.4 The least storage configuration for 50% excess energy generation  
 
Previous research has shown that neither minimizing storage nor minimizing energy 
generation are likely to give an optimum solution to the question of how much storage, 
and generation capacity is required. Therefore, to calculate optimum wind energy 
fractions, a previous study [96] considered those configurations generating 50% excess 
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energy above the load and chose the one requiring the least storage. Other research has 
used 15% excess energy [52] which was the minimum cost configuration at today’s 
prices. This method of choosing an excess energy is used as a comparison method here.   

From those configurations that generate the given amount of excess energy over the 
load or less, the one that has the minimum storage is chosen from one experiment. Then 
linear interpolation on the configurations in the other experimental run is used to find a 
configuration with same wind and PV capacity.  
 
Table (6-3) shows this 50% excess energy configuration for the existing heating 
technology and compares it with that for 41% heat pumps. It has 2.7 days wind capacity 
and 0.4 days PV capacity. The energy column indicating the total wind and solar 
generation shows 1.09 which when added to the baseload of 0.4 gives 1.49 which (with 
rounding) is 50% excess energy. With 41% of heating provided by heat pumps, 13 days 
of storage is required, compared to only 8 days with the existing heating technology. 
 
Table 6-3 Comparison of the existing heating and 41% heat pumps for the configuration generating 50% excess 
energy that has the least storage. 

Electricity 
Demand 

Wind 
(days) 

PV 
(days) 

Wind 
Energy 
Fraction 

Renewable 
Energy 
(days) 

Storage 
(days) 

Existing 
heating 
technology 

2.7 0.4 96% 1.09 8 

41% Heat 
Pumps 

2.7 0.4 96% 1.09 13 

 
Minimum storage from configurations generating less than 50% excess energy over the 
load is 5 days greater for 41% heat pumps than with the existing heating. 
 
6.3.5 Minimum Cost of electricity generation 
 
This section uses the cost of electricity based on today’s costs for each configuration 
(of wind, solar and storage capacities) as a method of comparing the results using 
electricity demand with the existing heating technology with those for 41% of heating 
provided by heat pumps. The cost was calculated using equations (32) and (33) from 
section 5.2.2. Figure (6-7) shows the cost of electricity generation for each combination 
of wind and solar generation capacities using the electricity demand with the existing 
heating technology. The cheaper configurations are those with lower energy generation 
in the bottom left hand corner. To compensate for the lower generation these 
configurations would have higher energy storage. Where there is no coloured dot there 
was not enough energy available (either from generation or storage) to satisfy the load 
at each hour of the 40 years. 
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Figure 6-7 Cost of generating electricity at today’s prices  for 0,4 days base load and different wind and solar 
capacities for the existing heating 

Figure (6-8) shows a similar pattern for the electricity demand including 41% of 
hetaing provided by heat pumps. 
 

 
Figure 6-8 Cost of electricity generation at today’s prices for base load 0.4 days and different capacities of wind 
and solar to satisfy the UK electricity demand but with 41% of heating provided by heat pumps 

The reason that there are configurations with higher cost in figure (6-7) with the existing 
heating technnology than in figure (6-8) with 41% heat pumps is that the cost is 
expressed in £/kWh. Although more electricity is generated for heating electrification, 
the cost per kWh can be cheaper, for example if the demand pattern changes so that less 
energy needs to be stored.  
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Table (6-4) shows the minimum cost configurations for the existing heating and for 
41% heat pumps. At today’s costs the minimum cost configuration for heating 
electrification has a wind energy fraction of 91%. Compared to the existing heating 
technology more energy has to be generated from wind and more storage is required. 
However, using the anticipated future costs of wind and solar show that these lower 
generation costs lead to both cases requiring lower wind generation and more storage. 
Because the future costs in table (5-3) anticipate solar being cheaper, the wind energy 
fraction declines. 
 
The configuration having the minimum cost of electricity at today’s prices of those 
needing 30 days of storage is quite close in cost to the minimum energy configuration 
shown in section 6.3.3. However, the wind energy fraction is 4% higher for the 
minimum cost, compared to the minimum energy. This is because wind is cheaper in 
the cost model used in table (5-3) 
 
Table 6-4 Impact of heating electrification on the minimum cost configuration for hydrogen storage 

Configuration Measure Electricity Demand 
Existing heating 
technology 

41% heat 
pumps 

Configuration 
with minimum 
cost of 
electricity at 
today’s prices 

Wind capacity (days) 1.7 1.9 
PV capacity (days) 0.8 0.7 
Wind Energy Fraction 88% 91% 
Renewable energy generated 
in proportion to load 

0.75 0.81 

Storage 59 72 
Cost of electricity at today’s 
prices (£/kWh) 

0.088 0.088 

Configuration 
with minimum 
cost of 
electricity at 
future prices 

Wind capacity (days) 1.5 1.7 
PV capacity (days) 1.4 1.3 
Wind Energy Fraction 79% 82% 
Renewable energy generated 
in proportion to load 

0.73 0.80 

Storage 63 75 
Cost of electricity at today’s 
prices £/kWh 

0.079 0.078 

Configuration 
requiring 30 
days storage 
with minimum 
cost of 
electricity 
generation at 
today’s prices 

Wind capacity (days) 1.8 2.0 
PV capacity (days) 0.9 0.75 
Wind Energy Fraction 87% 91% 
Renewable energy generated 
in proportion to load 

0.80 0.89 

Cost of electricity at today’s 
prices £/kWh 

0.091 0.097 
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Considering the minimum cost configuration for hydrogen storage, heating 
electrification increases the wind energy fraction by 3% and the amount of storage by 
13 days (12 days for future costs). 
 
Figure (6-9) shows lines of constant storage for the existing heating technology only 
with the minimum energy configuration marked by a black star. It can be seen that the 
minimum cost configuration marked by a black cross is close to it, but not the same. 

 
Figure 6-9 Minimum cost configuration at today’s prices compared to minimum energy configuration for 
configurations with the same minimum storage capacity 

6.3.6 Electrification of heat with CAES 
 
So far, this section has been concentrating on a round-trip efficiency and cost for 
hydrogen storage. The analysis from sections 6.3.3 to 6.3.5 is now repeated, but for 
compressed air storage (CAES) instead. The experimental parameters are summarised 
in table (6-5). 
 
Table 6-5 Experiment to assess heating electrification impact with CAES (see 5.3.1 for terminology) 

Experiment Objective: Assess the impact of heating electrification on CAES 
capacity and shares of wind and solar generation. 
Baseload: 𝐶௕ = 0.4 Dispatchable: 𝐶௩ = 0.0 Wind 0.0 ≤ 𝐶௪ ≤ 5.9 Solar 0.0 ≤ 𝐶௣ ≤ 5.9 
Electricity 
Demand 

Frequency η Demand Storage Wind PV Years 

Existing 
Heating 
technology 

Hourly 70% Baseline  Iterative Ninja Ninja 1980 - 
2019 

41% Heat 
pumps 

Hourly 70% Baseline Iterative Ninja Ninja 1980 - 
2019 

 
The results are shown in table (6-6). Coincidentally the minimum cost configuration 
for CAES with a round-trip efficiency of 70% has approximately the same cost as that 
for hydrogen storage with a round-trip efficiency of 50%. CAES has similar wind 
fractions, and lower amounts of storage. Similar to hydrogen storage, heating 
electrification increases wind energy fraction. 
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Table 6-6 The impact of 41% heat pumps on a system with 0.4 base load, wind, solar and compressed Air Storage 

Configuration Measure Electricity Demand 
Existing 
heating 
technology 

41% heat 
pumps 

Equal minimum 
storage (30 days 
min energy) 

Wind energy fraction 84% 85% 
Renewable energy generated % of 
load 

0.73 0.82 

Least storage of 
those generating 
50% excess 
energy above the 
load 

Minimum storage (days) 7 9 
Wind capacity 2.7 2.7 
PV capacity 0.4 0.4 

Minimum cost of 
electricity 
generation at 
today’s prices 

Wind energy fraction 87% 92% 
Renewable energy generated % of 
load 

0.76 0.84 

storage (days) 23 25 
cost £/kWh 0.088 0.088 

 

6.4 Summary and Conclusions 
 
The configurations of wind generation capacity, solar generation capacity and energy 
storage from the model developed in chapter 5 have been used to investigate the impact 
of heating electrification. This compares the power system needed to meet the 
electricity demand with the existing heating technology to that with 41% heat pumps.  
Heating electrification always needs more storage for the same generation capacity. 
With 41% heat pumps, if the PV capacity is zero, then viable configurations range from 
2.3 days (78 GW) wind with 47 days (38 TWh) of storage to 5.6 days (190 GW) wind 
with 6 days (5 TWh) of storage. The minimum cost configuration for hydrogen storage 
is the former, with a large storage capacity. For zero wind, 10 days (340 GW) PV 
capacity requires 127 days (104 TWh) storage with the existing heating and 159 days 
(130 TWh) after heating electrification. Whereas 80 days (2.7 TW) of PV generation 
capacity requires 2 days (1.6 TWh) storage with the existing heating and 3.5 days 2.8 
TWh) with heating electrification. A PV only solution with a large amount of storage 
is possible, but the optimal solution will depend on the relative cost of wind and PV.  
 
The overall patterns in the relationships between shares of wind, PV and storage are 
similar for both 41% heat pumps and the existing heating technology. However, the 
wind energy fraction is higher for heating electrification. This is logical because more 
heating energy is required in the winter when there is also more wind and less PV 
energy available. With 41% heat pumps and 30 days (25 TWh) storage, both the 
minimum energy and minimum cost configurations have a 4% higher wind energy 
fraction. The overall minimum cost configurations with both current and future costs 
have 3% higher wind energy fractions. For 41% of heating provided by heat pumps, the 
wind energy fraction of the minimum cost configuration is similar for both CAES 
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(92%) and hydrogen storage (91%). In contrast to previous work finding that CAES is 
cheaper than hydrogen storage, it was found that the minimum cost configuration for 
CAES had the same cost as that for hydrogen storage.  
 
The configuration with the least storage of those generating 50% excess energy above 
the load is wind 2.7 days (92 GW) and PV 0.4 days (15 GW). With the existing heating 
it requires 8 days (6.5 TWh) of storage, but 13 days (10.6 TWh) storage with 41% heat 
pumps. The minimum cost configuration with 41% heat pumps requires 13 days (10.6 
TWh) more hydrogen storage at today’s prices and 12 days more at projected future 
prices.   
 
For both the existing heating technology and 41% heat pumps, the amount of storage 
increases if less energy is generated and the wind energy fraction decreases. For lower 
amounts of storage, the difference in wind energy fractions between the existing heating 
technology and 41% heat pumps is greater.  
 
One area for future research would be to define a cost model in terms of relative costs 
and investigate the implications on the optimal solution as the relative costs change. 
 
A standard method of comparing two sets of results from the model has been developed 
and illustrated in this chapter using heating electrification as an example. The 
comparison method identifies configurations to compare using three methods: lines of 
constant storage, 50% excess energy generation and minimum cost. Two quantities are 
compared: the storage capacity and the wind energy fraction. This comparison method 
will be used throughout the rest of the thesis.  
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7 Sensitivity of storage model to inputs and previous 
studies 

 
In this chapter results of two previous studies to find the required UK energy storage 
for a purely wind and solar system are examined to see how they would change had the 
methods from this thesis been used. The sensitivity of the model results to different 
inputs is investigated. The results of this sensitivity analysis are then used to identify 
what the main cause of the changes is in the results from two previous studies. 
 
The background to the two studies was discussed in chapter 5, so this chapter starts 
with a discussion of the methods, followed by the sensitivity analysis. The results 
section shows how these two studies would have been different had this project’s model 
been used. The sensitivity analysis to assess the impact of these different model inputs 
shows that wind generation time series have a high impact on the results, so there is a 
section investigating this further. The chapter concludes by summarising the findings. 
 

7.1 Methods 
 
The two UK studies previously discussed in chapter 5 will be examined in this chapter:  
Cardenas et al.  [52] and Fragaki et. al. [41]. The latter study was reproduced in chapter 
5 for validation purposes. This chapter will examine the following: 

 Updating Fragaki with the methods from this study  
 Updating Cardenas with the methods from this study 
 Sensitivity analysis of the different inputs 
 Extra study of wind generation time series pattern by scaling them so that they 

have the same capacity factor. 
 
The Fragaki study was updated using chapter 5’s methods but using a round trip 
efficiency of 85% for pumped storage. The objective is to see how this project’s 
methods would change the results of that study.  
 
Then the Cardenas study was updated using the methods from this study as specified in 
chapter 5, but for CAES at a round trip efficiency of 70%. 
 
Differences in wind or PV generation time series could be due to either the mean 
capacity factor or a difference in the pattern of when the energy is generated compared 
to when it is needed. To assess this the generation time series with the lower mean 
capacity factor was scaled so it had the same capacity factor as the other time series 
using equation (35). In effect capacity is added to compensate for the lower capacity 
factor so that the same energy is generated.  

𝐺𝑆௛ =  
∑ 𝐺𝑆௛

∑ 𝐺𝐿௛

(𝐺𝐿௛) 
(35) 

Where 𝐺𝑆௛  is the hourly (h) wind time series scaled to the higher capacity factor, 𝐺𝐻௛ 
is the wind time series with the higher capacity factor and 𝐺𝐿௛is the wind time series 
with the lower capacity factor. The scaled time series then generates the same energy 
as the time series with the higher capacity factor, but at different times due to the 
pattern. Therefore, any difference seen is due to the difference in the temporal pattern. 
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7.2 Sensitivity to time period and frequency 
 
In this section, the sensitivity of the results to the time period and frequency of data 
used is investigated. 
  
7.2.1 Hourly or Daily time series 
 
The objective of this section is to investigate the amount of energy storage needed for 
a system with an electricity demand like that of today, but with a high penetration of 
renewable generation. Also, the impact of using daily or hourly time series is 
investigated. It is normal practice for energy models of the type used in this study to be 
run at hourly resolution [25, 97]. One review paper on the amount of energy storage 
required [106] only considers other studies that have hourly resolution. However, other 
research has found that the temporal resolution required depends on the research 
question being answered [107] with models incorporating storage reducing the 
importance of high time resolution. One study of the storage and balancing needs of the 
European power system [96] found differences in optimal wind fraction and storage 
capacity between using hourly and daily time series. Therefore, the difference between 
using hourly and daily time series is investigated here. 
 
The model defined in section 5.2 was used with a 50% round trip storage efficiency. 
The electricity supply consists of base load 0.4 days, and various capacities of wind and 
solar. The electricity demand represents the existing heating technology from 4.2.2. All 
other factors are the same apart from using hourly or daily time series. The inputs are 
summarised in table (7-1). 
 
Table 7-1 Experiment to compare hourly and daily time series (see 5.3.1 for terminology) 

Experiment Objective: Compare hourly or daily time series, generation wind, solar 
Baseload: 𝐶௕ = 0.4 Wind 0.0 ≤ 𝐶௪ ≤ 5.9 Solar 0.0 ≤ 𝐶௣ ≤ 5.9 
Frequency η Demand Storage Wind PV Years 
Daily 50% Baseline Iterative Ninja C Ninja 1980-2019 
Hourly 50% Baseline Iterative Ninja C Ninja 1980-2019 

 
The following plot figure (7-1) shows constant storage lines for different capacities of 
wind and solar generation. Whilst the 30 day and 10-day contours match almost exactly, 
there is a significant difference for the 3-day contour. This suggests that using hourly 
time series (as opposed to daily) are less important for larger amounts of storage. 
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Figure 7-1 Lines of constant storage showing the difference between using daily or hourly time series 

Table (7-2) compares hourly time series and daily time series according to the criteria 
defined in section 6.3. For the minimum energy configuration of those requiring 30 
days storage, the hourly time series has a wind energy fraction 3% higher and generates 
3% more energy above the load. For the configuration with wind capacity 2.7 days and 
PV capacity 0.4 days, the required energy storage is the same. The minimum cost 
configurations are quite different between daily and hourly time series. The cost is 85 
£/MWh compared to 88 £/MWh. This is because most of the cost of hydrogen storage 
comes from the discharging or charging the store which is dependent on the charge rate.  
 
Table 7-2 The difference between using daily or hourly time series using 3 comparison methods from 5.2.6  

Comparison Configuration Measure Time Series Frequency 
Daily Hourly 

30 days minimum storage 
(minimum energy) 

Wind capacity (days) 1.6 1.7 
PV capacity (days) 1.4 1.3 
Wind energy fraction 80% 83% 
energy generated 0.77 0.80 

Least storage for 50% 
excess energy generation 

Wind capacity (days) 2.7 2.7 
PV capacity (days) 0.4 0.4 
Storage (days) 8 8 

Minimum cost of 
electricity generation at 
today’s prices 

Wind capacity (days) 1.4 1.7 
PV capacity (days) 1.5 0.8 
Wind energy fraction 77% 88% 
energy generated 0.71 0.75 
storage (days) 65 59 
cost £/kWh 0.085 0.088 
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For daily time series the charge and discharge rates will be averaged over a longer time 
period and so their maximum values will be smaller. Using daily time series averages 
the charge rate across the whole day leading to lower calculated ramp rates. For daily, 
the wind energy fraction is 77% compared to hourly of 88%. 
 
The conclusion is that using hourly time series is important for configurations with a 
small amount of storage or when calculating cost or wind energy fraction. For 
calculating the minimum required storage, daily time series are adequate. 
 
7.2.2 Sensitivity to using a subset of the data 
 
The objective of this section is to investigate if the results of the study would be 
different if only part of the data were used. The same experiment was run on four 
distinct decades of the 40 years of data. The input parameters used are shown in table 
(7-3). 
 
Table 7-3 Experiment to compare the impact of using different decades of data (see 5.3.1 for terminology) 

Experiment Objective: Compare different decades of weather. 
Baseload: 𝐶௕ = 0.2 Dispatchable: 𝐶௩ = 0.0 Wind 0.0 ≤ 𝐶௪ ≤ 5.9 Solar 0.0 ≤ 𝐶௣ ≤ 5.9 
Frequency η Demand Storage Wind PV Years 
Daily 50% Baseline Iterative Ninja C Ninja 1980-1989 
Daily 50% Baseline Iterative Ninja C Ninja 1990-1999 
Daily 50% Baseline Iterative Ninja C Ninja 2000-2009 
Daily 50% Baseline Iterative Ninja C Ninja 2010-2019 

 
Each plot below shows constant storage lines for 4 distinct decades of data. The first 
plot shows the 50 days storage lines, the second 30 days and the third 10 days storage. 

 
Figure 7-2 Comparison of 50 days storage lines for 4 distinct decades 
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Figure 7-3 Comparison of 30 days storage lines for 4 distinct decades 

 
Figure 7-4 Comparison of 10 days storage lines for 4 distinct decades 

It can be seen that for smaller storage capacities there is a bigger variation amongst the 
results for the different decades. For example, for configurations with PV capacity 5.0 
days, the configurations requiring 30 days of storage range from wind 1.9 to wind 2. 1.. 
However, with 10 days of storage, the wind capacity ranges from 2.6 days to 3.2 days. 
This experiment suggests that the time period doesn’t make much difference to the 
results apart from for small capacities of storage. The bigger difference at small storage 
capacities is probably due to variations becoming smoothed out a large amounts of 
storage because there is more energy available to cope with short term variation. 
 
7.2.3 Comparing 4 years with an extreme cold year to 40 
 
Some studies choose a single year or a short period of years which includes a cold year 
with the assumption that this would adequately provide a suitable range of conditions 
to test the model. However, high heating requirements may not coincide with low 
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generation. A study quantifying the sensitivity of the power system to climate 
variability [85] statues that even 36 years is a relatively short period for quantifying 
climate extremes. They study the impact of randomly sampling different number of 
years and different years on a model to minimize the long-term economic cost of a 
particular wind power scenario. Looking at 1000 different samples of years they find a 
difference of 50% with single years down to 15% with 10 years. In this experiment the 
4 years 2009-2012 which includes a particularly cold year of 2010 is compared to using 
the full 40 years of data.   
 
Table 7-4 Experiment to compare 40 years data with 4 years that includes a cold spell (see 5.3.1 for terminology) 

Experiment Objective: Compare 40 years with a cold spell. 
Baseload: 𝐶௕ = 0.2 Dispatchable: 𝐶௩ = 0.0 Wind 0.0 ≤ 𝐶௪ ≤ 5.9 Solar 0.0 ≤ 𝐶௣ ≤ 5.9 
Frequency η Demand Storage Wind PV Years 
Daily 50% Baseline Iterative Ninja C Ninja 2009-2012 
Hourly 50% Baseline Iterative Ninja C Ninja 1980-2019 

 
The plot below shows that for 10 days of storage there are significant differences in the 
results. For larger amounts of storage between 20 and 50 days, the differences are small. 
 

 
Figure 7-5 Lines of constant storage using 4 years with a cold spell compared to using 40 years 

The wind energy fraction for the minimum cost configuration and its cost for hydrogen 
storage is the same for both experiments. However, for the 50% excess generation 
configuration needing the minimum storage, which is wind 2.4 days and PV 2.1 days, 
the 40-year case needs 4.5 days (80%) more storage. This example shows that the using 
only a few years with a cold spell can yield inaccurate results.   
 

7.3 Sensitivity to model inputs Fragaki et. al. 
 
Different model inputs are used in this project to those of two previous UK studies. In 
the following sections the impact that these different inputs have will be examined 
individually. They are grouped together by the two studies because of the data used by 
the two studies being available in different time periods. This also has the advantage 
that it will be possible to comment on why the inputs used by this study give different 
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results. The impact of the different time period itself to the 1980-2019 period of this 
study is also investigated. This section considers the inputs to Fragaki et. al.: 

 Time period of 1984-2013, compared to 1980-2019 used in this thesis 
 Electricity demand time series (scaled by adding a constant) 
 Solar PV Generation data 
 Wind power generation data (offshore and onshore) 

 
7.3.1 Sensitivity to time period 1980-2019 compared to 1984-2013 
 
The Fragaki et. al. study uses the period 1984 – 2013, whereas this study uses 1980 – 
2019. The objective of this section is to look at the impact of keeping all other aspects 
the same, but to use different time periods. The experimental parameters are 
summarised in table (7-5) 
 
Table 7-5 Experiment to compare the different time periods of the two studies (see 5.3.1 for terminology) 

Experiment Objective: Compare the effect of using different time periods. 
Baseload: 𝐶௕ = 0.0 Dispatchable: 𝐶௩ = 0.0 Wind 0.0 ≤ 𝐶௪ ≤ 5.9 Solar 0.0 ≤ 𝐶௣ ≤ 5.9 
Frequency η Demand Storage Wind PV Years 
Daily 85% Baseline Iterative Ninja C Ninja 1984-2013 
Daily 85% Baseline Iterative Ninja C Ninja 1980-2019 

Figure (7-6) shows the same constant lines of storage for 85% efficiency shown in 
figure (5-4) with the addition of a 50 days line (to replace the 60 day line that the 
previous study had). The solid lines for the period 1984 – 2013 are compared to dotted 
lines for the period 1980 – 2019. It can be seen that the impact of the time period alone 
causes the lines to move to the left indicating lower wind generation requirements for 
the same storage for the longer time period. The points with minimum energy generated 
for constant storage are shown with a black star. For 30 days storage using the shorter 
time period causes the wind energy fraction to rise from 80% to 81% and the amount 
of energy generated to rise from 1.14 times the load to 1.19 times the load. 
 

 
Figure 7-6 Lines of constant energy storage modelled using the time period of 1984-2013 compared with those 
modelled using 1980-2019. 
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7.3.2 Sensitivity to electricity demand time series created by different 

processes 
 
The objective of this section is to investigate the impact of using electricity demand 
time series created using the baseline method of chapter 4 compared to a scaled historic 
electricity demand. The historic electricity demand was scaled by subtracting a constant 
amount from each day of the year so that every year generates the same amount of 
energy, to remove the effect of socio-economic and technological changes over the 
years. This has the disadvantage of also removing differences due to the amount of 
heating electricity in the time series due to the temperature of different years. Since the 
aim of the current work is to compare the impact of heating electrification it is important 
to address this issue. That is why the baseline method in this study was developed. It 
uses a baseline electricity demand created by removing heating electricity from a recent 
year and then adding in the heating electricity for each year based on the weather. The 
experimental parameters are summarised in the table (7-6). The years 1984-2013 were 
used due to the data being available for that year. 
 
Table 7-6 Experiment to assess the impact of electricity demand time series created in different ways (see 5.3.1 for 
terminology) 

Experiment Objective: Assess impact of scaling historic demand. 
Baseload: 𝐶௕ = 0.0 Dispatchable: 𝐶௩ = 0.0 Wind 0.0 ≤ 𝐶௪ ≤ 5.9 Solar 0.0 ≤ 𝐶௣ ≤ 5.9 
Frequency η Demand Storage Wind PV Years 
Daily 85% Baseline Iterative Ninja C Ninja 1984-2013 
Daily 85% Historic Add Iterative Ninja C Ninja 1984-2013 

Figure (7-7) shows that the same storage line is quite close in both time series although 
moved slightly to the right implying more wind generation capacity required for the 
same amount of storage for the scaled historic time series. The configuration with 
minimum energy generation shown with a black star for the 30 days storage line occurs 
at a wind energy fraction of 85% for the baseline method compared to 80% for the 
scaled historic demand. The baseline demand requires energy generated of 1.14 times 
the load compared to 1.13 for the scaled historic demand.  
 

 
Figure 7-7 Constant storage lines using electricity demand time series created in two different ways. 
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It is difficult to assess the exact reasons for these differences because modifying the 
historic time series to have the same demand each year will have lowered the demand 
for cool years, whilst raising the demand for warmer years, yet some of this change was 
due to socioeconomic variation. The advantage of using the baseline method is we 
know the variation is all due to weather.  
The impact on energy generated for fixed storage size of using an electricity time series 
generated using the baseline method, rather than the scaled historic time series is small. 
The impact on the wind energy fraction is more significant.  
 
7.3.3 Sensitivity to solar PV Power generation data 
 
The objective of this section is to investigate the impact of using different PV 
generation data. The PV generation time series used in Fragaki et. al. was generated by 
modelling south facing PV panels at optimal angles at 4 MIDAS weather stations 
without including temperature affects. It was a daily time series from 1984 to 2013. It 
was converted to time series of capacity factors. The mean capacity factor is 0.116 over 
the 30-year period. 
 
In contrast, Renewables Ninja, models a panel at each MERRA2 reanalysis weather 
grid point taking into account temperature effects. No population weighting is done. 
However, the density of PV installations is likely to be influenced by the climate of the 
area as well as its population. The hourly time series was converted to daily. The mean 
capacity factor is 0.1085 over the same 30-year period.  
 
Figure (7-8) shows part of these two solar PV generation time series. The Ninja 
generation appears to have fewer extreme values. Possibly because it is based on a 
wider range of geographic locations (each weather grid point), and also perhaps because 
reanalysis weather data tends to have fewer extreme values. How well either of these 
capture the actual pattern of solar installations in the UK is difficult to know because 
domestic embedded solar is only metered quarterly. However, they compare well with 
each other with nRMSE 0.31 and R2 0.932.  

 
Figure 7-8 - UK PV generation using MIDAS stations compared to a PV panel at each weather grid point from 
Renewables Ninja - Zoomed in (10 day rolling average) 
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Another PV time series was generated by scaling the Fragaki time series to have the 
same capacity factor as the Ninja time series using equation (35). This PV series would 
generate the same energy as the Ninja PV series but at different times. The objective is 
to see how much of the difference is down to capacity factors and how much to the 
pattern of generation. 
 
An investigation was done to see what impact using these different PV generation time 
series had on the amount of energy storage required. Whilst using different PV time 
series, these three experiments all use Ninja combined wind generation, and a storage 
efficiency of 85%. The experimental parameters are summarised in table (7-7). 
 
Table 7-7 Experiment to compare the impact of using different PV generation time series (see 5.3.1 for 
terminology) 

Experiment Objective: Compare PV generation time series. 
Baseload: 𝐶௕ = 0.0 Dispatchable: 𝐶௩ = 0.0 Wind 0.0 ≤ 𝐶௪ ≤ 5.9 Solar 0.0 ≤ 𝐶௣ ≤ 5.9 
Frequency η Demand Storage Wind PV Years 
Daily 85% Baseline Iterative Ninja C Ninja 84-2013 
Daily 85% Baseline Iterative Ninja C Fragaki 84-2013 
Daily 85% Baseline Iterative Ninja C Fragaki S 84-2013 

Figure (7-9) shows lines join configurations needing 30, and 50 days of storage in 
different colours. There are three sets of lines for each colour representing the Ninja PV 
series, the Fragaki PV series and the Fragaki PV series scaled to the Ninja PV capacity 
factor. Only the 30-day and 50-day contours are shown as the others overlap. The 
Renewables Ninja configurations require more wind energy for the same storage 
compared to the Fragaki generation. The storage lines for the Fragaki generation scaled 
to the same capacity factor as the Ninja time series are very close to the unscaled line 
which suggests that most of the difference between these two generation models is due 
to the pattern, rather than the capacity factors. It can be seen that as would be expected 
the difference becomes greater at larger proportions of PV. At high PV, the Renewables 
Ninja time series need more wind capacity to compensate for the lower PV generation. 
This could be because the Fragaki time series model more PV panels in the south where 
the weather is sunnier, whereas Renewables Ninja model a PV panel at each weather 
grid point. 

 
Figure 7-9 - Comparison of constant storage lines modelled using PV generation from MIDAS weather stations 
with those modelled using PV generation data from Renewables Ninja with one PV panel at each weather grid 
point 



120 
 

The black star in figure (7-9) shows the minimum energy configuration of those 
requiring the same amount of storage. For 30 days storage it was 85% wind for the ninja 
PV series whereas for the Fragaki series it is 83% wind. The scaled Fragaki series has 
the same wind energy fraction, so this difference is due to the generation pattern and 
not the difference in capacity factor. The Ninja PV series required energy generation of 
1.14 above the load compared to 1.17.  
 
Neither of these PV capacity factor time series is the actual PV generation. It is not 
known which is more accurate, but they do not differ that much. The difference seems 
to be mainly caused by the generation pattern, rather than capacity factors. 
 
7.3.4 Sensitivity to wind power generation data 
 
The objective of this section is to assess the impact of using different wind generation 
data. In contrast to using the hourly generation data from Renewables Ninja used in this 
study, Fragaki et. al. used a typical wind turbine power curve to generate daily wind 
power generation time series at the locations of 6 UK land-based weather stations using 
observations from MIDAS. First the Renewables Ninja generation data for the same 
years 1984 – 2013 was converted from hourly to daily and the mean capacity factors 
compared. Table (7-8) shows that whilst the Ninja Current onshore wind has a capacity 
factor only slightly higher than the Fragaki one, that offshore wind is much higher. It 
also shows how capacity factors are expected to evolve into near the future.  
 
Table 7-8- Wind Generation Capacity Factors 

Capacity Factors Renewables Ninja Fragaki et. al. 
Current Near 

Future 
Long term 
Future 

Onshore Wind 0.2924 0.3379 (Not available) 0.28 
Offshore Wind 0.3835 0.3927 (Not available) N/A 
Combined 0.3277 0.3878 0.3961 0.28 

 
First the difference between the wind generation in the Fragaki study (onshore) and this 
thesis (Ninja onshore and offshore combined) is investigated. Then this will be broken 
down in subsequent sections to compare differences between: 

 Onshore from Renewables Ninja and onshore from 6 MIDAS weather stations.  
 Ninja onshore and offshore 
 

The experimental parameters for the comparison between Ninja combined (onshore 
and offshore) compared to 6 MIDAS weather stations (onshore only) are summarised 
in table (7-9) below. 
 
Table 7-9 Experiment to assess the impact of wind generation from 6 MIDAS weather stations compared to 
Renewables Ninja (see 5.3.1 for terminology) 

Experiment Objective:  Assess the impact of Wind generation data source. 
Baseload: 𝐶௕ = 0.0 Dispatchable: 𝐶௩ = 0.0 Wind 0.0 ≤ 𝐶௪ ≤ 5.9 Solar 0.0 ≤ 𝐶௣ ≤ 5.9 
Frequency η Demand Storage Wind PV Years 
Daily 85% Baseline Iterative Fragaki Ninja 1984-2013 
Daily 85% Baseline Iterative Ninja On Ninja 1984-2013 



121 
 

Figure (7-10) shows lines requiring the same amount of storage. The impact of the 
higher wind capacity factor of the Ninja data is seen in a move of the contours to the 
left. Not so much wind capacity is needed to balance the system for the same amount 
of storage. 
 
The black star shows the configuration with the minimum energy generation. For the 
30-day storage line this configuration has 83% wind for Renewables Ninja, whereas it 
has 87% for MIDAS weather stations. The energy generated for Ninja is 1.14 times the 
load compared to 1.35 for the same amount of storage.  
 

 
Figure 7-10 Constant storage lines modelled using 6 turbines at MIDAS onshore weather stations compared with 
those modelled using Renewables Ninja wind generation data (onshore and offshore) 

 
7.3.5 Onshore wind generation from MIDAS stations compared with 

Renewables Ninja 
 
To assess how much of the difference with the Renewables Ninja time series is due to 
offshore wind and how much is due to using 6 MIDAS weather stations, the two are 
investigated separately. This section looks at onshore wind only comparing Renewables 
Ninja with MIDAS weather stations. The experimental parameters are summarised in 
table (7-10) 
 
Table 7-10 Experiment to compare the difference between using onshore wind from MIDAS stations with onshore 
wind from Renewables Ninja (see 5.3.1 for terminology) 

Experiment Objective:  Compare onshore wind generation from 6 MIDAS stations v 
Renewables Ninja onshore. 
Baseload: 𝐶௕ = 0.0 Dispatchable: 𝐶௩ = 0.0 Wind 0.0 ≤ 𝐶௪ ≤ 5.9 Solar 0.0 ≤ 𝐶௣ ≤ 5.9 
Frequency η Demand Storage Wind PV Years 
Daily 85% Baseline Iterative Fragaki Ninja 1984-2013 
Daily 85% Baseline Iterative Ninja On Ninja 1984-2013 

 
Figure (7-11) shows the difference between these two on lines of constant storage. The 
50-day contour is not shown because it overlaps the others. For the Ninja data the 
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contours move to the left indicating more wind capacity is needed to balance the system 
for the same amount of storage. The difference is not as large as that for combined 
onshore and offshore seen in the previous section. The black star shows the 
configuration with the minimum energy generation. For the 30-day storage line this 
configuration has 85% wind for Renewables Ninja, whereas it has 87% for MIDAS 
weather stations. 

 
Figure 7-11 Lines of constant storage modelled using onshore wind generation from Renewables Ninja compared 
with those modelled using MIDAS weather stations. 

The figure below compares the wind generation from Fragaki et. al. with that from 
Renewables Ninja. It appears to be showing fewer low values for the Ninja time series. 
 

 
Figure 7-12 Wind generation from Renewables Ninja compared to Fragaki et. al. 20 day rolling average. 

The generation from Renewables Ninja has fewer time points with low wind generation 
and no days when it is zero, perhaps because it is derived from a far larger number of 
geographical locations and turbine types. This would be expected to result in lower 
storage requirements. The ninja time series incorporate all the current and near future 
wind farms, so would be expected to reflect the actual wind generation more accurately. 
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They have been bias corrected to account for the fact that reanalysis weather data 
smooths out terrain details and so does not model local wind conditions well.  
 
7.3.6 Onshore wind compared to offshore wind 
 
The objective of this section is to compare the difference between using onshore and 
offshore wind. All other aspects are kept constant. Three Ninja wind generation time 
series are compared: onshore, offshore, and onshore scaled to the offshore capacity 
factor. The experimental parameters are summarised in table (7-11). 
 
Table 7-11 Experiment to compare onshore and offshore wind (see 5.3.1 for terminology) 

Experiment Objective: Compare onshore and offshore wind. 
Baseload: 𝐶௕ = 0.0 Dispatchable: 𝐶௩ = 0.0 Wind 0.0 ≤ 𝐶௪ ≤ 5.9 Solar 0.0 ≤ 𝐶௣ ≤ 5.9 
Frequency η Demand Storage Wind PV Years 
Daily 85% Baseline Iterative Ninja Off Ninja 84-2013 
Daily 85% Baseline Iterative Ninja On Ninja 84-2013 
Daily 85% Baseline Iterative Ninja S Ninja 84-2013 

 
Figure (7-13) shows constant lines of 10 days and 50 days storage. The 20, 30 and 40 
lines are not shown because the storage contours overlap. There is a much larger 
separation between the 10-day storage contours than the 50-day storage contours 
indicating a large difference in wind generation between the three cases. The position 
of the middle of the three lines in each set representing onshore scaled to the capacity 
factor of offshore, shows that approximately one third of the difference appears to be 
due to the pattern of generation and the rest due to the capacity factor. 

 
 
Figure 7-13 Lines of 10 days and 50 days energy storage modelled with offshore wind compared to those modelled 
using onshore wind. 

Figure (7-14) shows the 30-days of storage line, but with the energy generated plotted 
against the wind energy fraction. The green and orange lines overlap because they have 
the same pattern of energy generation. The minimum energy point is shown using a 
black star. The wind energy fraction for offshore is 78%, for onshore it is 85% and for 
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onshore scaled to the offshore capacity factor it is 87%. This suggests that most of the 
difference in wind energy fraction is due to the difference between the patterns of 
offshore and onshore wind, rather than the capacity factor. Plotting energy against 
fraction makes it easier to see where the minimum occurs, and how distinct it is 
compared to other configurations with the same amount of storage. 

 
Figure 7-14 Comparison of wind energy fraction found using 30 day storage lines modelled with the onshore wind 
generation from Renewables Ninja compared with those from Fragaki et. al. 

That difference in the wind generation pattern has resulted in energy generation of 1.27 
in proportion to the load compared to 1.15 for the same amount of energy storage. The 
correlations between the different wind series are discussed in 9.6. 
  
7.3.7 Summary of impact of the model differences 
 
The previous sections have examined the sensitivity of the results to different modelling 
inputs. This section compares all these various inputs. They are: 

 the time period of the data: 1980-2019 or 1984-2013 
 electricity demand time series created by a different process 
 PV generation data 
 wind generation data (MIDAS stations and onshore v offshore) 

 
Figure (7-15) shows the 30-day storage contour for the model and data from this study 
(light green) compared to all the other differences listed above. The difference made by 
the method used to find the required storage (from the validation in 5.4.2) is also shown. 
It can be seen that the largest impact is caused by the wind generation data (red). The 
same wind generation data scaled to the Ninja capacity factor (purple line) shows that 
most of this difference is due to the capacity factor and not the different patterns of 
generation. However, the difference caused by the pattern is still significant.  
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Figure 7-15 30-day storage lines generated using the model and data in this study compared to those modelled using 
all the individual modelling differences between this study and Fragaki et. al. 

Figure (7-16) shows the same contour lines but with energy generated plotted against 
the wind energy fraction. This shows that using the different wind generation time 
series leads to larger energy generation for the same amount of storage and higher wind 
energy fractions. The flatter lines, for example using the scaled historic demand show 
less distinct optimum wind energy fractions. 
 

 
Figure 7-16 Wind energy fractions found using minimum energy points for 30 days storage compared for all 
modelling differences. 

Table (7-12) shows the impacts of these differences in modelling. The differences in 
model inputs are listed along the top and they are compared according to the criteria 
defined in section 6.3 listed down the left-hand side. These criteria define which 
configurations from the range of wind and solar capacities shown in figure (7-15) are 
compared.    
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Table 7-12 Sensitivity of the wind/solar/storage mix to different modelling inputs 

Criteria for 
choosing 
Configuration 

Measure Result 
from 
This 
Thesis 

Modelling Input Difference from thesis 
Time 
Period 

Electrical 
Demand 

PV 
MIDAS 

Wind 
MIDAS 

Equal 
Minimum 
Storage (30 
days min 
energy) 

wind energy 
fraction 

80% 81% 82% 80% 87% 

energy 
generated % 
of load 

1.14 1.19 1.13 1.17 1.35 

Least Storage 
for excess 
energy 50% 

Storage 
(days) 

10 11 11 13 47 

Wind 3.7 3.7 3.7 3.7 3.7 
PV 0.8 0.8 0.8 0.8 0.8 

Minimum cost 
of electricity 
generation at 
today’s prices 

Wind energy 
fraction 

95% 96% 97% 96% 86% 

energy 
generated % 
of load 

1.41 1.53 1.4 1.49 1.92 

storage 
(days) 

11 11 12 11 12 

cost £/kWh 0.149 0.157 0.158 0.157 0.194 
 
The first comparison method in table (7-12) is to examine those configurations needing 
a minimum storage of 30 days and find the configuration that generates the minimum 
amount of energy during the period of the experiment. This configuration is marked by 
a black star in figures (7-15, 7-16). The most significant differences are shown for using 
MIDAS wind generation where the wind energy fraction is 87% and energy generation 
of 1.35 times the load. 
 
The second comparison method in table (7-12) is to compare a particular capacity of 
3.7 days wind and generation 0.8 days solar PV generation. This was chosen as the 
configuration in the model for this study with the minimum storage requirement of 
those which generate 50% excess energy above the load. The largest difference to the 
amount of storage required for this configuration (10 days) is caused by using different 
wind generation data (47 days). No study has been found that remarks on the large 
difference in energy storage modelled from difference methods of modelling renewable 
generation. 
 
The third comparison method in table (7-12) is to find the configuration that has the 
lowest cost of electricity generation. The cost is calculated using the capacities of wind 
generation, solar generation and pumped hydro storage at today’s prices as defined in 
section 5.2.2. The minimum cost configurations all have storage of 11 or 12 days. 
However, using the MIDAS weather stations wind generation series requires much 
higher energy generation and a lower wind energy fraction.  
 
The differences found illustrate the significant impact to the model of using wind 
generation time series created in a different way.  
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7.4 Sensitivity to model inputs from Cardenas et. al. 
 
Another previous study to find the minimum energy storage required for the UK was 
done by Cardenas et. al. [52]. Cardenas et. al. also found the minimum energy storage 
required for a purely wind and PV system, using the historic electricity time series. 
However, they used different power generation data, scaled the electricity demand in a 
different way, and used a different algorithm to find the minimum energy storage. This 
section looks at the impact of these modelling differences. There are four main 
differences between the Cardenas model and that used in this study: 

 Each day of the historic electricity demand was multiplied by a different factor 
for each year so that all the years had the same annual demand of 335 TWh. 
Whereas in this study the baseline method is used. 

 National grid wind generation was used instead of Renewables Ninja 
 The time period was 2011 – 2019 instead of 1980 – 2019. 
 A different algorithm was used to calculate the required energy storage. 

The storage algorithm has not been reproduced but, the first three changes were all 
investigated individually to see what impact they had. 
 
The experiments are summarised in table (7-13) using the terms defined in section 
5.3.1. The time period 2011 – 2019 was used as that was when the electricity demand 
data and wind capacities for scaling the national grid wind generation data were 
available. 
 
Table 7-13 Experiments to compare the impact of different model inputs of wind generation and electricity demand 
on the results of Cardenas et al. (see 5.3.1 for terminology) 

Experiment Objective: Investigate the impacts of modelling differences between 
Cardenas et. al. and this project’s model. 
Baseload: 𝐶௕ = 0.0 Dispatchable: 𝐶௩ = 0.0 Wind 0.0 ≤ 𝐶௪ ≤ 5.9 Solar 0.0 ≤ 𝐶௣ ≤ 5.9 
Experiment Frequency η Demand Storage Wind PV Years 
This thesis Hourly 70% Baseline Iterative Ninja C Ninja 1980-2019 
Time period Hourly 70% Baseline Iterative Ninja C Ninja 2011-2019 
Demand Hourly 70% Historic 

Mult 
Iterative Ninja C Ninja 2011-2019 

Wind  Hourly 70% Baseline Iterative NGrid Ninja 2011-2019 
 
Figure (7-17) shows the impact of the different modelling methods on the 30-day 
storage line for the methods used in this study (blue), compared to different methods 
used by Cardenas. It can be seen that the different wind generation data (green) makes 
the largest difference. The time period of the data (yellow) and the method of scaling 
the historic demand (red) only make a small difference. The configuration on the 30-
day storage line which generates the least energy is shown by a black star. 
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Figure 7-17 Lines of 30 days energy storage showing the impact of different modelling methods 

Figure (7-18) shows the same lines, but with energy generated plotted against wind 
energy fraction. It can be seen that the national grid wind generation data (green line) 
is flat indicating no distinct minimum energy and hence optimal wind energy fraction 
for 30 days storage. The time period of data and the scaling method of Cardenas both 
cause an increase in wind energy fraction. These first two results are summarised as the 
first two rows of table (7-14). Of the configurations requiring 30 days of storage, the 
one with the minimum energy generation is shown. 
 

 
Figure 7-18 Impact of different methods used by Cardenas on the 30-day storage line wind energy fraction 

The second comparison method in table (7-14) is to compare a particular capacity of 
3.7 days wind and generation 0.8 days solar PV generation. This was chosen as the 
configuration in the model for this study with the minimum storage requirement of 
those which generate 50% excess energy above the load. The largest difference to the 
amount of storage required for this configuration (10 days) is caused by using different 
wind generation data (43 days).  
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Table 7-14 The impact on the results of the modelling methods used by Cardenas 

Comparison Modelling Difference 
Configuration Measure This 

Thesis 
Time 
Period 

Electricity 
Demand 

National 
Grid 
wind 

Equal Minimum 
Storage (30 
days min 
energy) 

wind energy fraction 81% 85% 83% 77% 
energy generated 1.19 1.12 1.1 1.19 

Least Storage 
Configuration 
for excess 
energy of 50% 

storage (days) 11 12 10 38 
wind capacity (days) 3.7 3.7 3.7 3.7 
PV capacity (days) 0.6 0.6 0.6 0.6 

Minimum cost 
of electricity 
generation at 
today’s prices 
with CAES 

wind energy fraction 82% 88% 85% 82% 
energy generated 1.15 1.14 1.12 1.23 
storage (days) 29 24 25 17 
cost £/kWh 0.072 0.070 0.070 0.074 

 
The third comparison method in table (7-14) is to find the configuration that has the 
lowest cost of electricity generation. The cost is calculated using the capacities of wind 
generation, solar generation and CAES at today’s prices as defined in section 5.2.2. The 
minimum cost configuration also shows that using the national grid wind generation 
series instead of Renewables Ninja has the largest impact on the results, requiring more 
energy generation and a lower storage.  
 

7.5 Wind patterns and storage 
 
Both comparisons with previous studies show that different wind generation data cause 
a large difference in the results. This is investigated further in this section using the 
example of the Renewables Ninja onshore wind generation compared to their offshore 
wind generation data. Not only is the capacity factor for offshore wind higher than 
onshore, but the patterns are also different. At daily resolution offshore wind compares 
to onshore wind with nRMSE=0.31 and R2=0.94.  
 
Looking in detail at the 30 days storage line figure (7-19) below shows the effect of 
scaling the onshore wind to the same capacity factor as offshore. It can be seen that 
there is still a difference in that offshore needs a lower capacity for the same storage. 
Approximately two thirds of the reduction in wind generation needed for the same 
storage is explained by the difference in capacity factors. The remainer must be due to 
the generation pattern (how peaks of generation coincide with high periods of demand).  
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Figure 7-19 - Comparison of 30 day storage lines modelled using onshore wind, offshore wind and onshore wind 
scaled to the mean offshore capacity factor. 

As well as the importance of how much energy is generated it is also important when it 
is generated. The pattern seems to be significant for 30 days storage, but what about 
other amounts of storage? The following table (7-15) shows how the wind fraction of 
the minimum energy configuration varies for different amounts of storage. In general, 
more solar is required for offshore wind, although for 15 days of storage it is the other 
way round. This suggests some sensitivity to the times when the store becomes full for 
different amounts of storage relative to the times when either PV or wind is generating 
more energy. Offshore wind requires less energy to be generated (between 10% and 
39% of the mean daily load per day) 
 
Table 7-15 Impact of wind pattern on wind fraction and energy generated. 

Storage 
(days) 

Wind energy fraction Energy Generated 

Onshore scaled 
to offshore 

Offshore Onshore scaled 
to offshore 

Offshore Difference 

5 78 78 2.82 2.82 0.0 
10 99 93 1.88 1.49 0.39 
15 90 92 1.46 1.3 0.16 
20 94 86 1.36 1.21 0.15 
25 89 83 1.3 1.16 0.14 
30 87 78 1.25 1.13 0.12 

 
To investigate the findings from the previous section further, a wind only configuration 
was examined in more detail. Rather than looking at a whole set of wind and PV 
configurations, a wind capacity of 6.0 days and a PV capacity of 0.0 days was 
examined. This configuration is approximately that requiring 10 days storage i.e. the 
configurations showing a larger difference in section 7.3.6. 
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Table 7-16 Experiment to assess the impact of wind pattern without PV (see 5.3.1 for terminology) 

Experiment Objective: Assess the impact of wind generation pattern without PV. 
Baseload: 𝐶௕ = 0.0 Dispatchable: 𝐶௩ = 0.0 PV: 𝐶௣ = 0.0 Wind: 𝐶௪ = 6.0 
Frequency η Demand Storage Wind PV Years 
Daily 50% Baseline Iterative Ninja Off 0 1984-2013 
Daily 50% Baseline Iterative Ninja On 0 1984-2013 
Daily 50% Baseline Iterative Ninja S 0 1984-2013 

 
The figure (7-20) below shows how the state of charge of the store varies over a period 
of 30 years. The store stays full for a long time apart from for a few extreme events. 
 

 
Figure 7-20  State of charge: Comparison of wind generation offshore, onshore, and onshore scaled to offshore 
capacity factor. 

Figure (7-21) below shows a zoomed in view of figure (7-20) at the start of the period. 
The store quickly fills up at the start of the period due to high wind generation. It can 
be seen that because of the different patterns of onshore and offshore wind that at some 
times the store is emptier with onshore wind and at others it is emptier with offshore 
wind. 

 
Figure 7-21  State of charge: Comparison of wind generation offshore, onshore, and onshore scaled to offshore 
capacity factor. 



132 
 

Investigating the point when the store is most empty will determine how much storage 
is needed. It can be seen from the figure (7-22) below that in this case with onshore 
wind the store is more depleted (lowest point of orange line in January 1990). The low 
points in the store occur at different times for the different wind generation patterns, 
and their lowest points lead to different minimum storage requirements.  

 
Figure 7-22 Lowest state of charge: Comparison of wind generation offshore, onshore, and onshore scaled to 
offshore capacity factor. 

The following figure (7-23) shows the variation in the amount of wind generation and 
energy storage for a purely wind configuration at 85% round trip efficiency. For large 
amounts of storage, the onshore wind scaled to the same capacity factor as offshore 
wind requires more wind capacity, however for smaller amounts of energy storage, the 
scaled onshore wind requires less wind capacity. The difference in the pattern of 
offshore wind causes the wind capacity requirement to climb more steeply as storage 
capacity declines. Low storage and high generation favour a pattern where energy is 
generated close to when it is required. For higher storage the generation pattern needs 
to be able to charge the store at the right time. A comparison been the pattern of supply 
and demand is shown in 9.6. 

 
Figure 7-23 Wind capacity vs storage for offshore wind and onshore wind scaled to the same mean capacity factor 
as offshore wind. 

The most extreme differences caused by the pattern shown in figure (7-23) is illustrated 
by table (7-17). 
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Table 7-17 Most extreme differences in storage requirements between onshore and offshore wind 

Wind generation 
capacity (days) 

Storage (days) 
Offshore Onshore Difference 

7.2 6.5 5.2 +1.3 
3.1 40.8 49.5 -8.6 

 
This section has shown that different wind generation patterns can cause significant 
differences in the amount of energy storage required. In other words, the impact of 
when the energy is generated compared to when it is needed. However, the significance 
of this effect depends on the particular configuration being studied. 
 
A further implication from the impact of the pattern of the generation curve is that the 
more closely the locations of actual wind farms are modelled the more accurate the 
pattern would be expected to be, but this has not been tested. Perhaps there might even 
be a consideration as to where it would be best to site wind generation? In fact this was 
one of the conclusions of a Europe wide study which experimented with varying the 
siting of wind turbines between countries [12] although they only considered 
maximizing the amount of generation and reducing the interannual variation rather than 
the demand net of renewables or energy storage. They note the difference between 
turbines at different sites but do not specifically make a distinction between onshore 
and offshore. Other studies find that offshore wind has smoother generation patterns 
and higher capacity factors than onshore [18], although no study mentioning the impact 
of the different pattern of onshore and offshore generation on storage has been found.  
 
Also, it should be noted that the Renewables Ninja offshore and onshore wind are bias 
corrected separately [33], so it could be a feature of the way the data was generated, 
although the methods have been extensively validated. Another factor is that more 
onshore wind is located in sparsely populated areas or on high ground which leads to a 
different geographical distribution from offshore which is located around the coasts of 
the country. See figure (7-24) for the locations of UK wind farms. 
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Figure 7-24 Locations of UK wind farms 

Since the differences between onshore and offshore are similar in magnitude to the 
differences between different wind time series due to difference turbine locations it 
seems likely that differences in the pattern of onshore wind compared to offshore is due 
to the geographical location of the turbines rather than any difference between onshore 
and offshore generation. Even if there were a difference favouring offshore wind, the 
potential for offshore wind is much greater, so a future net zero energy system must 
have more offshore wind anyway. The existing onshore capacity is approximately 0.3 
days with a future potential of 1.5 days. The existing capacity of offshore is 0.3 days 
with a potential 23 days [19] in the future. Also, offshore wind is expected to get 
cheaper and therefore this may not appear a very significant finding as the UK would 
likely go for more offshore wind anyway. Another factor to note is that this could just 
be a result of geography unique to the UK or wind patterns which could alter with 
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climate change. Wind patterns are due to a complex interaction of many factors, so 
there is a danger in searching for patterns which are not there. But the impact pattern 
has in general, means that not correctly modelling the location of actual turbines gives 
significantly inaccurate results regarding the required energy storage for configurations 
with smaller amounts of energy storage. Some locations might have wind generation 
patterns such that power is generated at times when it is needed more, but there could 
be a trade off as they might have lower wind speeds and so generate less power and 
require more turbines. 
 
One possible area of future work might be to analyse the patterns in store state of charge 
shown in fig (7-20) and fig (7-21) using Fourier series to see if there are any underlying 
cycles (such as yearly). 
 
Because of the potential significant differences, comparisons between energy models 
using different wind generation time series should be treated with caution. 
   

7.6 Results 
 
This section presents the results of repeating the analysis from two previous studies but 
using the model inputs from this project from chapter 5 instead. The results of the 
comparison with these two studies use the same comparison criteria and format of 
chapter 6.  
  
7.6.1 Update to 30-30 rule: running all UK on wind and photovoltaics 
 
A previous study [41] found that the UK could be powered fully on various 
combinations of wind and solar for 30 years. Round trip storage efficiencies of 75% 
and 85% were used to represent pumped hydro storage. The differences in the 
modelling methods between that study and those used in this thesis are shown in the 
Fragaki column in table (5-1). They found that generating 30 days more energy than 
the current supply combined with 30 days storage was sufficient. This result was 
confirmed by reproducing the study in section 5.4.1.  
 
The purpose of this section is to find out what this study would have shown differently 
had the improved methods of this thesis been used. This includes the electricity demand 
time series generated using the baseline method from chapter 4. Electricity generation 
data is from Renewables Ninja and the energy store starts 70% full and ends up more 
than 70% full. The parameters are summarised in table (7-18). 
 
Table 7-18 Experiment to update the results of Fragaki et. al. with methods from this project (see 5.3.1 for 
terminology) 

Experiment Objective: Assess how the modelling methods from this study change 
the result of the previous study 
Baseload: 𝐶௕ = 0.0 Dispatchable: 𝐶௩ = 0.0 Wind 0.0 ≤ 𝐶௪ ≤ 5.9 Solar 0.0 ≤ 𝐶௣ ≤ 5.9 
Frequency η Demand Storage Wind PV Years 
Daily 75%,85% Baseline Iterative Ninja C Ninja 80-2019 

 
Figure (7-25) shows the results of this experiment. The curves occur in different places 
compared to Fragaki et. al figures (5-4,5-5). The proportion of wind needed is much 
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less. There is no 60-day storage contour because there are no configurations where 60 
days is the minimum storage requirement. 

 
Figure 7-25 Results using the modelling methods of this thesis but presented in the same way as figure (8) from 
Fragaki et. al. 

In figure (7-25) one day of energy is the mean daily energy of a year. The “Historic 
Add” method used there scales each year of the historic electricity demand time series 
to the same annual energy, so it is the same for each year. However, the baseline method 
used in this project includes the heating electricity and therefore there is a different total 
energy each year and so the size of a day of storage would change. Therefore, in figure 
(7-26) below both are scaled to the historic 2018 electricity demand and so days of 
storage in this graph are not compatible with figure (5-4). The different values of “1 
day” are summarised in table (7-19). 
 
Table 7-19 Units of days for energy and power in Fragaki et. al. and this study 

Measure Fragaki et. al. Historic 2018 (this study) 
Mean Daily energy and 
size of 1 day’s storage. 

835.616 GWh 818.386 

Generation Capacity of 1 
day  

34.8 GW 34 GW 

 
We now concentrate on the 85% round-trip efficiency configuration and investigate the 
impact of these differences in modelling methods in more detail.  
 
Figure (7-26) below shows the lines of 30 days constant storage using the modelling 
methods of this thesis (orange line) on the same plot as the 30-day storage line for the 
Fragaki et. al. model (blue line) from figure (5-5). The configuration which generates 
the least energy is marked by a black star. The increase in wind capacity needed for the 
same storage is apparent. 
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Figure 7-26 Comparison of 30 days storage line using the methods from this thesis with those of Fragaki et. al. 

Figure (7-27) shows the same lines but with energy generated plotted against the wind 
energy fraction. For the methods from this thesis 80% of the energy is generated by 
wind and the amount of energy generated is 14% above the load. In contrast using the 
Fragaki model 32% more energy is generated and 92% of it comes from wind.  

 
Figure 7-27 - Minimum energy configuration from those requiring a minimum of for 30 days of energy storage 

The above result is summarised as “30-days minimum energy” in table (7-20). This 
table also shows a comparison of the two studies using the other comparison methods 
defined in section 6.3.2. 
 
The “30-days minimum cost” configuration in table (7-20) shows that for those 
configurations that need a minimum storage of 30 days, the one with lowest cost of 
electricity generation has the same wind energy fraction and energy as the “30-day 
storage minimum energy” configuration. In contrast to the illustrative configuration 
from the original study which found that generating 30 days more energy than the 
current supply combined with 30 days storage was sufficient, this study has found that 
only 15 days more energy is needed. 
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Table 7-20 Comparison of this project’s methods to Fragaki et. al. for 85% round trip storage efficiency 

Configuration Measure Model Inputs 
This thesis Fragaki et. al. 

Equal Minimum 
Storage: 30-days 
minimum energy 

Wind energy fraction 80% 92% 
Energy (proportion of load) 1.14 1.32 

Equal Minimum 
Storage: 30-days 
storage minimum 
cost 

Wind energy fraction 80% 92% 
Energy (proportion of load) 1.14 1.32 

Least Storage 
Configuration for 
excess energy 
generation: 50% 

Wind capacity (days) 3.7 3.7 
PV capacity (days) 0.8 0.8 
Wind energy fraction 94% 92% 
Storage capacity (days) 10 82 

Minimum cost of 
electricity 
generation at 
today’s prices.  

Cost (£/kWh) 0.149 0.203 
Wind capacity (days) 3.5 5.9 
PV capacity (days) 0.7 1.2 
Energy (proportion of load) 1.41 1.8 
Wind energy fraction 95% 92% 
Storage capacity (days) 11 14 

 
Of all the configurations from the model used in this study that generate 50% excess 
energy above that required by the load, the one that has the least storage has a wind 
capacity of 3.7 days and a PV capacity of 0.8 days. This is shown as the “Least storage 
configuration for excess energy generation” table (7-20). It requires 10 days storage. 
However, using the methods from the Fragaki model requires 82 days storage. The 
wind energy fraction of 92% compares to 94% from this thesis. 
 
Table (7-20) also shows the configuration from each study’s model that generates 
electricity at the lowest cost using today’s prices assuming that the storage is pumped 
hydro storage. The model used in this thesis requires 3 days less storage capacity, has 
a 3% higher wind energy fraction and lower cost.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



139 
 

7.6.2 Update to cost optimal storage for CAES 
 
Another previous study was to find the cost optimal configuration for CAES at today’s 
prices. This used the modelling methods shown in the Cardenas column of table (5-1) 
This section uses the inputs and methods from this project to find the same thing, but 
using the model inputs from this study. 
 
Table 7-21 Experiment to compare hydrogen storage with CAES (see 5.3.1 for terminology) 

Experiment Objective: Compare results of Cardenas et. al. with this projects model 
using hydrogen storage. 
Baseload: 𝐶௕ = 0.0 Dispatchable: 𝐶௩ = 0.0 Wind 0.0 ≤ 𝐶௪ ≤ 5.9 Solar 0.0 ≤ 𝐶௣ ≤ 5.9 
Experiment Frequency η 

% 
Demand Storage Wind PV Years 

1 Hourly 70 Baseline Iterative Ninja C Ninja 1980 -
2019 

 
The result is shown in table (7-22) compared to that found by this study. It shows the 
amount of energy generated in proportion to the load, the wind energy fraction, and the 
storage capacity for the configuration with the lowest total cost of energy. It is 
compared to the cost optimal solution found by the algorithm from this study. Note that 
the conversion from days to TWh is based on the mean daily energy from Cardenas of 
0.917808 TWh per day for comparison purposes. Only 11 TWh of storage was needed, 
compared to the 43 TWh found by Cardenas. The generation capacities were 3.7 days 
wind and 1.8 days PV. Because the storage was lower, more energy needed to be 
generated (1.21 days compared to 1.15).  
 
Table 7-22 Cost optimal configuration found here compared to that found by Cardenas et. al. 

Study Wind 
fraction 

Energy 
(proportion 
of load) 

Storage 
(days) 

Storage 
(TWh) 

Charge 
rate 
(GW) 

Discharge 
rate (GW) 

Cost 
£/kWh 

Cardenas 
et. al 
[52] 

84% 1.15 46 43 119 61 0.080 

This 
project 

84% 1.21 18 11 119 94 0.073 

 
The most significant input difference in the sensitivity analysis was shown to be the 
National Grid wind data. This could be one cause of the difference. However, the 
algorithm to find the required storage has not been reproduced and so could be a cause 
of the difference. It is possible that the Cardenas algorithm did not consider the cost 
optimal solution found here. 
 

7.7 Summary and Conclusions 
 
The sensitivity of the storage model to different inputs was investigated. 
 
It was found that using hourly time series is important for configurations with a small 
amount of storage or when calculating cost or wind energy fraction. For calculating the 
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minimum required storage, daily time series are adequate. Experiments suggest that for 
large amounts of storage, using a few years data including a cold spell is adequate and 
that it does not matter which decade of data is used. However, for small capacities of 
storage, these choices in the data make a much larger difference to the results. 
Differences were also seen for small storage capacities when using different decades 
from the 40-year time series, but for larger amounts of storage the results were not much 
different.  
 
A sensitivity analysis to using different model inputs used by Fragaki et. al. showed 
that they only made a small difference to the results, apart from the wind generation 
data from Renewables Ninja which made a large difference. The experiments in this 
section have shown that the main cause in the difference in results is that the 
Renewables Ninja wind generation data has a higher capacity factor, particularly for 
offshore wind which was not modelled in that study. Because the Renewables Ninja 
wind generation data is based on the actual locations and turbine types of wind farms 
and has been extensively validated, it seems reasonable that this new result is more 
accurate than the previous study. The difference for PV is much less marked than with 
wind generation, which is expected considering the lower variability in the pattern [12] 
and the lower correlation with the demand profile in table (9-4). However, with PV the 
difference in pattern was more significant than the difference in capacity factor. The 
overall pattern of the results using the modelling methods from this thesis is similar to 
the previous study. 
 
A similar sensitivity analysis on the inputs to Cardenas et. al. also showed that wind 
generation data caused the most significant difference in the results. Not only does the 
National Grid wind time series vary with the weather, but the actual wind turbines in it 
will have evolved over time. Despite scaling it to maintain a constant generation 
capacity this will have caused a change to the pattern of generation.  
 
Both comparisons with previous studies show that different wind generation data 
patterns cause significant differences in the results. It was found that different patterns 
in wind generation as well as capacity factors can have a large impact on the amount of 
storage required, a result that has not been mentioned in the literature before. In other 
words, the impact of when the energy is generated compared to when it is needed. 
However, the significance of this effect depends on the particular configuration being 
studied. For example, with 30 days storage, offshore wind requires less energy to be 
generated (between 10% and 39% of the mean daily load per day). With a wind capacity 
of 3.1 days, onshore requires 8.6 days more storage, but with a wind capacity of 7.2, 
offshore requires 1.2 days more storage. Although previous work has considered how 
different siting of wind turbines might result in higher capacity factors, no previous 
study has been found that notes the impact that a different pattern of generation can 
have. The differences between using onshore wind in the model compared to offshore 
wind are more significant at lower amounts of storage. The debate between offshore 
and onshore wind tends to consider cost, capacity factors and political reasons such as 
public opposition. The generation pattern has been identified here as a significant fourth 
factor to consider. Because of the potential significant differences, comparisons 
between energy models using different wind generation time series should be treated 
with caution. 
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The results from two previous studies to find the amount of energy storage required by 
the UK for different proportions and of wind and solar have been recreated but using 
the modelling methods of this thesis. 
 
The 80% wind energy fraction for 30 days storage found here compares to 90% using 
the methods from Fragaki et al. The cost calculation in this study illustrates that the 
optimum solution might be for lower amounts of storage in the region of 10 days and 
consequently higher energy generation, than the illustrative example of 30 days storage 
used in Fragaki et. al. Using the methods from this thesis it was found that for 30 days 
storage only 15 days additional generation would be required compared to the 30 days 
found by Fragaki et. al.  
 
The wind energy fraction found here of 84% was the same as that found by Cardenas. 
However, using the model from this thesis the cost optimal configuration for CAES at 
today’s prices is 11 TWh of storage generating an excess generation of 21% above the 
load, compared to the 43 TWh and 15% excess generation found by Cardenas.  
 
Future work on this project could be to try and reproduce the actual algorithm used by 
Cardenas to find the required energy storage capacity and then investigate the impact 
of their different assumptions. 
 
Another point of interest is that although the storage algorithms for both studies work 
in terms of energy generation, Fragaki et. al. plot their results in terms of generation 
capacities, whereas Cardenas plot their results in terms of energy. Both studies quote 
results in terms of generation capacities which are dependent on the mean capacity 
factors of the wind and solar generation time series used, and thus not comparable. The 
algorithm used in this thesis works in capacities, and results are plotted in both capacity 
and energy. For comparison purposes, it might be desirable for all studies to use energy. 
However, it is understandable that policy makers want results in terms of generation 
capacity and cost.  
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8 Demand Case Studies 
 
Chapter 6 looked at the change in wind, solar and storage due to the electrification of 
heating. In this chapter other future changes to electricity demand are considered as 
shown in figure (8-1). The alternative heating possibility of using hydrogen boilers is 
discussed. But first the impact of electric vehicle charging is investigated which will 
contribute to the answer to the main research question of the thesis: the impact of 
transport electrification on the mix of wind, solar and storage.   

 
Figure 8-1 Flow of energy from supply to demand in the model used in this thesis 

8.1 The Impact of Electric Vehicles 
 
Chapter 6 showed what the impact of heating electrification would be on shares of wind 
generation, solar generation, and storage. In this section the impact of electric vehicles 
(EVs) is considered. An EV charging time series is created and combined with the 
electricity demand time series with the existing heating technology from chapter 4. This 
is used with the storage model from chapter 5 to study the impact of EVs alone on 
shares of wind generation, solar generation, and energy storage. 
 
The section starts with some background and a description of the methods. The results 
section presents the impact of EVs on the electricity demand, generation, and energy 
storage. This is followed by the conclusions.  
 
8.1.1 Background 
 
Previous studies incorporating EVs into generated electricity demand time series tend 
to focus on the impact on peak demand. For example, in a study of a 100% renewable 
UK electricity system [34] hourly fluctuations of EV charging are modelled, but the 
same energy is used each day. Energy Plan [108] allows the user to supply an hourly 
profile, but no seasonal variation. The DESSTINEE model [6] includes seasonal 
factors, but does not link EV electricity usage directly to the weather. However the 
Customer-Lead Network Revolution trial [109] found that domestic EV energy use is 
seasonal. Petrol sales [110] however show no such seasonal trend. It therefore seems 
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that this seasonal difference is due to the performance of the vehicles, rather than 
consumer behaviour. A Chinese study of electric taxis [10] found that energy 
consumption increases when the temperature is lower than 10°C and when the 
temperature is higher than 28°C. This chapter models EV charging electricity time 
series by including weather dependency using the findings from that study to address 
this gap.  
 
8.1.2 Methods 
 
First an hourly 40-year electricity demand time series was created for EV charging. 
Then this was added to the electricity demand with the existing heating technology 
generated in chapter 4.  
 
To generate the EV time series an annual EV energy of 95.83 TWh is used. This is 
based on the assumption that most road transport is electrified apart from a small 
number of heavy vehicles including buses that run on 31 TWh of hydrogen [24]. It does 
not include rail transport. This annual demand is split into days equally and then 
modified using the finding from a study of Chinese taxis [10] that electricity 
consumption normally at 14.4 kWh per 100 km, increases when the temperature is 
lower than 10°C by 2.4 kWh per 100 km for each 5°C below 10°C and also that when 
the temperature is higher than 28°C that electricity consumption increases by 2.3 kWh 
per 100 km for each 5°C. The mean day time temperature for Great Britain between the 
hours of 8am and 8pm was used on the assumption that most driving occurs during the 
day. To convert the daily series to hourly it is assumed that 60% of charging occurs at 
night between 1am to 3am and 40% during the day 2pm and 6pm. The EV electricity 
is added to the generated electricity demand with the existing heating technology from 
chapter 4 assuming that the electricity used by electric vehicles in 2018 was negligible 
and therefore can be ignored. The hourly electricity demand including EVs is given by 
equation (36) 

𝑈௛ = ൬
𝐴

𝑁
+  𝐼ௗ൰ 𝑒௜ +  𝑅௛ 

(36) 

Where 𝑈௛  is the hourly electricity demand with the existing heating technology but 
including electricity due to vehicle charging, A is the annual electric vehicle energy of 
95.83 TWh for 2050, N is the number of days in the year, 𝑒௜  is the hourly charging 
profile for hour i set to 0.2 for i=1,2,3 0.1 for h=14,15,16,17, 𝑅௛ is the generated 
electricity demand including the existing heating technology from 4.2.2 and Id is the 
increase in daily electricity due to extreme temperatures given by equation (37)  

𝐼ௗ =

⎩
⎪
⎨

⎪
⎧𝑟 ൬

2.4

100
൰ ൬

10 − 𝑇

5
൰ , 𝑇 < 10.0 

(0), 10.0 ≤ 𝑇 < 28

𝑟 ൬
2.3

100
൰ ൬

𝑇 − 28

5
൰ , 𝑇 ≥ 28.

 

 

  
 

(37) 

Where 𝐼ௗis the daily additional electricity due to extremes of temperature, T is the UK 
population weighted daily temperature in °C, and r is the daily range of electric 
vehicles in km. The range, r is calculated using equation (38) 
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Where A is the annual EV energy of 95.83 TWh from above and 14.4 is the electricity 
consumption in kWh per 100 km from above. 
 
8.1.3 Results 
 
Figure (8-2) shows the electricity for EV charging (red) compared to the historic 2018 
electricity demand (blue) to which it will be added. The daily EV electricity demand is 
modelled as constant apart from those days that have exceptionally high or low 
temperatures. The seasonal impact is noticeable, but less pronounced than for 
electrification of heating seen in chapter 4. 

 
Figure 8-2 EV charging electricity demand time series for 2018 compared to the historic electricity demand with 
the existing heating technology. 

Figure (8-3) shows the electricity time series for 10 arbitrary years including the heating 
electricity for the existing heating technology based on weather in orange. In purple is 
the result of adding the weather dependent EV electricity time series to this. The 
electricity demand is much higher, but the seasonal pattern appears quite similar. 
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Figure 8-3 The impact of electrification of transport for 10 years historic weather on a time series incorporating 
the existing heating technology of 2018 

Figure (8-4) shows the variation in yearly demand. Without EVs it varies between 367 
TWh and 377 TWh. Whereas with EVs it varies between 483 TWh and 497 TWh, 
only a 1% increase in variability. 

 
Figure 8-4 Interannual variation in electricity demand including EVs 

The EV charging time series that has been generated shows that electrification of 
transport increases the annual electricity demand from 371 TWh to 489 TWh. The 
seasonal impact is less significant than for that of heating electrification: with electricity 
demand varying over a range of 10 TWh between years without EVs and 14 TWh with 
EV’s included.  
 
An experiment was done to assess the impact on shares of wind generation, solar 
generation and energy storage using the model from chapter 5. The results are compared 
with those for the existing heating technology from chapter 6. 
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Table 8-1 Experiment to assess the impact of EVs on shares of wind generation, solar generation and hydrogen 
storage (see 5.3.1 for terminology) 

Experiment Objective: Assess the impact of transport electrification on shares of 
wind and solar generation, and hydrogen energy storage. 
Baseload: 𝐶௕ = 0.4 Dispatchable: 𝐶௩ = 0.0 Wind 0.0 ≤ 𝐶௪ ≤ 5.9 Solar 0.0 ≤ 𝐶௣ ≤ 5.9 
Electricity 
Demand 

Frequency η Demand Storage Wind PV Years 

Existing 
Heating 
technology 

Hourly 50% Baseline  Iterative Ninja Ninja 1980 - 2019 

Existing 
heating 
technology 
with EVs 

Hourly 50% Baseline Iterative Ninja Ninja 1980 – 2019 

41% heat 
pumps, no 
EVs 

Hourly 50% Baseline Iterative Ninja Ninja 1980 - 2019 

 
Figure (8-5) below shows lines joining configurations with 30 days storage with and 
without the impact of EVs, the black star showing the minimum energy configuration. 
It can be seen that the green line representing most transport being EVs requires much 
more energy to be generated for the same storage, compared to the orange line 
representing 41% heat pumps or the blue line representing the existing heating. 
 

 
 
Figure 8-5 The impact of electrification of most transport on lines of constant storage 

Table (8-2) compares these three cases of no EVs, and mostly EVs with the impact of 
41% of heating provided by heat pumps. For 30 days storage heat pumps increase wind 
energy fraction from 83% to 87%, but EVs leave it unchanged. This is probably because 
the EV charging demand is spread more evenly throughout the year, and only changes 
due to extremes of weather which are unusual in the UK climate. 
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Table 8-2 Impact of EVs using the comparison methods defined in section 6.3.2 

Comparison Electricity Demand 
Configuration Measure No EVs, 

existing 
heating  

Mostly EVs, 
existing 
heating 

No EVs, 
41% heat 
pumps 

Equal minimum 
storage 30 days 
minimum energy 

wind energy fraction 83% 83% 87% 
energy generated 0.8 1.31 0.89 

Least storage of those 
generating 80% 
excess energy above 
the load 

storage (days) 6 21 8 
Wind capacity 3.2 3.2 3.2 
Solar PV capacity 1.4 1.4 1.4 

Minimum cost of 
electricity generation 
at assuming hydrogen 
storage today’s prices 

wind energy fraction 88% 72% 91% 
energy generated 0.75 0.8 0.81 
storage (days) 59 44 72 
cost £/kWh 0.088 0.091 0.088 

 
In chapter 6 on the impact of heating electrification, configurations requiring 50% 
excess energy generated over the load were considered as a comparison point. 
However, for EVs it was found that this wasn’t enough energy. So, table (8-2) shows 
configurations needing 80% energy above the 2018 electricity demand. Both heat 
pumps and EVs require more storage. However, EVs require a lot more storage. 
 
Table (8-2) shows that the minimum cost configuration for EVs has a lower wind 
energy fraction, which makes sense because the EV load will be spread more evenly 
throughout the year.  
 
8.1.4 Conclusions 
 
Weather dependent EV charging electricity demand time series have been incorporated 
into electricity demand time series with the heating technology of 2018 and 40 years 
weather. This allows us to study the impact of transport electrification alone. The model 
has shown that electrification of transport increases the annual electricity demand from 
371 TWh to 489 TWh. The seasonal and interannual impact is less significant than for 
that of heating electrification: with electricity demand varying over a range of 10 TWh 
between years without EVs and 14 TWh with EV’s included. Previous work including 
EVs into generated electricity demand time series do not take the weather into account. 
 
The minimum cost configuration for EVs occurs with a 72% wind as opposed to 88% 
without EVs and uses 15 fewer days of storage but generates more energy. This 
contrasts with heating where the proportion of wind increases. This could be because 
most of the cost of hydrogen storage is due to charging and discharging. Heat pumps 
have a big impact on peak demand and so could lead to high charge rates, whereas EVs 
are being modelled as charging partly overnight. The minimum energy point on the 30 
days storage contour also occurs at higher proportion of PV with electric vehicles. This 
is likely to be due to heat pumps requiring more energy in the winter, but EV charging 
is spread more evenly across the year. 
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No other studies have been found that quantify the impact of electric vehicles on the 
proportions of wind, solar and energy storage.  
 

8.2 Hydrogen Boilers or Heat Pumps 
 
8.2.1 Introduction 
 
The scenario used as basis for chapter 6 assumes 41% of heating provided by heat 
pumps, but what about the remainder? If it is not heat pumps, then how do we reach net 
zero? This section looks at the proposal to provide that heating using hydrogen boilers. 
The hydrogen would be delivered to buildings via the existing gas network.  
 
The remainer of the section is structured as follows. The background section discusses 
previous work on hydrogen boilers. The methods section describes a simple way of 
expanding the model to include heating with hydrogen boilers. This is followed by a 
presentation of the results and conclusions. 
 
8.2.2 Background 
 
National Grid’s future energy scenarios 2019 [24] Net Zero scenario assumes that the 
heating not provided by heat pumps is provided by boilers fuelled by hydrogen. This 
hydrogen would be piped through the existing gas network. This domestic use of 
hydrogen in the UK was only in a trial phase in 2019. The industry led Leeds City Gate 
Project [22] proposed that the hydrogen could be produced from steam methane 
reforming of natural gas (called grey hydrogen). The report states that both the medium 
pressure and low-pressure gas distribution networks have been modelled using network 
analysis software and that the gas networks “have the capacity to be 100% hydrogen 
with relatively minor upgrades”. A new transmission system to connect hydrogen 
production into the gas network at a cost of £230 million would be required. Appliances 
need converting and there are already hydrogen ready gas boilers on the market. Whilst 
the approach seems to be practical, since this process emits CO2, it would be difficult 
to achieve a net zero energy system. It has to be combined with CCS to capture the 
emissions, which is described as blue hydrogen. A previous study on blue hydrogen 
[23] found that boilers using hydrogen from natural gas with CCS cannot achieve net 
zero. The alternative is to use hydrogen produced by electrolysis of water which is 
termed green hydrogen. This is what is assumed here. It should be noted that in a review 
of the evidence [111] (conducted after the work described below was completed), it 
was found that none of the 32 independent studies identified hydrogen as a viable 
solution for decarbonizing space and water heating in buildings. 
 
The only previous UK energy model study found that included hydrogen boilers [53] 
compared them with the alternatives of district heating and electric heat pumps. They 
used an optimisation model ESTIMO which includes the impacts of climate change, 
building heat and cooling, transport, synthetic fuels and energy storage. They modelled 
the UK as one node and Europe as three nodes, enabling interconnectors and market 
simulation. However, they only used the years 2009-2011 identifying 2010 as a stress 
year due to extreme cold weather, which was shown in chapter 5 to give different results 
from using 40 years. District heating is also considered, so that excess heat from 
generating electricity from stored hydrogen can be used in conjunction with thermal 
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storage. They found that systems with consumer or district heat pumps require about 
four times less electricity per unit of heat than hydrogen boilers. They only modelled 
five different wind and PV generation capacities.  
 
No previous study was found that includes hydrogen boilers into an energy model under 
long term weather variation. This section addresses that gap. 
 
 
8.2.3 Methods 
 
To incorporate heating from hydrogen boilers, a small change is made to the model 
from chapter 5. The energy store used by the model is considered to be hydrogen with 
a 50% round-trip efficiency as used in chapter 6 for modelling heating electrification 
with heat pumps. The hydrogen is created by excess wind and solar PV electricity using 
electrolysis from water and is therefore green hydrogen. As well as using this hydrogen 
as an energy storage mechanism, the hydrogen could also be piped through the gas 
network to run a heating boiler. In contrast to the heating electrification scenario from 
chapter 6 which accounts for 41% of heating with heat pumps, this one accounts for all 
heating. The process is illustrated in figure (8-1)  
 
First a hydrogen demand time series is created from the heat demand using equation 
(39) 
 

𝑍௧ = 𝜂ு𝑃ு  ෍ 𝐻௦௛,௛,௚ +  𝐻௪௛,௛,௚

ேீ

௚ୀ଴

  
(39) 

Where 𝑍௧is the hourly hydrogen demand, 𝜂ு is the hydrogen boiler efficiency (0.8), 
NG is the number of weather grid points and   𝐻௦௛,௛,௚ and 𝐻௪௛,௛,௚ are heat demand time 
series from section 3.2.1 equations (13,14) for hour h and grid point g. 𝑃ுis the 
proportion of heating provided by hydrogen boilers and is calculated on the assumption 
that it is all heating not provided by heat pumps. 

𝑃ு = 1 −  𝑃ா −  𝑃ெ (40) 
Where 𝑃ா and 𝑃ெ are the proportions of ordinary heat pumps and hybrid heat pumps 
respectively from section 3.2.5 equation (20). 
 
Then the energy storage model is modified, so that this hydrogen is removed from the 
energy store on each hourly cycle. The hydrogen is removed from the energy store 
following equation (30) in section 5.2.1 by using equation (41) 

𝑆௧ =  𝑆௧ −  𝑍௧ (41) 
Where 𝑆௧ is the energy store from equation (31). 
 
A similar analysis to that from chapter 6 was performed, except that as well as having 
an electricity demand, there is also a hydrogen demand. 
 
Three heating scenarios were compared: 

 All electric heat pumps, no hydrogen boilers 
 Half electric heat pumps, half hydrogen boilers 
 All hydrogen boilers 
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The cost calculation was modified so that instead of calculating the system cost per unit 
of electricity demand, it was calculated per unit of energy, based on the total energy 
over the 40-year period as per table (8-3). This is because some of the heating demand 
is not provided by electricity. This gives a new value of 𝐸ௗ to be used in equation (32). 
 
 
 
Table 8-3 Total energy demand over the 40-year period combining baseline electricity with heat demand. 

Baseline electricity demand (with no heating) 18426 TWh 
Heat demand 12580 TWh 
Total energy (𝐸ௗ ) 31006 TWh 

 
Because so much more electricity is needed to generate the hydrogen, a much greater 
range of generation capacities must be considered. Consequently, a larger difference 
between capacities (0.5 days as opposed to 0.1 days) was used. The experimental 
parameters are summarised in table (8-4). 
 
Table 8-4 Experiment to assess the impact of heating with hydrogen boilers on electricity generation and storage 
(see 5.3.1 for terminology) 

Experiment Objective: Assess the difference between heating with electric heat 
pumps and heating with hydrogen boilers and their impact on hydrogen storage 
capacity and shares of wind and solar generation. 
Baseload: 𝐶௕ = 0.4 Dispatchable: 𝐶௩ = 0.0 Wind 0.0 ≤ 𝐶௪ ≤ 29.5 Solar 0.0 ≤ 𝐶௣ ≤ 
29.5 
Electricity 
Demand 

Frequency η Demand Storage Wind PV Years 

All hydrogen 
boilers 

Hourly 50% Baseline  Iterative Ninja Ninja 1980 - 
2019 

Half 
hydrogen 
boilers and 
half heat 
pumps 

Hourly 50% Baseline Iterative Ninja Ninja 1980 - 
2019 

All heat 
pumps 

Hourly 50% Baseline Iterative Ninja Ninja 1980 - 
2019 

 
8.2.4 Results 
 
Figure (8-6) shows the three electricity demands for four arbitrary years. For all 
hydrogen boilers, the electricity demand for heating is zero and so this plot shows the 
baseline electricity demand without any heating (see chapter 4). Of course, a lot more 
electricity is generated than is shown here because it is used to create hydrogen for 
heating and storage. However, the amount of electricity that must be generated to fill 
the energy store with hydrogen also depends on how much is used to satisfy electricity 
demand net of renewables, which depends on the particular combination of wind and 
PV capacities.   
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Figure 8-6 Electricity demand comparing heat pumps and hydrogen boilers 

Figure (8-7) shows the hydrogen demand for gas boiler heating. For the “all heat 
pumps” scenario there is no hydrogen. More hydrogen than this is created because some 
of it is used as a storage medium to satisfy the electricity demand net of renewable 
generation which depends on the particular configuration of generation capacities. 

 
Figure 8-7 Hydrogen demand for heat pumps and hydrogen boilers 

The 30 days of storage used to compare scenarios for heating electrification is not 
enough for hydrogen boilers because the hydrogen is being used to run the boilers as 
well as for an energy store. Therefore, in this chapter configurations requiring a 
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minimum of 40 days storage are examined. Figure (8-8) shows lines representing 
configurations which all require a minimum of 40 days storage. It can be seen that the 
wind generation capacity needed is much greater for hydrogen boilers than heat pumps. 
 

 
Figure 8-8 Comparison of heat pumps or hydrogen boilers for configurations needing 40 days hydrogen storage 

Table (8-5) compares the three experiments of all hydrogen boilers, all heat pumps, and 
half of each. It shows the minimum cost configurations and the configurations needing 
40 days of storage. Note that the cost includes the storage and generation for the 
electricity to generate the hydrogen. There is no comparison of the cost of installing 
heat pumps with the cost of converting the gas network and appliances to use hydrogen, 
so the comparison is only made on the basis of the electricity system. It can be seen that 
using all hydrogen boilers has over four times the electricity cost. The minimum cost 
configurations have very high wind fractions (92% - 100%). The minimum energy 
configuration with 40 days of storage for all boilers occurs at 85% wind fraction, for 
half heat pumps and half boilers it occurs at a wind fraction of 97% and for all heat 
pumps at a wind fraction of 99%. However, it can be seen from figure (8-9) below that 
there is little difference between the minimum energy point and the energy of other 
points so there is not a very distinct ideal wind energy fraction in this case. This could 
be because with a large amount of storage, the advantages of generating energy at the 
time it is needed are less. Providing all heating with hydrogen boilers requires seven 
times as much renewable electricity generation as all heat pumps.  
 
Table 8-5 Comparison of hydrogen boilers and heat pumps 

Comparison Heating  
Configuration Measure All 

Heat 
pumps  

Half heat 
pumps half 
hydrogen 
boilers 

All 
hydrogen 
boilers 

Equal minimum 
storage 40 days min 
energy 

wind energy fraction 99% 97% 85% 
energy generated 
(days) 

1.36 5.39 11.36 

Minimum cost of 
electricity 
generation assuming 
hydrogen storage at 
today’s prices 

wind energy fraction 92% 100% 99% 
energy generated 
(days) 

1.18 4.0 8.0 

storage (days) 76 77 80 
cost £/kWh 0.046 0.114 0.281 
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Unlike other chapters, no 50% excess generation case is shown. This is because the all 
boilers case has no viable 50% excess generation configurations – it needs 750% 
excess. However, that all heat pumps case does not have any configurations that need 
that amount of energy generation, so it is not a very meaningful comparison point.  
 

 
Figure 8-9 Comparison of heat pumps and hydrogen boilers wind energy fraction for 40 days storage 

It is not surprising that using hydrogen boilers requires a lot more wind for the same 
amount of storage considering that electric heat pumps produce more heating for the 
same amount of energy. Table (8-6) shows estimates of annual energy based on 
conversion efficiencies between hydrogen and electricity. For hydrogen boilers, 
assuming 95% efficiency for transmission through pipes (using the existing gas 
network), and 85% conversion efficiency to heat gives 54% overall. For heat pumps, 
assuming an efficiency of 45% converting hydrogen to electricity and heat pump COP 
of 3.0 gives overall 86%. The 2018 annual electricity demand was 298 TWh and the 
heat demand was 448 TWh which equates to 521 TWh at 86% for heat pumps and 830 
TWh at 54% for hydrogen boilers. 
 
Table 8-6 Annual electricity and hydrogen demand for heat pumps or hydrogen boilers 

Heating Supply Annual 
Electricity 

Annual Hydrogen 
for boilers 

Total 
Energy 

All hydrogen boilers 337 TWh 703 TWh 1040 TWh 
Half Heat pumps half boilers 411 TWh 351 TWh 962 TWh 
All heat pumps 486 TWh 0 486 TWh 

 
A previous study using only 3 years data, comparing hydrogen with heat pumps [53] 
found that architectures based on district heating and electric heat pumps need about 
four times less electricity per unit of heat and have a whole system cost 33% lower than 
those providing 70% of heating using hydrogen boilers.    
 
8.2.5 Summary and Conclusions 
 
The energy storage model has been updated so that if the energy storage is hydrogen, 
then the hydrogen can also be used to supply heating using hydrogen boilers. It was 
found that for hydrogen boilers there is no obvious optimum wind energy fraction. Heat 
pumps use about 7 times less electricity and an energy cost less than 25%. Heat pumps 
use about 10 times less electricity and have an electricity cost less than 20%. However, 
this model does not take account of the cost of upgrading boilers and the gas network 
to use hydrogen and installing heat pumps for all heating to be provided by heat pumps.  
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No previous work that quantifies the impact of hydrogen boilers on wind energy 
fraction has been found. However, the one study doing a similar comparison, all be it 
with only 3 years weather, also found that hydrogen boilers were much more expensive. 
  



155 
 

 

9 Generation Case Studies 
 
This chapter contains several case studies related to changes in the energy supply, rather 
than the demand. These are: 

 the transition away from an energy system with a high capacity of dispatchable 
generation like that of today to a system based on base load, wind and solar. 

 The relationship between wind and solar generation and storage 
 Baseload 
 Lost energy 
 How long the energy store stays full for. 
 

Two sections look at the time series of generation and demand from a more 
mathematical perspective, rather than an energy model. The first section looks at the 
correlation between demand and supply. The second section looks at two mathematical 
methods of finding the optimum wind energy fraction and then compares them with the 
other wind fractions found in the thesis. 
 

9.1 The transition away from dispatchable generation 
 
How will storage requirements change as the UK power system moves away from a 
large amount of gas power generation to a large fraction of wind and solar? In this 
section the dispatchable generation capacity is gradually reduced to model the transition 
away from fossil fuels towards wind and solar. 
 
Table (5-12) in section 5.4.5 shows values for the generation capacities needed for this 
model to approximate the energy system of 2018. A base load of 0.2 days was used 
since that was the actual generation for 2018 and the theoretical capacity 0.3 would 
probably not have been available due to maintenance and outages. The amount of 
storage was set to 0.03 days which is approximately the amount of storage available in 
2018. To balance supply and demand using the existing wind and solar capacities it was 
found that a dispatchable generation capacity of 1.2 days was required. Starting at that 
point, the dispatchable generation capacity was gradually reduced. The experimental 
inputs are summarised in table (9-1).  
 
Table 9-1 Experiment to assess the impact of reducing dispatchable generation (see 5.3.1 for terminology) 

Experiment Objective: Find out how storage requirements and wind fraction 
change as dispatchable generation is gradually reduced. 
Baseload: 𝐶௕ = 0.2, Dispatchable: 1.2 ≥ 𝐶௩ ≥ 0.0  
Wind 0.0 ≤ 𝐶௪ ≤ 5.9 Solar 0.0 ≤ 𝐶௣ ≤ 5.9 
Frequency η Demand Storage Wind PV Years 
Daily 80% Baseline Iterative Ninja C Ninja 1980-2019 

 
Figure (9-1) shows contours of constant storage of 0.03 days. The y-axis shows the 
amount of energy generated (the sum of dispatchable, wind and solar). The x axis shows 
the wind energy fraction: the proportion of the energy that came from wind. The 
dispatchable generation is reduced from its current value of 1.2 (where no storage is 
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needed) down to 0.7. It is clear that if the dispatchable portion of the energy supply is 
reduced (representing a reduction in coal and gas power stations), then the amount of 
wind and solar must increase markedly, but what about their relative proportions? The 
black star shows the minimum energy point on the contour. In contrast to figure (6-5) 
where the same style of plot was used to illustrate ideal proportions of wind and solar 
for the same storage for a system with no dispatchable generation, there is no obvious 
pattern here. 

 
Figure 9-1 Wind energy fraction for configurations needing 0.03 days storage for different amounts of 
dispatchable generation 

Table (9-2) shows the wind energy fraction with storage of 0.03 days (as we have 
currently) compared to 0.6 days. Neither shows a consistent pattern in wind energy 
fraction. It is noteworthy that these configurations have large amounts of PV, in contrast 
to the high wind configurations with no dispatchable generation in the previous section. 
These two configurations have a small amount of storage, and a large capacity of 
dispatchable generation which can be supplied at any time of year. Therefore, the 
dominating factor in determining the optimal wind solar mix becomes how much 
energy is curtailed, rather than generating energy close to when it is need as has been 
seen in previous sections. The amount of curtailed energy is determined by how long 
the generation exceeds the demand.   
 
Table 9-2 Wind energy fraction with decline in dispatchable generation for fixed storage of 0.03 days and 0.6 

Dispatchable Generation 
Capacity (days) 

Wind Energy Fraction 
for 0.03 days storage 

Wind Energy Fraction 
for 0.6 days generation 

1.1 48% 47% 
1.0 58% 23% 
0.9 44% 96% 
0.8 55% 46% 
0.7 75% 72% 

 
Figure (9-2) shows how storage requirements based on 50% excess energy generation 
increase as dispatchable generation is reduced. The 50% excess energy point defined in 
section 5.4.2 is the configuration with minimum storage requirement from those wind 
and PV capacities where the sum of the baseload, wind and solar energy generated is 
less than 1.5 times the load. For some experimental runs it is not possible to identify 
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the configuration with the minimum storage of those configurations generating 50% 
excess or less because there are many with a storage of 0.01 which is the threshold for 
minimum storage (see methods section 5.2), ie there is no storage requirement. The 
50% excess energy configuration used in the plot below is 1.7 wind and 5.7 solar. It is 
the first configuration where there is some storage required. It can be seen from figure 
(9-2) that storage is needed after about 20% renewables. Other research, not specific to 
the UK has found that above 30% renewable penetration, storage is usually required 
[112]. 

 
Figure 9-2 Increase of storage needed with transition away from dispatchable generation to renewables 

9.2 The relationship between storage capacity and Wind and Solar  
 
In this section, rather than considering configuration with the same amount of storage 
as was done in section 6.3.3, constant amounts of wind and solar capacity are 
considered. Figure (9-3) shows lines of constant wind capacity. This shows that the 
point at which storage requirements climb steeply occurs at a higher PV value for 41% 
heat pumps than it does for the existing heating technology. Passed this inflection point, 
adding move PV generation only reduces storage by a small amount. 
 

 
Figure 9-3 Lines of constant wind capacity showing points at which storage requirements climb sharply as PV 
capacity drops. 
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Figure (9-4) shows lines of constant PV capacity. For heating electrification, the 
amount of energy storage required starts to climb at a lower amount of wind energy 
also reflecting the higher wind share for heating electrification. After these inflection 
points, adding more wind capacity does not reduce the storage requirement very much.   

 
 
Figure 9-4 Lines of constant PV capacity showing the point at which storage capacity increases sharply as wind 
capacity declines. 

Increased wind capacity reduces storage required more than increased PV for both the 
existing heating technology and 41% heat pumps. 
 

9.3 Baseload 
 
The configurations analysed to far have a baseload of 0.4 based on likely projections of 
future base load. In this section the effect of different amounts of baseload capacity is 
considered. 
 
In figure (9-5) each line joins configurations requiring 30 days minimum storage. It can 
be seen that as the base load capacity reduces, the lines move to the right showing that 
more wind generation is required.   
 

 
Figure 9-5 Lines of constant storage for different base load for existing heating and 41% heat pumps 

Table (9-3) shows how different base load impacts storage requirements, cost and wind 
energy fraction. For the minimum cost configuration assuming hydrogen storage at 
today’s cost, it shows the storage, cost and wind energy fraction for each base load. It 
can be seen that as the base load increases, the minimum storage requirement declines. 
However, the cost increases as the amount of base load capacity increases because the 
base load cost is using the cost of nuclear from table (5-3) which is about twice as 
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expensive as wind. Also, increases in hydrogen storage capacity only make a small 
difference to cost because most of the cost is due to charge, and discharge equipment 
(ie rate of charge and discharge, rather than capacity). As the baseload capacity 
increases, the wind energy fraction increases. This is because the storage also decreases, 
so more energy must be used when it is generated, and demand is greater in winter 
when there is more wind. The fact that baseload 0.0 and baseload 0.3 for heat pumps 
have the same wind energy fraction is showing that there is not really an optimum wind 
energy fraction in this case. 
 
Table 9-3 How variation in base load affects storage, cost and wind energy fraction. 

 Storage for the 
minimum cost 
configuration (days) 

Cost £/kWh for 
hydrogen storage at 
todays costs. 

Wind Energy Fraction 
for minimum cost 
configuration 

Baseload Existing 
heating 

heat 
pumps 

Existing 
heating 

heat pumps Existing 
heating 

heat 
pumps 

0.0 80 79 0.073 0.070 70% 75% 
0.3 64 77 0.082 0.080 75% 75% 
0.5 58 69 0.088 0.086 78% 83% 
0.7 45 56 0.094 0.093 83% 89% 

 
Figure (9-6) shows the relationship between baseload and storage requirements for the 
minimum cost configuration in table (9-3). As baseload increases the required amount 
of storage for both the existing heating technology and for 41% heat pumps declines. 
In general, a 0.1 day increase in baseload capacity, reduces storage requirements by 
about 5 days. 
 

 
Figure 9-6 Relationship between base load and storage requirements for the configurations with the minimum cost 
of electricity at today’s prices. 

Figure (9-7) shows that as base load increases the wind energy fraction on the minimum 
energy point for the 30-day storage contour changes. However, for higher base loads 
there is no obvious optimal wind energy fraction as the lines are fairly flat. The existing 
heating technology always has a lower wind energy fraction than the 41% heat pumps 
case. 
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Figure 9-7 Wind energy fraction for 30 days storage and different base loads 

The results of this section have shown that a lack of energy storage can be compensated 
for by increase in baseload, for both the existing heating technology and 41% heat 
pumps. The cost model used in this project which assumes the baseload to be nuclear 
with current costs, shows a similar increase in the cost of electricity for both the existing 
heating technology and for 41% heat pumps when using base load instead of storage. 
 

9.4 Lost Energy 
 
There are two reasons that energy generated may not be used to satisfy the load. 

1. Energy is lost or wasted due to curtailment when more energy is generated than 
can be used or stored. The energy curtailed is calculated using equation (42) 
from 6.3.4. This occurs as a consequence of design choice in the power system 
to have additional generation capacity for periods of high demand or low 
generation due to weather. 

2. The additional energy that must be generated due to the inefficiency of charging 
and discharging the energy store using equation (43). This occurs because of a 
design choice in the power system to store energy when it is generated for use 
in the future.  

 
Excess energy (curtailed) was calculated using equation (42): 

𝐸௘௫௖௘௦௦ = 𝐶௕ +  𝐸௥௘௡௘௪௔௕௟௘ +  𝐸ௗ௜௦௣௔௧௖௛௔௕௟௘ −  𝐸௦௟ − 1.0 (42) 
Where 𝐸௘௫௖௘௦௦ is the excess energy not required to service the load, 𝐶௕is the baseload 
generation capacity = 0.4 days, 1.0 is the demand, 𝐸ௗ௜௦௣௔௧௖௛௔௕௟௘ is the mean daily 
dispatchable energy generated and 𝐸௥௘௡௘௪௔௕௟௘is the sum of the mean daily wind energy 
and mean daily solar energy generated. 𝐸௦௟is the energy lost due to the round-trip 
efficiency of the store, and is given by equation (43) 

𝐸௦௟ =  𝐸௖௛௔௥௚௘ ൬
1 −  𝜂௖

𝜂௖
൰ + 𝐸ௗ௜௦௖௛௔௥௚௘(1 −  𝜂ௗ) 

(43) 

Where 𝐸௖௛௔௥௚௘ is the mean daily energy added to the store, 𝜂௖is the charge efficiency, 
𝐸ௗ௜௦௖௛௔௥௚௘ is the mean daily energy taken from the store and 𝜂ௗ is the discharge 

efficiency. Unless otherwise stated, 𝜂௖ =  𝜂ௗ =  ඥ𝜂 (round-trip efficiency). 
 
Figure (9-8) shows the additional energy that must be generated to the efficiency of 
charge and discharge to the store. More additional energy is required at configurations 
of very high solar generation and low wind generation. This is because more solar 
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energy is generated in the summer, but more energy is used in the winter, and therefore 
more energy needs to be stored, and so there is more additional energy needed to be 
generated due to the storage inefficiency. 

 
Figure 9-8 Additional energy needed due to the inefficiency of the energy storage for different wind and solar 
capacities. 

Figure (9-9) shows the energy curtailed for different combinations of wind and solar 
generation capacity for the existing heating technology. It can be seen that more energy 
is curtailed at large generation capacities which will have low amounts of storage. With 
small installed capacity, less energy is curtailed. The amount of energy curtailed with 
increasing solar generation capacity is less because mean solar capacity factors are 
lower. It can also be seen that compared to figure (9-8) above that the energy lost due 
to curtailment far exceeds the additional energy that needs to be generated due to the 
inefficiency of the energy storage.  

 
Figure 9-9 Energy curtailed for different wind and solar capacities. 
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Figure (9-10) shows the relationship between storage capacity and the energy lost 
through curtailment. This was generated using the minimum energy configurations 
from those that have storage of 10,20,30,40 and 50 days. It can be seen that as storage 
capacity increases, less energy is required to be generated and therefore less is curtailed.  
 

 
Figure 9-10 Variation in energy lost due to curtailment with storage capacity. 

The energy lost due to curtailment exceeds the additional energy required to overcome 
the inefficiency of the energy store by an order of magnitude. This suggests that the 
efficiency of the storage might be less important than its capacity. If the capacity were 
greater, then this curtailed energy could be stored. If the charge efficiency were lower, 
there is still a lot of curtailed energy available to charge the store. However, lower 
discharge efficiency effectively means less energy is stored for the same capacity. 
Charge efficiency and discharge efficiency would need to be modelled separately to 
study this further. 
 

9.5 How long the energy store stays full 
 
The objective of this section is to investigate the state of charge of the store over time. 
Does the energy store spend most of the time full or is the store empty for long periods? 
If the store is empty for a long period, then this is of interest from an economic 
perspective because there is an underused, possibly expensive asset. If the store is full 
for a long time, then there are technical implications. For example, if part of the energy 
store were 10 pumped hydro storage lakes, and 9 of them were full for several years, is 
this technically feasible? would there be evaporation of water? If the storage were 
hydrogen, would it be better to use it for another purpose and then replenish it later?  
 
Figure (9-11) below shows the store history for a configuration with wind capacity 1.7 
and PV capacity 1.3 with the existing heating and wind capacity 2.0 and PV capacity 
1.1 with 41% heat pumps chosen so that they have similar storage requirements (28.9 
and 29.1 days respectively). It can be seen that there are long periods when the store is 
at a high state of charge, but others where it is almost empty. 
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Figure 9-11 Example of the energy store state of charge over 40 years for configurations needing about 29 days 
storage capacity (wind 1.7, PV 1.3 existing heating), (wind 2.0, PV 1.1 41% heat pumps)  

Figure (9-12) below shows the store history sorted by state of charge, rather than time, 
so it shows a load duration curve showing how many days the store was at a particular 
energy level (state of charge) for this same configuration. It stays at a high level most 
of the time for example above 25 days of storage for 250,000 hours which is 28 years 
out of the 40-year time period.  
 

 
Figure 9-12 Load duration curve created by sorting the store history by the state of charge. Shows the number of 
hours that the store was at a particular state of charge for the same configurations as figure (7-18) 

Figure (9-13) shows how long the energy needs to be stored for. It can be seen that for 
most of the time, the store is full.   
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Figure 9-13 How long the energy store was at a particular state of charge for sample configurations with a 
storage capacity of 29 days for both the existing heating technology and with 41% of heating provided by heat 
pumps. 

The energy store is full most of the time. The implications of this are: 
 Energy loss through storage inefficiency may be less important because there is 

plenty of time to top it up. This is particularly true of charge efficiency. 
Discharge efficiency effectively means that less energy if stored for the same 
capacity. 

 There could be loss through self-discharge if energy is stored for a long time. 
 The storage medium must be capable of storing energy for long periods of 

multiple years.  
The simplified model used here only has one energy store. The real power system will 
consist of a number of different storage technologies with different characteristics. As 
discussed in the background section, batteries are suitable for a period of a few hours, 
CAES and pumped storage are suitable for 6-10 hours, and power to gas such as 
hydrogen are suitable for long term storage. The implication of the energy store in the 
model being full most of the time, suggests that the real power system should contain 
more long-term storage such as hydrogen, than shorter duration storage technologies. 
 
Limitations of the model being used are that it does not take into account the rate at 
which stored energy is lost (self-discharge) or consider the charge and discharge 
efficiencies separately. These should be considered in future research.   
 
No other study has been found that quantifies how long energy needs to be stored for. 
Storage duration is discussed in [52] but it refers to how long it would take to discharge 
the energy store at its maximum discharge capacity.  
 

9.6 Correlation between supply and demand 
 
9.6.1 Background 
 
The capacity of energy storage required in an energy system is related to the correlation 
between the demand and supply. In other words when the energy is needed compared 
to when the energy is generated. In a purely renewable power system or one including 
a baseload below the minimum demand, if the pattern of renewables generation 
matched the demand curve exactly then it would only be necessary to install enough 
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capacity to generate the energy to satisfy the demand and no storage would be required, 
or excess energy generated (curtailed). When there is a mismatch between the pattern 
of supply and the pattern of demand then this must be compensated for by either larger 
generation capacity or energy storage or a combination of the two. More storage is 
required for a purely solar PV system than wind because wind matches the demand 
curve better [52].  
 
9.6.2 Methods 
 
The correlation of the two electricity demand time series from chapter 4 with each of 
the various generation time series used in this thesis was calculated using Pearson’s 
Correlation Coefficient R. The objective is to see if there is any relationship between 
the findings regarding wind energy fractions and correlation.  
 
9.6.3 Results 
 
The table (9-4) below shows how closely the normalised generation curves match the 
normalised demand curves for the existing heating, 41% heat pumps and all heat pumps. 
It includes Wind and PV generation time series from Fragaki et. al. (section 6.3) and 
those from Renewables Ninja (section 1.2.7 and 1.2.8). As well as the near-term wind 
generation from Renewables Ninja used in this study it also shows the current and 
future wind generation time series. 
 
The Fragaki et. al. data is only available as a daily time series, hence hourly correlation 
is not shown in this table. Also, this project is more concerned with long-term storage, 
so the intra-day correlations are of less importance. However, the hourly wind time 
series are less correlated with the demand (eg 0.13 to 0.15), but the PV series are more 
correlated 0.23 for the existing heating. 
 
Table 9-4 - Correlation of renewable generation and electricity demand 

Generation Correlation (R) of demand to generation 1984-2013 
Existing heating 41% heat pumps All heat pumps 
Daily Monthly Daily Monthly Daily Monthly 

Wind Fragaki et, 
al. 

0.19  0.56 0.16 0.53 0.13 0.50 

PV Fragaki et. al. -0.53 -0.78 -0.55 -0.80 -0.54 -0.77 
PV Renewables 
Ninja 

-0.64 -0.82 -0.67 -0.85 -0.65 -0.81 

Wind Onshore 
Ninja near term 

0.22 0.61 0.19 0.58 0.16 0.55 

Wind Offshore 
Ninja near term 

0.26 0.66 0.24 0.64 0.21 0.60 

Wind combined 
Ninja near term 

0.26 0.66 0.24 0.64 0.20 0.60 

Wind Ninja future 0.25 0.66 0.23 0.64 0.20 0.61 
Wind Ninja 
combined current 

0.24 0.64 0.22 0.61 0.18 0.58 
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From this table we can see that with the addition of 41% heat pumps the demand curve 
would become less correlated with both wind and PV and so we would expect more 
storage to be needed based on the pattern as well as the increased generation.  
The daily correlation of the Ninja near term offshore wind of R=0.26 to the demand 
curve is greater than that of onshore with R=0.22. A similar pattern is seen with the 
monthly corelation. For this reason it might be expected that less storage would be 
needed for offshore wind even when scaling to account for the lower capacity factor of 
onshore wind. This was indeed what was found in chapter 6. 
 
The last 3 rows of the above table indicate that when near term future wind farms come 
online that the wind generation will become slightly more correlated (R=0.26 compared 
to R=0.24) with the demand curve, but then as the long-term future wind farms come 
online the correlation will decline (R=0.25). The monthly correlation of demand with 
wind generation is higher suggesting that being able to store energy over monthly 
periods might ease the mismatch between demand and generation.  
 
A similar exercise was done to compare the 9-year wind generation time series created 
in section 7.4. This used the actual national grid wind farm generation for 2011-2019 
factored by the quarterly increase in generation capacity [113]. This time series was 
found to have the same correlation values as the Wind combined Ninja time series. It 
is not added to the table above because since it is for a different (shorter) time period 
all the correlation values are different. In fact, although they show the same trend that 
offshore wind correlates better than onshore wind with the demand, using this shorter 
time period, the correlation coefficients R are all about 0.08 lower.  
 
The renewable power generation time series is a combination of different capacities of 
the wind and PV time series. Using the Renewables Ninja combined near term wind 
and PV generation time series the correlation with demand was investigated for 
different wind energy fractions. Figure (9-14) shows how the correlation of the 
normalised demand time series with the generation time series varies for different wind 
energy fractions. It can be seen that the higher the proportion of wind energy the greater 
the correlation. With the addition of 41% heat pumps, the demand becomes less 
correlated with the generation, so that we might expect more energy storage to be 
required.  

 
Figure 9-14 Correlation of normalised demand with power generation time series based on different wind energy 
fractions. 
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9.6.4 Summary and Conclusions 
 
Wind correlates better with the demand than PV and the addition of heat pumps reduces 
the correlation with demand. The reduced correlation would be expected to lead to 
increased storage. This matches the findings in earlier chapters that the addition of heat 
pumps needs more storage. 
 

9.7 Wind Energy Fraction 
 
This section investigates methods of finding the wind energy fraction without using an 
energy balance model. It compares two alternative methods against the various wind 
energy fractions found using the energy model in this thesis. The different wind energy 
fractions and their assumptions are reviewed.  
 
The section starts with a brief review of previous work determining the optimal wind 
/solar generation ratio. This is followed by two mathematical methods for estimating 
this ratio. The results section then compares all the optimal wind energy fractions from 
this thesis with these methods. The chapter finishes with some conclusions about the 
wind energy faction. 
 
9.7.1 Background 
 
The optimal mix of wind and solar PV depends on the assumptions and objectives. It is 
usually expressed as a percentage of the combined wind and solar generation as in 
equation (33). Previous studies that use energy balance models including energy 
supply, demand and storage have found: 

 That 55% wind is the ideal mix for Europe by using an energy model with the 
historic electricity demand [95] assuming pumped hydro storage. 

 84% wind is the optimal mix for the UK by finding the minimum cost 
configuration at today’s prices [52] assuming a round trip efficiency of 70% for 
compressed air storage.  

 The ideal mix for Europe is 70% wind assuming an excess generation of 50% 
and assuming the round trop efficiency of hydrogen storage is 36%.[96] 

The energy balance models in this thesis have also found different mixes of wind and 
solar based on different assumptions, such as using a constant value of storage, excess 
generation, and optimum cost. 

Some studies did not use an energy model at all. One study that had the objective of 
reducing the variability of generation [12] calculated the combination of wind and solar 
PV that minimized the standard deviation of simulated power generation time series. 
They found that on a seasonal basis the optimum for the UK was 67% wind and over a 
multidecadal time scale that the optimum was 46%. However, that study did not look 
at the seasonal variation of demand which tends to be larger in winter. Another study 
[95] that did consider demand,  used the same method of minimising the standard 
deviation. However, they used the time series of demand net of wind and solar 
generation instead of just the generation time series. They found that 62% wind is the 
ideal mix for Europe. However, with energy storage, it is not just the extremes of net 
demand that are important but how long these extremes last. In this section another 
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possible method of identifying the optimal wind-solar mix without using an energy 
model is investigated.  

The optimal mix of wind and solar generation is determined by the mismatch between 
electricity supply and demand. This mismatch is illustrated in figure (9-15) which 
shows a small part of the normalised demand net of renewable generation Nt from 
equation (28) from section 5.2 
 

 
Figure 9-15  Normalised net demand with the existing heating technology, net of renewable generation with 80% 
wind and 20% solar PV 

In this example the generation is made up of 20% Ninja PV and 80% Ninja wind. When 
the net demand (blue line) rises above zero (red line), energy needs to be taken from 
the energy store. For example, it can be seen that net demand stays positive in December 
1990 for a period of about 1 month, indicating that the demand would be met from 
energy perhaps stored in August. This suggests energy needs to be stored for periods of 
at least months. The higher the net demand is, combined with the longer it stays above 
zero, determines how much energy needs to be stored and leads to the idea of using the 
area under the curve as an indicator of how much storage is required. This will be tested 
out in this chapter. 
 
9.7.2 Methods 
 
A set of different hourly net demand time series were created for different wind energy 
fractions using equation (44). 
 

𝑁௧ = 𝐷௧ −  𝑊௙𝑊௧
௖௙

+ (𝑊௙ − 1)𝑃௧
௖௙ 

 
(44) 

 
Where 𝑁௧ is the net demand time series, 𝐷௧ is the 40 year electricity demand time series 
with the existing heating technology from 4.2.2, 𝑊௙ is the wind energy fraction given 

by equation (33), 𝑊௧
௖௙ is the time series of wind generation capacity factors from 
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Renewables Ninja combined (onshore and offshore) near term future (1.2.7) and 𝑃௧
௖௙ is 

the time series of PV generation capacity factors from Renewables Ninja (1.2.8). 𝐷௧, 
𝑊௧

௖௙ and 𝑃௧
௖௙were all normalised to that their values ranged between 0 and 1. The wind 

energy fraction was varied 0 ≤ 𝑊௙ ≤ 1 in steps of 0.01 creating a set of different net 
demand time series. For each net demand time series, the following were calculated: 

 The standard deviation of the net demand time series 𝜎 =  ට∑
(ே೟ି௨)మ

ே்
 where 

𝑁௧is the net demand time series from equation (44), u is the mean of 𝑁௧and NT 
is the number of values in 𝑁௧ . 

 The area between the blue curve and red zero line from figure (9-15). First each 
negative value in the time series was set to zero and then the trapezium method 
was used to calculate the area. 

 
9.7.3 Results 
 
Figure (9-16) shows the first of these methods of identifying the optimal wind fraction. 
This method used in previous work is to minimize the standard deviation of the 
normalised demand net of renewable generation. In figure (9-16) it is plotted against 
the wind energy fraction. The idea is that the minimum standard deviation indicates less 
extremes. Less extreme values in the net demand time series mean either lower 
additional generation or lower energy storage requirements. For the existing heating the 
minimum occurs at a wind energy fraction of 95% and for 41% heat pumps it occurs at 
92%.  

 
Figure 9-16 Optimum wind energy fraction from the standard deviation of the net demand time series 

Figure (9-17) shows the area under the normalised demand net of renewable generation 
plotted against the wind energy fraction. The minimum area for the existing heating 
occurs at a wind fraction of 93% whereas for 41% heat pumps it occurs at 94%. It makes 
sense intuitively for more wind to be needed. Since wind is more correlated with the 
demand than PV, a generation mix containing more wind will correlate better with the 
demand, leading to lower energy storage.  
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Figure 9-17 Using the area under the normalised net demand curve to estimate the ideal ratio of wind to solar PV 
energy generation. 

Figure (9-18) shows wind energy fraction found using lines of constant storage 
minimum energy point plotted against that found using the area under the net demand 
curve. It can be seen that although they do not match, that these is a fairly linear 
relationship. This shows that this is useful method for identifying the wind energy 
fraction. 

 
Figure 9-18 Wind energy fraction found using minimum energy compared to using area under the net demand curve 
for lines of constant storage 

Table (9-5) compares these two mathematical methods of finding the wind energy 
fraction with the other methods used in this study. This illustrates the range of different 
wind energy fractions found in this thesis. These would not be expected to be the same 
because they are based on different assumptions. For example, the Fragaki 30 days 
storage has a large 90% fraction because of using onshore wind and large energy 
generation of 30% excess. The 50% excess is a lot of energy, which leads to lower 
storage, so that energy must be used closer to when it is needed. Since more energy is 
used in winter, when more wind energy is generated, this leads to a higher wind energy 
fraction. Increasing baseload has more impact in the summer because summer has lower 
energy requirements and therefore means less PV is needed. All these methods are 
based on different assumptions, but they consistently find that 41% heat pumps require 
a higher wind energy fraction. 
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Table 9-5 Different methods and assumptions of finding the optimal wind energy fraction produce a range of 
values. Those from this thesis have the section they occurred in shown in brackets. 

Method Thesis 
Section 

Wind Energy Fraction 
Existing 
Heating  

41% Heat 
Pumps 

Minimum standard deviation of the 
normalised demand net of renewable 
generation 

9.7 95% 92% 

Minimum area under the normalised 
demand net of renewable generation 

9.7 93% 94% 

30 days storage. minimum energy 6.3.3 83% 87% 
This study 30 days storage, minimum cost 6.3.3 87% 91% 
50% excess energy 6.3.4 96% 99% 
Hydrogen Cost Optimal 6.3.5 88% 91% 
CAES Cost Optimal 6.3.6 87% 92% 
Baseload 0.0 min cost hydrogen 9.3 70% 75% 
Baseload 0.3 min cost hydrogen 9.3 75% 75% 
Baseload 0.5 min cost hydrogen 9.3 78% 83% 
Baseload 0.7 min cost hydrogen 9.3 83% 89% 

 
The method using the standard deviation calculates a high looking value for the wind 
energy fraction for the existing heating of 95%. However, the wind fraction of 92% for 
41% heat pumps is lower which contradicts all the other results in the table. This could 
be because the addition of heat pumps to the demand increases its standard deviation 
and if the peaks in the wind generation do not match the demand peaks then the optimal 
wind fraction could be in less.  
 
The new method of using the area under the net demand curve is consistent with the 
other methods in finding that 41% heat pumps need more wind. However, it is also 
slightly high compared to the other values. Therefore, the conclusion is that using the 
area under the curve is a better method of finding optimal wind energy fraction than 
using the standard deviation. Finding the area under the net demand curve requires 
much less computational power than running the full hourly model. It runs in seconds 
on an ordinary PC, compared to a few hours for the daily energy model or a few days 
for the hourly energy model. It provides a useful quick method of estimating the 
optimum wind energy fraction.  
 
However, neither the standard deviation nor the area under the curve method take 
account of efficiency. An energy balance model will produce a more accurate result if 
it considers energy lost for efficiency of storage and the timing of when the periods of 
high demand occur relative to those of high generation and if the energy store can be 
refilled before the next such period. The methods using the standard deviation and the 
area under the curve are using normalised time series, which means that they are 
equivalent to a minimum over generation case. 
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9.7.4 Summary and Conclusions 
 
As an alternative to using an energy model, a new mathematical method of finding the 
optimum wind fraction has been proposed. This is to minimize the area under the 
demand net of renewables. It has been shown to be more accurate than minimizing the 
standard deviation, a method proposed in previous work. It runs much faster than an 
energy model and has a approximately linear relationship with the optimum wind 
energy fraction found using constant lines of storage. The new method finds that 
heating electrification increases the wind energy fraction by 5% whereas other 
experiments in this thesis have shown the energy fraction increasing by between 4% 
and 6%. All configurations from table (9-5) show that the UK should have more than 
70% wind and that the addition of electric heat pumps increases this fraction. 
 

9.8 Summary and Conclusions 
 
To simulate the migration away from today’s system, the capacity of dispatchable 
generation was gradually reduced with a varying mix of wind and solar. In contrast to 
the system with only baseload, wind and solar, there is no clear optimal wind energy 
fraction. However, as dispatchable generation is reduced with today’s amount of 
storage, more wind energy is needed. As the amount of dispatchable generation is 
reduced, modelling a migration towards renewable generation, it was found that energy 
storage is required after about 20% renewables with 50% excess generation. 
 
Heating electrification does not change the relationship between energy curtailment and 
storage. The efficiency of the energy storage might be less important than its capacity, 
due to two factors: (i) the energy lost due to curtailment exceeds the additional energy 
required to overcome the inefficiency of the energy store by an order of magnitude (ii) 
the energy store is full most of the time. A full energy store implies curtailment, so a 
lower charge efficiency does not matter if there is plenty of excess energy. However, a 
low discharge efficiency effectively reduces storage capacity. The energy store must 
consist of technology storing energy for long periods of multiple years suggesting that 
there could be loss through self-discharge. It should also be noted that storage capacity 
tends to be determined by extreme events. Future research should consider charge and 
discharge efficiency separately.  
 
A lack of energy storage can be compensated for by increase in baseload, for both the 
existing heating technology and 41% heat pumps. The cost model used in this project 
which assumes the baseload to be nuclear with current costs, shows a similar increase 
in the cost of electricity for both the existing heating technology and for 41% heat 
pumps. An increase in baseload increases the wind energy fraction for both the existing 
heating and 41% heat pumps. 
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10 Conclusions, contributions, and further work 
 
The main research question in this thesis is: How the future decarbonization of heat and 
transport will impact the mix of solar, wind and storage in a power system with a high 
penetration of these technologies? To answer this question three 40-year UK electricity 
demand time series were created: for the existing technology, with 41% of heating 
provided by heat pumps, and with most transport as EVs. A novel method for 
incorporating heating electricity into the historic electricity demand was developed 
allowing the impact of heat pumps alone to be studied. The method accounts for long-
term weather effects, whilst keeping socioeconomic and technological factors constant. 
These electricity demand time series were used in a high-level energy model to 
calculate the minimum energy storage required for a generation mix including wind, 
solar, base load and dispatchable power sources. It was found that heating 
electrification increases the proportion of wind energy required by between 3% and 5%. 
In contrast, a change to providing most transport by electric vehicles does not 
significantly change the optimum proportion of wind energy required. For an example 
configuration generating 80% excess energy above the load, 41% of heating provided 
by heat pumps requires 2 days more storage, whereas most transport provided by EVs 
requires 15 more days storage. 
 
Before the main research question could be answered, four subsidiary questions were 
posed. The main conclusions for each are summarised below, followed by the main 
question. Then the conclusions from the additional case studies are summarised. The 
main contributions to knowledge are listed. This final chapter concludes with 
suggestions for further work. 
 

10.1 Electricity demand incorporating changes to heating alone. 
 
The first subsidiary research question was: how electricity demand including changes 
to heat pumps alone could be generated. This was answered by chapters 2-4. 
 
Chapter 2 compared four methods of generating daily heat demand time series which 
has not been done before. The methods have been validated against national gas 
demand time series, including a regression to show that the unknown portion of the 
time series is not heating. The methods were also validated against heat pump 
measurements and gas smart meter data, data sources not previously used for this 
purpose. It was found that using previous days’ temperatures to account for thermal 
inertia of buildings and population weighting all improved the results, but that using a 
finer weather grid did not bring significant improvements. The BDEW method based 
on the when2heat dataset performed best and was therefore chosen. This is an import 
result because this method has already been used to provide the UK heat demand input 
for several previous studies by other authors.  
 
Chapter 3 used the daily heat demand series from the best method identified in chapter 
2 to generate 40-year hourly electricity demand time series for both the existing heating 
technology of 2018 and future technology with electric heat pumps. UK COP curves 
were used, and an hourly profile derived from UK heat pump trial data instead of one 
derived from gas boilers as had been used in previous work. Heat demand was 
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converted to electricity demand based on assumptions about current and future 
proportions of heat pumps and hybrid heat pumps from UK National Grid Future 
Energy Scenarios. Actual measurements from a UK heat pump trial show higher 
electricity demand than that predicted by the model. However, there is a large 
variability in heat pump trial COP making comparisons difficult.  
 
Chapter 4 used the two heating electricity time series created in chapter 3 to generate 
two 40-year UK electricity demand time series enabling the impact of heating 
electrification to be studied independently of other factors. Previous work has kept 
socioeconomic and technological factors constant either by using linear regression to 
replace the electricity for the heating sector in one year’s historic electricity demand 
based on multiple years weather or has simulated all sectors. In contrast the method 
used here replaces the electricity for the heating sector with a heating electricity time 
series from chapter 3 based on detailed calculations for current or future heating. The 
new method can generate time series for recent years more accurately than those used 
in previous work. Analysis of the historic electricity demand justifies the assumption 
that removing the heating electricity removes its weather dependence. These generated 
time series show that 41% of heating provided by electric heat pumps would double 
monthly demand for electricity leading to an increase in about 30TWh for each winter 
month. Year to year variability of electricity demand due to weather will increase by 
37%. The research also revealed that the sensitivity of generated peak electricity 
demand to the hourly profiles and heat demand methods used in modelling leads to 
uncertainties in the estimations of peak electricity demand which vary over a range of 
25 GW. This is quite significant compared to estimates of future peak demand of 
between 40 and 100 GW reported in research. Such inaccuracies have not been 
quantified in previous research.  
 

10.2 Finding the minimum energy storage 
 
The subsidiary research question: how should the required energy storage be found? 
was answered in chapter 5. A simplified power system model including 10 
improvements over previous UK studies was developed. This included a new algorithm 
to find the minimum required energy storage for a simplified power system model. The 
model includes a specified amount of baseload and dispatchable generation combined 
with different proportions of simulated wind and solar power generation from 40-years’ 
historic weather. The algorithm for finding the storage was validated against a model 
used by a previous study and found to match apart from small differences which can be 
explained by the differences between the two models. The model accurately predicts 
the amount of storage used by today’s energy system. The model has been used to show 
the pattern of energy storage requirements for a range of different wind and solar 
generation capacities for a system with a base load capacity of 0.4 days.  
 
Chapter 7 investigated the sensitivity of the model to different inputs. It was shown that 
whilst daily time series are adequate for estimating the required storage, that hourly 
time series are needed for estimating wind energy fraction and system cost. 
Experiments suggest that for large amounts of storage, using a few years’ data including 
a cold spell is adequate and that it does not matter which decade of data is used. 
However, for small capacities of storage, these choices in the data make a much larger 
difference to the results. A sensitivity analysis on the impact of the different model 
inputs from two previous studies found that the most significant difference was caused 
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by using different wind generation data. Using a comparison between onshore and 
offshore wind as an example, it was also found that as well as the higher capacity factor 
from offshore wind, that the pattern of wind generation modelled in different ways can 
have a large impact on the amount of storage required. Although previous work has 
considered how different siting of wind turbines might result in higher capacity factors, 
no previous study has been found that notes the impact that a different pattern of 
generation can have on storage requirements. In other words, the impact of when the 
energy is generated compared to when it is needed. However, the significance of this 
effect depends on the particular configuration being studied. For example, a power 
system with 105 GW wind generation capacity based on the pattern of onshore wind 
requires 7 TWh more storage than one based on the offshore wind pattern. But with a 
wind capacity of 245 GW, it requires 1 TWh less storage. Energy modellers need to be 
wary of this possibility because it may mean that their models are less accurate and not 
comparable with models using different wind generation data. 
 
Chapter 7 also used the new model from this thesis to update the results of two previous 
UK studies. Whilst Fragaki et. al found that 30% more energy generated for 30 days 
pumped hydro storage could power the UK for 30 years, here it was found that only 
15% more energy is needed. This difference is mainly attributed to the different wind 
generation data used. Whilst Cardenas et. al. found that the cost optimal configuration 
for CAES at today’s prices generated 15% excess energy and required the 43 TWh 
storage, using the methods from this project found 11 TWh of storage with 21% excess 
energy generated. The wind energy fraction found here of 84% was the same as that 
found by Cardenas. Although they also used different wind generation time series, it 
does not fully explain the difference and further work is needed. 
 

10.3 Assessing the results 
 
The subsidiary research question: How can the results be assessed was discussed in 
chapter 6. Chapter 6 used the electricity demand time series generated in chapter 4 to 
investigate the impact of heating electrification alone on the UK power system model 
developed in chapter 5. The 40-year electricity demand with the existing heating 
technology was compared to that with 41% heat pumps. There is a wide range of 
different combinations of wind generation, solar generation and energy storage 
capacities that can supply both these alternative UK electricity demands. Two quantities 
were used to assess the impact of heating electrification: energy storage capacity and 
wind energy fraction. The configurations to compare were identified using 
configurations with the same storage, the same excess energy, or minimum cost. The 
wind energy fractions between 83% and 96% for these different comparison 
configurations, show a similar variation to those of the 7 different plans from other 
studies discussed in the background section. The minimum energy generation 
configurations for constant storage are close to but not the same as the minimum cost 
configurations.  
 

10.4 The impact of the electrification of heat 
 
The heating part of the main research question: how does electrification of heating 
impact shares of wind, solar and storage? was also answered in chapter 6.  It was found 
that heating electrification requires a higher wind energy fraction for the same amount 
of storage, for example an increase by 4% for 25 TWh storage. For a baseload of 13.6 
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GW and hydrogen storage, the lowest costs configuration of the model representing 
today’s demand is for a wind capacity of 48 GW, PV capacity of 58 GW and 39 TWh 
of storage. With heating electrification this is wind 54 GW, PV 68 GW and storage 47 
TWh or 58 days. For comparison the UK currently has 9 days of gas storage. For CAES 
or hydrogen storage, 41% of heating provided by heat pumps increases wind energy 
fraction by 3% and storage by 11 TWh. Conversely, with a fixed wind energy fraction, 
for example the configuration that generates 50% excess energy, 41% heat pumps 
requires 5 days more storage. To look at it another way, increased wind capacity 
reduces storage required more than increased PV. This is logical because more heating 
energy is required in the winter when there is also more wind and less PV energy 
available. For both the existing heating technology and 41% heat pumps, the amount of 
storage required increases if less energy is generated and the wind energy fraction 
decreases. For lower amounts of storage, the difference in wind energy fractions 
between the existing heating technology and 41% heat pumps is greater.   
 
With 41% heat pumps, if the PV capacity is zero, then viable configurations include 78 
GW wind with 38.5 TWh of storage and 190 GW wind with 5 TWh of storage. The 
minimum cost configuration for hydrogen storage is the former. For zero wind, 340 
GW PV capacity requires 104 TWh of storage with the existing heating and 130 TWh 
after heating electrification. Whereas 2.7 TW of PV generation capacity requires 1.6 
TWh of storage with the existing heating and 2.9 TWh with heating electrification. So, 
if PV and storage were sufficiently cheap, a solution with PV only and a large amount 
of storage would be possible. However, the optimal solutions are a combination of wind 
and PV. 
 
Chapter 8 updated the energy storage model to enable a comparison between supplying 
heating with electric heat pumps and hydrogen boilers to be made. It was assumed that 
if the energy storage medium is hydrogen, then the hydrogen can also be used to supply 
heating using hydrogen boilers. It was found that for hydrogen boilers there is no 
obvious optimum wind energy fraction. If the electricity to create green hydrogen is 
included, then heat pumps use about 10 times less electricity than hydrogen boilers and 
have an electricity cost less than 20%. However, this model does not take account of 
the cost of upgrading boilers and the gas network to use hydrogen and installing heat 
pumps for all heating to be provided by heat pumps. No previous work including 
hydrogen boilers under long-term weather variation has been found. However, a 
previous study of a 3-year period found that architectures based on district heating and 
electric heat pumps need about four times less electricity per unit of heat and have a 
whole system cost 33% lower than those providing 70% of heating using hydrogen 
boilers.  
 

10.5 Electric vehicle time series 
 
Chapter 8 also answered the subsidiary research question: how should an electricity 
demand time series incorporating the impact of EVs alone be generated? Weather 
dependent EV electricity demand time series were added into an electricity demand 
with the heating technology of 2018. This enabled the storage model from chapter 5 to 
be used to study the impact of transport electrification alone. The model has shown that 
electrification of transport increases the annual electricity demand from 371 TWh to 
489 TWh. The seasonal impact is less significant for that of heating electrification: with 
electricity demand varying over a range of 10 TWh between years without EVs and 14 
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TWh with EV’s included. Previous work including EVs into generated electricity 
demand time series does not take the weather into account. The power system 
configuration with the minimum cost for EVs occurs with a 72% wind as opposed to 
88% without EVs and uses 15 fewer days (12 TWh) of storage. This contrasts with 
heating where the proportion of wind increases. This could be because most of the cost 
of hydrogen storage is due to charging and discharging. Heat pumps have a big impact 
on peak demand and so could lead to high charge rates, whereas EVs are being modelled 
as charging partly overnight. The minimum energy point on the 30 days’ storage 
contour also occurs at higher proportion of PV with electric vehicles. This is likely to 
be due to heat pumps requiring more energy in the winter, but EV charging is spread 
more evenly across the year. No other studies have been found that look at the impact 
of electric vehicles on the proportions of wind and solar.  
 

10.6 Changes to power generation 
 
Chapter 9 included several case studies using the model. It was found that: 

 Energy lost due to curtailment exceeds the additional energy required to 
overcome the inefficiency of the energy store by an order of magnitude. This 
excess energy could compensate for losses due to charging the energy store and 
losses due to self-discharge. This suggests that the charge efficiency of the 
energy storage is less important than its discharge efficiency. The energy store 
is full most of the time, suggesting its storage capacity tends to be determined 
by extreme events.  

 There is no clear optimal wind energy fraction with today’s generation mix. 
Nevertheless, as the capacity of dispatchable generation is reduced, modelling 
a higher proportional of renewable generation with today’s amount of storage, 
more wind energy is needed. Energy storage is required after about 20% 
renewables with 50% excess generation.  

 For both the existing heating technology and 41% heat pumps, a lack of energy 
storage can be compensated for by an increase in baseload. Both heating 
technologies show a similar increase in the cost of electricity for increasing 
proportion of base load assuming nuclear power at today’s prices. 

 Wind generation correlates better with electricity demand than PV generation, 
so it would be expected that more wind generation would be needed. The 
addition of heat pumps reduces the correlation of electricity demand with both 
wind generation and PV generation and consequently more storage is needed. 
Increased wind capacity reduces storage required more than increased PV for 
both the existing heating technology and 41% heat pumps. 

 A new method of finding the optimum wind energy fraction by minimizing the 
area under the demand net of renewables was proposed and shown to be more 
accurate than minimizing the variance, a method used in earlier work. The wind 
energy fraction found by this new method and the other three comparison 
methods used in this thesis, with different assumptions about base load and 
storage technology all show a 4% increase due to heat pumps.   
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10.7 Original Contributions to Knowledge 
 
The original contributions to knowledge from this thesis are listed below: 
 

 The heat demand method used by the when2heat dataset was found to be the 
best from four heat demand methods tested. This is a useful result as this 
method has already been used for several studies. 

 The heat demand methods were validated against measurements from heat 
pump trials and smart meters, data not previously used for this purpose. 

 The novel method of incorporating heating electricity into the historic demand 
was developed allowing the study of the impact of heat pumps alone. 

 The hourly profile derived from measured heat pump data rather than gas 
boilers was used. 

 The finding that peak demand is very sensitive to the hourly profile or heat 
demand method used. 

 The seasonal and interannual impact of heat pumps were quantified, rather 
than just the peak demand as is usual in most studies. 

 The finding that heating is the only significant weather dependence of the UK 
electricity demand. 

 The new iterative algorithm to find the minimum required storage, and 
improved modelling inputs over previous studies. 

 The impact of the electrification of heat and transport on wind energy fraction 
and storage 

 The methodology to assess the impact of changes to demand from the 
perspectives of energy, cost and storage. 

 The sensitivity analysis of different modelling inputs used by this, and two 
previous studies found that different wind generation time series had the most 
significant impact. Different wind generation time series can have a significant 
impact on storage requirements. This could apply to actual wind turbine 
locations. 

 The updates to the findings of two previous studies using the new methods. 
 The study of the impact of hydrogen boilers on wind energy fraction. 
 Showing that area under the net demand curve is a useful alternative way of 

finding optimum wind energy fraction.   
 The finding that energy lost due to curtailment exceeds storage losses by an 

order of magnitude. 
 That storage becomes necessary after about 20% renewables. 
 That the energy store is full most of the time 

 

10.8 Further Work 
 
This section lists possible future work that could be undertaken in this project. 
 
10.8.1 Heating 
 
More realistic heat pump measurements are required in the future to be able to properly 
validate time series of heating electricity from electric heat pumps. 
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10.8.2 Storage 
 
The energy storage algorithm defined in chapter 5 could be improved to find the optimal 
initial state of charge, rather than specifying it.  
 
One limitation of the energy storage model is that although it finds the minimum storage 
capacity it does not try and minimize storage power. Since the cost of some long-term 
energy storage technology, for example hydrogen is much more dependent on the cost 
of the charging and discharge equipment, than the actual capacity, modelling power 
curtailment might give cheaper solutions. The energy store could be charged up more 
slowly. This could also be the case for transmission line constraints. 
 
Based on previous work, this study has assumed that much more long-term storage is 
required than short-term. However, the model could be improved to consider two types 
of storage in a merit order: one short-term with high cost and high throughput, one long-
term with lower cost and lower throughput. This might enable the optimal proportion 
of long- and short-term storage to be established. 
 
Rather than choosing to base the cost model on today’s costs for a particular technology, 
a more technology agnostic approach could be taken considering the relative costs of 
wind, solar, energy storage, charge, and discharge. This could give an indication of the 
relationships between the costs of different technologies might influence the optimal 
configurations. The costs of geothermal and tidal power could be used rather than 
nuclear. It would be interesting to find out if there are many configurations close to the 
cost optimal one, and to provide a range of wind energy fractions. 
 
Some previous studies have found that storage efficiency is important. However, others 
say that cost is the most important factor. A new model combining relative costs, 
storage power curtailment and efficiency could establish how important round-trip 
efficiency is, considering the findings here that the energy lost due to efficiency is an 
order of magnitude lower than that lost due to curtailment. 
 
Rather than finding the minimum cost configuration, another method of looking at the 
optimum wind energy fraction would be to find the configuration with the minimum 
CO2 emissions. This could use an estimate of the current lifecycle emissions of wind, 
solar and nuclear.    
 
Another improvement that could be made to the model is to consider self-discharge. 
Thermal storage could also be included in the model. 
 
This work makes the implicit assumption that the weather of the past is a guide to the 
weather of the future. The methods used in this study could be used with climate 
projections. 
 
The model used in this study treats the energy system as a single node. It could be 
expanded to use different supply and demand time series for different parts of the 
country and include transmission constraints in the model. 
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10.8.3 Reproduction of Cardenas 
 
An experiment was done to try to reproduce the Cardenas model as closely as possible 
using the methods described in chapter 5. It is recorded in the future work section 
because the result did not agree with the model used in this thesis, and further work is 
required to explain it. Table (10-1) summarises the input parameters.  
 
First the Cardenas et. al study was repeated as closely as possible without any assistance 
from the authors. The same solar PV generation data from Renewables Ninja was used. 
The wind generation data was derived from national grid figures in the same way. The 
actual wind generation data from Elexon [114] was added to the embedded half hourly 
wind generation from National Grid [83] and converted to capacity factors by dividing 
by the quarterly capacity from government figures [104]. It was then converted to 
hourly by aggregating. The power generation data for the years 2011-2019 was created 
in the same was as Cardenas did. The historic electricity demand for 2011 – 2019 taken 
from [83], was scaled by multiplying each year so that it had 335 TWh annual demand. 
The cost model from Cardenas was copied exactly. The algorithm from Cardenas to 
calculate the minimum storage was not reproduced here due to the uncertainty of being 
able to replicate the complex algorithm without access to the computer code. Instead, 
the algorithm from this study was used.  
 
Table 10-1 Experiment to reproduce the results of Cardenas (see 5.3.1 for terminology) 

Experiment Objective: Reproduce results of Cardenas et. al. as closely as possible. 
Baseload: 𝐶௕ = 0.0 Dispatchable: 𝐶௩ = 0.0 Wind 0.0 ≤ 𝐶௪ ≤ 5.9 Solar 0.0 ≤ 𝐶௣ ≤ 5.9 
Experiment Frequency η Demand Storage Wind PV Years 
1 Hourly 70% Historic 

Mult 
Iterative NGrid Ninja 2011-2019 

 
Figure (10-1) shows the results of this experiment. The amount of energy storage 
required is plotted against the wind energy fraction for lines of constant energy 
generation. Figure (10-2) shows a copy of Fig. 17 from Cardenas et. al which shows 
the same thing. The pattern of the lines is similar to Cardenas et. al. with the minimum 
storage occurring at the same wind energy fraction, but some of the actual storage 
values are different. For the energy 1.10 line (10% over generation) the minimum is 65 
days storage which at 60 TWh matches what Cardenas found. The 1.15 energy line 
(15% over generation) has a minimum of about a 40 days storage which translates to 
37 TWh which is not far off the 43 TWh of their cost optimal solution. However, for 
the 1.25 energy line (25% over generation) Cardenas get just under 40 TWh whereas 
here 5 TWh was found sufficient.  
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Figure 10-1 Reproduction of Figure 17 From Cardenas et. al. 

 
Figure 10-2 Figure 17 from Cardenas et. al. by permission from Elsevier: Order no 5522081314340. 

Table (10-2) summarises these findings. It seems that the more excess energy is 
generated, the more the findings of Cardenas diverge from that found in this thesis. The 
amount of energy storage found by the model in this thesis compares well to that found 
by Fragaki et. al. Also it seems strange that as the amount of over generation in figure 
(10-2) increases that the required storage does not decrease by more. It would be 
expected that generating more energy would eventually lead to needing no storage at 
all. It therefore seems possible that the Cardenas model is not finding the most optimal 
solutions for higher energy generation. 
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Table 10-2 Comparison of storage required in this thesis to the findings of Cardenas et. al. 

Energy generated This thesis Cardenas et. al. 
1.10 60 TWh 60 TWh 
1.15 37 TWh 43 TWh 
1.25 5 TWh 40 TWh 

 
Other possible factors which could account for the difference in the results found here 
are: 

 The electricity generation data used here is taken from [83] rather than directly 
from Elexon and National Grid. However, when plotted, it appears that the 
difference is small. 

 The wind generation data may have been scaled in a slightly different way. 
 The energy store is assumed to start 70% full in this model and it is not known 

how full it was in the Cardenas model. However, experimenting with starting 
the store between 50% and 90% full at the start did not make any difference to 
the storage requirements. Having the store start 30% full increased the storage 
requirement to 43 days, and 20% full increased it to 65 days. 

 Cardenas et. al. use a more complicated procedure to find the minimum storage 
which involves modifying the net demand time series to account for the energy 
lost due to storage round trip efficiency in one go, rather than splitting it up into 
charge and discharge. The model used here simply applies an equal charge and 
discharge efficiency calculated as the square root of the round-trip efficiency 
when adding or removing energy from the store.  It is noticeable that the 
Cardenas result has the same charge rate, but a lower discharge rate. Here the 
discharge rate has been calculated based on the energy removed from the store, 
not the energy supplied to the load which is lower due to efficiency losses.  

In summary, although the amount of storage found here for an excess energy generation 
of 15% above the load matched that found by Cardenas, it diverged more from the result 
found by the model used here the more the excess energy generation. Yet section 5.4.2 
showed that the model used here gives almost the same energy storage requirement as 
the Fragaki study. It seems more likely therefore that the Cardenas model is not finding 
the most optimal solutions for higher energy generation. Further research is required to 
confirm this. 
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Appendix A  Developed Software 
In the course of this work, many python programs were developed. The three main 
programs are briefly described here: 

 Heat and heating electricity time series generation 
 Modelling of net demand, generation, and storage requirements 
 Comparison of output from storage modelling and plotting. 

 
Appendix A.1  Heat and heating electricity time series generation 

 
The python program used for generating heat and electricity demand time series is 
available at https://github.com/malcolmpeacock/heat 
 
The software generating the heating electricity demand time series can use any historic 
year’s weather available from the ERA 5 reanalysis on two different grid resolutions. 
It can also read the adverse weather scenarios files from the UK met office. It can 
generate heat demand using four different methods, using a specified number of days 
previous temperature. The hourly profile and the proportions of different types of 
heating are a user supplied input. It can generate hourly heat demand, COP or heating 
electricity demand time series for any European country provided an annual heat 
demand is supplied as in input. The input parameters are summarised in table (11-1). 
 

Parameter Description 
ref                 Reference year 
weather             Weather year 
version VERSION Version - subdirectory to store output in, defaults to year. 
method METHOD Heat demand calculation method: B BDEW, W :Watson, S: 

HDD 15.5, H: HDD 12.8 
grid GRID         Grid I=0.75,0.75; 5=0.25,0.25 
profile PROFILE   Hourly profile 
adverse ADVERSE UK Met office adverse weather scenario file in the adverse 

sub director within the weather directory 
country COUNTRY   Country one of: AT BE BG CZ DE FR GB UK NI HR HU IE LU 

NL PL RO SI SK 
nopop No weighting by population 
plot Show diagnostic plots 
climate Account for climate change 
electric Generate an eletricity time series 
interim Use ERA-Interim instead of ERA5 
tdays TEMP_DAYS Number of previous days temperature to use (1 to just use 

current day). 
eta EFFICIENCY    Factor to multiple by annual demand by to take account of 

efficiency. 
ceta CETA         Factor to multiple COP demand by to take account of real 

World conditions 
Figure 11-1 Parameters for the program to generate heat and electricity demand time series 
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Appendix A.2   Modelling of net demand, generation, and storage requirements 
 
The software implementing the storage model can already be used to read in different 
sources of wind and solar power generation data, including future adverse weather 
scenarios from the Met Office. It has 3 different algorithms for finding the minimum 
storage. It can read electricity demand from two different sources and scale it in three 
different ways. The program writes out a file containing various parameters for each 
combination of wind and solar generation, including the amount of storage required and 
energy generated. The input parameters are summarised in table (11-2) 
 

start START          Start Year 
end END              End Year 
reference REFERENCE Reference Year 
adverse ADVERSE      Use specified Adverse scenario file of the form 

a5s1 where a=warming, 5=return period, 
s=severity or d=duration, 1=event. The possible 
warmings are: a=12-3, b=12-4, c=4 
 

scenario  P All Heat Pumps 
 F FES Net Zero Hybrid Heat Pumps 
 G 41 percent Heat Pumps 
 H Half Heat Pumps 
 R Existing heating provided by Heat 

Pumps 
 B All Hydrogen Boilers 
 N No heating 
 E Existing Heating based on weather 

 
dir DIR              Output directory 
plot Show diagnostic plots 
cplot Show climate related plots 
dmethod 
 

Method of creating a multiyear demand series:  
 Add: add a varying amount to each year 

as per Fragaki et. al.  
 Multiply: multiply by a varying amount as 

per Cardenas et. al. 
 Baseline: add the heating electricity to 

baseline demand. 
hourly Use hourly time series 
climate     Use climate change adjusted time series 
base Use range of baseload shares 
Ev Include Electric Vehicles 
genh Assume hydrogen made from electricity and 

stored in the same store 
Normalise 
 

Factor to normalise by (ie converting to days):  
 annual: mean annual demand. 
 peak: the peak demand  
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 scale: use the value passed in 
 

scale SCALE          How to scale: 
 average (energy over the period) 
 reference (by the reference year) 
 or a value passed in. 

storage STORAGE      Storage model: 
 Kf Fragaki et. al 
 New iteratively find the wind and solar for 

each value of storage 
 All iteratively find the storage for each 

combination of wind and solar 
 

constraints CONSTRAINTS Constraints on new storage model: new or old 
 

eta ETA Round Trip Efficiency. 
 

etad ETAD            Discharge Efficiency. If this is specified nonzero, 
then eta is the charge efficiency 

npv NPV              Number of points in pv grid 
nwind NWIND          Number of points in wind grid. 
baseload BASELOAD    Base load capacity. 
step STEP            Step size. Between different wind and solar 

capacities. 
cfpv CFPV PV capacity factor to scale to, default is to leave 

unchanged 
cfwind CFWIND        Wind capacity factor to scale to, default is to leave 

unchanged 
shore SHORE          Wind time series to use: 

 On Use only onshore wind 
 Off only offshore,  
 all all 

 
ninja Which ninja to use: near, current, future 
kfpv                 Use PV generation from Fragaki et. al. 

 
Kfwind Use wind generation from Fragaki et.al. 
ngwind Use National grid wind generation scaled by 

quarterly capacity 
demand Electricity demand data source: espini, kf or 

national grid 
shift Shift the days to match weather calendar 
wind WIND            Wind value of store history to output 
pv PV                Pv value of store history to output 
days DAYS            Example store size to find for store hist plotting 
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Threshold THRESHOLD Threshold for considering 2 wind values the 
same in new storage model 

variable VARIABLE    Amount of variable generation, default-0.0 
store_max STORE_MAX Maximum value of storage in days, default=80.0 
heat_electric HEAT_ELECTRIC Proportion of heat in electricity demand, 

default=0.11 
contours CONTOURS    Set of values to use for contour lines 

Figure 11-2Parameters for the program to calculate storage requirements for different demand and generation 

  
Appendix A.3  Comparison of output from storage modelling and plotting. 

 
This program reads in the files created by the previous program and creates plots. 
 

rolling ROLLING      Rolling average window 
decimals DECIMALS    Number of decimal places 
plot Show diagnostic plots 
inrate Base the charge rate on the energy 

input, not energy stored 
mcolour MCOLOUR      Plot min point marker in black 
nolines          Do not plot the contour lines 
markevery MARKEVERY Marker frequency 
compare Output comparison stats 
pstore   Plot the sample store history 
features   Print feature correlations 
pdemand Plot the demand 
pnet   Plot the net demand 
heatdiff    Create a heat map as difference of 2 

scenarios 
pfit Show 2d plots 
pmin PMIN            Plot minimum point of given variable 
dcolour Use same colour for same number of 

days 
yearly Show Yearly plots 
rate Plot the charge and discharge rates 
stype Type of Storage for cost calculation: 

pumped, hydrogen, caes. 
min Plot the minimum generation line 
annotate Annotate the shares heat map 
scenario SCENARIO    Scenario to plot 
days DAYS            Days of storage line to plot 
sline 
 

Method of creating storage lines: 
interpolation from x-variable or y-
variable or both, option to smooth, or 
just take the nearest value. 

cvariable CVARIABLE Variable to contour, default is storage 
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cx CX                X Variable for contour creation, default 
is f_wind 

cy CY                Y Variable for contour creation, default 
is f_pv 

sx SX                Variable to plot on the X axis, default is 
f_wind 

sy SY                Variable to plot on the Y axis, default is 
f_pv 

adverse ADVERSE      Adverse file mnemonic 
last LAST            Only include configs which ended with 

store: any, full, p3=3 percent full 
shore SHORE          Wind to base cost on both, on, off. 

default = both 
excess EXCESS        Excess value to find minimum storage 

against 
normalise NORMALISE 
 

Normalise factor to override the one 
from settings 

tenergy TENERGY      Total energy to pass to cost calculation 
instead of total electricity demand. 

variable VARIABLE    Variable to plot from scenario 
heat HEAT            Variable to plot a heat map of 
surface SURFACE      Variable to plot 3d surface with 
pwind PWIND          Print points with this wind proportion 
ppv PPV              Print points with this PV proportion 
costmodel Cost model: current or future costs 

Figure 11-3 Input Parameters for program to compare outputs and plot contour lines 
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Appendix B  POD challenge energy forecasting competition 
 
The author took part in the Presumed Open Data (POD) Challenge energy forecasting 
competition. Organised by The Energy Systems Catapult which is a publicly funded 
body set up to improve collaboration between academia and industry and Western 
Power Distribution (WPD) which is a Distribution Network Operator (DNO). The 
details and results of the competition are available at 
https://codalab.lisn.upsaclay.fr/competitions/213#learn_the_details-overview 
 

Appendix B.1  Background 
 
High resolution monitoring of electricity usage can be expensive and requires 
processing of large amounts of data. The features important to power system modelling 
are the peaks and troughs in electricity demand. The aim of the challenge is to find out 
if some of the features of high-resolution demand, particularly the maximum and 
minimum can be estimate accurately given only the 30-minute averages and weather 
data. The aim is to estimate the maximum and minimum demand at minute resolution 
for each 30-minute period for a whole month. Figure (11-4) shows the mean demand 
(in blue) over a half hour period in blue from a substation which has a large amount of 
embedded PV generation attached. The objective is to use this, along with weather data 
to estimate the maximum and minimum demand (shown in orange and green 
respectively).  

 
Figure 11-4 Half hourly demand, maximum and minimum for a period in July 2021 

The data values supplied are summarised in table (11-1). 
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Table 11-1 Data supplied to POD challenge participants 

Data Value Availability 
Half-hourly mean demand 2 years of consecutive values, followed by 

the forecast month 
Half-hourly minimum demand 2 years of consecutive values 
Half-hourly maximum demand 2 years of consecutive values 
Hourly Temperature  2 years, followed by the forecast month  
Hourly Solar irradiance 2 years, followed by the forecast month  
Hourly Windspeed north component 2 years, followed by the forecast month  
Hourly Windspeed east component 2 years, followed by the forecast month  
Hourly Pressure 2 years, followed by the forecast month  
Hourly Specific humidity 2 years, followed by the forecast month  

 
The weather parameters were supplied for 5 geographic locations. The objective of the 
competition was to predict the half hourly maximum and minimum value for the 
forecast month that were not supplied. Participants were allowed several attempts to 
estimate these values. Each attempt was assigned a skill score defined as the ratio 
between the RMSE of the forecast divided by the RMSE of a benchmark. The 
benchmark was to use the half hourly mean values as both the maximum and the 
minimum. 35 teams took part. The author competed as a team of 1 person. 
 

Appendix B.2  Methods 
 
Additional variables were created (engineered features) by combining the given 
parameters in conjunction with the time stamps. For example: 

 demand_lag1 means the demand for the previous half-hour period.  
 Solar_irradiance1 means the solar irradiance measured at weather location 1 
 Cs_ghi means clear sky global horizontal irradiance. The solar irradiance 

expected at the earth’s surface based on the position of the sun calculated from 
the time of day and day of the year and geographic location of the substation.  

Since it was known that there was a lot of PV generation attached to the substation, it 
was thought that this might be affected by cloud cover. Therefore, an engineered feature 
called cloud was created defined as the difference between cs_ghi, the theoretical solar 
irradiance and the actual solar irradiance. The features used in the final prediction are 
listed in table (11-2) 
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Table 11-2 Features used in the machine learning forecast. 

Variable Description Used For 
Demand Half hourly demand Both 
demand_diff Difference between successive demand values Max 
demand_lag1 Previous half hour demand Both 
cs_ghi Clear sky global horizontal irradiance Max 
demand_lag2 Demand from 2 half hours back Max 
Trend Monotonically increasing counter Max 
Zenith Solar zenith angle Max 
Cloud Cloud estimate. Cs_ghi – solar_irradiance1 Both 
solar_irradiance1_diff Differenced between successive solar 

irradiance1 values. 
Max 

Presyd Pressure from yesterday Max 
demand_lag4 Demand from 4 K periods back Max 
Presdb Pressure from day before Max 
K Half hour of the day Both 
solar_irradiance_var_lag1 Variance of solar irradiance amongst weather 

stations for previous k 
Both 

spec_humidity_var_lag1 Variance of humidity Max 
windspeed_var_lag1 Variance of windspeed previous k Max 
windspeed_var Windspeed variance Max 
Wd Day of the week Max 
spec_humidity_var Variance of speculative humidity Max 
Solar_irradiance1 Solar irradiance at weather location 1 Min 
Solar_irradiance_var Variance of solar irradiance at different 

locations 
Min 

Wind_speed_east1 East component of windspeed at location 1 Min 
Wind_speed1 Magnitude of windspeed at location 1 min 
Dailyhume Daily humidity at location 1  Min 
Solar_irradiance2 Solar irradiance at location 2 Min 
Windspeed1_diff Difference between successive wind speeds at 

weather location 1 
Min 

    
The features were chosen by systematically adding those features suggested by the 
Lassoo method to see which ones improved the forecast. Figure (11-5) shows those 
the important features positively and negatively correlated with the maximum half-
hourly demand. 
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Figure 11-5 Feature importance using the Lasso Model 

The following machine learning methods were tried to see which one gave the best 
forecast: 

 A Multilayer Perceptron (MLP) 
 Gaussian Process Regression (GPR) 
 Random Forest (RF) 
 Light GBM (Gradient Boosting Machines) 

To use these methods, the engineered features had to be supplied to the method along 
with various tuning parameters. All the features were normalised. Success in the 
competition would therefore be a combination of method selection, tuning and choice 
of which features to use. Solutions were programmed in Python. The methods were 
trained by trying to predict the maximum and minimum values from the previous 
supplied data. 
 
A Multilayer Perceptron (MLP) is a type of feedforward Artificial Neural Network 
(ANN). The MLP used in this project had a linear input layer, a sigmoid layer equation 
(A1) and a leak- relu layer equation (A2) 

𝜎(𝑥) =  
1

1 +  𝑒ି௫
 

(A1) 

  

𝐿(𝑥) =  ൜
𝑥, 𝑖𝑓 𝑥 ≥ 0

𝑠 𝑥, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (A2) 

Where slope s=0.01 
 
Gaussian Process Regression (GPR)[115] is a supervised learning method. Its 
advantage is that it produces a probabilistic prediction in terms of a value and a 
confidence interval and can refit parts of the model if the confidence interval is too low.  
It can be interpreted as a baysian version of Support Vector Machines (SVR). Its 
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disadvantage is it is not sparse (ie uses all samples) and inefficient with a large number 
of features. 
 
Random Forest (RF) is an ensemble method which takes the average of many decision 
trees. A decision tree is a method of subdividing the data based on the values of certain 
variables. Individual decision trees tend to overfit, but RF overcomes this limitation by 
averaging the predictions of many trees. 
 
Light GBM (Gradient Boosting Machines) is an open source framework for predictions 
originally developed by Microsoft. Like RF it is also based on decision trees, but with 
histogram-based algorithms that bucket continuous feature values into discrete bins.  
 

Appendix B.3  Results 
 
Figure (11-6) shows an example of one of the forecasts. The maximum half hourly 
demand is shown in blue compared to the actual maximum in orange.  

 
Figure 11-6 Example of forecast minimum and maximum demand 

It was found that LGBM gave the best forecast. The competition took place over a 
period of 2 weeks. During the practice sessions 36 teams from all over the world took 
part. By the time of the actual competition this was down to 17 as those who were not 
doing well dropped out. On Monday of the 2nd week the author was in the lead in the 
competition as shown in figure (11-7) 
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Figure 11-7 POD Challenge standings on Monday of the 2nd week 

However, during the last week several of the other teams improved their forecasts. So, 
the author dropped to 6th place at the end as shown in figure (11-8) 

 
Figure 11-8 Final POD Challenge standings 

The winning team consisting of a professor and two PhD students from Essen 
University using Generalized Additive Methods (GAM) models, which performed 
better than their two MLPs. The 2nd placed team, 4 PhD students from Imperial College 
also used GAMS. A team of 5 from a company in Pune India was 3rd. 
 

Appendix B.4  Conclusions 
 
The competition was a good learning experience, and 6th place was not bad considering 
I was a team of 1 competing against multi-person teams who were perhaps machine 
learning experts. 
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Appendix C  Corrections following viva. 
 
This appendix contains a list of the changes made to the thesis following the viva. 
There are three tables: 

 (11-3) Minor corrections listed in the examiner’s response. 
 (11-4) Table of corrections arising from the external examiner's annotated 

copy. 
 (11-5) Other corrections identified by the author. 

 
Table 11-3 List of minor corrections to the thesis requested by the examiners. 

Comment from the examiners  How this has been addressed in the 
thesis 

Pg. 20 Paragraph 4: Heating share 
of primary energy demand in the 
UK needs to be provided on top of 
the Europe figures to align with the 
context of the thesis 

“and 36% in the UK” added to the 
paragraph with reference.  

Pg. 21 Paragraph 1: A clear 
justification of how 40 years of 
data contribute to the accuracy 
and reliability of the developed 
models needed. Discuss why such 
dataset does not add to the 
uncertainties of the models 
considering drastically changing 
weather patterns in the recent 
years. 

 

The more variation in weather 
conditions, the more likely that periods 
where high demand and low generation 
occur at the same time are captured. 
For example, a model developed using a 
warmer year with lower heating 
demand, or a windy year with high 
power generation might not cope with a 
cold, calm year. In this study 40 years of 
historic weather data are used, on the 
assumption that the weather patterns 
of the past give a guide to those of the 
future. Other research [12] has found 
the multi-decadal variability of wind 
generation based on historic weather to 
be greater than climate change impacts 
predicted by modelling, and [13] that 
the impacts on PV generation in Europe 
will be lower. 

Pg. 21 Paragraph 2: Discuss 
with clarity what is the 
rationale behind keeping all 
factors constant other than 
weather. Focus on 
technological advances that if 
ignored, can affect reliability of 
the developed methodology. 

 

If heating technology were changing 
over the analysis period, as it would be 
if historic electricity demand were used, 
then it would not be possible to tell 
which changes were due to weather and 
which to technology. Although the 
methodology developed here is used to 
study the impact of current heat pump 
technology it could equally well be used 
to keep technology constant at future 
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levels, for example if heat pump COP 
and housing insulation improves. 

Pg. 25 Last Paragraph: More 
clarification needed on what a 
single node national energy system 
means and what are the 
implications of such simplification 
on model outputs. 

 

Pg. 27, paragraph 3 expanded: They 
consider the national energy system as 
a single node and do not take into 
account that it is a complex network 
connecting sources of supply and 
demand with varying transmission 
capacities. For example, wind 
generation in the north of the UK, might 
be needed to supply demand in the 
southeast and the network needs the 
capacity to do this. In rural areas, there 
may not be enough transmission 
capacity for houses to have both electric 
vehicles and heat pumps. The results of 
the models would be less accurate if the 
transmission network were not 
upgraded to have the necessary 
capacity. These simplified models will be 
referred to as energy balance models. 

Pg. 27 Last Paragraph: 
Description of near- and 
long-term future series with 
reference to the source. 

 

Page 29, paragraph 1:  
The near-term future series includes 
wind farms that are newly built, under 
construction or approved and has been 
used in the study. The long-term future 
series also includes planned wind farms 
but was not used because it does not 
separate onshore and offshore wind. 

Pg. 29 Last Paragraph: cross-
reference to detailed and critical 
analysis of the references 
mentioned would be useful in 
helping the reader navigate 
through the thesis. 

Page 31: More detailed discussions on 
some of the references mentioned 
above are available in other parts of the 
thesis as listed below: 

 A study on how the UK could be 
powered by 100% renewable 
energy [34] is also discussed in 
section 2.1 in the background to 
heat demand and the HDD 12.8 
method. 

 A study of seven plans for a UK 
net zero energy system [19] has 
already been mentioned in table 
(1-3) in the context of energy 
storage. It also features in a 
discussion on energy modelling in 
1.2.5 and the relative proportions 
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of wind and solar generation in 
5.1 

 The two previous studies on the 
wind/solar/storage mix for the 
historic demand [41] and [52] are 
discussed in more detail in 5.1 
and chapter 7. 

 
Figure 2-3: The text above the 
figure needs modification to 
reflect HDD12.8 behaves 
differently to the rest of the 
methods 

It can be seen that the HDD 12.8 method 
matches the gas time series less well, 
overpredicting at periods of high 
demand. In contrast, the other three 
heat demand methods over predict in 
summer and consequently under predict 
in winter. 

Figure 3-4: The text below the figure 
needs modification to provide more 
details on 
why the yellow line doesn’t look right. 

As can be seen in figure (3-4) the shape 
of the RHPP derived COP curve (yellow) 
is different from the other curves. The 
COP should increase as the temperature 
difference declines, but this does not 
happen for lower temperature 
differences. Therefore, the RHPP curve 
was not used in the analysis. 

Pg. 55 Last Paragraph: ‘were used’ 
repeated 

3.3 Paragraph 1: Fixed 

Pg. 77 Last Paragraph item 1: need 
modification ‘… and more will not 
change..) 

Page 79. Fixed 

Pg. 84 Table 5-4: Last column needs 
modification to reflect years in correct 
format. 

Page 86. Done 

Pg 85: Discussion needed 
around how realistic a 
baseload of 0.4 is, and cross 
reference to the sensitivity 
section discussing 
implications 

Page 87 5.3.2: 
A figure of 0.3 for nuclear as assumed 
being between these two extremes. 
Potential UK tidal power generation is 
0.8 days [19] consisting of tidal 
barrages, lagoons and stream 
generation. Here it as assumed that 0.1 
days is built. This gives a combined 
nuclear and tidal value of 0.4 days. The 
consequences of varying this baseload 
are investigated in section 9.4. 

Section 8.2.1 Pg.147: More 
discussion and clearer statement 
supported with evidence required 
around delivery of the hydrogen 
through existing gas pipelines. 

Page 149 8.2. paragraph 1 extended: 
The industry led Leeds City Gate Project 
[22] proposed that the hydrogen could 
be produced from steam methane 
reforming of natural gas (called grey 
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What are the changes necessary, is 
it cost effective, is the whole 
approach practical or probable? 

hydrogen). The report states that both 
the medium pressure and low-pressure 
gas distribution networks have been 
modelled using network analysis 
software and that the gas networks 
“have the capacity to 100% hydrogen 
with relatively minor upgrades”. A new 
transmission system to connect 
hydrogen production into the gas 
network at a cost of £230 million would 
be required. Appliances need converting 
and there are already hydrogen ready 
gas boilers on the market. Whilst the 
approach seems to be practical, since 
this process emits CO2, it would be 
difficult to achieve a net zero energy 
system. It has to be combined with CCS 
to capture the emissions, which is 
described as blue hydrogen. A previous 
study on blue hydrogen [23] found that 
boilers using hydrogen from natural gas 
with CCS cannot achieve net zero. The 
alternative is to use hydrogen produced 
by electrolysis of water which is termed 
green hydrogen. This is what is assumed 
here. It should be noted that in a review 
of the evidence [111] (conducted after 
the work described below was 
completed), it was found that none of 
the 32 independent studies identified 
hydrogen as a viable solution for 
decarbonizing space and water heating 
in buildings. 

Possibly renaming the section 
conclusions and summary and 
having a one main conclusion 
for the thesis towards the end. 

Done 

In addition, marked up comments 
and corrections to be addressed 
are provided on an electronic 
copy of the thesis provided by the 
external examiner. 

See table (11-4) below 
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Table 11-4 Corrections arising from the external examiner's annotated copy. 

Examiners comment How it was addressed 
Page 3, para 5. Best in terms of what? “was the best” changed to most 

accurately predicted the measured data 
Page 20, para 4, what about demand 
side management? 

The intraday variability of wind and 
solar can be mitigated to a limited 
extent by demand side management, 
but to cope with the seasonal variability, 
they need to be complemented by 
energy storage. 

Page 20, para 4, rephrase This move to renewable power sources 
such as wind and solar will result in a 
migration away from burning fossil fuels 
for kinetic energy and heat energy to 
delivery of energy in the form of 
electricity. 

Page 21, para 2, rephrase Page 21: 
 How should electricity demand 

time series incorporating heating 
electrification under long-term 
weather variation be generated 
which allows heating alone to be 
studied?  

 How should an electricity 
demand time series 
incorporating electric vehicles  
under  long-term weather 
variation be generated which 
allows the impact of EV’s alone 
to be studied? 

 
Page 23, para 1, power rating 1.2.2 

 Charge rate: how quickly the 
energy can be stored. 

 Discharge rate: how quickly the 
energy can be used (related to 
power rating) 

 
Correct capitalisation of kWh, MWh, 
GWh, TWh 

Checked all 

Page 23, para 3, write out plans Page 24: New table (3-1) added 
Fig 2-2 Y axis should just be TWh Page 43: Plot fixed 
Comment for Fig 2-6 Page 46: Amended seasonality and 

mentioned HDD 12.8 
Axis labelling For Fig 2-8 bias plots Page 48: Axis labels modified 
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2.3.5 Comment added to explain grid 
resolution 

Fig 3-1 “ERA 5 reanalysis weather” Page 51: Changed to “ERA5 reanalysis 
data” 

P54 fig (3-5) show FES hybrid heat 
pump plot? 

Page 57, paragraph 1: 
Reworded to include figure number 
from referenced report, since it is not 
clear if there is permission to reproduce 
the plot from the government report. 

P56 any info about if hot water by heat 
pumps alone? 

Page 58: 
but this is not the case for at least 4% of 
the houses 

Equations (22), (23) summation? Page 26: 
Changed to use a union operator 
although it seems unclear what the 
correct mathematical notation for 
concatenation of 2 time series is. 

4.3.1 need to add nRMSE for 2017. Are 
plots available? 

Page 63: 
Reworded to show nRMSE applies to 
both years. New plot added as Fig (4-2) 
resulting in renumbering of remaining 
figures in chapter (4)  

Text below fig (4-6), now (4-7) Page 72: 
Expanded to mention weather 
dependent GHI 

P76, para 2: express in percentages, 
rather than TWh. Added a sentence 

Page 78: 
These variations are 187%, 196% and 
91% respectively. 

P79 reference to Natural gas generated 
from electricity 

Page 81: 
Reference added to Sabatier process in 
comment following equation (28) 

Renewables ninja future changes? 
Sentence added after equation (29) 

Page 82: 
The near-term future time series is used 
which includes wind farms which are 
under construction and planned in 
addition to those that already exist. 

Fig (5-1) add more arrows Page 83: 
More arrows added 

Consistency of η as % Updated tables at start of sections. 
Which other studies use days? Page 87, 5.3.2, paragraph 4: 

Reference added 
Fig (5-3) scale £/kWh Page 89: Scale corrected 
Fig (5-3) Question about production of 
too much energy. 

Page 89: 
The high cost of the configurations with 
large amounts of wind and PV is due to 
curtailment. 
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Fig (5-4) overplot both sets of results? Page 92: New fig (5-6) added and 
remaining figures in chapter 5 
renumbered.  

5.4.2 Why is max deficit different at 
high PV? 

Page 93: This is probably explained by 
the energy store emptying, as shown in 
figure (5-8) and discussed in the 
following section. 

5.4.4 charge rate GWh /h ?? Page 94: Changed to GW 
Check apostrophe in years’ 6.1 Page 98: Checked 
Fig (6-7), (6-8) common axis scale? Page 106: Plots amended to show cost 

on the same scale 
Table (7-2) comment on effect of finite 
ramp rates (w.r.t daily vs hourly) 

Page 114: For daily time series the 
charge and discharge rates will be 
averaged over a longer time period and 
so their maximum values will be smaller. 
Using daily time series averages the 
charge rate across the whole day 
leading to lower calculated ramp rates. 

Comment after (fig 7-4) – why does 
decade make more difference at 
smaller storage capacities. 

Page 115: The bigger difference at small 
storage capacities is probably due to 
variations becoming smoothed out a 
large amounts of storage because there 
is more energy available to cope with 
short term variation. 
 

Fig (7-9) comment on large PV 
difference at large PV configurations.  

Page 120: This could be because the 
Fragaki time series model more PV 
panels in the south where the weather 
is sunnier, whereas Renewables Ninja 
model a PV panel at each weather grid 
point. 

Fig (7-11) different scale so can’t tell it 
is not as large a difference as onshore 
vs off? 

Page 122: Fig (7-11) and Fig (7-10) 
redone so they have the same contour 
lines and comparable scale. 

Fig (7-12) implications for storage? Page 123: This would be expected to 
result in lower storage requirements. 

Fig (7-14) how does pattern vary? Page 125: Reference forward to 9.6 
Fourier Transforms to confirm storage 
pattern? Comment added in 7.5 
penultimate paragraph. 

Page 135: One possible area of future 
work might be to analyse the patterns in 
store state of charge shown in fig (7-20) 
and fig (7-21) using Fourier series to see 
if there are any underlying cycles (such as 
yearly). 
 

Fig (7-23) Onshore offshore patterns vs 
demand? 

Page 133: Reference forward to 9.6 
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13.67 days future wind potential seems 
small? P133 

Page 135: The existing capacity of 
offshore is 0.3 days with a potential 23 
days [19] in the future. 

Wind is very unpredictable - rephrase 
P133 

Page 136 Wind patterns are due to a 
complex interaction of many factors 

Table (9-2), why no consistent pattern? 
New paragraph added. 

Page 157: These two configurations 
have a small amount of storage, and a 
large capacity of dispatchable 
generation which can be supplied at any 
time of year. Therefore, the dominating 
factor in determining the optimal wind 
solar mix becomes how much energy is 
curtailed, rather than generating energy 
close to when it is need as has been 
seen in previous sections. The amount 
of curtailed energy is determined by 
how long the generation exceeds the 
demand.   

Figure (9-8) storage scale should have 
units 

Page 162: Units added 

Figure (9-9) storage scale should have 
units 

Page 162: Units added 

Figure (9-12) should units be days? Page 164: Units changed to days on the 
x axis 

9.6.3 what happens with hourly 
correlation, table (9.4)? 

Page 166: The Fragaki et. al. data is only 
available as a daily time series, hence 
hourly correlation is not shown. Also, 
this project is more concerned with 
long-term storage, so the intra-day 
correlations are of less importance. 

9.6.3 where have I shown that offshore 
wind correlates more closely with 
demand curve? 

Page 167: Paragraph extended to 
reference specific values from table (9-
4) in paragraph below 

Figure (9-16) 83% and 75% comment, 
don’t seem to match the plot. Also plot 
says all heat pumps not 41%. 

Page 170: Fig (9-16) and Fig (9-17) 
changed to be the 41% heat pumps ones 
to match the text. Values of wind energy 
fraction updated in text, table (9-5), and 
conclusions. 

Why is standard deviation a worse 
method for heat pumps? 

Page 172: This could be because the 
addition of heat pumps to the demand 
increases its standard deviation and if 
the peaks in the wind generation do not 
match the demand peaks then the 
optimal wind fraction could be in less.  

Future work 10.0.2 Page 180: Ramp rate, transmission 
constraints. 
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Table 11-5 other corrections identified by the author. 

P62 Paragraph 2. 4.3.4 “cooling degreed days” changed to “cooling degree days” 
P70 Fig 4-7 Y axis scale should be TWh 
P93 Table 5-11 One day’s energy should have TWh as units. 
P103 Table 6-3 41% fraction should be also 96% 
P144 Fig 8-3 Y axis scale should be TWh 
P128 table 7-14 had some incorrect values and has been updated. 
Equation (35) corrected. In 7.1 
Fig (9-14) had all heat pumps, yet text described 41% heat pumps. Figure 
corrected.  

 
 


