

Mechanisms Underlying Memory Retrieval and the Effect of Amyloid Precursor Protein in a Transgenic Mouse Model

by

Nichola Whittingham

A thesis submitted in partial fulfilment for the requirements for the degree of Doctor of Philosophy at the University of Central Lancashire

April 2024

STUDENT DECLARATION FORM

School

		UCLan
Type of Award	Doctor of Philosophy	

School of Pharmacy and Biomedical Sciences

1. Concurrent registration for two or more academic awards

I declare that while registered as a candidate for the research degree, I have not been a registered candidate or enrolled student for another award of the University or other academic or professional institution

2. Material submitted for another award

I declare that no material contained in the thesis has been used in any other submission for an academic award and is solely my own work

No proof-reading service was used in the compilation of this thesis.

Signature of Candidate

Print name NICHOLA WHITTINGHAM

ABSTRACT

Introduction

Research into Alzheimer's disease (AD) would greatly benefit from a deeper understanding of the mechanisms underlying memory retrieval. Previous studies have found impairments in memory retrieval present in very young amyloid precursor transgenic (APPtg) mice, at a stage which would be considered preclinical in humans, however, the molecular and cellular mechanisms behind this impairment are unknown. Dysfunctional amyloid precursor protein (APP) processing is thought to be central to AD pathogenesis and mutations in the APP gene are one of the leading causes of familial Alzheimer's disease (FAD).

Objective

This thesis aims to contribute to a better understanding of the mechanisms underlying memory loss in a genetically modified preclinical mouse model resembling aspects of AD. These mechanisms will be elucidated via the quantitative analysis of certain mitochondrial protein levels, identification of biochemical and cellular pathways involved in memory retrieval via proteomics analysis, analysis of the activity of various enzymes in the mouse brain in the context of memory retrieval and the quantification of key mitochondrial metabolites in the mouse brain tissue samples.

Methods

Brain tissue from a mouse model overexpressing APP with two mutations linked to FAD (APPtg), was used in this project. Four groups consisting of APPtg and wild-type (WT) mice at basal levels (with no behavioural task) and during memory retrieval (sacrificed 20 seconds after 7-day probe trial, following Morris Water Maze behavioural task) were used in this study. Purified synaptosome samples were used for western blotting, enzymatic activity assays, and proteomic analysis.

Results

Western blotting against several synaptic and mitochondrial markers revealed increased expression of VDAC1 and the mitochondrial fission and fusion proteins Drp1 and Mfn1 in the APPtg mice at both the basal level and during memory retrieval. Several complexes of the electron transport chain also showed synapse specific expression increases in the APPtg mice at both the basal levels and during the attempted retrieval of a memory.

Using a combination of tools including gene-ontology (GO), protein-protein interaction (PPI) networks and functional dependency analysis, proteomic analysis revealed that the insertion of the

APP transgene causes upregulation of proteins implicated in mitochondrial dysfunction and disease pathology in both basal and memory retrieval groups . Based on the proteomics findings, failure to upregulate proteins involved in ATP production (Ndufa7, Ndufa6, Ndufb6, Ndufb4, Ndufb2) structural support (Nefl, Ina, Gfap), proteasome complex (Psma3, Psmb2, Psma7, Psmc1, Psmd4) response to oxidative stress (Prdx3, Prdx2, Gsr, Park7, Snca), and the negative regulation of apoptotic processes (Slc25a27, Nefl, Prdx3, Prdx2, Park7, Snca) are suggested to contribute to the memory deficits in this APPtg mouse model.

Whilst these methodologies have been previously used in Alzheimer's research, performing them in the context of memory retrieval (specifically, mice sacrificed at the point of attempted memory retrieval) is novel and provides new insights into the mechanisms underlying memory loss in preclinical APPtg mice.

Future work

Further work investigating the metabolic changes in WT mice during memory retrieval, when compared to basal levels, and how these changes differ in the preclinical model of FAD, can help to identify metabolites involved in healthy memory retrieval and how they differ in FAD. Alongside this, further assessment of the activity of enzymes involved in the various stages of aerobic respiration will provide insight into the disease process, offering opportunities for testing of enzymatic response to targeted therapies which, if delivered at a preclinical stage, could provide a means to prevent of delay memory loss in AD.

TABLE OF CONTENTS

Declaration	2
Abstract	3
Table Of Contents	5
Acknowledgements	10
List Of Tables	10
List Of Figures	13
Glossary Of Abbreviations	20
Chapter 1- Introduction	23
1.1 Memory	23
1.1.1 Memory Encoding	24
1.1.2 Memory Consolidation	25
1.1.3 Memory Retrieval	27
1.2 Alzheimer's Disease	30
1.2.1 The Amyloid Hypothesis	31
1.2.2 Alternative Hypotheses	33
1.2.3 Current Treatments	34
1.3 The Role Of Mitochondria in Alzheimer's Disease	35
1.3.1. Glycolysis	36
1.3.2 The Tricarboxylic Acid Cycle	37
1.3.3 Oxidative Phosphorylation	37
1.3.4 Malate Dehydrogenase 2	39
1.3.5 6-Phosphofrictokinase	40
1.3.6 Mitochondrial Dynamics in Alzheimer's Disease	41
1.4 Metabolic Responses and their Relevance to Alzheimer's Disease	37
1.4.1 Memory-Associated Metabolic Responses and their Relevance to Alzheimer's Disease	44
1.4.2 Justification of Mitochondrial Metabolite Methodology	46
1.5 Proteomics	48
1.5.1 Testing for Multiple Comparisons	48
1.5.2 Network and Systems Biology	50
1.6 Aims And Objectives	51

Chapter 2- Methods	51
2.1 Mouse Lines	53
2.1.1 Behavioral Training	54
2.1.2 Sample Preparation	54
2.2 Western Blotting	55
2.2.1 Electrophoresis	57
2.2.2 Transfer Of Protein To Polyvinyl Fluoride Membrane	57
2.2.3 Immunodetection	58
2.2.4 Enhanced Chemiluminescence Detection	58
2.2.5 Densitometry Analysis using ImageLab	58
2.3 Optimisation of Enzymatic Activity Assays	58
2.3.1 Malate Dehydrogenase 2	61
2.3.2 6-Phosphofructokinase	62
2.3.3 Normalisation Of Assay Data Using Western Blot Data	62
2.4 Standards	63
2.5 Proteomics Mass-Spectrometry Workflow	65
2.5.1 Correction for Multiple Comparisons	65
2.5.2 Differentially Expressed Synaptic Proteins	65
2.5.3 DAVID Functional Analysis	66
2.5.4 STRING Protein Network Mapping	66
2.5.4.1 Functional Dependency Analysis	67
2.5.4.2 MATLAB and CellNetAnalyzer	67
2.5.4.3 Import And Analysis In CellNetAnalyzer	67
2.5.5 Functional Connectivity Analysis	68
2.5.6 Heatmap Generation	68
Chapter 3- Results	69
3.1 Western Blotting	69
3.1.1 Cytochrome C Oxidase Subunit 4 (COX4)	69
3.1.2 Cytochrome C	72
3.1.3 Mitochondrial ATP Synthase Subunit Alpha (ATP5A)	74
3.1.4 Succinate Dehydrogenase Complex Flavoprotein Subunit A (SDHA)	75

3.1.5 Dynamin-Related Protein 1 (DRP1)	76
3.1.6 Mitofusin 1 (MFN1)	78
3.1.7 Voltage Dependent Anion Channel 1 (VDAC1)	80
3.1.8 Postsynaptic Density Protein 95 (PSD95)	82
3.1.9 Alpha Synuclein	83
3.1.10 Ubiquinol-Cytochrome C Reductase Binding Protein (UQCRB)	84
3.2 Enzymatic Activity Assays	85
3.2.1 Optimisation of Malate Dehydrogenase 2	86
3.2.2 Malate Dehydrogenase 2 Results	87
3.2.3 Western Blotting-MDH2	89
3.2.4 Malate Dehydrogenase 2 Results Normalised to Western Blot Results	90
3.2.5 Optimisation of 6-Phosphofructokinase	91
3.2.6 6-Phosphofructokinase Results	91
3.2.7 Western Blotting- 6-PFK	95
3.2.8 6-Phosphofructokinase Results Normalised to Western Blot Results	96
3.3 Assay Optimisation	98
3.3.1 Hexokinase	99
3.3.2 Pyruvate Kinase	101
3.3.3 Pyruvate Dehydrogenase	102
3.3.4 Aconitase	103
3.3.5 Isocitrate Dehydrogenase	104
3.3.6 Fumarase	107
3.3.7 NADH-Coenzyme Q Oxidoreductase	108
3.3.8 Succinate Dehydrogenase	109
3.3.9 Cytochrome C Oxidase	110
3.3.10 ATP Synthase	111
3.4 Analysis of Mitochondrial Metabolites	114
3.4.1 Standards	115
Chapter 4- Proteomics Results	116
4.1 Key Markers	117
1.2 FDR Corrected Results	121

4.2.1 DAVID Annotations	125
4.2.2 Gene Ontology	125
4.2.3 Biological Process	125
4.2.4 Cellular Component	128
4.2.5 Molecular Function	130
4.2.6 KEGG Pathways	131
4.2.7 Functional Annotation Clustering	133
4.2.8 STRING Protein Network Mapping	135
4.2.9 Functional Dependency Analysis	139
4.3 20% Threshold Results	142
4.3.1 General Overview	142
4.3.2 Proteins Differentially Regulated Proteins At The Basal Level	144
4.3.2.1 DAVID Annotations	144
4.3.2.2 Biological Process	144
4.3.2.3 Cellular Component	145
4.3.2.4 Molecular Function	146
4.3.2.5 KEGG Pathways	147
4.3.2.6 Functional Annotation Clustering	148
4.3.2.7 STRING Protein Network Mapping	149
4.3.2.8 Functional Dependency Analysis	150
4.3.3 Differentially Regulated Proteins During Memory Retrieval	153
4.3.3.1 DAVID Annotations	168
4.3.3.2 Biological Process	168
4.3.3.3 Cellular Component	170
4.3.3.4 Molecular Function	172
4.3.3.5 KEGG Pathways	174
4.3.3.6 Functional Annotation Clustering	176
4.3.3.7 STRING Protein Network Mapping	179
4.3.3.8 Most Connected Proteins Analysis	181
4.3.3.9 Functional Dependency Analysis	183
Chapter 5- Discussion	184

5.1 Mitochondrial Dynamics	184
5.2 Electron Transport Chain	186
5.3 Metabolic Signatures of Preclinical Alzheimer's Disease	187
5.4 Proteomics Results	189
5.4.1 FDR Corrected Results	192
5.4.2 Differential Regulation Threshold Results	194
5.4.2.1 Differentially Regulated Proteins at the Basal Level	194
5.4.2.2 Differentially Regulated Proteins During Memory Retrieval	195
5.5 Study Limitations	199
5.5.1 Limitations of Wet Laboratory Research	199
5.5.2 Limitations of Computational Research	201
5.6 Future Directions	201
5.6.1 Future Directions for Wet Laboratory Research	201
5.6.1.1. Metabolomics	203
5.6.2 Future Directions for Proteomics Research	204
5.7 Conclusions and Summary of Key Findings	204
References	206
Appendix	231
Appendix A-Tables	231
Appendix B- Figures	256
Appendix C- Protocols	258
Annendiy D. Proteomics Data	263

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my supervisor, Dr. Vassilios Beglopoulos, for the privilege of working on such an interesting project with important future implications, and for his continuing support, guidance, and advice throughout my academic endeavours.

Secondly, I would like to express my deepest appreciation to Dr. Emyr Bakker for his invaluable guidance and support regarding computational biology. The computational parts of this thesis would not have been possible without you.

I would also like to thank Dr. Jioji Tabudravu, Tamar Garcia-Sorribes, and Kathryn Dickens for their advice and guidance on the metabolomics aspect of this project and allowing me to access their laboratories to complete experiments. You have provided me with confidence in an area I knew very little about. Thank you.

My special thanks to my friends and colleagues, at UCLan and outside, for their support, patience, and understanding over the past three years. I couldn't ask for better friends.

Last, but certainly not least, I am deeply grateful to my parents and my partner Luke, for their unwavering love and support throughout this entire process. Your patience through tough times is what sustained me this far. None of this would be possible without you.

LIST OF TABLES

- Table 2.1. Antibodies used for western blotting. All antibodies were purchased from Abcam.com and used at the recommended dilution.
- Table 2.2. Enzymatic activity assay kits purchased from Abcam.com.
- Table 2.3. UPLC-MS parameters used for the detection of metabolite standards.
- Table 2.4. Metabolite standards ordered for UPLC-MS analysis. All standards were ordered from Sigma-Aldrich.
- Table 3.1. Enzymatic activity kits purchased from Abcam. Table details the specific justification of why assays were deemed to have worked or not worked.
- Table 3.2. Summary of enzymatic activity assay kits purchased from Abcam, the outcome of each assay and some of the variables tested in the initial optimisation period.
- Table 3.3. Table of optimum parameters for each metabolite standard.
- Table 4.1. Table showing the numbers of differentially regulated proteins in each experimental group. Total proteins equals the number of proteins remaining after stage 1 analysis (e.g. removal of proteins with more than one missing value) but before the application of FDR. Total significant proteins equals the number of stage 1 proteins that returned a statistically significant result after FDR correction.
- Table 4.2. DAVID functional annotation clustering results for upregulated proteins in WT mice during memory retrieval (when compared to WT basal; group A). The top 5 clusters are shown, in order of enrichment score. Significant results denoted by *.
- Table 4.3. DAVID functional annotation clustering results for upregulated proteins in APPtg mice at the basal level when compared to WT mice at the basal level (group D). The top 5 clusters are shown, in order of enrichment score. Significant results denoted by *.
- Table 4.4. DAVID functional annotation clustering results. Annotation clusters present in genes downregulated in WT mice during memory retrieval (when compared to basal levels; group A). Significant results denoted by *.
- Table 4.5. DAVID functional annotation clustering results for upregulated proteins in APPtg mice at the basal level when compared to WT mice at the basal level (group D)l. The top 5 clusters are shown, in order of enrichment score. Significant results denoted by *.
- Table 4.6. Dependency matrix was manipulated to simulate a knock-out model of specific proteins. Protein KO effects on the rest of the model detailed, including the number of activations that changed.
- Table 4.7. Numbers of differentially regulated significant and non-significant proteins. Only the 20% stats are significant.
- Table 4.8. DAVID functional annotation clustering analysis results for proteins significantly differentially regulated in APPtg mice at the basal level, when compared to WT mice at the basal level (group D). Enrichment score is listed next to each cluster in brackets.
- Table 4.9. Numbers of incoming and outgoing protein interactions within APPtg mice at the basal level, when compared to WT mice at the basal level (group D).
- Table 4.10. Functional dependency matrix Knock-out results.
- Table 4.11. Proteins differentially regulated during memory retrieval in APPtg mice, when compared to WT mice during memory retrieval (group B). Mutually upregulated proteins= upregulated in both WT memory retrieval and APPtg memory retrieval. Failed to become upregulated= proteins upregulated in WT mice during

memory retrieval but were not upregulated in APPtg mice during memory retrieval. Inappropriately regulated= proteins that were upregulated during memory retrieval in APPtg mice but were not upregulated in WT mice.

Table 4.12. Differential protein regulations in APPtg mice during memory retrieval, when compared to WT mice during memory retrieval (group B).

Table 4.13. DAVID functional annotation clustering output for proteins upregulated in WT mice during memory retrieval, when compared to WT mice at the basal level (group A). Top 5 clusters are listed, in order of enrichment score.

Table 4.14. DAVID functional annotation clustering output for proteins downregulated in WT mice during memory retrieval, when compared to WT mice at the basal level (group A). The top 5 clusters are listed, in order of enrichment score.

Table 4.16. DAVID functional annotation clustering output for proteins downregulated in APPtg mice during memory retrieval, when compared to APPtg mice at the basal level (group C). The top 5 clusters are listed, in order of enrichment score.

Table 4.17. Table of the top 10 most connected proteins. Table lists the proteins with the greatest number of incoming and outgoing connections within differentially regulated proteins in APPtg mice during memory retrieval, when compared to APPtg mice at the basal level (group C).

Table 4.18. Functional dependency matrix species dependency numbers in APPtg mice during memory retrieval, when compared to APPtg mice at the basal level (group C).

LIST OF FIGURES

- Figure 1.1. Simplified main stages and cellular locations of energy metabolism. At the top of the mitochondrion are the complexes of the electron transport chain, ending in ATP synthase (CV), where ADP and Pi are combined to create ATP. NAD plays a key role in its oxidised form (NAD+) and its reduced form NADH, in carrying and transferring protons and electrons to the intermembrane space and complex 1 respectively.
- Figure 3.1. A) Immunoblot analysis of COX4 expression in P2 fraction and synaptosome samples from 16 and 12 mice respectively. WT-B= wild-type basal, WT-M= wild-type memory retrieval, APP-B= APPtg basal, APP-M=APPtg memory retrieval. Synaptophysin was used as a loading control. B) Densitometric analysis of blots shown in A (1-synaptosomes, 2-P2). Normalised protein abundance relative to Wild-type Basal average. T-testing was carried out between groups for P2 and synaptosome samples and no significant differences were found.
- Figure 3.2. A) Immunoblot analysis of cytochrome c levels in P2 fraction and synaptosome samples from 8 and 12 different mice respectively. WT-B= wild-type basal, WT-M= wild-type memory retrieval, APP-B= APPtg basal, APP-M=APPtg memory retrieval. Synaptophysin was used as a loading control. B) Densitometric analysis of blots shown in A (1- synaptosomes, 2-P2). Normalised protein abundance relative to Wild-type Basal average. T-testing was carried out between groups of synaptosome samples, and no significant differences were revealed.
- Figure 1.3. A) Immunoblot analysis of ATP5A expression in P2 fraction (1) and synaptosome samples (2) from 8 and 4 different mice respectively. WT-B= wild-type basal, WT-M= wild-type memory retrieval, APP-B= APPtg basal, APP-M=APPtg memory retrieval. Synaptophysin was used as a loading control. B) Densitometric analysis of blots shown in A (1-synaptosomes, 2-P2). Normalised protein abundance relative to Wild-type Basal average. T-testing was carried out between groups of synaptosome samples, and no significant differences were revealed.
- Figure 3.2. A) Immunoblot analysis of SDHA levels in P2 fraction and synaptosome samples from 8 and 12 different mice respectively. WT-B= wild-type basal, WT-M= wild-type memory retrieval, APP-B= APPtg basal, APP-M=APPtg memory retrieval. Synaptophysin was used as a loading control. B) Densitometric analysis of blots shown in A (1-synaptosomes, 2-P2). Normalised protein abundance relative to Wild-type Basal average. T-testing was carried out between groups of synaptosome samples, and no significant differences were revealed.
- Figure 3.3. A) Immunoblot analysis of DRP1 in P2 fraction and synaptosome samples from 8 and 12 different mice respectively. WT-B= wild-type basal, WT-M= wild-type memory retrieval, APP-B= APPtg basal, APP-M=APPtg memory retrieval. Synaptophysin was used as a loading control. B) Densitometric analysis of blots shown in A (1-synaptosomes, 2-P2). Normalised protein abundance relative to Wild-type Basal average. T-testing was carried out between groups of synaptosome samples, and no significant differences were revealed.
- Figure 3.4. A) Immunoblot analysis of MFN1 levels in P2 fraction and synaptosome samples from 8 and 11 different mice respectively. WT-B= wild-type basal, WT-M= wild-type memory retrieval, APP-B= APPtg basal, APP-M=APPtg memory retrieval. Synaptophysin was used as a loading control. B) Densitometric analysis of blots shown in A (1-synaptosomes, 2-P2). Protein abundance relative to Wild-type Basal average. T-testing was carried out between groups of synaptosome samples (n=3), and no significant differences were revealed. Figure B1 lacks error bar for 'Wild-type Memory Retrieval' group due to only two replicates included.
- Figure 3.5. A) Immunoblot analysis of VDAC1 levels in P2 fraction (1) and synaptosome samples (2) from 8 and 12 different mice respectively. WT-B= wild-type basal, WT-M= wild-type memory retrieval, APP-B= APPtg basal, APP-M=APPtg memory retrieval. Synaptophysin was used as a loading control. B) Densitometric analysis of blots shown in A (1-synaptosomes; 2-P2). Protein abundance normalised to synaptophysin, relative to Wild-

type Basal average. T-testing was carried out between groups of synaptosome samples, and no significant differences were revealed.

Figure 3.6. A) Immunoblot analysis of PSD95 in P2 fractions from 8 different mice. WT-B= wild-type basal, WT-M= wild-type memory retrieval, APP-B= APPtg basal, APP-M=APPtg memory retrieval. Synaptophysin was used as a loading control. B) Densitometric analysis of blots shown in B. Protein abundance relative to normalised Wild-type Basal levels.

Figure 3.7. A) Immunoblot analysis of alpha synuclein levels in P2 fractions from 8 different mice. WT-B= wild-type basal, WT-M= wild-type memory retrieval, APP-B= APPtg basal, APP-M=APPtg memory retrieval. Synaptophysin was used as a loading control. B) Densitometric analysis of blot shown in A. Protein abundance normalised to synaptophysin levels, relative to WT basal average.

Figure 3.8. A) Immunoblot analysis of UQCRB levels in P2 fractions from 8 different mice. WT-B= wild-type basal, WT-M= wild-type memory retrieval, APP-B= APPtg basal, APP-M=APPtg memory retrieval. Synaptophysin was used as a loading control. B) Densitometric analysis of blots shown in A (P2 fraction). Normalised protein abundance relative to Wild-type Basal average.

Figure 3.9. Kinetic graph showing activity of malate dehydrogenase. Blank= assay buffer only. Blank + lysis)= assay buffer with additional lysis buffer. Assay carried out at 25° C, pH 7.4, with 5μ g protein per sample. 16L & 24R= Wild-type memory retrieval group, total cell lysate.

Figure 3.10. Malate dehydrogenase 2 (MDH2) activity in synaptosome samples. A= MDH2 activity measured for each test sample. VG10,12,13,15= wild-type basal; VG2,4,5,8= wild-type memory retrieval; VG9,11,14,16= APPtg basal; VG1,3,6,7= APPtg memory retrieval. B= MDH2 activity measured via change in optical density per minute, measured at 450nm. Average activity calculated for each experimental group. Colour intensity at 450nm is directly proportional to MDH2 activity in each sample.

Figure 3.13. Kinetic graphs showing MDH2 activity, measured as change in optical density at 450nm per minute, over a 60-minute time frame. A= kinetic measurements of blank samples. B= kinetic measurements of sample backgrounds (no substrate). C= kinetic measurements of sample backgrounds (no substrate). D= kinetic measurements of biological samples. Assay carried out at 25°C, pH 7.4, with 5µg protein per sample.

Figure 3.14. A) Immunoblot analysis of MDH2 in synaptosome samples. Synaptophysin was used as a loading control. B) Average MDH2 expression plotted as a percentage of average wild-type basal MDH2 abundance.

Figure 3.15. Malate dehydrogenase 2 activity normalised against western blot quantification. A) normalised MDH2 activity by experimental group. No differences between groups were significant by t-test (a=0.05). B) Normalised MDH2 activity per sample. VG10,12,13,15= wild-type basal; VG2,4,5,8= wild-type memory retrieval; VG9,11,14,16= APPtg basal; VG1,3,6,7= APPtg memory retrieval.

Figure 3.16. Kinetic graph showing activity of 6-phosphofructokinase. Background= sample prepared without the addition of substrate. Background only= assay buffer. Assay carried out at 37° C, pH 7.4, with 5μ g protein per sample.

Figure 3.17. 6-PFK activity in synaptosome samples. A=6-PFK activity measured by change in optical density per minute, measured at 450nm. Average activity calculated for each experimental group. Colour intensity at 450nm is directly proportional to PFK activity present in sample. B= 6-PFK activity measured by change in

optical density per minute. Activity measured for each individual sample. VG10,12,13,15= wild-type basal; VG2,4,5,8= wild-type memory retrieval; VG9,11,14,16= APPtg basal; VG1,3,6,7= APPtg memory retrieval.

Figure 3.18. Activity of 6-PFK. Kinetic graphs measuring change in absorbance at 450nm. A= Run 1- standard curve dilutions; positive controls; absolute blank; lysis buffer blank, B= Run 2- no-substrate sample backgrounds, C= Run 3- no-substrate sample backgrounds, D= Run 4- test samples, E= test samples. Assay carried out at 37°C, pH 7.4, with 5µg protein per sample.

Figure 3.19. A) NADH standard curve used to determine the amount of NADH in each test sample. B) The enzyme activity of 6-PFK was analysed within synaptosome samples of wild-type and APPtg mice during basal levels and during memory retrieval, here calculated as amount of NADH produced per minute, per 5μ g protein. There were no significant differences identified between groups (α =0.05).

Figure 3.20. A) Immunoblot analysis of 6-PFK in synaptosome samples. Synaptophysin was used as a loading control. B) Average 6-PFK expression plotted as a percentage of average wild-type basal 6-PFK abundance.

Figure 3.21. Normalised 6-PFK activity in synaptosome samples in A) experimental groups, B) each test sample use, and C) activity expressed as the amount of NADH produced per minute, per $5\mu g$ protein. There were no significant differences identified between groups (α =0.05). VG10,12,13,15= wild-type basal; VG2,4,5,8= wild-type memory retrieval; VG9,11,14,16= APPtg basal; VG1,3,6,7= APPtg memory retrieval.

Figure 3.22. Average 6-PFK activity, normalised to western blotting results. Activity expressed as the amount of NADH produced per minute, per 5µg protein.

Figure 3.23. Kinetic graph showing activity of Hexokinase. Background WT-B= sample prepared without the addition of Hexokinase substrate. Background= only assay buffer. Assay carried out at 25° C, pH 7.4, with 5μ g protein per sample.

Figure 3.24. Kinetic graph showing activity of pyruvate kinase. 16L & 24R= test wild-type memory retrieval sample (total cell lysate). Background 16L & 24R= sample without the addition of substrate. Background= assay buffer only. Assay carried out at 25°C, pH 7.4, with 5µg protein per sample. 16L & 24R= Wild-type memory retrieval group, total cell lysate.

Figure 3.25. Kinetic graph showing activity of pyruvate dehydrogenase. Blank= assay buffer. Blank (lysis buffer)= blank with additional 3µl lysis buffer). Assay carried out at 25°C, pH 7.4, with 5µg protein per sample.

Figure 3.26. Kinetic graph showing activity of aconitase. Blank= assay buffer. Blank (lysis buffer)= blank with additional 3 μ l lysis buffer). Background, lysis + substrate= assay buffer blank with additional lysis buffer and substrate added. Assay carried out at 25°C, pH 7.4, with 5 μ g protein per sample. 16L & 24R= Wild-type memory retrieval group, total cell lysate.

Figure 3.27. Trailing different 96-well plates using NADH standards. Non developer= NADH standard alone, diluted with assay buffer. Developer= NADH standard with additional developer solution. B) non-developer and developer gained the same results exactly and therefore; results overlap on the graph. Assay carried out at 37°C, pH 7.4.

Figure 3.28. Kinetic graph showing activity of isocitrate dehydrogenase. Sample backgrounds= samples with no added substrate mix. Blank= assay buffer. Blank (lysis buffer)= blank with additional 3µl lysis buffer). Assay

carried out at 37° C, pH 7.4, with 5μ g protein per sample. 16L & 24R= Wild-type memory retrieval group, total cell lysate.

Figure 3.29. Kinetic graph showing activity of fumarase. VG4= wild-type memory retrieval. 0.5x VG4 = 0.5x volume. Background control= assay buffer only. Background control (lysis buffer)= assay buffer with additional lysis buffer. Background control (sample)= biological sample without the addition of substrate mix. Assay carried out at 25°C , pH 7.4, with 5μ g protein per sample or 2.5μ g protein ($0.5 \times \text{Vg4}$).

Figure 3.30. Kinetic graph showing activity of complex 1. Blank= incubation buffer only. Blank+ lysis buffer= incubation buffer with additional lysis buffer. $5x\ 16L=5x\ volume\ of\ 1x\ 16L\ sample$. $10x\ 16L=10x\ volume\ of\ 1x\ 16L\ sample$. Assay carried out at 25° C, pH 7.4, with $5\mu g$, $25\mu g$ or $50\mu g$ protein per sample. $16L\ 24R=Wild-type\ memory\ retrieval\ group$, total cell lysate.

Figure 3.31. Kinetic graph showing activity of complex II. Blank= assay buffer only. Blank+ lysis buffer= assay buffer with additional lysis buffer. Assay carried out at 25°C, pH 7.4, with 5µg protein per sample.

Figure 3.32. Kinetic graph showing activity of complex IV. 16L= Wild-type memory retrieval group, total cell lysate. Blank= incubation buffer only. Blank+ lysis buffer= incubation buffer with additional lysis buffer. Assay carried out at 25° C, pH 7.4, with 5µg, 20µg or 80µg protein per sample.

Figure 3.33 . Kinetic graph showing activity of complex V. WT-B (1/5)= 1/5th volume of standard $5\mu g$ WT-B (= $1\mu g$). Blank= assay buffer only. Blank+ lysis buffer=assay buffer with additional lysis buffer. Assay carried out at 25° C, pH 7.4, with $1\mu g$ or $5\mu g$ per sample.

Figure 3.34. Mass spectra of derivatised citric acid and pyruvic acid.

Figure 4.1. Raw LFQ (label-free quantitation) intensities for proteins targeted in western blot analysis. LFQ intensity shown for each of the experimental groups. Each group has 4 biological replicates.

Figure 4.2. LFQ (label-free quantitation) values for enzymes used for enzymatic activity assays. LFQ intensity shown for each experimental group. Each group has 4 biological replicates.

Figure 4.3. LFQ values for enzymes used for enzymatic activity assays. LFQ intensity shown for each experimental group. Each group has 4 biological replicates.

Figure 4.4. A) Differentially expressed proteins in WT mice at the point of memory retrieval, when compared to basal levels. Red plots denote statistical significance (p<0.05). A total of 1354 proteins were included in the plot, following FDR correction. B) Differentially expressed proteins in APPtg mice during memory retrieval, when compared to WT mice during memory retrieval. A total of 1480 proteins were included in the plot, after FDR correction. There are no statistically significant plots. C) Differentially expressed proteins in APPtg mice during memory retrieval, when compared to the basal levels. A total of 1497 proteins were included in the plot, following FDR correction. There are no statistically significant plots. D) Differentially expressed proteins in APPtg mice at Basal levels, when compared to WT controls. Red plots are statistically significant (p<0.05). A total of 1454 proteins were included in the plot, following FDR correction.

Figure 4.5 DAVID GO-term enrichment analysis. Table presents the top 5 biological processes enriched in upregulated proteins in WT mice during memory retrieval (when compared to WT basal levels; group A). Significant results denoted by *.

Figure 4.6. DAVID GO-term enrichment analysis. Table presents the top 5 biological processes enriched in upregulated proteins in APPtg mice during basal levels (when compared to WT mice during basal levels; group D). Significant results denoted by *.

- Figure 4.7. DAVID GO-term enrichment analysis results for proteins downregulated in WT mice during memory retrieval (when compared to WT mice during basal levels; group A). Significant results denoted by *.
- Figure 4.8. DAVID GO-term enrichment analysis. Table presents the top 5 biological processes enriched in downregulated proteins in APPtg mice during basal levels (when compared to WT mice during basal levels; group D). Significant results denoted by *.
- Figure 4.9. DAVID GO-term results. Table represents the cellular components enriched in upregulated proteins in WT mice during memory retrieval (when compared to WT mice at basal levels; group A). The top 5 results are shown, in order of significance. Significant results denoted by *.
- Figure 4.10. DAVID GO-term enrichment analysis. Table presents the top 5 cellular components enriched in upregulated proteins in APPtg mice during basal levels (when compared to WT mice during basal levels; group D). Significant results denoted by *.
- Figure 4.11. DAVID GO-term enrichment analysis. Table presents the top 5 cellular components enriched in downregulated proteins in APPtg mice during basal levels (when compared to WT mice during basal levels). Significant results denoted by *.
- Figure 4.12. DAVID GO-term enrichment analysis results. Table presents the top enriched molecular processes in proteins upregulated in WT mice during memory retrieval (when compared to basal levels; group A). Significant results denoted by *.
- Figure 4.13. Table of DAVID enriched KEGG pathways identified in upregulated proteins in WT mice during memory retrieval (when compared to basal levels; group A). Significant results denoted by *.
- Figure 4.14. Table of DAVID enriched KEGG pathways identified in upregulated proteins in APPtg mice at the basal level (when compared to WT counterparts; group D). Significant results denoted by *.
- Figure 4.15. STRING protein connection network for proteins significantly downregulated in wild-type mice during memory retrieval (when compared to basal levels; group A).
- Figure 4.16. STRING PPI map for proteins significantly upregulated in wild-type mice during memory retrieval (when compared to basal levels; group A).
- Figure 4.17. STRING protein network map for proteins upregulated in APPtg mice during basal levels, when compared to WT mice at the basal level (group D).
- Figure 4.18. STRING PPI network map for proteins significantly downregulated in APPtg mice at the basal level, when compared to WT mice at the basal level (group D).
- Figure 4.19. Functional dependency matrix for protein-protein interactions in proteins upregulated in APPtg mice at the basal level, when compared to WT mice at the basal level (group D). Black= no relationship. Dark green= strong activation of X-axis node by Y-axis node. Dark red= strong inhibition of X-axis node by Y-axis node.
- Figure 4.20. Differentially expressed proteins after application of 20% regulation threshold. Upregulated= all proteins with a positive fold change, 20% upregulated= all proteins with positive fold change of 20% or above.
- Figure 4.21. DAVID GO biological process results for proteins upregulated and downregulated in APPtg mice at the basal level, when compared to wild-type mice at the basal level (group D). Significant results denoted by *. Blue= downregulated proteins, Orange= upregulated proteins.
- Figure 4.22. DAVID GO analysis- enriched cellular component annotations within differentially expressed proteins in APPtg mice at the basal level, when compared to WT mice at the basal level (group D). Significance denoted by *. Blue= downregulated proteins, Orange= upregulated proteins.

- Figure 4.23. DAVID GO term annotations for associated molecular functions enriched in APPtg mice at the basal level, when compared to WT mice at the basal level (group D). Significance denoted by *. Blue= downregulated proteins, Orange= upregulated proteins.
- Figure 4.24. DAVID KEGG Pathway results for proteins differentially regulated in APPtg mice at the basal level, when compared to WT mice at the basal level (group D). Significance is denoted by *. Blue= downregulated proteins, Orange= upregulated proteins.
- Figure 4.25. Functional dependency matrix for upregulated expressed proteins at the basal level in APPtg mic (when compared to WT mice at the basal level; group D). Y-axis labels are in reverse order to x-axis (starting from Lin7a and finishing with Cryab. Overlapping species labels can be deduced from X-axis labels.
- Figure 4.26. DAVID GO enrichment analysis output for enriched biological processes within proteins that fail to become upregulated or become upregulated in APPtg mice during memory retrieval but are not upregulated in WT mice during memory retrieval. Significant results denoted by *. Blue= proteins upregulated when they shouldn't be, Orange= proteins that fail to become upregulated.
- Figure 4.27. DAVID GO enrichment analysis output for enriched cellular components within proteins that fail to become upregulated or become upregulated in APPtg mice during memory retrieval but are not upregulated in WT mice during memory retrieval. Significant results denoted by *. Blue= proteins that fail to become upregulated, Orange= proteins upregulated when they shouldn't be.
- Figure 4.28. DAVID GO enrichment analysis output for enriched biological processes within proteins that fail to become downregulated or become downregulated in APPtg mice during memory retrieval but are not downregulated in WT mice during memory retrieval. Significant results denoted by *. Blue= proteins downregulated when they shouldn't be, Orange= proteins that fail to become downregulated.
- Figure 4.29. DAVID GO enrichment analysis output for enriched cellular components within proteins that fail to become downregulated or become downregulated in APPtg mice during memory retrieval but are not downregulated in WT mice during memory retrieval. Significant results denoted by *. Blue= proteins that fail to become downregulated, Orange= proteins that are downregulated when they shouldn't be.
- Figure 4.30. DAVID GO enrichment analysis output for enriched molecular functions within proteins that fail to become downregulated or become downregulated in APPtg mice during memory retrieval but are not downregulated in WT mice during memory retrieval. Significant results denoted by *. Blue= proteins downregulated when they shouldn't be, Orange= proteins that fail to become downregulated.
- Figure 4.31. Electron transport chain protein expression during memory retrieval in each experimental condition. Protein expression expressed as a percentage of WT basal expression levels, in terms of fold change. 1.2= 120%-fold change. Red= highest fold change, green= smallest fold change
- Figure 4.32. Expression levels of key proteins involved in mitochondrial dynamics in each experimental condition. Protein expression expressed as a percentage of WT basal, in terms of fold change. 1.5= 150% fold change. Yellow- highest fold change, dark blue/black= smallest fold change.
- Figure 4.33. DAVID GO term enrichment analysis results for enriched biological processes within proteins differentially regulated in WT mice during memory retrieval, when compared to WT mice at the basal level (group A). Significant results are denoted by *. Blue= downregulated proteins, Orange= upregulated proteins.
- Figure 4.34. DAVID GO term enrichment analysis results for biological processes enriched within proteins differentially regulated in APPtg mice during memory retrieval, when compared to APPtg mice at the basal level. Significant results denoted by *. Blue= downregulated proteins, Orange= upregulated proteins.
- Figure 4.35. DAVID GO term enrichment analysis results for enriched cellular components within WT mice during memory retrieval, when compared to WT mice at the basal level (group A). Significant results denoted by *. Blue= downregulated proteins, Orange= upregulated proteins.

Figure 4.36. DAVID GO term enrichment analysis results for enriched cellular components within APPtg mice during memory retrieval, when compared to APPtg mice at the basal level (group C). Significant results denoted by *. Blue= downregulated proteins, Orange= upregulated proteins.

Figure 4.37. DAVID GO term enrichment analysis results for molecular functions enriched within differentially regulated proteins in WT mice during memory retrieval, compared to WT mice at the basal level (group A). Significant results denoted by *. Blue= downregulated proteins, Orange= upregulated proteins.

Figure 4.38. DAVID GO term enrichment analysis results for molecular functions enriched within differentially regulated proteins in APPtg mice during memory retrieval, when compared to APPtg mice at the basal level (group C). Significant results are denoted with *.Blue= downregulated proteins, Orange= upregulated proteins.

Figure 4.39. DAVID enrichment analysis results. Top 10 enriched KEGG pathways in differentially regulated proteins in WT mice during memory retrieval, when compared to WT mice at the basal level (group A). Significant results denoted by *. Blue= downregulated proteins, Orange= upregulated.

Figure 4.40. DAVID enrichment analysis results. Table lists top 10 enriched KEGG pathways in differentially regulated proteins in APPtg mice during memory retrieval, when compared to APPtg mice at the basal level. Significant results donated by *. Blue= downregulated proteins, Orange= upregulated proteins.

Figure 4.41. STRING network map of proteins upregulated during memory retrieval in WT mice, when compared to basal levels (group A). All interactions are of the highest confidence interaction score (0.900+). Line thickness indicates strength of data support for each interaction. PPI Enrichment Value <1.0e-16.

Figure 4.42. STRING network maps of protein upregulated in APPtg mice during memory retrieval when compared to basal levels (group C). All interactions are of the highest confidence interaction score (0.900+). Line thickness indicates strength of data support for interaction. PPI Enrichment Value <1.0e-16.

Figure 4.43. Functional dependency matrix for upregulated proteins in APPtg mice during memory retrieval. Dependencies show the effect of the X node on the Y node. Figure includes all significantly upregulated and significantly downregulated proteins which pass the 20% regulation threshold.

GLOSSARY OF ABBREVIATIONS

2-DG- 2-deoxyglucose

AD- Alzheimer's disease

ADP- Adenosine diphosphate

AMP- Adenosine monophosphate

AMPA- Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropioinic acid

AMPARs- AMPA-type glutamate receptors

AMPK- AMP-activated protein kinase

AMPK- AMP-dependent protein kinase

ANOVA- Analysis of variance

APP- Amyloid precursor protein

Aß- Amyloid beta

AßPP- Amyloid beta precursor protein

ATP- Adenosine triphosphate

ATP5A- Mitochondrial ATP synthase subunit alpha

BCA- Bicinchoninic acid assay

BP- Biological process

c-NADP-MDH- Cytosolic NADP+ dependent

CA- Cornu ammonis

Ca²⁺- Calcium (minus 2 electrons)

cAco- Cytosolic

CaMKII- Calcium/calmodulin-dependent kinase II

cAMP- Cyclic adenosine monophosphate

CC- Cellular component

CcO- Cytochrome C oxidase

CI-AMPARs- Calcium-impermeable AMPAR

CNA- CellNetAnalyzer

COX4- Cytochrome C oxidase subunit 4

CP-AMPAR- Calcium-permeable AMPAR

CRE- CREB-responsive element

CREB- cAMP response element-binding protein

CSF- Cerebrospinal fluid

DAVID- Database for Annotation, Visualisation, and Integrated Discovery

DEPs- Differentially expressed proteins

DG- Dentate gyrus

DRP1- Dynamin-related protein 1

DTT- Dithiothreitol

ECL- Enhanced chemiluminescence

EOAD- Early-onset familial AD

ETC- Electron transport chain

FAD- Familial Alzheimer's disease

FADH₂- Flavin adenine dinucleotide

FAMEs- Fatty acid methyl esters

FDA- Food and Drug Administration

FDR- False discovery rate

FH- Fumarate hydratase

Fis1- Mitochondrial fission protein 1

GC-MS- Gas chromatography- mass spectrometry

GO- Gene ontology

GR- Glucocorticoid receptor

H.M- Henry Molaison

hAPP- Human APP

HK- Hexokinase

HP- Hippocampus proper

HRP- Horseradish peroxidase F

IMM- Inner mitochondrial membrane

KEGG- Kyoto encyclopedia of genes and genomes

KO- Knock-out

LC- Liquid chromatography

LFQ- Label-free quantification

LTM- Long-term memory

LTMs- Long-term memories

LTP- Long-term potentiation

m-NADP-MDH- Mitochondrial NADP+ dependent

mAco- Mitochondrial aconitase

MADD- MAP-kinase activating death domain

MAL- L-malate

MAPKs- Mitogen-activated protein kinases

MCI- Mild cognitive impairment

MDH- Malate dehydrogenase

MDH1- Cytosolic malate dehydrogenase 1

MDH2- Mitochondrial malate dehydrogenase 2

MEK- Upstream activator of MAPK

MeOX- Methoxyamine hydrochloride

MF- Molecular function

Mff- Mitochondrial fission factor

Mfn1- Mitochondrial fusion protein 1

Mfn2- Mitochondrial fusion protein 2

mGluR- Metabotropic receptors

MS- Mass spectrometry

MSTFA- N-methyl-N-(trimethylsilyl)-trifluoroacetamide

mtDNA- Mitochondrial DNA

Mtfp1- Mitochondrial fission process 1

Mtfr1I- Mitochondiral fission regulator 1 like

MTT- Multiple trace theory

MW- Molecular weight

NAD- Nicotinamide adenine dinucleotide

NAD*- Oxidised nicotinamide adenine dinucleotide

NADH- Nicotinamide adenine dinucleotide (+Hydrogen atom)

NADP*- Nicotinamide adenine dinucleotide phosphate

NFT- Neurofibrillary tangle

NMDA- N-methyl-D-Aspartate

NMDAR- N-methyl-D-aspartate-type glutamate receptor

OAA- Oxaloacetate

OD- Optical density

OMM- Outer mitochondrial membrane

Opa1- Optic atrophy protein

OXPHOS- Oxidative phosphorylation

PDC- Pyruvate dehydrogenase complex

PDGF-ß- Platelet-derived growth factor beta

PDH- Pyruvate dehydrogenase

PEP- Posterior error probability

PET- Positron emission tomography

PFK- Phosphofructokinase

PFK-L- Phosphofructokinase (liver)

PFK-M- Phosphofructokinase (muscle)

PFK-P- Phosphofructokinase (platelet)

PFK1- Phosphofructokinase 1

PFK2- Phosphofructokinase 2

PK- Pyruvate kinase

PKA- Protein kinase A

PPI- Protein-protein interaction

PPPs- Protein phosphatases

PS- Presenilin

PS1- Presenilin 1

PS2- Presenilin 2

PSD- Postsynaptic density

PSD95- Postsynaptic density protein 95

PVDF- Polyvinylidene fluoride

ROS- Reactive oxygen species

SDH- Succinate dehydrogenase

SDHA- Succinate dehydrogenase complex flavoprotein subunit A

sEH- Hepatic soluble epoxide hydrolase

SEM- Standard error of the mean

STM- Short-term memory

STRING- Search Tool for the Retrieval of Interacting Genes

TCA- Tricarboxylic acid

UPLC-MS- Ultra-performance liquid chromatography-mass spectrometry

UQCRB- Ubiquinol-cytochrome C reductase binding protein

VDAC1- Voltage dependent anion channel 1

WT- Wild type

CHAPTER 1- INTRODUCTION

1.1 Memory

The primary function of the brain is to process and store information relating to the environment and control behavioural responses to this information. Over 3000 different cell types have been catalogued in the human brain, including excitatory neurons (the most abundant), inhibitory neurons, and glial cells, which together respond to the environment whilst maintaining functional connectivity and homeostasis (Conroy., 2023; Kennedy., 2013). Each excitatory neuron receives thousands of synaptic inputs and makes thousands of synaptic connections with other neurons. There are estimated to be over 85 billion neurons in the human brain, which allow us to carry out a multitude of complex cognitive functions essential for our survival including memory- the ability to retain information and recall it at a later time (Herculano-Houzel., 2009). Memories effectively shape our identities through guiding our thoughts and decisions, and influencing our emotional responses (Bisaz, et al., 2014).

The study of learning and memory has been at the forefront of three disciplines: philosophy, psychology, and more recently, biology (Squire., 2009). But what is memory? Psychologists define memory as 'the faculty of encoding, storing, and retrieving information,' divided into three main categories: sensory, short-term, and long-term (Squire, 2009). Each type of memory has its own qualities; sensory information is not consciously controlled, short-term memory has a finite storage capacity, and long-term memory has an unlimited storage capacity (Cowan., 2008). More recently, however, memory is beginning to be understood as a neuro-chemical process, which includes conditioning and stored experiences, occurring on a synaptic level in most organisms (Zlotnik & Vansintian., 2019).

In 1957, the modern era of memory research began, with studies by Milner, who documented the effects of a bilateral medial temporal lobe (including the hippocampus) resection on an epileptic patient, Henry Gustav Molaison, known as H.M, who exhibited significant forgetfulness following the surgery. The study's main findings led to the development of three principles which still guide research today: 1) memory is a distinct cerebral function and is separate from other cognitive abilities, 2) immediate memory does not require the medial temporal lobe, and 3) the structures that were damaged during H.M's surgery are not the ultimate repository of memory (Scoville & Milner., 1957). Milner's work was closely followed by the discovery of place cells (underlie spatial memory and navigation; 1971), the discovery of long-term potentiation (suggesting memories may be encoded in the strength of synaptic signals between neurons; 1973), the development of an

animal model of human memory impairment (1978), and evidence of multiple memory systems (1980). Efforts to achieve a working animal model of human memory impairment by Mishkin (1978) were initially successful and were followed by years of behavioural and anatomical studies, identifying the anatomical elements of the medial temporal lobe memory system, which supports declarative memory. Declarative memory is the first type of memory, focussed on facts, people, places, objects, and events. Non-declarative memory, the second type of memory, is focussed on perceptual and motor skills, and habit learning (Squire & Zola-Morgan., 1991). Eric Kandel (1981), in his Nobel prize winning studies, presented classical conditioning as a simple form of memory storage, observable on a molecular level within very simple organisms (classical conditioning was first defined by the psychologist, Pavlov, and defined on a molecular and cellular level by Kandel). His work extended the definition of memory to contain the storage of information within neural networks in different regions of the brain.

The hippocampus is a complex brain structure, located deep inside the temporal lobe. The hippocampus is formed from three distinct zones: the dentate gyrus (DG), hippocampus proper (HP), and the subiculum (Fogwe, Reddy & Mesfin., 2022). The HP is divided into the cornu ammonis (CA) 1 (CA1), CA2, CA3 and CA4 regions and is responsible for episodic memory (memory of events). These hippocampal sub-regions play an important role in the generation of episodic memory and would later be proven essential for learning, declarative memory, and spatial navigation, with long-term potentiation (the neural substrate of memory) first discovered in the region (Voss et al., 2017; Anand & Dhikav., 2012). The hippocampus is one of the earliest and most severely affected structures in neuropsychiatric disorders such as Alzheimer's disease (AD) ,(Rao et al., 2022), and damage to the hippocampal structures in humans leads to the impairment of memories formed from material learnt up to a month prior to the damage (Squire., 2009).

The key to understanding memory in its entirety is the question of how memories are formed, consolidated, and retrieved. In most organisms, long-term storage of memories occurs on a synaptic level, but in more complex organisms, like mankind, there is a second, more complex form of consolidation- systems consolidation (Zlotnik & Vansintjan., 2019). Systems consolidation relocates, processes, and stores memories more permanently (Frankland & Bontempi., 2005). There are many modern-day models of memory consolidation, which will be further discussed in the following sections. Although much is known about memory, the specific molecular and cellular mechanisms underlying encoding, consolidation, and retrieval are yet to be fully understood.

1.1.1 Memory Encoding

Whilst conducting research into the loss of memory, the primary and most devastating symptom of neurodegenerative disease, it is vital to first understand how a memory is formed, consolidated, and retrieved in a cognitively healthy individual so that we may begin to therapeutically target the aberrant pathologies in disease patients. The process of memory encoding begins with the processing of external stimuli from one or more sensory organs by the frontal lobe (predominantly the dorsolateral prefrontal cortex) and the parietal lobe of the cerebral cortex. The frontal lobe plays a vital role in establishing the sustained patterns of increased glutamatergic transmission that represent the information being received, and the functional organisation of the frontal lobe provides valuable information surrounding the nature of those representations (Postle & Pasternak., 2009). Information no longer accessible from the environment is then actively retained as shortterm memory (STM) in a subset of neurons called an engram. STM allows recall for a period of several seconds to a minute without the need for rehearsal of the information, however, the estimated capacity of STM is generally thought to be only 7 ± 2 items, leaving information highly vulnerable to interference (Miller, 1956; Cowan, 2001). STM represents the initial, highly fragile phase of memory storage, which has limited capacity and duration. For the committal of information to long-term memory (LTM), repetition and synaptic-remodelling must be carried out, formally known as memory consolidation.

1.1.2 Memory Consolidation

It is widely accepted that memories must undergo a process of consolidation before committal to LTM. Immediately after learning, memories are temporary, susceptible to interference or trauma, and cannot be transformed into a more stable, LTM until consolidation has occurred. Consolidation is typically described as a process in which memories are reorganised with the passing of time, gradually lessening the dependence on the hippocampus for their storage and retrieval, until a more permanent memory is developed in alternate regions of the neocortex (Squire et al., 2015). Memory consolidation can be divided into two processes: synaptic consolidation (cellular mechanisms) and systems consolidation (reorganisation of neural circuits). A major mechanism by which experience-generated neural activity can modify brain function is synaptic plasticity- a series of synaptic transmission modifications. The long-term potentiation (LTP) of excitatory synaptic transmission, an experience-dependent and long-lasting strengthening of synaptic transmission, is one of the most important types of synaptic plasticity in memory consolidation (Goto., 2022). LTP can be divided into two main phases, early-LTP and late-LTP. One of the most well-characterised methods of LTP is early-LTP, which is dependent on N-methyl-D-aspartate-type glutamate receptor (NMDAR) in the CA1 region of the hippocampus. Ca²⁺ floods into the postsynaptic compartment during early-LTP

induction through NMDARs, activating calcium/calmodulin-dependent kinase II (CaMKII), which causes the phosphorylation of several proteins, including AMPA-type glutamate receptors (AMPARs) (Derkach et al., 1999). Phosphorylation of AMPAR subunits causes an increase in AMPAR channel conductance and the increase in CaMKII activity contributes to the insertion of AMPARs, leading to the potentiation of synapses (Hayashi et al., 2000). Concomitantly, new dendritic spines are formed, and the abundance of existing spines increases, leading to a modification of synaptic function (Engert and Bonhoeffer, 1999, Okamoto et al., 2004, Maletic-Savatic et al., 1999; Matsuzaki et al., 2004). The process of early-LTP occurs within hours and involves the stabilisation of changes in synaptic connectivity.

The onset of late-LTP is accompanied by the activation of adenylyl cyclase, triggered by the intracellular increase of Ca^{2+,} resulting in an increased cAMP concentration. Protein kinase A (PKA) and mitogen-activated protein kinases (MAPKs) are activated in response to elevated intracellular cAMP. PKA translocates to the nucleus and phosphorylates the transcription factor cAMP response element-binding protein (CREB), ultimately triggering the transcription of genes containing CREBresponsive element (CRE), such as immediate early genes, kinases such as CaMKII and protein kinase Mzeta (Luis & Ryan., 2022). Proteins encoded by these genes act as upstream initiators of signalling pathways stemming from the membranes of dendritic spines to the postsynaptic density (PSD) and further in protein activation cascades (Zhu et al., 2016). Protein activation is most commonly enabled via phosphorylation, where phosphorylation cascades result in protein synthesis in the PSD, actin polymerisation, and alpha-amino-3-hydroxy-5-methyl-4-isoazolepropionic acid (AMPA) receptor trafficking on the spine membrane (Bosch et al., 2014). LTP can become more resistant to depotentiation stimuli 100 minutes after formation, (Fujii et al., 1991), in a process called synaptic consolidation. Synaptic consolidation was originally thought to be explained by protein synthesisdependent transport of postsynaptic density (PSD) scaffolding proteins to the synapses (Bosch et al., 2014, Frankland and Bontempi, 2005), however, memory storage does not end here. Consolidation can occur on a systems level, where memories that were initially dependent on the hippocampus are reorganised over time, until their dependence on the hippocampus is lessened and they are stored more permanently in the neocortex (Squire et al., 2015).

Today, there are many models of systems consolidation. For example, the standard model of consolidation proposes that the neocortex encodes and stores long-term memories (LTMs) via the strengthening of connections. It posits that the hippocampus supports the neocortex in doing so until the cortical connections are strong enough to become fully independent of the hippocampus and thus the hippocampus is no longer essential for the retrieval of remote, LTMs, only those which have yet to be consolidated (Alvarez & Squire., 1994). Multiple trace theory (MTT) was proposed in

1997 by Nadel and Moscovitch, which suggested the continued involvement of the hippocampus in the retrieval of all episodic memories (personal experiences that can be explicitly stated or conjured). It posits that upon each reactivation of a memory, a unique, contextually rich episodic memory trace (or code) is created within the hippocampus. It also suggests that memory traces created within the cortex are semantic and context-free, implying hippocampal involvement in the retrieval of all remote, episodic memories, independent of the age of the memory (Hintzman & Block., 1971; Hintzman., 1986, 1990; Versace et al., 2014; Briglia et al., 2018). Reactivation of hippocampal memory traces is thought to lead to the restoration of waking neural activity patterns, stabilizing existing hippocampal-cortical circuits. This process must occur several times for gradual remodelling of hippocampal-cortical circuits to occur, providing sites of permanent storage in the cortex (Frankland and Bontempi, 2005). Testing of these theories posed a significant challenge until the recent development of optogenetics, enabling researchers to modify specific cells to express light-sensitive ion channels, allowing the precise characterisation and manipulation of cellular functions (Emiliani, Entcheva & Hedrich., 2022). Even with the availability of optogenetic methodologies, there are still many avenues to be explored and understood before a more detailed and accurate model of consolidation can be formed.

1.1.3 Memory Retrieval

Memory retrieval is a highly regulated, complex process which aims to re-access previously stored information and its specific expression patterns in the brain. It is well documented that a wide range of molecular events underlie the different stages of memory formation and consolidation, however little is known about the molecular requirements of memory retrieval. This is perhaps surprising considering that retrieval is the first stage of memory to deteriorate in transgenic mouse models of AD, as demonstrated by Beglopoulos et al (2016) and Roy et al (2016). Research into memory retrieval falls into two main categories: research at the systems level or the molecular level.

Research at the systems level began with Semon (1921; 1923), who introduced the theory that reactivation of the memory-specific engram (population of neuronal cells which undergo persistent chemical and/or physical changes after exposure to specific experience), by cues available from the time of the experience, are required to induce memory retrieval. Studies in a pre-clinical mouse model of AD by Beglopoulos et al (2016) revealed that pre-pathological PDAPP mice (3-4 months old; express human APP with Indiana mutations (APPV717F); show absence of A β plaques via immunohistochemistry), who exhibited normal learning in a spatial memory task, displayed faster forgetting following performance to a pre-determined criterion than WT littermate mice. Memory

deficits were later rescued by immunotherapy with an anti-beta-amyloid antibody, suggesting that encoding and consolidation was largely normal, however, the ability to access and retrieve stored information was impacted (for a more detailed overview of this study, see section 1.4.1). Supporting evidence by Roy et al (2016) used transgenic mouse models of early AD to show that direct optogenetic activation of engram cells in the hippocampus resulted in the retrieval of memories in mice that were previously amnesic during long-term memory testing, even in the presence of retrieval cues. The authors directly induced long-term potentiation at perforant path synapses of DG engram cells, which restored LTM and dendritic spine density, restoring the memory. They proposed the restoration of dendritic spine density to be a mechanism of potential treatment of memory loss in the early stages of AD. Riedel et al (1999) reviewed the role of the hippocampus in retrieval via spatial memory tasking. They found that temporary inactivation of the hippocampus prior to memory testing impaired recall, suggesting the hippocampus to play an important role in retrieval.

Whilst research into the molecular mechanisms underlying retrieval is limited, progress into the initial events leading to retrieval has been made. Memory retrieval requires a coordinated chain of molecular events that occur on the synaptic level, supporting the temporary reactivation of neuronal networks previously established during consolidation (Szapiro et al., 2002; Rugg et al., 2015). Various neurobiological and behavioural theories about the mechanisms underlying memory retrieval have been developed over the past decades, focussing on specific molecular changes and brain regions. Studies by Szapiro et al (2000) found that blocking hippocampal AMPA/kainite receptors 10 minutes before memory-recall testing and the inactivation of AMPA/kainite receptors in a separate trial in rats, both impaired the retrieval of inhibitory avoidance responses, suggesting their involvement in retrieval mechanisms. The authors continued their studies by blocking metabotropic (mGluR) receptors using specific mGluR antagonists before memory retrieval testing, which was found to also prevent the retrieval of contextual fear memories. Additionally, the pre-test infusion of MEK (an upstream activator of MAPK) and a PKA inhibitor intrahippocampally effectively blocked memory retrieval. Memory retrieval was also associated with a rapid and selective increase in the levels of activated forms of p42 and p44 MAPKs in total hippocampal extracts of rats who performed very well during retrieval testing, highlighting the involvement of MAPK and PKA pathways in memory retrieval. The results of this study suggest that glutamate release, associated with testing, is critical for long-term memory retrieval and likely acts through mGluRs and AMPA/kainite receptors, which activate PKA and MAPK signalling cascades. The activity of such protein kinases implicated in memory retrieval, such as PKA, MAPKs and protein kinase C are modulated by dopaminergic D1, serotonergic-1A, beta-noradrenergic, and cholinergic muscarinic receptors in the hippocampus. Memory retrieval has historically been associated with changes in AMPAR, activated by glutamate,

the most prevalent neurotransmitter in the brain. The first studies on the role of AMPAR in memory retrieval studied AMPAR activation (Liang., 1991). Most AMPARs in the brain contain the GluA2 subunit, however, a small group of AMPARs which lack GluA2, termed calcium permeable AMPARs (CP-AMPAR), are associated with single-channel conductance. Calcium-impermeable AMPARs (CI-AMPARs) containing the GluA2 subunit play a role in basal synaptic transmission and have greater stability at the synapse. During memory retrieval and LTP associated processes, major synaptic changes occur at synapses strongly involved in memory retrieval, consisting of the rapid exchange of CI-AMPARs to CP-AMPARs. Blocking the synaptic removal of GluA2-containing CI-AMPARs during memory retrieval was shown to prevent the exchange of AMPAR composition, destabilising synaptic strength and resulting memory (Hong et al., 2013). Lopez at al (2015) theorised that protein synthesis to maintain pools of proteins was necessary for memory retrieval. They discussed the involvement of these proteins in activity-induced trafficking of AMPARs to the postsynaptic density and the subsequent need for these proteins to be replaced in order for retrieval to be completed. Using specific protein synthesis inhibitors (rapamycin or anisomycin), administered in the amygdala 10 minutes before memory testing, they demonstrated the impairment of memory expression. This proposed that memory retrieval requires ongoing protein synthesis and NMDAR activity-mediated AMPAR trafficking is required for the retrieval of fear memories.

Studies by Vianna et al (2000) highlighted the role of protein kinase isoenzymes in memory retrieval within inhibitory avoidance memory tasks in rats. Their results showed that inhibitors of the calcium-dependent isoforms, alpha and beta, blocked memory retrieval when infused into the CA1 region of the hippocampus 10 minutes before retrieval testing, highlighting their involvement in retrieval. Due to the rapid effect of protein synthesis inhibitors on memory retrieval, it is logical to assume that the proteins involved are locally translated at the synapse, with a rapid turnover rate. The period between the onset of conditioned stimulus and behavioural memory expression is a few seconds at most, indicating the continual synthesis of proteins necessary for memory retrieval by the specific synapses involved in the memory trace (Lopez et al., 2015). Once retrieval is initiated, sustenance of the protein pools required for effective retrieval requires ongoing protein synthesis. Introduction of a protein synthesis inhibitor would be manifested as an impairment in the previously learnt memory.

Research into memory retrieval has uncovered the involvement of glutamate receptors, cAMP-dependent protein kinase and mitogen-activated protein kinases, alongside the requirement of AMPA receptors. It has also shed light on the modulation by dopamine D1, beta noradrenergic, serotonin 1A and cholinergic neurons. Despite recent advancements, there are still many aspects of retrieval we do not yet understand, such as which processes are unquestionably involved, and which processes could be the most crucial. Elucidating the mechanisms that contribute to memory

retrieval failure in AD will allow for the potential development of cognitive therapies, drug development or optogenetic retrieval mechanisms to mitigate the devastating loss of precious memories.

1.2 Alzheimer's Disease

Alzheimer's disease (AD), an irreversible, complex, multifactorial disease characterised by extensive cortical atrophy, is the most common disorder involving the loss of memory (Emmady & Tadi., 2021). AD is the most common type of dementia, comprising 60-80% of cases worldwide, (Duong et al., 2017), and predominantly effecting the elderly population. As of 2022, there are over 55 million people living with dementia worldwide and this figure is projected to almost double every year, equating to 139 million people by 2050 (Alzheimer's Disease International., 2022). The total cost of care for dementia patients in the UK alone is over 33.7 billion, and with a new case presenting every 3.2 seconds, finding a cost-effective treatment is of the utmost importance to relieve some of the economic pressures (Alzheimer's Society., 2019). The risk of developing AD increases drastically with age: 34.6% of the population over the age of 85 currently have Alzheimer's dementia, (Alzheimer's Association., 2021), and this figure is projected to increase drastically over the next 25 years (Prince et al., 2014).

AD is defined pathologically by two main cellular hallmarks: the deposition of extracellular aggregates of amyloid- β protein (amyloid plaques) which interfere with neuronal communication, and the presence of paired helical filaments of hyperphosphorylated tau protein within neurons (neurofibrillary tangles; NFTs), which block the transportation of nutrients and other molecules essential for neuronal survival (Emmady & Tadi., 2021; Furcila et al., 2019). Amyloid precursor protein (APP) is a type 1 integral membrane protein, and its expression is most concentrated in the synapses of neurons. Whilst the primary function of APP is unknown, it is thought to be implicated in the regulation of synapse formation and synaptic plasticity. Both APP and A β , its by-product, have been found to translocate inside mitochondria and play a role in mitochondrial dysfunction (Hoe, Lee & Pak, 2012). In 1991, the first mutation in the APP gene was discovered, closely followed by the discovery of mutaitons in presenilin 1 (PS1) and presenilin 2 (PS2). Together, these genes are responsible for the cleavage of APP into A β fragments of differing lengths, and mutations in these genes favour the production of longer fragments that accumulate abnormally in the brain, forming amyloid plaques (Chen et al., 2017). Plaques and NFTs are predominantly found in the entorhinal cortex, neocortex, and hippocampal formation, where their abundance and the proportion of

affected cortex progresses with the advancement of disease, although it is still currently unknown which protein is the primary trigger for neurodegeneration (Furcila et al., 2019).

AD can be separated into two main types, sporadic and familial. Familial AD (FAD) has an age of onset in the mid-40s and -50s and is caused by mutations in amyloid β precursor protein (A β PP), PS1 or PS2 encoding genes, representing the minority of AD cases (Quan et al,. 2020). Mutations within the APP gene account for 10-15% of early-onset familial AD (EOAD) cases and many of these mutations lie in or adjacent to the major component of amyloid plaques, the A β peptide sequence (Bekris et al., 2010). Sporadic AD accounts for more than 95% of cases and its onset is significantly influenced by a combination of environmental, lifestyle and genetic risk factors. The strongest genetic risk factor sporadic AD is apolipoprotein E ϵ 4 allele, increasing the risk in homozygotes by as much as 15% (Raulin et al., 2022).

According to the National Institute on Aging (2011), AD may be divided into 3 basic stages: preclinical, mild cognitive impairment (MCI) and Alzheimer's dementia. During the pre-clinical stage, amyloid plaque build-up and other neuronal alterations have begun, but noticeable symptoms have yet to occur as the brain is able to compensate for the changes it is encountering, enabling normal functionality. Biomarkers for pre-clinical stages include abnormal beta-amyloid levels (detected using positron emission tomography (PET) scanning and cerebrospinal fluid (CSF) analysis), CSF and plasma tau protein changes, and decreased glucose metabolism as shown via PET scans (Alzheimers Association., 2023). Persons in the MCI stage have impairments in memory and cognitive abilities that are more advanced than what is typical for their age and educational status. These changes are not yet severe enough to interfere with normal daily functioning, but may be apparent to the sufferer, their close friends and family (Langa & Devine., 2014). MCI does not always progress to AD. The final stage, Alzheimer's dementia, presents symptoms including memory loss, visual and spatial problems, and behavioural changes, which are significant enough to impair a person's ability to function independently. In this late stage of disease, bodily functions become compromised, eventually leading to death most commonly by bronchitis, pneumonia, or acute myocardial infarction (Sakurai et al., 2023). Without any disease modifying treatments succeeding at clinical trial, AD presents one of the greatest global health challenges to date.

1.2.1 The Amyloid Hypothesis

Whilst several hypotheses for the pathogenesis of AD have been proposed over the past two decades, the amyloid hypothesis, proposed by Hardy and Allsop (1991), has been the prevailing concept underlying AD research among experts for the past 25 years (Kametani & Hasegawa., 2018).

The initial idea for the hypothesis came from researchers who had previously studied prion proteins, identifying similarities between amyloid plaques and causal entities in Creutzfeldt-Jakobs disease (Morris, Clark & Vissel., 2014). It posits that the deposition of toxic amyloid-beta (A β) aggregates in the brain initiates a cascade of neurodegenerative processes, leading to the loss of memory and cognitive ability seen in AD (Makin, 2018). The hypothesis states that in healthy aged subjects, A β undergoes excision from APP by β -secretase and γ -secretase, where it is subsequently released outside the cell for rapid degradation or removal. However, in AD patients, or aged subjects, A β fragments may begin to accumulate due to a decreased metabolic activity (Kametani & Hasegawa., 2018). This accumulation of A β oligomers is postulated to directly trigger formation of amyloid plaques and NFTs, synapse loss, neuronal death and neuroinflammation in regions concerned with learning and memory, notably the hippocampus. As the abundance of amyloid plaques increases, synaptic and neuronal loss progresses, eventually leading to disease (Morris, Clark & Vissel., 2014).

Although the amyloid hypothesis has dominated modern AD research, many clinical trials of antiamyloidogenic agents have failed and a growing body of evidence is being amassed that disputes its core principles (Selkoe & Hardy., 2016). For example, various immunotherapy studies which targeted Aβ in mouse models of AD were effective in decreasing Aβ deposits in the brain but failed to improve symptoms of the disease and accumulation of tau (Ostrowitzki et al., 2012; Giacobini and Gold, 2013; Doody et al., 2014; Salloway et al., 2014). Additionally, studies by Kim et al (2007; 2013) using BRI2- $A\beta$ mice demonstrated that, despite the presence of $A\beta$ oligomers and fibrils and the development of amyloid plaques, no neuronal degeneration or impairment of cognitive function was observed, indicating that Aβ42 and its oligomers are not cytotoxic. Recent advances in imaging technologies have revealed the presence of amyloid deposits in non-demented individuals and very few deposits in AD patients (Morris et al., 2010; Edison et al., 2007; Li et al., 2008). In fact, the distribution of amyloid plaques in the brains of aged, non-demented patients can be just as widespread as that of AD patients, suggesting $A\beta$ deposition to be a normal phenomenon of ageing (Davis et al., 1999; Fagan et al., 2009; Prince et al., 2009; Chetelat et al., 2013). Current data supports the notion that the aberrant expression and processing of APP may in some cases cause familial AD, and that excessive Aβ can be toxic. However, it does not support the conclusion that sporadic instances of AD are caused by aberrant A β expression thus alternative hypotheses of AD pathogenesis have gained steadily growing support (Morris, Clark & Vissel., 2014).

1.2.2 Alternative Hypotheses

Many alternative hypotheses for the pathogenesis of AD exist and are beyond the scope of this project and therefore, only those which are relevant to the project will be detailed.

An alternative hypothesis for AD, which focusses on the processing of Aβ rather than Aβ aggregates themselves, is the presenilin hypothesis, proposed by Shen and Kelleher (2007). According to the hypothesis, neurodegeneration and dementia are linked to the loss of Presenilin 1 (PS1) essential functions. The intermembranous protein PS1 is a component of y secretase, which cleaves a plethora of type 1 transmembrane proteins including APP to generate Aβ peptides and notch (Kurkinen et al., 2023; Kelleher., 2017). Through a dominant-negative mechanism, pathogenic mutations in presenilin (PS) partly impair both γ secretase -dependent and -independent functions (Weggen & Beher., 2012; Veugelen et al., 2016). Elevated levels of Aβ, particularly Aβ42 (42 amino acid length), are produced by PS or APP mutations (perhaps in conjunction with sporadic AD), which can work to suppress PS function and mimic the effects of PS mutations. The partial loss of PS and y secretase activity increases the synthesis of Aβ42, and Aβ42-mediated inhibition can create a vicious cycle, progressively worsening PS impairment (Shen & Kelleher., 2007). This decline in PS function leads to synaptic dysfunction, including alterations in molecular signalling events such as impairments of N-methyl-D-aspartate (NMDA) receptor-mediated function and deficits in synaptic plasticity. Ultimately, loss of essential PS function leads to progressive neurodegeneration (Saura et al., 2004). The hypothesis was motivated by earlier genetic discoveries that showed PS to be crucial for learning, memory, and neuronal survival during ageing in the adult mouse cerebral cortex (Saura et al., 2004; Watanabe et al., 2012). Subsequent studies showed PS1 mutations often result in loss of PS1 function and that more severe PS1 mutations eliminated γ secretase activity and A β production in the mouse brain, further supporting the hypothesis (Kelleher., 2017).

The **tau hypothesis** states that the aggregation of hyperphosphorylated tau protein impairs neuronal axons and reduces the affinity of tau to microtubules, thereby negatively influencing synaptic plasticity (Du, Wang & Geng., 2018). Abnormal interaction of hyperphosphorylated tau with filamentous actin induces the mis-stabilisation of actin, mitochondrial integrity deficits, and synaptic impairment (Kametani & Hasegawa., 2018). This propagation of tau pathology in the medial temporal lobe, specifically the entorhinal cortex, is strongly correlated with the severity of cognitive decline and the manifestation of clinical symptoms, to a greater extent than A β production. It has been reported that A β accumulation occurs after the appearance of tau lesions, providing support for the hypothesis (Braak & Del Tredici., 2014).

The **mitochondrial cascade hypothesis** provides an underlying framework for AD pathology and aims to extrapolate the amyloid cascade hypothesis to also cover sporadic forms of AD, instead of limiting itself to familial forms of the disease. According to the hypothesis, a person's genetically inherited mitochondrial starting line, along with their genetically and environmentally defined rate of mitochondrial decline, is the factor that defines the age at which neurological disease manifests itself (Swerdlow, Burns & Khan, 2013). It suggests mitochondrial dysfunction as an early event in sporadic forms of AD, enhancing pathologies that ultimately lead to neuronal death. Evidence has shown that soluble $A\beta$ plaques can localize to mitochondrial membranes, altering their structures and causing a reduction in respiratory capacity and adenosine triphosphate (ATP) generation, alongside the generation of reactive oxygen species (ROS), leading to mitochondrial damage and neuronal incapacitation (Reddy & Beal, 2008).

The pathological alterations in AD are complicated and varied. Despite many criticisms, the amyloid hypothesis is still hugely influential today, although it has been built upon, modified, and challenged by researchers and alternative hypotheses over the years. AD is a complex and multifactorial disease, best explained by a combination of hypotheses.

1.2.3 Current treatments

There is currently no cure for Alzheimer's disease, however, several drugs have been approved for the temporary reduction in symptoms by modulating either acetylcholine or glutamate (Medscape., 2023). Cholinesterase inhibitors are commonly prescribed for mild to moderate AD and help control cognitive and behavioural symptoms. Cholinesterase inhibitors prevent the breakdown of acetylcholine, leading to increased neuronal transmission and a temporary stabilisation in symptoms (NIH., 2023). The most recently approved treatments are anti-amyloid drugs, including Lecanemab and Aducanumab, derived from mouse studies, which reduce the amyloid burden in patients. The medications function as monoclonal antibodies, removing Aβ fibrils (Lecanemab) and soluble oligomers (Aducanumab) which disrupts the pathogenic processes vital to the progression of AD. (Verger et al., 2023). NMDA antagonists are used to slow neurotoxicity in moderate to severe AD. NMDA antagonists block NMDA glutamate receptors, preventing the excessive activation of glutamine receptors, known to cause neuronal loss (Kuns, Rosani & Varghese., 2023). Whilst these treatments are effective at slowing cognitive decline in patients, research must continue in attempts to understand the molecular mechanisms underlying AD, with the hopes that new and effective cures will be identified along the way.

1.3 The role of mitochondria in Alzheimer's disease

Mitochondria are cellular organelles composed of two membranes, the outer mitochondrial membrane (OMM) and the inner mitochondrial membrane (IMM), surrounding the inner matrix. The outer membrane of mitochondria is porous and freely crossed by ions and small, uncharged molecules through porin membrane proteins such as the voltage-dependent anion channel (VDAC; Bayrhuber et al.,2008). Proteins and larger molecules are imported into the mitochondria via translocases (Kuhlbrandt., 2015). The IMM houses respiratory chain complexes which produce energy for the body via oxidative phosphorylation (OXPHOS), which generates an inner membrane potential used by ATP synthase (complex V) to synthesize ATP (figure 1.1). This process is entirely dependent on reducing equivalents produced via the tricarboxylic acid cycle (TCA) or β -oxidation in the mitochondrial matrix (Stock et al., 2000). The morphology and position of mitochondria within the cell are of crucial importance to cell function and are regulated by intricately balanced processes of fission and fusion, biogenesis, and autophagy, which work together to ensure a consistent and healthy mitochondrial population (Osellame et al., 2012). Mitochondrial dysfunction is implicated in metabolic and age-related disorders as well as neurodegenerative diseases (Johri & Beal., 2012).

Mitochondria communicate with the rest of the cell via four prominent mechanisms including the release of cytochrome C to induce cell death, the activation of AMP-activated protein kinase (AMPK) to control fission and fusion, production of ROS for transcription factor activation and the release of mitochondrial DNA (mtDNA) for the activation of immune response. A fifth mechanism, the release of TCA cycle metabolites, is known to control chromatin modifications, DNA methylation, post-translational modification of proteins and control cell cycle fate and mitochondrial function (Martinez-Reyes & Chandel., 2020).

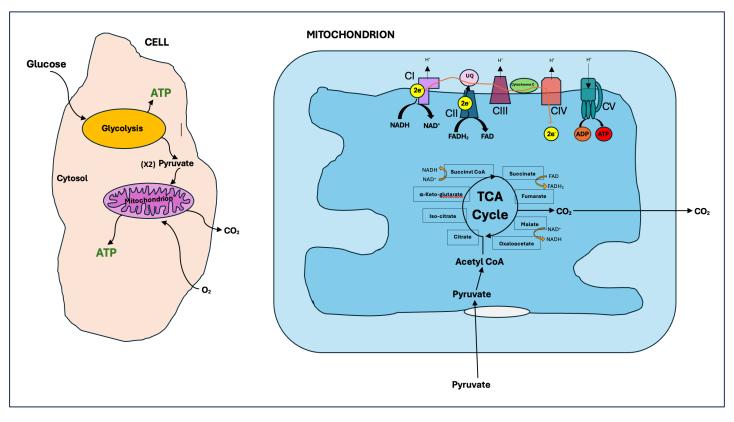


Figure 1.1. Simplified main stages and cellular locations of energy metabolism. At the top of the mitochondrion are the complexes of the electron transport chain, ending in ATP synthase (CV), where ADP and Pi are combined to create ATP. NAD plays a key role in its oxidised form (NAD+) and its reduced form NADH, in carrying and transferring protons and electrons to the intermembrane space and complex 1 respectively.

1.3.1 Glycolysis

Glycolysis is the cytosolic pathway in which a single molecule of glucose is catabolised into two molecules of pyruvate (figure 1.1), with the additional production of two molecules of ATP and nicotinamide adenine dinucleotide (NADH). Pyruvate from glycolysis is then metabolised in mitochondrial respiration to produce the ATP needed to sustain the brain and body (Zhang, Alshakhshir & Zhao., 2021). Glycolysis consists of two main phases: the investment stage (where ATP is consumed) and the payoff phase (where ATP is produced), (Chandel., 2021). First, glucose is converted into glucose-6-phospahte by hexokinase or glucokinase, using ATP and a phosphate group. Glucose-6-phosphate is then converted into fructose-6-phosphate by phosphoglucose isomerase. Next, phosphofructokinase (PFK) uses ATP to produce fructose-1,6-bisphosphate, which is then converted into dihydroxyacetone phosphate and glyceraldehyde 3-phosphate by fructose bisphosphate aldolase. Dihydroxyacetone phosphate is later converted into glyceraldehyde-3-phosphate by triosephosphate isomerase. Glyceraldehyde-3-phosphate becomes oxidised into 1,3-bisphospoglycerate, reducing NAD+ into NADH and H+ 1,3-bisphosphoglycerate will turn into 3-phosphoglycerate by phosphoglycerate kinase, alongside the production of the first molecule of ATP.

3-phosphoglycerate then converts into 2-phosphoglycerate, catalysed by phosphoglycerate mutase. Enolase then converts 2-phosphoglycerate into phosphoenolpyruvate, releasing one molecule of H₂O. Pyruvate kinase will finally remove a phosphate group from phosphoenolpyruvate, creating the second ATP of glycolysis (Chaudhry &Varacallo., 2023).

1.3.2 The Tricarboxylic Acid Cycle

In neurons (and other mitochondria-containing cells) pyruvate, the product of glycolysis in the cytoplasm, diffuses under aerobic conditions into mitochondria, where it enters the TCA cycle, a central metabolic pathway which oxidises nutrients to support cellular bioenergetics (Melkonian & Schury, 2021). The TCA cycle is composed of eight enzymes within the mitochondrial matrix, with the exception of succinate dehydrogenase, which is related to the electron transport chain (ETC) and thus is located on the IMM. In a series of enzymatic reactions, the reducing equivalents NADH and flavin adenine dinucleotide (FADH₂), required for the transfer of electrons to the mitochondrial ETC, are produced (Melkonian & Schury, 2021; figure 1.1). The initiating reaction for each turn of the TCA cycle is the condensation of oxaloacetate (OAA) with acetyl-CoA, generating citrate, catalysed by citrate synthase (Araujo et al., 2012). Citrate is then converted into isocitrate by aconitase 2. Next, isocitrate undergoes decarboxylation into alpha-ketoglutarate in an NAD+ dependent manner, catalysed by isocitrate dehydrogenase, in an NADP+ dependent manner, coupled with the release of CO₂ (Foyer, Noctor & Hodges., 2011). Alpha-ketoglutarate is decarboxylated by oxoglutarate dehydrogenase complex into succinyl-CoA, producing NADH and releasing CO₂. Succinyl-CoA is then converted to succinate by succinyl-CoA synthetase, coupled to the production of ATP in the only substrate-level phosphorylation step in the cycle. Succinate is further converted into fumarate by succinate dehydrogenase complex, which participates in both the TCA cycle and the ETC (Figueroa et al., 2001). Succinate dehydrogenase complex reduces flavin adenine dinucleotide, which donates two electrons to complex II of the ETC. Fumarate is converted into malate by fumarate hydratase, followed by the conversion of malate to OAA by malate dehydrogenase 2, regenerating the starting molecule to allow for subsequent turns of the cycle (Arnold & Finley., 2023). The completion of the cycle and production of ATP, NADH and flavin adenine dinucleotide feed into the ETC complex I and II, which pass their electrons through the ETC to produce ATP through OXPHOS (Martinez-Reyes & Chandel., 2020).

1.3.3 Oxidative Phosphorylation

The oxidative phosphorylation (OXPHOS) system in mitochondria is the final biochemical pathway producing ATP by the consumption of oxygen. Electrons from complexes I (NADH ubiquinone oxidoreductase, contains 42 subunits including Ndufa2 & Ndufa12) and II (Succinate ubiquinone oxidoreductase, contains three structural subunits: SDHA, SDHB, SDHD) are transferred to complex III (ubiquinol cytochrome C reductase, contains 11 subunits including UQCRB) by Coenzyme Q (glycerophosphate dehydrogenase) and the electron transferring flavoprotein. Electrons are then transferred from complex III to oxygen via cytochrome C and complex IV (cytochrome c oxidase (COX), contains 13 subunits including COX4) whilst an electrochemical proton gradient is simultaneously built across the IMM (figure 1.1). Generated proton motive force is used by complex V (ATP synthase) to produce ATP (Lanzillotta et al., 2019)

Enzymatic activity of the mitochondrial ETC has two additional effects; firstly, the generation of the inner membrane potential which is essential for mitochondrial import of nuclear encoded proteins and may reflect the health status of both the mitochondria and the cell. Secondly, the leakage of electrons from the ETC components is a contributor to the generation of reactive oxygen species (ROS), considered a by-product of bioenergetic pathways (Quinlan et al., 2013). In non-diseased states, ROS production is usually balanced by antioxidant systems, an equilibrium which becomes unbalanced during neurodegenerative disease, negatively effecting proteins involved in OXPHOS.

Dysfunction of single enzyme complexes of the respiratory pathways (glycolysis, TCA cycle, ETC) are frequently followed by loss of mitochondrial membrane potential, increased ROS production, and reduced ATP production. It is believed to critically contribute to the onset and progression of neurodegenerative pathology in AD (Bilsland et al., 2008). Deficiency of several key mitochondrial enzymes is well documented in AD, including enzymes involved in the TCA cycle such as ketoglutarate dehydrogenase, and pyruvate dehydrogenase, alongside enzymes involved in the ETC, such as cytochrome oxidase (Lanzillotta et al., 2019). Mitochondria are regulators of both the metabolism of energy and cell death pathways, highlighting their essential role in the survival or death of neurons (Moreira et al., 2010). Many adult-onset neurodegenerative diseases, including AD are characterised by the impairment of bioenergetics followed by disease related pathologies, suggesting mitochondrial dysfunction as a plausible hypothesis of AD (Yao & Brinton., 2011). Twelve enzymes were chosen to be studied, each from glycolysis, the TCA cycle or OXPHOS, in order to gain an overview of neuronal metabolic health. Of the enzymes chosen (chosen due to compatibility with sample type, cost, kit availability), two enzymatic activity assay kits were deemed functional/compatible with sample type after optimisation and therefore will be focussed on throughout this thesis; 6-phosphofructokinase, which catalyses the first committed step of

glycolysis, and mitochondrial malate dehydrogenase 2, a key enzyme of the TCA cycle. The enzymatic activity of these enzymes was measured, as detailed in the methods section.

1.3.4 Malate Dehydrogenase 2

Malate dehydrogenase (MDH) is a member of the nucleotide binding protein family, commonly termed nicotinamide adenine dinucleotide (NAD)-dependent dehydrogenases, or oxidoreductases (McCue & Finzel., 2022). There are two types of mammalian MDHs, cytosolic malate dehydrogenase 1 (MDH1), and mitochondrial malate dehydrogenase 2 (MDH2). MDH2 catalyses the oxidisation of Lmalate (MAL) into oxaloacetate (OAA) in the citric acid cycle, simultaneously producing NAD+ through the oxidation of NADH, and driving glycolysis (Priestly et al., 2022). There are three different MDH2 isoforms in mammals, based on their nucleotide specificity and cellular compartment: cytosolic NADP+ dependent (c-NADP-MDH), mitochondrial NADP+ dependent (m-NADP-MDH), and mitochondrial NADP+ dependent (m-NAD-MDH) (Hung, Kuo, Chang & Lui., 2005). MDH2, the mitochondrial isoform, plays a critical role in preserving the NAD+/NADH ratio between the mitochondria and the cytosol, through the reversible, NADH dependent catalysis of the oxidation of L-malate (MAL) to oxaloacetate (OAA) in the TCA cycle (Dasika, Vinnakota & Beard., 2015; McCue & Finzel, 2022). Catalysis of the unfavourable reactions by MDH2 necessitates the timely elimination of the product OAA in advance of the backwards reaction taking place (Mullinax et al., 1982). NAD is reduced to NADH throughout the process, driving OXPHOS and crowning MDH2 an integral enzyme in energy homeostasis for the cell (Priestly et al., 2022).

The quaternary structure of m-NADP-MDH is a dimer of dimers, with stronger interactions at the dimer interface than the tetramer interface. Each monomer contains two independent binding sitesthe active site and a separate, extra-nucleotide allosteric binding site, termed the exosite (Yang, Lanks & Tong., 2002). m-NADP-MDH has a complex regulatory system involving quaternary structure interconversion via ligand binding. The dissociation of the enzyme complex into dimers causes diminished enzyme activity, whilst the tetrameric organization is essential for full catalytic capacity. Activity is highly controlled by the energy status of the cell and is attributable to the sensitivity of the adenosine diphosphate (ADP)/ATP ratio as well as TCA cycle metabolites (Hsieh, Shih & Kuo., 2019). This specific ligand regulation is carried out by several molecules including NAD⁺ and fumarate, which activate m-NADP-MDH under millimolar concentrations, triggering the conversion of malate to pyruvate, eventually leading to the production of ATP via the TCA cycle (Hsieh, Shih & Kuo, 2019). Kinetic studies have shown that NAD⁺ and fumarate trigger such changes by binding allosterically to the enzyme, promoting reorganization of tetramers, thus activating the catalytic effects (Hung, Kuo,

Chang & Liu, 2005). Conversely, ATP can bind to the active site as a competitive inhibitor, but also allosterically binds to the exosite, causing the enzyme to dissociate into dimers, suppressing the enzymatic activity (Yang, Lanks & Tong., 2002). ATP suppresses the enzyme activity in this way when cells have sufficient ATP, as a negative feedback control for the metabolic pathway, preventing the generation of excess energy (Xu et al., 1999). When already bound to ATP, the additional binding of fumarate causes significantly more structural dissociation. However, binding of fumarate to the ATP-malate-bound enzyme causes rapid reassociation to the tetrameric form and increased enzymatic activity (Hsieh, Shih & Kuo, 2019).

In AD, disturbances in cellular metabolism, coupled with the accumulation of toxic beta-amyloid, may disrupt the normal allosteric regulation of MDH2, impairing the ability of the enzyme to appropriately respond to changing cellular demands. Decreased glucose and pyruvate availability may limit the supply of NADH, impeding the conversion of OAA into MAL and disrupting the flow of TCA cycle intermediates.

1.3.5 6-Phosphofructokinase

The Phosphofructokinases, phosphofructokinase 1 (PFK1), and phosphofructokinase 2 (PFK2), are tetrameric enzymes that together, in the presence of ATP, catalyse the first committed step of glycolysis- the phosphorylation of fructose-6-phosphate to fructose-2,6-diphosphate at position 1 (Brüser et al., 2012). The conversion of fructose-1,6-bisphosphate is catalysed by PFK1, while PFK2 catalyses the transfer of phosphate from adenosine triphosphate (ATP) to the second carbon of fructose-6-phopshate, generating fructose-2,6-bisphosphate (Raben., 2013). Fructose-2,6-bisphosphate is a stimulator of PFK1 through its capacity to heighten the affinity of PFK1 for fructose-6-phosphate, and diminish the reaction-inhibiting ability of ATP, thus regulating PFK1 activity (Litwack, 2018). PFK2 is a bifunctional enzyme with kinase and phosphatase activity. The kinase activity is inhibited by phosphorylation and the phosphatase activity is stimulated by phosphorylation (Patel & Harris, 2023). Thus, the same enzyme can covert fructose-6-phosphate to fructose-2,6-bisphosphate in the non-phosphorylated state and convert fructose-2,6-bisphosphate to fructose-6-phosphate in the phosphorylated state (Litwack, 2018)

There are three major mammalian isoforms of PFK1: PFK-M (muscle), PFK-L (liver) and PFK-P (platelet). All human tissues express each of the three isoforms in differing ratios, except for muscle tissues, which only express PFK-M (Fernandes et al., 2020). PFK2 has four known isoforms, identified in the liver, heart, brain and testis (Watanabe & Furuya, 1999). In eukaryotes, the N-terminal region

of the PFK1 enzyme is the mediator of its catalytic function, whilst the C-terminal region contains allosteric ligand binding sites, thought to have evolved from catalytic and regulatory sites from ancestral prokaryotic PFK (Brüser et al., 2012). Mammalian PFK is commonly accepted to have 4 active sites and 12 allosteric bindings sites; the structure of which suggest that one allosteric site may be specialised for small molecular regulators, such as citrate and phosphoenolpyruvate, and the other for AMP (adenosine monophosphate)/ADP (adenosine diphosphate), (Fernandes et al., 2020).

PFK activity is modulated allosterically by a variety of ligands, including the reaction products, its substrates, and more than 10 different metabolites, which fine-tune glycolytic activity to meet metabolic demands (Webb et al., 2015; Zancan et al., 2008). All three PFK1 isoforms show this ligand-dependent regulation, including sensitivity to inhibition by ATP and activation by the fructose-6-phosphate substrate (Webb et al., 2017). Mammalian PFK undergoes a complex regulatory process, switching assembly between monomers, dimers, and tetramers to tightly adjust cellular glycolytic activity in response to changing metabolic conditions (Webb et al., 2017). Enzyme formation and activity are directly correlated, as the PFK1 dimer exhibits minimal catalytic activity, whilst tetrameric forms exhibit full activity (Webb et al., 2017; Fernandes et al., 2020; Sola-Penna et al., 2010). Specific ligands favour the formation of the dimeric or tetrameric form of PFK1, with significant changes to the activity of the enzyme (Sola-Penna et al., 2010; Webb et al., 2015). Citrate, for example, favours the dissociation of tetramers, inhibiting the enzyme, whilst ADP and fructose-6phosphate stabilize the tetrameric conformation, impeding the effects of citrate. Interestingly, ATP has a dual effect on PFK1, acting as an activator up to concentrations of 1mM, and an allosteric inhibitor at higher concentrations (Zancan et al., 2008). PFK1 is almost totally inactive under normal physiological concentrations of substrates and effectors, unless concentrations of fructose-2,6bisphosphate rise, relieving the inhibition by ATP and allowing cells to maintain high glycolytic activity, even in the presence of ATP (Hue & Rider, 1987). Inhibition by ATP is part of a negative feedback loop that limits glycolytic flux when under aerobic conditions (Ros & Schulze, 2013).

In AD, conditions of oxidative stress may alter the availability of reducing factors, known to slow the dissociation of the active tetrameric form of PFK via allosteric binding sites (Fernandes., 2018). Limited availability of reducing factors would therefore lead to diminished PFK activity and a reduction in the glycolytic activity of the cell, contributing to glucose hypometabolism in AD.

1.3.6 Mitochondrial Dynamics in Alzheimer's Disease

Neurons, especially at the synapse, are dependent on mitochondria for fulfilment of their high energy requirements and the buffering of Ca²⁺ ion concentration, both of which are essential for effective neurotransmission and generation of axonal membrane potential. Healthy mitochondria regulate the homeostasis of Ca²⁺, a key regulator of neuronal plasticity and synaptic activity (Clavo-Rodrigues et al., 2020). Impaired regulation may lead to the influx of Ca²⁺ into the mitochondria, increasing ROS production, inhibiting ATP production, and triggering apoptosis- the foundations of neurodegeneration (Cali, Ottolini & Brini., 2012).

Mitochondria are highly dynamic organelles, constantly changing shape by two interchangeable processes known as fission and fusion, which regulate the morphology and structure of the mitochondrial network (a dynamic tubular network extended through the cytosol), (Cenini & Voos., 2019). Fission, mediated by proteins including the dynamin-related protein 1 (DRP1), is the fragmentation of large mitochondria into smaller ones and typically occurs when the cell needs to eliminate damaged mitochondria. As the metabolic needs of the cell change, mitochondria may increase their numbers or form interconnected networks via the fission process, maintaining the quality and bioenergetic functioning of mitochondria. Fusion is the process in which two mitochondria fuse together and exchange inner materials such as proteins and growth factors through the cytosol, effectively maintaining a healthy mitochondrial population. Fusion is mediated by a number of proteins including the GTPase dynamin-like proteins mitofusin 1 (Mfn1), mitofusin 2 (mfn2) and optic atrophy protein 1 (Opa1; Ranieri et al., 2013). Any modification to the structure of mitochondria can have drastic effects on the biogenesis of ATP, paving the way for neurodegenerative disease (Panchal & Tiwari, 2019).

Further to this, correct and efficient transport of mitochondria to the synaptic terminals is vital for their proper functioning (Cenini & Voos, 2019). Mitochondria can quickly switch between anterograde and retrograde movement and may be shifted between moving or stationary phases by changes in intracellular signalling or axonal growth. Thus, the mitochondrial membrane machinery must consist of motors, sensors, and anchoring proteins (Hollebeck & Saxton., 2005). The axonal transport of mitochondria via microtubules is also influenced by the metabolic demand and Ca²⁺ status at the synaptic level (Sheng & Cai., 2012).

1.4 Metabolic Responses and their Relevance to Alzheimer's Disease

As previously discussed, neurons are highly dependent on mitochondria for fulfilment of their high energy demands. They are also highly intolerant of insufficient energy supply, predisposing the brain

to disease if supplies are disrupted. Glucose, the obligatory brain fuel, fulfils many critical functions including the production of ATP, management of oxidative stress, and the synthesis of neurotransmitters, neuromodulators, and structural components (Mergenthaler et al., 2013). Decreased glucose availability has been shown to induce significant downregulation of glycosylation, an important mechanism of secondary protein processing within cells. Moreover, glycosylation may act as a metabolic sensor that can link the metabolism of glucose to normal neuronal functioning (Bukke et al., 2020). Independent of the amyloid cascade hypothesis, proteins involved in the metabolism of Aβ precursor protein have been identified as candidates of glycosylation. This presents the possibility that A\beta metabolism may be regulated by glycosylation, emphasizing the ideas that tightly controlled regulation of glucose metabolism is critical for brain physiology and glucose metabolic pathways may represent promising new areas for pharmacological intervention. Glucose metabolism is a multi-step process, including the transportation of glucose and its intracellular metabolism. Glucose hypometabolism is commonly understood as the impairment of glucose metabolism through OXPHOS, strongly implicating mitochondrial dysfunction as an early player in AD pathogenesis. In AD subjects, mitochondria are characterised by reduced OXPHOS, decreased ATP production, increased generation of ROS and perturbed antioxidant defence, although the mechanisms that cause bioenergetics deficits are yet to be fully understood (Lanzillotta et al., 2019).

It has long been recognised that brain glucose hypometabolism is a prominent irregularity occurring in the preclinical stages of AD, where abnormalities are found in almost every step of glucose metabolism. In fact, many neurodegenerative diseases also show a coexisting metabolic dysfunction, which is strongly correlated with the significant worsening of neurological symptoms and therefore, improving the neuronal energy state early in the disease progression may influence the level of cognitive and memory decline, presenting a promising new area for pharmacological intervention intervention (Constantini et al., 2008). By analysing the activity of each enzyme within energy metabolism pathways and identifying aberrant activity patterns, specific targeted agents can be developed (or existing drugs identified from drug databases) to increase or decrease the activity of the dysfunctional enzyme complexes thought to be causing the deficit then it may be possible to delay or reverse the glucose hypometabolism seen in AD and potentially, the memory loss that it causes.

Additionally, the use of mitochondrial therapy has been employed in a number of diseases to improve symptoms of mitochondrial dysfunction in a range of human diseases. For example, a mitochondrial targeted agent currently being trailed focusses on the mitochondrial pyruvate carrier which mediates the import of pyruvate into the mitochondrial matrix, linking glycolysis and OXPHOS.

Mitochondrial and metabolic dysfunction, linked to aberrant pyruvate uptake, is an important contributor to the pathogenesis of metabolic diseases. Pharmacological inhibition of the mitochondrial pyruvate carrier is being explored for treatment of AD and Parkinson's disease and has shown successful improvement of cerebral glucose metabolism and reduced AD patient brain damage in stage 2 clinical trials (Singh, Faccenda & Campanella., 2021). Targeting mitochondrial dysfunction and aberrant bioenergetics early on in disease pathogenesis presents a promising, new area for future treatments of neurodegenerative disease.

1.4.1 Memory-Associated Metabolic Responses and their Relevance to Alzheimer's Disease

Even with years of extensive research, a logical and chronological order of the events in AD and an effective treatment is still missing. The main concepts for this project were developed based on the previous work of the first supervisor. Beglopoulos et al (2016) conducted a series of behavioural, histochemical, and immunological methodologies in attempt to identify cryptic changes in spatial memory in a rodent model of FAD at a very young age, when memory encoding is normal. In humans, this is representative of a pre-diagnostic stage of disease. Firstly, very young (7-9 months) pre-pathological PDAPP mice, overexpressing mutant human APP, and WT littermate mice, were trained in a watermaze (Vorhees, Williams & Morris, 2006), using a spatial learning protocol specifically designed to dissect learning from forgetting.

For five days, the animals were subject to visual cue training, four times per day. The Atlantis platform placement varied across each trial. At the beginning of the trial, each animal was given a randomly assigned starting position in the pool and was allowed a maximum of 90 seconds to search for the platform, with a maximum of 30 seconds to remain on the platform at the end of the trial. This was carried out for 3-10 days until the daily-session training criterion with average escape latency <20 seconds was achieved. Probe tests consisted of a single 60 second trial followed by the release of the Atlantis platform to 1.5cm from the water surface with an additional 30 seconds to allow platform to be located. For the 7-day probe test, the Atlantis platform was not utilized, and mice were removed from the watermaze at the end of the 60 second period. Mice were trained to a predefined standard of quick and reliable escape from the water, no matter how many trials this required. Then, either retrieval was tested immediately (10 minutes), or consolidation was allowed to continue with retrieval tested after a long delay (7 days). A 'basal levels' group was used for each genotype, where mice were handled and learnt the memory task, but retrieval was not tested. Training to visible escape platform in the watermaze, as well as swim speed and average swim length, were normal for both genotypes. A small, but significant, difference was present in the

number of days to reach training criterion, which resulted in higher escape latencies by PDAPP mice in trials on days 1-2. However, overall, young PDAPP mice (representative of pre-symptomatic AD patients) with low levels of soluble A β can learn hippocampal-dependent tasks effectively (histochemical analysis confirmed A β plaque absence). Control mice showed good recall in memory retrieval testing at both the short- and long-term retention intervals. PDAPP mice, however, demonstrated strong recall at 10 minutes but displayed considerable memory loss, indicated by loss of search focus, at the 7-day interval (Analysis of variance (ANOVA) revealed highly significant interaction between group, quadrant occupancy and memory delay). Comparison of target quadrant occupancy scores between the 10-minute and 7-day tests showed no decline in performance of the WT mice.

In conjunction with behavioural protocols, the authors also performed analysis of glucose uptake in the brain, timed specifically to distinct phases of memory processing, through injection with [14C]-2-deoxyglucose (2-DG), measured across 32 brain areas. Autoradiographs from WT and PDAPP mice revealed a remarkable glucose hypometabolism in connection with memory retrieval in the PDAPP mice, which was absent in WT mice. Glucose uptake impairment in was largely seen in the neocortex, with a smaller but substantial alteration in the hippocampus. At the basal levels, glucose uptake in PDAPP mice was normal.

Lastly, immunotherapy using an antibody directed towards a section of the A β sequence was carried out to confirm the specificity of cognitive and physiological phenotypes to A β or other APP metabolites. Alone, the PDAPP mouse adopts transgene overexpression which may have non-specific effects on phenotypes related to insertion of the transgene. Administration of 10D5 antibody (specific to section of A β sequence) was initiated 4 weeks before watermaze training. Analysis of the 7-day probe trial swim patterns revealed a complete removal of memory retrieval deficit in PDAPP mice, as well as the memory-associated deficit in glucose uptake, which confirmed the specificity of the observed phenotypes to A β and other APP metabolites which contain the A β sequence and also proved 10D5 to be a successful therapy for the rescue of memory retrieval deficits in previously amnesic mice, as well as recovery of normal brain glucose metabolism.

Overall, the main findings of the study were accelerated behavioural forgetting in young PDAPP mice in absence of learning deficit and attenuation of memory-associated glucose uptake measured during the act of retrieval. Contribution to forgetting by young PDAPP mice may be due to failure to meet consolidation associated metabolic demands. Given the role of mitochondria in neuronal glucose metabolism and that mitochondrial transport is hindered by $A\beta$, the cellular mechanisms underlying the observed phenotypes might include impaired synaptic localization of mitochondria.

Additional recent studies have identified dysfunctional glucose metabolism in the brains of AD patients. When compared to aged-matched controls, AD brains showed a reduction in glucose utilisation, further evidenced in APP mouse models (Huang et al., 2020). Further, a reduction in the levels of glucose consumption at the hippocampal and posterior cingulate has been observed in patients at the early stages of AD (Chen et al., 2021). This decline in glucose metabolism can be correlated with synaptic density and function, suggesting a connection between cognitive impairment and brain glucose consumption. This previous work suggested important mechanistic insights but the exact biochemical mechanisms still are not known.

The aims of this project, detailed in section 1.6, are largely based on the hypothesis presented by the first supervisor that synaptic mitochondrial dynamics and activity are a strong candidate process for supporting the synaptic activity needed for the retrieval of memories, and dysfunction in these areas may cause the significant glucose hypometabolism seen in AD. Prior evidence, particularly the aforementioned anti- amyloid immunotherapy results (Beglopoulos et al., 2016), which reversed the behavioural phenotype of memory loss and has a very similar method of action to the most recently approved AD drugs, Lecanemab and Aducanumab, provides increased confidence to support the investigation of this hypothesis.

1.4.2 Justification of Mitochondrial Metabolite Methodology

The workflow for the analysis of mitochondrial metabolites was a source of consistent change. Different instruments became available over the course of a year, allowing for more sensitive and accurate analysis. This did, however, mean methods were developed for one instrument and then discontinued when a new instrument became available, with the focus then shifting to developing and optimising the new instrument for the changing experimental needs. The final instrument chosen to continue analysis was an ultra-performance liquid chromatography-mass spectrometry (UPLC-MS), a highly sensitive instrument that has the capability of analysing the metabolites required.

In the beginning, three standards were readily available for testing and method optimisation: trisodium citrate dihydrate, sodium pyruvate, and sodium succinate hexahydrate (as this was for optimisation purposes the conjugate anion forms of the organic acid metabolites citric acid, pyruvic acid and succinic acid were used, with the intention of spiking a biological sample to determine if samples were compatible with the instrument, contained detectable amounts of metabolites and the instrument displayed adequate sensitivity). 1mM stock solutions were created for each

metabolite (dissolved in dH2O) and subsequently diluted to 50μM in a 50:50 ratio of dH2O and solvent (methanol:acetonitrile). Calibration curve standards were made at 0.5,2.0,5.0,10,25,50μM. standards were injected into the gas chromatography- mass spectrometry instrument (GC-MS) using an autosampler (1ml/min He gas flow, 1.00μl injection volume; Trace 300 & ISQ LT Mass Spec (Thermo)). GC-MS analysis has many advantages, including its speed, stable retention times, and production of fragmentation patterns for which vast fragment databases exist, allowing quick identification of detected metabolites by comparison. However, GC-MS is more applicable to volatile and gaseous samples due to the inert gases used to transport vapourised samples to the stationary phase (Berg et al., 2013). Non-volatile samples must go through an additional derivatisation process before submission to the instrument. After submission of the standards to the instrument, a build-up of residue was found around the GC-MS injection site and thus analysis did not continue with this instrument. Instead, the organic acids citric acid, succinic acid, and pyruvic acid (primary metabolites) were ordered and used, and new stock solutions were created for each metabolite standard (50μM, 50:50 dH2O:solvent (methanol:acetonitrile)).

The coupling of liquid chromatography (LC) with mass spectrometry (MS) with the introduction of electrospray ionisation in the 1980s, created a new, highly sensitive method capable of detecting a broader range of complex mixtures including polar and non-polar compounds, as well as thermolabile molecules (Pitt, 2009). LC-MS technology-based methods have been widely used to analyse the alteration of glycolysis and TCA cycle metabolites, although these studies have primarily used serum or plasma samples. A newly available LC-MS (Finnigan Surveyor LCQ Advantage Max Mass Spectrometer System PDA Plus Detector, Autosampler Plus, LC Pump Plus, LCQ Advantage Max (Thermo)) became available for use and analysis continued with this instrument as the use of polarity switching is known to offer a more comprehensive metabolome coverage than the use of single polarity (Lei, Huhman & Sumner., 2011). Metabolites of the TCA cycle contain carboxyl and hydroxyl groups, which are less volatile and highly polar, requiring chemical derivatization. Standards were derivatized using methoxyamine hydrochloride (MeOX) solution in pyridine, N-methyl-N-(trimethylsiyl)-trifluoroacetamide (MSTFA) and mixture of fatty acid methyl esters (FAMEs), following method detailed by Fiehn (2016), further detailed in Appendix c, protocol 5, and standards injected into LC-MS. No presence of derivatising agent was detected in the standards, as detailed in results section 3.5.1, which confirmed the standards had not been derivatised and a new method would need to be developed. After trialling new methods of derivatisation to no avail, a UPLC-MS became available. After an extensive literature review and training period, analysis continued using this new instrument, following methods detailed by Smith, Plumb & Rainville, (2019), further detailed in the next section.

1.5 Proteomics

Proteomics is the large-scale experimental analysis of the functions, interactions, composition, and structures of complete sets of proteins present in an organism or biological sample (Aslam et al., 2017). A recently emerging field that has been playing a vital role in biomedical research over the past decade, proteomics involves the application of technologies for the identification and Oquantification of proteins in a cell, tissue, or organism, offering complimentary data to genomics and transcriptomics (Cui, Cheng & Zhang., 2022). With the increasing ability of high-throughput proteomics methodologies, and integration with other scientific disciplines, proteomics promises to revolutionise the detection of diagnostic markers, understanding of pathogenic mechanisms, alteration of expression patterns under specific situations and the interpretation of pathways in health and disease (Aslam et al., 2017). Most proteins accumulate at defined locations within the cell, with a large fraction of these taking up residence in multiple compartments. Many contextspecific cellular processes are mediated by trafficking to and from organelles, and abnormal protein localisation has been implicated in numerous diseases (Paul et al., 2020). Determining typical patterns of protein expression and localisation in health and normal development, as well as studying how they are perturbed by disease is of fundamental importance for the advancement of biology. As the composition of the proteome is in a constant state of flux, proteomic analysis defines the state of the proteome during a certain condition or point in time within an organism (Chandramouli & Qian., 2009). Proteomics allows for the identification of quantitative changes across samples, providing important insights into the current understanding of how protein pathways are regulated across differing genotypes and the different roles of proteins in complex biological systems. A variety of proteomics techniques are used to analyse the expression of proteins at different levels, allowing for the assessment of quantitative and qualitative cellular responses related to each protein (Xiao et al., 2008). Quantitative proteomics is commonly carried out using label-free quantification (LFQ) of high mass resolution liquid chromatography-tandem mass spectrometry, and can provide insights into disease mechanisms, cellular functions, and biomarker discovery (Grønborg et al., 2006).

1.5.1 Testing for Multiple Comparisons

Scientific conclusions are often drawn from the statistical testing of a hypothesis, where a probability score of 0.05 or 0.01 is used as an acceptable cut-off. However, the probability of reporting false statistics greatly increases when multiple hypotheses are tested simultaneously, requiring proper adjustment for the multiple comparisons (Banerjee et al., 2009). The testing of

multiple hypotheses leaves us vulnerable to two types of error: type I- incorrectly rejecting the H0 (null hypothesis, proposes no statistical significance exists in a set of given observations), and type II-false negative results. Research that will eventually have important practical consequences, such as the changing of clinical practice or testing of new treatment strategies, requires vigorous control of type I errors and therefore the application of rigorous correction methods is essential. On the other hand, when research is intended to obtain primary candidates for further investigation, such as in 'omics' studies, committing too many type II errors should be avoided (Chen, Feng & Yi., 2017). Researchers can compensate for type I errors using false discovery rate (FDR) correction, a method that is frequently employed to account for multiple comparisons in proteomics experiments. However, they can only do so under a reasonable proportion by considering the total amount of H0 rejections. This method of FDR application successfully maintains the accuracy of protein identifications (Savitski et al., 2015).

Conversely, an increasing number of researchers hold the opinion that FDR correction is not always the best approach and should be reserved for particular experimental designs only. In non-targeted exploratory studies, such strict adjustment for multiple comparisons is less crucial, given that a clear statement declaring that a subsequent study should be conducted to confirm any observed associations is given. Adjusting for p-values in an exploratory study may effectively penalise an association from being identified in a large study rather than a smaller study and the cost of FDR application is to increase the frequency of incorrect statements that assert no relation between two factors, even when the relationship is not due to chance (Althouse., 2015). In exploratory biological studies, even the smallest of interactions may have important meaning and the null hypothesis should be carefully considered before readily rejecting. The hypothesis challenges the fundamental principles of empirical research, which asserts that nature follows consistent laws that may be understood through observations (Rothman., 1990). Not making adjustments (and instead using fold change thresholds) is preferable in exploratory studies only because it will lead to fewer errors of interpretation when the data under evaluation are real observations in nature and in this case, it may be best to let the readers use their own judgment about the weight of conclusions.

Either approach, correcting for multiple comparisons and the application of a fold change threshold, has many positives but also many limitations that make choosing the most appropriate method challenging. Using a combination criteria such as the t-test relative to a threshold provides information on whether the differential expression of a protein is biologically meaningful as well as statistically significant. It has become increasingly common to require differentially expressed genes to satisfy both p-value and fold change criteria, with many researchers believing that combination ranking improves upon FDR correction by also assessing the magnitude of differential expression for

biological meaning (McCarthy & Smyth., 2009). This method is especially useful in exploratory experiments with large amounts of differential expression, such as the current project and as such, was used for proteomics analysis. The percentage fold change value is often arbitrarily chosen based on the expected severity of the phenotype- the more severe the phenotype, the higher the fold change threshold. As the phenotype of the J20 mice is relatively mild, a lower threshold of 20%-fold change was used and combined with two-way t-testing to identify values that satisfied both percentage fold change threshold and p-value significance. In parallel, the same data was also be analysed using FDR correction, to satisfy both statistical and biological significance.

1.5.2 Network and Systems Biology

Network biology, often referred to as systems biology, facilitates the system-wide analysis of cellular components and processes to attempt to understand organisms or cells at various levels of functions or mechanisms (Altaf-Ul-Amin et al., 2014). Promising new tools are being offered by network and systems biology approaches for the study of intricate mechanisms involved in the development of diseases. Large sets of molecular interactions can be incorporated into representations using in silico models, enabling systematic testing and predictive simulations (Tian et al., 2013). In order to better understand the intricacy of network interactions and disease pathways, models of qualitative network representations are being created at various scales and levels of complexity for an increasing number of human diseases. For instance, understanding how proteins are expressed and localised at the cellular level may shed light on the functions, regulation, and heterogeneity of neurons that are affected in neurological diseases (Paul et al., 2020). Research by Bakker et al (2017) into glucocorticoid receptor (GR) signalling through the interactome utilised systems biology to create a model of the GR protein interaction network that encapsulated the functional relationships between the GR, its target genes, genes that target the GR and the interactions between genes that interact with the GR. The model was subsequently used as a predictive clinical tool and platform for future development by directing research and allowing further manipulation and addition of components into the model, providing a comprehensive overview of GR signalling. In this example, the model provided insight into the mechanisms of GR signalling and how resistance may appear, providing important understanding for future therapies. Utilising such a model in the context of preclinical AD may allow the deeper understanding of how target protein networks are altered from a healthy state. Once target protein mechanisms of action are understood, future manipulation of the model can be used to assess protein network changes that may be associated with positive clinical outcomes.

1.6 Aims and Objectives

The aim of this project is to study the mechanisms in the mouse brain underlying the action of retrieving a memory, as well as any impairments in these mechanisms related to Alzheimer's disease. Tissue from mice sacrificed in the context of a memory retrieval behavioural paradigm has been used, and genetically modified mice (together with wild-type controls) were used with regard to Alzheimer's disease. The aims and objectives of the project are:

- 1. To quantitatively analyse the levels of certain mitochondrial proteins in the laboratory
- 2. To identify the biochemical and cellular pathways involved in memory retrieval via computational analysis of proteomics results
- 3. To analyse the activity of various enzymes in the mouse brain in the context of memory retrieval
- 4. To quantify key mitochondrial metabolites in the same brain tissue samples

Given that Alzheimer's disease is largely a memory disorder and that there is currently no cure, the expected benefits of this project are a) a contribution to a better understanding of the underlying mechanisms (at the protein level) of memory loss in a genetically modified preclinical mouse model resembling some aspects of Alzheimer's disease, b) the identification of brain proteins that have the potential for possible drug targeting in the future towards contribution to the treatment of Alzheimer's disease, and c) the measurement of metabolites relating to energy metabolism in wild-type and APPtg mice at the point of attempted memory retrieval.

CHAPTER 2- METHODS

Statement of Ethical Application

Local university ethics approval was obtained from the Animal Welfare and Ethical Review Body for the use of animal tissues in this thesis. All behavioural experiments and tissue collection were conducted at the University of Edinburgh prior to this project in accordance with the scientific procedures Animals (Scientific Procedures) Act 1986 and relevant ethical procedures were followed.

Materials

The majority of reagents were purchased from Fisher Scientific (www.thermofisher.com) or Merck (www.thermofisher.com)

All metabolite standards purchased from Sigma-Aldrich (www.sigmaaldrich.com)

Western Blotting	Analysis of Mitochondrial Metabolites
Pierce RIPA Buffer (Thermo; 89900)	Pyruvic acid (Sigma; 107360)
Methanol	L-(+)-Lactic acid (Sigma; 46937)
dH2O	Citric acid (Sigma; 251275)
Glycine	Cis-Aconitic acid (Sigma; A3412)
Tri-Sodium citrate dihydrate (Fisher; 6132-04-3)	α-ketoglutaric acid (Sigma; 75890)
Sodium dodecyl sulphate	Succinic acid (Sigma; S-7501)
Transfer buffer (25mM Tris, 192mM Glycine, 20% Methanol)	Fumaric acid (Sigma; 47910)
Polyvinylidene Fluoride (PVDF) membrane	L-(-)-Malic acid (Sigma; 02288)
NuPAGE Dithiothreitol (Invitrogen; 2201429)	HPLC-Grade Water (VWR Chemicals; 7732-18-5)
NuPAGE Laemmli sample buffer (Bio-Rad; 1610747)	Formic acid (Acros Organics; 64-18-6)
Precision Plus Protein Dual Colour Standard (Bio-Rad; 1610394)	Acetonitrile
Phosphate buffer saline	Ammonium hydrogen carbonate
MOPS SDS Buffer (Thermo Fisher)	Dithiothreitol
Tween x20 (Bio-Rad)	Iodoacetamide
PSB Tween (PBS 1x, Tween 0.05%)	Speed Beads magnetic carboxylate modified particles (Sigma Aldrich; GE45152105050250)
Peroxide Solution (Bio-Rad)	Ethanol
Luminol Enhancer Solution (Bio-Rad)	Trypsin
Detection Reagent 1-Peroxide Solution (Thermo; 1859701) -OLD	Methoxyamine hydrochloride (Sigma; 89803-1G)
Detection Reagent 2- Luminol Enhancer Solution (Thermo; 1859698)	N-Methyl-N-(trimethylsiyl) trifluoroacetamide (Sigma; 69479-5ML) -GC derivatisation

Equipment

Western Blotting	Enzymatic Activity Assays	Analysis of Mitochondrial Metabolites
NuPAGE 4-12% Bis-Tris Mini Protein Gels (Thermo; 20110510-0945)	All assay ktis purchased from Abcam (www.abcam.com)	Kinetex 2.6µm C18 100Å LC Column 30x 2.1mm (H22- 030955)
Invitrogen MiniGel Tank (Thermo Fisher)	Abcam 6-Phosphofructokinase enzymatic activity assay kit	Trace 300 & ISQ LT Mass Spec (Thermo)
Heating block	Abcam Malate Dehydrogenase 2 enzymatic activity assay kit	Finnigan Surveyor LCQ Advantage Max Mass Spectrometer System PDA Plus Detector, Autosampler Plus, LC Pump Plus, LCQ Advantage Max (Thermo)
Mini-PROTEAN Tetra System (Bio-Rad)	Clear, round bottomed 96 well plates (brand)	Acquity Ultra Performance UPLC- TQ Detector, Binary Solvent Manager, Sample Manager, Waters)- software: MassLynx 4.1
4x sponges	Tecan Spark Plate reader with heating function	
4x filter paper (Thermo Fisher)	Tecan GENios Pro platereader	
Transfer cassette	Tecan infinite f200 PRO platereader	
Chemi Doc XRS+ with ImageLab software	Thermo Scientific Multiskan FC platereader	

2.1. Mouse Lines

This study makes use of brain tissue from J20 and WT mice attained by the first supervisor prior to this project. J20 mice overexpress human APP (hAPP), bearing two mutations linked to FAD (APP KM670/671NL-Swedish, APP V717F-Indiana; genetic background: C57BL6 (75%) & DBA/2J (25%); strain name: B6.Cg-Zbtb20 $^{Tg(PDGFB-APPSwInd)20Lms}$ /2Mmjax; Mucke et al.,2000). The platelet-derived growth factor beta (PDGF- β) was used for the transcription of hAPP, allowing expression exclusively

within the central nervous system, with highest levels of immunoreactivity within the hippocampus and neocortex (Balducci & Forloni., 2011; Alzforum., 2017).

Whilst the J20 mouse is indeed different to the PDAPP mouse (APP V717F-Indianna; genetic background C57B6 x DBA2 (Alzforum., 2013)) used in previous studies by the first supervisor, the transgene and phenotypes are both very similar, yet the J20 mouse is available commercially where the PDAPP mouse is not. J20 mice display increased A β in hippocampal neurons, deficits in basal synaptic transmission and significant neuronal loss in the CA1 region of the hippocampus between 3 and 6 months of age, clinically comparable to a preclinical stage of disease (Wright et al., 2013; Saganich et al., 2006). All animal husbandry was carried out by the first supervisor prior to the project start.

2.1.1 Behavioural Training

Morris watermaze behavioural protocol was carried out by the first supervisor at the University of Edinburgh prior to this project, as detailed by Beglopoulos et al (2016). Mice were sacrificed 20 seconds after the final probe test had been completed, and the brains were collected. The behavioural phenotype of long-term forgetting in APPtg mice previously observed in Beglopoulos et al (2016) was reproduced in the cohort of mice, from which brain tissue was used in this project.

2.1.2 Sample Preparation

All synaptosome preparation was carried out by Dr Anthony Ashton, University of Central Lancashire, prior to the project start. Two sample types were used throughout the project; P2 fractions and synaptosomes.

P2 Fractions Hippocampal and cortical homogenates were fractionated via two rounds of centrifugation and the second pellet, the mitochondrial pellet, containing membrane enriched organelles including both synaptic and non-synaptic mitochondria, was collected. The mitochondrial pellet will be referred to as the 'P2 fraction'.

Synaptosomes are created from the same neuronal homogenates, followed by three rounds of centrifugation (1 more than P2 fractions). A detailed guide on synaptosome preparation can be found in Appendix C, protocol 1. Synaptosomes are enriched in synapses, synaptic mitochondria, synaptic vesicles and often parts of the postsynaptic membrane and postsynaptic density. They are an indispensable *ex vivo* model of AD due to their preserved metabolic and enzymatic activities

(Ahmad & Liu., 2020). Additionally, analysing the synaptic proteome, including synaptic vesicles, postsynaptic densities, and synaptic membranes allows for deeper understanding of the processes orchestrating the activity of synaptic protein complexes, which support neuronal communication, information processing, learning and memory, under healthy and diseased states (Bai & Witzmann., 2007). All tissue samples were stored at -80°C.

P2 and synaptosome samples have been used throughout this project, dissolved in lysis buffer containing 50mM Tris HCl (pH 7.4), 150mM NaCl, 5mM EDTA, 0.5% NP-40, 0.5% Sodium deoxycholate, 1% SDS, protease inhibitors (Sigma, 1:200) and 1mM PMSF. All sample lysis steps were carried out by a previous student, prior to the start of this project.

Two additional samples '16L' and 24R' have been used throughout the thesis as 'practice samples'. Both 16L and 24R are from the same cohort of J20 mice used throughout the project, behaviourally trained in the same manner. Both mice belong to the WT group, sacrificed immediately after the retrieval of the spatial memory (WT memory retrieval group). 16L and 24R samples are total cell lysates, suspended in identical lysis buffer.

2.2 Western Blotting

Western blot analysis allows for the detection of specific native or denatured proteins within a protein mixture, via separation in order of molecular weight (MW). Proteins are separated by gel electrophoresis, transferred to a membrane, and subject to antibody-specific detection for a target protein (Ghosh, Gilda & Gomes., 2014). All samples were subjected to bicinchoninic acid (BCA) protein assay prior to the project start to verify the exact levels of protein. All samples were found to contain 5µg protein. Table 2.1 details the antibodies used for western blotting.

Table 2.1. Antibodies used for western blotting. All antibodies were purchased from Abcam.com and used at the recommended dilution.

Antibody	Justification for use	Species	Catalogue No.	Provider	Dilution
Anti-SDHA	Subunit of ETC complex II; located on the mitochondrial inner membrane (Renkema et al., 2015)	Rabbit	ab137040	Abcam	1:5,000

Anti-UQCRB	Plays essential roles in stability of ETC complex III; downregulated in early-onset AD, slowing the oxidation of NADH and FADH ₂ , effecting membrane proton gradient; affects ATP production by complex V (Adav, Park & Sze., 2019)	Rabbit	ab190360	Abcam	1:10,000
Anti-DRP1	Recruited to outer mitochondrial membrane and oligomerises to form active GTP-dependent mitochondrial fission sites; mediates fission events (Frank et al., 2001)	Rabbit	ab184247	Abcam	1:2,000
Anti-Mitofusin 1	Located on outer mitochondrial membrane, mediates mitochondrial fusion events (Ishihara, Eura & Mihara, 2004)	Rabbit	ab221661	Abcam	1:2,000
Anti-PSD95	Essential component involved in synaptic transmission and synaptic plasticity (Coley & Gao., 2019)		ab18258	Abcam	1:3,000
Anti-ATP5A	Subunit of ETC complex V; located in the inner mitochondrial membrane (Cha et al., 2015)		ab14748	Abcam	1:50,000
Anti-VDAC1 Most abundant protein on the outer mitochondrial membrane; acts as a gatekeeper for the passage of metabolites crucial for metabolic functions; plays crucial role in apoptosis due to its interactions with apoptotic proteins (Camara et al., 2017)		Rabbit	ab15895	Abcam	1:15,000
Anti-COX4	Component of the ETC, located in the inner mitochondrial membrane; involved in the regulation of OXPHOS (Timon-Gomez et al., 2017)	Rabbit	ab16056	Abcam	1:10,000
Anti- cytochrome C	Electron transporter between complex III and complex IV, facilitating production of	Rabbit	ab133504	Abcam	1:5,000

	energy; located in large amounts in the inner mitochondrial membrane; (Eleftheriadis et al., 2016)				
Anti-alpha synuclein	Ubiquitously expressed in the brain, particularly the neocortex and hippocampus; strongly linked to several neurodegenerative diseases (Burré., 2015)	Rabbit	ab212184	Abcam	1:3,000
Anti- Synaptophysin	Major integral membrane protein of synaptic vesicles, commonly used as synaptic marker (Thiel.,1993)	Rabbit	ab32127	Abcam	1:300,00
Anti-Ndufa2	Part of the ETC complex I which transfers electrons from NADH to ubiquinone, establishing proton gradient for ATP generation during OXPHOS (Triepels et al., 2000)	Rabbit	ab198196	Abcam	1:1,000
Anti- DAP13/Ndufa12	Subunit of ETC complex I (Triepels et al., 2000)	Rabbit	ab192617	Abcam	1:2,000

2.2.1 Electrophoresis

Proteins separated following SDS-PAGE methodology (Invitrogen Mini Gel Tank). Samples (5μg protein per sample) were made up to a total volume of 40μl using RIPA buffer, NuPAGE sample buffer (7.5μl; NuPAGE Laemmli Sample Buffer, Bio-Rad) and dithiothreitol (DTT; 3μl), then heated for 10 minutes at 70°C. Samples loaded into wells of the gel (10 well NuPage 4-12% Bis-Tris), using Precision Plus Protein Dual Colour Standard (Bio-Rad). Gel subjected to electrophoresis in 1X MOPS SDS at 200V for 35minutes.

2.2.2 Transfer of Proteins to Polyvinylidene Fluoride membrane

After electrophoresis, the gel was removed and the PVDF membrane was activated in methanol for 10seconds, washed in dH2O, and soaked in transfer buffer. Transfer cassette was assembled under transfer buffer (25mM Tris, 192mM Glycine, 20% Methanol) as follows; 2x sponges; filter paper; gel; PVDF membrane; filter paper; 2x sponges. Assembly was then locked into transfer cassette and the

cassette was placed into the transfer chamber (Bio-Rad Mini-PROTEAN Tetra System), pre-filled with chilled transfer buffer. Transfer ran at 250mA for 2 hours at 4°C.

2.2.3 Immunodetection

For the detection of proteins of interest, a series of stages were followed. PVDF membrane was washed in PBS-tween (3x 5 minutes) before blocking in 5% milk for 1 hour. Milk proteins bind non-specifically to all proteins present on the membrane. Primary antibodies were diluted in 5% milk for 1 hour (Table 2.1). This results in high binding specificity and reduction of background as primary antibody competes with blocking buffer proteins to bind the target protein. Primary probed membranes then washed in PBS-tween (3x 5 minutes) before incubation with secondary antibody for 1 hour (1:10,000). Secondary antibody conjugated with horseradish peroxidase (HRP), which allows for subsequent detection using enhanced chemiluminescence (ECL) protocol. Interpretation of western blot (WB) results requires the use of a loading control and thus, synaptophysin, a primary antibody specific to the presynaptic terminal protein synaptophysin, was used for normalisation of synaptic abundance across samples.

2.2.4 Enhanced Chemiluminescence Detection

Enhanced chemiluminescence reagents (Thermo Scientific) were prepared 1:1 according to manufacturers instructions and used to incubate the membrane for 4 minutes, before the mixture was discarded and membrane placed on imaging tray. Membrane covered with cling film and imaging carried out using Bio-Rad ChemiDoc XRS+ in manual signal accumulation mode.

2.2.5 Densitometry Analysis of Western Blot Data Using ImageLab

Densitometry was employed through the use of ImageLab (https://www.bio-rad.com/en-uk/product/image-lab-software?ID=KRE6P5E8Z). Densitometry allows for a semi-qualitative analysis of blot data through the measurement of lane optical density. Readings were obtained for each band for the protein of interest, background signal subtracted and values normalised to the loading control protein (synaptophysin) signal (See Appendix C- protocol 2 for more detailed description). Normalised band readings were expressed as a percentage of the control (Wild-Type Basal) and bar charts were created using the average values and standard error of the mean (SEM), combining

results from independent experiments. Two tailed, type two t-tests were carried out between each experimental group (a=0.05) to determine any significant differences.

2.3 Optimisation of Enzymatic Activity Assays

The biological samples used throughout the project have been subject to multiple freeze-thaw processes, which has the potential to impact the retention of enzymatic activity (Bortolin et al., 2017). Studies by Acin-Perez et al (2020) revealed that tissue samples that had been through freeze-thaw processes were able to maintain an intact ETC and were still actively respiring. Enzymatic activity is essential for all stage of cellular respiration, from glycolysis and the TCA cycle to the ETC and OXPHOS, providing confidence that the samples used throughout the project will have retained sufficient enzymatic activity.

The optimisation of enzymatic activity assays is a complex, multi-step process which requires many trials and adjustments. A total of 12 enzymatic activity kits were purchased from Abcam (https://www.abcam.com/; Table 2.2 details all assay kits purchased) and tested firstly using wildtype control samples with no behavioural training, at a range of concentrations (0.25, 0.5, 0.75, 1-x amount required for 5µg protein). The first optimisation was carried out following the manufacturer's instructions exactly, including shaking steps, temperature, incubation steps, the use of positive controls, blanks, and standards, if included in the guidance. Blanks were carried out in sets of 4 initially, including 2 absolute blanks (just assay buffer OR incubation buffer) and 2 blanks with lysis buffer (absolute blank buffer + 3µl lysis buffer, as is present in the sample preparation). Any mention of 'lysis buffer' in assay optimisation or data accumulation assays is referring to the specific lysis buffer the homogenates have been prepared in. Sample backgrounds were included where assay instructions required the addition of 'activity mix' or 'reaction mix', which consist of biological sample, made up exactly as directed for comparative samples, without the substrate added. No-substrate mixes are labelled as 'background mix' in manufacturer's instructions and ensures any comparative samples can be normalised via the subtraction of the sample background. Assays were run in a kinetic mode, where the progress of the reaction is continuously measured, and the rate of reaction measured as the change in optical density per minute, per milligram (\Delta mOD/min/mg). After the first optimisation run, results were analysed. If the assay worked well, no major adjustments were made, and the next trial would introduce a small number of samples from each of the experimental groups. If the assay showed enzymatic activity in the samples only but at a smaller level than expected, a number of factors could be introduced, removed, or adjusted. For example, if the assay was initially carried out at room temperature, it could be carried out again at

37°C, longer periods of reading or shaking steps could be implemented between reads if there were non prior. Each time an assay was carried out and gained sub-optimal results, another factor would be studied and adjusted until they assay was deemed non-functional or functional. Each assay was carried out using three different available plate readers and the results compared to ensure the plate reader chosen for the final comparative assays (Tecan Spark) was working correctly. Details of all 12 assays and their trial conditions are detailed in Table 3.2. Details of optimization workflow is detailed in Appendix C, protocol 3. After initial optimisation, 2 assays were deemed functional based on overall performance and progressed to the final comparative experiments: malate dehydrogenase 2 and 6-phosphofructokinase. Assays not selected for final experiments were eliminated for reasons including: blanks appearing to show mild enzymatic activity and insufficient activity shown in biological samples over time.

Table 2.2. Enzymatic activity assay kits purchased from Abcam.com.

Assay Kit	Catalogue No.	Provider	Justification
Hexokinase	ab136957	Abcam	Controls the rate-limiting first step of glycolysis and is therefore a fundamental enzyme in glycolysis (Roberts & Miyamoto., 2014)
6-Phosphofructokinase	ab155898	Abcam	Catalyses the first committed step of glycolysis (Brüser et al., 2012)
Pyruvate Kinase	ab83432	Abcam	Key enzyme of glycolysis acting on phosphoenolpyruvate to form pyruvate (Zhang, Deng & Liu., 2019)
Pyruvate Dehydrogenase	ab109902	Abcam	Catalyses the oxidative decarboxylation of pyruvate, linking the glycolytic pathway to the oxidative pathway of the TCA cycle (Patel et al., 2014)
Aconitase	ab83459	Abcam	Thought to control cellular ATP production via regulation of TCA cycle intermediate flow (Lushchak., 2014)
Fumarase	ab196992	Abcam	Catalyses the hydration and dehydration of fumarate into malate in the TCA cycle (Yogev et al., 2010)

Isocitrate Dehydrogenase	ab102528	Abcam	Catalyses the oxidative carboxylation of isocitrate in the TCA cycle, producing α -ketoglutarate whilst converting NAD $^{+}$ to NADH (Al-Khalla., 2017)
Malate Dehydrogenase 2	ab119693	Abcam	Catalyses oxidisation of L-malate into oxaloacetate in the TCA cycle, producing NAD+ through oxidation of NADH and driving glycolysis (Priestly et al., 2022)
NADH-Coenzyme Q Oxidoreductase	ab109721	Abcam	Largest enzyme complex of the ETC (Ohnishi, Shinzawa-Ito & Yoshikawa., 2008)
Succinate Dehydrogenase	ab109908	Abcam	Catalyses oxidation of succinate to fumarate in the TCA cycle and feeds electrons from succinate to ubiquinone in the ETC (Rustin, Munnich & Rötig., 2002)
Cytochrome C Oxidase	ab109911	Abcam	Complex IV of the ETC which links the conversion of molecular oxygen to water (Watson & McStay., 2020)
ATP synthase	ab109714	Abcam	Synthesises ATP from ADP and inorganic phosphate (Jonckheere, Smeitink & Rodenburg., 2012)

2.3.1 Malate Dehydrogenase Assay

Malate Dehydrogenase 2 (MDH2) activity was assessed using a Malate Dehydrogenase 2 Activity Assay Kit (Abcam, ab119693), following the manufacturer's instructions. MDH2 activity is determined by following the production of NADH in the reaction it catalyses: malate + NAD → oxaloacetic acid + NADH. The 1:1 reduction of a reporter dye to a yellow product is coupled to the generation of NADH; its concentration can be determined by measuring the increase in absorbance at 450nm. The assay kit immunocaptures only native MDH2 in each well, removing all other enzymes, including cytosolic MDH1.

5μg of protein was added to the 96 well antibody capture plate and buffer containing a reagent dye was added. MDH2 activity was measured using a kinetic mode for 60mins at 20sec intervals using a microplate reader (Tecan Spark) that measured the absorbance at 450nm. Two time points were

selected within the linear growth phase of absorbance and MDH2 activity was calculated from these, as per manufacturer's instructions. Final units of enzyme activity were expressed as the change in absorbance per minute, per amount of sample (Δ mOD/min/ μ g).

2.3.2 6-Phosphofructokinase Assay

Phosphofructokinase (PFK) activity was assessed using a 6-Phosphofructokinase Activity Assay Kit (Abcam, ab155898), following the manufacturer's instructions. In this assay, PFK converts fructose-6-phosphate and ATP to fructose-diphosphate and ADP. ADP is converted to AMP and NADH in the presence of substrate and enzyme mix, which reduces a colourless probe to a coloured product with absorbance at 450nm.

Standard curves were generated from NADH prepared from 0 to 3nmol/well. PFK reaction mixes were assembled in a 96 well plate by mixing $5\mu g$ of protein with Assay Buffer, PFK Developer, ATP, and PFK Substrate, as provided within the kit. The PFK activity was measured using a kinetic mode for 60mins at 20sec intervals using a microplate reader (Tecan Spark) that measured the absorbance at 450nm. Two time points were selected within the linear growth phase of absorbance and PFK activity was calculated from these, as detailed by the manufacturer. Final units of PFK activity were expressed in two ways; firstly- the change in absorbance per minute, per amount of sample ($\Delta mOD/min/\mu g$); secondly- nmol/min/mL, where 1 Unit PFK activity = amount of PFK that will generate 1.0 μ mol of NADH per minute at pH 7.4 at 37°C.

2.3.3 Normalisation of Assay Data using Western Blot Data

Western blotting was employed to control for enzyme amount within each experimental sample. Enzymatic activity assay results (change in OD/min) were normalised against protein expression levels after normalisation against loading control (change in optical density value divided by protein expression value for each individual sample. Group averages were calculated using values normalised using this method, final units were Δ mOD/min/ μ g). Normalisation via western blotting results include two blots, one blot of eight samples carried out as part of this project (VG10,12,4,8,9,11,3,7) and another blot consisting of the remaining eights samples (VG1,2,5,6,13,14,15,16) carried out by another student (the two sets of blots were shared by this project and the other student's project due to sample limitations).

Similarly, all enzymatic assays were indeed carried out in duplicate, using the full set of 32 test samples (8 replicates of each genotype and behavioural group combination). One replicate of the 32 samples was used as part of this project, whereas, due to limited sample volume, the other replicates were used by another student. The results and statistical analyses of the normalised, combined set of samples are described in Appendix A-3.

2.4 Standards

A total of 8 metabolite standards from Smith, Plumb & Rainville (2019) were chosen for analysis, based on availability, analytical grade quality and relevance (table 2.4). Each metabolite has a 100% quality grade, with the exceptions of Pyruvic acid and *Cis*-Aconitic acid (98%). Two glycolytic products and six TCA cycle intermediates were chosen for analysis, in parallel with antibodies chosen for western blotting and enzymatic assays, to offer a more holistic, although admittedly limited, overview of the main processes of aerobic respiration. Both glycolysis and the TCA cycle are under constant regulation based on the energy requirement of the cell and thus during highly energetically demanding processes such as memory retrieval, these processes are likely to be upregulated.

A Waters UPLC-MS system and a Kinetex $2.6\mu m$ C18 100Å LC Column (30x 2.1mm) column were used for standard analysis. The temperature of the column was set at 40°C with a sample temperature of 6°C . the mobile phases used were water (980ml HPLC- grade water (VWR Chemicals; solvent A) and acetonitrile (20ml solvent B), both modified with 0.01% formic acid (Acros Organics) with an initial flow rate of 0.2ml/min. The volume of standard injected was $4\mu l$ and all standards were at 1nM. Optimum cone voltage was determined by trialling each standard at 60, 70, & 80v and mass ranges were set to ± 5 known molecular weight (MW) of metabolites. Once optimal cone voltage was determined and mass ranges tightened, standard curves were generated for each metabolite standard with concentrations of 1M, 1mM, $1\mu M$ and 1nM. $4\mu l$ standards loaded up into autosampler and left overnight, defined by parameters outlined in table 2.3.

Table 2.3. UPLC-MS parameters used for the detection of metabolite standards.

Parameters	
Run time	14 minutes
Flow rate	0.2ml/min
Column temperature	40°C

Sample temperature	6°C
Weak solvent	Η2Ο- 600μΙ
Strong solvent	ACN- 200μl
M/Z range	50-500
Cone voltage	30-80
Source temperature	150°C
Desolvation temperature	350°C
Desolvation flow	600µl/min

In between each metabolite standard, a blank sample containing only mobile phase was inserted to ensure no autosampler carryover residue remained from previous standard which would contaminate results and result in unwanted analyte peak.

Table 2.4. Metabolite standards ordered for UPLC-MS analysis. All standards were ordered from Sigma-Aldrich.

Standard	Supplier	Catalogue No.	Amount used	Justification	Enzyme Responsible for Metabolite Production
Pyruvic acid	Sigma- Aldrich	107360	0.088g/ml	Product of glycolysis	Pyruvate Kinase
L-(+)-Lactic acid	Sigma- Aldrich	46937	0.09g/ml	Product of glycolysis- anaerobic respiration	Lactate Dehydrogenase
Citric acid	Sigma- Aldrich	251275	0.192g/ml	TCA cycle intermediate	Citrate Synthase
Cis-Aconitic acid	Sigma- Aldrich	A3412	0.17411g/ml	TCA cycle intermediate	Aconitase
α-ketoglutaric acid	Sigma- Aldrich	75890	0.146g/ml	TCA cycle intermediate	Isocitrate dehydrogenase
Succinic acid	Sigma- Aldrich	S7501	0.118g/ml	TCA cycle intermediate	Malate Dehydrogenase

Fumaric acid	Sigma- Aldrich	47910	0.116g/ml	TCA cycle intermediate	Succinate Dehydrogenase
L-(-)-Malic acid	Sigma- Aldrich	02288	0.134g/ml	TCA cycle intermediate	Fumarate Hydratase

2.5 Proteomics Mass-Spectrometry Workflow

Quantification of protein expression via mass spectrometry was carried out on synaptosome samples from all experimental groups. Synaptosomes were chosen over P2 fractions for proteomics to align with the underlying hypothesis that synaptic mitochondrial dynamics and activity are strong candidate processes for supporting the synaptic activity required for the retrieval of memories, and dysfunction in these areas, which can be revealed by proteomic analysis, may cause significant glucose hypometabolism, seen in AD. Furthermore, synaptosomes also allow for the investigation of synapses, where memories are thought to be stored long-term, on a proteomic level.

The generation of initial (processed into Excel file) data was arranged prior to this project by the first supervisor and carried out at the Fingerprints proteomics facility, University of Dundee, using MaxQuant software. 16 samples (4 from each group) have been analysed. Label-free quantification (LFQ) was carried out using Q Exactive quadrupole/orbitrap tandem mass-spectrometer at the University of Dundee.

2.5.1 Correction for Multiple Comparisons

This project utilises exploratory proteomics in an unbiased, untargeted manner. There are two main approaches used within this thesis: FDR corrected proteomics and non-FDR corrected proteomics, which instead utilises a regulatory fold change threshold of ±20% and unpaired two-sample t-test. However, in the 20% regulation threshold proteomics, FDR is still utilised: all results from DAVID analyses have FDR correction applied automatically and significance values presented in the output charts. FDR analysis offers the removal of false positives but also removes some true positives, whilst non-FDR correction retains all true positives but also retains many false positives. Using both

methods on the same data, a more holistic view of the data can be gained, favouring both statistical and biological significance.

-both methods have limitations, none better than the other, most inclusive way is for both to be used, keeping in mind the limitations of both methods

2.5.2 Differentially Expressed Synaptic Proteins

Data was then analysed through the application of a series of data filters. Firstly, each individual protein was required to have n=3 data points present across the 4 experimental groups. Proteins with less than n=3 data were removed from analysis. Proteins with one missing value substituted average LFQ intensity of the 3 available data in place of the missing data. Any missing protein IDs or gene names were rectified using UniProt (https://www.uniprot.org/). Percentage fold change was calculated, and proteins ranked from highest to lowest change. The second filter was a threshold of \geq +20% or \leq -20% fold change. Proteins with a fold change between -20% and 20% were deemed 'unchanged'. Fold changes were combined with p-value <0.05 (two-tailed, type 2 t-test)Significantly upregulated (\geq +20%, p <0.05) and significantly downregulated (\leq -20%, p<0.05) protein lists compared to ensure exclusivity. Final protein lists were utilised for gene-ontology (GO), functional annotation, protein-protein interaction network analysis and further proteomic analyses, each with their own significance threshold.

2.5.3 DAVID Functional Analysis

Database for Annotation, Visualisation, and Integrated Discovery (DAVID, version 6.8) online tools (DAVID: Functional Annotation Result Summary (ncifcrf.gov)) were used to annotate differentially expressed proteins (DEPs) with associated GO terms (Molecular function, cellular component & biological process), highlighting functional similarities. Benjamini-Hochberg false discovery rate (FDR) correction used to assess statistical significance. Enriched GO terms with FDR-corrected P<0.05 are considered statistically significant. DAVID was also used for the annotation of functional classification, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and the application of functional annotation clustering. Functional annotation clustering classifies highly related genes into functionally related groups and ranks these clusters in order of enrichment score. Enrichment scores used by DAVID are overall enrichment scores for the group based on the EASE scores (Modified Fisher's Exact P-Value, adopted to measure gene-enrichment scores) of each group member; the

higher, the more enriched. The whole protein set for wild-type basal mice (n=1573) was chosen as the background list for all DAVID analyses and uploaded to DAVID database for subjection to Fisher's exact test, which includes correction by Benjamini-Hochberg method. For each individual DAVID analyses were performed using an EASE score of 0.1 (default score, Fisher Exact p-value= 0 represents perfect enrichment).

2.5.4 STRING Protein Network Mapping

Differentially expressed protein lists inputted into Search Tool for the Retrieval of Interacting Genes (STRING) database and predicted protein association networks generated. Within STRING network maps, nodes represent proteins and edges represent predicted functional associations. Edges can be drawn in up to 7 different ways based upon user preference. Edge variations represent different types of evidence for each predicted interaction, including experimental evidence, text mining evidence, database evidence and expression evidence. Edge thickness can be edited to display the degree of confidence of each interaction. Confidence scores of 0.9 or above (highest confidence) were used for interaction mapping.

2.5.4.1 Functional Dependency Analysis

STRING (version 11; STRING: functional protein association networks (string-db.org) database was searched for predicted functional and physical interactions between proteins in the *mus musculus* genome. Interaction lists downloaded and filtered for highest confidence interactions (greater than or equal to 0.9). Interaction records were then further processed into a node transcript and reaction transcript readable by CellNetAnalyzer (CNA). The node transcript includes the gene identifiers, and the reaction transcript includes interaction types (activation or inhibition) and the identifiers of the two interacting genes.

2.5.4.2 MATLAB and CellNetAnalyzer

CellNetAnalyzer is a MATLAB toolbox offering a graphical user interface alongside a plethora of computational methods and algorithms for the comprehensive structural analysis of signalling, metabolic and regulatory networks (Klamt et al., 2007). One particularly useful asset of *CellNetAnalyzer* (CNA) is its methods for functional network analysis, i.e., functional state characterisation, functional dependency detection, identification of intervention strategies and for

providing qualitative predictions on the effects of perturbations (Klamt & Von Kamp., 2011). CellNetAnalyzer Version 2022.1 was used to provide structural and functional analysis of cellular networks.

2.5.4.3 Import and Analysis in CellNetAnalyzer

Interaction list was imported into CNA and dependency matrix generated. Dependency matrices calculate the overall effect of every node (gene/protein) within the model upon every other node by tracing paths based on the edges (interactions) connecting nodes. Six types of effect are defined, based on the interaction type between nodes: no effect, ambivalent factor, strong inhibitor, strong activator, weak inhibitor, and weak activator. Using a similar example to Tian et al. (2013), these effects are defined below in relation to nodes *A* and *B*:

- 1) If there is neither a positive nor negative path from node *A* to node *B*, then *A* has no effect on *B*
- 2) A is an ambivalent factor of B if there exists both positive and negative paths from node A to node B
- 3) If only negative paths exist from node *A* to node *B* and there are no negative feedback loops present in these paths, then *A* is a strong inhibitor of *B*
- 4) If only positive paths exist from node *A* to node *B* and there are no negative feedback loops in these positive paths, then *A* is a strong activator of *B*
- 5) If only negative paths exist from nodes *A* to *B* and negative feedback loops are present in these negative paths, then *A* is a weak inhibitor of *B*
- 6) If only positive paths exist between nodes A and B, and there are negative feedback loops present in these paths, then A is a weak activator of B

Comparison of WT and knock-out (KO) model (KO meaning a gene/protein of interest was turned 'off' in the analysis, simulating a KO effect) dependency matrices will allow for further understanding of how the system behaves following deviation from its usual state. An in-silico KO model involves removing nodes of interest from the network and analysing any significant alterations thus mimicking in-vivo mutation effects.

2.5.5 Functional Connectivity Analysis

A combined list proteins differentially regulated during memory retrieval in APPtg mice (when compared to WT) was compared against the previously attained list of predicted functional and physical protein-protein interactions, downloaded from STRING (version 11). Interactions data was mined to highlight protein interactions present in the differentially regulated proteins during memory retrieval. Data was filtered to identify which proteins have the greatest number of incoming connections (connections from other proteins to the protein of interest), thus were the most greatly affected, and those with the greatest number of outgoing connections (connections stemming from protein of interest to surrounding proteins), thus had the greatest effect on other proteins.

2.5.6 Heatmap Generation

For heatmaps specific to mitochondrial proteins, extraction of known mitochondrial proteins from proteomics data was required. The 'Mouse.Mitocarta3.0.xls' was downloaded from Broad Institute (https://www.broadinstitute.org/mitocarta/mitocarta30-inventory-mammalian-mitochondrial-proteins-and-pathways). The mouse Mitocarta is an inventory of 1140 genes encoding proteins with strong support of mitochondrial localisation, providing evidence of mitochondrial protein localisation and protein distribution across 14 different tissue types. Protein lists were compared to the Mouse Mitocarta to extract any mitochondrial-specific proteins. Extracted proteins were then separated into functions, including those involved in each complex of the ETC. Only proteins with data from each of the four experimental groups were taken forward for heatmap generation. Data was imported into R Studio and heatmaps generated using 'ggplot2' package. For non-mitochondrial specific heatmaps, 'ggplot2' was also used.

CHAPTER 3- RESULTS

3.1 Western blotting

All western blot results were carried out once per antibody. Blots were quantified in terms of band signal intensity and subjected to t-tests between groups for determination of significant differences in protein abundance. Both sample fractions, P2 and synaptosomes, were used for western blotting. The main focus of the analysis was on the results of the synaptosome samples, which contain synaptic mitochondria only. Long-term memories are thought to be stored in the brain in the form of synapses, meaning any synapse-specific trends in the levels of target proteins may be directly

relevant to the mechanisms underlying memory retrieval. Conversely, the P2 samples contain both synaptic and non-synaptic mitochondria, which will act as a form of non-synaptic control. Any trends seen in both P2 and synaptosome samples will reflect non-synaptic trends in protein expression.

All western blots were normalised against synaptophysin, a presynaptic vesicle membrane protein expressed extensively throughout the brain (Tarsa & Goda., 2002; Kwon & Chapman., 2011). Synaptophysin is localised to synaptic vesicles, present within synaptosomes and P2 fractions, and thus was used as a synaptic marker for western blot normalisation.

3.1.1 Cytochrome C Oxidase Subunit 4 (COX4)

Cytochrome C oxidase subunit 4 is a subunit of the fourth complex of the ETC, located in the IMM. It catalyses the final step of the mitochondrial ETC and is regarded as one of the major sites of OXPHOS (Li et al., 2006). Western blotting analysis of COX4 expression was carried out using P2 and synaptosome samples.

Figure 3.1 depicts the western blot results and analysis for both sample types. COX4 expression in the synaptosome samples showed very little difference between groups. WT mice on average showed greater expression, with slightly lower expression during memory retrieval than at basal levels. Expression in WT mice during memory retrieval was very closely matched to the expression levels in transgenic mice at the basal level. None of the differences between groups were statistically significant.

COX4 expression in P2 samples was greater in the transgenic mice than the WT mice. WT COX4 expression was higher at the basal level than during memory retrieval, although this was not reflected in the transgenic mice. APPtg mice showed very similar expression levels at both the basal level and during memory retrieval, with the slightly greater expression during memory retrieval.

A small, synapse specific increase in COX4 expression can be seen in the WT mice during memory retrieval.

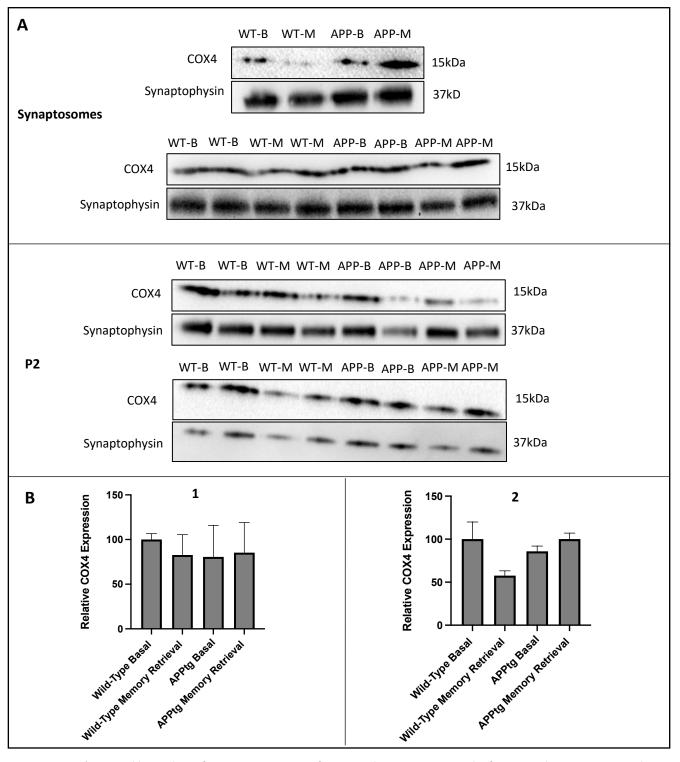


Figure 3.11. A) Immunoblot analysis of COX4 expression in P2 fraction and synaptosome samples from 16 and 12 mice respectively. WT-B= wild-type basal, WT-M= wild-type memory retrieval, APP-B= APPtg basal, APP-M=APPtg memory retrieval. Synaptophysin was used as a loading control. B) Densitometric analysis of blots shown in A (1-synaptosomes, 2-P2). Normalised protein abundance relative to Wild-type Basal average. T-testing was carried out between groups for P2 and synaptosome samples and no significant differences were found.

3.1.2 Cytochrome C

Cytochrome C is an electron carrier protein, located in the IMM, where it participates in the ETC by accepting electrons from cytochrome reductase and transferring them to the terminal cytochrome oxidase complex. The activity of cytochrome c is necessary for effective energy production (Garrido et al., 2006).

Western blotting for the expression of cytochrome c was carried out using P2 samples, and synaptosome samples. Figure 3.2 presents the western blotting results from both samples types. In the synaptosome samples, expression of cytochrome c was also higher, on average, in the WT mice, with the highest expression at the basal level. Expression levels in the transgenic mice at the basal level closely matched that of the WT mice during memory retrieval. Expression in transgenic mice during memory retrieval was consistent with expression during basal levels. None of the differences between groups were statistically significant. In the P2 samples, cytochrome c expression is higher in the WT mice than in the transgenic mice, with the highest levels expressed during memory retrieval. In the transgenic mice, expression was consistent across the basal and memory retrieval groups. None of the differences between groups could be tested for statistical significance due to sample number limitation. A small synapse specific decrease in cytochrome C expression can be seen in the transgenic mice during memory retrieval. Conversely, in the WT mice, a synapse specific decrease in expression can be seen during memory retrieval.



Figure 3.12. A) Immunoblot analysis of cytochrome c levels in P2 fraction and synaptosome samples from 8 and 12 different mice respectively. WT-B= wild-type basal, WT-M= wild-type memory retrieval, APP-B= APPtg basal, APP-M=APPtg memory retrieval. Synaptophysin was used as a loading control. B) Densitometric analysis of blots shown in A (1- synaptosomes, 2-P2). Normalised protein abundance relative to Wild-type Basal average. T-testing was carried out between groups of synaptosome samples, and no significant differences were revealed.

3.1.3 Mitochondrial ATP Synthase Subunit Alpha (ATP5A)

ATP5A is a catalytic subunit of the mitochondrial complex ATP synthase, responsible for the hydrolysis of ATP. It couples the hydrolysis of ATP with the transport of ions across the IMM, and thus is regarded as a direct regulator of mitochondrial polarity and an essential component for the maintenance of metabolic homeostasis (Goldberg et al., 2018).

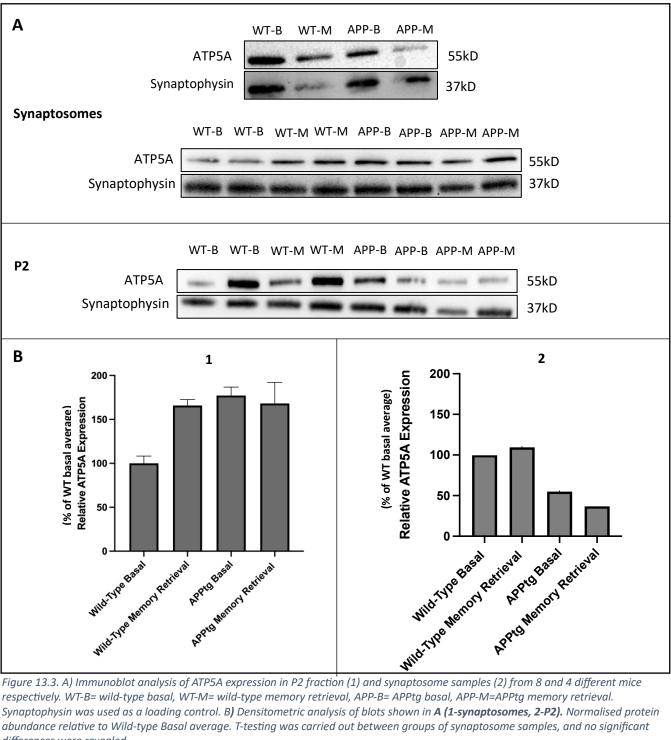


Figure 13.3. A) Immunoblot analysis of ATP5A expression in P2 fraction (1) and synaptosome samples (2) from 8 and 4 different mice respectively. WT-B= wild-type basal, WT-M= wild-type memory retrieval, APP-B= APPtg basal, APP-M=APPtg memory retrieval. Synaptophysin was used as a loading control. B) Densitometric analysis of blots shown in A (1-synaptosomes, 2-P2). Normalised protein abundance relative to Wild-type Basal average. T-testing was carried out between groups of synaptosome samples, and no significant differences were revealed.

Figure 3.3 depicts the western blotting results using the P2 samples. In the synaptosome samples, the expression of ATP5A is higher in the transgenic mice than the WT mice, although there is little difference between the basal and memory retrieval groups. In the WT mice on the other hand, there is a large increase in ATP5A expression during memory retrieval when compared to basal levels. None of the differences between groups were statistically significant. In the P2 samples, expression of ATP5A is higher in the WT mice than the transgenic mice, however, there is little difference between WT basal and memory retrieval groups. In the transgenic mice, expression is much lower, however, the greatest expression is in the basal group. Due to the expression difference between genotypes in the different sample fractions, it can be noted that increased expression of ATP5A in transgenic mice is synapse specific.

3.1.4 Succinate Dehydrogenase Complex Flavoprotein Subunit A (SDHA)

SDHA is one of four nuclear encoded subunits of succinate dehydrogenase (SDH), a component of the tricarboxylic acid cycle (TCA) which catalyses the oxidation of succinate into fumarate (Rustin, Munnich & Rotig., 2002). Dysfunction of SDH caused by mutations in SDHA could impair mitochondrial activity and physiology, making neurons more susceptible to degeneration and the onset of AD (Farshbaf & Kiani-Esfahani,. 2018). Western blotting was carried out using P2 samples and synaptosome samples.

Figure 3.4. reflect the respective SDHA expression. In the synaptosome samples at the basal level, the expression of SDHA was consistent between the WT and transgenic mice. During memory retrieval, expression was higher in the transgenic mice compared to the WT mice. None of the differences between groups were statistically significant. In the P2 samples, expression was higher in the WT mice than the transgenic mice. Expression was only slightly higher at the basal level than during memory retrieval for the WT mice. In the transgenic mice, expression was very slightly higher during memory retrieval than during the basal levels. None of the differences between groups could be tested for statistical significance due to sample number limitations.

There is a small synapse specific decrease in SDHA expression in WT mice during memory retrieval and a synapse specific increase in SDHA expression in APPtg mice at the basal level.

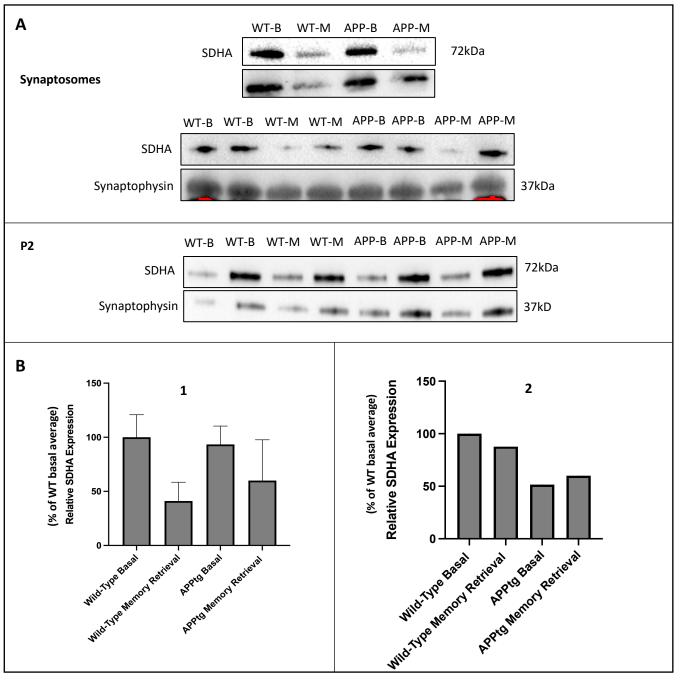


Figure 3.14. A) Immunoblot analysis of SDHA levels in P2 fraction and synaptosome samples from 8 and 12 different mice respectively. WT-B= wild-type basal, WT-M= wild-type memory retrieval, APP-B= APPtg basal, APP-M=APPtg memory retrieval. Synaptophysin was used as a loading control. B) Densitometric analysis of blots shown in A (1-synaptosomes, 2-P2). Normalised protein abundance relative to Wild-type Basal average. T-testing was carried out between groups of synaptosome samples, and no significant differences were revealed.

3.1.5 Dynamin-Related Protein 1 (DRP1)

Drp1, a member of the dynamin family of large GTPases, influences cell survival by mediating mitochondrial fission. Drp1 oligomerises on the OMM in a ring-like structure which constricts to divide mitochondria (Gao et al., 2021). Fission is an intricately balanced process which regulates

cellular and organ dynamics, including the regulation of mitochondrial apoptosis. Any perturbation to the physiological balance between fission and fusion induces the fragmentation of synaptic mitochondria from its usual tubular-like morphology into pieces, leading to synaptic dysfunction, neuronal damage, and abnormal mitochondrial redistribution (Hu, Huang & Li., 2017; Bera et al., 2022).

Figure 3.5 shows the expression levels of DRP1 in P2 samples and synaptosomes. In the synaptosome samples, WT mice at the basal level demonstrated higher levels of DRP1 expression than the memory retrieval group. Expression in the transgenic mice showed very little difference between basal and memory groups. None of the differences between groups were statistically significant. In the P2 samples, expression is higher in the WT mice than the transgenic mice, with the greatest DRP1 expression in WT mice at the basal level. In the transgenic mice, expression was slightly higher in the memory group than the basal group, however, none of these differences could be tested for statistical significance due to sample limitation. Due to the same behavioural group trend being witnessed in both sample types, the increased expression cannot be interpreted as synapse specific, however, the increased expression in the transgenic mice, compared to the WT mice is only seen in the synaptosome samples and so this small increase can be seen as synapse specific.

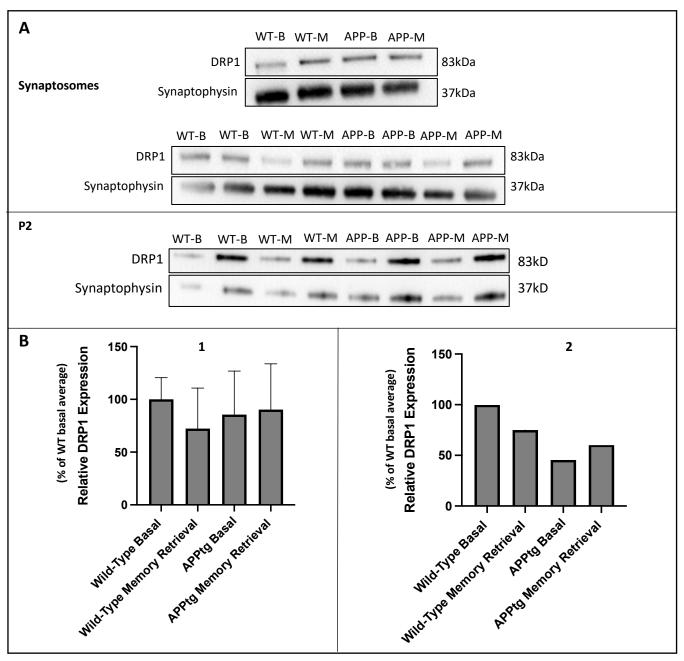


Figure 3.15. A) Immunoblot analysis of DRP1 in P2 fraction and synaptosome samples from 8 and 12 different mice respectively. WT-B= wild-type basal, WT-M= wild-type memory retrieval, APP-B= APPtg basal, APP-M=APPtg memory retrieval. Synaptophysin was used as a loading control. B) Densitometric analysis of blots shown in A (1-synaptosomes, 2-P2). Normalised protein abundance relative to Wild-type Basal average. T-testing was carried out between groups of synaptosome samples, and no significant differences were revealed.

3.1.6 Mitofusin 1 (MFN1)

Members of the mitofusin family promote the fusion of mitochondrial outer membranes. MFN1 is critical in the remodelling of mitochondrial membranes, required for effective fusion events to

facilitate the exchanging of materials between mitochondrial populations (Escobar-Henriques & Joaquim,. 2019). The ability of mitochondria to undergo fusion events influences the overall fitness of the cell and any possible reduction in levels of the mitofusins could suggest a significant level of dysfunction (Wang et al., 2009). Reduced MFN1 is an abnormality commonly seen in AD and thus, western blotting was used to assess the levels of the protein in WT and APPtg mice.

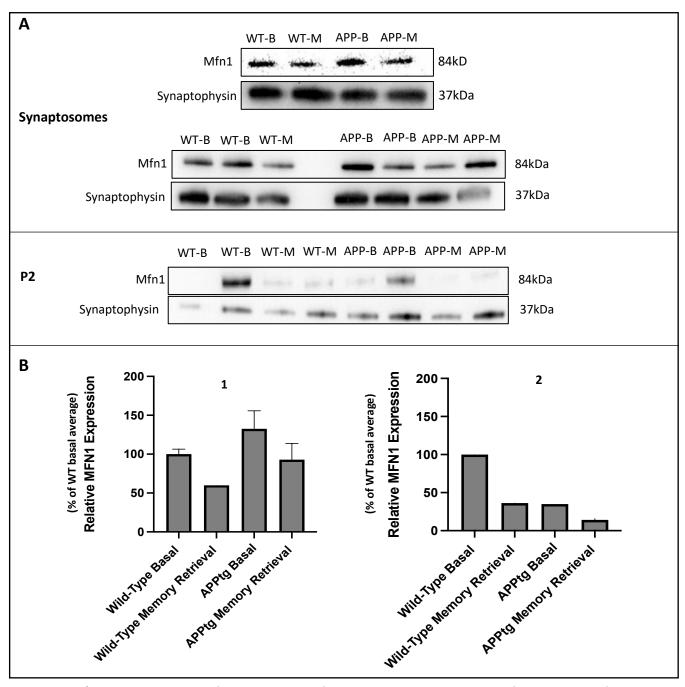


Figure 3.16. **A)** Immunoblot analysis of MFN1 levels in P2 fraction and synaptosome samples from 8 and 11 different mice respectively. WT-B= wild-type basal, WT-M= wild-type memory retrieval, APP-B= APPtg basal, APP-M=APPtg memory retrieval. Synaptophysin was used as a loading control. **B)** Densitometric analysis of blots shown in **A (1-synaptosomes, 2-P2).** Protein abundance relative to Wild-type Basal average. T-testing was carried out between groups of synaptosome samples (n=3), and no significant differences were revealed. Figure B1 lacks error bar for 'Wild-type Memory Retrieval' group due to only two replicates included.

One sample belonging to the WT memory retrieval group failed to properly transfer to the PVDF membrane. When carrying out statistical analyses on these samples, the average value for all remaining samples in the WT memory retrieval group was substituted in its place.

Figure 3.6 reveals the MFN1 expression levels in both sample types. In the synaptosome samples, both genotypes have greater MFN1 expression at the basal level, however, the transgenic mice display a higher expression than the WT mice. In WT mice, MFN1 expression is visually higher during basal levels than during memory retrieval, however the difference was not significant. Although in APPtg mice, MFN1 expression was also higher during basal levels than memory retrieval, the difference was not significant. When looking at the results from the P2 samples, a different pattern emerges. The expression of MFN1 in P2 samples is more than 50% greater in the WT mice than the transgenic mice, at both basal levels and during memory retrieval. Wild-type mice also presented with much lower MFN1 levels during memory retrieval, when compared to the basal level (75% lower). Due to sample limitation, statistical analyses could not be carried out to determine significance of these trends. In the P2 control samples, transgenic mice display a much lower expression of MFN1 than WT mice. When looking at synaptosome samples, the transgenic mice express higher levels of MFN1 than the WT mice, a trend which is synapse specific.

3.1.7 Voltage Dependent Anion Channel 1 (VDAC1)

VDAC1 is the most abundant protein on the OMM and is a key player in the regulation of mitochondrial function, acting as a gatekeeper for the passage of ions, metabolites, and nucleotides. VDAC1 interacts with several apoptotic and anti-apoptotic proteins and therefore plays a central role in apoptosis. The regulation of VDAC1 is essential not only for metabolic functions, but also cell survival (Camara et al., 2017).

Western blotting for VDAC1 was carried out using both P2 and synaptosome samples. Figure 3.7 represents the western blot results for both sample types. In the synaptosome samples, expression of VDAC1 was relatively consistent across genotype-phenotype combinations. The lowest levels of VDAC1 expression were seen in the transgenic mice during memory retrieval. None of the differences between groups were significant (t-test, a=0.05).

By contrast, in the P2 samples, visual expression of VDAC1 was greater in the WT mice than the transgenic mice, both at the basal level and during memory retrieval. In control mice, the expression of VDAC1 was greater during memory retrieval than at the basal level, however, this was not

reflected in the transgenic mice, who displayed higher expression during basal levels. Results from these samples could not be tested for statistical significance due to limited sample number.

A synapse specific increase in VDAC1 expression can be seen in APPtg basal and APPtg memory groups, however, a 50% decrease in VDAV1 expression was highlighted in WT mice during memory retrieval.

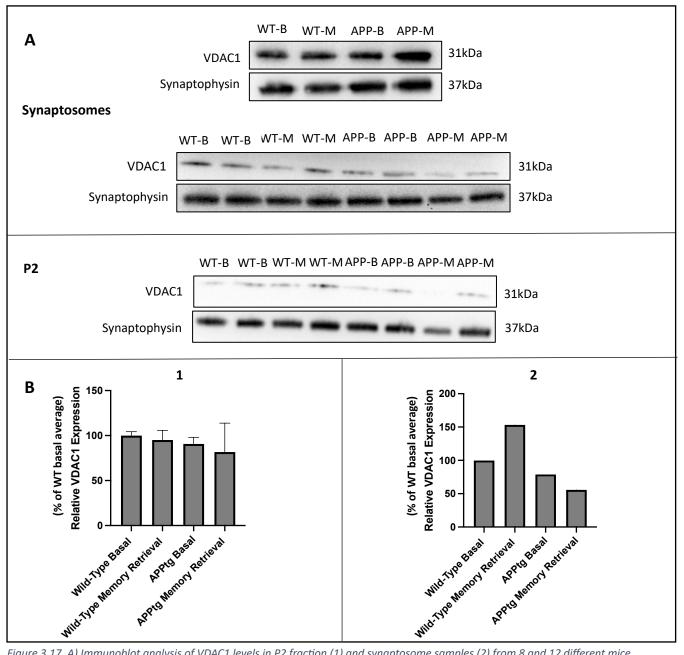


Figure 3.17. A) Immunoblot analysis of VDAC1 levels in P2 fraction (1) and synaptosome samples (2) from 8 and 12 different mice respectively. WT-B= wild-type basal, WT-M= wild-type memory retrieval, APP-B= APPtg basal, APP-M=APPtg memory retrieval. Synaptophysin was used as a loading control. B) Densitometric analysis of blots shown in A (1-synaptosomes; 2-P2). Protein abundance normalised to synaptophysin, relative to Wild-type Basal average. T-testing was carried out between groups of synaptosome samples, and no significant differences were revealed.

Thus far, western blotting has been carried out on both sample fractions, the P2 and synaptosomes, however, due to limited sample, the following western blots could not be carried out using full sets of either sample fractions and therefore, no statistical tests were applied the result. To determine the significance of any results, further western blots would need to be carried out, using a higher n number for each experimental group (n=3).

3.1.8 Postsynaptic Density Protein 95 (PSD95)

PSD95 is an important synaptic scaffolding protein, localised to the postsynaptic density of excitatory synapses, where it participates in the regulation of signalling molecules, channels, and receptors. Recent studies have shown PSD95 to be a vital player in the molecular mechanisms underlying synaptic maturation and plasticity (Jeong et al., 2019). Synaptic loss has been reported to better correlate with cognitive decline in AD, rendering PSD95 an interesting target for biomarker development, especially at the preclinical level. Expression of PSD95 was assessed in P2 samples from each experimental group.

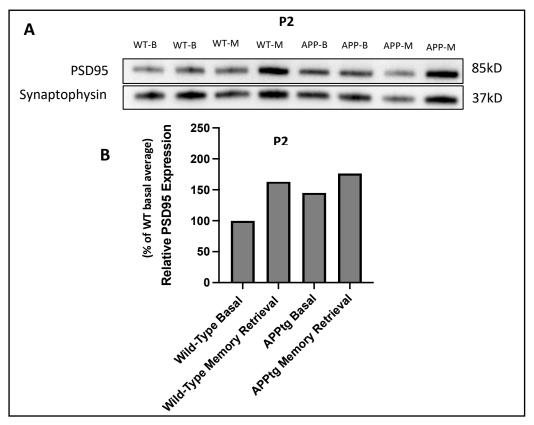


Figure 3.18. **A)** Immunoblot analysis of PSD95 in P2 fractions from 8 different mice. WT-B= wild-type basal, WT-M= wild-type memory retrieval, APP-B= APPtg basal, APP-M=APPtg memory retrieval. Synaptophysin was used as a loading control. **B)** Densitometric analysis of blots shown in **B.** Protein abundance relative to normalised Wild-type Basal levels.

Figure 3.8 depicts the wester blotting results against the PSD95 protein, normalised with synaptophysin, a presynaptic terminal marker.

Whilst sample limitation prevented statistical analyses from being carried out between groups, some visual trends can be seen from the western blot signal. There appears to be higher levels of PSD95 in the APPtg mice, when compared to the WT mice, both at the basal level and during memory retrieval. These results are only visual trends and cannot be assessed for significance without further experimentation.

3.1.9 Alpha Synuclein

Alpha synuclein is an abundant neuronal protein, ubiquitously expressed in the brain, particularly presynaptic terminals in the neocortex and hippocampus. Whilst the main function of alpha synuclein remains largely unclear, it has a strong genetic link to Parkinson's disease and other neurodegenerative diseases. Known to aggregate and propagate through the neuraxis, alpha synuclein has been identified as the non-amyloid component of amyloid plaques (Burré., 2015). Due to sample limitation, western blotting for alpha synuclein was only carried out using P2 samples, using 2 samples from each genotype-phenotype combination.

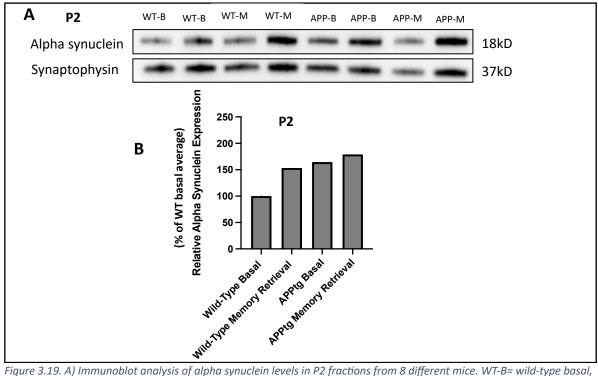


Figure 3.19. A) Immunoblot analysis of alpha synuclein levels in P2 fractions from 8 different mice. WT-B= wild-type basal, WT-M= wild-type memory retrieval, APP-B= APPtg basal, APP-M=APPtg memory retrieval. Synaptophysin was used as a loading control. B) Densitometric analysis of blot shown in A. Protein abundance normalised to synaptophysin levels, relative to WT basal average.

Figure 3.9 depicts the expression of alpha synuclein in each genotype-phenotype combination. Visually, there is a higher expression of alpha synuclein in APPtg mice compared to WT mice, at both basal levels and during memory retrieval. The increase in expression between basal levels and memory retrieval (1.5-fold increase) is not replicated in the APPtg mice, whose expression is very similar at both levels. Although these results appear interesting, they cannot be analysed statistically for significance without further experimentation with a higher sample number.

3.1.10 Ubiquinol-Cytochrome C Reductase Binding Protein (UQCRB)

Ubiquinol-cytochrome C oxidoreductase (UQCRB), commonly referred to as complex III or cytochrome bc1 complex, is an integral component of the ETC, localised to the IMM. UQCRB contributes to the generation of electrochemical potential by catalysing electron transfer from ubiquinol to cytochrome C, coupled to the translocation of protons across the membrane (Xia et al., 2013).

Western blotting was carried out to analyse the levels of UQCRB expression in P2 samples. Western blotting was also attempted for UQCRB expression in synaptosome samples; however, reliable results could not be obtained with this antibody.

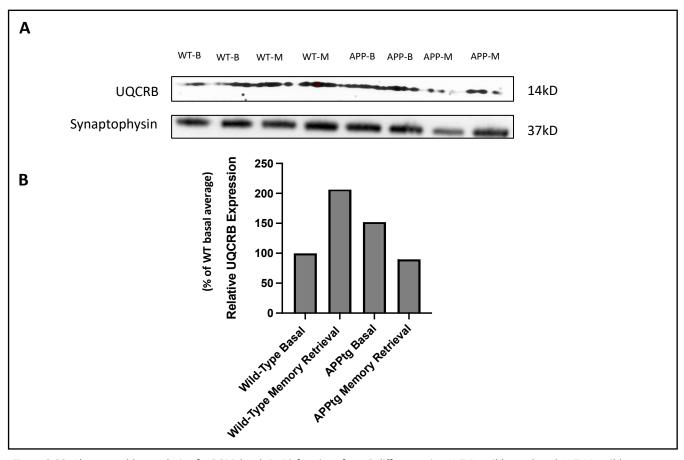


Figure 3.20. A) Immunoblot analysis of UQCRB levels in P2 fractions from 8 different mice. WT-B= wild-type basal, WT-M= wild-type memory retrieval, APP-B= APPtg basal, APP-M=APPtg memory retrieval. Synaptophysin was used as a loading control. B) Densitometric analysis of blots shown in A (P2 fraction). Normalised protein abundance relative to Wild-type Basal average.

Figure 3.10 represents the relative UQCRB expression levels across the four groups. Expression was the highest in WT mice during memory retrieval. In the transgenic mice, expression at the basal level was higher than WT mice at the basal level. Expression in transgenic mice during memory retrieval was the lowest of the four groups. None of these differences could be tested for statistical significance due to limited sample number.

3.2 Enzymatic Activity Assays

Measuring enzymatic activity is a tried-and-tested means of determining the amount of enzyme present under defined conditions, in this case, during basal levels or during memory retrieval in WT and APPtg mice. The activity of the enzyme can be compared between experimental conditions, and with a complete study of the parameters that affect enzyme activity, it should be possible to extrapolate to the activity expected to occur *in vivo*. The enzymatic activity of two key enzymes were

tested using enzymatic activity assay kits purchased from Abcam.com, and their activity was compared against each genotype and behavioural group interaction. Full set of tables detailing kit reagents, assay reding parameters, recorded OD readings, calculations of the changes in OD, and standard curve straight line equation are listed in Appendix A, tables 1,2,3,6,7,8,9 & 12.

3.2.1 Optimisation of Malate Dehydrogenase 2

MDH2, a key enzyme in the TCA cycle which catalyses the interconversion between malate and oxaloacetate, utilising NAD⁺/NADH as a cofactor, was optimised for factors including: sample concentration, effect of lysis buffer, incubation period, and temperature (for more detail, see section 1.3.4). The MDH2 activity kit works by following the production of NADH, coupled to the reduction of a reporter dye to yield a coloured product with strong absorbance at 450nm.

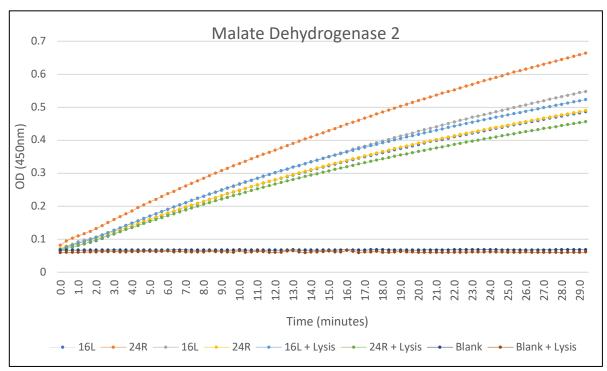


Figure 3.21. Kinetic graph showing activity of malate dehydrogenase. Blank= assay buffer only. Blank + lysis)= assay buffer with additional lysis buffer. Assay carried out at 25 °C, pH 7.4, with 5μ g protein per sample. 16L & 24R= Wild-type memory retrieval group, total cell lysate.

This kit contained no positive controls or standards. The MDH2 enzyme is captured within the wells of the microplate, ensuring confidence in kit specificity.

Figure 3.11 reflects the success of the second optimisation trial of MDH2. Both blanks produced no change in activity over the 30-minute period, and all biological samples used produced strong, positive linearity over the course of the reaction, reflective of MDH2 activity. After this optimisation

trial, samples from each of the genotype-phenotype interactions were introduced to the assay, at differing concentrations. Sample backgrounds without the addition of activity solution were also included to allow for normalisation in the comparative assays.

3.2.2 Malate Dehydrogenase 2 Results

Malate dehydrogenase 2 is located in the mitochondrial matrix, where it participates in the TCA cycle, catalysing the oxidation of malate (as detailed in the introduction, section 1.3.1.4).

In this assay, MDH2 activity is expressed as the change in absorbance per minute, per amount of sample loaded into each well (Figure 3.12). Figure 3.12A shows the MDH2 activity within each individual sample tested, whilst figure 3.12B shows the average enzymatic activity for each of the four experimental groups. In the wild-type mice, MDH2 activity was greater in the basal group (0.01160D/min), compared to the memory retrieval group (0.010D/min). In the APPtg mice, the MDH2 activity was consistent across phenotypes; basal MDH2 activity was 0.01080D/min and during memory retrieval, MDH2 activity was 0.01080D/min. Overall, there were no statistically significant differences in MDH2 activity between groups $(\alpha=0.05)$.

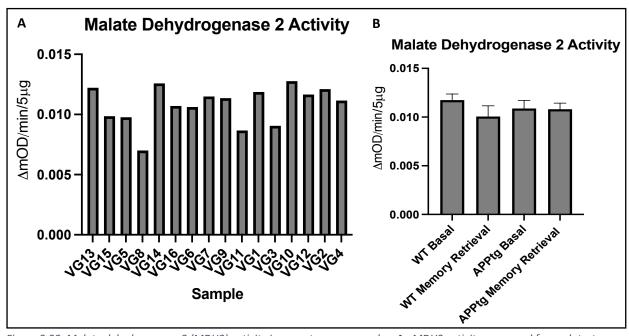


Figure 3.22. Malate dehydrogenase 2 (MDH2) activity in synaptosome samples. **A=** MDH2 activity measured for each test sample. VG10,12,13,15= wild-type basal; VG2,4,5,8= wild-type memory retrieval; VG9,11,14,16= APPtg basal; VG1,3,6,7= APPtg memory retrieval. **B=** MDH2 activity measured via change in optical density per minute, measured at 450nm. Average activity calculated for each experimental group. Colour intensity at 450nm is directly proportional to MDH2 activity in each sample.

Within a kinetic assay method, the rate at which substrates are converted into products is continually measured, and readings are affected by changes in the concentrations of both the substrate and the product. Measurement methods are based on tracking changes in product formation or substrate utilisation over a predetermined time frame. For the purpose of analysis, the linear range of the rection curve is vital and frequently observed during the earliest stages of the reaction. During this time, the reaction is not yet hindered by diminishing substrate or potential product inhibitory effects.

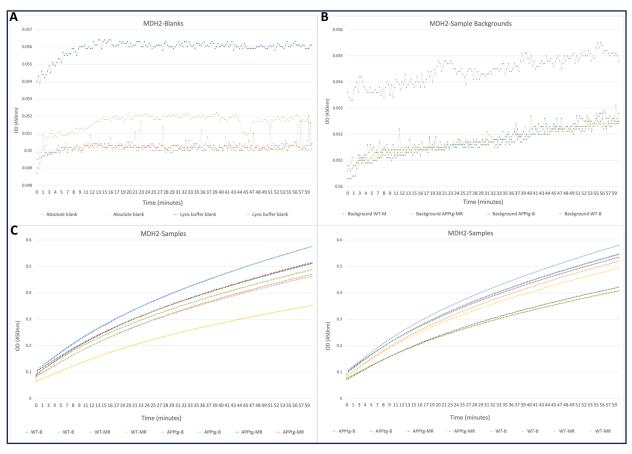


Figure 3.13. Kinetic graphs showing MDH2 activity, measured as change in optical density at 450nm per minute, over a 60-minute time frame. A= kinetic measurements of blank samples. B= kinetic measurements of sample backgrounds (no substrate). C= kinetic measurements of sample backgrounds (no substrate). D= kinetic measurements of biological samples. Assay carried out at 25 $^{\circ}$ C, pH 7.4, sample conc= 5 μ g/50 μ l. Assay linear for 59 minutes.

The kinetic graphs shown in figure 3.13 depicts the reaction occurring within the 60-minute period. Figure 3.13A reveals there was no activity in either the absolute blanks (assay buffer only) or the lysis buffer blanks (assay buffer with additional lysis buffer). Figure B depicts the reaction course of the sample backgrounds (sample with no substrate added). The sample backgrounds (1 from each experimental group) show minimal change in OD over the course of the reaction period, confirming minimal activity occurring with endogenous substrate. Whilst the VG5 (WT basal) background

sample reads at a higher OD than the other sample backgrounds, the rate of reaction is no different. Graphs C & D show the reaction of the test samples themselves (4 mice from each experimental group). The rate of reaction here is much greater than that of the sample backgrounds, with the greatest reaction occurring before the 620 second time point.

3.2.3 Western Blotting- MDH2

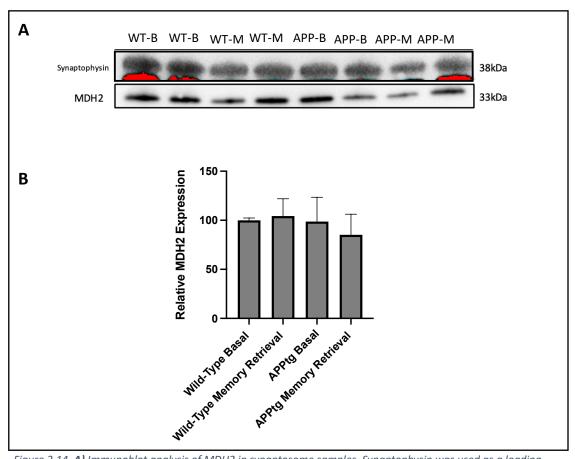


Figure 3.14. A) Immunoblot analysis of MDH2 in synaptosome samples. Synaptophysin was used as a loading control. B) Average MDH2 expression plotted as a percentage of average wild-type basal MDH2 abundance.

Figure 3.14 reveals that In WT mice, MDH2 expression is very similar at the basal level and during memory retrieval, however, in the transgenic mice, a different pattern emerges; the expression of MDH2 is greater in APPtg mice during basal levels than during memory retrieval. Overall, the expression of MHD2 is not affected by either genotype-phenotype interaction. None of the differences between groups could be tested for statistical significance due to limited sample number. Western blots using the second set of 8 synaptosome samples was carried out by another member of the research group, allowing for statistical comparisons to be made between all 16

samples. Results can be found in Appendix B, figure 4. Combined results reveal no significant differences in MDH2 expression between any of the genotype and behavioural group interactions.

3.2.4 Malate Dehydrogenase 2 Results Normalised to Western Blot Results

All MDH2 activity data was normalised against the abundance of MDH2, determined via western blotting. Figure 3.15A represents the average MDH2 activity in each experimental group, whilst 3.15B represents the enzymatic activity within each sample tested.

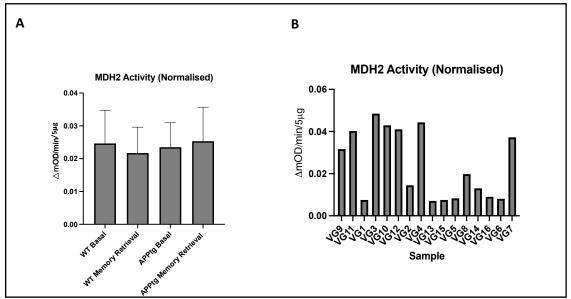


Figure 3.15. Malate dehydrogenase 2 activity normalised against western blot quantification. A) normalised MDH2 activity by experimental group. No differences between groups were significant by t-test (a=0.05). B) Normalised MDH2 activity per sample. VG10,12,13,15= wild-type basal; VG2,4,5,8= wild-type memory retrieval; VG9,11,14,16= APPtg basal; VG1,3,6,7= APPtg memory retrieval.

After normalisation of results against western blot quantification, there remained no significant interaction between genotype and behavioural training for MDH2 activity. Two-way ANOVA revealed no significant differences in the MDH2 activity for either of the genotype and behavioural group interactions (F(1,12)=0.06949; p=0.7966). Assay was carried out in duplicate using 32 samples (16 samples carried out by another student in the group). Combined normalised assay results (Appendix B, figure 1) revealed no significant interaction between genotype and behavioural group for MDH2 activity. Two-way ANOVA was carried out on duplicate assay data, results shown in Appendix A, table 16. No significant interactions exist between genotype and behavioural group.

3.2.5 Optimisation of 6-Phosphofructokinase

For the initial optimisation of 6-PFK, a key regulatory enzyme of glycolysis (further detailed in section 1.3.1.5, including how the kit works), 4 background samples (assay buffer only), biological samples (1x wild-type memory retrieval, 1x APPtg memory retrieval), 2 positive controls (1 & 5µl) and 2 standards (1nmol & 0.5nmol) were trialled (Figure 3.16). Both memory retrieval samples showed a steep slope of results, indicating high levels of enzymatic activity. Both sample backgrounds produced a much smaller level of activity, reflective of endogenous substrate reactivity. All assay background (assay buffer only) samples showed no activity. Overall, this assay appeared to be working optimally with minimal optimisation and thus was continued to the comparative experiments.

Figure 3.16. Kinetic graph showing activity of 6-phosphofructokinase. Background= sample prepared without the addition of substrate. Background only= assay buffer. Assay carried out at 37 $^{\circ}$ C, pH 7.4, sample conc= 5μ g/ 50μ L. Assay linear for 66 minutes.

3.2.6 6-Phosphofructokinase Results

6-phosphofructokinase is a key regulatory enzyme in glycolysis, which catalyses the phosphorylation of fructose-6-phosphate to fructose-1,6-biphosphate (detailed in introduction section 1.3.5).

The activity of PFK in this assay is expressed, through the production of NADH, which correlates with a change in absorbance, per minute, at 450nm (Figure 3.17B). The use of PFK-specific substrate and

the inclusion of a positive control provides full confidence that the assay kit is exclusively measuring the activity of 6-PFK.

PFK activity was found to be the most consistent across both genotypes at the basal level, with a change of 0.1260D/min for the wild-type mice and 0.1210D/min for APPtg mice. For both genotypes, mice had consistently lower PFK activity when tasked with memory retrieval, with wild-type mice showing a change of 0.0960D/min and APPtg mice with a change of 0.1070D/min. None of the differences between groups were statistically significant (α =0.05).

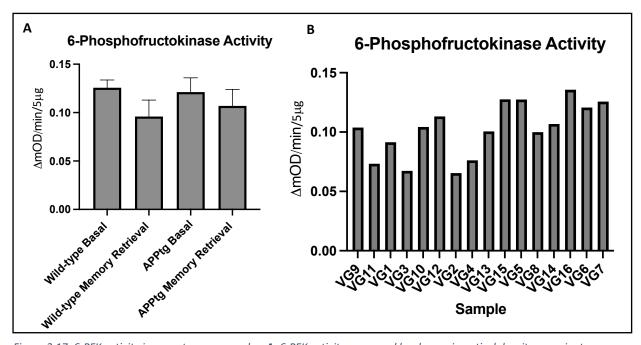


Figure 3.17. 6-PFK activity in synaptosome samples. **A=**6-PFK activity measured by change in optical density per minute, measured at 450nm. Average activity calculated for each experimental group. Colour intensity at 450nm is directly proportional to PFK activity present in sample. **B=** 6-PFK activity measured by change in optical density per minute. Activity measured for each individual sample. VG10,12,13,15= wild-type basal; VG2,4,5,8= wild-type memory retrieval; VG9,11,14,16= APPtg basal; VG1,3,6,7= APPtg memory retrieval.

The kinetic graphs in figure 3.18 show the reaction over a 60-minute period. 3.18A shows the kinetic graph for the assay blanks (assay buffer only), positive controls and assay standards at a range of concentrations. The two positive controls (at 10μ l & 20μ l) contain a known quantity of purified enzyme to allow confidence that the assay is indeed working and is able to detect the enzyme. All of the blanks gave no change in readings over time, reflective of no enzymatic activity. The assay standards all demonstrated no change in OD over time and appeared evenly spaced across the graph, proportional to their concentration. The standards, blanks, and positive control patterns of reaction confirm the assay kit is performing well/as expected.

Figure 3.18B & C show the kinetic reaction of the sample backgrounds. In this assay, the 'sample background' consists of test sample with assay buffer, ATP, developer, and enzyme mix, only without the addition of substrate, thus the only reaction that should occur within a sample background would be due to endogenous substrate. There is a clear difference between the reaction rates of some of the sample backgrounds, likely due to the different genotype-phenotype interactions.

Overall, the sample backgrounds displayed a slower rate of reaction over a longer time period (peaking at 1261-2002 seconds) than the test samples themselves and the total change in OD, proportional to product formation, was much lower than the test samples. The rate of reaction can be seen decreasing after the initial reaction period, instead of plateauing. The kinetic graph for the test samples (samples with added substrate), figures 3.18D & E, show a much steeper rate of reaction than figures 3.18B & C. After the initial phase of the reaction (400-800 seconds), the graph begins to plateau as all of the enzyme active sites become saturated with substrate and the reaction rate does not increase any further. Accumulation of product can also have an inhibitory effect upon the enzyme, leading to a plateau in the rate of reaction.

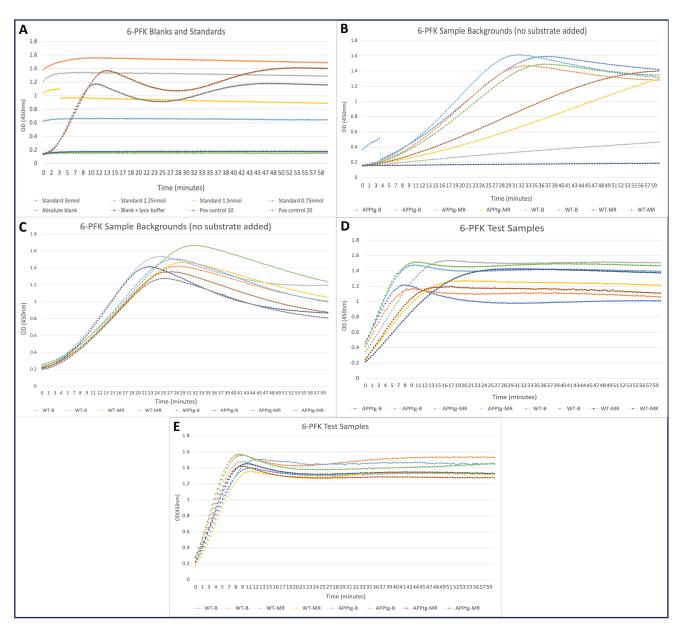


Figure 3.18. Activity of 6-PFK. Kinetic graphs measuring change in absorbance at 450nm. A= Run 1- standard curve dilutions; positive controls; absolute blank; lysis buffer blank, B= Run 2- no-substrate sample backgrounds, C= Run 3- no-substrate sample backgrounds, D= Run 4- test samples, E= test samples. Assay carried out at 37 $^{\circ}$ C, pH 7.4, sample conc= 5μ g/50 μ L. Assay linear for: B- 59 minutes, C- 32 minutes, D- 25 minutes, E- 9 minutes.

PFK activity was also expressed through a second means, measured as the amount of PFK that would generate 1.0 μ mol of NADH per minute, per 5 μ g protein sample (5 μ g/50 μ L) at pH 7.4 at 37° (Figure 3.19B), calculated using the NADH standard curve (Figure 3.19A). Here, PFK activity was at its highest in both genotypes at the basal level, with PFK activity at 0.385nmol/min/ μ g in the wild-type mice and 0.348nmol/min/ μ g in the APPtg mice. When tasked with memory retrieval, PFK activity fell to 0.247nmol/min/ μ g in the wild-type mice and 0.285nmol/min/ μ g in the APPtg mice and thus, APPtg mice had the highest rate of enzymatic activity when tasked with memory retrieval. Overall, none of the differences in PFK activity between groups were statistically significant (α =0.05).

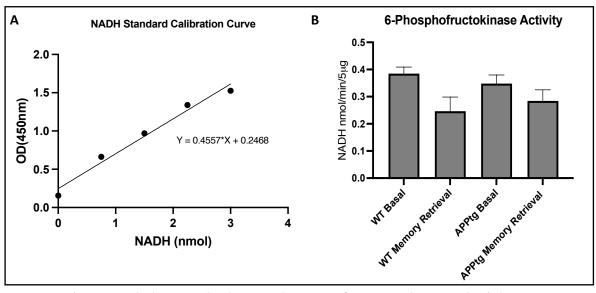


Figure 3.19. A) NADH standard curve used to determine the amount of NADH in each test sample. B) The enzyme activity of 6-PFK was analysed within synaptosome samples of wild-type and APPtg mice during basal levels and during memory retrieval, here calculated as amount of NADH produced per minute, per 5μ g protein. There were no significant differences identified between groups (α =0.05).

3.2.7 Western blotting- 6-PFK

Figure 3.20 reveals the expression levels of 6-PFK in synaptosome samples. In WT mice, the expression of 6-PFK is higher during the basal levels than during memory retrieval, however, this pattern is not reflected in the transgenic mice, whose 6-PFK expression is consistent between both behavioural groups. None of the differences between groups could be tested for statistical significance due to limited sample number. The full set of 16 synaptosome samples have been analysed in Appendix B, figure 4, where these samples have been combined with another 8 samples, analysed by another student. Results were combined to allow for statistical comparison of all 16 samples. Combined blot results revealed a significant difference between the expression of 6-PFK in

WT mice during memory retrieval, when compared to WT mice during the basal level (p=0.017925, α =0.05). There were no significant differences in expression between the other experimental groups.

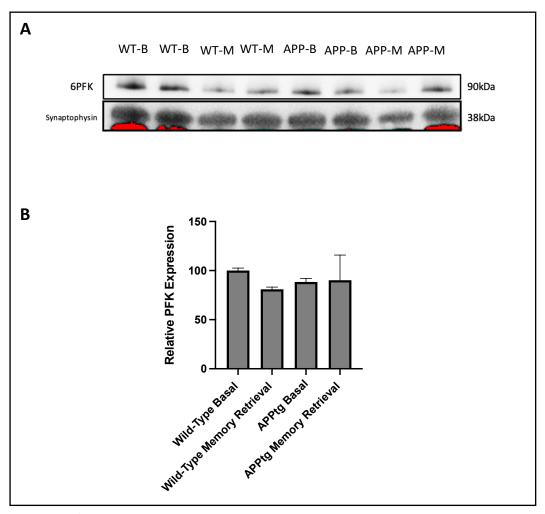


Figure 3.20. **A)** Immunoblot analysis of 6-PFK in synaptosome samples. Synaptophysin was used as a loading control. **B)** Average 6-PFK expression plotted as a percentage of average wild-type basal 6-PFK abundance.

3.2.8 6-Phosphofructokinase Results Normalised to Western Blot Results

After normalisation against western blotting quantification, there remained no significant genotype and behavioural group interaction for 6-PFK activity (Figure 3.21A & B). Two-way ANOVA revealed no significant interactions between genotype and behavioural group when comparing PFK activity (measured by change in OD/min) (F(1,12)=0.05205;p=0.8234). Two-way ANOVA revealed there was no statistically significant difference in the PFK activity (measured via NADH nmol/min/5 μ g; Figure 3.22) between any of the genotype and behavioural group interactions (F(1,12)=0.01313;p=0.9107). Assay was carried out in duplicate using 32 samples (16 samples carried out by another student in the group). Results shown in Appendix B, figure 2. Combined results normalised to western blotting

data revealed no significant difference in the activity of 6-PFK between any of the genotype and behavioural groups. Two-way ANOVA was carried out on duplicate assay results, detailed in Appendix A, table 21. ANOVA revealed no significant interaction between genotype and behavioural group.

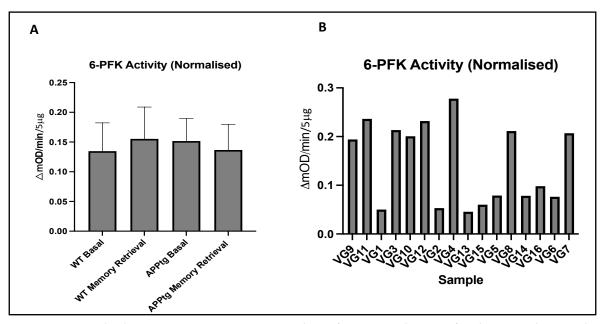


Figure 3.21. Normalised 6-PFK activity in synaptosome samples in A) experimental groups, B) each test sample use, and C) activity expressed as the amount of NADH produced per minute, per 5μ g protein. There were no significant differences identified between groups (α =0.05). VG10,12,13,15= wild-type basal; VG2,4,5,8= wild-type memory retrieval; VG9,11,14,16= APPtg basal; VG1,3,6,7= APPtg memory retrieval.

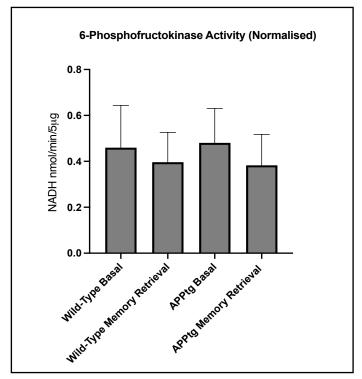


Figure 3.22. Average 6-PFK activity, normalised to western blotting results. Activity expressed as the amount of NADH produced per minute, per $5\mu g$ protein.

Appendix B, figure 3 reveals the activity of 6-PFK, expressed as the amount of PFK that would generate 1.0μmol of NADH per minute, per 5μg protein sample at pH 7.4 at 37°. This data utilised 32 samples (16 samples carried out in duplicate (8 samples from each group), 16 of the samples used by another student in the group) and was normalised against western blot data. Combined results revealed no significant difference in the 6-PFK activity between any of the groups. Two-way ANOVA was carried out on combined blot results, detailed in Appendix A, table 21. ANOVA revealed no significant interaction between genotype and behavioural group.

3.3 Assay Optimisation

A total of 12 enzymatic activity assay kits were purchased from Abcam.com (detailed in methods section), targeted to different stages of cellular respiration. All 12 assay kits were optimised, starting by following the manufacturer's instructions exactly, using 'control' samples- homogenates from wild-type littermate mice with no behavioural training (5µg protein per sample, $5\mu g/50\mu L$). Synaptosome samples were previously prepared and are suspended in lysis buffer. Any tissue not prepared in lysis buffer was used for electron microscopy in previous studies and therefore, the only sample available for enzymatic analysis was the lysates. From the beginning of the study, it was known that the presence of detergent within the samples may be problematic, as certain enzymatic activity kits are not compatible with detergent and require the enzyme intact, however this is not the case will all assay kits. The purpose of this section is to describe those which did not work due to the presence of lysis buffer or limited sample volume.

One graph from one respective optimisation is included for each assay in this thesis, however, each assay was optimised >4 times, using 3 different plate readers, different temperatures, addition of shaking steps, and sample concentrations to achieve optimal results. Specificity of each assay kit was achieved through either: the addition of target enzyme-specific substrate to prepared samples (hexokinase, 6-phosphofructokinase, pyruvate kinase, aconitase, fumarase, isocitrate dehydrogenase), or the coating of microplate wells with capture antibodies specific to the target enzyme (pyruvate dehydrogenase, malate dehydrogenase 2, NADH coenzyme Q oxidoreductase, succinate dehydrogenase, cytochrome C oxidase, ATP synthase).

Table 3.1 highlights the main observations made for each individual assay, including the reasons they did or did not work. The next sections will detail the results from each assay in turn, and the different steps taken for optimisation.

Table 3.1. Enzymatic activity kits purchased from Abcam. Table details the specific justification of why assays were deemed to have worked or not worked.

Assay Kit	Function of enzyme	Result	Detail
Hexokinase	First enzyme of glycolysis	Did not work	-all samples showed very little activity
			-sample backgrounds showed no activity
			-positive controls showed negative rate of reaction
6-	Key regulator of glycolysis,	Worked	-blanks, standards, positive controls, and sample
Phosphofructokina se	early glycolysis enzyme		backgrounds all displaying correct trends
3E			-test samples showed strong enzymatic activity
Pyruvate Kinase	Enzyme involved in the last	Did not work	-negative slope of results when should be positive
	step of glycolysis		linearity
			-background samples showed no activity
Pyruvate	Enzyme linking glycolysis	Did not work	-blanks showed positive linearity
Dehydrogenase	and the TCA cycle		-no activity in samples after normalisation against
			blanks
Aconitase	Early TCA cycle enzyme	Did not work	-denatured background samples showed greater
			activity than test samples
			-change in OD minute, may be plate reader drift
Isocitrate	TCA cycle enzyme	Did not work	-no activity present within samples or sample
Dehydrogenase			backgrounds
			-positive controls not producing desired rate of
			reaction
Fumarase	TCA cycle enzyme	Did not work	-no activity detected in test samples
			-activity present within background samples
Malate	TCA cycle enzyme	Worked	-blanks did not change over course of reaction
Dehydrogenase 2			-samples showed good enzymatic activity
NADH-Coenzyme Q	Complex I mitochondrial	Did not work	-no activity detected
Oxidoreductase	electron transport chain		
Succinate	Complex II mitochondrial	Did not work	-no activity detected
Dehydrogenase	electron transport chain/		
	also TCA cycle enzyme		
Cytochrome C	Complex IV mitochondrial	Did not work	-blanks read at higher OD than any other sample
Oxidase	electron transport chain		-no activity detected
ATP Synthase	Complex V mitochondrial	Did not work	-no activity detected
-	electron transport chain		·
	1		1

3.3.1 Hexokinase

Hexokinase (HK) is an important glycolytic enzyme which catalyses the phosphorylation of glucose, the rate-limiting first step of glycolysis (Roberts & Miyamoto., 2014). The hexokinase assay works by following the conversion of glucose into glucose-6-phosphate by hexokinase after the addition of enzyme and substrate mix. Glucose-6-phosphate is then oxidised by glucose-6-phosphate dehydrogenase to form NADH, coupled to the reduction of a colourless probe to a coloured product with a strong absorbance at 450nm.

Hexokinase was optimised initially according to manufacturers instructions. The positive control in this assay kit was HK-II (one of the four HK isoforms), derived from bacillus subtilis. For this first optimisation, two standards (1nmol & 2.5nmol, the lower end of standard concentrations) were used alongside positive controls at 25µl and 50µl (mid- and highest-range). Figure 3.23 shows the course of the kinetic reaction, over a 60-minute period. Whilst the 16L practice sample showed hexokinase activity and a quick rate of reaction in the initial reaction phase, the wild-type basal (VG12) sample showed no hexokinase activity. Similarly, the background 16L and VG12 samples showed no enzymatic activity over the 60-minute period; whilst sample backgrounds have no substrate added, the endogenous substrate within the samples is expected to produce a small level of activity. Positive controls provided with the hexokinase kit are used as a benchmark sample to ensure all components of the kit are working correctly. The positive control is a purified enzyme and as such, should quickly reduce the colourless probe into a coloured product with strong absorbance at 450nm. In figure 3.23, the positive controls do not appear to have worked, instead reducing in activity in the initial reaction phase, until plateauing after 1760 seconds. Due to the absence of activity within the wild-type basal sample and respective sample background, coupled with the lack of positive control activity, this assay was deemed non-functional.

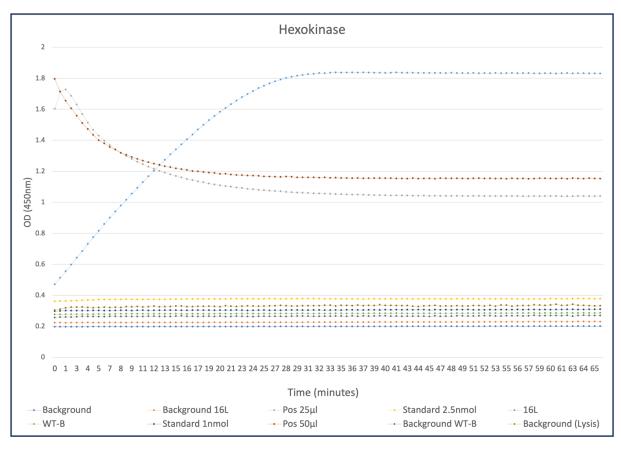


Figure 3.23. Kinetic graph showing activity of Hexokinase. Background WT-B= sample prepared without the addition of Hexokinase substrate. Background= only assay buffer. Assay carried out at 25 °C, pH 7.4, sample conc= 5μ g/ 50μ L. Assay linear for 35 minutes.

3.3.2 Pyruvate Kinase

Pyruvate kinase (PK) is one of the key enzymes of glycolysis, acting on phosphoenolpyruvate to form pyruvate. There are four PK subtypes, L,R,M1 & M2. PKM2 is mainly expressed in brain and liver tissues, where it regulates glycolysis and can be used as a switch for energy metabolism and material synthesis, routing glucose metabolism to pyruvate into the TCA cycle (Zhang, Deng & Liu., 2019). The pyruvate kinase assay works by following the generation of pyruvate and ATP, from PEP and ADP, catalysed by pyruvate kinase after the addition of enzyme and substrate mix. Pyruvate is oxidised by pyruvate oxidase to produce a coloured product with absorbance at 570nm, or fluorescence Ex/m 535/587nm. The fluorescence assay is approximately 10x more sensitive than the colorimetric assay.

As the fluorometric assay is 10x more sensitive, it was trialled for optimisation (figure 3.24). Whilst some components of the assay worked well, such as the blanks and standards, the samples tested produced negative slope of results and the sample backgrounds did not exhibit any enzymatic

activity this assay follows the production of pyruvate coupled to the reporter molecule, a positive slope of results would be expected. This assay was discontinued.

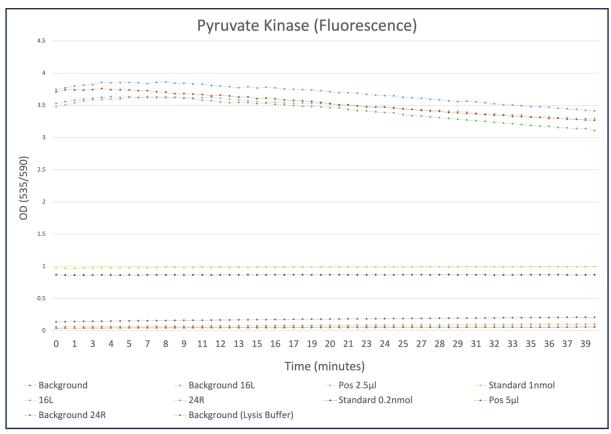


Figure 3.24. Kinetic graph showing activity of pyruvate kinase. 16L & 24R= test wild-type memory retrieval sample (total cell lysate). Background 16L & 24R= sample without the addition of substrate. Background= assay buffer only. Assay carried out at 25 $^{\circ}$ C, pH 7.4, sample conc=5 μ g/50 μ L.

3.3.3 Pyruvate Dehydrogenase

The pyruvate dehydrogenase complex (PDC) catalyses the oxidative decarboxylation of pyruvate, alongside the formation of acetyl-coA, CO_2 and NADH. The PDC links the glycolytic pathway to the oxidative pathway of the TCA cycle, occupying a key position in the oxidation of glucose. PDC acts as a gatekeeper in the maintenance of glucose homeostasis via the metabolism of pyruvate (Patel et al., 2014). The pyruvate dehydrogenase kit contains pre-coated wells with anti-PDH monoclonal antibody, which immunocaptures the PDH complex for determination of activity. PDH activity is measured by following the reduction of NAD $^+$ to NADH, coupled to the reduction of a reporter dye, with strong absorbance at 450nm.

Optimisation of the PDH assay began by testing one sample from each of the experimental conditions (genotype-phenotype interactions) and 4 blanks. This assay does not include a positive control or standard.

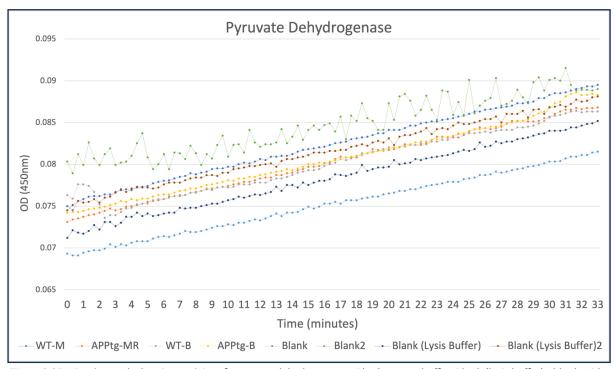


Figure 3.25. Kinetic graph showing activity of pyruvate dehydrogenase. Blank= assay buffer. Blank (lysis buffer)= blank with additional 3μ l lysis buffer). Assay carried out at $25\,$ °C, pH 7.4, sample conc= 5μ g/ 50μ L. Assay linear for 33 minutes.

Figure 3.25 reflects the enzymatic activity over a 30-minute period, as described in the manufacturers instructions. Although visually, figure 3.25 shows a steady increase in optical density over the reaction period, all samples and blanks increase at the same rate, with a final change in OD of 0.01. Such a small change is likely due to plate reader drift and cannot be interpreted as enzymatic activity. This pattern of activity was reflected over all 4 optimisation trials for PDH, and thus the assay was deemed non-functional. The pyruvate dehydrogenase assay is highly sensitive to detergent and should be repeated utilising fresh tissue homogenates from newly trained mice.

3.3.4 Aconitase

Aconitase is an enzyme involved in the regulation of cellular metabolism that catalyses the isomerisation of citrate into isocitrate via cis-aconitate intermediate. There are two isoenzymes of aconitase, mitochondrial aconitase (mAco) and cytosolic (cAco). mAco is thought to control cellular ATP production via the regulation of intermediate flow in the TCA cycle (Lushchak et al., 2014). The

aconitase assay kit follows the catalysis of the equilibrium between aconitate, cis-aconitate and isocitrate. Activity can be measured by the increase in absorbance at 240nm, associated with the formation of isocitrate after the addition of enzyme and substrate mix into the reaction wells.

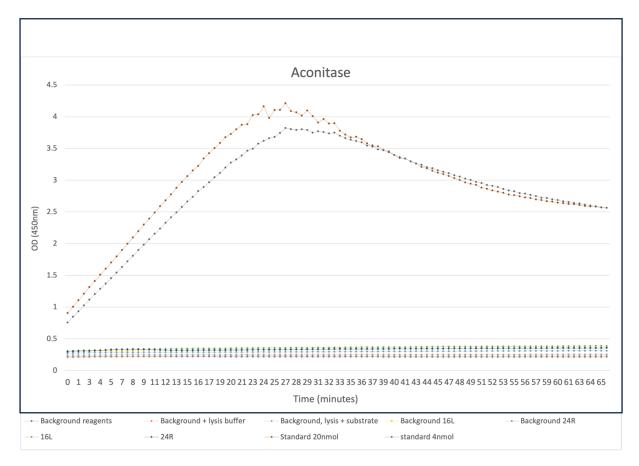


Figure 3.26. Kinetic graph showing activity of aconitase. Blank= assay buffer. Blank (lysis buffer)= blank with additional 3μ l lysis buffer). Background, lysis + substrate= assay buffer blank with additional lysis buffer and substrate added. Assay carried out at 25 °C, pH 7.4, sample conc= 5μ g/ 50μ L. 16L & 24R= Wild-type memory retrieval group, total cell lysate. Assay linear for 28 minutes (standards only).

The optimisation of the aconitase assay (figure 3.26) started by first using the 16L and 24R control samples (WT memory retrieval total cell lysates) and one sample background, consisting of the control sample with no added substrate. The standards were trialled at the upper (20nmol) and lower (4nmol) limits of the suggested range and three assay blanks, consisting of assay buffer only, assay buffer with additional lysis buffer and one with assay buffer, lysis buffer and substrate mix added. The two standards produced strong positive linearity of results and a fast rate of reaction; however, the samples showed no enzymatic activity across any of the optimisation trials and thus this assay was discontinued.

3.3.5 Isocitrate Dehydrogenase

Isocitrate dehydrogenase is an enzyme that has a well-established role in the TCA cycle. The IDH3 isoform catalyses the oxidative decarboxylation of isocitrate, producing α -ketoglutarate and CO₂ while converting NAD⁺ to NADH (Al-Khalla., 2017). The assay kit works by utilizing isocitrate as a specific substrate which leads to a colour change with strong absorbance at 450nm. The isocitrate dehydrogenase assay is carried out at 37°C, over a 30 minute to 2-hour period.

Before optimising the assay, three different types of 96-well plate were trialled to compare effects on assay results. The three plates available were clear, flat bottomed 96-well plates (figure 3.27 A), rounded bottom 96-well plates (figure 3.27 C) and opaque yellow 96-well plates (figure 3.27 B). The isocitrate dehydrogenase assay requires the generation of an NADH standard curve, complete with the addition of 'reaction mix' containing a developer solution. Standards were tested with the addition of developer and without to determine the effects, as manufacturer's instructions did not specify. Figure 3.27 presents the data gained from each of the different plates and developer combinations.

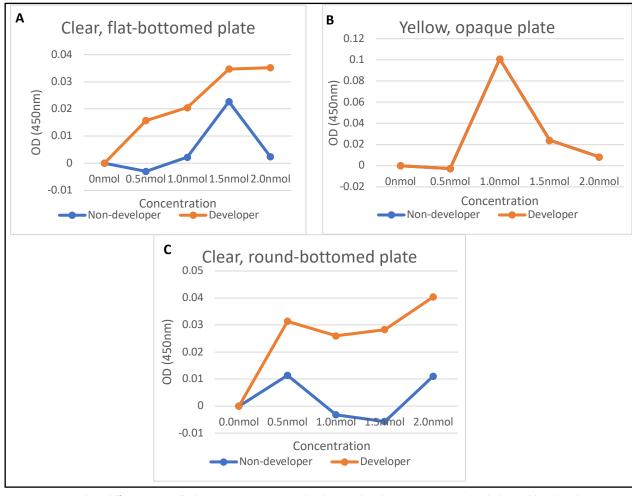


Figure 3.27. Trailing different 96-well plates using NADH standards. Non developer= NADH standard alone, diluted with assay buffer. Developer= NADH standard with additional developer solution. B) non-developer and developer gained the same results exactly and; therefore, results overlap on the graph. Assay carried out at 37 $^{\circ}$ C, pH 7.4.

It was determined from the results shown in figure 3.27A that the clear flat-bottomed 96 well plate with the addition of developer produced the best linearity of results and thus this combination was continued for the assay optimisation. Following manufacturers recommendations, a 2μ l and 5μ l positive control was used, alongside two control samples with no behavioural training, 1 standard, and a combination of background controls. As samples require the addition of 'reaction mix' for this assay, background controls had reaction mix added.

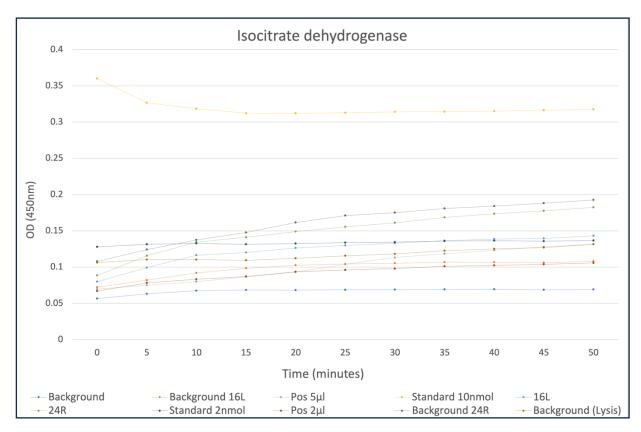


Figure 3.28. Kinetic graph showing activity of isocitrate dehydrogenase. Sample backgrounds= samples with no added substrate mix. Blank= assay buffer. Blank (lysis buffer)= blank with additional 3 μ l lysis buffer). Assay carried out at 37 Υ , pH 7.4, sample conc=5 μ g/50 μ L. 16L & 24R= Wild-type memory retrieval group, total cell lysate.

The results shown in figure 3.28 reflect the non-functionality of this assay kit. After four separate optimisation runs, there was no detectable isocitrate dehydrogenase activity within any of the biological samples tested, no matter which 96-well plate was used. All sample backgrounds possessed the same levels of activity as the test samples, with an increase of only 0.025OD over the course of the reaction. This assay was deemed non-functional and not continued to the comparative tests.

3.3.6 Fumarase

Fumarase (fumarate hydratase (FH)) is an enzyme found in the cytoplasm and in the mitochondria which catalyses the reversible hydration and dehydration of fumarate into malate. FH is involved in the generation of ATP for the cell via the TCA cycle (Yogev et al., 2010). The FH assay works by following the production of malate, which reacts with the enzyme mix to form an intermediate which reduced the developer to form a coloured product with strong absorbance at 450nm.

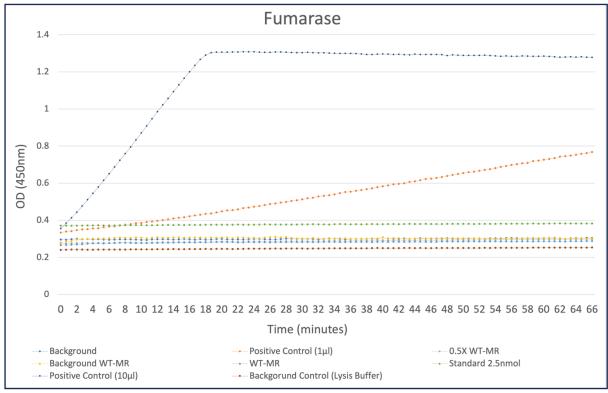


Figure 3.29. Kinetic graph showing activity of fumarase. VG4= wild-type memory retrieval. 0.5x VG4= 0.5x volume. Background control= assay buffer only. Background control (lysis buffer)= assay buffer with additional lysis buffer. Background control (sample)= biological sample without the addition of substrate mix. Assay carried out at 25 °C, pH 7.4, with sample conc= $5\mu g/50\mu$ L or sample conc= $2.5\mu g/50\mu$ L. (0.5 X Vg4). Assay linear for 66 minutes (positive control- 1μ l).

Fumarase assay was optimised for factors including optimal sample concentration, optimal positive control volume, standard concentration, and background control reagents. Figure 3.29 depicts the reaction progress over a 60-minute period. Both positive controls can be seen to exhibit fast rates of reaction and sharp increases in OD, however, the samples and sample backgrounds do not exhibit the same pattern. Whilst there appears to be no enzymatic activity present within the samples, the results from the blanks and positive controls show that the assay kit is functional, although not compatible with the current sample preparation method. This assay would need to be repeated with fresh tissue homogenates, prepared according to the manufacturer's guidance.

3.3.7 NADH-Coenzyme Q Oxidoreductase

NADH-Coenzyme Q Oxidoreductase (complex 1) is the largest of the energy converting enzyme complexes of the mitochondrial respiratory chain (Ohnishi, Shinzawa-Ito & Yoshikawa., 2008). Complex 1 uses two electrons to convert ubiquinone to ubiquinol by oxidising NADH produced by the TCA cycle in the mitochondrial matrix (Sharma, Lu & Bai., 2009). The complex 1 activity kit works by following the oxidation of NADH to NAD+, coupled to the reduction of a reporter dye with strong absorbance at 450nm. Capture antibodies for complex 1 are pre-coated in the wells, which capture target from samples. After target is captured, the activity of the enzyme can be accurately measured.

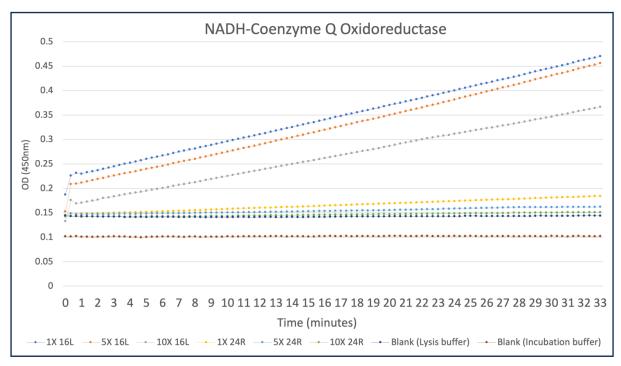


Figure 3.30. Kinetic graph showing activity of complex 1. Blank= incubation buffer only. Blank+ lysis buffer= incubation buffer with additional lysis buffer. $5x\ 16L=5x\ volume\ of\ 1x\ 16L\ sample$. $10x\ 16L=10x\ volume\ of\ 1x\ 16L\ sample$. Assay carried out at $25\ ^{\circ}C$, pH 7.4, with $5\mu g$, $25\mu g$ or $50\mu g$ protein per $50\mu L$ sample. $16L\ \&\ 24R=$ Wild-type memory retrieval group, total cell lysate. Assay linear for $33\ minutes$.

This optimisation aimed to determine the optimal sample volume for greatest complex 1 activity, whilst also assessing how the addition of lysis buffer affected the incubation buffer blank. As all samples are prepared in lysis buffer, it is important to note any differences that may result from its presence. Results from the assay show that across all volumes of 16L and 24R, there are strong levels of complex 1 activity. Samples with the highest volumes, and therefore the highest amount of lysis buffer, produced the lowest changes in optical density and the lowest rates of activity. As the lysis buffer can be seen to negatively impact the complex 1 activity, only samples at 1x volume use for

western blotting (1-3 μ l) were continued. Although from figure 3.30 it would seem the assay had worked, it was later determined to be non-functional. The samples used for this trial were non-behaviourally trained control mice only and when repeated with experimental samples from each genotype-phenotype combination, there was no detectable complex 1 activity over the course of the reaction.

3.3.8 Succinate Dehydrogenase

The succinate dehydrogenase complex catalyses the oxidation of succinate to fumarate in the TCA cycle and feeds electrons from succinate to ubiquinone in the respiratory chain (Rustin, Munnich & Rötig., 2002). The succinate dehydrogenase activity kit works by following the production of ubiquinol coupled to the reduction of a reporter dye with a reduction in absorbance at 600nm. The microplate wells are coated with an anti-complex II monoclonal antibody which purifies enzyme, ready for reaction monitoring.

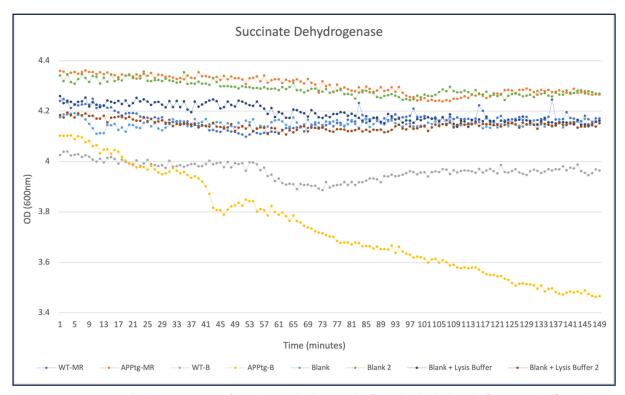


Figure 3.31. Kinetic graph showing activity of complex II. Blank= assay buffer only. Blank+ lysis buffer= assay buffer with additional lysis buffer. Assay carried out at 25 $^{\circ}$ C, pH 7.4, sample conc=5 μ g/50 μ L. Assay linear for 149 minutes.

Figure 3.31 shows that up to 880 seconds, all samples produced a decrease in absorbance over time, reflective of complex II activity. Both blanks produced no activity over the course of the reaction. However, after further optimisation attempts for this assay, the same trends could not be replicated

with larger groups of test samples (from each experimental condition), instead gaining positive linearity of results and therefore, this assay was deemed non-functional.

3.3.9 Cytochrome C Oxidase

Cytochrome C oxidase (CcO) is the terminal OXPHOS complex in mitochondria. CcO links the conversion of molecular oxygen to water, the reduction of electron carriers during metabolism, and the translocation of protons into the intermembrane space (Watson & McStay., 2020).

The CcO assay kit works by following the oxidation of reduced cytochrome C by the change in absorbance at 550nm. The wells of the microplate are coated with monoclonal antibody, specific to the enzyme.

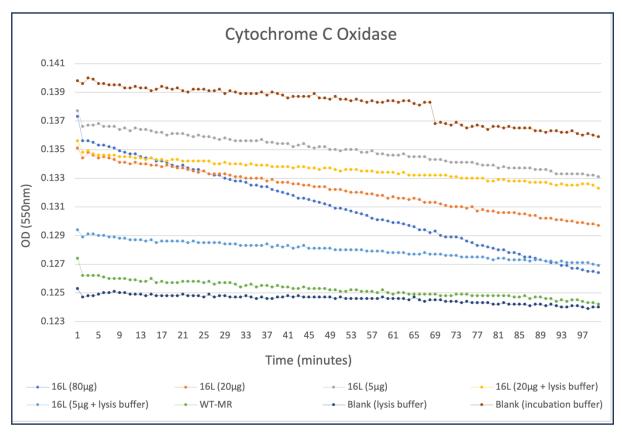


Figure 3.32. Kinetic graph showing activity of complex IV. 16L= wild-type memory retrieval group, total cell lysate. Blank= incubation buffer only. Blank+ lysis buffer= incubation buffer with additional lysis buffer. Assay carried out at $25 \, ^{\circ}$ C, pH 7.4, with $5 \, \mu$ g, $20 \, \mu$ g or $80 \, \mu$ g protein per $50 \, \mu$ L. Assay linear for $97 \, \text{minutes}$.

Figure 3.32 depicts the third optimisation trial for complex IV, which tested different 16L sample concentrations ranging from 5-80 μ g. The results from this assay confirmed that the assay kit was non-functional. Over the 2-hour reaction period, the largest change in OD (16L 80 μ g) was 0.009,

reflecting minimal enzymatic activity and likely due to plate reader drift. This assay may be notably sensitive to specific methods of sample preparation, favouring fresh homogenates.

3.3.10 ATP Synthase

The last assay to be optimised was ATP synthase, the fifth OXPHOS complex, which synthesises ATP from ADP and inorganic phosphate in the mitochondrial matrix, using energy derived from the proton gradient (Jonckheere, Smeitink & Rodenburg., 2012). The ATP synthase assay kit works by following the production of ADP which is coupled to the oxidation of NADH to NAD+, detected as a decrease in absorbance at 340nm. ATP synthase is immunocaptured within the microplate wells and its activity can then be precisely measured.

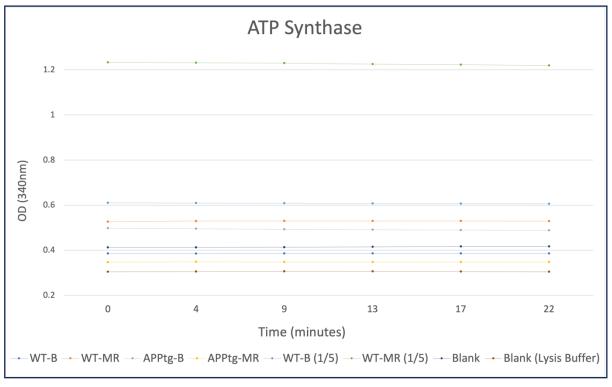


Figure 3.33 . Kinetic graph showing activity of complex V. WT-B (1/5)= 1/5th volume of standard $5\mu g$ WT-B (= $1\mu g$). Blank= assay buffer only. Blank+ lysis buffer=assay buffer with additional lysis buffer. Assay carried out at 25 °C, pH 7.4, with $1\mu g$ or $5\mu g$ per $50\mu L$.

Figure 3.33 depicts the second attempt at optimising the ATP synthase assay, trialling samples from each experimental condition, at different concentrations. Similar to the first attempt, no activity was present over the 20-minute reaction period. The ATP synthase assay was designed for use with purified mitochondria, noting that homogenised tissue may also be used but specific activity may be

lower. Due to unavailability of fresh tissue homogenates and resulting lack of detected ATP synthase activity, this assay was disregarded for the comparative experiments.

Table 3.1 provides a brief summary of all 12 enzymatic activity assay kits purchased from Abcam and the final outcome for each kit, whereas table 3.2, below, details the different variables tested during optimisation for each assay.

Table 3.2. Summary of enzymatic activity assay kits purchased from Abcam, the outcome of each assay and some of the variables tested in the initial optimisation period.

Assay Kit	Subcellular location	Justification	Variables tested
Hexokinase (measures total hexokinase- HKI, HKII, HKIII, HKIV)	 HK1- all mammalian tissues HK2- OMM and cytoplasmic compartments, muscle, heart HK3- lung, kidney, liver HK4- certain neuroendocrine cells 	Glycolysis	 Plate reader Sample concentration Amount of positive control Standard concentration Addition of lysis buffer
6-Phosphofructokinase	Cytoplasm	Glycolysis	 Plate reader Temperature (37°C) Sample concentration Positive control amount Standard concentration Addition of lysis buffer
Pyruvate Kinase	Cytoplasm	Glycolysis	 Plate reader Sample concentration Addition of lysis buffer Amount of positive control Standard concentration Colourimetric/fluorometric
Pyruvate Dehydrogenase	Mitochondrial matrix	Links glycolysis and TCA cycle	Plate readerSample concentrationAddition of lysis buffer
Aconitase	m-type- Mitochondrion	TCA cycle	 Plate reader Sample concentration Addition of lysis buffer Single measurement/kinetic measurements
Fumarase	Mitochondrion & cytosol	TCA cycle	 Plate reader Amount of positive control Standard concentration Sample concentration Addition of lysis buffer
Isocitrate Dehydrogenase	IDH2- IMM	TCA cycle enzyme	 Plate reader Temperature (37°C) Amount of positive control Standard concentration Addition of lysis buffer Different types of 96 well plates (round or flat, clear, or translucent)
Malate Dehydrogenase 2	MDH2- mitochondrial matrix	TCA cycle	Plate readerSample concentrationAddition of lysis buffer

NADH-Coenzyme Q Oxidoreductase	IMM	ETC complex I	Plate readerSample concentrationAddition of lysis buffer
Succinate Dehydrogenase	IMM, matrix side	ETC complex II	Plate readerAddition of lysis buffer.
Cytochrome C Oxidase	IMM	ETC complex IV	 Plate reader Sample concentration Lysis buffer volume Length of assay Inter-reading interval
ATP synthase	IMM	ETC complex V	 Plate reader Sample concentration Addition of lysis buffer Inter-reading interval and overall reaction time

3.4 Analysis of Mitochondrial Metabolites

Ideally, the quantification of metabolites would require unprocessed brain tissue to allow for sample preparation methods, compatible with the instrument of analysis. However, within this project, it has not been possible to utilise fresh tissue, as all remaining tissue from both hemispheres of each mouse has been used for other purposes, such as western blotting. The premise of these experiments was to attempt the analysis in the hopes that sample preparation may not have a substantial impact on the compatibility of the methods used for metabolite detection, even with the knowledge that it may not be feasible due to limited sample volume and sample preparation methods. Due to these factors, no conclusive comparative result were obtained, however, the presentation of these results may go some way to developing a future method of analysing samples prepared in such fashion.

Significant progress was made in the optimisation of each instrument to the different metabolite standards chosen and the development of a UPLC-MS method for future continuation of the project.

As analysis of mitochondrial metabolites in brain tissue homogenates of mice with preclinical FAD

has not been carried out previously, this method is novel and can be continued to determine changes in metabolite levels between cognitively normal WT mice and APPtg mice.

3.4.1 Standards

Chromatograms from GC-MS analysis of citric acid showed a good base peak at the correct molecular weight (MW; see figure 3.34, however, for succinic acid, a peak was detected at an incorrect MW. In both chromatograms, no presence of derivatising agent was detected, confirming the derivatisation method was inappropriate for the standards used.

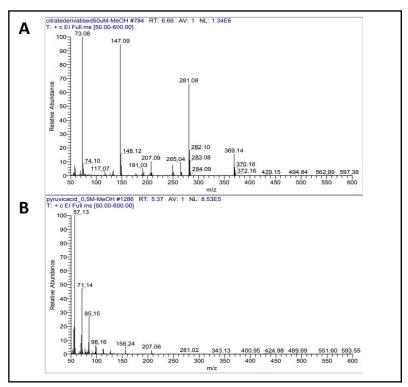


Figure 3.34. Mass spectra of derivatised citric acid and pyruvic acid.

Standards were run through UPLC-MS at three different cone voltages (60v,70v,80v) to determine optimum voltage and retention times for each metabolite. Table 3.3 details the results from the optimisation of each metabolite standard, including the retention time and observed peak parameters. These parameters can be used in the future for further analysis.

Table 3.3. Table of optimum parameters for each metabolite standard.

Metabolite	Optimum cone voltage	Observed Peak m/z	Retention time (mins)

Pyruvic acid	70v	88.2	6.36
L-(+)-Lactic acid	60v	91	11.48
Citric acid	70v	193	8.34
Cis-Aconitic acid	60v	175.2	4.76
α-ketoglutaric acid	80v	147.1	4.01
Succinic acid	80v	119.2	6.91
Fumaric acid	80v	117.5	5.74
L-(-)-Malic acid	80v	135.1	12.87

Standard curves were generated for each metabolite standard, at 1M, 1mM, 1µM and 1nM, however, due to software constraints, the resulting curves could not be exported for presentation.

Although brief, the results presented from the analysis of mitochondrial metabolites within lysed brain tissue homogenates is novel and allows for the further development of an experimental method compatible with this type of biological sample and sample preparation method.

CHAPTER 4- PROTEOMICS RESULTS

The general approach for untargeted, exploratory proteomics analysis is to apply unbiased statistical filters to the whole proteomic dataset and corroborate the results and pathways discovered in one database with many other databases to remove database selection bias. Higher confidence results can be gained using multiple independent parameters, so long as the same pathway is identified by each one. All outputs of proteomics results are placed in the appendix, including interesting results that did not meet statistical significance but might still be important to note. In this case, the reader can come to their own conclusions, although it may be more important to focus on the general patterns as a whole, rather than focussing on each individual result.

As the proteomic analysis has been carried out using two separate methods (FDR correction & application of t-tests relative to threshold), the result will be split into two sections; firstly, FDR corrected results, and secondly, the 20% regulation threshold results.

4.1 Key Markers

The raw LFQ intensity values gained from sample mass-spectrometry were used to plot bar graphs of the levels of key synaptic and mitochondrial proteins. The values were used before the application of FDR correction or the 20% regulation threshold. The average LFQ intensity value for each experimental group is presented. For enzyme complexes with multiple detected subunits, e.g. 12 different subunits of ETC complex I, the average of all of the subunits was used as the overall value, calculated for each experimental condition.

Figure 4.1 represents the average LFQ intensities for proteins targeted in western blot analysis in each experimental group. SDHA showed the same expression pattern in both genotypes, with highest levels in the basal group. WT mice had the greatest difference between behavioural groups, whereas in transgenic mice, the difference was minimal. The expression patterns of alpha synuclein were also the same in each genotype (greater expression in the memory groups) however, the difference between behavioural groups was much bigger in the WT mice, where the expression in WT memory was much larger than WT basal. Expression of ATP5A was very similar in APPtg mice at the basal level, when compared to during memory retrieval, however, in the WT mice, expression was much greater at the basal level than during memory retrieval. VDAC1 expression also was very similar between the two behavioural groups in the transgenic mice, whereas WT mice showed greater expression during memory retrieval. The expression pattern of COX4 was the same across both genotypes. Expression of 6-PFK revealed an interesting pattern; WT mice showed greater overall expression across both behavioural groups (higher expression at the basal level), however the expression pattern between behavioural groups was reversed in the transgenic mice (greater expression during memory retrieval). The expression pattern of MDH2 was consistent across genotypes (higher expression during memory retrieval), however, overall expression was higher in the transgenic mice.

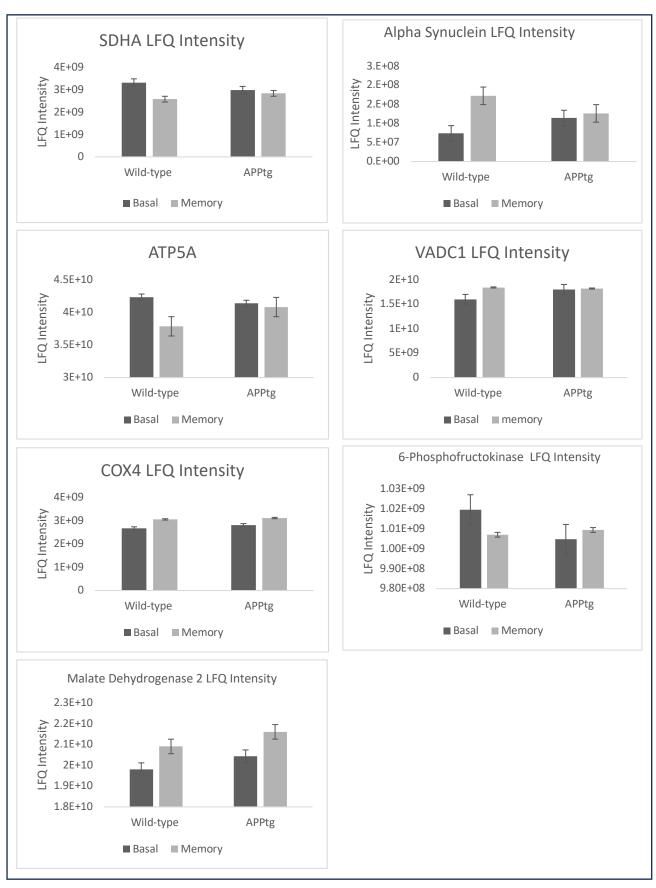


Figure 4.1. Raw LFQ (label-free quantitation) intensities for proteins targeted in western blot analysis. LFQ intensity shown for each of the experimental groups. Each group has 4 biological replicates.

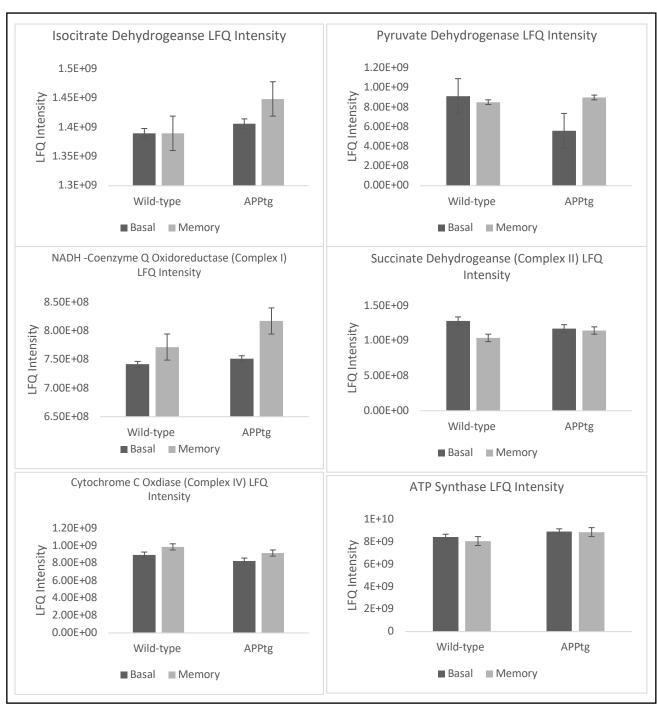


Figure 4.2. LFQ (label-free quantitation) values for enzymes used for enzymatic activity assays. LFQ intensity shown for each experimental group. Each group has 4 biological replicates.

Figure 4.2 displays the average LFQ intensities of enzymes also used for enzymatic activity assay, per experimental group. The expression of isocitrate dehydrogenase was consistent in WT mice across behavioural groups, however, in the transgenic mice, the expression showed an entirely different pattern; overall expression was much higher than in the WT mice and expression during memory retrieval was greater than during basal levels. Expression of pyruvate dehydrogenase was greater in

the WT mice overall, with little difference between the two behavioural groups. In the transgenic mice, expression was much higher in the memory group than during basal levels. Expression of complex I showed the same patterns across the two genotypes, with higher expression in the memory retrieval groups. The greatest expression was in transgenic mice during memory retrieval. Expression of complex II was consistent across behavioural groups in the transgenic mice, however, in the WT mice, expression was highest at the basal level. Complex IV expression pattern was the same across genotypes, however, the WT mice had an overall higher expression than the transgenic mice. Expression of ATP synthase was much lower in the WT mice than the transgenic mice, whose expression was consistent across behavioural groups. Figure 4.3 depicts the average LFQ intensity across experimental groups for the remaining 4 enzymes. Hexokinase expression patterns were the same across genotypes, with higher expression during basal levels. The expression of pyruvate kinase is consistent across behavioural groups in transgenic mice, however in WT mice, there is a higher expression at the basal level, when compared to during memory retrieval. The expression pattern of fumarase was the same across genotypes, however, the expression in WT mice at the basal level was considerably higher than any other genotype and behavioural group combination. The last enzyme analysed was aconitase, whose expression levels were consistent across all genotype and behavioural groups.

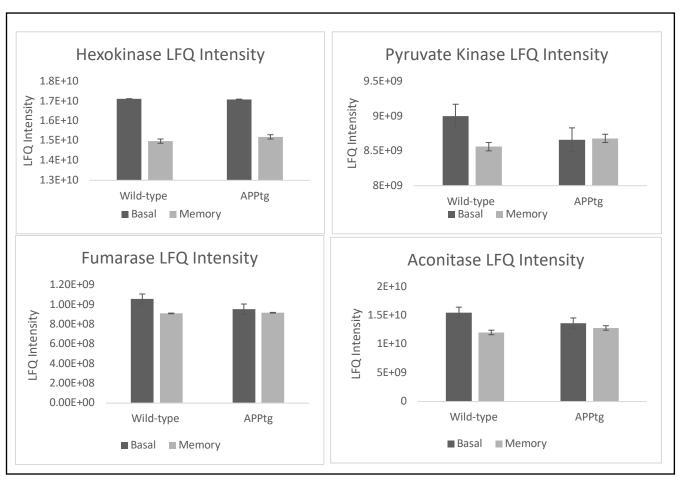


Figure 4.3. LFQ values for enzymes used for enzymatic activity assays. LFQ intensity shown for each experimental group. Each group has 4 biological replicates.

4.2 FDR Corrected results

After the application of FDR correction to the whole set of stage 1 proteins from each experimental group (following method detailed by Lee & Lee., 2018), proteins that returned a statistically significant result were further separated into up- and down-regulated groups, based on percentage fold change (table 4.1). Whilst the number of total stage 1 proteins were very similar between groups, the number of significant adjusted p-values were strikingly different between groups. WT mice (group A) had 40 significant protein regulations, 30 of which were upregulated and 10 of which were downregulated. In the APPtg mice on the other hand, none of the protein regulations were significant after FDR application (group C). When comparing APPtg mice at the point of memory retrieval against their WT counterparts (group B), none of the protein regulations were significant after FDR correction. However, when comparing APPtg mice at basal levels with WT mice (group D), 83 statistically significant protein regulations were identified, 47 of which were upregulations and 36 of which were downregulations.

Table 4.1. Table showing the numbers of differentially regulated proteins in each experimental group. Total proteins equals the number of proteins remaining after stage 1 analysis (e.g. removal of proteins with more than one missing value) but before the application of FDR. Total significant proteins equals the number of stage 1 proteins that returned a statistically significant result after FDR correction.

Gro	oup	Total Significant Proteins	Significantly Upregulated	Significantly Downregulated	Total Proteins
	Γ Basal v. Γ Memory	40	30	10	1454
v. <i>A</i>	Memory APPtg emory	0	0	0	1481
v. <i>A</i>	Ptg Basal APPtg emory	0	0	0	1497
	Γ Basal v. Ptg Basal	83	47	36	1354

To quickly visualise proteins with large fold changes and statistical significance against the whole dataset analysed, volcano plots were created using GraphPad Prism (https://www.graphpad.com/). Figure 4.4 represents the magnitude of fold change, and whether statistical significance was reached for each protein within each experimental group.

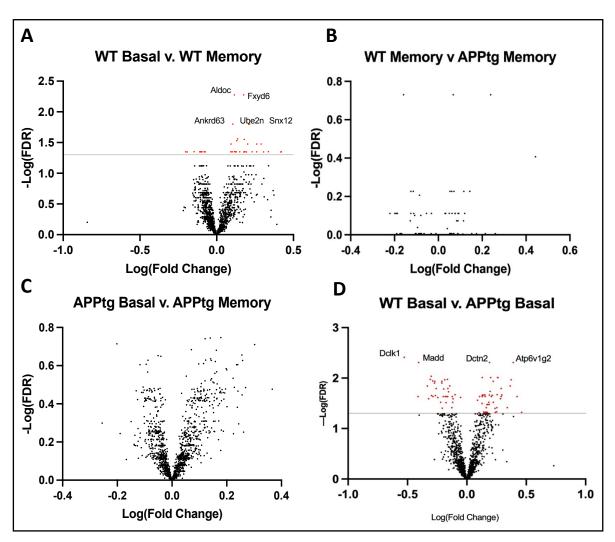


Figure 4.4. A) Differentially expressed proteins in WT mice at the point of memory retrieval, when compared to basal levels. Red plots denote statistical significance (p<0.05). A total of 1354 proteins were included in the plot, following FDR correction. B) Differentially expressed proteins in APPtg mice during memory retrieval, when compared to WT mice during memory retrieval. A total of 1480 proteins were included in the plot, after FDR correction. There are no statistically significant plots. C) Differentially expressed proteins in APPtg mice during memory retrieval, when compared to the basal levels. A total of 1497 proteins were included in the plot, following FDR correction. There are no statistically significant plots. D) Differentially expressed proteins in APPtg mice at Basal levels, when compared to WT controls. Red plots are statistically significant (p<0.05). A total of 1454 proteins were included in the plot, following FDR correction.

Two of the four groups, WT Memory v. APPtg Memory (Group B) and APPtg Basal v. APPtg Memory (group C), had no statistically significant protein regulations within the dataset after the application of FDR correction (Figure 4.4). The two experimental conditions with significant protein regulations remaining after FDR correction, WT basal v. APPtg basal (group D) and WT basal v. WT memory retrieval (group A), had a number of proteins that were up- or down-regulated to a much greater extent than other proteins. In the APPtg mice at basal levels (when compared to WT mice at basal levels), 83 protein regulations were identified as significant, with 47 significant upregulations and 36 significant downregulations (4.1; figure 4.4D). Highlighted in the volcano plots are the top 5 results

with the greatest fold changes. For this group, the greatest fold changes in the significantly upregulated proteins were Dctn2 and Atp6vlg2. Dctn2 is a subunit of dynactin, a macromolecular complex which binds microtubules and cytoplasmic dynein. It has multiple known functions including endoplasmic reticulum (ER)-Golgi transport, axogenesis, and the centripetal movement of endosomes and lysosomes, which it carries out via activation of dynein for transport along microtubules. It is thought that the protein may play a key role in synapse formation during development of the brain (GeneCards., 2017). The second greatest significant upregulation, Atp6vlg2 is a subunit of mitochondrial ATP synthase, and may play a direct role in translocation of protons across the membrane, via the FO proton channel domain (UniProt., 2023). The greatest significant downregulations in APPtg mice during memory retrieval were Dclk1 and Madd. Dclk1, a member of the doublecortin and protein kinase superfamily, contains two N-terminal doublecortin domains, facilitating binding of microtubules and regulation of microtubule polymerisation. Another of its domains, which lies between the doublecortin and protein kinase domains, is involved in the mediation of protein-protein interactions. The encoded protein functions within a number of cellular processes including neuronal migration, neuronal apoptosis, neurogenesis and retrograde transport. Upregulation of Dclk1 by brain-derived neurotropic factor is associated with general cognitive ability and memory function (NIH., 2023). Madd protein is a signalling molecule which interacts with one of two receptors on cells that have been targeted for apoptosis. The MAP-kinase activating death domain (Madd) interacts with the death domain of TNF-alpha receptor 1, activating MAPK, propagating the apoptotic signal. Madd has several functions including roles in vesicle trafficking at the neuromuscular junction, upregulating post-docking step of synaptic exocytosis in central synapses, formation of synaptic vesicles, and the motor-dependent transport of vesicles to presynaptic nerve terminals (NIH., 2023).

The second condition with significant differential protein expression, WT basal v. WT memory (table 4.1; figure 4.4A) also has the top 5 significant differential protein regulations highlighted in the volcano plots. For this group, the greatest fold changes were in the significantly upregulated proteins; Fxyd6, Ube2n, Aldoc, and Ankrd63. Fxyd6 is a phosphohippolin, which is thought to affect the activity oof Na, K-ATPase (GeneCards., 2023). Aldoc is a member of the class I fructose-biphosphate aldolase gene family, expressed specifically in the hippocampus and Purkinje cells and is a member of the enzyme family aldolase (NIH., 2023). Aldoc is an enzyme of the glycolytic pathway which catalyses the reversible aldol cleavage of fructose-1,6-bisphosphate to dihydroxyacetone and fructose-1-phosphate to glyceraldehyde-3-phosphate or glyceraldehyde (GeneCards., 2023). Fxyd6 is a protein which has yet to be fully characterised but is thought to participate in the regulation of sodium ion transmembrane transporter activity and is active in the glutamatergic synapse,

postsynaptic membrane, and presynaptic membrane (PubChem., 2023). Ankrd63 gene encodes a protein which, in eukaryotic cells, serves as an adaptor protein that links membrane proteins to the cytoskeleton, forming protein complexes of integral membrane proteins, cytoskeletal components and signalling molecules. The ankyrin proteins stabilise and organise protein networks though their ability to mediate protein-protein interactions, stablishing the infrastructure of specialised membrane domains (Cunha & Mohler., 2009).

4.2.1 DAVID Annotations

Due to two of the four experimental groups having no significant differentially expressed proteins, only the two groups with significant expressions were analysed by DAVID and therefore, the results are slightly limited in number. The top 5 results from the analyses are listed, in order of highest significance or largest enrichment value. The full list of outputs can be found in appendix D, section 1, where the reader can come to their own conclusions on the data; data that does not meet statistical significance thresholds (p=0.05) may still be biologically meaningful in exploratory proteomics studies.

4.2.2 Gene Ontology

The first stage of analysis was to gain an understanding of the biological meaning and functions behind the large protein lists identified as differentially regulated between genotype and phenotype combinations. The **D**atabase for **A**nnotation, **V**isualisation and **I**ntegrated **D**iscovery (DAVID) was employed to provide a comprehensive list of enriched biological themes within the protein lists, particularly focussing on Gene Ontology (GO) terms.

4.2.3 Biological Process

GO provides a framework for describing the functions of gene products (proteins) of target organisms. A GO annotation is an association between a specific protein and a GO term, together making a statement important to the function of the protein. The two biological conditions with significant protein regulations after FDR correction were submitted to DAVID GO tool for annotation with associated biological processes. Figure 4.5 shows the top 5 biological processes (BPs) enriched in the upregulated protein lists for their respective experimental condition.

In the WT mice, four significant BPs were found to be associated with upregulated proteins during memory retrieval (when compared to basal levels), including melanosome transport, vesicle-mediated transport, cellular oxidant detoxification and establishment of protein localisation to membrane. There were no upregulations in the APPtg mice during memory retrieval (group C).

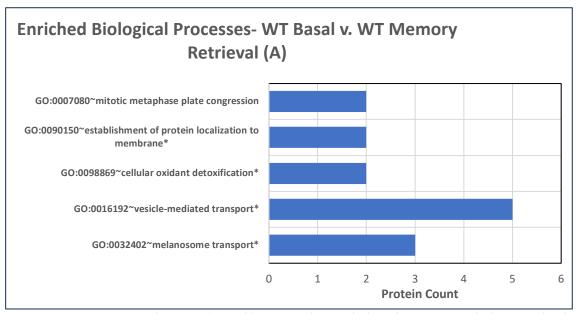


Figure 4.5 DAVID GO-term enrichment analysis. Table presents the top 5 biological processes enriched in upregulated proteins in WT mice during memory retrieval (when compared to WT basal levels; group A). Significant results denoted by *.

Figure 4.6 reveals three BPs were found to be significantly associated with proteins upregulated in transgenic mice at the basal level (when compared to WT mice at the basal level; group D), including mitochondrial electron transport, cytochrome c to oxygen, fatty acid metabolic process and gene expression. Negative regulation of neuron death was also identified and although it did not reach the significance threshold, its meaning may still be biologically important.

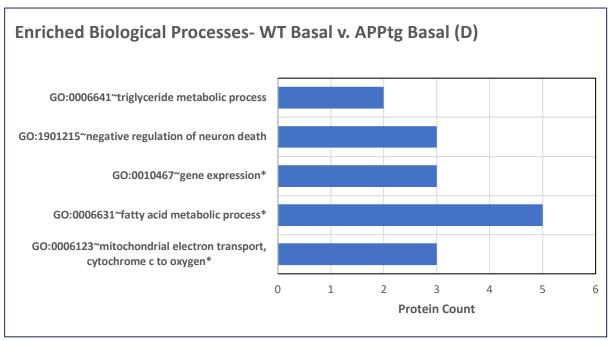


Figure 4.6. DAVID GO-term enrichment analysis. Table presents the top 5 biological processes enriched in upregulated proteins in APPtg mice during basal levels (when compared to WT mice during basal levels; group D). Significant results denoted by *.

In WT mice during memory retrieval (when compared to basal; group A) there were two BPs identified by DAVID in the significantly downregulated proteins (figure 4.7), although they did not reach the significance threshold; apoptotic process and liver development. There were no results for APPtg mice during memory retrieval (group C).

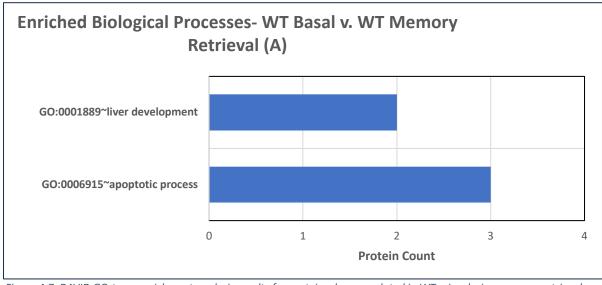


Figure 4.7. DAVID GO-term enrichment analysis results for proteins downregulated in WT mice during memory retrieval (when compared to WT mice during basal levels; group A). Significant results denoted by *.

In the transgenic mice during basal levels (when compared to WT basal; group D), one result was statistically significant- barbed-end actin filament capping, as listed in figure 4.8.

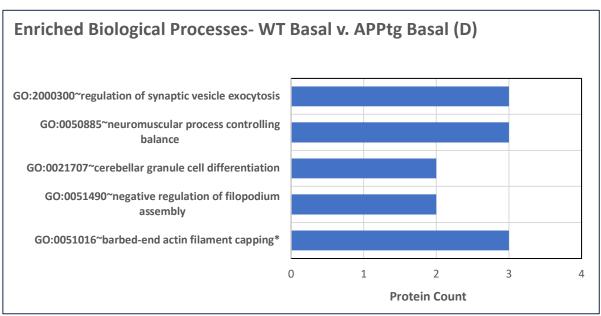


Figure 4.8. DAVID GO-term enrichment analysis. Table presents the top 5 biological processes enriched in downregulated proteins in APPtg mice during basal levels (when compared to WT mice during basal levels; group D). Significant results denoted by *.

4.2.4 Cellular component

The next GO term to be annotated to inputted proteins was the cellular component (CC). CC provides information about the subcellular structures and macromolecular complexes where inputted proteins are located, helping localise specific protein functions of interest.

Figure 4.9 reflects the cellular components where each protein's function is localised within the two experimental conditions. In WT mice during memory retrieval (compared to basal levels; group A), two CCs were identified as significantly enriched; the postsynaptic endocytic zone cytoplasmic component and clathrin coat of trans-golgi network vesicle. There were no results for APPtg mice during memory retrieval (group C).

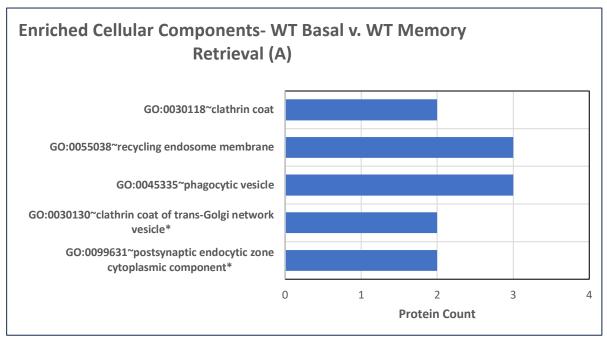


Figure 4.9. DAVID GO-term results. Table represents the cellular components enriched in upregulated proteins in WT mice during memory retrieval (when compared to WT mice at basal levels; group A). The top 5 results are shown, in order of significance. Significant results denoted by *.

In the transgenic mice at the basal level (compared to WT basal; group D), three CCs were statistically significant including the IMM (most enriched), mitochondrial respiratory chain complex IV and the postsynaptic endocytic zone cytoplasmic component, listed in figure 4.10.

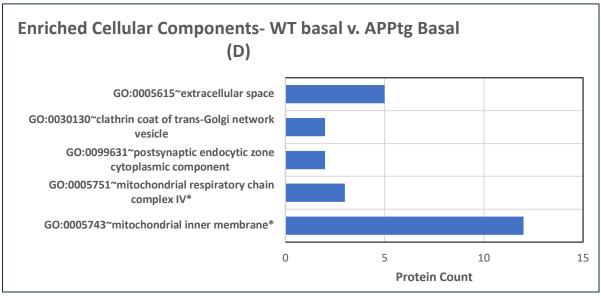


Figure 4.10. DAVID GO-term enrichment analysis. Table presents the top 5 cellular components enriched in upregulated proteins in APPtg mice during basal levels (when compared to WT mice during basal levels; group D). Significant results denoted by *.

Only one CC was identified in proteins downregulated within WT mice during memory retrieval (group A), the synapse, suggesting most proteins identified as significant downregulated in WT mice during memory retrieval have functions in the synapse, however this was not statistically significant. There were no results for APPtg mice during memory retrieval (group C).

In the transgenic mice, the two significant CC results were the glutamatergic synapse and the Schaffer collateral- CA1 synapse, listed in figure 4.11.

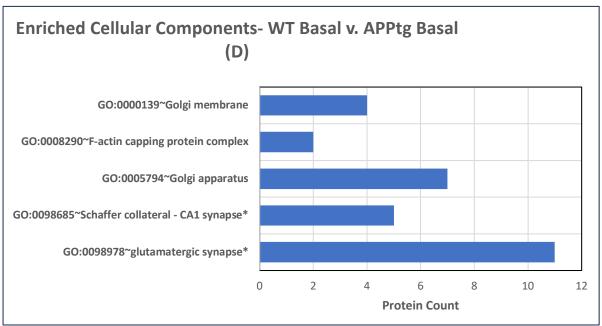


Figure 4.11. DAVID GO-term enrichment analysis. Table presents the top 5 cellular components enriched in downregulated proteins in APPtg mice during basal levels (when compared to WT mice during basal levels). Significant results denoted by *.

4.2.5 Molecular Function

The molecular function (MF) GO terms describe actions that can be carried out on a molecular level via the direct physical interactions with other molecular entities (Thomas., 2017).

Figure 4.12 represents the MF annotations enriched in the inputted significantly upregulated gene lists. None of the results for either condition were statistically significant. There were also no MFs significantly enriched in the proteins significantly downregulated in either condition. There were no results for APPtg mice during memory retrieval (group C).

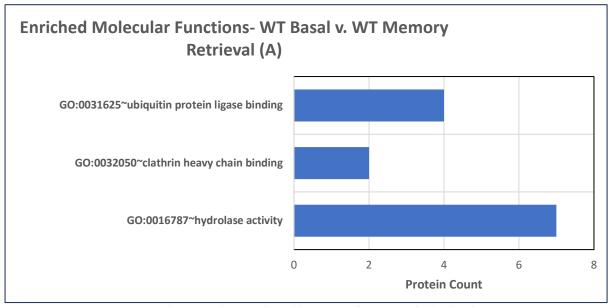


Figure 4.12. DAVID GO-term enrichment analysis results. Table presents the top enriched molecular processes in proteins upregulated in WT mice during memory retrieval (when compared to basal levels; group A). Significant results denoted by *.

Only one, non-significant result was returned for transgenic mice at the basal level (group D), which was calmodulin binding.

4.2.6 KEGG Pathways

KEGG pathway annotations identify the enriched networks that each inputted protein is functionally associated with via molecular interactions. Corresponding KEGG pathways maps can be visualised for each specific term and utilise KEGG Orthology groups which allow experimental results from specific organisms to be generalised to other organisms using genomic information (GenoneNet., 2011).

Figure 4.13 represents the KEGG pathways proteins significantly upregulated in each condition are associated with. In the WT mice during memory retrieval (when compared to basal levels), three pathways were identified as significantly enriched- endocytosis, synaptic vesicle cycle and vasopressin-regulated water reabsorption.

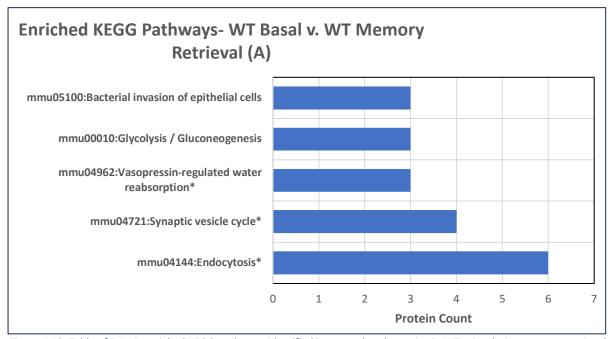


Figure 4.13. Table of DAVID enriched KEGG pathways identified in upregulated proteins in WT mice during memory retrieval (when compared to basal levels; group A). Significant results denoted by *.

In transgenic mice at the basal level (compared to WT mice at the basal level; group D), all 55 results were statistically significant and included OXPHOS, AD and pathways of neurodegeneration-multiple diseases (figure 4.14).

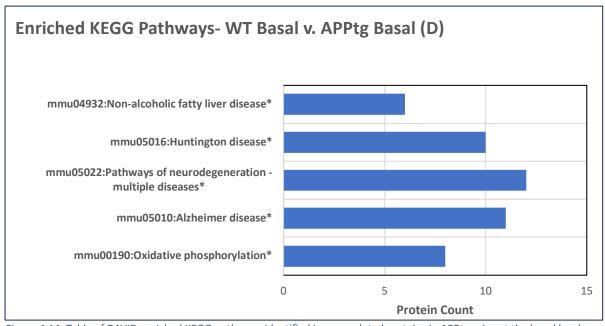


Figure 4.14. Table of DAVID enriched KEGG pathways identified in upregulated proteins in APPtg mice at the basal level (when compared to WT counterparts; group D). Significant results denoted by *.

In the significantly downregulated proteins, there were no enriched KEGG pathways in WT mice during memory retrieval (group A), and only one significantly enriched KEGG pathway, sulfur metabolism, in the transgenic mice at the basal level (when compared to WT mice at the basal level; group D).

4.2.7 Functional Annotation Clustering

DAVID functional annotation clustering tool groups proteins with similar functions/annotations together to make the biological interpretation of large protein lists clearer and more focussed. The top 5 clusters are listed in the output tables, in order of enrichment score (the higher, the more enriched). The enrichment score is the geometric mean (in -log scale) of members' p-values in a corresponding annotation cluster, is used to rank their biological significance. Thus, top ranked annotation groups most likely have consistent lower p-values. More detail about enrichment scores can be found on the DAVID website (https://david.ncifcrf.gov/helps/functional_annotation.html). Full clustering output tables can be found in Appendix D, section 1.

7 clusters were identified in the WT group and 10 clusters were identified in the APPtg mice at basal levels (when compared to WT mice at basal levels; group D). Table 4.2 lists the top most enriched clusters within inputted significantly upregulated protein lists. During memory retrieval in WT mice (when compared to basal levels; group A), the top functional clusters were synaptic vesicle cycle, protein transport, GTPase activity, ion transport and lipid metabolism. There were no results for APPtg mice during memory retrieval (group C).

Table 4.2. DAVID functional annotation clustering results for upregulated proteins in WT mice during memory retrieval (when compared to WT basal; group A). The top 5 clusters are shown, in order of enrichment score. Significant results denoted by *.

A- WT Basal v. WT Memory Retrieval						
Upregulated						
Synaptic vesicle cycle (2.67)						
Protein transport (1.33)						
GTPase activity (1.21)						
Ion transport (0.93)						
Lipid metabolism (0.88)						

In transgenic mice at the basal level (compared to WT; group D), the top enriched clusters were metabolic pathways, GTPase activity, synaptic vesicle cycle, identical protein binding and lipid binding (table 4.3).

Table 4.3. DAVID functional annotation clustering results for upregulated proteins in APPtg mice at the basal level when compared to WT mice at the basal level (group D). The top 5 clusters are shown, in order of enrichment score. Significant results denoted by *.

D- Wild-type Basal v. APPtg Basal
Upregulated
Metabolic pathways (3.63)
GTPase activity (1.81)
Synaptic vesicle cycle (1.73)
Identical protein binding (1.28)
Lipid binding (1.15)

4 clusters were identified in the WT mice and a total of 11 clusters were identified in the APPtg mice at basal levels (when compared to WT mice at basal levels; group D). In the proteins significantly downregulated during memory retrieval in WT mice (group A), four clusters were generated, including synapse, mitochondrion, membrane, and phosphoprotein (table 4.4). There were no results for APPtg mice during memory retrieval (group C).

Table 4.4. DAVID functional annotation clustering results. Annotation clusters present in genes downregulated in WT mice during memory retrieval (when compared to basal levels; group A). Significant results denoted by *.

A- WT Basal v. WT Memory Retrieval					
Downregulated					
Synapse (2.05)					
Mitochondrion (1.64)					
Membrane (0.62)					
Phosphoprotein (0.62)					

In the transgenic mice during basal levels (group D), the top enriched clusters were calmodulin binding, intracellular transport, cytoskeleton, membrane, and Golgi apparatus (table 4.5).

Table 4.5. DAVID functional annotation clustering results for upregulated proteins in APPtg mice at the basal level when compared to WT mice at the basal level (group D)l. The top 5 clusters are shown, in order of enrichment score. Significant results denoted by *.

D- Wild-type Basal v. APPtg Basal
Upregulated
Calmodulin binding (2.91)
Intracellular transport (2.51)
Cytoskeleton (2.31)
Membrane (1.70)
Golgi apparatus (1.70)

4.2.8 STRING Protein Network Mapping

The STRING database was used to generate visual protein connectivity maps for significantly differentially regulated proteins within biological conditions. The STRING database aims to integrate all known and predicted protein associations, including physical interactions and functional associations. STRING collects and scores evidence from multiple sources including automated text mining of scientific literature (Szklarczyl et al., 2021). STRING network maps can be used to identify major differences in protein connectivity between genotypes or experimental conditions.

Figure 4.15 captures the protein interactions present within proteins significantly downregulated in WT mice during memory retrieval (when compared to basal levels; group A). The associated protein-protein interaction (PPI) enrichment p-value for this network was 0.00234, meaning the inputted proteins have more interactions among themselves than what would be expected for a set of proteins of the same size and degree distribution. The score indicated that these proteins are at least partially biologically connected as a group. The two main groups connected in this figure have functions in mitochondrial dynamics (Opa1, Immt and Aco2), and synapse maintenance and cell death (Dmxl2, Madd and Srcin1).

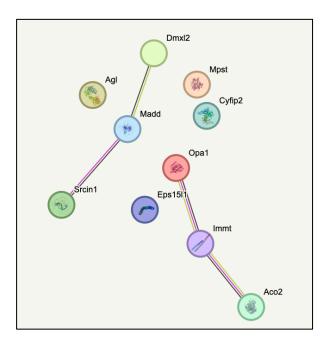


Figure 4.15. STRING protein connection network for proteins significantly downregulated in wild-type mice during memory retrieval (when compared to basal levels; group A).

Figure 4.16 represents the PPI network map for proteins significantly upregulated in WT mice during memory retrieval, when compared to WT mice at the basal level (group A). There are two main groups of connected proteins, a smaller group involved in intracellular membrane trafficking (Rab11b, Rab11a & Dctn2), and a larger group, involved in phosphoprotein activity (Rap1a, Aldoc, Prdx6, Akr1a1, Tpi1 & Ywhaz). The associated PPI enrichment p-value for this network was 0.0172.

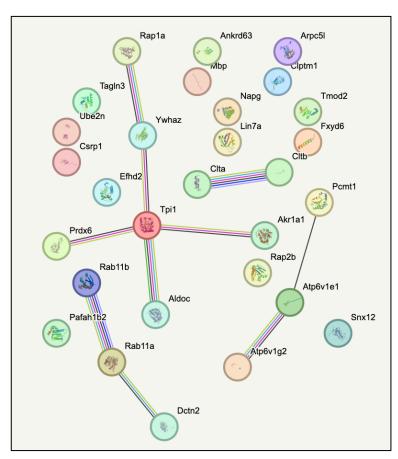


Figure 4.16. STRING PPI map for proteins significantly upregulated in wildtype mice during memory retrieval (when compared to basal levels; group A).

Figure 4.17 represents the PPI network map for proteins significantly upregulated in transgenic mice at the basal level, when compared to their WT counterparts (group D). In this PPI network map, there is one highly connected functional group, consisting of proteins involved in energy biosynthesis pathways. The top group consists of proteins located in the ETC, which produce energy via OXPHOS. The purple node in the centre, alpha synuclein, connects this group to the smaller group below, which functions in fatty acid catabolism. The associated PPI enrichment p-value for this network was 6.91e-07.

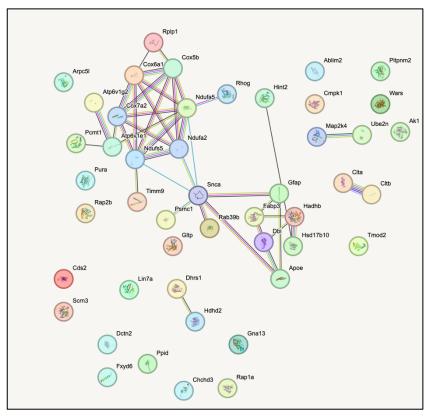


Figure 4.17. STRING protein network map for proteins upregulated in APPtg mice during basal levels, when compared to WT mice at the basal level (group D).

Figure 4.18 shows the PPIs existing between proteins significantly downregulated in APPtg mice at the basal level, when compared to WT mice at the basal level (group D). This protein group is involved in biological functions such as actin cytoskeleton regulation and cell surface proteins involved in cell-cell interactions and regulation of signal transmission. The associated PPI enrichment p-value for this network was 0.000207.

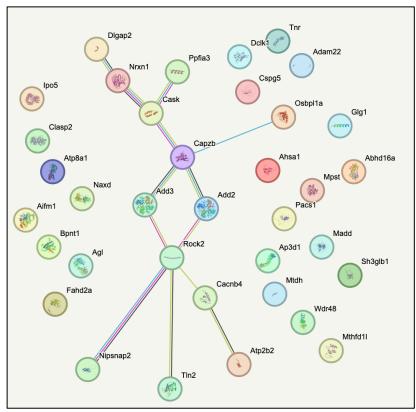


Figure 4.18. STRING PPI network map for proteins significantly downregulated in APPtg mice at the basal level, when compared to WT mice at the basal level (group D).

4.2.9 Functional Dependency Analysis

As detailed in the methods section, CNA carries out in-depth analysis of the effects of every model component on every other model component in the inputted data. This is completed via the generation of dependency matrices- fully encompassing analyses accounting for all possible signalling and feedback loops present within the model and determines the effect of every node on every other node. Nodes can have any of the following effects: Dark green = strong activator; Light green= weak activator; Yellow= ambivalent factor; Light red= weak inhibitor; Dark red= strong inhibitor; Black= no effect.

MATLAB was used to generate the dependency matrix, using the CellNetAnalyser graphical user interface application. Only the highest confidence interactions (0.900 or above) were contained within the matrix, as determined on the STRING database. A confidence score does not indicate the strength or specificity of any interaction, instead, it indicates how much evidence, experimental or otherwise (as described in section 2.5.4) there is to indicate the interaction to be true, which may explain the absence of APP, PS1 and PS2 from the matrix.

When generating a knock-out dependency matrix, the yellow, ambivalent factors would be targeted first. When targeting an ambivalent factor, changes in the biological system are most likely. This is because ambivalent factors exert both activator and inhibitory influences on the target nodes (usually these factors will exert the different types of effects at different times or under different conditions) and thus changing this node is likely to effect targets in two ways, whereas a dark red, strong inhibitory, node would only be changing this one type of inhibitory influence.

What we would be looking for in a knock-out dependency matrix is any colour changes in the matrix, indicating that nodes change the type of effects they exert on their target nodes. A desired effect in terms of therapeutics would be that the knocking-out of an ambivalent node would in turn activate nodes corresponding to genes involved in functions positive to either bioenergetics, mitochondrial or neuronal function or memory retrieval as a whole. Conversely, if we see that genes which negatively effect mitochondrial function or memory retrieval as a whole are turned red/inhibited by the removal of an ambivalent factors, then we can identify this factor as an optimal point of therapeutic intervention.

Figure 4.19 displays the functional dependency matrix generated using MATLAB from the proteins significantly upregulated in APPtg mice at the basal level, when compared to WT mice at the basal level. Functional dependency matrices represent the effects of every node (protein) in the matrix on every other node within the model.

The matrix consists of 47 species and 2209 reactions, 5 of which were strong inhibitors and 50 of which were strong activators. The rest of the interactions have no effect. There are no negative feedbacks present in the matrix and no ambivalent factors.

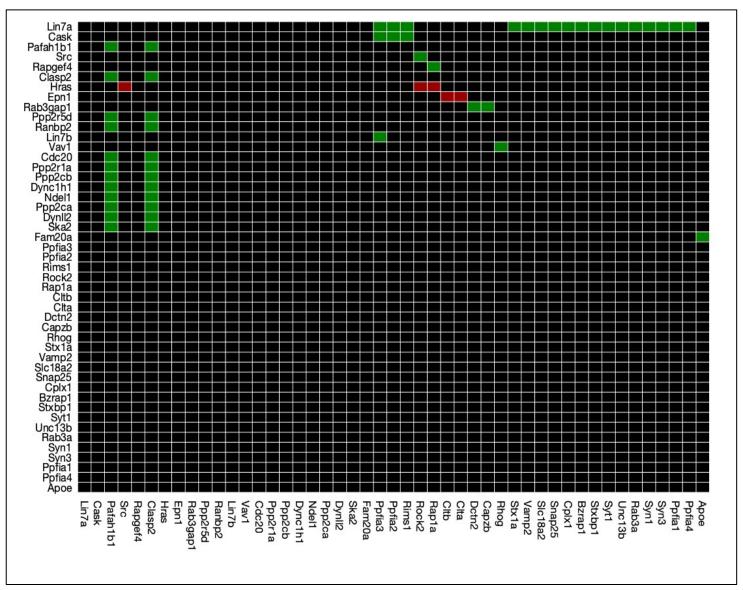


Figure 4.19. Functional dependency matrix for protein-protein interactions in proteins upregulated in APPtg mice at the basal level, when compared to WT mice at the basal level (group D). Black= no relationship. Dark green= strong activation of X-axis node by Y-axis node. Dark red= strong inhibition of X-axis node by Y-axis node.

One benefit to computational biology is the ability to conduct numerous different analyses to determine how models may change following the loss of certain network elements (proteins). Knock-out matrices were generated, focussing on removing proteins with the highest connectivity (highest number of proteins strongly activated or strongly inhabited by KO protein). The results are presented in table 4.6. KO models have a total number of 2116 dependencies due to removal of the target node and all of its dependencies. Due to the presence of no ambivalent factors (yellow nodes) or feedback loops (pink or pale green nodes), removal of proteins did not have any effect on the matrix. Feedback loops within biological networks are usually crucial for the maintenance of network integrity and offer the highest resistance to perturbations (Tian et al., 2013).

Table 4.6. Dependency matrix was manipulated to simulate a knock-out model of specific proteins. Protein KO effects on the rest of the model detailed, including the number of activations that changed.

Scenario	Number of Each Dependency						
	No Effect	Ambivalent	Weak Inhibitor	Weak Activator	Strong Inhibitor	Strong Activator	Total
Full model	2154	0	0	0	5	50	2209
Fam20a KO	2065	0	0	0	5	46	2116
Lin7a KO	2078	0	0	0	5	33	2116
Hras KO	2064	0	0	0	2	50	2116
Epn1 KO	2063	0	0	0	3	50	2116

4.3 20% Threshold Results

Similar to the reporting of the FDR corrected results, the 20% threshold results will contain the top 5 or top 10 results from their respective DAVID analyses, listed in order of most significant p-value or the greatest enrichment score. The whole outputted results from DAVID are too vast to be included in the results section of this thesis and thus all of the output tables are listed in Appendix D, section 2, including the full results tables from analyses shown below (beyond the top 5 or 10 results). When FDR correction is not used in proteomics studies, further experimental testing should be carried out to confirm the validity of any observed associations.

4.3.1 General overview

After initial processing, stage 1 protein lists (each protein had data for at least ¾ mice in each of the experimental groups and no missing protein IDs or gene names) were divided into upregulated, downregulated, significantly upregulated, significantly downregulated, and unchanged proteins. Figure 4.20 depicts the numbers of protein regulations that fit into each category. The values used here just include the application of the 20% regulation threshold- they have not yet had the t-test applied for significance testing.

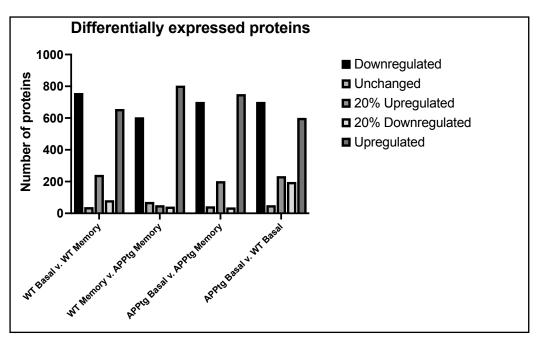


Figure 4.20. Differentially expressed proteins after application of 20% regulation threshold. Upregulated= all proteins with a positive fold change, 20% upregulated= all proteins with positive fold change of 20% or above.

Table 4.7 reflects the different levels of protein regulations within each of the four experimental groups. Unchanged proteins have a fold change score of 0. 20% upregulated and 20% downregulated categories consist of proteins with a statistically significant positive or negative fold change respectively, followed by application of the 20% regulation threshold. Upregulated or downregulated categories consist of proteins with a positive or negative fold change before the application of statistical testing or regulation threshold.

Table 4.7. Numbers of differentially regulated significant and non-significant proteins. Only the 20% stats are significant.

Group	Upregulated	Downregulated	20% Upregulated	20% Downregulated	Unchanged	Total Proteins
A-WT Basal v. WT Memory	657	758	139	49	39	1454
B- WT Memory v. APP Memory	804	605	4	5	72	1481
C- APPtg Basal v. APPtg Memory	751	702	107	15	44	1497

D- APPtg Basal	601	702	154	139	51	1354
v. WT Basal						

4.3.2 Differentially Regulated Proteins At The Basal Level

This section will detail the proteomic results from group D 'Wild-type basal v. APPtg basal', which details the proteins differentially expressed in the transgenic mice at the basal level, when compared to expression in WT mice at the basal level.

4.3.2.1 DAVID Annotations

The following sections will list the top 10 results from each type of analysis carried out using DAVID tools. The GO term and KEGG pathway results will be listed in order of most significant p-value and the functional annotation clustering results will be listed in order of enrichment score.

4.3.2.2 Biological Process

Within the significantly upregulated proteins in transgenic mice at the basal level (when compared to WT mice; group D), there were 18 biological processes significantly enriched (figure 4.21). Within the top 10 most enriched results were endocytosis, synaptic transmission-glutamatergic, chemical synaptic transmission, and positive regulation of long-term synaptic depression. Other significant results not listed within figure 4.21 were glutamate secretion, positive regulation of aspartic-type endopeptidase activity involved in amyloid precursor protein catabolic process, and negative regulation of long-term synaptic potentiation. Within the downregulated proteins, only two biological processes were significantly enriched: mitochondrial electron transport-cytochrome c to oxygen and activation of phospholipase D activity.

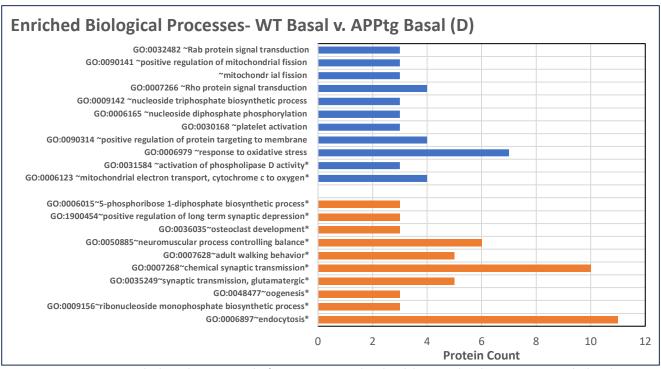


Figure 4.21. DAVID GO biological process results for proteins upregulated and downregulated in APPtg mice at the basal level, when compared to wild-type mice at the basal level (group D). Significant results denoted by *. Blue= downregulated proteins, Orange= upregulated proteins.

4.3.2.3 Cellular Component

Figure 4.22 represents the DAVID-identified enriched cellular component annotations within APPtg mice at the basal level, when compared to WT mice at the basal level (group D). Within the upregulated proteins, 14 significantly enriched cellular components were identified, including presynaptic active zone, postsynaptic density, glutamatergic synapse, dendritic spine, neuronal cell body and synapse. Within the downregulated proteins, 5 cellular components were significantly enriched including mitochondrial respiratory chain, IMM, mitochondrial respiratory complex IV and actin filament bundle.

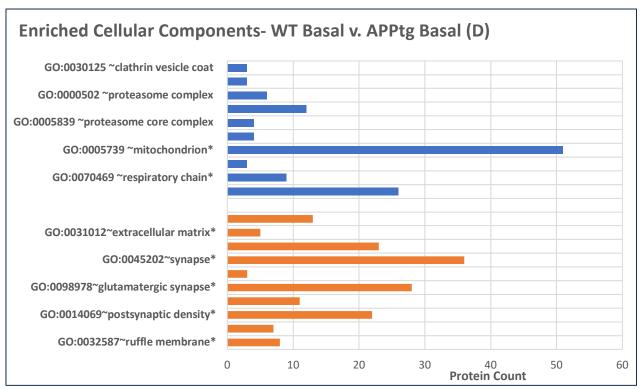


Figure 4.22. DAVID GO analysis- enriched cellular component annotations within differentially expressed proteins in APPtg mice at the basal level, when compared to WT mice at the basal level (group D). Significance denoted by *. Blue=downregulated proteins, Orange= upregulated proteins.

4.3.2.4 Molecular Function

Enriched molecular function annotations within proteins differentially regulated in transgenic mice at the basal level (when compared to their WT counterparts; group D) are listed in figure 4.23. 7 molecular functions were found to be significantly enriched, including actin filament binding, calcium channel activity, ATP binding and receptor binding. Within the downregulated proteins, two molecular functions were significantly enriched- oxidoreductase activity and nucleobase-containing compound kinase activity.

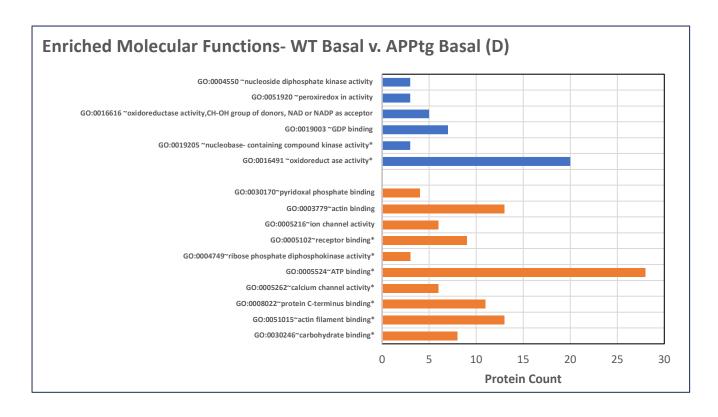


Figure 4.23. DAVID GO term annotations for associated molecular functions enriched in APPtg mice at the basal level, when compared to WT mice at the basal level (group D). Significance denoted by *. Blue= downregulated proteins, Orange= upregulated proteins.

4.3.2.5 KEGG Pathways

Figure 4.24 represents the KEGG Pathway annotations enriched in APPtg mice at the basal level (when compared to WT mice at the basal level; group D). Within the input list of upregulated proteins, 12 annotations were identified as significantly upregulated, including Alzheimer's disease, OXPHOS, prion disease and metabolic pathways. Within the proteins downregulated, only one result was returned which was the significantly enriched endocytosis pathway.

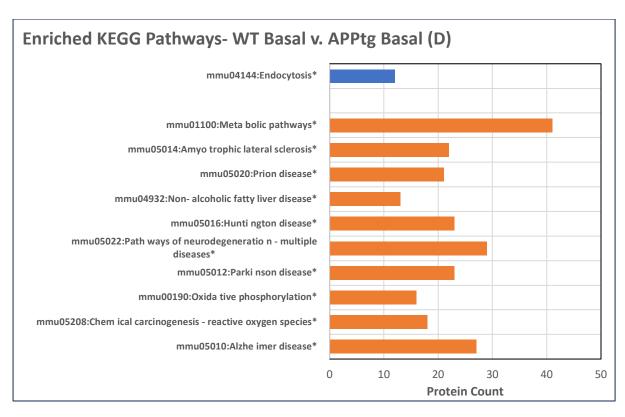


Figure 4.24. DAVID KEGG Pathway results for proteins differentially regulated in APPtg mice at the basal level, when compared to WT mice at the basal level (group D). Significance is denoted by *. Blue= downregulated proteins, Orange= upregulated proteins.

4.3.2.6 Functional Annotation Clustering

Results from DAVID functional annotation clustering analysis for proteins significantly differentially regulated in APPtg mice at the basal level (when compared to WT mice at the basal level; group D). The top 10 results are listed in table 4.8, in order of enrichment score (the larger, the more enriched). Enrichment score is listed next to each clustering output in brackets.

Table 4.8. DAVID functional annotation clustering analysis results for proteins significantly differentially regulated in APPtg mice at the basal level, when compared to WT mice at the basal level (group D). Enrichment score is listed next to each cluster in brackets.

D- Wild-type Basal v. APPtg Basal		
Upregulated Downregulated		
PDZ Domain (1.72)	Pathways of neurodegeneration (2.32)	
Endocytosis (1.68)	Mitochondrial inner membrane (1.68)	

Ribonucleoside monophosphate biosynthetic process (1.16)	Mitochondrial respiratory chain complex IV (1.36)
Synapse (1.16)	Cx9C motif 1 (biogenesis of respiratory enzyme complexes) (1.33)
Synaptic vesicle docking (1.14)	GTPase activity (1.06)
Actin binding (1.13)	Actin binding, cofilin/tropomyosin type (0.99)
Regulation of dendritic spine morphogenesis (1.07)	Nucleobase-containing compound metabolic process (0.94)
Golgi apparatus (1.04)	Proteasome core complex (0.87)
Epidermal growth factor-like domain (0.92)	Mitochondrial respiratory chain complex III (0.85)
Calcium channel activity (0.85)	Mitochondrion (0.80)

Within proteins upregulated in transgenic mice at the basal level, clusters including endocytosis, synapse, regulation of dendritic spine morphogenesis and calcium channel activity were identified as enriched. Within downregulated proteins, annotation clusters including pathways of neurodegeneration, IMM, respiratory chain complex IV, and respiratory chain complex III were identified as enriched. DAVID identified a total of 41 functional clusters in the upregulated proteins and a total of 43 clusters in the downregulated proteins.

4.3.2.7 STRING Protein Network Mapping

The list of protein interactions downloaded from STRING for the generation of functional dependency matrices was filtered to identify proteins with the greatest number of outgoing connections, which therefore have the greatest effect on other proteins, and the proteins with the greatest number of incoming connections, which therefore are the greatest affected by others. The top 10 most connected proteins are listed in table 4.9, with the number of each type of connection stated. This analysis encompasses all of the upregulated and downregulated proteins within APPtg mice at the basal level, to identify the most enriched in the experimental category, regardless of directionality.

The vast majority of highly connected proteins identified by the analysis were members of the Ppp2 family, a family of catalytic subunits of protein phosphatases (ppp's), the major serine/threonine

phosphatases, implicated in the negative regulation of cell growth and division. Post-mortem studies of AD patients have linked Ppp2 to AD. Within the disease, Ppp2 shows reduced activity, owing to increased inhibition, reduced levels, and alterations to subcellular localisation and specificity (Braithwaite et al., 2012). Further, Ppp2c has been shown to be downregulated in AD, leading to induction of tau hyperphosphorylation. In health, Ppp's serve a neuroprotective role and regulate the autophagic degradation of proteins (Sinsky, Pichlerova & Hanes., 2021). In vivo studies from Sontag (2004) have shown the selective Pp1/pp2A inhibitor, okadaic acid, induces the hyperphosphorylation of tau, deposition of Aß, changes in synaptic plasticity, memory impairment and neurodegeneration.

Table 4.9. Numbers of incoming and outgoing protein interactions within APPtg mice at the basal level, when compared to WT mice at the basal level (group D).

	D- Wild-type basal V. APPtg basal				
	Most outgoing connections	No.	Most incoming connections	No.	
1	Ppp2r1a	100	Ppp2r1a	112	
2	Ppp2ca	100	Ppp2ca	111	
3	Ppp2cb	100	Ppp2cb	111	
4	Ppp2r1b	100	Ppp2r1b	108	
5	Ppp2r5a	100	Ppp2r5a	108	
6	Ppp2r5b	100	Ppp2r5b	108	
7	Ppp2r5c	100	Ppp2r5c	108	
8	Ppp2r5d	95	Ppp2r5d	108	
9	Ppp2r5e	95	Ppp2r5e	108	
10	BC048507	95	BC048507	97	

4.3.2.8 Functional Dependency Analysis

Functional dependency matrix was created for all proteins upregulated in APPtg mice at the basal level (when compared to WT mice at the basal level; group D). A total of 213 species with 45,369 reactions were included in the basal model (Figure 4.25). The majority of

dependencies in the matrix have no effect, however, a considerable number (5944) of dependencies are strong activators, and a portion of results are strong inhibitors (99). Similar to the memory retrieval matrix, there are no negative feedback loops present within the model, however, in contrast to the previous model, there are also no ambivalent dependencies within the basal model.

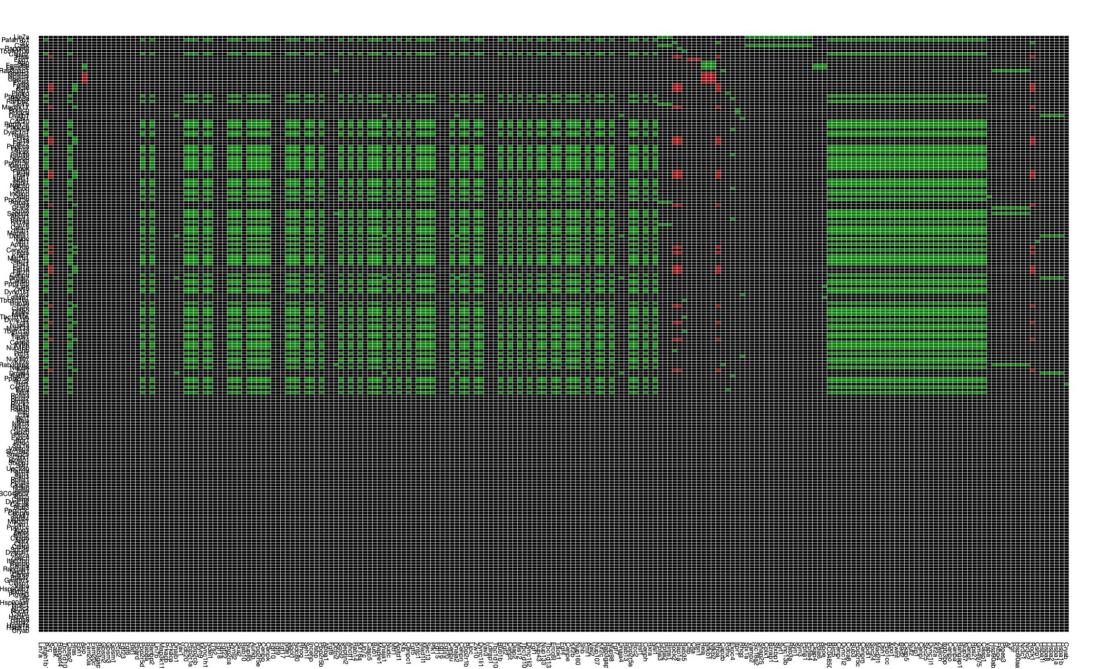


Figure 4.25. Functional dependency matrix for upregulated expressed proteins at the basal level in APPtg mic (when compared to WT mice at the basal level; group D). Y-axis labels are in reverse order to x-axis (starting from Lin7a and finishing with Cryab. Overlapping species labels can be deduced from X-axis labels.

KO models were generated, removing specific proteins from the matrix. Proteins that strongly activated a large amount of other nodes in the model or proteins that strongly inhibited a large amount of other proteins in the model were targeted for removal. Table 4.10 lists the effect of node removal on the model. Due the lack of feedback loops (positive or negative) and ambivalent factors in the model, none of the protein KO models had any effect on the rest of the model dependencies. All KO scenarios have only 44,944 reactions as opposed to 45,369 due to removal of target node and all of its dependencies.

Table 4.10. Functional dependency matrix Knock-out results.

Scenario			Number	Number of Each Dependency			
No Effect	No Effect	Ambivalent	Weak Inhibitor	Weak Activator	Strong Inhibitor	Strong Activator	Total
Full model	39326	0	0	0	99	5944	45,369
Cdc20 KO	39054	0	0	0	99	5791	44,944
Ppp2cb KO	39054	0	0	0	99	5791	44,944
Src KO	39016	0	0	0	78	5850	44,944
Clasp2 KO	39056	0	0	0	99	5789	44,944

A functional dependency matrix could not be generated for proteins upregulated in APPtg mice during memory retrieval (when compared to WT mice during memory retrieval; group B) due to the lack of significant protein expression in APPtg mice during memory retrieval after the application of FDR correction.

4.3.3 Differentially Regulated Proteins During Memory Retrieval

The following sections contain the results for proteins differentially regulated during memory retrieval in each genotype when compared to their own respective basal levels, and a direct

comparison of transgenic mice during memory retrieval and WT mice during memory retrieval (group B).

Protein lists were compared between genotypes to identify those which were properly regulated (upregulated in APPtg as well as WT mice), failed to be properly regulated, (upregulated in WT mice but not in APPtg mice), and inappropriately regulated (upregulated in APPtg mice but not in WT mice). Table 4.11 details the differential protein upregulations in APPtg mice during memory retrieval, when compared to WT mice during memory retrieval. 58 proteins were found to be mutually upregulated, 98 failed to become upregulated during memory retrieval and 61 proteins were inappropriately regulated.

Upregulated:

Table 4.11. Proteins differentially regulated during memory retrieval in APPtg mice, when compared to WT mice during memory retrieval (group B). Mutually upregulated proteins= upregulated in both WT memory retrieval and APPtg memory retrieval. Failed to become upregulated= proteins upregulated in WT mice during memory retrieval but were not upregulated in APPtg mice during memory retrieval. Inappropriately regulated= proteins that were upregulated during memory retrieval in APPtg mice but were not upregulated in WT mice.

Mutually Upregulated During Memory Retrieval	Failed to become upregulated during memory retrieval	Inappropriately regulated during memory retrieval e.g., upregulated in APPtg but not in WT
Mbp	Fam162a	Cox6c
Atp6v1g2	Snca	Rps18;Gm10260
Ndufa2	Cox7a2	Arf5
Tmod2	Gap43	Psmd7
Hint2	Slc9a3r1	Usmg5
Atp5i;Atp5k	Ndufa7	Atp6v1g1
Arpc5l	Nme1	Sod1
Lin7a	Park7	Psma2
Ndufb1	Fabp5	Dnaja2
Cltb	Scrn3	Uqcr10
Pcmt1	Psma3	Comtd1
Atp5o	Clptm1	Marcks
Cycs	Gfap	Impact
Atp6v1e1	Ndufa6	Arpc3
Ak1	Dctn2	Psmd6
Ndufa5	Rab8a	Crip2
Sgta	Cox5a	Mras
Ube2n	Asrgl1	Cbr3

<u>1</u>	
Pafah1b2	Cisd1
Fxyd6	Wipf3
Nudt3	Acaa1a;Acaa1b
Ndufb4	Mtpn
Тррр	Psma1
Nefl	Atl2
Fam213a	Ndufb3
Lrrc57	Stip1
Ndufb2	Lgalsi
Wars	Psmc6
Ina	Vps29
Apool	Ndufa8
Cfl2	Sdhb
Slc27a1	Atp5l
Purb	Dpysl5
Lpgat1	Hprt1
Pura	Rab35
Pebp1	Sod2
Prdx2	Snap25
Nipsnap3b	Gars
Rap1a	Nefm
Gmfb	Pgam5
Rab1b	Ndufb7
Napg	Clu
Tmed9	D10Jhu81e
Psmd4	Ckb
Psmb2	Timm44
Tollip	Mapk8ip3
Ndrg1	Pgrmc1
Pam	Mcu
Dusp3	Slc4a3
Ube2v1;Gm20431;Ube2v2	Fam49b
Arpc5	Ak4
Myadm	Psma5
Aldoc	Grb2
	Nudt3 Ndufb4 Tppp Nefl Fam213a Lrrc57 Ndufb2 Wars Ina Apool Cfl2 Slc27a1 Purb Lpgat1 Pura Pebp1 Prdx2 Nipsnap3b Rap1a Gmfb Rab1b Napg Tmed9 Psmd4 Psmb2 Tollip Ndrg1 Pam Dusp3 Ube2v1;Gm20431;Ube2v2 Arpc5 Myadm

Dynll1	Rab11b;Rab11a	Ndufb9
Mtx2	Cds2	Syt12
Eef1a2	Pcbp2	Chchd3
Capzb	Dstn	Tom1l2
	Slc6a9	Homer1
	Prdx3	Stx12
	Slc25a27	Ndrg2
	Ankrd63	
	Abcb8	
	Ddt;Gm20441	
	Arhgdia	
	Pcbp1	
	Csrp1	
	Ddost	
	Reep5	
	Tmx4	
	Rap2b	
	Hsd17b12	
	Psma7;Psma8	
	Gsr	
	Rhog	
	Cnrip1	
	Ywhae	
	Ppa1	
	Vsnl1	
	Gna11	
	Ahsa1	
	Map2k4	
	Aspa	
	Psmc1	
	Necap1	
	Aldoa	
	Tecr	
	Rab6b	
	Adgrl3;Lphn3	
	Slc44a2	
	<u> </u>	

Ywhaq	
Dgke	
Pdia6	
Prune	
Cyb5b	
Flot1	
Kxd1	
Sparcl1	

DAVID functional analysis tools were used to provide information on the enriched BP, CC, and MF present within the lists of inappropriately regulated proteins (table 4.11).

In APPtg mice during memory retrieval, a number of proteins fail to become upregulated when they are upregulated in their WT counterparts. DAVID provided information on the enriched biological process annotations identified within the list. Cellular response to oxidative stress was the only significantly enriched biological process, out of a total of 9 processes. Figure 4.26 reveals that within the list of proteins identified as upregulated in APPtg mice during memory retrieval when they were not upregulated in their WT counterparts, none of the biological process annotations were significantly enriched. A total of 10 biological processes were enriched non-significantly, including mitochondrial ATP synthesis coupled proton transport, aerobic respiration, mitochondrial respiratory chain complex I and superoxide anion generation.

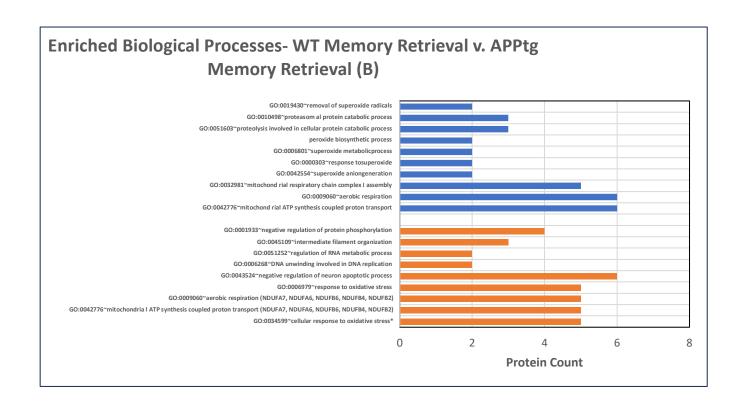


Figure 4.26. DAVID GO enrichment analysis output for enriched biological processes within proteins that fail to become upregulated or become upregulated in APPtg mice during memory retrieval but are not upregulated in WT mice during memory retrieval. Significant results denoted by *. Blue= proteins upregulated when they shouldn't be, Orange= proteins that fail to become upregulated.

Figure 4.27 summarises the top 10 cellular components identified as enriched within the protein lists. Within the proteins that fail to become upregulated, 7 cellular components were identified as enriched, with 6 of these significantly enriched, including, myelin sheath, endoplasmic reticulum-Golgi intermediate compartment, and intermediate filament. In the proteins upregulated when they should not have been, 8 cellular components were identified as enriched, with 7 significantly enriched, including proteasome complex, mitochondrial inner membrane, and respiratory chain.

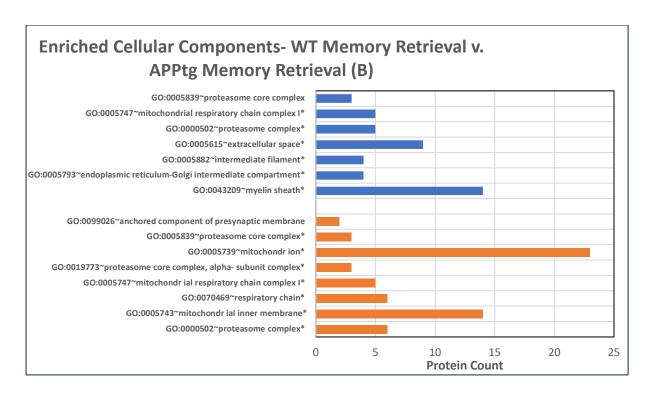


Figure 4.27. DAVID GO enrichment analysis output for enriched cellular components within proteins that fail to become upregulated or become upregulated in APPtg mice during memory retrieval but are not upregulated in WT mice during memory retrieval. Significant results denoted by *. Blue= proteins that fail to become upregulated, Orange= proteins upregulated when they shouldn't be.

Figure 4.28 highlights the enriched molecular function annotations identified within the protein lists. Within proteins that failed to become upregulated during memory retrieval, 10 categories were enriched, with 5 significantly enriched, including single-stranded DNA binding, RNA polymerase II transcription factor activity- sequence specific DNA binding, and RNA polymerase II regulatory region sequence-specific DNA binding. Only two molecular function annotations were enriched within the proteins inappropriately upregulated which were superoxide dismutase activity and chaperone binding- both of which were significantly enriched.

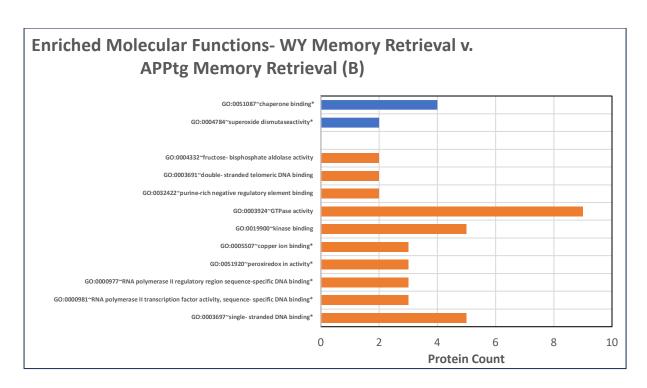


Figure 4.28. DAVID GO enrichment analysis output for enriched molecular functions within proteins that fail to become upregulated or become upregulated in APPtg mice during memory retrieval but are not upregulated in WT mice during memory retrieval. Significant results denoted by*. Blue= proteins upregulated when they shouldn't

Downregulated:

Table 4.12 details the differential protein upregulations in APPtg mice during memory retrieval, when compared to WT mice during memory retrieval. 15 proteins were found to be mutually downregulated, 109 failed to become downregulated during memory retrieval and 42 proteins were inappropriately downregulated in the APPtg mice.

Table 4.12. Differential protein regulations in APPtg mice during memory retrieval, when compared to WT mice during memory retrieval (group B).

Mutually Downregulated During Memory Retrieval	Failed to become downregulated during memory retrieval	Inappropriately regulated during memory retrieval e.g. downregulated in APPtg mice but not in WT
Ap3d1	Mpst	Scyl2
Akap5	Agl	Tpp2
Pip5k1c	Stam	Pdk1
Snap91	Bcs1l	Hexb
6430548M08Rik;Kiaa0513	Wdr7	Psmd1
Ppfia2	Madd	Vps26a

Pacs1	Dnajc5	Blmh
Dmxl2	Lrpprc	Ap3b2
Mink1	Adcy5	Ap3s1
Aak1	Unc13a	Nrxn2
Dclk1	Pcx;Pc	Gsk3a
Dlg2	Myo6	Rimbp2
Dnajc6	Plcb1	Slc2a13
Nbea	Kif21a	Sacm1l
Ap2b1	Pygm	Mtor
	Dip2b	Tnik
	Rock2	Adgrb2;Bai2
	Rims1	Adss
	Aldh6a1	Mpi
	Ogdhl	Cdc42bpb
	Grm3	Psmd3
	Ppp1r9a	Ank1
	Synj1	Adrbk1
	Rasgrf2	Pdp1
	Ppfia3	Atp8a1
	Gls	Apmap
	Oat	Mllt4
	Aco2	Stk32c
	Sdha	Cltc
	Opa1	Ppp5c
	Acadsb	Gabbr1
	Abat	Atp2b4
	Elfn2	Pafah1b1
	Wnk2	Usp14
	Dbn1	Grm2
	Immt	Map4
	Hspa9	Ptk2b
	Cyfip2	Slc25a22
	Did	Sgip1
	Atp6v0a1	Epb4.1l1;Epb41l1
	Dctn1	Afg3l2
	Eps15l1	Pfkp

Pcdh1	_
Synpr	
Ogdh	
Samm50	
Syngap1	
Brsk2	
Smap1	
Oxr1	
Mthfd1l	
Cadps	
Atp6ap1	
Rph3a	
Por	
Glud1	
Camk2g	
Shank3	
Nrxn3	
Adam22	
Pcdhgc5	
Myo18a	
Bsn	
Dlgap1	
Epha4	
Ctnnd2	
Clasp2	
Ppp1r9b	
Sv2b	
Ndufs1	
Nckap1	
Tln2	
Atp2b1	
Ogt	
Wdr1	
Srcin1	
Stxbp5l	
Actn1	
l	

	Ι	Г
	Dnm3	
	Lancl2	
	Pkp4	
	Slc12a5	
	Sptbn1	
	Prkcb	
	Cap1	
	Syt1	
	Anxa7	
	Ntrk2	
	Shank2	
	Syn1	
	Abi2	
	Sptan1	
	Dlgap2	
	Camkv	
	Gpi	
	Gda	
	Atp2b2	
	Hk1	
	Map6	
	Npepps	
	Ctnnb1	
	Lonp1	
	Prkar2b	
	Nrcam	
	Smpd3	
	Atp2b3	
	Sptbn2	
	Amph	
	Nrxn1	
<u> </u>	•	

Within the lists of inputted proteins downregulated during memory retrieval, 51 biological processes were enriched, with 33 significantly enriched, including learning, synaptic vesicle exocytosis, and regulation of dendritic spine morphogenesis, highlighted in figure 4.28. Other biological processes identified were chemical synaptic transmission, long-term synaptic potentiation, cellular calcium ion

homeostasis, regulation of NMDA receptor activity, and postsynaptic neurotransmitter receptor internalization. Within the proteins inappropriately downregulated, 19 BP were identified, 10 of which were significant, including protein phosphorylation, phosphorylation, and chemical synaptic transmission.

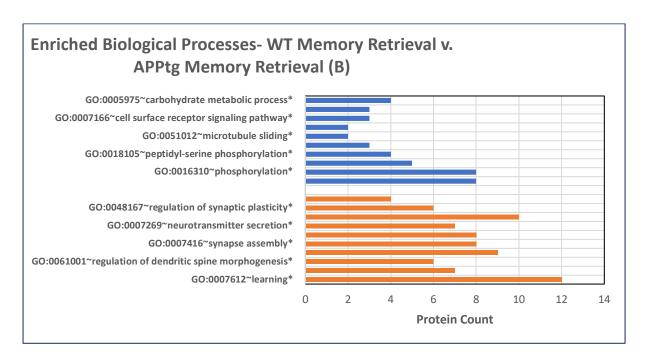


Figure 4.28. DAVID GO enrichment analysis output for enriched biological processes within proteins that fail to become downregulated or become downregulated in APPtg mice during memory retrieval but are not downregulated in WT mice during memory retrieval. Significant results denoted by *. Blue= proteins downregulated when they shouldn't be, Orange= proteins that fail to become downregulated.

Within the inputted protein lists, 42 cellular component annotations were identified as enriched, with 30 significantly enriched including glutamatergic synapse, cortical actin cytoskeleton, and cell projection. Within the proteins downregulated during memory retrieval when they shouldn't have been downregulated, 6 cellular components were identified, with only membrane coat and membrane significantly enriched (figure 4.29).

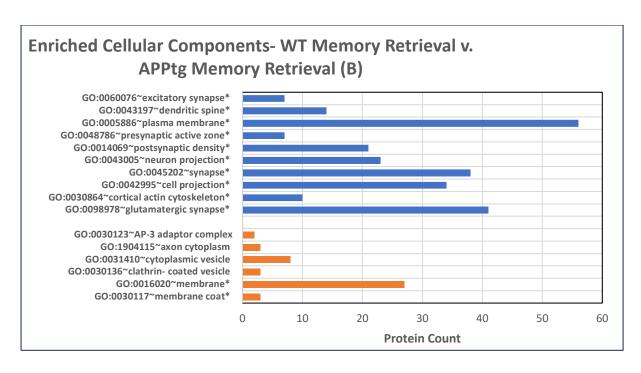


Figure 4.29. DAVID GO enrichment analysis output for enriched cellular components within proteins that fail to become downregulated or become downregulated in APPtg mice during memory retrieval but are not downregulated in WT mice during memory retrieval. Significant results denoted by *. Blue= proteins that fail to become downregulated, Orange= proteins that are downregulated when they shouldn't be.

Figure 4.30 highlights the top enriched molecular function annotations within the inputted protein lists. Within the proteins that failed to become downregulated during memory retrieval, 16 functions were identified as enriched, with 13 of these significantly enriched, including calmodulin binding, actin filament binding, and calcium-transporting ATPase activity involved in regulation of presynaptic cytosolic calcium ion concentration. Within the list of proteins downregulated during memory retrieval when they shouldn't be downregulated were 13 enriched molecular functions, with 8 significantly enriched, including protein kinase activity, ATP binding, and kinase activity.

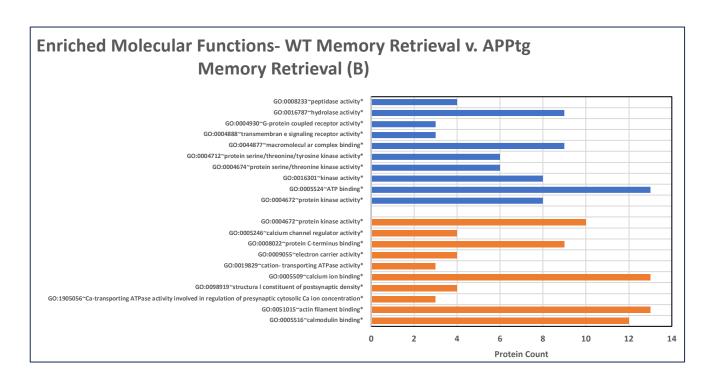


Figure 4.30. DAVID GO enrichment analysis output for enriched molecular functions within proteins that fail to become downregulated or become downregulated in APPtg mice during memory retrieval but are not downregulated in WT mice during memory retrieval. Significant results denoted by *. Blue= proteins downregulated when they shouldn't be, Orange= proteins that fail to become downregulated.

Using mus musculus Mitocarta 3.0 from Broad Institute, proteins involved in the ETC (figure 4.31) and mitochondrial dynamics (figure 4.32) were extracted from each experimental condition. Heatmaps were generated to represent the expression of these proteins when compared to WT basal expression levels. Only proteins with 4 data points for each of the four experimental conditions were continued to heatmap generation. All proteins were expressed as a percentage of WT basal expression levels.

Figure 4.31 reveals a number of differential regulations within protein subunits of the ETC. During memory retrieval in WT mice and APPtg mice, complex I and complex IV proteins are upregulated when compared to basal levels. In APPtg mice during memory retrieval, complex II proteins are upregulated at a greater amount than in WT mice during memory retrieval. Complex I and V proteins are regulated consistently across both behavioural groups in WT mice and APPtg mice.

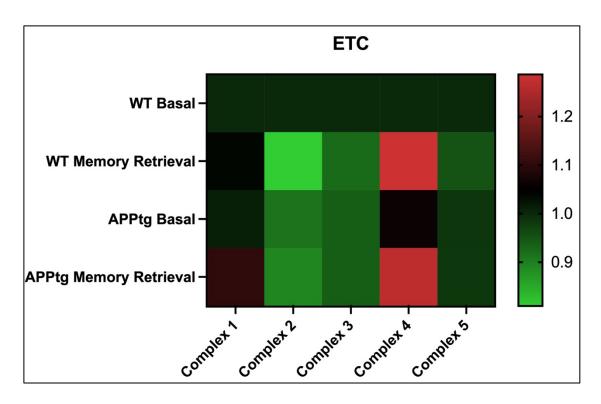


Figure 4.31. Electron transport chain protein expression during memory retrieval in each experimental condition. Protein expression expressed as a percentage of WT basal expression levels, in terms of fold change. 1.2= 120%-fold change. Redhighest fold change, green= smallest fold change.

Figure 4.32 reveals the different regulation levels of proteins involved in mitochondrial dynamics, in relation to WT basal levels. During memory retrieval in both genotypes Cycs, which associates with the IMM and accepts electrons from cytochrome b and transfers them to cytochrome oxidase (GeneCards., 2023), and Park7, co-chaperone protein which modulates the autophagic removal of misfolded protein cargoes generated via oxidative stress (NCBI.,2023), are the most highly upregulated, with a fold change of 150% from WT basal levels. The Ahcyl1, Aifm1 Slc25a46, and Mfn2 proteins were the most unchanged between the behavioural groups, displaying consistent regulation levels during basal levels and during memory retrieval. Samm50 was downregulated in WT mice during memory retrieval but failed to become downregulated to the same level in the APPtg mice. When compared to WT mice at the basal level, VDAC1 was upregulated in WT mice during memory retrieval and in APPtg mice both during basal levels and during memory retrieval.

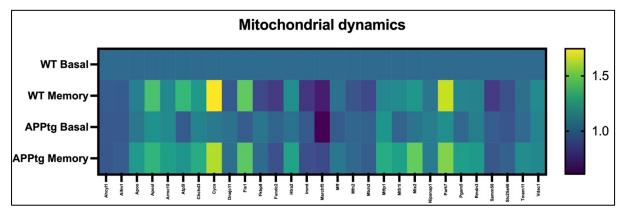


Figure 4.32. Expression levels of key proteins involved in mitochondrial dynamics in each experimental condition. Protein expression expressed as a percentage of WT basal, in terms of fold change. 1.5= 150% fold change. Yellow- highest fold change, dark blue/black= smallest fold change.

4.3.3.1 DAVID Annotations- Gene Ontology

The results from DAVID GO term enrichment analyses are listed in the below sections for the three memory retrieval-specific experimental groups. The top 10 results for each annotation term and presented, and the results are listed in order of significance value.

4.3.3.2 Biological Process

Within proteins identified as upregulated in WT mice during memory retrieval, when compared to WT mice at the basal level (group A), 18 biological processes were found to be significantly enriched, including mitochondrial ATP synthesis coupled proton transport, aerobic respiration, mitochondrial respiratory chain complex I assembly and mitochondrial electron transport- cytochrome c to oxygen (figure 4.33). Within proteins downregulated in WT mice during memory retrieval, 5 biological processed were identified as significantly enriched, including synaptic vesicle docking, neurotransmitter secretion, and postsynaptic actin cytoskeleton organisation.

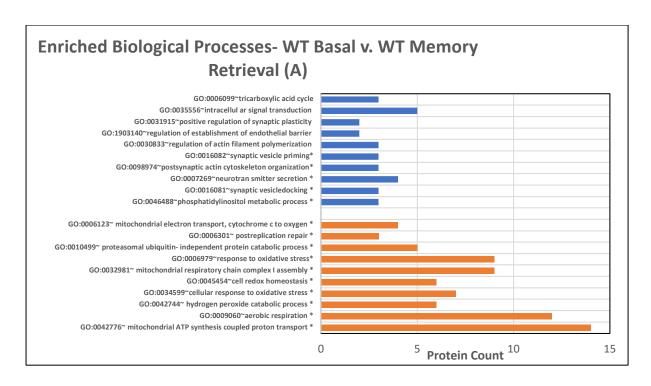


Figure 4.33. DAVID GO term enrichment analysis results for enriched biological processes within proteins differentially regulated in WT mice during memory retrieval, when compared to WT mice at the basal level (group A). Significant results are denoted by *. Blue= downregulated proteins, Orange= upregulated proteins.

Within proteins identified as downregulated in APPtg mice during memory retrieval, when compared to APPtg mice at the basal level (group C), 15 biological processes were found to be significantly enriched, including mitochondrial ATP synthesis coupled proton transport, aerobic respiration, mitochondrial respiratory chain complex I assembly, response to reactive oxygen species and respiratory electron transport chain (figure 4.34). The list of enriched biological processes in APPtg mice during memory retrieval is strikingly similar to that of the WT mice during memory retrieval; the majority of proteins upregulated in these conditions are involved in the same biological processes. When analysing proteins downregulated in APPtg mice during memory retrieval (compared to APPtg mice at the basal level; group C), 11 biological processes were found to be significantly enriched including intracellular transport, synaptic vesicle recycling, and anterograde axonal transport.

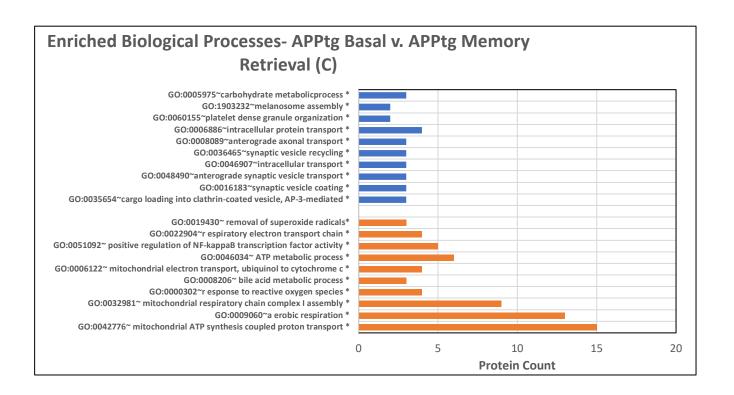


Figure 4.34. DAVID GO term enrichment analysis results for biological processes enriched within proteins differentially regulated in APPtg mice during memory retrieval, when compared to APPtg mice at the basal level. Significant results denoted by *. Blue= downregulated proteins, Orange= upregulated proteins.

When comparing proteins upregulated in APPtg mice during memory retrieval with WT mice during memory retrieval (group B), no biological processes were found to be enriched. When comparing downregulated proteins between the two genotypes, only two biological processes were found to be enriched which were cellular response to hypoxia (significantly enriched) and the negative regulation of cell proliferation.

4.3.3.3 Cellular Component

Figure 4.35 presents the enriched cellular component annotations identified by DAVID within submitted lists of differentially expressed proteins in WT mice during memory retrieval, when compared to WT mice at the basal level (group A). Within the upregulated protein list, 10 cellular components were significantly enriched including respiratory chain, mitochondrial respiratory chain complex I, mitochondrial membrane, IMM, mitochondrial respiratory chain complex IV and myelin sheath. Within the downregulated protein lists, 5 cellular components were found to be significantly enriched, including mitochondrial matrix, glutamatergic synapse, and postsynaptic actin cytoskeleton.

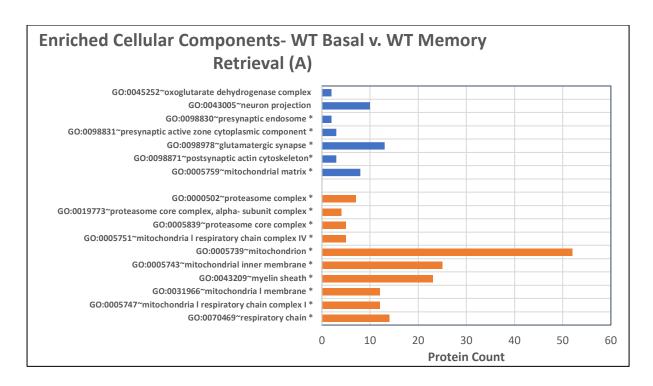


Figure 4.35. DAVID GO term enrichment analysis results for enriched cellular components within WT mice during memory retrieval, when compared to WT mice at the basal level (group A). Significant results denoted by *. Blue= downregulated proteins, Orange= upregulated proteins.

Enriched cellular components in the proteins identified as upregulated in APPtg mice during memory retrieval returned very similar results to those enriched in WT mice during memory retrieval, when compared to WT mice at the basal levels (group A). 16 cellular components were significantly enriched in APPtg mice during memory retrieval including respiratory chain, mitochondrial respiratory chain complex I, IMM, mitochondrial respiratory chain complex IV and neurofibrillary tangle (figure 4.36). 7 significantly enriched cellular components were identified as significantly enriched with downregulated proteins in APPtg mice during memory retrieval, including axon cytoplasm, endosome membrane and AP-3 adaptor complex.

When analysing proteins differentially regulated in APPtg mice during memory retrieval, when compared to basal levels (group C), DAVID returned no significantly enriched cellular components within upregulated proteins. Within the inputted downregulated protein lists, DAVID returned 5 enriched cellular components, three of which were significantly enriched. Enriched cellular components were perinuclear region of cytoplasm, myelin sheath, and perikaryon.

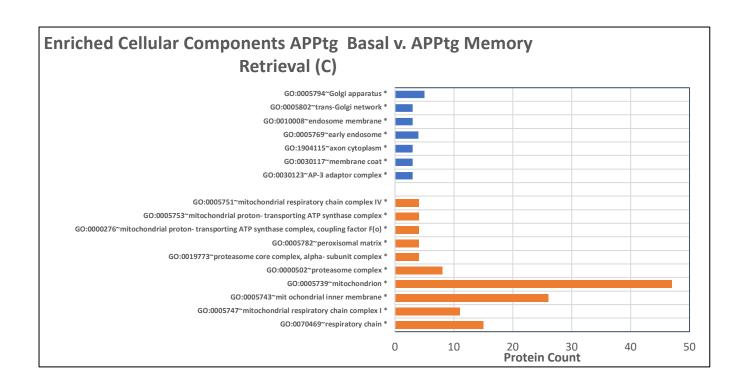


Figure 4.36. DAVID GO term enrichment analysis results for enriched cellular components within APPtg mice during memory retrieval, when compared to APPtg mice at the basal level (group C). Significant results denoted by *. Blue= downregulated proteins, Orange= upregulated proteins.

4.3.3.4 Molecular Function

Lists of differentially regulated proteins were submitted to DAVID GO tools and enriched molecular functions were annotated (figure 4.37). Within the proteins upregulated in WT mice during memory retrieval, 9 molecular functions were identified as significantly enriched including, antioxidant activity, macromolecular complex binding, NADH dehydrogenase activity and peroxidase activity. In the downregulated proteins, only one molecular function was significantly enriched-pyridoxal phosphate binding.

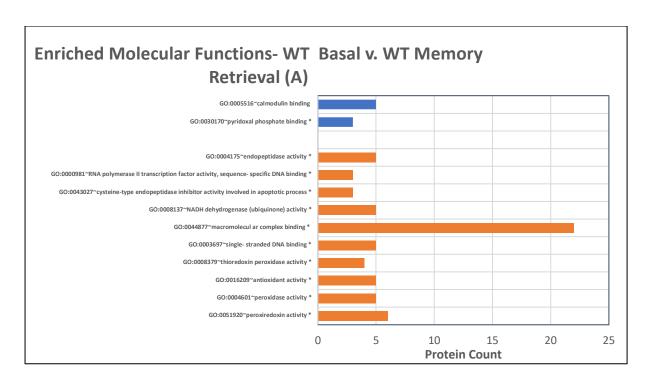


Figure 4.37. DAVID GO term enrichment analysis results for molecular functions enriched within differentially regulated proteins in WT mice during memory retrieval, compared to WT mice at the basal level (group A). Significant results denoted by *. Blue= downregulated proteins, Orange= upregulated proteins.

DAVID tools were used to annotate differentially regulated proteins in APPtg mice during memory retrieval (when compared to APPtg mice at the basal level; group C) with significantly enriched molecular functions (figure 4.38). The molecular functions enriched in the transgenic mice were strikingly similar to those of the WT mice, especially in the upregulated proteins, where significantly enriched molecular functions included NADH dehydrogenase activity, antioxidant activity, peroxidase activity and acetyl-CoA C-acetyltransferase activity. Within the downregulated proteins, only one molecular function, aminopeptidase activity, was significantly enriched.

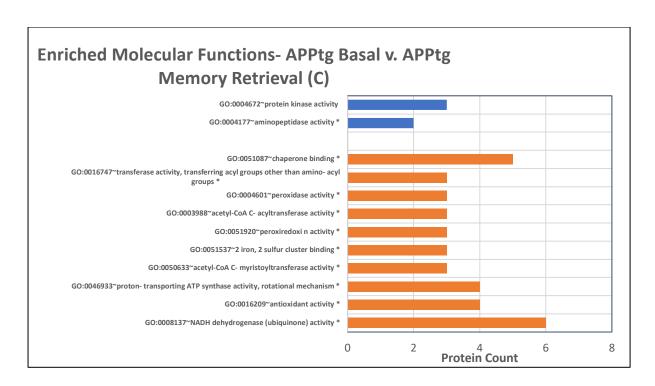


Figure 4.38. DAVID GO term enrichment analysis results for molecular functions enriched within differentially regulated proteins in APPtg mice during memory retrieval, when compared to APPtg mice at the basal level (group C). Significant results are denoted with *.Blue= downregulated proteins, Orange= upregulated proteins.

Analysis of proteins upregulated in APPtg mice during memory retrieval when directly compared to WT mice during memory retrieval (group B) returned one, non-statistically significant molecular function enriched within the input list- identical protein binding. No molecular function annotations were found to be enriched in the downregulated protein list for this condition.

4.3.3.5 KEGG Pathways

After submission to DAVID tools for the annotation of enriched KEGG pathways, 14 pathways were identified as significantly enriched within the proteins upregulated in WT mice during memory retrieval, when compared to basal levels (group A ;figure 4.39). Significantly enriched pathways included OXPHOS, AD, prion disease, metabolic pathways (not listed in the top 10 results but still statistically significant) and chemical carcinogens- reactive oxygen species. Within proteins downregulated in WT mice during memory retrieval, four pathways were identified as significantly enriched out of 7 pathways annotated to the list. Significantly enriched pathways in the downregulated proteins included the TCA cycle, metabolic pathways, inositol phosphate metabolism and carbon metabolism.

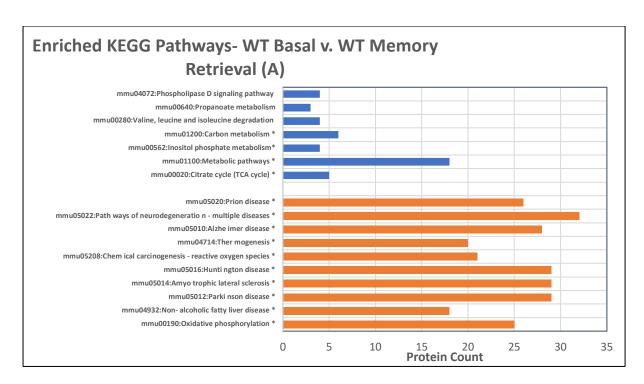


Figure 4.39. DAVID enrichment analysis results. Top 10 enriched KEGG pathways in differentially regulated proteins in WT mice during memory retrieval, when compared to WT mice at the basal level (group A). Significant results denoted by *. Blue= downregulated proteins, Orange= upregulated.

Figure 4.40 presents the top 10 enriched KEGG pathways annotated to differentially regulated proteins in APPtg mice during memory retrieval, when compared to APPtg mice during basal levels (group C). Within the upregulated proteins, 15 KEGG pathways were significantly enriched and the top 10 most enriched of these can be found in figure 4.40. Significantly enriched pathways in upregulated proteins include OXPHOS, prion disease, AD, pathways of neurodegeneration and chemical carcinogenesis-reactive oxygen species. The enriched KEGG pathways during memory retrieval in APPtg mice were very similar to that of the WT mice during memory retrieval. Only one significantly enriched KEGG pathway, lysosome, was identified in the downregulated proteins.

No KEGG 175pathways were 175annotated to any of the differentially regulated proteins in APPtg mice during memory retrieval (when directly compared to WT mice during memory retrieval; group B).

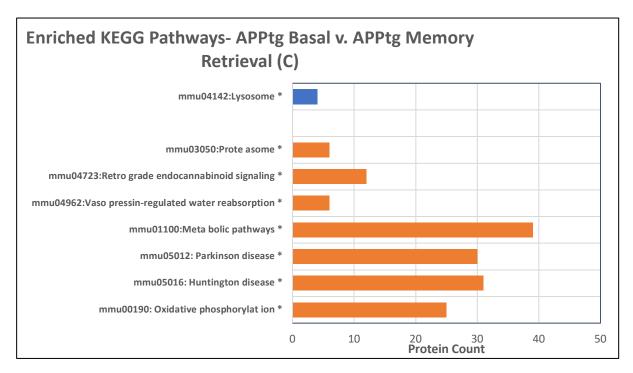


Figure 4.40. DAVID enrichment analysis results. Table lists top 10 enriched KEGG pathways in differentially regulated proteins in APPtg mice during memory retrieval, when compared to APPtg mice at the basal level. Significant results donated by *. Blue= downregulated proteins, Orange= upregulated proteins.

4.3.3.6 Functional Annotation Clustering

DAVID functional annotation tools were used to group protein lists into groups of functionally related proteins. The top 5 functional annotation clusters for proteins differentially regulated during memory retrieval are listed below, in order of enrichment score (the higher, the more enriched). Redundant terms were condensed into one overall cluster name, reflective of the functions of each protein within the cluster. The full clustering output tables can be found in Appendix D, section 2.

The top 5 enriched functional annotation clusters within proteins upregulated during memory retrieval in WT mice, when compared to WT mice at the basal level (group A; table 4.13) were as follows; the most enriched cluster was pathways of neurodegeneration, followed by proteasomal ubiquitin-independent protein catabolic process and mitochondrial motif carriers. Fourth came antioxidant activity, followed by ATP biosynthetic processes.

A- Wild-Type Basal v. Wild-Type Memory Retrieval - Upregulated

Table 4.13. DAVID functional annotation clustering output for proteins upregulated in WT mice during memory retrieval, when compared to WT mice at the basal level (group A). Top 5 clusters are listed, in order of enrichment score.

Annotation Cluster	Representative Annotation Terms	Enrichment Score
1	Pathways of neurodegeneration-multiple diseases	7.68
2	Proteasomal ubiquitin- independent protein catabolic process	5.16
3	Mitochondrial motif carriers	3.65
4	Antioxidant activity	2.18
5	ATP biosynthetic processes	1.79

A- Wild-Type Basal v. Wild-Type Memory Retrieval – Downregulated

Table 4.14 lists the top 5 functional annotation clusters, out of 19 in total, identified in proteins downregulated in WT mice during memory retrieval, when compared to WT mice at the basal level (group A). Clusters listed in order of enrichment score. The top 5 clusters were mitochondrion, mesenchymal migration, receptor binding, positive regulation of microtubule nucleation and neurotransmitter secretion.

Table 4.14. DAVID functional annotation clustering output for proteins downregulated in WT mice during memory retrieval, when compared to WT mice at the basal level (group A). The top 5 clusters are listed, in order of enrichment score.

Annotation Cluster	Representative Annotation Terms	Enrichment Score
1	Mitochondrion	1.74
2	Mesenchymal migration	1.69
3	Receptor binding	1.43
4	Positive regulation of microtubule nucleation	1.24
5	Neurotransmitter secretion	1.23

C- APPtg Basal v. APPtg Memory Retrieval- Upregulated

Table 4.15 lists the top 5 functional annotation clusters, out of a total of 23, connected with upregulated proteins in APPtg mice during memory retrieval, when compared to APPtg mice at the basal level (group C). The top 5 most enriched clusters were pathways of neurodegeneration, mitochondrial motif carriers, mitochondrial electron transport, neurofilament cytoskeleton organisation and response to oxidative stress.

Table 4.15. DAVID functional annotation clustering output for proteins upregulated in APPtg mice during memory retrieval, when compared to APPtg mice at the basal level (group C). The top 5 clusters are listed, in order of enrichment score.

Annotation Cluster	Representative Annotation Terms	Enrichment Score
1	Pathways of neurodegeneration- multiple diseases	6.87
2	Mitochondrial motif carriers	2.60
3	Mitochondrial electron transport	1.56
4	Neurofilament cytoskeleton organization	1.42
5	Response to oxidative stress	1.35

C- APPtg Basal v. APPtg Memory Retrieval- Downregulated

Table 4.16 lists the 3 functional annotation clusters annotated to proteins downregulated in APPtg mice during memory retrieval, when compared to APPtg mice at the basal level. The top 5 most enriched clusters were protein transport, synaptic vesicle transport, cytoplasmic vesicle, protein kinase activity and myristoylation.

Table 4.16. DAVID functional annotation clustering output for proteins downregulated in APPtg mice during memory retrieval, when compared to APPtg mice at the basal level (group C). The top 5 clusters are listed, in order of enrichment score.

Annotation Cluster	Representative Annotation Terms	Enrichment Score
1	Synaptic vesicle transport	2.04
2	Protein phosphorylation	0.82
3	Hydrolase activity	0.60

B- Wild-Type Memory Retrieval v. APPtg Memory Retrieval

When analysing proteins differentially regulated in APPtg mice during memory retrieval, when compared to WT mice during memory receival (group B), the number of enriched clusters was drastically reduced. Only one cluster was enriched in upregulated proteins which was protein binding, with an enrichment score of 0.47. In downregulated proteins, only one cluster, perinuclear region of cytoplasm was enriched, with an enrichment score of 0.84.

4.3.3.7 STRING Protein Network Mapping

PPI network maps were created by inputting lists of differentially expressed (upregulated or downregulated) proteins within different experimental conditions to STRING. Interaction confidence score was set to medium confidence (0.400).

Figure 4.41 depicts the PPI networks within proteins upregulated in WT memory retrieval, when compared to WT mice at the basal level (group A). Two distinct protein clusters can be seen within the network; the largest cluster is comprised of subunits of the ETC, and the second, smaller cluster is comprised of protein subunits of the proteasome.

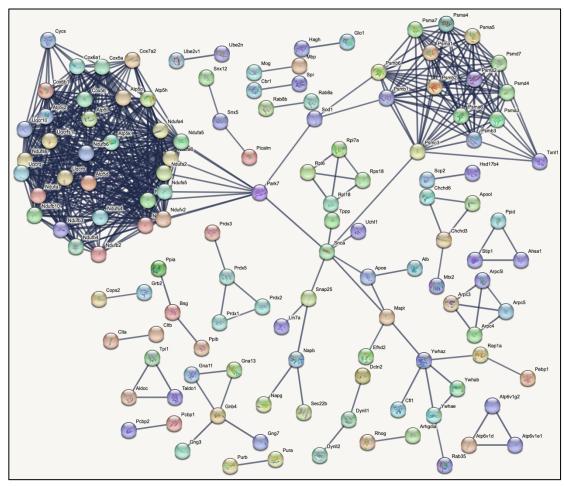


Figure 4.41. STRING network map of proteins upregulated during memory retrieval in WT mice, when compared to basal levels (group A). All interactions are of the highest confidence interaction score (0.900+). Line thickness indicates strength of data support for each interaction. PPI Enrichment Value <1.0e-16.

When we look at the PPI network maps for APPtg mice during memory retrieval (figure 4.42, when compared to basal levels (group C), the number of distinct clusters is altered. Although there is a greater number of highly connected proteins within the network, there is only one main densely populated cluster, comprised of protein subunits of the electron transport chain, similar to WT mice. However, the second protein interaction cluster seen in WT mice, consisting of proteasome proteins, is significantly reduced in the transgenic mice.

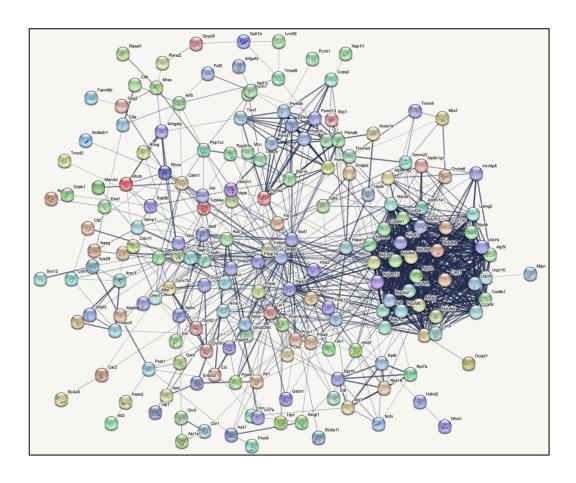


Figure 4.42. STRING network maps of protein upregulated in APPtg mice during memory retrieval when compared to basal levels (group C). All interactions are of the highest confidence interaction score (0.900+). Line thickness indicates strength of data support for interaction. PPI Enrichment Value <1.0e-16.

4.3.3.8 Most Connected Proteins Analysis

STRING interactions data was filtered to detect the most highly connected proteins within those identified to be differentially regulated in APPtg mice during memory retrieval, when compared to APPtg mice during basal levels (group C). The top 10 proteins with the greatest number of outgoing connections (has the greatest effect on others) and the top 10 proteins with the greatest number of incoming connections (greatest affected by others) were highlighted by this type of analysis. This type of analysis utilises the upregulated and downregulated proteins in APPtg mice during memory retrieval, when compared to WT mice during memory retrieval (group B), to highlight the most connected proteins in the experimental condition, irrespective of the directionality.

Table 4.17 shows the most highly connected proteins in APPtg mice during memory retrieval, when compared to APPtg mice at the basal level (group C). The top three proteins with the greatest number of outgoing connections. Rab3gap1, was the protein with the greatest number of outgoing

connections. Rab3gap1 interacts with Rab3gap2 to form the Rab3gap complex, which activates Rab18, involved in vesicle trafficking, autophagy, and endoplasmic reticulum organisation, when in its GTP-bound active state. The Rab3gap complex is also thought to activate the Rab3 GTPase, which plays key roles in the release of neurotransmitters (Medline Plus., 2018). The second and third most connected proteins are subunits of the cytoplasmic dynein complex, which is thought to be involved in the intracellular retrograde motility of vesicles and organelles along microtubules (Medline Plus 2018; UniProt., 2023). Due to the nature of protein trafficking, Dync1h1 was in the top 3 proteins with the most outgoing connections and also the most incoming connections. Hsp90aa1 was the top protein with the most incoming connections, closely followed by Rhoa. Hsp90aa1 functions as molecular chaperone aiding in the maturation, structural maintenance, regulation and proper folding or specific target proteins. It is also known to play a role in mitochondrial import, delivering preproteins to the intracellular import receptor TOMM70 (GeneCards., 2023). Rhoa functions as an intracellular molecular switch, critical for many functions including migration, cell survival, adhesion, and vesicle trafficking (Zhou & Zheng., 2013). Identifying 'hub' proteins, that is, proteins with the highest connectivity, can underpin important predictions into the functions of target proteins. It is widely accepted that 'hub' proteins play more important biological roles than proteins with low connectivity, and networks are much more sensitive to their removal. This kind of information can be reasonably used in future functional predictions of unannotated proteins, as the functions of hub proteins are likely to be correlated with the functions of unannotated proteins (Hou., 2017).

Table 4.17. Table of the top 10 most connected proteins. Table lists the proteins with the greatest number of incoming and outgoing connections within differentially regulated proteins in APPtg mice during memory retrieval, when compared to APPtg mice at the basal level (group C).

C- APPtg basal V. APPtg memory retrieval						
	Most outgoing connections	No.	Most incoming connections	No.		
1	Rab3gap1	24	Hsp90aa1	19		
2	Dync1h1	14	Rhoa	15		
3	Dynll2	14	Dync1h1	7		
4	Dync1li1	14	Dynll2	7		
5	Dync1li2	14	Dync1li1	7		
6	BC048507	7	Dync1li2	7		
7	Dync1i2	7	BC048507	7		
8	Dync1i1	7	Dync1i2	7		

9	Gpsm2	4	Dync1i1	7
10	Gpsm3	4	Арр	7

4.3.3.9 Functional Dependency Analysis

Functional dependency matrix was generated for proteins upregulated during memory retrieval in APPtg mice, when compared to proteins upregulated at the basal level (group C).

Figure 4.43 reveals that most dependencies in the matrix have no effect, however, a number of strong activators (122) exist, alongside a number of strong inhibitors (31). Out of 52 species and a total of 2704 reactions, only 3 dependencies in the model were ambivalent factors. Table 4.18 summarises the direction dependencies changed after removal of specific proteins in generated KO models. Ambivalent factors were targeted in KO models, as these are the most likely to change with manipulation.

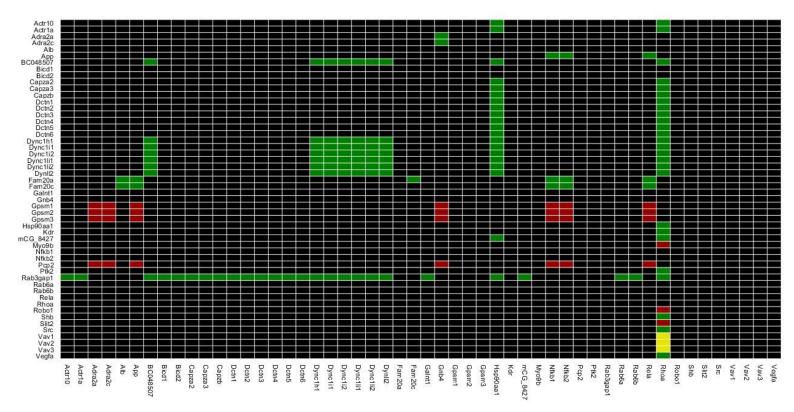


Figure 4.43. Functional dependency matrix for upregulated proteins in APPtg mice during memory retrieval. Dependencies show the effect of the X node on the Y node. Figure includes all significantly upregulated and significantly downregulated proteins which pass the 20% regulation threshold.

Table 4.18 reveals the number of each dependency within the network, following different *in silico* knockout simulations, generated to analyse the potential effects of the loss of network elements. Target nodes were selected based on likelihood of network changes and thus the Rhoa, Vav1, Vav2, and Vav3 nodes were chosen. KO matrices consist of 2601 total reactions, after removal of the KO node and all of its dependencies.

Table 4.18. Functional dependency matrix species dependency numbers in APPtg mice during memory retrieval, when compared to APPtg mice at the basal level (group C).

Scenario	Number of Each Dependency							
	No Effect Ambivalent	Ambivalent	Weak	Weak	Strong	Strong	Total	
		Inhibitor	Activator	Inhibitor	Activator			
Full model	2548	3	0	0	31	122	2704	
Rhoa KO	2477	0	0	0	28	96	2601	
Vav1 KO	2448	2	0	0	31	122	2601	
Vav2 KO	2448	2	0	0	31	122	2601	
Vav3 KO	2448	2	0	0	31	122	2601	

CHAPTER 5- DISCUSSION

5.1. Mitochondrial Dynamics

It has long been established that mitochondrial dysfunction is an early event in the onset and progression of AD (Misrani et al., 2021; Bhatia et al., 2022; Friedman & Nunnari., 2014). The overall morphology and function of mitochondria is dynamically controlled by the balance between fission and fusion events (Wang et al., 2009). Two proteins with central roles in mitochondrial dynamics were measured via western blotting in this project: DRP1, mediator of fission, and mfn1, mediator of

fusion. Mfn1 was found to be expressed at a greater level during basal levels compared to memory retrieval in P2 samples from both genotypes, however, expression in WT basal mice was twice as high as in the APPtg basal mice. A synapse-specific increase in Mfn1 expression was detected in the preclinical APPtg model, across both behavioural groups. Whilst the literature surrounding protein expression in AD typically uses post-mortem brain tissue from known AD cases, and thus is not directly comparable to a preclinical stage, some interesting insights can still be made. Wang et al (2009) found a 27.8% reduction in Mfn1 expression in human post-mortem AD brains compared to age-matched controls. It could be that at a very early, preclinical stage, overexpression of Mfn1 is a compensatory mechanism for mitochondrial dysfunction, attempting to mix molecules and mtNDA throughout the mitochondrial compartment, optimising function and preventing the mitophagy of damaged mitochondria (Suarez-Rivero et al., 2017). In the current study, DRP1 expression was found to follow the same patterns across P2 and synaptosome samples, however, a synapse-specific increase in DRP1 was found in the APPtg mice. Several groups have found increased levels of Drp1 in post-mortem brain tissue from known AD cases, which induced mitochondrial fragmentation and defective mitochondrial function (Oliver & Reddy., 2019). Studies by Misrani et al (2021) also observed increased levels of Drp1 in APP/PS1 mice, as early as 4-5 months, supporting the notion that mitochondrial dysfunction is a key player in the development of neurovegetative disease and begins at a preclinical level, as seen here as an increased expression of Mfn1 and Drp1 in APPtg mice. Upregulation of Drp1 in APPtg mice during memory retrieval, and subsequent increased mitochondrial fission may be a strong contributing factor to memory loss in AD.

Whilst western blotting results cannot be compared with proteomics LFQ intensity of Drp1 and Mfn1 due to missing data points in their entries, several other proteins involved in mitochondrial fission (Mitochondrial fission factor (Mff), mitochondrial fission process 1 (Mtfp1), mitochondrial fission regulator 1 like (Mtfr1l), mitochondrial fission protein 1 (Fis1)) and fusion (mitofusin 2 (Mfn2) were identified within the data (raw LFQ intensity graphs for these proteins can be found in Appendix B, figure 5). Whilst the expression of Mtfp1, Mtfr1l, and Fis1 did not change between genotypes or behavioural conditions, expression of Mfn2 and Mff were found to be increased in APPtg mice during memory retrieval (when compared to WT mice during memory retrieval).

An increase in the expression in mitochondrial fission and fusion related proteins, especially when synapse specific, leads to limitations in mitochondrial motility, decreased energy production, promotion of oxidative stress, and impairment of Ca²⁺ buffering in the mouse model of AD, leading to neuronal death (Knott & Bossy-Wetzel., 2008).

The development and progression of AD are also associated with mitochondrial dysfunction stemming from the cytotoxic effects of AB. One such effect is the interaction of increased levels of VDAC1 protein in the brains of AD patients interacting with AB and phosphorylated tau, leading to the blockage of mitochondrial pores, and increasing mitochondrial dysfunction (Manczak & Reddy., 2012). Western blot analysis revealed VDAC1 expression exhibited a synapse specific increase in transgenic mice, coupled with a reduction in expression in WT mice during memory retrieval. Since VADC1 overexpression is associated with the apoptotic response, its overexpression and interaction with AB in synaptic mitochondria at the preclinical level may be a central mechanism for neurodegeneration (Shoshan-Barmatz., 2018).

5.2 Electron Transport Chain

It is widely accepted that metabolic dysregulation is one of the hallmarks of AD and that metabolic alterations can be associated with AD-related comorbidities, cognitive decline, and brain pathology (Dodart et al., 1999; Mosconi, Pupi & De Leon., 2008; Beglopoulos et al., 2016; Yan et al., 2020; Kumar, Kim & Bishayee., 2022; Batra et al., 2022). Western blotting for proteins involved in mitochondrial energy metabolism pathways revealed several synapse specific regulation changes. SDHA and ATP5A, ETC complex II and V respectively, showed synapse specific expression increases in APPtg mice, compared to WT mice. Oxidative stress is known to regulate the expression of SHDA, which contributes to its overexpression in AD (Shi & Gibson., 2011). Conversely, studies by Misrani et al (2021) found reduced ATP5A expression in the brains of 4-5-month-old APP/PS1 mice. The synapse specific increase in SDHA and ATP5A expression, shown here at the preclinical level, may be an attempt to regulate mitochondrial membrane potential for the high levels of ATP synthesis needed to sustain memory retrieval in the mouse model of AD. Other protein subunits of the ETC showed differential expression in synaptosome samples. Cytochrome C demonstrated a small, synapse specific increase in expression in APPtg mice during memory retrieval but exhibited a small decrease in WT mice during memory retrieval. Studies by Kumar, Giani & Mason (2016) linked the peroxidase activity of cytochrome c to alpha synuclein radical formation and oligomerisation, contributing to increased neuronal death. Excessive peroxidase activity in APPtg mice during memory retrieval could be a result of oxidative damage caused by the presence of amyloid ß, which subsequently leads to alpha synuclein radical formation and oligomerisation, initiating neuronal apoptotic processes.

Western blotting for UQCRB was only carried out using P2 samples and thus any difference in expression is not synapse specific, however, an interesting expression pattern reversal was detected

in the transgenic mice (higher during basal levels than memory retrieval), when compared to WT mice (higher during memory retrieval). COX4 results showed no change in expression between genotypes, only a small, synapse specific decrease in WT mice during memory retrieval. Current literature on UQCRB and COX4 expression are contradictory, with many studies detailing a reduction in the enzymatic activity of the two enzyme complexes, most dramatically COX (Wang et al., 2020). Dysfunction of COX increases ROS production, reduced energy stores, and disturbs energy metabolism, contributing to neurodegeneration (Mutisya et al., 1994). In the WT mice, COX4 expression is increased during memory retrieval, as a means to upregulate OXPHOS and support neuronal energy requirements. Downregulation and dysfunction of COX4 in APPtg mice during memory retrieval (when compared to WT mice during memory retrieval) may be a contributing factor to the glucose hypometabolism seen in APPtg mice.

Western blotting of synaptic proteins PSD95 and alpha synuclein were only carried out in P2 samples, however, both proteins were expressed more highly in the mouse model of AD than their WT counterparts. Elevated alpha synuclein in AD has also been found by Twohig & Nielsen (2019) and Winkel et al (2021), however, these studies utilised CSF, rather than tissue homogenates used throughout this thesis. Literature surrounding PSD95 expression in AD is inconsistent and contradictory. Studies by Shao et al (2011) found PSD95 was increased in hippocampal Hirano bodies in AD brains, however, Savioz, Leuba & Vallet (2014) found decreased expression in the temporal cortex of AD brains coupled with an increase in PSD95 in the frontal cortex. Here, western blotting provides support for the increased expression of PSD95 in preclinical AD models, which likely contributes to disease pathogenesis through its rapid aggregation and propagation.

Whilst western blotting in the context of memory retrieval, especially in the context of AD, is novel, it is important to note that existing literature has studied the expression of proteins in AD brains whilst at the basal level and therefore literature can be used for guidance but not direct comparisons. To gain a more thorough overview of metabolomic pathways implicated in memory retrieval and how they are perturbed in AD, enzymatic activity analysis should be combined with the analysis of mitochondrial metabolites (both substrates and products of each enzyme in question) to provide a more in-depth view of enzyme function. Metabolomic studies should be carried out, as detailed in section 5.5.1.

5.3 Metabolic Signatures of Preclinical Alzheimer's Disease

No differences were identified in the expression or activity of 6-PFK or MDH2 enzymes between WT and APPtg mice, regardless of behavioural group. Several studies have looked at the roles of key glycolytic enzymes in AD and their potential contributions to AD pathogenesis, however, these results were mainly obtained from post-mortem brain specimens of known AD cases and are inconsistent. Studies by Bowen et al (1979) found a 10% decrease in PFK activity in autopsy studies of AD patients, which was contradicted by later studies by Bigl et al (1999), who found increased levels of PFK activity in AD brain tissue. Another study, more closely representative of the current experimental model, studied primary neurodegenerative dementia in young patients at very early stages of disease, found no change in the activity of PFK between demented and control patients (Sims et al., 1987). Studies on the enzymatic activity of the TCA cycle enzyme, MDH2, in preclinical AD patients is lacking, thus a direct comparison of results to literature cannot be made, however, studies by Shi & Gibson (2011) revealed an elevation in MDH2 activity in postmortem tissue samples from the brains of AD patients. It could be that similar to 6-PFK, the activity of MDH2 is unaffected in very early disease stages, before any alteration to activity has occurred. The study by Shi & Gibson (2011) progressed by analysing the effect of oxidative stress on enzymatic activity of MDH2 through induction of MDH gene expression. It was found that H₂O₂, an inducer of oxidative stress, did indeed increase the activity of MDH2 and mRNA expression in mouse hippocampal cell lines. Proteomics data looking at biological processes significantly enriched within APPtg mice during memory retrieval supports the notion that excessive production of ROS is occurring, however, the levels of MDH2 expression were not elevated in the current study.

It is important to remember that the method of sample preparation, including detergents and lysis buffer, and available sample volumes were not reflective of optimal conditions, as advised by the manufacturer, and thus these factors may have led to the activity patterns detected; the reduced sample volume could have impacted the ability to detect any metabolic differences between biological samples. The sample preparation method and presence of lysis buffer, combined with limited sample volume availability, significantly impacted the number of assay kits that were deemed functional or compatible. As only 2 assay kits out of an initial 12 were completed using experimental samples, the intended holistic overview of metabolic health during memory retrieval in the preclinical model of AD was not achieved. The sample preparation method also significantly impacted the ability to progress with analysing mitochondrial metabolites via UPLC-MS. Together, these methodologies would have enabled a thorough evaluation of metabolic regulation (including identifying any metabolic alterations) and mitochondrial health in the model of AD, allowing for the identification of key contributors to memory loss and potential areas for therapeutic intervention.

5.4 Proteomics Results

Determination of LFQ intensity values for mitochondrial proteins also targeted by western blotting provided information on the levels of specific proteins involved in energy metabolism and mitochondrial dynamics. Expression of protein subunits of the ETC (SDHA, COX4) were expressed more greatly during basal levels than during memory retrieval. Enzymes of the ETC are unaffected by feedback inhibition, but the rate of electron transport through the pathway is affected by the levels of ADP and ATP. If previous pathways of energy metabolism, such as the TCA cycle, were under negative feedback control, the flux of ADP and ATP would be reduced, and the ETC would be subsequently downregulated until the cell increases its energetic requirements. Expression of further enzyme complexes of the ETC (NADH-Coenzyme Q Oxidoreductase (complex I), ATP synthase (complex V), succinate dehydrogenase (complex II)) was also identified to be differentially expressed between genotypes. Complex I and complex V were expressed at higher levels in the transgenic mice than the WT mice, reflecting defective pathways of energy metabolism in the preclinical model, which requires subsequent upregulation of key complexes in attempt to compensate for the reduced energy availability. Complex V and complex II showed increased expression during basal levels than during memory retrieval in WT mice, however, their expression in APPtg mice was consistent across behavioural groups, suggesting a dysregulation of glucose metabolism in APPtg mice, which requires a subsequent upregulation in attempt to compensate for the increased energetic requirement.

Increased expression of complexes of the ETC in the AD model does not seem to support the impaired glucose metabolism seen at the preclinical level. However, the extensively reported increase in mitochondrial fission may be the root cause of this observation. Studies by Zhang et al (2016) found increased mitochondrial fission to represent an essential compensatory adaption to bioenergetic stress. Increased mitochondrial fission provides protection against mitophagy, effectively preserving residual mitochondrial function. An increase in the levels of mitochondrial fission by this mechanism would thereby increase the levels of ETC complex machinery, without increasing the production of ATP, if the complexes themselves are dysfunctional.

VDAC1 expression is crucial for the passage of ions and metabolites essential for energy metabolism (Shoshan-Barmatz et al.,2017). LFQ intensity of VDAC1 was higher in WT mice at the basal level, when compared to during memory retrieval. As VDAC1 controls metabolic flux into the mitochondrial matrix or out to the cytosol, maintaining the control of metabolic cross-talk between mitochondria and the rest of the cell, increased expression during memory retrieval is essential to sustain the high levels of metabolic demand (Shoshan-Barmatz, Shteinfer-Kuzmine & Verma., 2020).

In APPtg mice, however, VDAC1 was overexpressed in both behavioural conditions. Increased expression in the AD model may be reflective of increased stress conditions, known to cause VDAC1 overexpression and oligomerisation, forming large channels in the mitochondrial membrane which facilitates the release of pro-apoptotic proteins into the cytosol (Verma et al., 2022). In this way, VDAC1 effectively switches from the promotion of metabolic processes to the promotion of apoptosis (Shoshan-Barmatz et al., 2010).

Proteomic analysis also highlighted a number of proteins which failed to become upregulated or were upregulated in APPtg mice during memory retrieval when they were not upregulated in WT mice during memory retrieval (table 4.28). Failure to upregulate proteins involved in the cellular response to oxidative stress in APPtg mice during memory retrieval could signify that these proteins are already upregulated in the APPtg mice at the basal level, as a result of transgene insertion and therefore, do not present as upregulated in this analysis. Failure to upregulate proteins involved in the cellular response to oxidative stress would lead to increased oxidative damage of neuronal lipids, proteins, and DNA, significantly impairing cellular signalling pathways and contributing to increased apoptosis. Mitochondria, major sites of ROS production, would be especially susceptible to oxidative damage, which can lead to mitochondrial dysfunction and energy deficits, further exacerbating oxidative damage. Additionally, oxidative damage can lead to protein misfolding and increased propensity to aggregate, causing disruption to signalling and metabolic pathways but also altering the functions of key synaptic proteins, impairing synaptic function and neuronal communication. Interestingly, all proteins which fail to become upregulated during memory retrieval and are involved in aerobic respiration are subunits of ETC complex I (NADH ubiquinone oxidoreductase; Ndufa7, Ndufa6, Ndufb6, Ndufb4, Ndufb2). Impairment of complex I would lead to significantly impaired OXPHOS, increased ROS production, mitochondrial dysfunction, and impaired cellular functions, which would render the cell unable to meet the energetic requirement of memory retrieval, presenting as memory loss and subsequent neurodegeneration.

Combined, these effects may be a key contributor in AD pathogenesis and impaired metabolism, contributing to memory loss in the transgenic mice. Furthermore, proteins involved in the negative regulation of neuronal apoptosis would increase the susceptibility of neurons, especially those in a state of oxidative stress, to undergo apoptosis, leading to widespread neuronal loss and impaired neuronal plasticity. Proteins involved in aerobic respiration and mitochondrial ATP synthesis coupled protein transport were upregulated in APPtg mice during memory retrieval but not in WT mice during memory retrieval, likely as a compensatory mechanism to attempt to increase energy production to overcome the heightened oxidative stress sustain the energetic demand of memory retrieval.

Two key enzymes, 6-PFK and MDH2 were differentially expressed between the two genotypes. Expression of 6-PFK in WT mice was much greater at the basal level than during memory retrieval. This may be partially explained by the allosteric inhibition of 6-PFK by ATP, at concentrations higher than 1mM (detailed in section 1.3.5). If levels of ATP already surpassed this level by the time the mice were sacrificed following memory retrieval, ATP inhibition may have already occurred, reducing the overall expression of the enzyme. In the APPtg mice, expression of 6-PFK is greater during memory retrieval than at the basal levels, implying an upregulation of metabolic pathways to meet the rising metabolic demand of memory retrieval mechanisms. As PFK catalyses the rate-limiting step of glycolysis, an upregulation of this enzyme would increase the overall glycolytic flux throughout the cell (McKenna et al., 2012). The expression of MDH2 was greater during memory retrieval in both WT and APPtg mice, although the overall expression in both behavioural groups was higher in APPtg mice. Increased expression during memory retrieval supports the increased metabolic demands of retrieval. These results may suggest different dysregulations in protein expression in the APPtg mice, or during memory retrieval, however, they are based off LFQ intensity measurements alone and so should be taken in combination with other analyses and experimental methodologies.

Part of the proteomic analysis of this thesis utilised two different methods, namely the application of FDR correction for the testing of multiple hypotheses and the application of a regulation threshold with subsequent t-testing. The results seen here follow the current debate over the use of correcting procedures for multiple testing in proteomics studies and the differing opinions in the field. FDR can be seen to penalise biological associations for being identified in a larger study, over a smaller study and challenges the idea that nature may be understood through observations (Althouse., 2015; Rothman., 1990). Failing to apply FDR correction, however, can significantly increase the number of false positive associations, leading to false interpretations of the data. The results from the two analyses are both different and interesting. After the application of FDR correction, two of the four experimental conditions had no significant differential protein regulation remaining. The application of FDR to this project, which is exploratory by nature, could be seen as too harsh, eliminating all differential regulations in half of the study conditions. Consequently, none of the differential protein regulations in APPtg mice during memory retrieval, when compared to APPtg mice at the basal level, could be analysed for biological functions or affected pathways specific to the AD transgene. The aims of this project are to provide insight into the molecular and cellular mechanisms underlying memory retrieval and how they are perturbed in a model of preclinical FAD. Without significant protein regulations within APPtg mice during memory retrieval, the ability to draw conclusions and comparisons between the two genotypes is significantly impacted. Whilst the application of FDR in

targeted proteomics experiments is useful, it should be carefully considered before being applied to exploratory experiments, where even the smallest, non-statistically significant regulatory change could be highly biologically significant.

5.4.1 FDR Corrected Results

The first, and arguably the most striking, result from the FDR corrected proteomics was the significant failure of APPtg mice to differentially regulate protein expression. After the application of FDR correction, there were no significantly differentiated proteins in the mouse model of AD during memory retrieval, when compared to basal levels. Such a significant regulatory failure would have massive consequences for the cell, preventing the proper expression of proteins involved in responses to changing environmental conditions. Not only would this lead to a failure to upregulate the pathways required to support memory retrieval, but it would also cause a failure to properly regulate pathways involved in cell survival, including apoptosis and autophagy. Further research into the mechanisms behind this regulatory failure may have important clinical benefits in the treatment of AD.

Using DAVID bioinformatic tools, the data revealed that upregulated proteins within WT mice during memory retrieval were significantly enriched in vesicle-mediated transport, cellular oxidant detoxification and establishment of protein localisation to membrane biological processes and hydrolase activity, clathrin heavy chain binding and ubiquitin protein ligase binding molecular functions. Proteins were also found to be significantly enriched in the endocytosis, synaptic vesicle cycle and vasopressin-regulated water reabsorption pathways. Other, non-statistically significant results included the enrichment of glycolytic pathways, supporting the increased ATP demands of memory retrieval processes. The WT memory retrieval group provides a model of the molecular and cellular mechanisms underlying memory retrieval in healthy states. One mechanism significantly enriched was cellular oxidant detoxification, relating to any processes involved in the removal of toxicity superoxide radicals. The two major sites of superoxide radical production are known to be the election transport chain complexes I and III. Healthy WT mice use upregulation of this pathway to offset the high amounts of ROS generated during upregulation of ETC complexes during memory retrieval (Phaniendra, Jestadi & Periyasamy., 2015). Enrichment of vesicle-mediated transport is indicative of increased neurotransmitter transportation across the synapses during memory retrieval, supporting the excitation of neurons in complex circuits that were previously activated during learning (Tayler et al., 2013). Enrichment of hydrolase activity in the WT mouse could be representative of central defence mechanisms for the prevention of AB aggregate formation, known

to degrade synapses and impair memory formation. Studies by Wu et al (2023) found hepatic soluble epoxide hydrolase (sEH) to be a key modulator of AB metabolism. sEH regulates plasms levels of 14,15-epoxyeicosatrienoic acid, which crosses the blood-brain barrier and modulates AB metabolism, preventing excessive AB metabolism. Ubiquitin protein ligase binding is a key process involved in ubiquitination, where proteins marked for degradation are targeted to the proteasome (Suresh et al., 2016). Ubiquitination regulates protein stability, function, and localisation and is known to be critical for synaptic plasticity and long-term memory (Jarome & Helmstetter., 2013). Proteins downregulated in the WT model of memory retrieval were found to be enriched in apoptotic processes, which are generally characterised by energy-dependent biochemical mechanisms. The energy expenditure of memory retrieval may be so great that apoptotic pathways are downregulated in nondemented mice to ensure maximum energy utilisation in retrieval.

Comparing the pathways enriched within WT mice during memory retrieval with those of the APPtg mice can illuminate key differences that may be causative of AD induced memory loss. Proteins upregulated within APPtg mice at the basal level, when compared to WT mice at the basal level, were found to be significantly enriched in mitochondrial electron transport-cytochrome C to oxygen and fatty acid metabolic process. Non-significant but highly enriched other terms included the negative regulation of neuron death. Significantly enriched pathways of oxidative phosphorylation, Alzheimer disease, pathways of neurodegeneration, Huntington disease and non-alcoholic fatty liver disease pathways were also identified. Contrary to literature which suggests glucose metabolism in PDAPP mice is normal at the basal level, (Beglopoulos et al., 2016), APPtg mice present with significant enrichment of pathways involved in neurodegeneration and energy metabolism at the basal level. This could be due to the age difference between the mice, as the mice used by the authors were 3-4 months old, whereas the mice used for the studies in this thesis were 7-9months old and may have developed further pathologies. Additionally, whilst there is an identifiable difference between the studies in regard to glucose metabolism, we cannot be sure that the enrichment of pathways identified in this study will translate to the glucose hypometabolism clinically. The oxidation of energy-rich fatty acids presents with three main problems for the cell: it demands more oxygen consumption than glucose utilisation, enhancing the risk for neurons to become hypoxic; it generates superoxides which can cause severe oxidative stress; and the rate of ATP generation from fatty acid oxidation is slower than using glucose as the main fuel. During periods of rapid neuronal firing, fatty acid metabolism cannot guarantee the required rate of ATP generation and thus it is not utilised as the main source of energy metabolism (Schonfel & Reiser., 2013). Upregulation of this process, together with the upregulation of mitochondrial electron

transport processes, suggests APPtg mice are under metabolic stress, likely due to dysfunctional OXPHOS complex components, even at the basal level.

Proteins downregulated within APPtg mice at the basal level, when compared to WT mice at the basal level were significantly enriched in barbed-end filament capping, glutamatergic synapse, and Schaffer collateral-CA1 synapse. Owing to their pivotal role in excitatory neurotransmission, the disruption of normal signalling via glutamate receptors, due to synaptic protein downregulations, observed here in APPtg mice at the basal level, is implicated in a range of neuropathological diseases, including AD (Wang & Reddy., 2017). The majority of excitatory transmission in mammals is mediated by glutamate and its receptors, which also play a fundamental role in synaptic plasticity, the underlying molecular mechanisms of learning and memory (Riedel, Platt & Micheau., 2003). Any downregulation of proteins within glutamatergic synapses could have drastic impacts on memory.

5.4.2 Differential Regulation Threshold Results

5.4.2.1 Differentially Regulated Proteins at the Basal Level

Studying the difference in protein expression between WT and APPtg mice at the basal level revealed several interesting differences related to the insertion of the AD transgene. Proteins downregulated in the transgenic mice at basal levels were significantly enriched in mitochondrial electron transport-cytochrome c to oxygen, and non-significantly enriched in response to oxidative stress and mitochondrial fission. Additional significant enrichments in the mitochondrial inner membrane, respiratory chain, particularly complex IV, and actin filament bundle components. Downregulation of proteins involved in mitochondrial fission leads to an imbalance of fission and fusion events, and subsequent mitochondrial dysfunction, as previously discussed. Aberrant mitochondrial morphology can lead to increased ROS production, which deteriorates mitochondrial health further and can lead to the progression of disease (Jezek, Cooper & Strich., 2018; Pizzino et al., 2017). Aberrant mitochondrial morphology is further supported by the significant enrichment of actin filament bundle components in downregulated proteins. Actin filament bundles play essential roles in the structural support of the plasma membrane, cell division, and cell motility and thus are essential for the maintenance of mitochondrial function (Jones & Naylor., 2022). Furthermore, downregulation of protein complexes of the ETC shows evidence of energetic deficit in the transgenic mice at the basal level, which may be caused by the increase in ROS, exacerbated by dysfunctional mitochondrial dynamics. The is further supported by the upregulation of proteins

significantly enriched in neurons antioxidant defence system in response to oxidative stress. It seems likely that the insertion of the APP transgene causes an imbalance of mitochondrial dynamic events, further supported by the western blot data, which in turn, subjects the cell to oxidative stress and damages the protein complexes of the ETC via cristae remodelling. Damage to the ETC leaves the cell unable to produce ATP at the rate required to sustain memory retrieval and possible apoptosis occurs, which may explain the symptoms of memory loss in AD.

Enriched pathways within proteins upregulated in APPtg mice at the basal level, when compared to WT mice at the basal level were pathways of neurodegeneration, which further confirms the onset of disease has already begun at an age which is defined as preclinical.

The use of STRING PPI database allowed for the identification of the most highly connected proteins within those upregulated in APPtg mice at the basal level. Protein phosphatases dominated the results, showing the greatest number of incoming and outgoing interactions. Post-mortem studies have previously linked Ppp2 to AD. Within the disease, Ppp2 expression and activity is reduced, leading to the induction of tau hyperphosphorylation, deposition of Aß, memory impairment, and a reduction in autophagic degradation of faulty or damaged proteins (Braithwaite., 2012; Sontag., 2004; Sinsky Pichlerova & Hanes., 2021). Within the APPtg mice at the basal level, Ppp's are upregulated, providing mechanisms of neuroprotection against AD pathologies.

5.4.2.2 Differentially Regulated Proteins During Memory Retrieval

Proteins that failed to become upregulated in APPtg mice during memory retrieval (when compared to WT mice during memory retrieval) were enriched in cellular response to oxidative stress, mitochondrial ATP synthesis coupled proton transport, aerobic respiration, and negative regulation of neural apoptotic processes. They are enriched in the myelin sheath, endoplasmic reticulum-golgi intermediate compartment, intermediate filament, extracellular space, proteasome complex, and respiratory chain. The intermediate filaments, together with actin filaments and microtubules, form the cytoskeleton, a complex and highly dynamic network that provide major mechanical support for the cell. Intermediate filaments thus influence mitochondrial morphology, subcellar localisation, and function through direct and indirect interactions. A failure to upregulate these proteins in APPtg mice could lead to disease through the negative regulation of mitochondrial morphology (Schwarz & Leube., 2016). The degradation of intracellular proteins is carried out by the proteasome in a process requiring large amounts of metabolic energy. The ubiquitin-proteasome system controls almost all basic cellular processes such as metabolism, cell death, signal transduction and protein quality

control (Tanaka., 2009). Failure to upregulate the proteasome complex would lead to the accumulation of damaged and structurally aberrant proteins within the neuron, contributing to neurodegeneration in the APPtg mouse. This result was supported by the STRING PPI network maps, which illuminated a strong reduction in the proteasome protein cluster in the APPtg mice, when compared to WT mice. These results show that preclinical APPtg mice present with key pathways of neurodegeneration during memory retrieval. AD causes mitochondrial dysfunction and high levels of oxidative stress, leading to the production of ROS, which in turn, reduces the mitochondrial energetic-transducing capacity, which, combined with the accumulation of dysfunctional proteins, eventually leads to neuronal apoptosis. Owing to these conditions, proteins enriched in the aforementioned pathways fail to become upregulated during memory retrieval, which culminates in symptoms of memory loss.

Conversely, when studying proteins that were inappropriately upregulated in the APPtg mice during memory retrieval (where they were not upregulated in WT mice during memory retrieval) were enriched in the IMM and proteasome and were enriched in processes including mitochondrial respiratory chain complex I assembly and response to superoxides. Superoxides play vital roles in cell signalling and survival by activating membrane-bound receptors and altering mitochondrial membrane permeability to promote apoptosis (Varela & Farhana., 2023). The peroxisome plays important roles metabolism, detoxification of ROS and signalling, however, the process leads to the generation of superoxides, which require upregulation of response to superoxide pathways to negate the effects on the cell. Peroxisomes also participate in the oxidation of fatty-acids, providing an additional major energy source for the cell (Cooper., 2000). It may be that during memory retrieval in APPtg mice, the failure of OXPHOS pathways leads to the upregulation of the peroxisome, in order to generate ATP via the oxidation of fatty acids. Previous enrichments in APPtg mice at the basal level also found an enrichment of fatty acid oxidation pathways, further supporting the notion that the insertion of the APPtg causes failure of traditional aerobic respiration, causing a reliance on the increased oxidation of fatty acids to support the energy requirements of the cell, particularly during memory retrieval.

Proteins that fail to become downregulated during memory retrieval in APPtg mice (when compared to WT mice during memory retrieval) were significantly enriched in learning, synaptic vesicle exocytosis, regulation of dendritic spine morphogenesis, synapse organisation, neurotransmitter assembly and the regulation of synaptic plasticity. They are significantly enriched within the glutamatergic synapse, cortical actin cytoskeleton, plasma membrane and dendritic spine. Processes included in learning, such as synaptic plasticity, neurotransmission, synapse organisation, and dendritic spine morphogenesis in glutamatergic neurons may be downregulated in the WT mice so

conserve energy expenditure during memory retrieval- itself, a very highly energy demanding process. These processes may be downregulated to ensure that energy is predominantly dedicated to retrieval and not directed to the formation of memory circuits during this time of increased demand to ensure that the requirements of receival can be fulfilled by the cell. A failure in the downregulation of these pathways would increase the metabolic requirement of the cell, which cannot be sustained in APPtg mice who already suffer a downregulation of OXPHOS pathways, leading to symptoms of memory loss.

Conversely, proteins that are downregulated in APPtg mice during memory retrieval when they aren't downregulated in WT mice during memory retrieval are significantly enriched in protein phosphorylation, synaptic transmission, cell surface receptor signalling pathway, carbohydrate metabolic process and microtubule sliding. They are significantly enriched within membranes and are significantly enriched in protein kinase activity, ATP binding, transmembrane signalling receptor activity and hydrolase activity. Aberrant protein phosphorylation recognised as a critical step in AD pathogenesis and progression. Changes in protein phosphorylation patterns are thought to promote the transition from presymptomatic to symptomatic states as a response to AB accumulation (Perluigi et al., 2016). Microtubule sliding is the movement of microtubules relative to other microtubules or to non-microtubule structures such as the actin cytoskeleton and is a significant contributor to the establishment, organisation, and preservation of axonal microtubule arrays (Guha & Patil., 2021). Downregulation of microtubule sliding would negatively impact the growth and upkeep of axons, leading to dysfunctions and reduced neuronal branching, contributing to neurodegeneration.

Heatmaps of average LFQ intensity for complexes of the ETC chain revealed a number of key differential expressions within the different experimental groups. Proteins associated with complexes I, IV and V were upregulated more highly in APPtg mice during memory retrieval than in WT mice during memory retrieval. However, complex II proteins were downregulated in WT and APPtg mice during memory retrieval. The upregulation of complex I, IV and V in APPtg mice during memory retrieval is likely due to the dysfunction of energy metabolism pathways and subsequent upregulation in attempt to compensate for the reduced capacity to meet energetic demand during retrieval. The downregulation of complex II, whilst unexpected, is matched in the WT mice during memory retrieval and so may be a natural phenomenon of memory retrieval. Complex II plays a dual role in respiration via the catalysis of succinate oxidation in the TCA cycle and transference of electrons from succinate to ubiquinone in the ETC (Bandara, Drake & Brown., 2021). It is possible that at the time of sacrifice, the ETC was upregulated with preference over the TCA cycle, which may have already generated sufficient levels of intermediates to sustain the ETC. In this instance, given

the dual role of complex II, its expression would be both upregulated (for its ETC participation) and downregulated (for its TCA cycle participation), producing an overall downregulation pattern.

Proteins upregulated in WT mice during memory retrieval (when compared to WT mice at the basal level) are significantly enriched in processes involved in aerobic respiration and cellular response to oxidative stress within the respiratory chain (complex I and V specifically- matches heatmaps) and the proteasome complex. They are also significantly enriched in functions including peroxidase activity, NADH dehydrogenase activity, antioxidant activity and chaperone binding. These functions are essential to sustain and maintain the energetic requirements of memory retrieval and are apparently lacking in APPtg mice, as previously discussed. Interestingly, upregulated proteins during memory retrieval were found to be significantly enriched in OXPHOS, non-alcoholic fatty liver disease, chemical carcinogens, AD, pathways of neurodegeneration, and prion disease pathways. This could, however, be due to increased activation of the unfolded protein response during memory retrieval, which is functionally associated with the neurodegeneration and prion protein pathways. The unfolded protein response ensures the protection from misfolded proteins that may inhibit memory retrieval and result in memory loss. Proteins downregulated in WT mice during memory retrieval (when compared to WT mice at the basal level) are significantly enriched in phosphatidylinositol metabolic process, synaptic vesicle docking, neurotransmitter secretion, postsynaptic actin cytoskeleton organisation within the mitochondrial matrix, glutamatergic synapse, postsynaptic actin cytoskeleton, presynaptic endosome, and presynaptic active zone. They are significantly enriched in the TCA cycle and metabolic pathways, which are upregulated to meet the increased energetic demands of retrieval. The processes highlighted by DAIVD in WT mice during memory retrieval including phosphatidylinositol metabolic process, synaptic vesicle docking, neurotransmitter secretion and postsynaptic actin cytoskeleton organisation are all functions of healthy neurotransmission, synaptic organisation, and regulation.

Proteins upregulated in APPtg mice during memory retrieval (when compared to APPtg mice at the basal level) were significantly enriched in processes involved in aerobic respiration and response to oxidative stress. This is the same as their WT counterparts, which, in combination with the pathways enriched within downregulated proteins and proteins that fail to become upregulated in APPtg mice, suggests the proteins properly upregulated in APPtg mice during memory retrievals are functional and not the cause of neurodegenerative symptoms. Proteins downregulated in APPtg mice during memory retrieval (when compared to APPtg mice at the basal level) were significantly enriched in cargo loading into clathrin coated vesicle and anterograde synaptic transport in the AP-3 adaptor complex, membrane coat, axon cytoplasm and early endosome.

5.5 Study Limitations

5.5.1 Limitations of Wet Laboratory Research

One limitation of the current study is the use of the mouse model to study AD, a uniquely human disease (Toledano et al., 2012). Whilst experimental models in the mouse are critical to gain a better understanding of disease pathogenesis, they do not encapsulate the whole disease. Most mouse models, including the J20 mouse, overexpress human APP genes linked to FAD, leading to the formation of amyloid plaques in brain regions which typically have a high amyloid burden in AD, namely the cortex and hippocampus (Yokoyama et al., 2022). AD, however, is defined by the presence of plaques and neurofibrillary tangles of hyperphosphorylated tau and thus, it is often overlooked that mouse models, such as the J20, only present with specific pathological features of AD and they do not themselves suffer the disease (Tai et al., 2021). A crucial limitation to mouse models of AD is the lack of widespread neurodegeneration and regional brain atrophy which occurs in human presentation. These major differences greatly impact the translational accuracy from animals to humans (Elder, Gama Sosa & De Gasperi., 2010). An ideal mouse model would contain both amyloid plaques and tau tangles, as well as display widespread neurodegeneration at a similar age as human development. Despite the translational limitations, the J20 mouse model is more ethical than human alternatives, and more practical than cultured cell lines, which cannot attempt to encapsulate complex human physiology and especially behaviour. The J20 model remains an extremely useful mechanism of studying the biochemical mechanisms underlying memory retrieval and AD.

A second major limitation of the current study is the sample preparation and availability. All samples used throughout the project were created prior to the project. Both the P2 and synaptosome samples had to be lysed with detergents. The use of lysis buffer and detergents has proved difficult, and in some instances, incompatible, with some of the methodologies used throughout the project, namely the enzymatic activity assays and the analysis of mitochondrial metabolites. Certain enzymatic activity assays provided instructions on how to best prepare samples for optimal use with assay reagents, often tissue homogenisation in assay buffer with no additional reagents, and metabolomics protocols often require fresh tissue homogenates, prepared to a specified concentration, without the use of detergents that can damage expensive equipment.

Death may also impact the viability of neuronal mitochondria. Moments after death, the brain is subject to asphyxia, depriving the tissues of oxygen, which is required as the final electron acceptor

in the ETC. Consequently, the generation of ATP stops, causing the destruction of cellular membrane and the beginning of organelle degradation (Barksdale et al., 2010). As a result of this, any deficits seen in mitochondrial dynamics or energy metabolism may be, in part, due to the effect of death on mitochondria, and findings in mitochondrial physiology are difficult to translate into patient care and clinical trials. On the other hand, studies by Nukala et al (2006) found that mitochondria that are cryopreserved soon after death exhibit preserved bioenergetics and are structurally intact.

Another limitation of the study, particularly the western blotting, is the lack of technical replicates performed. Whilst biological replicates from each experiential group were included (n=4), helping to evaluate the variability between samples and allowing for statistical analysis to be performed, the lack of technical replicates do not allow for the assessment of experimental variability and the reduction of experimental error. To further reduce the large variation between western blots, all biological replicates from the same experimental groups should be carried out on the same gel, in adjacent lanes, to avoid between-gel variation. Between-gel variation was much larger than between-lane variation, which may have contributed to the size of the standard error bars. To improve the reliability, accuracy and reproducibility of western blotting results, all western blotting should be repeated with technical replicates the further validate findings.

Furthermore, the study suffers from a lack of biological replicates spanning different age groups. The current study focusses exclusively on 'preclinical mice' at a very young age (7-9 months) but does not attempt to track changes in behaviour with age. Using mice spanning different age ranges (J20 mice behaviourally trained in identical conditions) would allow for the tracking of alterations in protein expression as disease pathology progresses. Moreover, it would allow the identification of specific pathways or biological processes which become significantly dysregulated in the transgenic mice with the progression of AD (when compared to WT aged-matched controls). It may also identify any specific pathways or biological processes which become significantly dysregulated in the WT mice, due to natural ageing. The ability to pinpoint an age at which dysfunction becomes widespread and significant would allow for the identification of an optimal age for therapeutic intervention, where treatment would have the best chance of alleviating or even beginning to prevent memory loss in AD.

Additionally, the amount of sample available for use in the project was limited and impacted the number of experiments, experimental repeats, and result quality. Enzymatic activity assay protocols suggested up to $100\mu g$ protein per well in each assay, instead of the $5\mu g$ used in these experiments. The limited sample volume may have significantly impacted the ability of the assay kit to measure any enzymatic activity present with the samples. Despite this, a number of western blots, enzymatic

activity assays and proteomic studies were successfully carried out, allowing for the elucidation of memory retrieval and disease mechanisms.

Other limitations that impacted this project were equipment constraints effecting progression of the metabolomics work, as optimisation was required for each new instrument available and full, supervised training was required before use.

5.5.2 Limitations of Computational Research

A persistent limitation of complex biological models, such as the functional dependency matrix, is the qualitative nature of results that are ultimately drawn, limiting the amount of information that could otherwise be gained from the study. Due to the STRING database listing all of the known PPIs combined with predicted functional and physical PPI data, these models are mechanistically imprecise and can only be used predictively, although they remain a good starting point for *in silico* knockout models to allow predictions for *in vivo* behaviours, following network perturbations. In the present study, functional dependency matrices did not include any positive- or negative-feedback loops, significantly impacting the model's predictive capacity for knockout alterations (feedback loops are the most likely nodes to induce changes across the model when removed). Especially when using the FDR corrected proteomics data, the dependency matrix models are very small (48 species, 188 reactions for the smallest model generated) and thus they cannot fully simulate AD or memory retrieval-associated pathways. These models therefore represent a starting point for future work.

When attempting to elucidate biological mechanisms underlying memory retrieval in health and disease, even the smallest of differential expressions may have significant biological impact but may be falsely removed by corrections for multiple comparisons. Such correction, in the present study, significantly limited the extent of analyses carried out on proteins within the FDR corrected group, however, disregarding the need to correct for multiple comparisons incurs high levels of false positive results.

5.6 Future Directions

5.6.1 Future Directions for Wet Laboratory Research

Studying the metabolic changes in WT mice during memory retrieval when compared to basal levels, and how these changes differ in the preclinical model of FAD can help identify metabolites involved

in healthy memory retrieval but also how these usual metabolic changes are perturbed in FAD. Using fresh tissue homogenates from behaviourally trained WT and APPtg mice, prepared without the use of lysates and strong detergents would allow for analysis of the metabolome during memory retrieval in healthy and diseased states.

Western blotting should be employed to offer some validation of proteomic findings. Proteins identified with the greatest differential expression, along with those proteins with the largest number of incoming and outgoing connections should be targeted for western blot analysis to confirm the elevated expression in specific behavioural groups and presence of hub proteins. If the mouse model and behavioural training could be replicated in new mice and fresh tissue homogenates created, further western blotting could be carried out using the antibodies used throughout this thesis, using n=4 for each genotype and behavioural condition, allowing for two-way ANOVA to be carried out on each blot, assessing the change in protein levels according to both variables. Fresh homogenate tissue could then be employed for enzymatic activity assays, targeting the remaining 10 assay kits that were not compatible with available sample volume and preparation. Assessing the activity of enzymes involved in the various stages of aerobic respiration, insight into the disease process can be gained and further assessed, testing the enzymatic response of targeted therapies.

Further investigation of the proteins identified in table 4.28 as failing to become upregulated in APPtg mice during memory retrieval would provide a comprehensive insight into the underlying mechanisms, functional implications, and consequences of complex I dysregulation in APPtg mice. An oxygen consumption assay and Seahorse Extracellular Flux Analysis could be carried out to measure oxygen consumption and ATP production, assessing the impact of complex I dysregulation on energy metabolism. An additional investigation into the levels of oxidative stress and ROS production could be carried out by measuring the levels of ROS and oxidative stress markers using fluorescent probes and oxidative stress assays. This would help to evaluate the impact of complex I dysregulation on oxidative stress, mitochondrial ROS production and cellular redox homeostasis. If cohorts of mice from different age groups could be trained and used in these experiments, it may be possible to determine the age at which dysregulation of complex I ensues, helping to pinpoint the ideal window for therapeutic intervention.

Further validation of key proteomics findings should be carried out via western blotting to analyse expression levels within the experimental group. Findings such as the significant enrichment of mitochondrial electron transport: cytochrome c to oxygen, oxidative phosphorylation, and pathways of neurodegeneration in APPtg mice at the basal level (when compared to WT basal mice) should be

validated for all proteins identified by DAVID as belonging to the annotation category and significantly upregulated within the group. Identifying which proteins within each pathway are highly upregulated may lead to further understanding of which aberrant protein expressions contribute to the pathogenesis of AD, even at the preclinical level.

Since glucose hypometabolism has been described in AD, even at the preclinical level, (Belgopoulos et al,.2016), it would be sensible to investigate sodium-independent glucose transporters (GLUT proteins) to determine the levels of glucose transport into neurons and related expression of glucose transporters in neurons and whether disease mechanisms may begin with dysfunctional transport of glucose into neurons.

5.6.1.1 Metabolomics

Due to time constraints, metabolite precipitation was not carried out on the samples, and they were not submitted to the instrument. Due to the sample preparation containing SDS detergent and no reliable method of completely removing it or testing for its presence after attempted removal, the decision was made to cease the experiment. Detergent contamination of a mass spectrometer is very costly (ruined columns/tubing) and would be extremely time consuming to completely ensure its removal.

To continue with the analysis of mitochondrial metabolites, a method for the precipitation of metabolites from complex biological samples would need to be developed to ensure the complete removal of detergents and extraction of metabolites of interest. Once metabolites have been extracted from the homogenates and detergent removed, samples will be fed into the instrument using the auto sampling tool. After each sample, a blank solution of mobile phase will be passed through the instrument to prevent contamination. The levels of endogenous metabolites within each sample can be determined via the peak area ratio between the analyte and the specific standard at a known concentration. Concentration of endogenous metabolites can then be determined by dividing the figure by the volume of the analyte. Any high background noise on the resulting spectra can be subtracted using Waters software. If metabolite levels do not reach the lower detection limit, samples can be spiked using a cocktail of standards (each standard made to 1nM, mixed thoroughly and 4µl extracted for use), whereby the peak area of the analyte is compared against the peak area of the standard cocktail. Once the data has been accumulated, multiple processing steps may be performed to ensure the data is easily interpretable and comparable across runs. Examples of processing include: outlier screening, for the elimination of

anomalous peaks; filtering, which removes noise and any possible contamination from the data; and peak matching and retention time alignment, which enable metabolomic data to be compared across samples and can be carried out using Waters' MassLynx or MarkerLynx software (Zhou et al., 2012). After data pre-processing, statistical analyses including t-tests, fold-change analyses, and ANOVA may be carried out to assess the significance of each peak and any significantly altered metabolites within the experimental groups.

5.6.2 Future Directions for Proteomics Research

For the purpose of this project, proteomics analysis focussed on four experimental groups and only directly compared either different behavioural groups within the same genotype or the same behavioural group across both genotypes. A fifth comparative group, group E- wild-type memory retrieval v. APPtg basal, was not considered within the scope of this project. It would be interesting to carry out analysis on this group in the same manner as the four groups analysed in this thesis to identify genotype-specific differences in memory function. It may become apparent that pathways involved in memory retrieval or disease processes are already significantly upregulated in the APPtg mice at the basal level, giving the illusion that these pathways are not upregulated when compared to the APPtg memory retrieval group, which could have potentially impacted the interpretation of results.

Initial MS data not only provided LFQ measures of peptides within biological samples but also contains information on the protein oxidation state, providing information on posttranslational modifications which may be relevant to physiological processes, signalling mechanisms, and disease pathology. In depth analysis of oxidation data should be performed, identifying oxidised proteins, determining the extent and location of oxidative modifications within each of the experimental conditions and placing oxidatively modified proteins in specific molecular pathways to provide insight into disease pathways.

The majority of functional dependency matrices generated within this project were very small in size and therefore, model expansion and re-evaluation should be considered. This can be carried out by mining STRING for any updated protein interaction information and including all predicted interactions in the model, regardless of confidence level (not just highest confidence interactions).

5.7 Conclusions and Summary of Key Findings

Upon review of the key findings presented in this thesis, it seems likely that the insertion of the APP transgene causes a cascade of multiple pathways of neurodegeneration, and a significant failure to properly regulate protein expression at a very early age, comparable to preclinical AD. I propose that the overexpression of Aß blocks or partially blocks VDAC1 channels, causing a compensatory upregulation of VDAC1 channels, contributing to increased levels of neuronal apoptosis. Upregulations of key proteins involved in mitochondrial fission and fusion (Mfn1, Drp1, Mfn2 and Mff) causes an imbalance of mitochondrial dynamics, which in turn, subjects neurons to increased levels of oxidative stress. Oxidative stress causes aberrant morphological changes in protein complexes of the ETC, via mechanisms of mitochondrial cristae remodelling. Failures to upregulate intermediate filaments, actin filaments and microtubules, reduces the mechanical support of the mitochondrial cytoskeleton, causing further mitochondrial dysfunction and distortion of the IMM. Failure to upregulate the proteasome protein complex to clear subsequent structurally abnormal proteins leads to the accumulation of damaged and dysfunctional proteins within the cell, further blocking protein channels within the mitochondria and increasing mitochondrial dysfunction. Additionally, the dysfunction of OXPHOS pathways in APPtg mice consequently leads to the upregulation of the peroxisome, which attempts to meet the energetic requirements of the cell via the oxidation of fatty acids, generating superoxide by-products which amplifies oxidative stress mechanisms. Failure to downregulate biological processes such as learning, synaptic plasticity and synapse organisation in glutamatergic synapses causes excessive energy expenditure, reducing levels of ATP available for memory retrieval. In combination, these molecular and cellular mechanisms exacerbate mitochondrial dysfunction, leading to a failure to meet the energetic demands of memory retrieval and accumulation of ROS, triggering neurodegeneration, and culminating in the progressive memory loss seen in early-stage AD.

To summarise, western blot analysis revealed altered mitochondrial dynamics in APPtg mice, comprising the increased expression of mitochondrial fission and fusion factors. Some subunits of the ETC were also upregulated in APPtg mice (during basal levels and during memory retrieval; SDHA, ATP5A, cytochrome C, Complex II and complex V), alongside VDAC1 and the synaptic proteins alpha synuclein and PSD95. Enzymatic activity assay revealed no significant differences in the activity of MHD2 or 6-PFK between WT and APPtg mice, within either of the behavioural groups. Western blot analysis revealed no significant differences in the expression of MDH2 or 6-PFK between WT and APPtg mice, within either of the behavioural groups. Proteomics results revealed that after the application of FDR correction, there was a complete failure to differentially regulate protein expression in APPtg mice during memory retrieval (when compared to basal levels). Proteomics results also revealed several biological processes and pathways significantly enriched in WT mice

during memory retrieval, including vesicle-mediated transport, cellular oxidant detoxification, ubiquitin protein ligase binding and endocytosis. In comparison, APPtg mice significantly upregulated very different biological processes and pathways during memory retrieval, including oxidative phosphorylation, Alzheimer disease and pathways of neurodegeneration. Several proteins failed to become upregulated in APPtg mice at the point of memory retrieval (when compared to WT mice at the point of memory retrieval), which were significantly enriched in processes such as cellular response to oxidative stress, mitochondrial ATP synthesis coupled proton transport, aerobic respiration, and negative regulation of neural apoptotic processes. Additionally, several proteins were found to be upregulated in APPtg mice during memory retrieval, which were not upregulated in WT mice during memory retrieval. These proteins were involved in mitochondrial respiratory chain complex I assembly and response to superoxides. The aims of this project have been met by quantitatively analysing the levels of certain mitochondrial proteins via western blotting, identifying biochemical and cellular pathways significantly enriched during memory retrieval (in WT and APPtg mice) and by measuring the activity of key enzymes in the mouse brain, in the context of memory retrieval. By comparing the molecular and cellular mechanism significantly enriched within WT and APPtg mice during memory retrieval, we can begin to build a picture of the processes underlying memory retrieval in health and identify the key areas of deviation in the mouse model of AD. Understanding the interrelationships between the different AD mechanisms may begin to illuminate common areas for future therapeutic intervention, with the hopes that targeting aberrant pathways at a preclinical stage can provide a means to prevent or delay the memory loss symptoms seen in AD.

REFERENCES

Abu-Hamad, S., Sivan, S., Shoshan-Barmatz, V. (2006) The expression level of the voltage-dependent anion channel controls life and death of the cell. *PNAS*, 103 (15) 5787-5792.

Acin-Perez, R., Benador, IY., Petcherski, A., Veliova, M., Benavides, GA., Lagarrigue, S., Caudal, A., Vergnes, L., Murphy, AN., Karamanlidis, G., Tian, R., Reue, K., Wanagat, J., Sacks, H., Amati, F., Darley-Usmar, VM., Liesa, M., Divakaruni, AS., Stiles, L., Shirihai, OS. (2020) A novel approach to measure mitochondrial respiration in frozen biological samples. *EMBO J*, 1;39(13).

Adav, S.S., Park, J.E., Sze, S.K. (2019) Quantitative profiling brain proteomes revealed mitochondrial dysfunction in Alzheimer's disease. *Mol Brain* 12, 8.

Ahmad, F., & Liu, P. (2020). Synaptosome as a tool in Alzheimer's disease research. *Brain research*, 1746, 147009.

Al-Khallaf H. (2017). Isocitrate dehydrogenases in physiology and cancer: biochemical and molecular insight. *Cell & bioscience*, 7, 37.

Altaf-Ul-Amin, M., Afendi, F. M., Kiboi, S. K., & Kanaya, S. (2014). Systems biology in the context of big data and networks. *BioMed research international*, 428570.

Althouse, AD. (2016) Adjust for Multiple Comparisons? It's Not That Simple. Ann Thorac Surg, 101(5):1644-5.

Alvarez P, Squire LR. (1994) Memory consolidation and the medial temporal lobe: a simple network model. *Proc Natl Acad Sci*, 91:7041–7045.

Alzforum (2013) Reseach Models: PDAPP (line109). https://www.alzforum.org/research-models/pdappline109.

Alzforum (2017) Research Models: J20 (PDGF-APPSw,Ind). https://www.alzforum.org/research-models/j20-pdgf-appswind.

Alzheimer's Disease International. (2022) Dementia statistics. https://www.alzint.org/about/dementia-facts-figures/dementia-statistics/.

Alzheimer's Society. (2019) What are the costs of dementia care in the UK? Available at: https://www.alzheimers.org.uk/about-us/policy-and-influencing/dementia-scale-impact-numbers.

Anand, K. S., & Dhikav, V. (2012). Hippocampus in health and disease: An overview. *Annals of Indian Academy of Neurology*, 15(4), 239–246.

Anjum, A., Jaggi, S., Varghese, E., Lall, S., Bhowmik, A., & Rai, A. (2016). Identification of Differentially Expressed Genes in RNA-seq Data of Arabidopsis thaliana: A Compound Distribution Approach. *Journal of computational biology: a journal of computational molecular cell biology*, 23(4), 239–247.

Araújo, W.L., Nunes-Nesi, A., Nikoloski, Z., Sweetlove, L.J., Fernie, A.R. (2012), Metabolic control and regulation of the tricarboxylic acid cycle in photosynthetic and heterotrophic plant tissues. *Plant, Cell & Environment*, 35: 1-21.

Arnold, P. K., & Finley, L. W. S. (2023). Regulation and function of the mammalian tricarboxylic acid cycle. *The Journal of biological chemistry*, 299(2), 102838.

Aslam, B., Basit, M., Nisar, M.A., Khurshid, M., Rasool, M.H. (2017) Proteomics: Technologies and Their Applications, *Journal of Chromatographic Science*, 55(2), 182–196.

Bai, F., Witzmann, F.A. (2007) Synaptosome proteomics. Subcell Biochem 43,77-98.

Balducci, C., Forloni, G. (2011) APP Transgenic Mice: Their Use and Limitations. Neuromol Med 13, 117-137.

Bandara, A.B., Drake, J.C. & Brown, D.A. (2021) Complex II subunit SDHD is critical for cell growth and metabolism, which can be partially restored with a synthetic ubiquinone analog. *BMC Mol and Cell Biol*, 22, 35.

Banerjee, A., Chitnis, U. B., Jadhav, S. L., Bhawalkar, J. S., & Chaudhury, S. (2009). Hypothesis testing, type I and type II errors. *Industrial psychiatry journal*, 18(2), 127–131.

Barksdale, KA., Perez-Costas, E., Gandy JC., Melendez-Ferro, M., Roberts, RC., Bijur, GN. (2010) Mitochondrial viability in mouse and human postmortem brain. *FASEB J*, 24(9):3590-9.

Bayrhuber, M., Meins, T., Habeck, M., Becker, S., Giller, K., Villinger, S., Vonrhein, C., Griesinger, C., Zweckstetter, M., Zeth, K. (2008). Structure of the human voltage-dependent anion channel. *Proceedings of the National Academy of Sciences*, 105(40), 15370-15375.

Bera, A., Lavanya, G., Reshmi, R., Dev, K., & Kumar, R. (2022). Mechanistic and therapeutic role of Drp1 in the pathogenesis of Alzheimer's disease. *European Journal of Neuroscience*, 56(9), 5516–5531.

Bhatia, S., Rawal, R., Sharma, P., Singh, T., Singh, M., & Singh, V. (2022). Mitochondrial Dysfunction in Alzheimer's Disease: Opportunities for Drug Development. *Current neuropharmacology*, 20(4), 675–692.

Bigl M., Bruckner M. K., Arendt T., Bigl V., Eschrich K. (1999). Activities of key glycolytic enzymes in the brains of patients with Alzheimer's disease. *J. Neural Transm*, 106 499–511.

Bisaz, R., Travaglia, A., & Alberini, C. M. (2014). The neurobiological bases of memory formation: from physiological conditions to psychopathology. *Psychopathology*, 47(6), 347–356.

Bliss, T.V., Lomo, T. (1973). Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. *J Physiol.*;232(2):331-56.

Bortolin, RC., Gasparotto, J., Vargas, AR., da Silva Morrone, M., Kunzler, A., Henkin, BS., Chaves, PR., Roncato, S., Gelain, DP., Moreira, JCF. (2017) Effects of Freeze-Thaw and Storage on Enzymatic Activities, Protein Oxidative Damage, and Immunocontent of the Blood, Liver, and Brain of Rats. *Biopreserv Biobank*, 15(3):182-190.

Bosch, M., Castro, J., Saneyoshi, T., Matsuno, H., Sur, M., & Hayashi, Y. (2014). Structural and molecular remodeling of dendritic spine substructures during long-term potentiation. *Neuron*, 82(2), 444-459.

Bowen D. M., White P., Spillane J. A., Goodhardt M. J., Curzon G., Iwangoff P., Meier-Ruge, W., Davison, AN. (1979). Accelerated ageing or selective neuronal loss as an important cause of dementia? *Lancet*, 1 11–14.

Braak, H., Del Tredici, K. (2014). Are cases with tau pathology occurring in the absence of Abeta deposits part of the AD-related pathological process? *Acta Neuropathol*, 128, 767–772.

Braithwaite, S.P., Stock ,J.B., Lombroso, P.J., Nairn, A.C. (2012) Protein phosphatases and Alzheimer's disease. *Prog Mol Biol Transl Sci*, 106:343-79.

Briglia, J., Servajean, P., Michalland, A.-H., Brunel, L., & Brouillet, D. (2018). Modeling an enactivist multiple-trace memory. ATHENA: A fractal model of human memory. *Journal of Mathematical Psychology*, 82, 97–110.

Brüser, A., Kirchberger, J., Kloos, M., Sträter, N., Schöneberg T. (2012) Functional Linkage of Adenine Nucleotide Binding Sites in Mammalian Muscle 6-Phosphofructokinase. *Enzymology*, 287 (21), pp17546-17553.

Burré, Jacqueline. (2015) The Synaptic Function of α-Synuclein. IOS Press, 699 – 713.

Camara, A., Zhou, Y., Wen, P., Tajkhorshid, E., Kwok, W. (2017) Mitochondrial VDAC1: A Key Gatekeeper as Potential Therapeutic Target. *Frontiers in Physiology*, 8.

Carew, T.J., Walters, E.T., Kandel, E.R (1981) Classical conditioning in a simple withdrawal reflex in Aplysia californica. *Journal of Neuroscience*, 1(12). 1426-1437.

Cha, M. Y., Cho, H. J., Kim, C., Jung, Y. O., Kang, M. J., Murray, M. E., Hong, H. S., Choi, Y. J., Choi, H., Kim, D. K., Choi, H., Kim, J., Dickson, D. W., Song, H. K., Cho, J. W., Yi, E. C., Kim, J., Jin, S. M., & Mook-Jung, I. (2015). Mitochondrial ATP synthase activity is impaired by suppressed O-GlcNAcylation in Alzheimer's disease. *Human molecular genetics*, 24(22), 6492–6504.

Chandel N. S. (2021). Glycolysis. Cold Spring Harbor perspectives in biology, 13(5), a040535.

Chandramouli K, Qian PY (2009) Proteomics: challenges, techniques and possibilities to overcome biological sample complexity. *Hum Genomics Proteomics*, 239204.

Chandrasekaran, K., Giordanao, T., Brady, D.R., Stoll, J., Martin, L.J., Rapoport, S.I. (1994) Impairment in mitochondrial cytochrome oxidase gene expression in Alzheimer disease. *Brain Res Mol Brain Res*, 24(1-4) 336-340.

Chaudhry R, Varacallo M. (2023) Biochemistry, Glycolysis. *In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing*; 2-. https://www.ncbi.nlm.nih.gov/books/NBK482303/

Chen, H., & Chan, D. C. (2010). Physiological functions of mitochondrial fusion. *Annals of the New York Academy of Sciences*, 1201, 21–25.

Chen, P., Shen, Z., Wang, Q., Zhang, B., Zhuang, Z., Lin, J., Shen, Y., Chen, Y., Dai, Z. and Wu, R. (2021). Reduced cerebral glucose uptake in an Alzheimer's rat model with glucose-weighted chemical exchange saturation transfer imaging. *Frontiers in Aging Neuroscience*, 13.

Chen, S. Y., Feng, Z., & Yi, X. (2017). A general introduction to adjustment for multiple comparisons. *Journal of thoracic disease*, 9(6), 1725–1729.

Chételat G., La Joie R., Villain N., Perrotin A., De La Sayette V., Eustache F., Vandenberghe, R. (2013). Amyloid imaging in cognitively normal individuals, at-risk populations and preclinical Alzheimer's disease. *Neuroimage Clin*, 2, 356–365.

Coley, A.A., Gao, W.J. (2019) PSD95: A synaptic protein implicated in schizophrenia or autism? *Prog Neuropsychopharmacol Biol Psychiatry*, 82:187-194.

Conroy, G. (2023) This is the largest map of the human brain ever made. Nature, 622, 679-680. d

Cooper GM.(2000) The Cell: A Molecular Approach. 2nd edition. Sunderland (MA): Sinauer Associates. Peroxisomes. Available from: https://www.ncbi.nlm.nih.gov/books/NBK9930/

Cowan N. (2008). What are the differences between long-term, short-term, and working memory?. *Progress in brain research*, 169, 323–338.

Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. *Behavioral and Brain Sciences*, 24(1), pp. 87-114.

Cui, M., Cheng, C. & Zhang, L. (2022) High-throughput proteomics: a methodological mini-review. *Lab Invest* 102, 1170–1181

Cunha, SR., Mohler, PJ. (2009) Ankyrin protein networks in membrane formation and stabilization. *J Cell Mol Med*, 13(11-12):4364-76.

Dasika, SK., Vinnakota, KC., Beard, DA. (2015) Determination of the catalytic mechanism for mitochondrial malate dehydrogenase. *Biophys J*, 108(2):408-19.

Davis D. G., Schmitt F. A., Wekstein D. R., Markesbery W. R. (1999). Alzheimer neuropathologic alterations in aged cognitively normal subjects. *J. Neuropathol. Exp. Neurol*, 58, 376–388.

Derkach, V., Barria, A., Soderling, T.R. (1999) $Ca^{2+/}$ calmodulin-kinase II enhances channel conductance of α -amino-3-hydroxy-5-methyl-4-isoxazolepropionate type glutamate receptors. *PNAS*. 96 (6) 3269-3274.

Dodart, J. C., Mathis, C., Bales, K. R., Paul, S. M. & Ungerer, A. (1999) Early regional cerebral glucose hypometabolism in transgenic mice overexpressing the V717F beta-amyloid precursor protein. *Neurosci. Lett.* 277, 49–52.

Doody R. S., Thomas R. G., Farlow M., Iwatsubo T., Vellas B., Joffe S., Kieburtz, K., Raman, R., Sun, X., Aisen, P.S., Siemers, E., Liu-Seifert, H., Mohs, R. (2014). Phase 3 trials of solanezumab for mild-to-moderate Alzheimer's disease. *N. Engl. J. Med.* 370, 311–321.

Drummond, E., & Wisniewski, T. (2017). Alzheimer's disease: experimental models and reality. *Acta neuropathologica*, 133(2), 155–175.

Du, X., Wang, X. & Geng, M. (2018) Alzheimer's disease hypothesis and related therapies. *Transl Neurodegener* 7, 2.

Edison P., Archer H. A., Hinz R., Hammers A., Pavese N., Tai Y. F., Hotton, G., Cutler, D., Fox, N., Kennedy, M., Rossor, M., Brooks, D.J (2007). Amyloid, hypometabolism, and cognition in Alzheimer disease: An [11C]PIB and [18F]FDG PET study. *Neurology* 68, 501–508.

Elder, G. A., Gama Sosa, M. A., & De Gasperi, R. (2010). Transgenic mouse models of Alzheimer's disease. *The Mount Sinai journal of medicine, New York*, 77(1), 69–81.

Eleftheriadis, T., Pissas, G., Liakopoulos, V., & Stefanidis, I. (2016). Cytochrome c as a Potentially Clinical Useful Marker of Mitochondrial and Cellular Damage. *Frontiers in Immunology*, 7, 279.

Emiliani, V., Entcheva, E., Hedrich, R., Hegemann, P., Konrad, K.R., Luscher, C., Mahn, M., Pan, Z.H., Sims, R.R., Vierock, J., Yizhar, O. (2022) Optogenetics for light control of biological systems. *Nat Rev Methods Primers*, 2, 55.

Emmady, P.D., Tadi, P., (2021) Dementia. *In: StatPearls [Internet]. Treasure Island* (FL): StatPearls Publishing; https://www.ncbi.nlm.nih.gov/books/NBK557444/

Engert, F., Bonhoeffer, T. (1999) Dendritic spine changes associated with hippocampal long-term synaptic plasticity. *Nature* 399, 66–70.

Escobar-Henriques, M., Joaquim, M. (2019) Mitofusins: Disease Gatekeepers and Hubs in Mitochondrial Quality Control by E3 Ligases. *Font. Physiol*, 10.

Fagan A. M., Mintun M. A., Shah A. R., Aldea P., Roe C. M., Mach R. H., Marcus, D., Morris, J. C., Holtzman, D. (2009). Cerebrospinal fluid tau and ptau (181) increase with cortical amyloid deposition in cognitively normal individuals: implications for future clinical trials of Alzheimer's disease. EMBO *Mol. Med*, 1, 371–380.

Farshbaf, M.J., Kiana-Esfahani, A. (2018) Succinate dehydrogenase: Prospect for neurodegenerative diseases. *Mitochondrion*, 42(1).

Fernandes, P.M (2018) Phosphofructokinase isoforms as metabolic targets for treating neurological diseases. Era. Available at: https://era.ed.ac.uk/handle/1842/31270.

Fernandes, PM., Kinkead, J., McNae, I., Michels, P., Walkinshaw, M.(2020) Biochemical and transcript level differences between the three human phosphofructokinases show optimisation of each isoform for specific metabolic niches. *Biochem J* 21; 477 (22): 4425–4441.

Figueroa P., Leon G., Elorza A., Holuigue L., Jordana X. (2001) Three different genes encode the iron-sulfur subunit of succinate dehydrogenase in Arabidopsis thaliana. *Plant Molecular Biology* 46, 241–250.

Fogwe, L.A., Reddy, V., Mesfin, F.B. (2022) Neuroanatomy, Hippocampus. *In: StatPearls [Internet]. Treasure Island* (FL): StatPearls Publishing; https://www.ncbi.nlm.nih.gov/books/NBK482171/

Foyer C.H., Noctor G. & Hodges M. (2011) Respiration and nitrogen assimilation: targeting mitochondria-associated metabolism as a means to enhance nitrogen use efficiency. *Journal of Experimental Botany* 62, 1467–1482.

Frank, S., Gaume, B., Bergmann-Leitner, E., Leitner, W., Robert, E., Catez, F., Smith, C., Youle, R. (2001) The Role of Dynamin-Related Protein 1, a Mediator of Mitochondrial Fission, in Apoptosis. *Developmental Cell*, 1(4). 515-525.

Frankland, P. W., & Bontempi, B. (2005). The organization of recent and remote memories. *Nature reviews*. *Neuroscience*, *6*(2), 119–130.

Friedman, J. R., & Nunnari, J. (2014). Mitochondrial form and function. *Nature*, 505(7483), 335–343.

Fujii, S., Saito, K., Miyakawa, H., Ito, K. I., & Kato, H. (1991). Reversal of long-term potentiation (depotentiation) induced by tetanus stimulation of the input to CA1 neurons of guinea pig hippocampal slices. *Brain research*, 555(1), 112-122.

Furcila, D., Domínguez-Álvaro, M., DeFelipe, J., Alonso-Nanclares, L. (2018) Subregional Density of Neurons, Neurofibrillary Tangles and Amyloid Plaques in the Hippocampus of Patients With Alzheimer's Disease. *Frontiers in Neuroanatomy*, 13.

Gao, F., Reynolds, M., Passalacqua, K., Sexton, J.Z., Abuaita, B., O'Riordan, M.X.D. (2021) The Mitochondrial Fission Regulator DRP1 Controls Post-Transcription Regulation of TNF- α. *Front. Cell. Infect. Microbiol*, 10.

Garrido, C., Galluzzi, L., Brunet, M., Puig, P.E., Didelot, C., Kroemer, G. (2006). Mechanisms of cytochrome *c* release from mitochondria. *Cell Death Differ* 13, 1423–1433.

GeneCards (2017) DCTN2 Gene-Dynactin Subunit 2. https://www.genecards.org/cgibin/carddisp.pl?gene=DCTN2#summaries

GeneCards (2023) ALDOC Gene-Aldolase, Fructose-Bisphosphate C. https://www.genecards.org/cgibin/carddisp.pl?gene=ALDOC#summaries.

GeneCards (2023) CYCS Gene. https://www.genecards.org/cgi-bin/carddisp.pl?gene=CYCS

GeneCards (2023) FXYD6 Gene.https://www.genecards.org/cgi-bin/carddisp.pl?gene=FXYD6#summaries

GeneCards (2023) HSP90AA1 Gene. https://www.genecards.org/cgi-bin/carddisp.pl?gene=HSP90AA1#summaries

GenomeNet (2011) KEGG Pathway Maps. Available at: https://www.genome.jp/kegg/kegg3a.html.

Ghosh, R., Gilda, J. E., & Gomes, A. V. (2014). The necessity of and strategies for improving confidence in the accuracy of western blots. *Expert review of proteomics*, 11(5), 549–560.

Giacobini E., Gold G. (2013). Alzheimer disease therapy-moving from amyloid-[beta] to tau. *Nat. Rev. Neurol.* 9, 677–686.

Goldberg, J., Currais, A., Prior, M., Fischer, W., Chiruta, C., Ratliff, E., Daugherty, D., Dargusch, R., Finley, K., Esparza-Moltó, P. B., Cuezva, J. M., Maher, P., Petrascheck, M., & Schubert, D. (2018). The mitochondrial ATP synthase is a shared drug target for aging and dementia. *Aging cell*, 17(2), e12715.

Goto, A. (2022) Synaptic plasticity during systems memory consolidation. Neuroscience Research, 183. 1-6.

Grønborg, M., Kristiansen, T. Z., Iwahori, A., Chang, R., Reddy, R., Sato, N., Molina, H., Jensen, O.N., Hruban, R.H., Goggins, M.G., Maitra, A., Pandey, A. (2006). Biomarker Discovery from Pancreatic Cancer Secretome Using a Differential Proteomic Approach* S. *Molecular & Cellular Proteomics*, 5(1), 157-171.

Guha, S., Patil, A., Muralidharan, H., & Baas, P. W. (2021). Mini-review: Microtubule sliding in neurons. *Neuroscience letters*, 753, 135867.

Hardy, J., Allsop, D. (1991) Amyloid deposition as the central event in the aetiology of Alzheimer's disease. *Trends Pharmacol. Sci*, 12, 383–388.

Hayashi, Y., Shi, S.H., Esteban, J.A., Piccini, A., Poncer, J.C., Malinow, R. (2000) Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. *Science*, 287, 2262-2267.

Herculano-Houzel S. (2009) The human brain in numbers: a linearly scaled-up primate brain. *Front Hum Neurosci*, 9;3:31.

Hintzman, D. L., & Block, R. A. (1971). Repetition and memory: Evidence for a multiple-trace hypothesis. *Journal of Experimental Psychology*, 88(3), 297–306.

Hong, I., Kim, J., Kim, J., Lee, S., Ko, H.G., Nader, K., K, B.K., Tsien, R.W., Choi, S. (2013) AMPA receptor exchange underlies transient memory destabilisation on retrieval. *PNAS*, 110 (20) 3218-8223.

Hou, J. (2017) Chapter 7- Protein Function Prediction from Functional Connectivity. *New Approaches of Protein Function Prediction from Functional Connectivity*, 97-105.

Hsieh, JY., Shih, WT., Kuo, YH., Lui, GW., Hung, HC. (2019) Functional Roles of Metabolic Intermediates in Regulating the Human Mitochondrial NAD(P)+-Dependent Malic Enzyme. *Sci Rep 9*, 9081.

Hu C, Huang Y, Li, L. (2017) Drp1-Dependent Mitochondrial Fission Plays Critical Roles in Physiological and Pathological Progresses in Mammals. *Int J Mol Sci*, ;18(1):144.

Huang, J., van Zijl, P.C., Han, X., Dong, C.M., Cheng, G.W., Tse, K.H., Knutsson, L., Chen, L., Lai, J.H., Wu, E.X. and Xu, J., (2020). Altered d-glucose in brain parenchyma and cerebrospinal fluid of early Alzheimer's disease detected by dynamic glucose-enhanced MRI. *Science advances*, 6(20)

Hue, L., Rider, M. (1987) Role of fructose 2,6-bisphosphate in the control of glycolysis in mammalian tissues. *Biochem J*, 245, pp 313-324.

Hung, H., Kuo, M., Chang, G., Liu, G. (2005) Characterization of the functional role of allosteric site residue Asp102 in the regulatory mechanism of human mitochondrial NAD(P)+-dependent malate dehydrogenase (malic enzyme). *Biochem J*, 392 (1): 39–45.

Ishihara, N., Eura, Y., Mihara, K. (2004) Mitofusin 1 and 2 play distinct roles in mitochondrial fusion reactions via GTPase activity. *J Cell Sci*, 117 (26): 6535–6546.

Jarome, T. J., & Helmstetter, F. J. (2013). The ubiquitin-proteasome system as a critical regulator of synaptic plasticity and long-term memory formation. *Neurobiology of learning and memory*, 105, 107–116.

Jeong, J., Pandey, S., Li, Y., Roche, K. (2019) PSD-95 binding dynamically regulates NLGN1 trafficking and function. *PNAS*, 116 (24). 12035-12044.

Ježek, J., Cooper, K. F., & Strich, R. (2018). Reactive Oxygen Species and Mitochondrial Dynamics: The Yin and Yang of Mitochondrial Dysfunction and Cancer Progression. *Antioxidants* (Basel, Switzerland), 7(1), 13.

Johri, A., & Beal, M. F. (2012). Mitochondrial dysfunction in neurodegenerative diseases. *The Journal of pharmacology and experimental therapeutics*, 342(3), 619–630.

Jonckheere, A. I., Smeitink, J. A., & Rodenburg, R. J. (2012). Mitochondrial ATP synthase: architecture, function and pathology. *Journal of inherited metabolic disease*, 35(2), 211–225.

Jones, M. D., & Naylor, K. (2022). Simple to Complex: The Role of Actin and Microtubules in Mitochondrial Dynamics in Amoeba, Yeast, and Mammalian Cells. *International journal of molecular sciences*, 23(16), 9402.

Kametani, F., Hasegawa, M., (2018) Reconsideration of Amyloid Hypothesis and Tau Hypothesis in Alzheimer's Disease. *Front Neurosci*, 12:25.

Karimi Abadchi, J., Nazari-Ahangarkolaee, M., Gattas, S., Bermudez-Contreras, E., Luczak, A., McNaughton, B. L., & Mohajerani, M. H. (2020). Spatiotemporal patterns of neocortical activity around hippocampal sharpwave ripples. *eLife*, *9*, e51972.

Kelleher, R J. (2017) Presenilin-1 mutations and Alzheimer's disease. *Proceedings of the National Academy of Sciences*, 114(4) pp629-631.

Kennedy, M. B. (2013) Synaptic Signaling in Learning and Memory. *Cold Spring Harb Perspect Biol*, 30;8(2):a016824.

Kim J., Chakrabarty P., Hanna A., March A., Dickson D. W., Borchelt D. R., Golde, T., Janus, C. (2013). Normal cognition in transgenic BRI2-Abeta mice. *Mol. Neurodegener*, 8, 15.

Kim J., Onstead L., Randle S., Price R., Smithson L., Zwizinski C., Dickson, D.W., Golde, T., Klamt S, von Kamp A. (2011) An application programming interface for CellNetAnalyzer. *Biosystems*, ;105(2):162-8.

Klamt, S., Saez-Rodriguez, J. & Gilles, E.D. (2007). Structural and functional analysis of cellular networks with CellNetAnalyzer. *BMC Syst Biol* 1, 2.

Knott, A. B., & Bossy-Wetzel, E. (2008). Impairing the mitochondrial fission and fusion balance: a new mechanism of neurodegeneration. *Annals of the New York Academy of Sciences*, 1147, 283–292.

Kühlbrandt, W. (2015) Structure and function of mitochondrial membrane protein complexes. BMC Biol 13, 89.

Kumar, A., Ganini, D. & Mason, R.P. (2016) Role of cytochrome c in α -synuclein radical formation: implications of α -synuclein in neuronal death in Maneb- and paraquat-induced model of Parkinson's disease. *Mol* Neurodegeneration 11, 70.

Kumar, V., Kim, S. H., & Bishayee, K. (2022). Dysfunctional Glucose Metabolism in Alzheimer's Disease Onset and Potential Pharmacological Interventions. *International journal of molecular sciences*, 23(17), 9540.

Kuns B, Rosani A, Varghese D. (2023) Memantine. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing;. https://www.ncbi.nlm.nih.gov/books/NBK500025/

Kurkinen, M., Fułek, M., Fułek, K., Beszłej, JA., Kurpas, D., Leszek, J. (2023). The Amyloid Cascade Hypothesis in Alzheimer's Disease: Should we Change our Thinking? *Biomolecules*, *13*(3), 453

Langa, K. M., & Levine, D. A. (2014). The diagnosis and management of mild cognitive impairment: a clinical review. *JAMA*, 312(23), 2551–2561.

Lee S, Lee DK. (2018) What is the proper way to apply the multiple comparison test? *Korean J Anesthesiol*, ;71(5):353-360.

Lei, Z., Huhman, D. V., & Sumner, L. W. (2011). Mass spectrometry strategies in metabolomics. *The Journal of biological chemistry*, 286(29), 25435–25442.

Li Y., Rinne J. O., Mosconi L., Pirraglia E., Rusinek H., Desanti S., Kemppainen, N., Nagren, K., Kim, B.C., Tsui, W., de Leon, M.J. (2008). Regional analysis of FDG and PIB-PET images in normal aging, mild cognitive impairment, and Alzheimer's disease. Eur. J. *Nuclear Med. Mol*, 2169–2181.

Li, Y., Park, J. S., Deng, J. H., & Bai, Y. (2006). Cytochrome c oxidase subunit IV is essential for assembly and respiratory function of the enzyme complex. *Journal of bioenergetics and biomembranes*, *38*(5-6), 283–291.

Liang, K. C. (1991). Pretest intra-amygdala injection of lidocaine or glutamate antagonists impairs retention performance in an inhibitory avoidance task. *In Society for Neuroscience Abstracts*, 17(486) 237-249

Litwack, G. (2018) Glycolysis and Gluconeogenesis, Human Biochemistry, 183–198.

Lopez J, Gamache K, Schneider R, Nader K. (2015) Memory retrieval requires ongoing protein synthesis and NMDA receptor activity-mediated AMPA receptor trafficking. *J Neurosci*, 35(6):2465-75.

Luis, C., Ryan, T.J (2022) Understanding the physical basis of memory: Molecular mechanisms of the engram. JBC Reviews, 298 (5).

Luo, D., Li, J., Liu, H., Wang, J., Xia, Y., Qiu, W., Wang, N., Wang, X., Wang, X., Ma, C., Ge, W. (2023) Integrative Transcriptomic Analyses of Hippocampal–Entorhinal System Subfields Identify Key Regulators in Alzheimer's Disease. *Adv. Sci*, 10, 2300876

Lushchak, O. V., Piroddi, M., Galli, F., & Lushchak, V. I. (2014). Aconitase post-translational modification as a key in linkage between Krebs cycle, iron homeostasis, redox signaling, and metabolism of reactive oxygen species. *Redox report : communications in free radical research*, 19(1), 8–15.

Makin, S. (2018) The amyloid hypothesis on trial. *Nature* 559, S4-S7.

Maletic-Savatic, M., Malinow, R., & Svoboda, K. (1999). Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. *Science*, 283(5409), 1923-1927.

Manczak, M., & Reddy, P. H. (2012). Abnormal interaction of VDAC1 with amyloid beta and phosphorylated tau causes mitochondrial dysfunction in Alzheimer's disease. *Human molecular genetics*, 21(23), 5131–5146.

Marinesco, S., & Carew, T. J. (2002). Serotonin release evoked by tail nerve stimulation in the CNS of aplysia: characterization and relationship to heterosynaptic plasticity. *The Journal of neuroscience : the official journal of the Society for Neuroscience*, 22(6), 2299–2312.

Martínez-Reyes, I., Chandel, N.S. (2020) Mitochondrial TCA cycle metabolites control physiology and disease. *Nat Commun,* 11, 102

Matsuzaki, M., Honkura, N., Ellis-Davies, G. C., & Kasai, H. (2004). Structural basis of long-term potentiation in single dendritic spines. *Nature*, 429(6993), 761-766.

McCarthy, D. J., & Smyth, G. K. (2009). Testing significance relative to a fold-change threshold is a TREAT. *Bioinformatics (Oxford, England)*, 25(6), 765–771.

McCue WM, Finzel BC (2021) Structural Characterization of the Human Cytosolic Malate Dehydrogenase I. ACS Omega;7(1):207-214.

McGowan, E. (2007). Abeta40 inhibits amyloid deposition in vivo. J. Neurosci, 27, 627-633

McKenna, M., Dienek, G.A., Sonnewald, U., Waagepetersen, H.S., Schousboe, A. (2012) Chapter 11- ENergy Metaoblism of the Brain. *Basic Neuroschemistry (Eighth Edition)*, 200-231.

Medline Plus (2018) DYNC1H1 gene. https://medlineplus.gov/genetics/gene/dync1h1/

Medline Plus (2018) RAB3GAP1 gene. https://medlineplus.gov/genetics/gene/rab3gap1/

Medscape (2023) Alzheimer Disease Treatment &

Management.https://emedicine.medscape.com/article/1134817-treatment.

Miller, G. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. *Psychological Review*, 63(2), pp. 81-97.

Mishkin, M. (1978) Memory in monkeys severely impaired by combined but not by separate removal of amygdala and hippocampus. *Nature* 273, 297–298.

Misrani, A., Tabassum, S., Huo, Q., Tabassum, S., Jiang, J., Liu, S., Feng, X., Long, C., Yang, L. (2021) Mitochondrial Deficits With Neural and Social Damage in Early-Stage Alzheimer's Disease Model Mice. *Front. Aging Neurosci*, 13.

Mosconi, L., Pupi, A. and De Leon, M.J. (2008), Brain Glucose Hypometabolism and Oxidative Stress in Preclinical Alzheimer's Disease. *Annals of the New York Academy of Sciences*, 1147: 180-195.

Mucke L, Masliah E, Yu GQ, Mallory M, Rockenstein EM, Tatsuno G, Hu K, Kholodenko D, Johnson-Wood K, McConlogue L. (2000) High-level neuronal expression of abeta 1-42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. *J Neurosci*, 1;20(11):4050-8.

Müller, T., & Winter, D. (2017). Systematic Evaluation of Protein Reduction and Alkylation Reveals Massive Unspecific Side Effects by Iodine-containing Reagents. Molecular & cellular proteomics: *MCP*, 16(7), 1173–1187.

Mullinax, TR., Mock, JN., McEvily, AJ., Harrison, JH. (1982) Regulation of Mitochondrial Malate Dehydrogenase. Evidence for an allosteric Citrate-binding site. *The Journal Of Biological Chemistry*, 257(22). Pp13233-132393.

Mutisya, E.M., Bowling, A.C. and Beal, M.F. (1994), Cortical Cytochrome Oxidase Activity Is Reduced in Alzheimer's Disease. *Journal of Neurochemistry*, 63: 2179-2184.

NIH (2023) Aldoc aldolase C, fructose-bisphosphate [Mus musculus (house mouse)].https://www.ncbi.nlm.nih.gov/gene?Db=gene&Cmd=DetailsSearch&Term=11676

NIH (2023) Dclk1 doublecortin-like kinase 1 [Mus musculus (house mouse)]. https://www.ncbi.nlm.nih.gov/gene?Db=gene&Cmd=DetailsSearch&Term=13175

NIH (2023) How Is Alzheimer's Disease Treated? Available at: https://www.nia.nih.gov/health/how-alzheimers-disease-treated.

NIH (2023) Madd MAP-kinase activating death domain [Mus musculus (house mouse)]. https://www.ncbi.nlm.nih.gov/gene?Db=gene&Cmd=DetailsSearch&Term=228355

NIH (2023) PARK7 Parkinsonism associated deglycase [Homo sapiens (human)]. https://www.ncbi.nlm.nih.gov/gene/11315#

Nukala, VN., Singh, IN., Davis, LM., Sullivan, PG. (2006) Cryopreservation of brain mitochondria: A novel methodology for functional studies. *Journal of Neuroscience Methods*, 152 (1-2), 48-54.

Ohnishi, T., Ohnishi, S. T., Shinzawa-Ito, K., & Yoshikawa, S. (2008). Functional role of coenzyme Q in the energy coupling of NADH-CoQ oxidoreductase (Complex I): stabilization of the semiquinone state with the application of inside-positive membrane potential to proteoliposomes. *BioFactors* (Oxford, England), 32(1-4), 13–22.

Okamoto, K. I., Nagai, T., Miyawaki, A., & Hayashi, Y. (2004). Rapid and persistent modulation of actin dynamics regulates postsynaptic reorganization underlying bidirectional plasticity. *Nature neuroscience*, 7(10), 1104-1112.

Oliver, D., & Reddy, P. H. (2019). Dynamics of Dynamin-Related Protein 1 in Alzheimer's Disease and Other Neurodegenerative Diseases. *Cells*, 8(9), 961.

Ono, R., Sakurai, T., Sugimoto, T., Uchida, K., Nakagawa, T., Noguchi, T., Komatsu, A., Arai, H., & Saito, T. (2023). Mortality Risks and Causes of Death by Dementia Types in a Japanese Cohort with Dementia: NCGG-STORIES. *Journal of Alzheimer's disease: JAD*, 92(2), 487–498.

Osellame, L. D., Blacker, T. S., & Duchen, M. R. (2012). Cellular and molecular mechanisms of mitochondrial function. Best practice & research. *Clinical endocrinology & metabolism*, 26(6), 711–723.

Osto, C., Benador, I. Y., Ngo, J., Liesa, M., Stiles, L., Acin-Perez, R., & Shirihai, O. (2020). Measuring mitochondrial respiration in previously frozen biological samples. *Current Protocols in Cell Biology*, 89, e116.

Ostrowitzki S., Deptula D., Thurfjell L., Barkhof F., Bohrmann B., Brooks D. J., Klunk, W.E., Ashford, E., Yoo, K., Xu, Z.X., Loetscher, H., Santarelli, L. (2012). Mechanism of amyloid removal in patients with Alzheimer disease treated with gantenerumab. *Arch. Neurol.* 69, 198–207.

Patel, M. S., Nemeria, N. S., Furey, W., & Jordan, F. (2014). The pyruvate dehydrogenase complexes: structure-based function and regulation. *The Journal of biological chemistry*, 289(24), 16615–16623.

Patel, MS., Harris RA. (2023) Metabolic Regulation. Encyclopedia of Cell Biology, 1 (2). Pp 353-365.

Paul, I., White, C., Turcinovic, I. and Emili, A. (2020), Imaging the future: the emerging era of single-cell spatial proteomics. *FEBS J*, 288: 6990-7001.

Perluigi, M., Barone, E., Di Domenico, F., Butterfield, D.A. (2016) Abberrant protein phosphorylation in Alzheimer disease brains disturbs pro-survival and cell death pathways. *Biochemica et Biophysica Acta (BBA)-Molecular Basis of Disease*, 1862 (10). 1871-1882.

Phaniendra, A., Jestadi, D. B., & Periyasamy, L. (2015). Free radicals: properties, sources, targets, and their implication in various diseases. *Indian journal of clinical biochemistry*: *IJCB*, 30(1), 11–26

Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., Arcoraci, V., Squadrito, F., Altavilla, D., & Bitto, A. (2017). Oxidative Stress: Harms and Benefits for Human Health. *Oxidative medicine and cellular longevity*, 2017, 8416763.

Postle, B.R., Pasternak, T. (2009). Short Term and Working Memory. Encyclopedia of Neuroscience, 783-789.

Price J. L., Mckeel D. W., Jr., Buckles V. D., Roe C. M., Xiong C., Grundman M., Hansen, L.A., Peterson, R.C., Parisi, J.E., Dickson, D.W., Smith, C.D., Davis, D.G., Schmitt, F.A., Markesbery, W.R., Kayw, J., Kurlan, R., Hu;ette, C., Kurland, B.F., Higdon, R., Kukull, W., Morris, J.C. (2009). Neuropathology of nondemented aging: presumptive evidence for preclinical Alzheimer disease. *Neurobiol. Aging* 30, 1026–1036.

Priestley, JRC., Pace, LM., Sen, K., Aggarwal, A., Alves, CAPF., Campbell, IM., Cuddapah, SR., Engelhardt, NM., Eskandar, M., Jolín García, PC., Gropman, A., Helbig, I., Hong, X., Gowda, VK., Lusk, L., Trapane, P., Srinivasan,

VM., Suwannarat, P., Ganetzky, RD. (2022) Malate dehydrogenase 2 deficiency is an emerging cause of pediatric epileptic encephalopathy with a recognizable biochemical signature. *Mol Genet Metab Rep*, 33:100931.

PubChem (2023) Fxyd6- FXYD domain-containing ion transport regulator 6 (house mouse).https://pubchem.ncbi.nlm.nih.gov/gene/59095.

Raben, D. (2013) Phosphofructokinase-2/Fructose Bisphosphatase-2, *Encyclopedia of Biological Chemistry,* pp. 456–458.

Ramirez, A., & Arbuckle, M. R. (2016). Synaptic Plasticity: The Role of Learning and Unlearning in Addiction and Beyond. *Biological psychiatry*, 80(9), e73–e75.

Ranieri, M., Brajkovic, S., Riboldi, G., Rinchi, D., Rizzo, F., Bresolin, N., Corti, S., Comi, GP. (2013) Mitochondrial fusion proteins and human diseases. *Neurol Res Int*, 293893.

Rao, Y. L., Ganaraja, B., Murlimanju, B. V., Joy, T., Krishnamurthy, A., & Agrawal, A. (2022). Hippocampus and its involvement in Alzheimer's disease: a review. *3 Biotech*, *12*(2), 55.

Raulin, AC., Doss, S.V., Trottier, Z.A.., Ikezu, T.C., Bu, G., Liu, CC. (2022) ApoE in Alzheimer's disease: pathophysiology and therapeutic strategies. *Mol Neurodegeneration*, 17, 72.

Renkema, G., Wortmann, S., Smeets, R., Venselaar, H., Antoine, M., Visser, G., Ben-Omran, T., Van der Heuvel, L.P., Timmers, H.J.L.M., Smeitink., Rodenburg, R.J.T. (2015) SDHA mutations causing a multisystem mitochondrial disease: novel mutations and genetic overlap with hereditary tumors. *Eur J Hum Genet*, 23, 202–209.

Riedel G, Platt B, Micheau J. (2003) Glutamate receptor function in learning and memory. *Behav Brain Res*, ;140(1–2):1–47.

Riedel, G., Micheau, J., Lam, A. G. M., Roloff, E. V. L., Martin, S. J., Bridge, H., de Hoz, L., Poeschel, B., McCulloch, J., & Morris, R. G. (1999). Reversible neural inactivation reveals hippocampal participation in several memory processes. *Nature neuroscience*, 2(10), 898-905.

Roberts DJ, Miyamoto S. (2015) Hexokinase II integrates energy metabolism and cellular protection: Akting on mitochondria and TORCing to autophagy. *Cell Death Differ*, 22(2):248-57.

Ros, S., Schulze, A. (2013) Balancing glycolytic flux: the role of 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatases in cancer metabolism. *Cancer Metab* 1, 8.

Rothman, KJ. (1990) No adjustments are needed for multiple comparisons. Epidemiology, Jan;1(1):43-6.

Roy, D. S., Arons, A., Mitchell, T. I., Pignatelli, M., Ryan, T. J., & Tonegawa, S. (2016). Memory retrieval by activating engram cells in mouse models of early Alzheimer's disease. *Nature*, 531(7595), 508–512.

Rustin, P., Munnich, A. & Rötig, A. (2002) Succinate dehydrogenase and human diseases: new insights into a well-known enzyme. *Eur J Hum Genet* 10, 289–291.

Saganich MJ, Schroeder BE, Galvan V, Bredesen DE, Koo EH, Heinemann SF. (2006) Deficits in synaptic transmission and learning in amyloid precursor protein (APP) transgenic mice require C-terminal cleavage of APP. *J Neurosci*, 26(52):13428-36

Salloway S., Sperling R., Fox N. C., Blennow K., Klunk W., Raskind M., Sabbagh, M., Honig, L.S., Porteinsson, A.P., Ferris, S., Reichert, M., Ketter, N., Nejadnik, B., Guenzler, V., Miloslavsky, M., Wang, D., Lu, Y., Lull, J., Tudor, L.C., Liu, E., Grundman, M., Yuen, E., Black, R., Brashear, H.R. (2014). Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer's disease. *N. Engl. J. Med*, 370, 322–333.

Saura, C. A., Choi, S. Y., Beglopoulos, V., Malkani, S., Zhang, D., Shankaranarayana Rao, B. S., Chattarji, S., Kelleher, R. J., 3rd, Kandel, E. R., Duff, K., Kirkwood, A., & Shen, J. (2004). Loss of presenilin function causes impairments of memory and synaptic plasticity followed by age-dependent neurodegeneration. *Neuron*, 42(1), 23–36.

Savioz, A., Leuba, G., Vallet, P.G (2014) A framework to understand the variations of PSD-95 expresison in brain aging and in Alzheimer's disease. *Ageing Research Reviews*, 18. 86-94.

Savitski, M. M., Wilhelm, M., Hahne, H., Kuster, B., & Bantscheff, M. (2015). A Scalable Approach for Protein False Discovery Rate Estimation in Large Proteomic Data Sets. Molecular & cellular proteomics: *MCP*, 14(9), 2394–2404.

Schönfeld, P., & Reiser, G. (2013). Why does brain metabolism not favor burning of fatty acids to provide energy? Reflections on disadvantages of the use of free fatty acids as fuel for brain. *Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism*, 33(10), 1493–1499.

Schwarz, N., & Leube, R. E. (2016). Intermediate Filaments as Organizers of Cellular Space: How They Affect Mitochondrial Structure and Function. *Cells*, 5(3), 30.

Scoville, WB., Milner ,B. (1957) Loss of recent memory after bilateral hippocampal lesions. J *Neurol Neurosurg Psychiatry* 20:11–21.

Selkoe, DJ., Hardy, J. (2016). The amyloid hypothesis of Alzheimer's disease at 25 years. *EMBO Mol Med.* 8: pp595-608.

Semon, R.W. (1921). The Mneme. London: G. Allen and Unwin Limited.

Semon, R.W. (1923). Mnemic psychology. London: Allen, Unwin.

Sexton, Z., Abuaita, B.H., O'Riordan, M.X.D (2021) The Mitochondrial Fission Regulator DRP1 Controls Post-Transcriptional Regulation of TNF- α . Front.Cell.Infect.Microbiol, 10.

Shao, C. Y., Mirra, S. S., Sait, H. B., Sacktor, T. C., & Sigurdsson, E. M. (2011). Postsynaptic degeneration as revealed by PSD-95 reduction occurs after advanced A β and tau pathology in transgenic mouse models of Alzheimer's disease. *Acta neuropathologica*, 122(3), 285–292.

Sharma, L. K., Lu, J., & Bai, Y. (2009). Mitochondrial respiratory complex I: structure, function and implication in human diseases. *Current medicinal chemistry*, 16(10), 1266–1277.

Shekhar, S., Pernier, J., Carlier, M.F. (2016) Regulators of actin filaments barbed ends at a glance. *J Cell Sci*, 129 (6). 1085-1091.

Shen, J.; Kelleher, R.J. 3rd. (2007) The presentlin hypothesis of Alzheimer's disease: Evidence for a loss-of-function pathogenic mechanism. *Proc. Natl. Acad. Sci*, 104, 403–409.

Sheng M, Sabatini BL, Südhof TC. (2012) Synapses and Alzheimer's disease. *Cold Spring Harb Perspect Biol,* 4(5):a005777.

Shi, Q., & Gibson, G. E. (2011). Up-regulation of the mitochondrial malate dehydrogenase by oxidative stress is mediated by miR-743a. *Journal of neurochemistry*, 118(3), 440–448.

Shim, K. H., Kang, M. J., Youn, Y. C., An, S. S. A., & Kim, S. (2022). Alpha-synuclein: a pathological factor with Aβ and tau and biomarker in Alzheimer's disease. *Alzheimer's research & therapy*, 14(1), 201

Shoshan-Barmatz V, Maldonado EN, Krelin Y. (2017) VDAC1 at the crossroads of cell metabolism, apoptosis and cell stress. *Cell Stress*, 11-36.

Shoshan-Barmatz, V., De Pinto, V., Zweckstetter, M., Raviv, Z., Keinan, N., Arbel, N. (2010) VDAC, a multifunctional mitochondrial protein regulating cell life and death. *Molecular Aspects of Medicine*, 31(3). 227-285.

Shoshan-Barmatz, V., Nahon-Crystal, E., Shteinfer-Kuzmine, A., & Gupta, R. (2018). VDAC1, mitochondrial dysfunction, and Alzheimer's disease. *Pharmacological research*, 131, 87–101.

Shoshan-Barmatz, V., Shteinfer-Kuzmine, A., & Verma, A. (2020). VDAC1 at the Intersection of Cell Metabolism, Apoptosis, and Diseases. *Biomolecules*, 10(11), 1485.

Sims N. R., Bowen D. M., Smith C. C., Flack R. H., Davison A. N., Snowden J. S., Neary, D. (1980). Glucose metabolism and acetylcholine synthesis in relation to neuronal activity in Alzheimer's disease. *Lancet 1* 333–336.

Singh, A., Faccenda, D., Campanella, M. (2021) Pharmacological advances in mitochondrial therapy. *eBioMedicine*, 65,103244.

Sinsky J, Pichlerova K, Hanes J. (2021) Tau Protein Interaction Partners and Their Roles in Alzheimer's Disease and Other Tauopathies. *Int J Mol Sci, (*17):9207.

Sola-Penna, M., Da Silva, D., Coelho, W.S., Marinho-Carvalho, M.M. and Zancan, P. (2010) Regulation of mammalian muscle type 6-phosphofructo-1-kinase and its implication for the control of the metabolism. *IUBMB Life*, 62: 791-796.

Squire LR, Genzel L, Wixted JT, Morris RG. (2015) Memory consolidation. *Cold Spring Harb Perspect Biol,* 7(8):a021766.

Squire, L. (2009). Memory and Brain Systems: 1969-2009. Journal of Neuroscience, 29 (41) 12711-12716

Squire, L.R., Zola-Morgan, S. (1991) The Medial Temporal Lobe Memory System. Science, 253,1380-1386.

Suarez-Rivero, J.M., Villanueva-Paz, M., De la Cruz-Ojeda, P., De le Mata, M., Cotan, D., Oropesa-Avila, M., De Lavera, I., Alvarez-Cordoba, M., Luzon-Hidalgo, R., Sanchez-Alcazar, J. (2017) Mitochondrial Dynamics in Mitochondrial Diseases. *Diseases*, 5(1).

Suresh, B., Lee, J., Kim, K. S., & Ramakrishna, S. (2016). The Importance of Ubiquitination and Deubiquitination in Cellular Reprogramming. *Stem cells international*, 2016, 6705927.

Szapiro, G., Galante, J. M., Barros, D. M., Levi de Stein, M., Vianna, M. R., Izquierdo, L. A., Izquierdo, I., & Medina, J. H. (2002). Molecular mechanisms of memory retrieval. *Neurochemical research*, 27(11), 1491–1498.

Szapiro, G., Izquierdo, L. A., Alonso, M., Barros, D., Paratcha, G., Ardenghi, P., Pereira P., Medina, J. H., and Izquierdo, I. (2000) Participation of hippocampal metabotropic receptors, protein kinase A and mitogenactivated protein kinases in memory retrieval. *Neuroscience* 99:1–5

Szklarczyk, D., Gable, A.L., Nastou, K.C., Lyon, D., Kirsch, R., Pyysalo, S., Doncheva, N.T., Legeay, M., Fang, T., Bork, P., Jensen, L.J., von Mering, C. (2021) The STRING database in 2021: customizable protein—protein networks, and functional characterization of user-uploaded gene/measurement sets, *Nucleic Acids Research*, 49(1),605-612

Tai, L. M., Maldonado Weng, J., LaDu, M. J., & Brady, S. T. (2021). Relevance of transgenic mouse models for Alzheimer's disease. *Progress in molecular biology and translational science*, 177, 1–48.

Tanaka K. (2009). The proteasome: overview of structure and functions. Proceedings of the Japan Academy. Series B, *Physical and biological sciences*, 85(1), 12–36.

Tarsa, L., & Goda, Y. (2002). Synaptophysin regulates activity-dependent synapse formation in cultured hippocampal neurons. *Proceedings of the National Academy of Sciences of the United States of America*, *99*(2), 1012–1016.

Tayler, K.K., Tanaka, K., Reijmers, L., Wiltgen, B.J. (2013) Reactivation of Neural Ensembles during the Retrieval of Recent and Remote Memories. *Current Biology*, 23(2). 99-106.

Thiel, G. (1993), Synapsin I, Synapsin II, and Synaptophysin: Marker Proteins of Synaptic Vesicles. *Brain Pathology*, 3: 87-95.

Thomas P. D. (2017). The Gene Ontology and the Meaning of Biological Function. *Methods in molecular biology* (Clifton, N.J.), 1446, 15–24.

Tian, K., Rajendran, R., Doddananjaiah, M., Krstic-Demonacos, M., Schwartz, J.M. (2013) Dynamics of DNA Damage Induced Pathways to Cancer. *Plos One*, 8(9).

Timón-Gómez, A., Nývltová, E., Abriata, L. A., Vila, A. J., Hosler, J., & Barrientos, A. (2018). Mitochondrial cytochrome c oxidase biogenesis: Recent developments. *Seminars in cell & developmental biology,* 76, 163–178.

Toledano, A., Alvarez, M.I., Lopez-Rodrigues, A.B., Toledano-Riza, A., Fernandez-Verdecia, C.I. (2012) Does Alzheimer's disease exist in all primates? Alzheimer pathology in non-human primates and its pathophysiological implications. *Neurologia (English Edition)* 27 (6) 354-369.

Tonegawa, S., Pignatelli, M., Roy, D., Ryan, T. (2015) Memory engram storage and retrieval. *Current Opinion in Neurobiology*, 35, 101-109.

Triepels, R., Smeitink, J., Loeffen, J., Smeets, R., Trijbels, F., van den Heuvel, L. (2000) Characterization of the human complex I NDUFB7 and 17.2-kDa cDNAs and mutational analysis of 19 genes of the HP fraction in complex I-deficient-patients. *Hum Genet*, 106(4):385-91.

Twohig, D., Nielsen, H.M. (2019) α -synuclein in the pathophysiology of Alzheimer's disease. *Mol Neurodegeneration* 14, 23.

UniProt (2023) P00848.ATP6_MOUSE. https://www.uniprot.org/uniprotkb/P00848/entry

UniProt (2023) Q96FJ2 DYL2 HUMAN. https://www.uniprot.org/uniprotkb/Q96FJ2/entry

Varela CD, Farhana A. (2023) Biochemistry, Superoxides. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; . https://www.ncbi.nlm.nih.gov/books/NBK555982/

Verger, A., Yakushev, I., Albert, N. L., van Berckel, B., Brendel, M., Cecchin, D., Fernandez, P. A., Fraioli, F., Guedj, E., Morbelli, S., Tolboom, N., Traub-Weidinger, T., Van Weehaeghe, D., & Barthel, H. (2023). FDA approval of lecanemab: the real start of widespread amyloid PET use? - the EANM Neuroimaging Committee perspective. *European journal of nuclear medicine and molecular imaging*, 50(6), 1553–1555.

Verma, A., Shteinfer-Kuzmine, A., Kamenetsky, N., Pittala, S., Paul, A., Nahon Crystal, E., Ouro, A., Chalifa-Caspi, V., Pandey, S. K., Monsonego, A., Vardi, N., Knafo, S., & Shoshan-Barmatz, V. (2022). Targeting the overexpressed mitochondrial protein VDAC1 in a mouse model of Alzheimer's disease protects against mitochondrial dysfunction and mitigates brain pathology. *Translational neurodegeneration*, 11(1), 58.

Veugelen, S., Saito, T., Saido, T C., Chavez-Gutierrez, L., Strooper, B. (2016) Familial Alzheimer's Disease Mutations in Presenilin Generate Amyloidogenic Aβ Peptide Seeds. *Neuron*, 90. Pp410-416.

Vianna, M. R., Barros, D. M., Silva, T., Choi, H., Madche, C., Rodrigues, C., Medina, J. H., and Izquierdo, I. (2000) Pharmacological demonstration of the differential involvement of protein kinase C isoforms in short- and long-term memory formation and retrieval of one-trial avoidance in rats. *Psychopharmacology* 150:77–84

Vorhees, C., Williams, M. (2006) Morris water maze: procedures for assessing spatial and related forms of learning and memory. *Nat Protoc* 1, 848–858.

Voss, J. L., Bridge, D. J., Cohen, N. J., & Walker, J. A. (2017). A Closer Look at the Hippocampus and Memory. *Trends in cognitive sciences*, *21*(8), 577–588.

Wang, R., & Reddy, P. H. (2017). Role of Glutamate and NMDA Receptors in Alzheimer's Disease. Journal of Alzheimer's disease: *JAD*, 57(4) 1041-1048.

Wang, W., Zhao, F., Ma, X., Perry, G., Zhu, X. (2020) Mitochondria dysfunction in the pathogenesis of Alzheimer's disease: recent advances. *Mol Neurodegeneration* 15, 30.

Wang, X., Su, B., Lee, H. G., Li, X., Perry, G., Smith, M. A., & Zhu, X. (2009). Impaired balance of mitochondrial fission and fusion in Alzheimer's disease. *The Journal of neuroscience : the official journal of the Society for Neuroscience*, 29(28), 9090–9103.

Wang, X., Su, B., Zheng, L., Perry, G., Smith, M. A., & Zhu, X. (2009). The role of abnormal mitochondrial dynamics in the pathogenesis of Alzheimer's disease. *Journal of neurochemistry*, *109 Suppl 1*(Suppl 1), 153–159.

Watanabe, F., and Furuya, E. (1999), Tissue-specific alternative splicing of rat brain fructose 6-phosphate 2-kinase/fructose 2,6-bisphosphatase, *FEBS Letters*, 458.

Watanabe, H., Xia, D., Kanekiyo, T., Kelleher, R.J., Shen, J. (2012) Familial frontotemporal dementia-associated presenilin-1 c.548G>T mutation causes decreased mRNA expression and reduced presenilin function in knockin mice. *J Neurosci* 32, 5085–5096.

Watson, S. A., & McStay, G. P. (2020). Functions of Cytochrome c oxidase Assembly Factors. *International journal of molecular sciences*, 21(19), 7254.

Webb, BA., Dosey, AM., Wittmann, T., Kollman, J., Barber; D. (2017) The glycolytic enzyme phosphofructokinase-1 assembles into filaments. *J Cell Biol* 7; 216 (8): 2305–2313.

Webb, BA., Forouhar, F., Szu, FE., Seetharaman, J., Tong, L., Barber, DL. (2015) Structures of human phosphofructokinase-1 and atomic basis of cancer-associated mutations. *Nature*, 523(7558):111-4.

Weggen, S., Beher, D. (2012) Molecular consequences of amyloid precursor protein and presentilin mutations causing autosomal-dominant Alzheimer's disease. *Alz Res Therapy* 4, 9.

Winkel, I., Ermann, N., Żelwetro, A. Sambor, B., Mroczko, B., Kornhuber, J., Paradowski, B., Lewczuk, P. (2021) Cerebrospinal fluid α synuclein concentrations in patients with positive AD biomarkers and extrapyramidal symptoms. *J Neural Transm* 128, 817–825.

World Health Organisation (2023) Dementia. https://www.who.int/news-room/fact-sheets/detail/dementia Wright AL, Zinn R, Hohensinn B, Konen LM, Beynon SB, Tan RP, Clark IA, Abdipranoto A, Vissel B. (2013) Neuroinflammation and neuronal loss precede Aβ plaque deposition in the hAPP-J20 mouse model of Alzheimer's disease. *PLoS One*, 8(4):e59586.

Wu, Y., Dong, J.H., Dai, Y.F., Zhu, M.Z., Wang, M.Y., Zhang, Y., Pan, Y.D., Yuan, X.R., Gui, Z.X., Wang, C.X., Li, Y.Q., Zhu, X.H. (2023) Hepatic soluble epoxide hydrolase activity regulates cerebral AB metabolism and the pathogenesis of Alzheimer's disease in mice. *Neuron*.

Xia, D., Esser, L., Tang, W. K., Zhou, F., Zhou, Y., Yu, L., & Yu, C. A. (2013). Structural analysis of cytochrome bc1 complexes: implications to the mechanism of function. *Biochimica et biophysica acta*, 1827(11-12), 1278–1294.

Xiao, G. G., Recker, R. R., & Deng, H. W. (2008). Recent advances in proteomics and cancer biomarker discovery. Clinical medicine. *Oncology*, 2, CMO-S539.

Yalcin, A., Telang, S., Clem, B., Chesney, J. (2009) Regulation of glucose metabolism by 6-phosphofructo-2-kinase/fructose-2,6-bisphopshatases in cancer, *Experimental and Molecular Pathology*, 86 (3), pp174-170.

Yan, X., Hu, Y., Wang, B., Wang, S., & Zhang, X. (2020). Metabolic Dysregulation Contributes to the Progression of Alzheimer's Disease. *Frontiers in neuroscience*, 14, 530219.

Yang, Z., Lanks, CW., Tong, L. (2002) Molecular Mechanism for the Regulation of Human Mitochondrial NAD(P)+-Dependent Malic Enzyme by ATP and Fumarate. *Structure*, 10(7):951-960.

Yogev, O., Yogev, O., Singer, E., Shaulian, E., Goldberg, M., Fox, T. D., & Pines, O. (2010). Fumarase: a mitochondrial metabolic enzyme and a cytosolic/nuclear component of the DNA damage response. *PLoS biology*, 8(3), e1000328.

Yokoyama, M., Kobayashi, H., Tatsumi, L., & Tomita, T. (2022). Mouse Models of Alzheimer's Disease. *Frontiers in molecular neuroscience*, 15, 912995.

Yu, C.A., Yu, L., Xia, D. (2013) Ubiquinol-Cytochrome x Oxidoreductase (Complex III). *Encyclopedia of Biophysics*. 2679-2684.

Zancan, P., Marinho-Carvalho, M.M., Faber-Barata, J., Dellias, J.M.M. and Sola-Penna, M. (2008) ATP and fructose-2,6-bisphosphate regulate skeletal muscle 6-phosphofructo-1-kinase by altering its quaternary structure. *IUBMB Life*, 60: 526-533.

Zhang, X., Alshakhshir, A., Zhao, L. (2021) Glycolytic Metabolism, Brain Resilience, and Alzheimer's Disease. *Front. Neurosci*, 15.

Zhang, Z., Deng, X., Liu, Y. (2019) PKM2, function and expression and regulation. Cell Biosci 9, 52

Zhou, B., Xiao, J. F., Tuli, L., & Ressom, H. W. (2012). LC-MS-based metabolomics. *Molecular bioSystems*, 8(2), 470–481.

Zhou, X., & Zheng, Y. (2013). Cell type-specific signaling function of RhoA GTPase: lessons from mouse gene targeting. *The Journal of biological chemistry*, 288(51), 36179–36188.

Zhu J, Shang Y, Zhang M. (2016) Mechanistic basis of MAGUK-organized complexes in synaptic development and signalling. *Nat Rev Neurosci* 17: 209–223, .

Zlotnik, G., & Vansintjan, A. (2019). Memory: An Extended Definition. Frontiers in psychology, 10, 2523.

APPENDIX A- TABLES

Malate Dehydrogenase 2

Table 1. MDH2 assay protocol set-up parameters.

Parameter	Value
Temperature	20
Mode	Kinetic
Kinetic duration	60m
Interval time	20s
Measurement wavelength	450nm
Number of flashes	10
Settle time	50ms
Double-orbital shaking duration	5s
Double-orbital shaking amplitude	1
Double-orbital shaking frequency	270

Table 2. MDH2 assay kit components.

Components
100X Coupler
100X NAD+
100X Reagent Dye
100X Sodium Malate
10X Blocking Buffer
20X Buffer
Base Buffer
Extraction Buffer (ab260490)
MDH2 Microplate x96 tests

Table 3. Raw OD values for MDH2 assay. Results from start and end time points are T1 and T2 respectively. Values all prenormalisations. Absolute blank= assay buffer only. Lysis buffer blank= assay buffer + 3μ l lysis buffer (3μ l is average, the equivalent volume within each test sample).

Sample	Group	T1- 20seconds	T2- 620seconds	Change in OD	Change in OD/min
VG13	WT Basal	0.1088	0.2321	0.1233	0.01233
VG15	WT Basal	0.0861	0.1858	0.0997	0.00997
VG5	WT Mem	0.0876	0.1857	0.0981	0.00981
VG8	WT Mem	0.068	0.1385	0.0705	0.00705
VG14	APPtg Basal	0.1086	0.2349	0.1263	0.01263
VG16	APPtg Basal	0.0954	0.2029	0.1075	0.01075
VG6	APPtg Mem	0.1053	0.212	0.1067	0.01067
VG7	APPtg Mem	0.0939	0.2093	0.1154	0.01154
VG9	APPtg Basal	0.1067	0.2207	0.114	0.0114
VG11	APPtg Basal	0.0792	0.1664	0.0872	0.00872
VG1	APPtg Mem	0.1028	0.222	0.1192	0.01192
VG3	APPtg Mem	0.0752	0.1662	0.091	0.0091
VG10	WT Basal	0.1062	0.235	0.1288	0.01288
VG12	WT Basal	0.0881	0.2058	0.1177	0.01177
VG2	WT Mem	0.0994	0.2208	0.1214	0.01214
VG4	WT Mem	0.0878	0.1998	0.112	0.0112
Blank	Absolute	0.0495	0.0503	0.0008	8E-05
Blank	Absolute	0.0498	0.0513	0.0015	0.00015
Blank	+Lysis buffer	0.0543	0.0561	0.0018	0.00018
Blank	+Lysis buffer	0.049	0.0503	0.0013	0.00013

Bck VG5	WT Mem	0.0534	0.0538	0.0004	4E-05
Bck VG6	APPtg Mem	0.0508	0.0513	0.0005	0.00005
Bck VG11	APPtg Basal	0.0507	0.0512	0.0005	0.00005
Bck VG10	WT Basal	0.0503	0.0514	0.0011	0.00011

Table 4. Two-way T-test results for MDH2 data after normalisation against western blot data. T-tests performed on change in optical density values, with average blank and respective sample background subtracted prior to testing.

Comparison	Mean	SD	t-value	df	p-value
WT Basal v. WT Mem	0.02 ; 0.02	0.02; 0.02	0.23	6	0.83
WT Mem v. APPtg Mem	0.02; 0.03	0.02; 0.02	-0.28	6	0.79
APPtg Basal v. APPtg Mem	0.02; 0.03	0.01; 0.02	-0.14	6	0.89
WT Basal v. APPtg Basal	0.02 ; 0.02	0.02; 0.01	0.09	6	0.93

Table 5. Two-way ANOVA results for MDH2 activity. Data has been normalised against western blotting quantification.

Source of Variation	% of total variation	P value	P value summary	Significant?	
Interaction	0.5746	0.7966	ns	No	
Row Factor	0.03027	0.9528	ns	No	
Column Factor	0.1545	0.8935	ns	No	
			_		
ANOVA table	SS	DF	MS	F (DFn, DFd)	P value
Interaction	2.26E-05	1	2.26E-05	F (1, 12) = 0.06949	P=0.7966
Row Factor	1.19E-06	1	1.19E-06	F (1, 12) = 0.003660	P=0.9528

Column Factor	6.09E-06	1	6.09E-06	F (1, 12) = 0.01869	P=0.8935
Residual	0.003908	12	0.000326		
Difference between column means		Difference between row means		Interaction CI	
Mean of Wild- Type	0.02317	Mean of Basal	0.02406	Mean diff, A1 - B1	0.001145
Mean of APPtg	0.02441	Mean of Memory Retrieval	0.02352	Mean diff, A2 - B2	-0.003612
Difference between means	-0.001233	Difference between means	0.000546	(A1 -B1) - (A2 - B2)	0.004757
SE of difference	0.009023	SE of difference	0.009023	95% CI of difference	-0.03456 to 0.04408
95% CI of difference	-0.02089 to 0.01843	95% CI of difference	-0.01911 to 0.02021	(B1 - A1) - (B2 - A2)	-0.004757
Normality of Residuals					
Test name	Statistics	P value	Passed normality test (alpha=0.05)?	P value summary	
D'Agostino- Pearson omnibus (K2)	9.223	0.0099	No	**	
Anderson- Darling (A2*)	0.908	0.0156	No	**	
Shapiro-Wilk (W)	0.8506	0.0139	No	**	
Kolmogorov- Smirnov (distance)	0.1787	0.1	No	**	

6- Phosphofructokinase

Table 6. PFK assay protocol set-up parameters

Parameter	Value
Temperature	37
Mode	Kinetic
Kinetic duration	60m
Interval time	20s
Measurement wavelength	450nm
Number of flashes	10
Settle time	50ms
Double-orbital shaking duration	60s
Double-orbital shaking amplitude	1
Double-orbital shaking frequency	270

Table 7. PFK assay kit components

Components
ATP
NADH Standard
PFK Assay Buffer
PFK Developer
PFK Enzyme Mix
PFK Positive Control
PFK Substrate

Table 8. Raw OD values for 6-PFK assay. Results from start and end time points are T1 and T2 respectively. Values all pre-normalisations. Absolute blank= assay buffer only. Lysis buffer blank= assay buffer + 3μ l lysis buffer (3μ l is average, the equivalent volume within each test sample).

Sample	Group	T1-0secs	T2-320secs	Change in OD	Change in OD/min
3nmol	Standard	1.3858	1.5257	0.1399	0.026247655
2.25 nmol	Standard	1.2152	1.3397	0.1245	0.023358349
1.5nmol	Standard	1.0434	0.9687	-0.0747	-0.014015009
0.75 nmol	Standard	0.6226	0.6628	0.0402	0.007542214
blank	Absolute blank	0.1406	0.1552	0.0146	0.002739212
blank	Blank+ lysis buffer	0.1478	0.1718	0.024	0.004502814
Pos control 10	Pos	0.1456	0.5667	0.4211	0.079005629
Pos control 20	Pos	0.1317	0.596	0.4643	0.087110694
Bckg VG9	APPtg Basal	0.3683	0.2896	-0.0787	-0.014765478
Bckg VG11	APPtg Basal	0.1541	0.2494	0.0953	0.017879925
Bckg VG1	APPtg Mem	0.1521	0.1779	0.0258	0.004840525
Bckg VG3	APPtg Mem	0.1597	0.204	0.0443	0.008311445
Bckg VG10	WT Basal	0.1617	0.2735	0.1118	0.02097561
Bckg VG12	WT Basal	0.1566	0.2415	0.0849	0.015928705
Bckg VG2	WT Mem	0.1509	0.1577	0.0068	0.001275797
Bckg VG4	WT Mem	0.1584	0.2134	0.055	0.010318949
Bckg VG13	WT Basal	0.212	0.351	0.139	0.026078799
Bckg VG15	WT Basal	0.2289	0.399	0.1701	0.031913696
Bckg VG5	WT Mem	0.2249	0.3569	0.132	0.024765478
Bckg VG8	WT Mem	0.2364	0.3762	0.1398	0.026228893
Bckg VG14	APPtg Basal	0.2567	0.3907	0.134	0.025140713
Bckg VG16	APPtg Basal	0.2156	0.3696	0.154	0.028893058
Bckg VG6	APPtg Mem	0.22	0.3464	0.1264	0.023714822

Bckg VG7	APPtg Mem	0.2007	0.3263	0.1256	0.023564728
VG9	APPtg Basal	0.4717	1.1023	0.6306	0.118311445
VG11	APPtg Basal	0.4095	0.9972	0.5877	0.110262664
VG1	APPtg Mem	0.3447	0.8787	0.534	0.100187617
VG3	APPtg Mem	0.2599	0.6851	0.4252	0.079774859
VG10	WT Basal	0.4451	1.2184	0.7733	0.145084428
VG12	WT Basal	0.4442	1.2538	0.8096	0.151894934
VG2	WT Mem	0.2137	0.5802	0.3665	0.068761726
VG4	WT Mem	0.2394	0.7343	0.4949	0.092851782
VG13	WT Basal	0.27	1.0043	0.7343	0.137767355
VG15	WT Basal	0.2837	1.2478	0.9641	0.180881801
VG5	WT Mem	0.2666	1.1724	0.9058	0.169943715
VG8	WT Mem	0.1882	0.8965	0.7083	0.132889306
VG14	APPtg Basal	0.216	0.9632	0.7472	0.140187617
VG16	APPtg Basal	0.288	1.3067	1.0187	0.191125704
VG6	APPtg Mem	0.2269	1.0723	0.8454	0.158611632
VG7	APPtg Mem	0.2234	1.1159	0.8925	0.167448405

Table 8. Raw T2-T1 change in optical density values with corresponding sample background subtracted from each test sample (column 2). Change in OD values with background removed, minus the average absolute blank value (column 3). Column 3 values used for further analysis. All values are pre-normalisation with western blot data.

Sample	Group	Change in OD-background	(Change OD-background)-blank
VG9	APPtg Basal	0.133076923	0.128574109
VG11	APPtg Basal	0.092382739	0.087879925
VG1	APPtg Mem	0.095347092	0.090844278
VG3	APPtg Mem	0.071463415	0.0669606
VG10	WT Basal	0.124108818	0.119606004
VG12	WT Basal	0.135966229	0.131463415
VG2	WT Mem	0.067485929	0.062983114
VG4	WT Mem	0.082532833	0.078030019
VG13	WT Basal	0.111688555	0.107185741

VG15	WT Basal	0.148968105	0.144465291
VG5	WT Mem	0.145178236	0.140675422
VG8	WT Mem	0.106660413	0.102157598
VG14	APPtg Basal	0.115046904	0.11054409
VG16	APPtg Basal	0.162232645	0.157729831
VG6	APPtg Memory	0.134896811	0.130393996
VG7	APPtg Memory	0.143883677	0.139380863

Table 9. Two-way T-test results for PFK assay data post-normalisation against western blot data. T-tests performed on change in optical density values with average absolute blank and respective sample backgrounds subtracted before testing.

Comparison	Mean	SD	t-value	df	p-value
WT Basal v. WT Mem	0.14 ; 0.14	0.09 ; 0.07	0.11	6	0.91
WT Mem v. APPtg Mem	0.14 ; 0.13	0.07 ; 0.07	0.16	6	0.88
APPtg Basal v. APPtg Mem	0.15; 0.13	0.07 ; 0.07	0.47	6	0.65
WT Basal v. APPtg Basal	0.14 ; 0.15	0.09 ; 0.07	-0.16	6	0.88

 $\textit{Table 10. Two-way ANOVA results-PFK normalised assay data. This data is change in \textit{OD} \;.}$

Source of Variation	% of total variation	P value	P value summary	Significant?	
Interaction	0.4262	0.8234	ns	No	
Row Factor	1.298	0.6975	ns	No	
Column Factor	0.002317	0.9869	ns	No	
ANOVA table	ss	DF	MS	F (DFn, DFd)	P value
Interaction	0.000294	1	0.000294	F (1, 12) = 0.05205	P=0.8234

	1	1	T	F (4, 46)	1
Row Factor	0.000894	1	0.000894	F (1, 12) = 0.1585	P=0.6975
Column Factor	1.6E-06	1	1.6E-06	F (1, 12) = 0.0002830	P=0.9869
Residual	0.06766	12	0.005639		
Difference between column means		Difference between row means		Interaction CI	
Mean of Wild- Type	0.1386	Mean of Basal	0.1464	Mean diff, A1 - B1	-0.009197
Mean of APPtg	0.1392	Mean of Memory Retrieval	0.1314	Mean diff, A2 - B2	0.007934
Difference between means	-0.000632	Difference between means	0.01495	(A1 -B1) - (A2 - B2)	-0.01713
SE of difference	0.03755	SE of difference	0.03755	95% CI of difference	-0.1807 to 0.1465
95% CI of difference	-0.08244 to 0.08117	95% CI of difference	-0.06686 to 0.09675	(B1 - A1) - (B2 - A2)	0.01713
				95% CI of difference	-0.1465 to 0.1807
Normality of Residuals					
Test name	Statistics	P value	Passed normality test (alpha=0.05)?	P value summary	
D'Agostino- Pearson omnibus (K2)	8.917	0.0116	No	**	
Anderson- Darling (A2*)	0.7943	0.0308	No	**	
Shapiro-Wilk (W)	0.8803	0.0392	No	**	
Kolmogorov- Smirnov (distance)	0.2136	0.0493	No	**	

Table 12. Values derived from equation of NADH standard curve. Y value= OD at end point of reaction (320seconds). M value= gradient. C value= y-intercept. X value= nmol NADH in sample.

Sample	Y Value	M Value	C Value	X Value
VG9	1.1023	0.4557	0.2468	1.87733158
VG11	0.9972	0.4557	0.2468	1.64669739
VG1	0.8787	0.4557	0.2468	1.38665789
VG3	0.6851	0.4557	0.2468	0.96181698
VG10	1.2184	0.4557	0.2468	2.13210445
VG12	1.2538	0.4557	0.2468	2.20978714
VG2	0.5802	0.4557	0.2468	0.73162168
VG4	0.7343	0.4557	0.2468	1.06978275
VG13	1.0043	0.4557	0.2468	1.66227781
VG15	1.2478	0.4557	0.2468	2.19662058
VG5	1.1724	0.4557	0.2468	2.03116085
VG8	0.8965	0.4557	0.2468	1.42571867
VG14	0.9632	0.4557	0.2468	1.5720869
VG16	1.3067	0.4557	0.2468	2.32587228
VG6	1.0723	0.4557	0.2468	1.81149879
VG7	1.1159	0.4557	0.2468	1.90717577

Formula:

PFK Activity= (B/Change T)

Change T= T2-T1

B= Amount NADH in sample, calculated from standard curve

Table 13. PFK activity calculation raw values. NADH values were derived using equation of standard curve. PFK activity per sample calculated using PFK activity formula. Change T=T2=T1.

Sample	Change T	B- NADH from Standard curve	PFK activity per sample
VG9	5.33	1.877331578	0.352219808
VG11	5.33	1.646697389	0.308948853
VG1	5.33	1.386657889	0.260160955
VG3	5.33	0.961816985	0.180453468
VG10	5.33	2.132104455	0.400019598
VG12	5.33	2.209787141	0.41459421
VG2	5.33	0.731621681	0.137264856
VG4	5.33	1.069782752	0.20070971
VG13	5.33	1.662277814	0.31187201
VG15	5.33	2.196620584	0.412123937
VG5	5.33	2.031160851	0.381080835
VG8	5.33	1.425718675	0.267489432
VG14	5.33	1.572086899	0.294950638
VG16	5.33	2.325872284	0.436373787
VG6	5.33	1.811498793	0.339868441
VG7	5.33	1.907175774	0.357819094

Table 14. Two-way T-test results for PFK activity (nmol NADH/min/5μg) data post-normalisation.

Comparison	Mean	SD	t-value	df	p-value
WT Basal v. WT Mem	0.46 ; 0.4	0.37 ; 0.23	0.28	6	0.79
WT Mem v. APPtg Mem	0.4 ; 0.38	0.23 ; 0.27	0.07	6	0.94
APPtg Basal v. APPtg Mem	0.48 ; 0.38	0.3; 0.27	0.49	6	0.64
WT Basal v. APPtg Basal	0.46 ; 0.48	0.37; 0.3	-0.09	6	0.93

Table 15. Two-way ANOVA results-PFK normalised assay data. This data is measuring PFK activity by calculating the production of NADH in nmol/min/ $5\mu g$.

Source of Variation	% of total variation	P value	P value summary	Significant?	
Interaction	0.1068	0.9107	ns	No	
Row Factor	2.313	0.6036	ns	No	
Column Factor	0.004724	0.9812	ns	No	
	<u>. </u>	1	1	•	1
ANOVA table	SS	DF	MS	F (DFn, DFd)	P value
Interaction	0.0012	1	0.0012	F (1, 12) = 0.01313	P=0.9107
Row Factor	0.026	1	0.026	F (1, 12) = 0.2844	P=0.6036
	5.31E-05	1	5.31E-05	F (1, 12) = 0.0005810	P=0.9812
Column Factor	3.31E-03	·			

Difference					
between					
column means					
Columninineans					
Mean of Wild-					
Туре	0.4279				
Mean of APPtg	0.4316				
Difference					
between					
means	-0.003643				
Illeans	-0.003043				
SE of					
difference	0.1512				
050/ 01 - 5	0.0000 (
95% CI of	-0.3330 to				
difference	0.3257				
	ı	1		ı	1
	T				
Difference					
between row					
means	0.4701				
Many of Book	0.2005				
Mean of Basal	0.3895				
Mean of					
Memory					
Retrieval	0.08062				
Difference					
between					
means	0.1512				
SE of	-0.2487 to				
difference	0.4100				
	3.1100				
95% CI of					
difference	0.4701				
Interaction CI	-0.02096				
Mean diff, A1 -					
B1	0.01368				
Mean diff, A2 -					
B2	-0.03464				
(A1 -B1) - (A2 -	-0.6933 to				
B2)	0.6241				
95% CI of					
difference	0.03464				
unierence	0.03464				
1	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>

(B1 - A1) - (B2 - A2)	-0.6241 to 0.6933				
95% CI of difference	-0.02096				
Normality of Residuals					
Test name	Statistics	P value	Passed normality test (alpha=0.05)?	P value summary	
D'Agostino- Pearson omnibus (K2)	14.98	0.0006	No	**	
Anderson- Darling (A2*)	1.33	0.0013	No	**	
Shapiro-Wilk (W)	0.8206	0.0052	No	**	
Kolmogorov- Smirnov (distance)	0.2351	0.0183	No	**	

Combined enzymatic acitivty results (full 32 sample results)

Combined Assay Results:

MDH2

Table 16. Combined MDH2 assay data. Average values for each replicate sample.

Sample	Group	Average Change in OD/min	Western Blot Protein Abundance	Normalised Average Value
VG13	WT Basal	0.0115	1.72523444	0.00666576
VG15	WT Basal	0.011115	1.31162417	0.00847423
VG5	WT Mem	0.01023	1.17996454	0.00866975
VG8	WT Mem	0.008645	0.35472836	0.02437076
VG14	APPtg Basal	0.011285	0.96454362	0.01169983
VG16	APPtg Basal	1.18748369	0.01028225	0.00964645
VG6	APPtg Mem	0.01123	1.31257738	0.00855569
VG7	APPtg Mem	0.01135	0.30874585	0.03676163
VG9	APPtg Basal	0.01092	0.35905421	0.03041323
VG11	APPtg Basal	0.00981	0.21517712	0.04559035
VG1	APPtg Mem	0.00879	1.15251082	0.00762683
VG3	APPtg Mem	0.008125	0.18675967	0.04350511

VG10	WT Basal	0.012085	0.29753485	0.04061709
VG12	WT Basal	0.011555	0.28427509	0.04064725
VG2	WT Mem	0.009445	0.8349512	0.01131204
VG4	WT Mem	0.00996	0.25188861	0.03954129

Table 17. T-test results MDH2 combined assay results

Comparison	Mean	SD	t-value	df	p-value
WT Basal v. WT Mem	0.02 ; 0.02	0.02 ; 0.01	0.26	6	0.80
WT Mem v. APPtg Mem	0.02 ; 0.02	0.01; 0.02	-0.27	6	0.80
APPtg Basal v. APPtg Mem	0.02 ; 0.02	0.02 ; 0.02	0.02	6	0.99
WT Basal v. APPtg Basal	0.02 ; 0.02	0.02 ; 0.02	-0.02	6	0.99

Table 18. Two-way ANOVA results for MDH2 activity. Data has been normalised against western blot quantification. Combined data using full set of 32 samples.

Source of Variation	% of total variation	P value	P value summary	Significant?	
Interaction	0.2314	0.8699	ns	No	
Row Factor	0.3088	0.8499	ns	No	
Column Factor	0.3129	0.849	ns	No	
ANOVA table	SS	DF	MS	F (DFn, DFd)	P value
Interaction	8.42E-06	1	8.42E-06	F (1, 12) = 0.02801	P=0.8699
Row Factor	1.12E-05	1	1.12E-05	F (1, 12) = 0.03737	P=0.8499
Column Factor	1.14E-05	1	1.14E-05	F (1, 12) = 0.03787	P=0.8490
Residual	0.00361	12	0.000301		
	1	1			1
Difference between					
column means					
Mean of Wild-					
Туре	0.02254				
Mean of APPtg	0.02422				
Difference					
between means	-0.001688				
SE of difference	0.008672				
95% CI of difference	-0.02058 to 0.01721				
	•	•	•	•	•
Difference between row means					
Mean of Basal	0.02422				

Mean of					
Memory					
Retrieval	0.02254				
Difference					
between					
means	0.001676				
SE of					
difference	0.008672				
95% CI of	-0.01722				
difference	to 0.02057				
					I
Interaction CI					
Mean diff, A1 -					
B1	-0.000236				
Mean diff, A2 -					
B2	-0.003139				
(A1 -B1) - (A2 -					
B2)	0.002902				
95% CI of	-0.03489				
difference	to 0.04069				
(B1 - A1) - (B2					
- A2)	-0.002902				
95% CI of	-0.04069				
difference	to 0.03489				
	<u> </u>	<u> </u>		<u> </u>	
Normality of					
Residuals					
			Passed		
			normality test	P value	
Test name	Statistics	P value	(alpha=0.05)?	summary	
D'Agostino-					
Pearson	40.04	0.0004	No	**	
omnibus (K2)	12.31	0.0021	No		
Anderson- Darling (A2*)	1.127	0.0042	No	**	
	1.121	0.00-72	110		
Shapiro-Wilk (W)	0.8264	0.0062	No	**	
. ,					

Kolmogorov-					
Smirnov (distance)	0.2333	0.02	No	**	

PFK

Table 19. T-test results PFK combined data

Comparison	Mean	SD	t-value	df	p-value
WT Basal v. WT Mem	0.13 ; 0.16	0.09 ; 0.11	-0.42	6	0.69
WT Mem v. APPtg Mem	0.16; 0.13	0.11; 0.08	0.42	6	0.69
APPtg Basal v. APPtg Mem	0.15 ; 0.013	0.08 ; 0.08	0.31	6	0.77
WT Basal v. APPtg Basal	0.13 ; 0.15	0.09 ; 0.08	-0.32	6	0.76

Table 20. Two-way ANOVA results on PFK activity. Combined data using full set of 32 test samples. Data has been normalised against western blot quantification. Data measures change in OD/min.

Source of	% of total		P value		
Variation	variation	P value	summary	Significant?	
Interaction	2.221	0.6107	ns	No	
Row Factor	0.1402	0.8977	ns	No	
Column Factor	0.08301	0.9212	ns	No	
ANOVA table	SS	DF	MS	F (DFn, DFd)	P value
Interaction	0.002225	1	0.002225	F (1, 12) = 0.2733	P=0.6107
Row Factor	0.00014	1	0.00014	F (1, 12) = 0.01725	P=0.8977
Column Factor	8.31E-05	1	8.31E-05	F (1, 12) = 0.01021	P=0.9212
Residual	0.09769	12	0.008141		
Difference between					
column means					
Mean of Wild- Type	0.1436				
Mean of APPtg	0.139				
Difference between means	0.004559				
SE of difference	0.04511				
95% CI of difference	-0.09374 to 0.1029				
Difference between row means					

Mean of Basal	0.1383				
Mean of Memory Retrieval	0.1443				
Difference between means	-0.005925				
SE of difference	0.04511				
95% CI of difference	-0.1042 to 0.09237				
Interaction CI					
Mean diff, A1 - B1	-0.01902				
Mean diff, A2 - B2	0.02814				
(A1 -B1) - (A2 - B2)	-0.04716				
95% CI of difference	-0.2438 to 0.1494				
(B1 - A1) - (B2 - A2)	0.04716				
95% CI of difference	-0.1494 to 0.2438				
Normality of Residuals					
Test name	Statistics	P value	Passed normality test (alpha=0.05)?	P value summary	
D'Agostino- Pearson omnibus (K2)	13.02	0.0015	No	**	
Anderson- Darling (A2*)	1.248	0.002	No	**	
Shapiro-Wilk (W)	0.8329	0.0077	No	**	

Kolmogorov-					
Smirnov					
(distance)	0.2644	0.0039	No	**	
1					

Table 21. Values derived from equation of NADH standard curve. Y value= OD at end point of reaction (320seconds). M value= gradient. C value= y-intercept. X value= nmol NADH in sample. Data from full set of 32 samples, after normalisation against western blotting abundance.

Sample	Y Value	M Value	C Value	X Value
VG9	1.00025	0.4557	0.2468	1.65339039
VG11	0.98715	0.4557	0.2468	1.62464341
VG1	0.7109	0.4557	0.2468	1.01843318
VG3	0.645	0.4557	0.2468	0.8738205
VG10	1.06465	0.4557	0.2468	1.79471143
VG12	1.08255	0.4557	0.2468	1.83399166
VG2	0.5231	0.4557	0.2468	0.60631995
VG4	0.8145	0.4557	0.2468	1.24577573
VG13	1.03705	0.4557	0.2468	1.73414527
VG15	1.2443	0.4557	0.2468	2.18894009
VG5	1.1709	0.4557	0.2468	2.02786921
VG8	1.06355	0.4557	0.2468	1.79229756
VG14	0.99235	0.4557	0.2468	1.63605442
VG16	1.25155	0.4557	0.2468	2.20484968
VG6	1.12235	0.4557	0.2468	1.92132982
VG7	1.12955	0.4557	0.2468	1.93712969

Table 22. PFK activity calculation raw values. NADH values were derived using equation of standard curve. PFK activity per sample calculated using PFK activity formula. Change T= T2=T1. Data from full set of 32 samples, after normalisation against western blotting abundance.

Sample	Change T	B- NADH from Standard curve	Normalised PFK activity per sample
Sample	Change	B- NADH HOIII Stalldard Curve	per sample
VG9	5.33	1.653390388	0.579468244
VG11	5.33	1.624643406	0.618581387
VG1	5.33	1.01843318	0.129262691
VG3	5.33	0.873820496	0.436495442
VG10	5.33	1.794711433	0.56502409
VG12	5.33	1.833991661	0.607202275
VG2	5.33	0.606319947	0.096077837
VG4	5.33	1.24577573	0.511412707
VG13	5.33	1.734145271	0.141803433
VG15	5.33	2.188940092	0.249359899
VG5	5.33	2.027869212	0.28758243
VG8	5.33	1.792297564	0.695624549
VG14	5.33	1.636054422	0.242204079
VG16	5.33	2.204849682	0.257452305
VG6	5.33	1.921329822	0.21142795
VG7	5.33	1.937129691	0.539722568

Table 23. Two-way ANOVA results of PFK activity. Combined results using full set of 32 test samples. Data has been normalised against western blot quantification. Data measuring PFK activity as amount of NADH produced in nmol/min/5µg.

Source of Variation	% of total variation	P value	P value summary	Significant?
Interaction	0.5061	0.7861	ns	No
Row Factor	20.42	0.1033	ns	No
Column Factor	0.2432	0.8507	ns	No

ANOVA table	ss	DF	MS	F (DFn, DFd)	P value
Interaction	0.000575	1	0.000575	F (1, 12) = 0.07705	P=0.7861
Row Factor	0.02321	1	0.02321	F (1, 12) = 3.109	P=0.1033
Column Factor	0.000276	1	0.000276	F (1, 12) = 0.03702	P=0.8507
Residual	0.08958	12	0.007465		
Difference between column means					
Mean of Wild- Type	0.3101				
Mean of APPtg	0.3018				
Difference between means	0.008311				
SE of difference	0.0432				
95% CI of difference	-0.08581 to 0.1024				
Difference between row means					
Mean of Basal	0.3441				
Mean of Memory Retrieval	0.2679				
Difference between means	0.07617				
SE of difference	0.0432				
95% CI of difference	-0.01796 to 0.1703				

Interaction CI					
Mean diff, A1 - B1	0.0203				
Mean diff, A2 - B2	-0.00368				
(A1 -B1) - (A2 - B2)	0.02398				
95% CI of difference	-0.1643 to 0.2122				
(B1 - A1) - (B2 - A2)	-0.02398				
95% CI of difference	-0.2122 to 0.1643				
	1	•			
Normality of Residuals					
Test name	Statistics	P value	Passed normality test (alpha=0.05)?	P value summary	
D'Agostino- Pearson omnibus (K2)	0.42	0.8106	No	**	
Anderson- Darling (A2*)	0.531	0.1474	No	**	
Shapiro-Wilk (W)	0.9323	0.2652	No	**	
Kolmogorov- Smirnov (distance)	0.1771	0.1	No	**	

APPENDIX B- FIGURES

The following figures present the results of MDH2 and 6-PFK assays using full set of samples, in combination with another student.

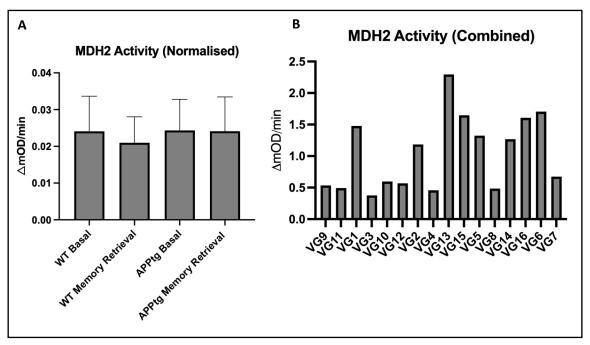


Figure 23. MDH2 assay data, normalised to western blot data. Assay utilising 32 samples (16 samples, carried out in duplicate), 16 from another student in the group to allow for full statistical comparison. Figure A shows the MDH2 activity expressed as change in OD per minute, per group average (n=8). Figure B shows the MDH2 activity per sample, expressed as change in OD per minute, per sample average.

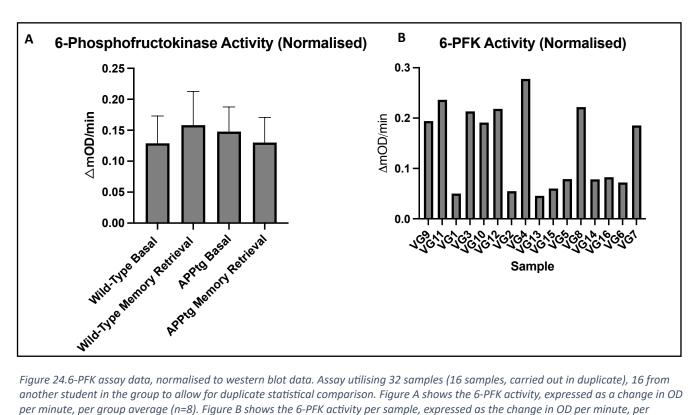


Figure 24.6-PFK assay data, normalised to western blot data. Assay utilising 32 samples (16 samples, carried out in duplicate), 16 from another student in the group to allow for duplicate statistical comparison. Figure A shows the 6-PFK activity, expressed as a change in OD per minute, per group average (n=8). Figure B shows the 6-PFK activity per sample, expressed as the change in OD per minute, per sample average.

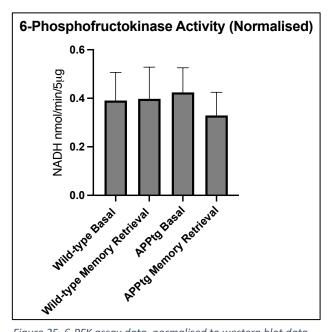


Figure 25. 6-PFK assay data, normalised to western blot data. Assay utilised 32 samples (16 samples, carried out in duplicate), 16 carried out by another student in the group to allow for duplicate statistical comparison. Activity is expressed as the amount of NADH produced per minute, per 5 µg protein.

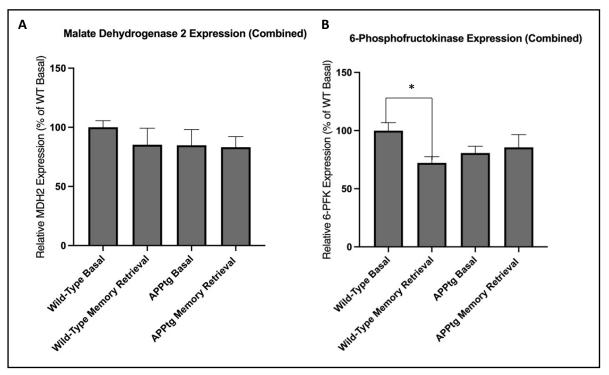


Figure 26. Western blot assay data. Blots were carried out in duplicate using full set of 16 samples (8 from another student in the group). Figure A shows the average MDH2 expression per group, expressed as a percentage of WT basal average. Figure B shows the average 6-PFK expression per group, expressed as a percentage of WT basal average. 6-PFK activity in WT basal mice was significantly higher than in WT mice during memory retrieval (p=0.017925, a=0.05).

PROTEOMICS FIGURES

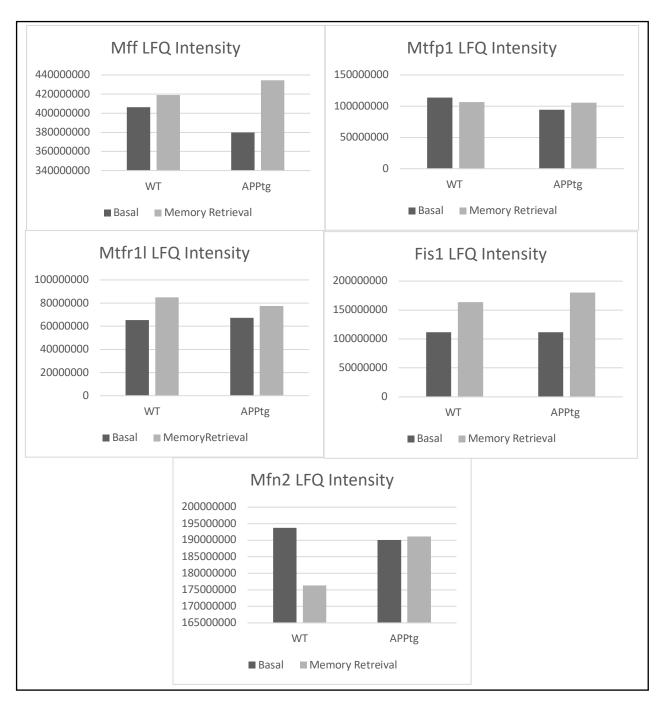
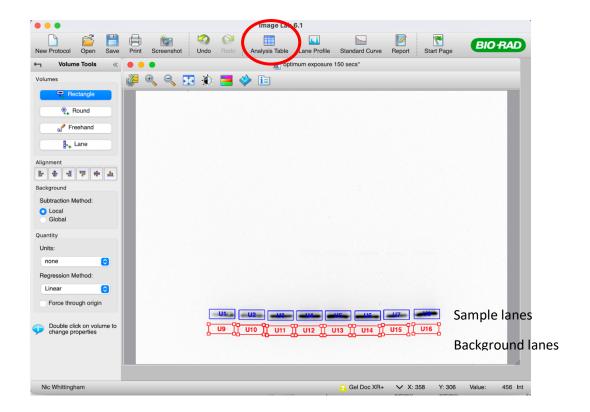
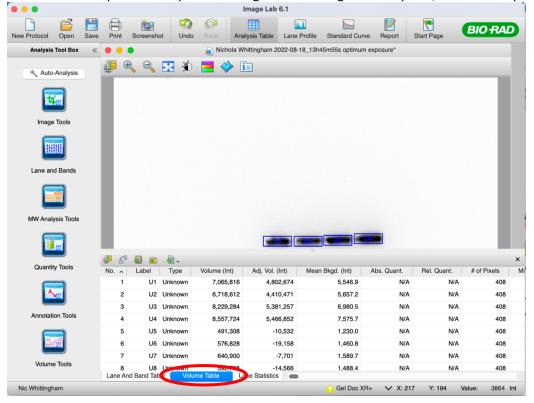


Figure 27. LFQ Intensity figures for proteins involved in mitochondrial fission and fusion. Raw LFQ intensities before the application of FDR correction or 20% regulation threshold.

APPENDIX C- PROTOCOLS


1. Synaptosome preparation method

Synaptosome preparation was carried out by Dr Anthony Ashton, UCLan


- 1) Whole cerebellum (n=16) homogenized (900RPM) in 40ml of 0.32M sucrose (10nM Hepes pH 7.4) containing 1:100 protease inhibitors, 1:500 EDTA and 1:1000 PMSF. Homogenisation technique used 12 strokes of motor-driven Teflon pestle at 900ROM, lasting approximately 2 minutes.
- 2) Supernatant retrieved and spun down in a Beckman Avanti 17 rotor (4400RPM) to retrieve second supernatant (S2), whilst removing nuclear pellet (P1). S2 was centrifuged again at 14500RPM for 20 minutes. Second pellet (P2) retrieved.
- 3) P2 solubilised and resuspended in 8ml of 0.32M sucrose containing 1:100 protease inhibitors, 1:500 EDTA and 1:1000 PMSF. This was placed on top of a sucrose gradient of 1.2M and 0.8M layers (also containing protease inhibitors cocktail) using 27ml tubes. P2 samples spun down through gradient for 90minutes at 51000RPM. Purified synaptosomes collected at the interface between 0.8M and 1.2M
- 4) Purified synaptosomes diluted slowly 3.125-fold with 10mM Hepes (pH 7.4) to prevent osmotic shock. Purified synaptosomes resuspended in 0.32M sucrose and centrifuged down in the Beckman Avanti 17 at 14500RPM for 20 minutes to retrieve purified synaptosome pellet.

2. Western Blot ImageLab Quantification

- 1. Open WB image file with Image Lab
- 2. Choose Volume Tools from Analysis Tool Box
- 3. Choose rectangles
- 4. Draw a rectangle around the first lane, ensuring minimum background
- 5. Copy the rectangle and paste around all other sample lanes
- 6. Cope all of the rectangles around sample lanes
- 7. Paste them into clean background area, close to sample lanes and aligned with each band

8. Once all samples and respective background rectangles are in place, choose Analysis Table

- 9. Export the table for Excel
- 10. Calculate average of background values
- 11. Subtract background from the volume of each sample band
- 12. Repeat 1-11 again for Loading Control Image
- 13. Divide the quantification of the test antibody by the loading control

14. Do T-test to verify any differences

3. Enzymatic activity assay optimization workflow

- 1) Carry out assay precisely following manufacturers protocol utilising 'practice' (WT) samples at concentrations ranging from 5-0.0125 μ g/ μ l; blanks (assay buffer or incubation solution), blanks with an additional 3 μ l of lysis buffer (3 μ l is the same amount present within test samples). Blanks test kits are working correctly and producing no activity. Lysis buffer blank included to determine if the addition of lysis buffer has any effect on enzymatic activity or whether the lysis buffer reads at a higher optical density than the absolute blanks
- 2) Select sample concentration with best linearity of results
- 3) If kit utilises standards and positive controls, trial concentrations of standard and volume of positive controls until results closest match that of test samples
- 4) Trial experimental sample at concentration determined in step 2
- 5) If assay produces expected linearity of samples, positive controls and standards, and blanks show no linearity, inspect results over kinetic cycle and determine if kinetic cycle should be extended, reduced, or shaking steps implemented
- 6) Trial assay at room temperature AND at 37°C. Compare activity levels
- 7) Once optimal kinetic cycle timing and all samples and kit components have been optimised, progress to final assay

4. Metabolomics workflow

- Prepare standards (tri-sodium citrate dihydrate, sodium pyruvate, sodium succinate) into working solutions of 1M (1M of metabolite, not whole salt; dissolve in H20 then 50:50 methanol:acetonitrile)
- 2) Submit to GC-MS
- 3) Locate acidic forms of standards (salts left to much residue around injection site)
- 4) Acidic standards need to be derivatised (introduction of additional pyruvic acid standard)
- 5) Calculate amount of derivatising agent to maintain correct molar ratio
- 6) Dilute 1/10
- 7) Submit to GC-MS- detect metabolites at correct M/Z
- 8) Submit non-derivatised standards to LC-MS- enhanced resolution and no need for derivatisation, saving cost and time
- 9) Switch to UP-LC-MS
- 10) Make up mobile phase (0.0001% formic acid, 20ml acetonitrile, 980ml LC-MS grade water)
- 11) Dissolve standards in mobile phase to final concentration of 1M
- 12) Serial dilutions of standard: 1M, 1mM, 1 μM, 1nM
- 13) Prime solvents and wash syringes
- 14) Run each standard (1mM) in MRM mode at a range of cone voltages: 30, 40, 50, 60, 70, 80. Run 1 blank (mobile phase) in between each new metabolite to ensure no residue carried over from previous metabolite
- 15) Select: cone voltage that produced the strongest signal for each metabolite; retention time for each metabolite (± 2 minutes)

- 16) Run standards again in MRM mode using selected cone voltage, retention time frame and expected m/z
- 17) Standard curve generation
- **5. GC-MS Derivatisation Protocol:** Fiehn O. (2016). Metabolomics by Gas Chromatography-Mass Spectrometry: Combined Targeted and Untargeted Profiling. *Current protocols in molecular biology*, *114*, 30.4.1–30.4.32. https://doi.org/10.1002/0471142727.mb3004s114
 - 1. Prepare 20mg/mL Methoxyamine hydrochloride [MeOX] solution in pyridine
 - 2. Vortex MeOX solution and sonicate at 60°Cfor 15 min to dissolve
 - Ensure that all samples are completely dry before derivatization. If samples taken from
 freezer, ensure they have reached room temperature before opening, otherwise water will
 condense inside the tubes and render MSTFA unsuitable
 - 4. Add 10µl MeOX solution to each dried standard
 - 5. Shake at max speed at 30°C for 1.5hours
 - 6. To 1ml MSTFA add 10 μ of FAME marker. Vortex for 10 seconds
 - 7. Add 91µl of MSTFA + FAME mixture to each sample and standard. Cap immediately
 - 8. Shake at max speed for 0.5 hours at 37°C
 - 9. Transfer contents to glass vials with micro-inserts inserted and cap immediately
 - 10. Submit to GC-MS data acquisition

APPENDIX D- PROTEOMICS DATA

SECTION 1- FDR CORRECTED PROTEOMICS RESULTS

1. Gene Ontology-Biological Process

Wild-Type Basal v. Wild-Type Memory Retrieval- Upregulated

Table 24. DAVID Gene Ontology output of enriched biological processes within proteins upregulated in WT mice during memory retrieval, when compared to WT mice at the basal level.

Term	Count	%	PValue	Genes	Fold Enrichment	FDR
Term	Count	70	rvalue	Genes	Linicinnent	TON
				DCTN2,		
GO:0032402~melanosome				RAB11A,		
transport	3	9.677419	0.005512	RAB11B	24.61607	1
				CLTB,		
				CLTA,		
				NAPG,		
GO:0016192~vesicle-				RAB11A,		
mediated transport	5	16.12903	0.034409	RAB11B	3.816445	1
GO:0098869~cellular				HBB-BS,		
oxidant detoxification	2	6.451613	0.043449	PRDX6	43.7619	1
GO:0090150~establishment						
of protein localization to				RAB11A,		
membrane	2	6.451613	0.043449	RAB11B	43.7619	1
GO:0007080~mitotic						
metaphase plate				DCTN2,		
congression	2	6.451613	0.071398	RAB11A	26.25714	1
GO:0032486~Rap protein				RAP1A,		
signal transduction	2	6.451613	0.071398	RAP2B	26.25714	1

Wild-Type Basal v. APPtg Basal-Upregulated

Table 25. DAVID Gene Ontology output of enriched biological processes within proteins upregulated in APPtg mice at the basal level, when compared to WT mice at the basal level.

Term	Count	%	PValue	Genes	Fold Enrichment	FDR
Term	Count	70	1 Value	Genes	Limennene	1 DIX
GO:0006123~mitochondrial				COX7A2,		
electron transport,				COX5B,		
cytochrome c to oxygen	3	6.122449	0.014313	COX6A1	15.31667	1
				HADHB,		
				FABP3,		
				DBI,		
GO:0006631~fatty acid				HSD17B10,		
metabolic process	5	10.20408	0.024099	SNCA	4.345154	1
				HADHB,		
GO:0010467~gene				APOE,		
expression	3	6.122449	0.048274	GFAP	8.168889	1
				PSMC1,		
GO:1901215~negative				APOE,		
regulation of neuron death	3	6.122449	0.067242	SNCA	6.807407	1
GO:0006641~triglyceride						
metabolic process	2	4.081633	0.092445	DBI, APOE	20.42222	1

Wild-Type Basal v. Wild-Type Memory Retrieval- Downregulated

Table 26. DAVID Gene Ontology output of enriched biological processes within proteins downregulated in WT mice during memory retrieval, when compared to WT mice at the basal level.

					Fold	
Term	Count	%	PValue	Genes	Enrichment	FDR

GO:0006915~apoptotic process	3	30	0.05416	CYFIP2, OPA1, MADD	6.971875	1
GO:0001889~liver development	2	20	0.062834	MPST, ACO2	27.8875	1

Wild-Type Basal v. APPtg Basal- Downregulated

Table 27. DAVID Gene Ontology output of enriched biological processes within proteins downregulated in APPtg mice at the basal level, when compared to WT mice at the basal level.

Term	Count	%	PValue	Genes	Fold Enrichment	FDR
remi	Count	70	Pvalue	Genes	Enrichment	FUK
				CAPZB,		
GO:0051016~barbed-end				ADD3,		
actin filament capping	3	9.090909	0.007704	ADD2	20.88636	1
GO:0051490~negative						
regulation of filopodium				CAPZB,		
assembly	2	6.060606	0.051354	NRXN1	37.13131	1
GO:0021707~cerebellar				NRXN1,		
granule cell differentiation	2	6.060606	0.051354	ATP2B2	37.13131	1
				NRXN1,		
GO:0050885~neuromuscular				TNR,		
process controlling balance	3	9.090909	0.068705	ATP2B2	6.683636	1
				CACNB4,		
GO:2000300~regulation of				CSPG5,		
synaptic vesicle exocytosis	3	9.090909	0.073639	CASK	6.426573	1
GO:0007158~neuron cell-				NRXN1,		
cell adhesion	2	6.060606	0.084161	TNR	22.27879	1
GO:0048490~anterograde				MADD,		
synaptic vesicle transport	2	6.060606	0.084161	AP3D1	22.27879	1
				PACS1,		
GO:0072659~protein				ROCK2,		
localization to plasma				CASK,		
membrane	4	12.12121	0.090651	CLASP2	3.593353	1

2. Gene Ontology- Cellular Component

Wild-Type Basal v. Wild Type Memory Retrieval- Upregulated

Table 28. DAVID Gene Ontology output of enriched cellular components within proteins upregulated in WT mice during memory retrieval, when compared to WT mice at the basal level.

Term	Count	%	PValue	Genes	Fold Enrichment	FDR
GO:0099631~postsynaptic endocytic zone				CLTB,		
cytoplasmic component	2	6.451613	0.029636	CLTA	64.68966	1
GO:0030130~clathrin coat				CLTD		
of trans-Golgi network vesicle	2	6.451613	0.044134	CLTB, CLTA	43.12644	1
CO:004E22E~phagagatic				RAP1A, RAB11A,		
GO:0045335~phagocytic vesicle	3	9.677419	0.052168	RAB11B	7.762759	1
CO.0055030000 a salia a				RAP2B,		
GO:0055038~recycling endosome membrane	3	9.677419	0.059934	RAB11A, RAB11B	7.187739	1
GO:0030118~clathrin coat	2	6.451613	0.072507	CLTB, CLTA	25.87586	1
GO:0030132~clathrin coat				CLTB,		
of coated pit	2	6.451613	0.086387	CLTA	21.56322	1
GO:0098835~presynaptic endocytic zone				CLTB,		
membrane	2	6.451613	0.086387	CLTA	21.56322	1
GO:0030125~clathrin vesicle coat	2	6.451613	0.086387	CLTB, CLTA	21.56322	1

Wild-Type Basal v. APPtg Basal- Upregulated

Table 29. DAVID Gene Ontology output of enriched cellular components within proteins upregulated in APPtg mice at the basal level, when compared to WT mice at the basal level.

Term	Count	%	PValue	Genes	Fold Enrichment	FDR
GO:0005743~				HADHB, CHCHD3, NDUFA5,		
mitochondrial				TIMM9, NDUFS5, NDUFA2,		0.41
inner		24.4		COX7A2, DHRS1, COX5B,		862
membrane	12	898	0.002701	COX6A1, HSD17B10, SNCA	2.692823	7
GO:0005751~ mitochondrial						
respiratory						
chain complex		6.12				
IV	3	2449	0.02476	COX7A2, COX5B, COX6A1	11.6281	1
GO:0099631~						
postsynaptic						
endocytic						
zone						
cytoplasmic		4.08				
component	2	1633	0.045329	CLTB, CLTA	42.63636	1
GO:0030130~c						
lathrin coat of						
trans-Golgi						
network		4.08				
vesicle	2	1633	0.067234	CLTB, CLTA	28.42424	1
GO:0005615~						
extracellular		10.2		PCMT1, FABP3, DBI, APOE,		
space	5	0408	0.08975	SNCA	2.842424	1

Wild-Type Basal v. Wild-Type Memory Retrieval- Downregulated

Table 30. DAVID Gene Ontology output of enriched cellular components within proteins downregulated in WT mice during memory retrieval, when compared to WT mice at the basal level.

Term	Count	%	PValue	Genes	Fold Enrichment	FDR
				CYFIP2,		
				MPST,		
				MADD,		
				DMXL2,		
GO:0045202~synapse	5	50	0.05977	SRCIN1	2.797794	1

Wild-Type Basal v. APPtg Basal- Downregulated

Table 31. DAVID Gene Ontology output of enriched cellular components within proteins downregulated in APPtg mice at the basal level, when compared to WT mice at the basal level.

Term	Count	%	PValue	Genes	Fold Enrichment	FDR
				CACNB4,		
				ROCK2,		
				NRXN1,		
				AP3D1,		
				ADAM22,		
				CSPG5,		
				TNR,		
				ATP2B2,		
				DLGAP2,		
GO:0098978~glutamatergic				PPFIA3,		
synapse	11	33.33333	0.007257	ADD2	2.451996	1
				CAPZB,		
				ROCK2,		
				NRXN1,		
GO:0098685~Schaffer				TNR,		
collateral - CA1 synapse	5	15.15152	0.021506	CASK	4.441288	1
				SH3GLB1,		
				ATP8A1,		
				PACS1,		
				AP3D1,		
				CSPG5,		
GO:0005794~Golgi				GLG1,		
apparatus	7	21.21212	0.079047	CLASP2	2.206317	1
GO:0008290~F-actin				CAPZB,		
capping protein complex	2	6.060606	0.080019	ADD2	23.45	1
				SH3GLB1,		
				AP3D1,		
GO:0000139~Golgi				CSPG5,		
membrane	4	12.12121	0.086395	GLG1	3.664063	1

3. Gene Ontology- Molecular Function

Wild-Type Basal v. Wild Type Memory Retrieval- Upregulated

Table 32. DAVID Gene Ontology output of enriched molecular functions within proteins upregulated in WT mice during memory retrieval, when compared to WT mice at the basal level.

Term	Count	%	PValue	Genes	Fold Enrich ment	FDR
GO:0016787~						
hydrolase		22.5	0.06417	RAP1A, RAP2B, ATP6V1E1, PRDX6,	2.2957	
activity	7	8065	1	PAFAH1B2, RAB11A, RAB11B	41	1
GO:0032050~c						
lathrin heavy		6.45	0.07135		26.237	
chain binding	2	1613	9	CLTB, CLTA	04	1
GO:0031625~						
ubiquitin						
protein ligase		12.9	0.09440		3.4982	
binding	4	0323	7	TPI1, UBE2N, YWHAZ, PRDX6	72	1

Wild-Type Basal v. APPtg Basal- Upregulated

Table 33. DAVID Gene Ontology output of enriched molecular functions within proteins upregulated in APPtg mice at the basal level, when compared to WT mice at the basal level.

Term	Count	%	PValue	Genes	Fold Enrichment	FDR
				GLTP, FABP3,		
GO:0008289~lipid				PITPNM2,		
binding	5	10.20408	0.071434	DBI, APOE	3.074653	1

Wild-Type Basal v. Wild-Type Memory Retrieval- Downregulated

No results.

Wild-Type Basal v. APPtg Basal- Downregulated

Table 34. DAVID Gene Ontology output of enriched molecular functions within proteins downregulated in APPtg mice at the basal level, when compared to WT mice at the basal level.

Term	Count	%	PValue	Genes	Fold Enrichment	FDR
				CASK,		
				ATP2B2,		
GO:0005516~calmodulin				ADD3,		
binding	4	12.12121	0.066671	ADD2	4.071264	1

4. KEGG Pathways

Wild-Type Basal v. Wild Type Memory Retrieval- Upregulated

Table 35. DAVID annotation tools output of enriched KEGG pathways within proteins upregulated in WT mice during memory retrieval, when compared to WT mice at the basal level.

Term	Count	%	PValue	Genes	Fold Enrichment	FDR
				ARPC5L,		
				CLTB,		
				SNX12,		
				CLTA,		
				RAB11A,		
mmu04144:Endocytosis	6	19.35484	0.009425	RAB11B	4.05614	0.584341
				ATP6V1G2,		
				CLTB,		
mmu04721:Synaptic				CLTA,		
vesicle cycle	4	12.90323	0.025578	ATP6V1E1	5.708642	0.792921

mmu04962:Vasopressin- regulated water				DCTN2, RAB11A,		
reabsorption	3	9.677419	0.042969	RAB11B	8.376812	0.812017
72.72.00010.Ch.zah.zia /				TPI1,		
mmu00010:Glycolysis /				AKR1A1,		
Gluconeogenesis	3	9.677419	0.065485	ALDOC	6.643678	0.812017
mmu05100:Bacterial						
invasion of epithelial				ARPC5L,		
cells	3	9.677419	0.065485	CLTB, CLTA	6.643678	0.812017
mmu04961:Endocrine						
and other factor-				CLTB,		
regulated calcium				CLTA,		
reabsorption	3	9.677419	0.082291	RAB11A	5.838384	0.850339

Wild-Type Basal v. APPtg Basal- Upregulated

Table 36. DAVID annotation tools output of enriched KEGG pathways within proteins upregulated in APPtg mice at the basal level, when compared to WT mice at the basal level.

	Coun				Fold Enrichmen	
Term	t	%	PValue	Genes	t	FDR
				ATP6V1G2		
				, NDUFA5,		
				NDUFS5,		
				NDUFA2,		
				COX7A2,		
				ATP6V1E1,		
mmu00190:Oxidative		16.3265	0.00367	COX5B,		0.18534
phosphorylation	8	3	9	COX6A1	3.658228	9
				NDUFA5,		
				NDUFS5,		
				PSMC1,		
				NDUFA2,		
				COX7A2,		
				APOE,		
mmu05010:Alzheimer		22.4489	0.00411	COX5B,		0.18534
disease	11	8	9	COX6A1,	2.631623	9
discuse				HSD17B10,	2.031023	

				PPID,		
				SNCA		
mmu05022:Pathways of neurodegeneration - multiple diseases	12	24.4898	0.00956	DCTN2, NDUFA5, NDUFS5, PSMC1, NDUFA2, RAB39B, COX7A2, COX5B, COX6A1, HSD17B10, PPID, SNCA	2.200508	0.27854
mmu05016:Huntington disease	10	20.4081	0.01257 6	DCTN2, NDUFA5, NDUFS5, PSMC1, NDUFA2, CLTB, CLTA, COX7A2, COX5B, COX6A1	2.424497	0.27854
mmu04932:Non-alcoholic fatty liver disease	6	12.2449	0.01547 5	NDUFA5, NDUFS5, NDUFA2, COX7A2, COX5B, COX6A1	3.802632	0.27854
mmu05208:Chemical carcinogenesis - reactive oxygen species	7	14.2857 1	0.02430 8	MAP2K4, NDUFA5, NDUFS5, NDUFA2, COX7A2, COX5B, COX6A1	2.906609	0.36461 6
mmu05014:Amyotrophic lateral sclerosis	9	18.3673 5	0.03420 8	DCTN2, NDUFA5, NDUFS5, PSMC1, NDUFA2, RAB39B, COX7A2,	2.211735	0.43982 3

				COX5B, COX6A1		
mmu05100:Bacterial invasion of epithelial cells	4	8.16326 5	0.03980	ARPC5L, RHOG, CLTB, CLTA	4.982759	0.44783
mmu04714:Thermogenesi	6		0.06531	NDUFA5, NDUFS5, NDUFA2, COX7A2, COX5B, COX6A1		0.65315
mmu05012:Parkinson disease	8	12.2449 16.3265 3	0.07292	NDUFA5, NDUFS5, PSMC1, NDUFA2, COX7A2, COX5B, COX6A1, SNCA	2.611446	0.65629

Wild-Type Basal v. Wild-Type Memory Retrieval- Downregulated

No results.

Wild-Type Basal v. APPtg Basal- Downregulated

Table 37. DAVID annotation tools output of enriched KEGG pathways within proteins downregulated in APPtg mice at the basal level, when compared to WT mice at the basal level.

Term	Count	%	PValue	Genes	Fold Enrichment	FDR
mmu00920:Sulfur metabolism	2	6.060606	0.043509	MPST, BPNT1	42.81481	1
mmu04510:Focal adhesion	3	9.090909	0.091159	ROCK2, TNR, TLN2	5.504762	1

5. Clustering

Wild-Type Basal v. Wild-Type Memory Retrieval- Upregulated

Table 38. DAVID functional annotation clustering tools output within proteins upregulated in WT mice during memory retrieval, when compared to WT mice at the basal level.

Cluster 1-Enrichment Sc	ore: 2.67	/2/35442894	7 3 4 3	T	Γ	Г
	Coun				Fold Enrichmen	
Term	t	%	PValue	Genes	t	FDR
		70	1 value	Genes		TON
				ATP6V1G		
				2, CLTB,		
mmu04721:Synaptic		14.285714		CLTA,	29.256493	0.0149590
vesicle cycle	4	3	2.54E-04	ATP6V1E1	5	6
				ATP6V1G		
				2, CLTB,		
GO:0030672~synaptic		14.285714		CLTA,	22.164433	0.0325928
vesicle membrane	4	3	6.79E-04	RAB11B	9	7
				ARPC5L,		
				CLTB,		
				SNX12,		
mmu04144:Endocytosi		17.857142		CLTA,	10.352711	0.0251340
S	5	9	8.52E-04	RAB11B	4	9
				ATP6V1G		
				2, CLTB,		
				CLTA,		
KW-0968~Cytoplasmic		17.857142		ATP6V1E1	5.1382183	0.1944358
vesicle	5	9	0.013	, RAB11B	9	4
				ATP6V1G		
				2, CLTB,		
				CLTA,		
GO:0031410~cytoplas		17.857142	0.0226989	ATP6V1E1	4.3745593	0.1556496
mic vesicle	5	9	1	, RAB11B	3	5
Cluster 2-Enrichment Sc	ore: 1.33	1 34397330537	6122		l	l

					Fold	
	Coun				Enrichmen	
Term	t	%	PValue	Genes	t	FDR
Term		/0	rvalue	Genes	ľ	IDK
				SNX12,		
				LIN7A,		
GO:0015031~protein		14.285714	0.0441769	NAPG,	4.8212317	
transport	4	3	2	RAB11B	3	1
				ATP6V1G		
				2, SNX12,		
				FXYD6,		
				LIN7A,		
				ATP6V1E1		
			0.0451902	_	2.3448787	0.2817706
VW 0012~Transport	7	25	0.0451902	, NAPG,	7	7
KW-0813~Transport	/	25	2	RAB11B	/	/
				SNX12,		
				LIN7A,		
KW-0653~Protein		14.285714	0.0497242	NAPG,	4.4032520	0.2817706
transport	4	3	4	RAB11B	3	7
Cluster 3- Enrichment Sc	oro: 1 3	00276556604	T 400			
Cluster 3- Enrichment Sc	ore: 1.2	U82765566U4	15408			
					Fold	
	Coun				Enrichmen	
Term	t	%	PValue	Genes	t	FDR
				RAP1A,		
		10.714285		RAP2B,	27.929347	0.1268809
MOTIF:Effector region	3	7	0.0047611	RAB11B	8	9
WOTIF.Effector region	3	/	0.0047011	NADIID	0	3
				RAP1A,		
GO:0019003~GDP		10.714285	0.0055216	RAP2B,	25.857275	0.2772836
binding	3	7	6	RAB11B	3	9
				RAP1A,		
LIPID:S-geranylgeranyl		10.714285	0.0060419	RAP1A,	24.706730	0.1268809
		7	5	RAB11B	8	9
cysteine						,
cysteine	3	,	3	NADIID		
	3	,	3	RAP1A,		
IPR001806:Small	3	10.714285	3		17.741880	0.2479171
	3	,	0.0114205	RAP1A,		0.2479171 6
IPR001806:Small		10.714285		RAP1A, RAP2B, RAB11B	17.741880	
IPR001806:Small GTPase superfamily		10.714285	0.0114205	RAP1A, RAP2B, RAB11B	17.741880 3	6
IPR001806:Small GTPase superfamily IPR005225:Small GTP-	3	10.714285 7 10.714285	0.0114205	RAP1A, RAP2B, RAB11B RAP1A, RAP2B,	17.741880 3 14.428637	0.2479171
IPR001806:Small GTPase superfamily		10.714285	0.0114205	RAP1A, RAP2B, RAB11B	17.741880 3	6
IPR001806:Small GTPase superfamily IPR005225:Small GTP-	3	10.714285 7 10.714285	0.0114205	RAP1A, RAP2B, RAB11B RAP1A, RAP2B, RAB11B	17.741880 3 14.428637	0.2479171
IPR001806:Small GTPase superfamily IPR005225:Small GTP-	3	10.714285 7 10.714285	0.0114205	RAP1A, RAP2B, RAB11B RAP1A, RAP2B, RAB11B	17.741880 3 14.428637	0.2479171

		1	1	DAD4A		
				RAP1A,		
PROPEP:Removed in		10.714285	0.0393342	RAP2B,	9.1441281	
mature form	3	7	7	RAB11B	1	0.6195147
				RAP1A,		
				RAP2B,		
				•		
				ATP6V1E1		
				, PRDX6,		
GO:0016787~hydrolase		21.428571		PAFAH1B	2.6627218	0.7115103
activity	6	4	0.0600069	2, RAB11B	9	8
				RAP1A,		
				RAP2B,		
GO:0005768~endosom		14.285714		ATP6V1E1	4.2346682	0.3448048
е	4	3	0.0610592	, RAB11B	7	7
	_	3	0.0010332	, 10 10110	,	,
				RAP1A,		
GO:0003924~GTPase		10.714285	0.0709121	RAP2B,	6.5631616	0.7357136
activity	3	7	6	RAB11B	1	5
				RAP1A,		
GO:0005525~GTP		10.714285	0.0971794	RAP2B,	5.4609512	0.8962106
binding	3	7	7	RAB11B	6	7
billuling	3	,	,	NADIID	0	,
				RAP1A,		
		10.714285	0.1081634	RAP2B,	4.8236151	
KW-0342~GTP-binding	3	7	8	RAB11B	6	1
				RAP1A,		
				RAP1A,		
				-		
		17.057143	0.1085111	PRDX6,	2.4500204	
KW 0270od badaalaa	_	17.857142		PAFAH1B	2.4509284	4
KW-0378~Hydrolase	5	9	1	2, RAB11B	9	1
				RAP1A,		
				TPI1,		
				RAP2B,		
		17.857142		MBP,	2.5882235	0.3286839
KW-0488~Methylation	5	9	0.1095613	RAB11B	5	1
			3.233333		=	•
				RAP1A,		
		10.714285	0.1977006	RAP2B,	3.5060784	0.5272017
KW-0967~Endosome	3	7	7	RAB11B	3	7
IPR027417:P-loop				RAP1A,		
containing nucleoside		10.714285	0.3079269	RAP2B,	2.5837689	
triphosphate hydrolase	3	7	2	RAB11B	8	1
		,	_			_
GO:0000166~nucleotid		14.285714	0.4110535	RAP1A,	1.6636851	
e binding	4	3	9	RAPIA,	5	1
				NACZD,		

				UBE2N,		
				RAB11B		
				RAP1A,		
		10.714285	0.4915364	RAP2B,	1.7682272	0.9830728
KW-0449~Lipoprotein	3	7	5	RAB11B	7	9
. ,						
				RAP1A,		
1014/ OF 470/NL all all all all		44 205744	0.6426025	RAP2B,	4 2220204	
KW-0547~Nucleotide-	_	14.285714	0.6126025	UBE2N,	1.2228381	1
binding	4	3	9	RAB11B	4	1
Cluster 4- Enrichment Sc	ore: 0.9	27883940371	6633			
					Fold	
	Coun				Enrichmen	
Term	t	%	PValue	Genes	t	FDR
				ATDC) (4.C		
				ATP6V1G 2, SNX12,		
				FXYD6,		
				LIN7A,		
				ATP6V1E1		
			0.0451902	, NAPG,	2.3448787	0.2817706
KW-0813~Transport	7	25	2	RAB11B	7	7
				ATP6V1G		
GO:0006811~ion		10.714285	0.1707590	2, FXYD6,	3.8626007	
transport	3	7	3	ATP6V1E1	9	1
				ATP6V1G		
		10.714285	0.2132652	2, FXYD6,		0.6042514
KW-0406~Ion transport	3	7	2	ATP6V1E1	3.2496	5
Cluster 5-Enrichment Sco	ore: 0.8 8	 	1 2694			
					Fold	
	Coun				Enrichmen	
Term	t	%	PValue	Genes	t	FDR
				TPI1,		
				ATP6V1G		
				2,		
				AKR1A1,		
				ALDOC, ATP6V1E1		
				, PRDX6,		
mmu01100:Metabolic			0.0384667	PAFAH1B	2.4320249	0.4331388
pathways	7	25	4	2	8	4
	,					7
GO:0006629~lipid		10.714285	0.2275567	AKR1A1,	3.1975524	
metabolic process	3	7	3	PRDX6,	5	1
	1	1	1	1,	Ī	Ī

				DAFALIAD		
				PAFAH1B 2		
KW-0443~Lipid metabolism	3	10.714285 7	0.2545229	AKR1A1, PRDX6, PAFAH1B 2	2.8849431 8	0.6181271 3
Cluster 6- Enrichment Sc	ore: 0.0	63767761610	98885			
Term	Coun	%	PValue	Genes	Fold Enrichmen t	FDR
KW-1017~Isopeptide bond	3	10.714285 7	0.7978063	TPI1, CSRP1, UBE2N	1.0077979	1
GO:0005634~nucleus	7	25	0.8565744 7	TPI1, CSRP1, UBE2N, MBP, TAGLN3, YWHAZ, PRDX6	0.8433421 9	0.9142857 1
KW-0832~Ubl conjugation	3	10.714285 7	0.9419636 1	TPI1, CSRP1, UBE2N	0.6800874	1
Cluster 7- Enrichment Sc	ore: 0.0	22964608274	0319			
Term	Coun	%	PValue	Genes	Fold Enrichmen t	FDR
KW- 1133~Transmembrane helix	3	10.714285 7	0.9117983 9	PCMT1, CLPTM1, FXYD6	0.7895995 7	1
KW- 0812~Transmembrane	3	10.714285 7	0.9373833 1	PCMT1, CLPTM1, FXYD6	0.7312930 8	1
TRANSMEM:Helical	3	10.714285 7	0.9983668 1	PCMT1, CLPTM1, FXYD6	0.3863909	1

Wild-Type Basal v. APPtg Basal- Upregulated

Table 39. DAVID functional annotation clustering tools output within proteins upregulated in APPtg mice at the basal level, when compared to WT mice at the basal level.

Cluster 1- Enrich	nment Sco	ore: 3.62	2887478	28858954		
Term	Count	%	PVal ue	Genes	Fold Enrich ment	FDR
GO:0005743~ mitochondrial inner membrane	12	26.0 8695 65	5.95 E-09	HADHB, CHCHD3, NDUFA5, TIMM9, NDUFS5, NDUFA2, COX7A2, DHRS1, COX5B, COX6A1, HSD17B10, SNCA	10.916 8535	8.39 E-07
mmu05022:Pa thways of neurodegener ation - multiple diseases	12	26.0 8695 65	2.31 E-07	DCTN2, NDUFA5, NDUFS5, PSMC1, NDUFA2, RAB39B, COX7A2, COX5B, COX6A1, HSD17B10, PPID, SNCA	7.1743 6306	9.20 E-06
mmu00190:Ox idative phosphorylati on	8	17.3 9130 43	2.82 E-07	ATP6V1G2, NDUFA5, NDUFS5, NDUFA2, COX7A2, ATP6V1E1, COX5B, COX6A1	16.687 037	9.20 E-06
mmu05010:Al zheimer disease	11	23.9 1304 35	3.41 E-07	NDUFA5, NDUFS5, PSMC1, NDUFA2, COX7A2, APOE, COX5B, COX6A1, HSD17B10, PPID, SNCA	8.0875 4896	9.20 E-06
mmu05016:Hu ntington disease	10	21.7 3913 04	4.98 E-07	DCTN2, NDUFA5, NDUFS5, PSMC1, NDUFA2, CLTB, CLTA, COX7A2, COX5B, COX6A1	9.3242 9636	1.01 E-05
KW- 0999~Mitocho ndrion inner membrane	9	19.5 6521 74	7.19 E-07	HADHB, CHCHD3, NDUFA5, TIMM9, NDUFS5, NDUFA2, COX7A2, COX5B, COX6A1	11.586 7953	2.01 E-05
GO:00057GT3 9~mitochondri on	16	34.7 8260 87	2.74 E-06	NDUFA5, TIMM9, NDUFA2, COX7A2, DBI, DHRS1, COX5B, COX6A1, HSD17B10, HADHB, HINT2, CHCHD3, NDUFS5, ATP6V1E1, PPID, SNCA	4.0225 0083	1.93 E-04

		17.2				
mmu05012:Pa		17.3	2.46	NEUEAE NEUECE ECAGO NEUEAS	0.5334	2.44
rkinson		9130	2.46	NDUFA5, NDUFS5, PSMC1, NDUFA2,	8.5331	3.41
disease	8	43	E-05	COX7A2, COX5B, COX6A1, SNCA	4394	E-04
mmu05014:A						
myotrophic		19.5		DCTN2, NDUFA5, NDUFS5, PSMC1,		
lateral		6521	2.52	NDUFA2, RAB39B, COX7A2, COX5B,	6.8681	3.41
sclerosis	9	74	E-05	COX6A1	4024	E-04
mmu05208:Ch						
emical						
carcinogenesis						
- reactive		15.2				0.00
oxygen		1739	9.18	MAP2K4, NDUFA5, NDUFS5, NDUFA2,	8.8790	106
species	7	13	E-05	COX7A2, COX5B, COX6A1	8221	283
mm04023.NI						
mmu04932:N		12.0				0.00
on-alcoholic		13.0	4 72	NOUTAE NOUTCE NOUTAGE COVIAGE	10.020	
fatty liver		4347	1.72	NDUFA5, NDUFS5, NDUFA2, COX7A2,	10.830	174
disease	6	83	E-04	COX5B, COX6A1	5288	384
		15.2				0.00
mmu05020:Pri		1739	2.58	NDUFA5, NDUFS5, PSMC1, NDUFA2,	7.3550	231
on disease	7	13	E-04	COX7A2, COX5B, COX6A1	6063	756
KW-		23.9		HADHB, HINT2, CHCHD3, NDUFA5,		0.00
0496~Mitocho		1304	5.06	TIMM9, NDUFS5, NDUFA2, COX7A2,	3.6564	707
ndrion	11	35	E-04	COX5B, COX6A1, HSD17B10	4229	882
mmu05415:Di						
abetic		13.0				0.00
cardiomyopat		4347	6.94	NDUFA5, NDUFS5, NDUFA2, COX7A2,	8.0074	562
hy	6	83	E-04	COX5B, COX6A1	0521	354
-				33.02, 33.00.2	-	
GO:0006123~						
mitochondrial						
electron						
transport,		6.52				0.38
cytochrome c		1739	8.66		67.063	718
to oxygen	3	13	E-04	COX7A2, COX5B, COX6A1	3333	243
		13.0	0.00			0.00
mmu04714:Th		4347	1044	NDUFA5, NDUFS5, NDUFA2, COX7A2,	7.3141	769
	6	83	64	COX5B, COX6A1	2338	231
ermogenesis	U	03	04	COAJB, COAGAI	2330	231
GO:0005751~						
mitochondrial						
respiratory		6.52	0.00			0.05
chain complex		1739	1088		59.928	116
IV .	3	13	72	COX7A2, COX5B, COX6A1	9773	978

KW- 0809~Transit peptide	5	10.8 6956 52	0.00 3734 61	HADHB, HINT2, COX7A2, COX5B, COX6A1	7.1206 0205	0.02 987 685
GO:0005747~		1	01	CONONI	0203	003
mitochondrial respiratory chain complex	3	6.52 1739 13	0.00 5044 91	NDUFA5, NDUFS5, NDUFA2	27.659 528	0.08 891 66
mmu01100:M etabolic pathways	13	28.2 6086 96	0.00 5311 44	ATP6V1G2, NDUFA5, NDUFA2, AK1, COX7A2, COX5B, COX6A1, HSD17B10, HADHB, NDUFS5, CMPK1, ATP6V1E1, CDS2	2.2583 0891	0.03 073 05
GO:0070469~r espiratory chain	3	6.52 1739 13	0.00 7102 48	NDUFA5, NDUFS5, NDUFA2	23.198 3138	0.10 170 868
GO:0032981~ mitochondrial respiratory chain complex I assembly	3	6.52 1739 13	0.00 8133 47	NDUFA5, NDUFS5, NDUFA2	21.633 3333	0.91 842 305
GO:0042776~ mitochondrial ATP synthesis coupled proton transport	3	6.52 1739 13	0.00 8388 55	NDUFA5, NDUFS5, NDUFA2	21.289 9471	0.91 842 305
KW- 0679~Respirat ory chain	3	6.52 1739 13	0.00 8723 21	NDUFA5, NDUFS5, NDUFA2	20.31	0.13 084 812
GO:0009060~a erobic respiration	3	6.52 1739 13	0.01 0273 19	NDUFA5, NDUFS5, NDUFA2	19.160 9524	0.91 842 305
TRANSIT:Mito chondrion	5	10.8 6956 52	0.01 4919 94	HADHB, HINT2, COX7A2, COX5B, COX6A1	5.1047 5885	0.24 617 901
KW- 0249~Electron transport	3	6.52 1739 13	0.02 3974 71	NDUFA5, NDUFS5, NDUFA2	11.925 1376	0.23 974 709
mmu04260:Ca rdiac muscle contraction	3	6.52 1739 13	0.03 5752 49	COX7A2, COX5B, COX6A1	9.7101 2931	0.19 306 343

mmu04723:Re						
trograde		6.52	0.09			0.38
endocannabin		1739	1464		5.7079	992
oid signaling	3	13	08	NDUFA5, NDUFS5, NDUFA2	8142	579
					0	
Cluster 2-Enrich	ment Sco	re: 1.80	5600480	03969787		
					Fold	
			PVal		Enrich	
Term	Count	%	ue	Genes	ment	FDR
		8.69				0.04
MOTIF:Effecto		5652	6.04		23.615	267
r region	4	17	E-04	RAP1A, RAP2B, RHOG, RAB39B	0583	962
LIPID:S-		8.69				0.04
geranylgeranyl		5652	8.62		20.890	267
cysteine	4	17	E-04	RAP1A, RAP2B, RHOG, RAB39B	2439	962
,	7			10 1 10, 101 20, 11100, 1M0330	2433	
IPR001806:Sm		8.69	0.00			0.10
all GTPase		5652	2932		13.667	853
superfamily	4	17	02	RAP1A, RAP2B, RHOG, RAB39B	8189	191
IPR027417:P-						
loop						
containing						
nucleoside		17.3				0.10
triphosphate		9130	0.00	GNA13, RAP1A, RAP2B, PSMC1, AK1,	3.9809	853
hydrolase	8	43	3127	RHOG, CMPK1, RAB39B	1813	191
GO:0000166~		23.9	0.00	GNA13, MAP2K4, RAP1A, HINT2,		0.40
nucleotide		1304	4991	RAP2B, PSMC1, AK1, UBE2N, RHOG,	2.7034	264
binding	11	35	2	CMPK1, RAB39B	8837	951
IPR005225:Sm						
all GTP-						
binding		8.69	0.00			0.10
protein		5652	5230		11.115	853
domain	4	17	45	RAP1A, RAP2B, RHOG, RAB39B	3949	191
domain				10.11.17.10.11.25,10.10.05,10.10.0555	3343	
GO:0003924~		10.8	0.00			0.40
GTPase		6956	6748	GNA13, RAP1A, RAP2B, RHOG,	6.4637	264
activity	5	52	32	RAB39B	1977	951
		10.8	0.01			0.56
GO:0005525~		6956	2657	GNA13, RAP1A, RAP2B, RHOG,	5.3782	641
GTP binding	5	52	34	RAB39B	0958	59
KW-		8.69	0.01			0.06
0636~Prenylat		5652	3437		7.8114	880
ion	4	17	58	RAP1A, RAP2B, RHOG, RAB39B	4578	65
				, -,		

KW-		17.3	0.01			0.06
0449~Lipoprot		9130	4744	GNA13, RAP1A, CHCHD3, RAP2B,	2.9470	880
ein	8	43	25	PSMC1, RHOG, RAB39B, APOE	4545	65
C				1 3111027 11110 67 111 1203 27 111 02	13.13	
KW-		17.3	0.02			0.09
0488~Methyla		9130	8017	MAP2K4, RAP1A, RAP2B, PITPNM2,	2.5882	806
tion	8	43	41	RHOG, RAB39B, DHRS1, GFAP	2355	092
CIOII		73	71	100, 100, 100, 100, 100, 100, 100, 100,	2333	032
KW-		10.8	0.03			0.33
0342~GTP-		6956	3110	GNA13, RAP1A, RAP2B, RHOG,	3.8588	212
binding	5	52	2	RAB39B	9213	739
billallig		32	_	10,10330	3213	733
PROPEP:Remo		6.52	0.09			0.74
ved in mature		1739	0536		5.7987	692
form	3	13	41	RAP1A, RAP2B, RHOG	1539	539
101111			71	10.0 170, 10.0 25, 10.100	1333	333
KW-		23.9	0.09	GNA13, MAP2K4, RAP1A, HINT2,		0.33
0547~Nucleoti		1304	0580	RAP2B, PSMC1, AK1, UBE2N, RHOG,	1.6141	212
de-binding	11	35	2	CMPK1, RAB39B	4634	739
ac billaling	11		_	CWI KI, KABSSB	1034	733
GO:0007165~s		6.52	0.81			
ignal		1739	9134		0.9614	
transduction	3	13	45	GNA13, RAP1A, RAP2B	8148	1
transduction		13	43	GNAIS, NAI IA, NAI ZB	0140	_
		10.8	0.98			
KW-1003~Cell		6956	1677	RAP1A, RHOG, RAB39B, LIN7A,	0.5716	
membrane	5	52	68	ATP6V1E1	7612	1
memorane		32		7111 6 7 1 2 1	, 012	_
Cluster 3- Enricl	hment Sc	ore: 1.72	2687223	22639372		
		1		T	1	Π
					Fold	
			PVal		Enrich	
Term	Count	%	ue	Genes	ment	FDR
mmu04721:Sy		8.69	0.00			0.01
naptic vesicle		5652	2270		14.628	414
cycle	4	17	41	ATP6V1G2, CLTB, CLTA, ATP6V1E1	2468	641
		0.55	0.55			0.00
GO:0030672~s		8.69	0.00			0.08
ynaptic vesicle		5652	2966		13.600	366
membrane	4	17	71	ATP6V1G2, CLTB, CLTA, SNCA	9026	136
		10.5	0.55			0.55
GO:0031410~c		13.0	0.03			0.20
ytoplasmic		4347	4263	ATP6V1G2, RHOG, CLTB, CLTA,	3.2212	130
vesicle	6	83	85	RAB39B, ATP6V1E1	6642	014
			_			
KW-		10.8	0.07			0.55
0968~Cytoplas		6956	9567	ATP6V1G2, CLTB, CLTA, RAB39B,	2.9873	696
mic vesicle	5	52	13	ATP6V1E1	3627	989
		1				

GO:0016192~v						
esicle-		6.52	0.12			
mediated		1739	6382		4.7562	
transport	3	13	99	CLTB, CLTA, RAB39B	6478	1
Cluster 4- Enric	hment Sco	ore: 1.28	3097396	8300595	_	
					Fold	
			PVal		Enrich	
Term	Count	%	ue	Genes	ment	FDR
		13.0	0.00			0.21
GO:0008289~li		4347	1181	GLTP, FABP3, PITPNM2, DBI, APOE,	7.3094	141
pid binding	6	83	07	SNCA	0529	103
		6.52	0.03			0.35
		1739	5024		9.9356	448
REPEAT:1	3	13	65	GLTP, APOE, SNCA	0381	59
		6.52	0.03			0.35
		1739	5806		9.8158	448
REPEAT:2	3	13	66	GLTP, APOE, SNCA	9774	59
GO:0042802~i						
dentical		15.2	0.31			
protein		1739	5897	GLTP, DCTN2, DBI, APOE, HSD17B10,	1.4765	
binding	7	13	23	GFAP, SNCA	9227	1
		10.8	0.84			
KW-		6956	1341		0.8696	
0677~Repeat	5	52	21	GLTP, ABLIM2, APOE, PPID, SNCA	7976	1
Cluster 5- Enrich	hment Sco	ore: 1.14	970951	287547		l
					Fold	
			PVal		Enrich	
Term	Count	%	ue	Genes	ment	FDR
		13.0	0.00			0.21
GO:0008289~li		4347	1181	GLTP, FABP3, PITPNM2, DBI, APOE,	7.3094	141
pid binding	6	83	07	SNCA	0529	103
KW-		8.69	0.06			0.33
0446~Lipid-		5652	2431		4.1688	212
binding	4	17	11	FABP3, PITPNM2, DBI, APOE	189	739
GO:0005794~		8.69	0.57			0.89
		1		İ	1 4 24 4 4	000
Golgi		5652	9084		1.3144	808

GO:0005615~		10.8	0.58			0.89
extracellular		6956	9853		1.2015	808
space	5	52	34	PCMT1, FABP3, DBI, APOE, SNCA	835	917
Cluster 6- Enrich	ment Sco	ore: 0.81	022188	84501934		
					Fold	
			PVal		Enrich	
Term	Count	%	ue	Genes	ment	FDR
GO:0006629~li		10.8	0.07			
pid metabolic		6956	3354	HADHB, HINT2, APOE, HSD17B10,	3.0791	
process	5	52	97	CDS2	2458	1
KW-		8.69	0.20			0.94
0443~Lipid		5652	2198		2.4618	852
metabolism	4	17	57	HADHB, HINT2, HSD17B10, CDS2	1818	985
GO:0005783~		13.0	0.25			0.89
endoplasmic		4347	0107	HADHB, DBI, APOE, DHRS1,	1.7266	808
reticulum	6	83	49	HSD17B10, CDS2	452	917
Cluster 7- Enrich	nment Sco	ore: 0.43	 	14680946		
					Fold	
			PVal		Enrich	
Term	Count	%	ue	Genes	ment	FDR
KW-		15.2	0.15			
0808~Transfer		1739	3736	HADHB, PCMT1, MAP2K4, AK1,	1.8087	
ase	7	13	14	UBE2N, CMPK1, CDS2	5408	1
GO:0016740~t		15.2	0.22			
ransferase		1739	3154	HADHB, PCMT1, MAP2K4, AK1,	1.6680	
activity	7	13	18	UBE2N, CMPK1, CDS2	3321	1
		6.52	0.38			
KW-		1739	5158		2.1711	
0418~Kinase	3	13	33	MAP2K4, AK1, CMPK1	7605	1
GO:0016310~		6.52	0.39			
phosphorylati		1739	9591		2.1425	
on	3	13	39	MAP2K4, AK1, CMPK1	9851	1
		6.52	0.45			
GO:0016301~k		1739	4898		1.9185	
inase activity	3	13	35	MAP2K4, AK1, CMPK1	8066	1
		10.8	0.47			
GO:0005524~		6956	6398		1.3814	
ATP binding	5	52	2	MAP2K4, PSMC1, AK1, UBE2N, CMPK1	6168	1
J				, , , , , , , , , , , , , , , , , , , ,		

O067~ATP-binding 5 Cluster 8- Enrichment Term Concept State Stat	Count	% 10.8 6956 52 10.8 6956	9273 86 332821 PVal ue 0.47 6398 2	MAP2K4, PSMC1, AK1, UBE2N, CMPK1 304949985 Genes	0.9454 2857 Fold Enrich ment	1 FDR
Term Co GO:0005524~ ATP binding 5 KW- 0067~ATP- binding 5 KW- 0539~Nucleus 9 KW- 1017~Isopepti de bond 3	Count	% 10.8 6956 52 10.8	PVal ue 0.47 6398	304949985	Fold Enrich	
Term Co GO:0005524~ ATP binding 5 KW- 0067~ATP- binding 5 KW- 0539~Nucleus 9 KW- 1017~Isopepti de bond 3	Count	% 10.8 6956 52 10.8	PVal ue 0.47 6398		Enrich	FDR
GO:0005524~ ATP binding 5 KW- 0067~ATP- binding 5 KW- 0539~Nucleus 9 KW- 1017~Isopepti de bond 3	5	10.8 6956 52 10.8	ue 0.47 6398	Genes	Enrich	FDR
GO:0005524~ ATP binding 5 KW- 0067~ATP- binding 5 KW- 0539~Nucleus 9 KW- 1017~Isopepti de bond 3	5	10.8 6956 52 10.8	ue 0.47 6398	Genes		FDR
GO:0005524~ ATP binding 5 KW- 0067~ATP- binding 5 KW- 0539~Nucleus 9 KW- 1017~Isopepti de bond 3	5	10.8 6956 52 10.8	0.47 6398	Genes	ment	FDR
ATP binding 5 KW- 0067~ATP- binding 5 KW- 0539~Nucleus 9 KW- 1017~Isopepti de bond 3	; ;	6956 52 10.8	6398			
ATP binding 5 KW- 0067~ATP- binding 5 KW- 0539~Nucleus 9 KW- 1017~Isopepti de bond 3	i	52 10.8			1	İ
KW- 0067~ATP- binding 5 KW- 0539~Nucleus 9 KW- 1017~Isopepti de bond 3	5	10.8	2		1.3814	İ
0067~ATP-binding 5 KW- 0539~Nucleus 9 KW- 1017~Isopepti de bond 3	5			MAP2K4, PSMC1, AK1, UBE2N, CMPK1	6168	1
kW- 0539~Nucleus 9 KW- 1017~Isopepti de bond 3	;	6956	0.77			
KW- 0539~Nucleus 9 KW- 1017~Isopepti de bond 3		3330	9273		0.9454	İ
0539~Nucleus 9 KW- 1017~Isopepti de bond 3		52	86	MAP2K4, PSMC1, AK1, UBE2N, CMPK1	2857	1
0539~Nucleus 9 KW- 1017~Isopepti de bond 3		19.5	0.92			
KW- 1017~Isopepti de bond 3		6521	8809	GNA13, PURA, MAP2K4, CHCHD3,	0.7545	İ
1017~Isopepti de bond 3)	74	06	PSMC1, UBE2N, CMPK1, PPID, SNCA	4332	1
de bond 3		6.52	0.95			
		1739	5546		0.6298	i
KW-0832~Ubl	3	13	05	PSMC1, UBE2N, CMPK1	737	1
KW-0832~Ubl		8.69	0.97			
		5652	7799		0.5667	İ
conjugation 4		17	34	PSMC1, UBE2N, CMPK1, SNCA	3951	1
		8.69	0.98			0.98
GO:0005654~		5652	1618		0.5476	161
nucleoplasm 4		17	41	PSMC1, UBE2N, CMPK1, PPID	0916	841
Cluster 9- Enrichme	ent Scor	re: 0.02	010284	2657520582		
					Fold	
			PVal		Enrich	i
Term Co	Count	%	ue	Genes	ment	FDR
GO:0046872~		15.2	0.87			
metal ion		1739	0807	GNA13, ABLIM2, TIMM9, PITPNM2,	0.8145	İ
binding 7	'	13	2	HDHD2, COX5B, SNCA	0342	1
		6.52	0.99			
		1739	9705		0.3313	İ
KW-0862~Zinc 3	3	13	13	ABLIM2, TIMM9, COX5B	1414	1
KW-		15.2	0.99			
0479~Metal-		1739	9764	GNA13, ABLIM2, TIMM9, PITPNM2,	0.4834	1
binding 7	,	13	11	HDHD2, COX5B, SNCA	4378	1
Cluster 10- Enrichm		nre· n n	000746		1	1

					Fold	
			PVal		Enrich	
Term	Count	%	ue	Genes	ment	FDR
KW-		10.8	0.95			
1133~Transme		6956	2880	PCMT1, COX7A2, FXYD6, COX6A1,	0.6926	
mbrane helix	5	52	92	CDS2	3121	1
KW-		10.8	0.97			
0812~Transme		6956	3081	PCMT1, COX7A2, FXYD6, COX6A1,	0.6414	
mbrane	5	52	59	CDS2	8515	1
		10.8	0.99			0.99
TRANSMEM:H		6956	9370	PCMT1, COX7A2, FXYD6, COX6A1,	0.4083	937
elical	5	52	3	CDS2	8071	03
GO:0016021~i						
ntegral		8.69	0.99			0.99
component of		5652	9970		0.2972	997
membrane	4	17	69	PCMT1, COX7A2, COX6A1, CDS2	2989	069

Wild-Type Basal v. Wild-Type Memory Retrieval- Downregulated

Table 40. DAVID functional annotation clustering tools output within proteins downregulated in WT mice during memory retrieval, when compared to WT mice at the basal level.

Cluster 1-Enrichment Score: 2.0535043689081363										
					Fold					
Term	Count	%	PValue	Genes	Enrichment	FDR				
				CYFIP2,						
				MPST,						
				MADD,						
				DMXL2,						
GO:0045202~synapse	5	50	5.65E-04	SRCIN1	10.3305583	0.02430271				
				CYFIP2,						
				MPST,						
				DMXL2,						
KW-0770~Synapse	4	40	0.00171378	SRCIN1	13.9968689	0.01885156				
				CYFIP2,						
GO:0043005~neuron				MPST,						
projection	3	30	0.02538632	SRCIN1	10.5651085	0.36387059				

	1	1	1	1	1	1
				CYFIP2, MPST,		
				AGL,		
				MADD,		
KW-0963~Cytoplasm	5	50	0.24845167	SRCIN1	1.72230784	0.54659366
Cluster 2-Enrichment Score: 1	1.6409272	21431	17863			
Term	Count	%	PValue	Genes	Fold Enrichment	FDR
				OPA1,		
TRANSIT:Mitochondrion	3	30	0.01834819	IMMT, ACO2	12.5577068	1
				OPA1,		
KW-0809~Transit peptide	3	30	0.0185246	IMMT, ACO2	11.5964091	0.0648361
00 0005740 11 1 1 1				MPST,		
GO:0005743~mitochondrial inner membrane	3	30	0.01996245	OPA1, IMMT	12.0085389	0.36387059
				MPST,		
				OPA1, IMMT,		
KW-0496~Mitochondrion	4	40	0.02085027	ACO2	5.71734612	0.11107807
				CYFIP2,		
				MPST, OPA1,		
				IMMT,		
				EPS15L1,		
KW-0007~Acetylation	6	60	0.02465781	ACO2	2.73046957	0.09863125
				MPST,		
				OPA1, IMMT,		
GO:0005739~mitochondrion	4	40	0.0409086	ACO2	4.42475092	0.37421852
Cluster 3-Enrichment Score: 0).617408	34042	30949			
					Fold	
Term	Count	%	PValue	Genes	Enrichment	FDR
				OPA1,		
				DMXL2, IMMT,		
				EPS15L1,		
KW-0175~Coiled coil	5	50	0.01208345	SRCIN1	3.91828445	0.0648361
GO:0016020~membrane	5	50	0.44828129	OPA1,	1.34175041	1
				MADD,		

				DMXL2,		
				IMMT,		
				EPS15L1		
				OPA1,		
				MADD,		
				DMXL2,		
				IMMT,		
KW-0472~Membrane	5	50	0.76887877	EPS15L1	0.9768903	1
				OPA1,		
GO:0016021~integral				MADD,		_
component of membrane	3	30	0.81426758	IMMT	0.98085865	1
Cluster 4-Enrichment Score:	0.615317	79735	96772			
					Fold	
Term	Count	%	PValue	Genes	Enrichment	FDR
				MADD,		
				DMXL2,		
				IMMT,		
				EPS15L1,		
				ACO2,		
COMPBIAS:Polar residues	6	60	0.10071838	SRCIN1	1.98948779	1
				MPST,		
				MADD,		
				DMXL2,		
				IMMT,		
				EPS15L1,		
				ACO2,		
KW-0597~Phosphoprotein	7	70	0.31128052	SRCIN1	1.30050863	0.62256105
				CYFIP2,		
				MADD,		
				DMXL2,		
				IMMT,		
				EPS15L1,		
				ACO2,		
REGION:Disordered	7	70	0.45476384	SRCIN1	1.18876687	1

Wild-Type Basal v. APPtg Basal- Downregulated

Table 41. DAVID functional annotation clustering tools output within proteins downregulated in APPtg mice at the basal level, when compared to WT mice at the basal level.

Cluster 1- Enrichment Score	: 2.9130	00334025776	526			
Term	Coun t	%	PValue	Genes	Fold Enrichme nt	FDR
GO:0014069~postsynaptic	6	17.64705 88	2.46E-04	CAPZB, CASK, ADD3, DLGAP2, DCLK1, ADD2	10.11993 28	0.009295
KW-0112~Calmodulin- binding	4	11.76470 59	0.001679 49	CASK, ATP2B2, ADD3, ADD2	15.81215 11	0.038628
GO:0005516~calmodulin binding	4	11.76470 59	0.004410 32	CASK, ATP2B2, ADD3, ADD2	11.625	0.189771 76
Cluster 2-Enrichment Score	: 2.5109	4864413754	8			
Term	Coun t	%	PValue	Genes	Fold Enrichme nt	FDR
REPEAT:HEAT 8	3	8.823529 41	5.52E-04	AP3D1, CLASP2, IPO5	83.50875	0.048516 77
REPEAT:HEAT 7	3	8.823529 41	6.93E-04	AP3D1, CLASP2, IPO5	74.56138 39	0.048516 77
REPEAT:HEAT 6	3	8.823529 41	9.64E-04	AP3D1, CLASP2, IPO5	63.26420 45	0.050607 28
REPEAT:HEAT 5	3	8.823529 41	0.001211 68	AP3D1, CLASP2, IPO5	56.42483 11	0.050890 66
REPEAT:HEAT 4	3	8.823529 41	0.001788 71	AP3D1, CLASP2, IPO5	46.39375	0.062604 94

	ı	1	1		1	
REPEAT:HEAT 3	3	8.823529 41	0.002117 43	AP3D1, CLASP2, IPO5	42.60650 51	0.063522 87
REPEAT:HEAT 1	3	8.823529 41	0.002953	AP3D1, CLASP2, IPO5	35.99515 09	0.068907 92
REPEAT:HEAT 2	3	8.823529 41	0.002953	AP3D1, CLASP2, IPO5	35.99515 09	0.068907 92
IPR011989:Armadillo-like helical	3	8.823529 41	0.050682	AP3D1, CLASP2, IPO5	8.030174 08	0.703385 97
IPR016024:Armadillo-type fold	3	8.823529 41	0.103976 41	AP3D1, CLASP2, IPO5	5.300817 16	1
Cluster 3- Enrichment Score	: 2.310	51082033046	65	ı		
Term	Coun	%	PValue	Genes	Fold Enrichme nt	FDR
GO:0014069~postsynaptic density	6	17.64705 88	2.46E-04	CAPZB, CASK, ADD3, DLGAP2, DCLK1, ADD2	10.11993 28	0.009295 22
GO:0051016~barbed-end actin filament capping	3	8.823529 41	5.55E-04	CAPZB, ADD3, ADD2	83.13636 36	0.242538 9
GO:0051015~actin filament binding	5	14.70588 24	5.70E-04	CAPZB, TLN2, ADD3, CLASP2, ADD2	12.52693 97	0.064933 63
GO:0005200~structural constituent of cytoskeleton	3	8.823529 41	0.006390	TLN2, ADD3, ADD2	24.21875	0.189771 76
GO:0005856~cytoskeleton	7	20.58823 53	0.017322 73	CAPZB, ROCK2, TLN2, ADD3, GLG1,	3.193930 74	0.264848 07

		ı			ı	,
				CLASP2, ADD2		
KW-0206~Cytoskeleton	7	20.58823 53	0.019548 87	CAPZB, ROCK2, TLN2, ADD3, GLG1, CLASP2, ADD2	3.091611 92	0.086015 04
GO:0003779~actin binding	4	11.76470 59	0.026993 77	CAPZB, TLN2, ADD3, ADD2	5.931122 45	0.615457 95
KW-0009~Actin-binding	3	8.823529 41	0.072141 15	CAPZB, ADD3, ADD2	6.416311	0.829623 23
Cluster 4-Enrichment Score	: 1.7045	3693969382	46			
Term	Coun	%	PValue	Genes	Fold Enrichme nt	FDR
				SH3GLB1 , ATP8A1, ROCK2, NRXN1, AP3D1, ADAM22 , CASK, ATP2B2, ADD3, GLG1, MTDH, ADD2, ABHD16 A, AIFM1, CAPZB, MADD, CSPG5, TLN2, OSBPL1A		
GO:0016020~membrane	21	61.76470 59	0.003275 91	DLGAP2, CLASP2	1.707682 34	0.082443 73

KW-1003~Cell membrane	14	41.17647 06	0.003604 76	ATP8A1, ROCK2, NRXN1, ADAM22, CASK, ATP2B2, ADD3, GLG1, ADD2, MADD, CSPG5, TLN2, DLGAP2, CLASP2	2.220316 28	0.019826 17
GO:0005886~plasma membrane	15	44.11764 71	0.059341 62	ATP8A1, ROCK2, NRXN1, ADAM22, CASK, ATP2B2, ADD3, GLG1, ADD2, CACNB4, MADD, CSPG5, TLN2, DLGAP2, CLASP2	1.546803 74	0.471609 75
KW-0472~Membrane	19	55.88235 29	0.216912 56	SH3GLB1 , ATP8A1, ROCK2, NRXN1, AP3D1, ADAM22 , CASK, ATP2B2, ADD3, GLG1, MTDH, ADD2, ABHD16 A, AIFM1, MADD,	1.197478 43	0.681725

KW-0728~SH3 domain	3	8.823529 41	0.045158 05	SH3GLB1	8.448341 23	0.270948 28
DOMAIN:SH3	3	8.823529 41	0.035003 32	CACNB4,	9.847729 95	0.432393 94
Term	Coun	%	PValue	Genes SH3GLB1	Enrichme nt	FDR
Cluster o- Enrichment Score	:. 1.380]	10043/40534). 		Fold	
Cluster 6- Enrichment Score						
GO:0000139~Golgi membrane	4	11.76470 59	0.051576 92	SH3GLB1 , AP3D1, CSPG5, GLG1	4.590609 87	0.432673 02
GO:0005802~trans-Golgi network	3	8.823529 41	0.044834 69	ATP8A1, AP3D1, CLASP2	8.599673 87	0.406749 91
GO:0005794~Golgi apparatus	7	20.58823 53	0.020765 13	SH3GLB1 , ATP8A1, PACS1, AP3D1, CSPG5, GLG1, CLASP2	3.066961 6	0.285048 55
KW-0333~Golgi apparatus	7	20.58823 53	0.003377 64	SH3GLB1 , ATP8A1, PACS1, AP3D1, CSPG5, GLG1, CLASP2	4.481293 19	0.019826 17
Term	Coun	%	PValue	Genes	Fold Enrichme nt	FDR
Cluster 5- Enrichment Score	: 1.6974	19576365773	9			1
				TLN2, DLGAP2, CLASP2		
_				CSPG5,		

				CACNB4, CASK		
				SH3GLB1		
IPR001452:Src homology-3 domain	3	8.823529 41	0.045777	, CACNB4, CASK	8.500409 5	0.703385 97
Cluster 7- Enrichment Score	: 1.0752	26050006767	703			
Term	Coun	%	PValue	Genes	Fold Enrichme nt	FDR
GO:0030424~axon	4	11.76470 59	0.041294 84	MADD, AP3D1, ADAM22 , DCLK1	5.023516 1	0.406749 91
GO:0042995~cell projection	5	14.70588 24	0.112279 82	NRXN1, MADD, ADAM22 , DCLK1, CLASP2	2.609152 75	0.630735 73
KW-0966~Cell projection	5	14.70588 24	0.128239 25	NRXN1, MADD, ADAM22 , DCLK1, CLASP2	2.475564 17	0.470210 58
Cluster 8- Enrichment Score	: 0.6661	19711542724	102	I		1
Term	Coun	%	PValue	Genes	Fold Enrichme nt	FDR
KW-0245~EGF-like domain	4	11.76470 59	0.006788 65	NRXN1, ADAM22 , CSPG5, TNR	9.781069 96	0.081463 75
DOMAIN:EGF-like	3	8.823529 41	0.033215 34	NRXN1, ADAM22 , CSPG5	10.13455 7	0.432393 94
IPR000742:Epidermal growth factor-like domain	3	8.823529 41	0.054579 52	NRXN1, ADAM22 , TNR	7.702411 87	0.703385 97
TOPO_DOM:Cytoplasmic	8	23.52941 18	0.160914 1	ATP8A1, ABHD16 A,	1.699404 76	0.972222 22

				NRXN1, ADAM22 , CSPG5, ATP2B2, GLG1, MTDH		
GO:0009986~cell surface	3	8.823529 41	0.340421 65	NRXN1, CSPG5, TNR	2.415273 64	0.986928
TOPO_DOM:Extracellular	5	14.70588 24	0.437469 37	NRXN1, ADAM22 , CSPG5, ATP2B2, GLG1	1.441396 54	0.972222 22
CARBOHYD:N-linked (GlcNAc) asparagine	5	14.70588 24	0.782708 49	NRXN1, ADAM22 , CSPG5, TNR, GLG1	0.938384 91	0.972222
KW-0732~Signal	5	14.70588 24	0.972519 43	NRXN1, ADAM22 , CSPG5, TNR, GLG1	0.626264 76	1
KW-1015~Disulfide bond	5	14.70588 24	0.973790 16	MPST, NRXN1, ADAM22 , CSPG5, TNR	0.611189 67	1
KW-0325~Glycoprotein	5	14.70588 24	0.996218 44	NRXN1, ADAM22 , CSPG5, TNR, GLG1	0.488804 28	1
Cluster 9- Enrichment Score	: 0.6658	33909865313	71			
Term	Coun t	%	PValue	Genes	Fold Enrichme nt	FDR
GO:0005524~ATP binding	6	17.64705 88	0.106673 38	MTHFD1 L, ATP8A1, ROCK2,	2.279411 76	1

				CASK,		
				ATP2B2, DCLK1		
SM00220:S_TKc	3	8.823529 41	0.134868 27	ROCK2, CASK, DCLK1	4.399917 12	1
KW- 0723~Serine/threonine- protein kinase	3	8.823529 41	0.143211	ROCK2, CASK, DCLK1	4.266926 62	0.900550 39
GO:0000166~nucleotide binding	6	17.64705 88	0.153565 53	MTHFD1 L, ATP8A1, ROCK2, CASK, ATP2B2, DCLK1	2.027616 28	1
KW-0067~ATP-binding	6	17.64705 88	0.155662 87	MTHFD1 L, ATP8A1, ROCK2, CASK, ATP2B2, DCLK1	1.890857 14	0.674539 11
GO:0004674~protein serine/threonine kinase activity	3	8.823529 41	0.162690 97	ROCK2, CASK, DCLK1	4.017857 14	1
DOMAIN:Protein kinase	3	8.823529 41	0.162897 34	ROCK2, CASK, DCLK1	4.014843 75	0.972222 22
GO:0004712~protein serine/threonine/tyrosine kinase activity	3	8.823529 41	0.170378 33	ROCK2, CASK, DCLK1	3.901006 71	1
IPR000719:Protein kinase, catalytic domain	3	8.823529 41	0.187997 1	ROCK2, CASK, DCLK1	3.664254 19	1
IPR011009:Protein kinase- like domain	3	8.823529 41	0.212219 03	ROCK2, CASK, DCLK1	3.381883 35	1
GO:0004672~protein kinase activity	3	8.823529 41	0.213959 7	ROCK2, CASK, DCLK1	3.359826 59	1

CO 004 C24 00 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0.022520	0.262502	ROCK2,	2 024725	
GO:0016310~phosphoryla tion	3	8.823529 41	0.262583 59	CASK, DCLK1	2.921725 24	1
GO:0006468~protein phosphorylation	3	8.823529 41	0.277460 65	ROCK2, CASK, DCLK1	2.809523 81	1
GO:0016301~kinase activity	3	8.823529 41	0.302244 55	ROCK2, CASK, DCLK1	2.638048 41	1
KW-0418~Kinase	3	8.823529 41	0.321353 45	ROCK2, CASK, DCLK1	2.481344 05	1
KW-0547~Nucleotide- binding	6	17.64705 88	0.327302 59	MTHFD1 L, ATP8A1, ROCK2, CASK, ATP2B2, DCLK1	1.467405 76	0.850986 75
KW-0808~Transferase	5	14.70588 24	0.407125 99	MPST, ROCK2, AGL, CASK, DCLK1	1.476533 94	1
GO:0016740~transferase activity	4	11.76470 59	0.578131 55	MPST, ROCK2, CASK, DCLK1	1.310597 52	1
Cluster 10- Enrichment Sco	re: 0.4 80	04720355052	2125			
Term	Coun	%	PValue	Genes	Fold Enrichme nt	FDR
KW-0460~Magnesium	5	14.70588 24	0.038523 83	FAHD2, ATP8A1, ROCK2, BPNT1, ATP2B2	3.474015 75	0.256684 86
KW-0106~Calcium	4	11.76470 59	0.274100 21	FAHD2, CACNB4, NRXN1, ATP2B2	2.037875 29	0.850986 75

		14.70588	0.331491	FAHD2, ATP8A1, ABHD16 A, AGL,	1.633952	
KW-0378~Hydrolase	5	24	71	BPNT1	33	1
GO:0016787~hydrolase activity	4	11.76470 59	0.510888 75	FAHD2, ATP8A1, ABHD16 A, BPNT1	1.442307 69	1
GO:0046872~metal ion binding	6	17.64705 88	0.751710 57	FAHD2, ATP8A1, ROCK2, NRXN1, BPNT1, ATP2B2	0.959950 45	1
KW-0479~Metal-binding	6	17.64705 88	0.974269 99	FAHD2, ATP8A1, ROCK2, NRXN1, BPNT1, ATP2B2	0.690633 97	1
Cluster 11- Enrichment Sco	re: 0.367	76177680278	8915		T	
Term	Coun	%	PValue	Genes	Fold Enrichme nt	FDR
TOPO_DOM:Cytoplasmic	8	23.52941 18	0.160914 1	ATP8A1, ABHD16 A, NRXN1, ADAM22, CSPG5, ATP2B2, GLG1, MTDH	1.699404 76	0.972222
KW-0472~Membrane	19	55.88235 29	0.216912 56	SH3GLB1 , ATP8A1, ROCK2, NRXN1, AP3D1, ADAM22 , CASK, ATP2B2,	1.197478 43	0.681725 2

				CSPG5, TLN2, DLGAP2, CLASP2		
TOPO_DOM:Extracellular	5	14.70588 24	0.437469 37	ADAM22 , CSPG5, ATP2B2, GLG1	1.441396 54	0.972222
KW-1133~Transmembrane helix	10	29.41176 47	0.596144 53	ATP8A1, ABHD16 A, AIFM1, NRXN1, ADAM22 , CSPG5, CASK, ATP2B2, GLG1, MTDH	1.052799 43	1
TRANSMEM:Helical	10	29.41176 47	0.607188 02	ATP8A1, ABHD16 A, AIFM1, NRXN1, ADAM22 , CSPG5, CASK, ATP2B2, GLG1, MTDH	1.046475 56	0.972222 22
GO:0016021~integral component of membrane	10	29.41176 47	0.682217 23	ATP8A1, ABHD16 A, AIFM1, NRXN1, MADD,	0.990766 31	0.986928

				ADAM22 , CASK, ATP2B2, GLG1, MTDH		
				ATP8A1, ABHD16 A, AIFM1, NRXN1, ADAM22 , CSPG5, CASK, ATP2B2,		
KW-0812~Transmembrane	10	29.41176 47	0.708356 24	GLG1, MTDH	0.975057 43	1

SECTION 2-20% DIFFERENTIAL REGULATION THRESHOLD RESULTS

1. Gene Ontology-Biological Process

Wild-Type Basal v. Wild-Type Memory Retrieval- 20% Upregulated

Table 42. DAVID Gene Ontology output table for enriched biological processes within proteins upregulated in WT mice during memory retrieval, when compared to WT mice at the basal level.

Term	Count	%	PValue	Genes	Fold Enrichment	FDR
GO:0042776~				NDUFA7, NDUFA6,		
mitochondrial		9.79		NDUFA5, NDUFB6,		
ATP synthesis	14	021	6.56E-06	NDUFB4, NDUFA2,	4.353199	6.53E-03
coupled	14	021	0.30E-00	NDUFB2, ATP5K,	4.555155	0.336-03

		1		NIDUEDA ATDELL ATDEO	T	
proton				NDUFB1, ATP5H, ATP5O,		
transport				NDUFS5, NDUFS4,		
				NDUFV2		
				NDUFA7, NDUFA6,		
				NDUFB6, NDUFA5,		
				UQCRB, NDUFB4,		
GO:0009060~a				NDUFS5, NDUFA2,		
erobic		8.39		NDUFS4, NDUFB2,		
	12		F 90F 0F		4 107727	2 (05 02
respiration	12	1608	5.89E-05	NDUFB1, NDUFV2	4.197727	2.60E-02
GO:0042744~						
hydrogen						
peroxide						
catabolic		4.19		PRDX3, PRDX2, PRDX5,		
process	6	5804	7.85E-05	PRDX1, HBB-BS, PRDX6	10.49432	0.026023
process		3001	7.032 03	TROXI, TIBB BS, TROXO	10.13132	0.020025
GO:0034599~c						
ellular						
response to						
oxidative		4.89		PRDX3, PRDX2, PRDX5,		
stress	7	5105	5.04E-04	GSR, PARK7, PPIA, SNCA	6.121686	0.125269
00 00454545						
GO:0045454~c						
ell redox		4.19		PRDX3, PRDX2, PRDX5,		
homeostasis	6	5804	8.79E-04	PRDX1, GSR, PRDX6	6.996212	0.174867
GO:0032981~				NDUFA6, NDUFB6,		
mitochondrial				NDUFA5, NDUFB4,		
respiratory				NDUFS5, NDUFA2,		
chain complex		6.29		NDUFS4, NDUFB2,		
I assembly	9	3706	0.001944	NDUFB1	3.703877	0.322424
i assembly	9	3700	0.001344	INDOLPI	3.703677	0.322424
GO:0006979~r				PRDX3, PRDX2, PRDX5,		
esponse to				NDUFA6, NDUFB4,		
oxidative		6.29		PRDX1, PEBP1, PARK7,		
stress	9	3706	0.002372	PRDX6	3.598052	0.337193
GO:0010499~						
proteasomal						
ubiquitin-						
independent						
protein						
catabolic		3.49		PSMA6, PSMA3, PSMB2,		
process	5	6503	0.013839	PSMA7, PSMA8	4.997294	0.997994
GO:0006301~						
		2.00		LIDEAN LIDEAVA		
postreplicatio	2	2.09	0.014396	UBE2N, UBE2V2,	12 00242	0.007004
n repair	3	7902	0.014286	UBE2V1	13.99242	0.997994

		I	ı	<u> </u>		
GO:0006123~						
mitochondrial						
electron						ļ
transport,						
cytochrome c		2.79		CYCS, COX7A2, COX6A1,		
to oxygen	4	7203	0.014996	COX5A	6.996212	0.997994
GO:0051014~a						
ctin filament		2.09				
severing	3	7902	0.027248	CFL2, CFL1, DSTN	10.49432	0.997994
00.0040740						
GO:0042743~						
hydrogen						
peroxide						
metabolic		2.09				
process	3	7902	0.027248	PRDX2, CYCS, PARK7	10.49432	0.997994
CO-0030043~						
GO:0030043~a		2.00				
ctin filament		2.09	0.007040	OFI 2 OFI 4 DOTAL	40 40 400	0.007004
fragmentation	3	7902	0.027248	CFL2, CFL1, DSTN	10.49432	0.997994
GO:0051092~						
positive						
regulation of						
NF-kappaB						
transcription		3.49		PRDX3, PSMA6, UBE2N,		
	_	6503	0.027872		4 11 5 410	0.007004
factor activity	5	0503	0.027872	UBE2V1, PPIA	4.115419	0.997994
GO:0051603~						
proteolysis						
involved in						
cellular						
protein						
catabolic		3.49		PSMA6, PSMA3, PSMB2,		
	5	6503	0.033917	· · · · · · · · · · · · · · · · · · ·	3.886785	0.997994
process	5	0303	0.055917	PSMA7, PSMA8	3.000763	0.997994
GO:0010498~						
proteasomal						
protein						
catabolic		3.49		PSMA6, PSMA3, PSMB2,		
process	5	6503	0.040666	PSMA7, PSMA8	3.682217	0.997994
p. 00000		3333	3.5 10000	. 317 , 1 3171/10	3.002217	3.33,334
GO:0030836~						
positive						
regulation of						
actin filament						
depolymerizati		2.09				
on	3	7902	0.04332	CFL2, CFL1, DSTN	8.395455	0.997994
	-			, - ,		

GO:0070534~						
protein K63-						
linked		2.09		UBE2N, UBE2V2,		
ubiquitination	3	7902	0.04332	UBE2V1	8.395455	0.997994
GO:0021766~						
hippocampus		3.49		YWHAE, UQCRQ, NEFL,		
development	5	6503	0.056289	PEBP1, NME1	3.33153	0.997994
GO:0043161~						
proteasome-						
mediated						
ubiquitin-						
dependent						
protein				PSMA6, NSFL1C, PSMA3,		
catabolic		5.59		PSMD4, PSMB2, PCBP2,		
process	8	4406	0.064647	PSMA7, PSMA8	2.19489	0.997994
GO:0001933~						
negative						
regulation of						
protein						
phosphorylati		3.49		MYADM, PEBP1, PARK7,		
on	5	6503	0.084917	PPIA, SNCA	2.915088	0.997994

APPtg Basal v. APPtg Memory Retrieval- 20% Upregulated

Table 43. DAVID Gene Ontology output table for enriched biological processes within proteins upregulated in APPtg mice during memory retrieval, when compared to APPtg mice during basal levels.

Term	Count	%	PValue	Genes	Fold Enrichme nt	FDR
GO:0042776~ mitochondrial ATP synthesis coupled proton		14.7		NDUFA8, NDUFB7, NDUFA5, NDUFB10, NDUFA2, NDUFB3, ATP5K, NDUFB1, ATP5H, ATP5O, SDHB, ATP5L,	6 202242	1.40E-
transport	15	0588	2.07E-08	NDUFS5, NDUFS4, NDUFV2	6.282313	05

GO:0009060~a erobic respiration	13	12.7 451	3.68E-07	NDUFA8, NDUFB7, NDUFA5, UQCRB, NDUFB10, NDUFA2, NDUFB3, NDUFB1, UQCR10, SDHB, NDUFS5, NDUFS4, NDUFV2	6.125255	1.24E- 04
GO:0032981~ mitochondrial respiratory chain complex I assembly	9	8.82 3529	2.53E-04	NDUFA8, NDUFB7, NDUFB10, NDUFA5, NDUFS5, NDUFA2, NDUFS4, NDUFB3, 2.53E-04 NDUFB1 4		0.056 9
GO:0000302~r esponse to reactive oxygen species	4	3.92 1569	0.006486	PRDX1, SOD2, PRDX6, SOD1	9.423469	0.845 091
GO:0008206~ bile acid metabolic process	3	2.94 1176	0.007912	SCP2, ACAA1B, ACAA1A	18.84694	0.845 091
GO:0006122~ mitochondrial electron transport, ubiquinol to cytochrome c	4	3.92 1569	0.009362	UQCRB, UQCRQ, CYCS, UQCR10	8.376417	0.845 091
GO:0046034~ ATP metabolic process	6	5.88 2353	0.009822	AK1, ATP5K, AK4, ATP5H, ATP5O, ATP5L	4.349294	0.845 091
GO:0051092~ positive regulation of NF-kappaB transcription factor activity	5	4.90 1961	0.010031	MTPN, PSMA6, UBE2N, PPIA, CLU	5.543217	0.845 091
GO:0022904~r espiratory electron transport chain	4	3.92 1569	0.01287	NDUFA5, NDUFS4, SOD2, SDHB	7.538776	0.937 734
GO:0019430~r emoval of	3	2.94 1176	0.015283	PRDX1, SOD2, SOD1	14.1352	0.937 734

		I	1	T	1	
superoxide						
radicals						
GO:0043161~						
proteasome-						
mediated						
ubiquitin-						
dependent						
protein				PSMA5, PSMA6, NSFL1C,		
catabolic		7.84		PSMD6, PSMC6, PSMD7,		0.937
process	8	3137	0.015304	PSMA1, PSMA2	2.956383	734
GO:0015986~						
ATP synthesis						
coupled						
proton		3.92		ATP5K, ATP5H, ATP5O,		0.956
transport	4	1569	0.01703	ATP5L	6.853432	528
GO:0045333~c						
ellular		3.92		UQCRB, UQCRQ, NDUFS4,		
respiration	4	1569	0.021855	UQCR10	6.282313	1
GO:0010499~						
proteasomal						
ubiquitin-						
independent						
protein						
catabolic		3.92		PSMA5, PSMA6, PSMA1,		
process	4	1569	0.033507	PSMA2	5.38484	1
GO:0022900~						
electron						
transport		2.94				
chain	3	1176	0.035656	NDUFA4, NDUFS4, NDUFB3	9.423469	1
GO:1902600~						
hydrogen ion						
transmembran		4.90		ATP6V1G1, ATP6V1G2,		
e transport	5	1961	0.049521	UQCRQ, NDUFA4, ATP6V1E1	3.490174	1
GO:0090141~						
positive						
regulation of						
mitochondrial		2.94				
fission	3	1176	0.062149	FIS1, PGAM5, MCU	7.067602	1
GO:0042744~		2.94				
hydrogen	3	1176	0.062149	PRDX5, PRDX1, PRDX6	7.067602	1
peroxide						

catabolic						
process						
GO:0006123~						
mitochondrial						
electron						
transport,						
cytochrome c		2.94				
to oxygen	3	1176	0.062149	CYCS, COX6C, COX6A1	7.067602	1
GO:0051603~						
proteolysis						
involved in						
cellular						
protein						
catabolic		3.92		PSMA5, PSMA6, PSMA1,		
process	4	1569	0.064575	PSMA2	4.188209	1
GO:0010498~						
proteasomal						
protein						
catabolic		3.92		PSMA5, PSMA6, PSMA1,		
process	4	1569	0.073858	PSMA2	3.967777	1
GO:0051881~r						
egulation of						
mitochondrial						
membrane		2.94				
potential	3	1176	0.093321	NDUFS4, SOD2, SOD1	5.654082	1

Wild-Type Basal v. APPtg Basal- 20% Upregulated

Table 44. DAVID Gene Ontology output table for enriched biological processes within proteins upregulated in APPtg mice at the basal level, when compared to WT mice at the basal level.

Term	Count	%	PValue	Genes	Fold Enrichme nt	FDR
GO:0006897~endocyt osis	11	7.9710 14	7.25E-03	APP, EHD3, DBNL, MYO6, ITSN1, HIP1R, EPS15L1, TLN2,	2.604744	1.00E+0 0

				PIP5K1C, SYNJ2BP, EPN1		
GO:0009156~ribonucl eoside monophosphate biosynthetic process	3	2.1739 13	1.39E-02	PRPS2, PRPS1, PRPS1L3	14.20769	1.00E+0 0
GO:0048477~oogenesi s	3	2.1739 13	1.39E-02	SRC, HEXB, FMN2	14.20769	1
GO:0035249~synaptic transmission, glutamatergic	5	3.6231 88	0.016941	GRM2, UNC13A, CACNB4, TNR, GRIN1	4.735897	1
GO:0007268~chemical synaptic transmission	10	7.2463 77	0.018832	GRM2, UNC13A, CACNB4, NRXN1, MYO6, KCNMA1, SYNJ2BP, CACNA1E, PAFAH1B1, GRIN1	2.408083	1
GO:0007628~adult walking behavior	5	3.6231 88	0.021391	ABHD12, EPHA4, CACNB4, KCNMA1, SCN1A	4.439904	1
GO:0050885~neurom uscular process controlling balance	6	4.3478 26	0.026277	APP, HEXB, NRXN1, KCNMA1, TNR, PAFAH1B1	3.409846	1
GO:0036035~osteocla st development	3	2.1739 13	0.026459	ATP6AP1, SRC, PAFAH1B1	10.65577	1
GO:1900454~positive regulation of long term synaptic depression	3	2.1739 13	0.026459	APP, IQSEC2, PPP1R9A	10.65577	1
GO:0006015~5- phosphoribose 1- diphosphate biosynthetic process	3	2.1739 13	0.026459	PRPS2, PRPS1, PRPS1L3	10.65577	1
GO:0014047~glutamat e secretion	3	2.1739 13	0.026459	GRM2, GJA1, MYO6	10.65577	1

	ı	ı	ı	Ī	I	
GO:1902961~positive						
regulation of aspartic-						
type endopeptidase						
activity involved in						
amyloid precursor						
protein catabolic		2.1739		APP, EPHA4,		
	2		0.036450	ROCK2	10 65577	4
process	3	13	0.026459	RUCKZ	10.65577	1
GO:0051968~positive						
regulation of synaptic				CACNG8,		
transmission,		3.6231		IQSEC2, NRXN1,		
glutamatergic	5	88	0.026495	TNR, GRIN1	4.178733	1
			0.020133		1.170733	_
GO:2000300~regulatio				RIMS1, CACNB4,		
n of synaptic vesicle		4.3478		MYO6, CSPG5,		
exocytosis	6	26	0.030762	CASK, PPFIA2	3.278698	1
CO-10003730v						
GO:1900272~negative						
regulation of long-		0.4700		400 50000		
term synaptic		2.1739		APP, EPHA4,		
potentiation	3	13	0.042097	PPP1R9A	8.524615	1
				GRM2, APP,		
				ADAM22,		
GO:0008344~adult		3.6231		PAFAH1B1,		
	_		0.045063	_	2 554022	4
locomotory behavior	5	88	0.045863	GRIN1	3.551923	1
				APP, RYR2,		
GO:0019722~calcium-		2.8985		PPP1R9A,		
mediated signaling	4	51	0.045971	PPP1R9B	4.735897	1
00.0070050-4.4.4						
GO:0070059~intrinsic						
apoptotic signaling						
pathway in response						
to endoplasmic		2.1739		BRSK2, AIFM1,		
reticulum stress	3	13	0.060297	ITPR1	7.103846	1
				DDDGG		
GO:0009116~nucleosi		2.1739		PRPS2, PRPS1,		
de metabolic process	3	13	0.060297	PRPS1L3	7.103846	1
				BCAN, APP,		
				EPHA4, SRC,		
				PCDHGC5,		
				•		
CO-00074FF		7.074.0		NRXN1, TNR,		
GO:0007155~cell		7.9710	0.0=0.5	TLN2, PIP5K1C,		
adhesion	11	14	0.072063	PCDH1, HAPLN1	1.817263	1
GO:0016081~synaptic		2.1739		RIMS1,		
vesicle docking	3	13	0.08063	UNC13A, PPFIA3	6.089011	1
3				,		

GO:0007269~neurotra	5	3.6231 88	0.081195	RIMS1, GRM2, UNC13A, NRXN1, PPFIA3	2.959936	1
GO:0051897~positive regulation of protein kinase B signaling	4	2.8985 51	0.081644	SRC, NRXN1, ITSN1, MTDH	3.788718	1
GO:0061003~positive regulation of dendritic spine morphogenesis	4	2.8985 51	0.095548	ACTR2, DBNL, CASK, PAFAH1B1	3.551923	1

Wild-Type Memory Retrieval v. APPtg Memory Retrieval- 20% Upregulated

No results.

Wild-Type Basal v. Wild-Type Memory Retrieval- 20% Downregulated

Table 45. DAVID Gene Ontology output table for enriched biological processes within proteins downregulated in WT mice during memory retrieval, when compared to WT mice at the basal level.

Term	Count	%	PValue	Genes	Fold Enrichment	FDR
GO:0046488~phosphati dylinositol metabolic process	3	6	1.13E-02	SYNJ1, PIP5K1C, PLCB1	17.20807	1.00E+00
GO:0016081~synaptic vesicle docking	3	6	1.13E-02	RIMS1, UNC13A, PPFIA3	17.20807	1.00E+00
GO:0007269~neurotran smitter secretion	4	8	1.91E-02	RIMS1, UNC13A, PPFIA3, SNAP91	6.692029	1
GO:0098974~postsynap tic actin cytoskeleton organization	3	6	4.39E-02	ROCK2, PPP1R9A, DBN1	8.604037	1
GO:0016082~synaptic vesicle priming	3	6	4.98E-02	RIMS1, UNC13A, SYNJ1	8.030435	1

GO:0030833~regulation of actin filament				CYFIP2, PPP1R9A,		
polymerization	3	6	0.062611	DBN1	7.085678	1
GO:1903140~regulation						
of establishment of endothelial barrier	2	4	0.071363	ROCK2, PLCB1	26.76812	1
GO:0031915~positive regulation of synaptic						
plasticity	2	4	0.071363	UNC13A, DBN1	26.76812	1
				UNC13A, ROCK2,		
GO:0035556~intracellul		1		WNK2, PLCB1,		
ar signal transduction	5	0	0.084205	ADCY5	2.909578	1
GO:0006099~tricarboxyl				OGDHL, ACO2,		
ic acid cycle	3	6	0.098555	SDHA	5.475296	1

APPtg Basal v. APPtg Memory Retrieval- 20% Downregulated

Table 46. DAVID Gene Ontology output table for enriched biological processes within proteins downregulated in APPtg mice during memory retrieval, when compared to APPtg mice at the basal level.

Term	Count	%	PValue	Genes	Fold Enrichment	FDR
GO:0035654~cargo loading		7-		AP3D1,		
into clathrin-coated			3.18E-	AP3S1,		
vesicle, AP-3-mediated	3	20	04	AP3B2	92.35	2.40E-02
				AP3D1,		
GO:0016183~synaptic			3.18E-	AP3S1,		
vesicle coating	3	20	04	AP3B2	92.35	2.40E-02
				AP3D1,		
GO:0048490~anterograde			5.27E-	AP3S1,		
synaptic vesicle transport	3	20	04	AP3B2	73.88	0.02652
				AP3D1,		
GO:0046907~intracellular			0.00145	AP3S1,		
transport	3	20	6	AP3B2	46.175	0.043976
				AP3D1,		
GO:0036465~synaptic			0.00145	AP3S1,		
vesicle recycling	3	20	6	AP3B2	46.175	0.043976

GO:0008089~anterograde axonal transport	3	20	0.00232	AP3D1, AP3S1, AP3B2	36.94	0.058388
				AP3D1,		
				VPS26A,		
GO:0006886~intracellular		26.66	0.03174	AP3S1,		
protein transport	4	667	2	AP3B2	5.184561	0.613408
GO:0060155~platelet		13.33	0.03736	AP3D1,		
dense granule organization	2	333	9	AP3S1	49.25333	0.613408
GO:1903232~melanosome		13.33	0.03736	AP3D1,		
assembly	2	333	9	AP3S1	49.25333	0.613408
GO:0005975~carbohydrate			0.04386	GSK3A, HEXB,		
metabolic process	3	20	5	PDK1	8.208889	0.613408
GO:0006896~Golgi to		13.33	0.04468	AP3D1,		
vacuole transport	2	333	5	AP3S1	41.04444	0.613408
GO:0045944~positive						
regulation of transcription			0.00745	CCVCA LIEVE		
from RNA polymerase II	2	20	0.06715	GSK3A, HEXB,	C 480703	0.044004
promoter	3	20	2	AP3D1	6.480702	0.844994
GO:0090090~negative						
regulation of canonical		13.33	0.09447			
Wnt signaling pathway	2	333	2	GSK3A, SCYL2	18.94359	1

Wild-Type Basal v. APPtg Basal- 20% Downregulated

Table 47. DAVID Gene Ontology output table for enriched biological processes within proteins downregulated in APPtg mice at the basal level, when compared to WT mice at the basal level.

Term	Count	%	PValue	Genes	Fold Enrichment	FDR
GO:0006123						
~mitochondr						
ial electron						
transport,						
cytochrome		2.35	0.02220	COX7A2, COX5B, COX6A1,		1.00E+0
c to oxygen	4	2941	8824	COX5A	6.139068	0

GO:0031584						
~activation						
of						
phospholipas		1.76	0.02800			1.00E+0
e D activity	3	4706	9446	GNA13, MARCKS, HPCA	10.35968	0
c b detivity		1,00	3110	GIVITS, IVII WERS, I'II GIV	10.33300	
GO:0006979						
~response to						
oxidative		4.11	0.05086	ALAD, PRDX3, PSMB5,		
stress	7	7647	3059	PRDX1, APOE, PARK7, PPID	2.544482	1
311633	'	7047	3033	PRDAI, AFOE, PARKI, PFID	2.344462	1
GO:0090314						
~positive						
regulation of						
_						
protein		2.25	0.06440			
targeting to		2.35	0.06118			
membrane	4	2941	4405	FIS1, HPCA, MFF, HRAS	4.250124	1
GO:0030168						
		4 76	0.0000			
~platelet		1.76	0.06363			
activation	3	4706	986	GNA13, RAP2B, PDIA6	6.906452	1
GO:0006165						
~nucleoside						
diphosphate						
phosphorylat		1.76	0.06363			
ion	3	4706	986	AK1, CMPK1, AK4	6.906452	1
60-0000143						
GO:0009142						
~nucleoside						
triphosphate						
biosynthetic		1.76	0.06363			
process	3	4706	986	AK1, CMPK1, AK4	6.906452	1
GO:0007266						
~Rho protein						
signal		2.35	0.07389	GNA13, RHOG, CDH13,		
transduction	4	2941	4507	BAIAP2	3.946544	1
		1				
GO:0000266						
~mitochondr		1.76	0.08497			
ial fission	3	4706	5852	FIS1, MTFP1, MFF	5.919816	1
GO:0090141						
~positive						
regulation of						
mitochondri		1.76	0.08497			
al fission	3	4706	5852	FIS1, PGAM5, MFF	5.919816	1
	_			z=, · · = · · · · · · · · · · · · · · · ·	2.0 _00_0	_
CO:0022492		1.76	0.08497			
GO:0032482	3	4706	5852	RAB21, RAB35, RAB39B	5.919816	1
~Rab protein						

signal transduction						
GO:0006139 ~nucleobase- containing compound metabolic		1.76	0.08497			
process	3	4706	5852	AK1, CMPK1, AK4	5.919816	1
GO:0007005 ~mitochondr ion		3.52	0.09241	PRDX3, MARCKS, MTFP1,		
organization	6	9412	1508	MTX2, PARK7, HSD17B10	2.437571	1
GO:0006631 ~fatty acid metabolic process	8	4.70 5882	0.09555 0598	HADHB, ACADVL, NDUFS6, DBI, ACAA1A, HSD17B10, DECR1, SNCA	2.00915	1

Wild-type Memory Retrieval v. APPtg Memory Retrieval- 20% Downregulated

Table 48. DAVID Gene Ontology output table for enriched biological processes within proteins downregulated in APPtg mice during memory retrieval, when compared to WT mice during memory retrieval.

Term	Count	%	PValue	Genes	Fold Enrichment	FDR
GO:0071456~cellular response to hypoxia	2	40	2.54E-02	NDRG1, SIRT2	62.43721	1.00E+00
GO:0008285~negative regulation of cell proliferation	2	40	8.29E-02	NDRG1, SIRT2	18.6877	1.00E+00

2. Gene Ontology- Cellular Component

Wild-Type Basal v. Wild-Type Memory Retrieval- 20% Upregulated

Table 49. DAVID Gene Ontology output table for enriched cellular components within proteins upregulated in WT mice during memory retrieval, when compared to WT mice at the basal level.

					Fold	
	Coun				Enrichmen	
Term	t	%	PValue	Genes	t	FDR
				NDUFA7,		
				NDUFA6,		
				NDUFA5,		
				UQCRB,		
				NDUFB6,		
				NDUFA4,		
				NDUFA2,		
				NDUFB2,		
				NDUFB1,		
				UQCRQ,		
				NDUFS5,		
				NDUFS4,		
GO:0070469~respiratory				CYCS,		
chain	14	9.79021	2.86E-06	NDUFV2	4.654321	7.83E-04
				NDUFA7,		
				NDUFA6,		
				NDUFB6,		
				NDUFA5,		
				NDUFA4,		
				NDUFB4,		
				NDUFS5,		
				NDUFA2,		
				NDUFS4,		
GO:0005747~mitochondria				NDUFB2,		
I respiratory chain complex	4.2	8.39160	7.005.06	NDUFB1,	5 077444	4 075 00
	12	8	7.82E-06	NDUFV2	5.077441	1.07E-03
				SLC25A27,		
				NDUFA6,		
				NDUFB6,		
				NDUFA4,		
				FAM162A,		
				NDUFA2,		
				CFL1,		
GO:0031966~mitochondria		8.39160		COX7A2,		
I membrane	12	8	8.92E-04	ABCB8,	3.161426	8.14E-02
				COX6A1,		

		1		COVEA		
				COX5A,		
				COX6B1		
				NAPB,		
				CNRIP1,		
				PEBP1,		
				ATP5H,		
				ATP5O,		
				COX6A1,		
				NDRG1,		
				COX5A,		
				NAPG,		
				GFAP,		
				NME1,		
				PRDX3,		
				PRDX2,		
				RAP1A,		
				*		
				PRDX1,		
				CYCS, NEFL,		
				MBP,		
				TAGLN3,		
				TPPP,		
GO:0043209~myelin		16.0839		NDUFV2,		0.10340
sheath	23	2	1.51E-03	INA, PPIA	1.994709	5
				SLC27A1,		
				UQCRB,		
				NDUFB6,		
				NDUFB4,		
				NDUFB2,		
				ATP5K,		
				NDUFB1,		
				COX7A2,		
				ABCB8,		
				ATP5H,		
				ATP50,		
				COX6A1,		
				COX5A,		
				NDUFV2,		
				SNCA,		
				NDUFA7,		
				NDUFA6,		
				APOOL,		
				NDUFA5,		
				NDUFA4,		
				NDUFA2,		
GO:0005743~mitochondria		17.4825				0.16278
I inner membrane	25	2	0.00297	COX6B1,	1.827613	2
				UQCRQ,		

<u></u>			1	1	T	1
				NDUFS5,		
				NDUFS4		
				YWHAE,		
				SLC27A1,		
				PEBP1,		
				PARK7,		
				COX6A1,		
				HINT2,		
				SCP2,		
				FAM162A,		
				ATP6V1E1,		
				-		
				DYNLL1,		
				YWHAZ,		
				NME1,		
				COX6B1,		
				NDUFS5,		
				NDUFS4,		
				ALDOC,		
				NDUFB6,		
				UQCRB,		
				RAB1B,		
				NDUFB4,		
				ATP5K,		
				NDUFB2,		
				NDUFB1,		
				COX7A2,		
				ABCB8,		
				ATP5H,		
				ATP5O,		
				COX5A,		
				NAPG,		
				SLC25A27,		
				PRDX3,		
				PRDX2,		
				PRDX5,		
				PRDX1,		
				TPPP,		
				NDUFV2,		
				SNCA,		
				NIPSNAP3B		
				, FIS1,		
				NDUFA7,		
				NDUFA6,		
				APOOL,		
CO 000573000 11 1 1 1 1		26.2626	0.00535	NDUFA5,		0.24225
GO:0005739~mitochondrio		36.3636	0.00525	NDUFA4,		0.21295
n	52	4	3		1.380369	9
			<u> </u>	MTX2, GSR,		Ì

				NDUFA2,		
				PRDX6,		
				RAB11A,		
				RAB11B,		
				UQCRQ,		
				CYCS		
				NDUFA4,		
				COX7A2,		
GO:0005751~mitochondria				COX6A1,		
I respiratory chain complex		3.49650	0.00544	COX5A,		0.21295
IV	5	3	1	COX6B1	6.346801	9
				PSMA6,		
				PSMA3,		
				PSMB2,		
GO:0005839~proteasome		3.49650	0.01395	PSMA7,		0.45956
core complex	5	3	6	PSMA8	4.986772	4
				PSMA6,		
GO:0019773~proteasome				PSMA3,		
core complex, alpha-		2.79720	0.01509	PSMA7,		0.45956
subunit complex	4	3	5	PSMA8	6.981481	4
				PSMA6,		
				PSMA3,		
				PSMD4,		
				PSMB2,		
				TXNL1,		
GO:0000502~proteasome		4.89510	0.02589	PSMA7,		0.70942
complex	7	5	2	PSMA8	2.961841	8
				YWHAE,		
				PARK7, NDRG1,		
				-		
				PSMA7,		
				NUDT3,		
				PSMA8,		
				PURB,		
				PURA,		
				PRDX5,		
				PSMB2,		
				CSRP1,		
				PSMD4,		
				SCP2,		
				ARHGDIA,		
				CFL2,		
		30.7692	0.06435	PRDX1,		0.99275
GO:0005634~nucleus	44	3	3	PCBP1,	1.24872	4
				CFL1,		

				PCBP2, MBP, TPPP,		
				SNCA,		
				CBR1,		
				DUSP3,		
				TPI1,		
				TXNL1,		
				SGTA,		
				ARPC5,		
				DYNLL1,		
				YWHAZ,		
				PRDX6,		
				NME1,		
				PSMA6,		
				NSFL1C,		
				PSMA3,		
				TMX4,		
				FABP5,		
				UBE2N,		
				UBE2V2,		
				CYCS,		
				UBE2V1,		
				MAPT,		
				TAGLN3,		
				PPIA		
				NEFL, INA,		
GO:0005882~intermediate		2.79720	0.09958	GFAP,		0.99275
filament	4	3	2	NME1	3.490741	4

APPtg Basal v. APPtg Memory Retrieval- 20% Upregulated

Table 50. DAVID Gene Ontology output table for enriched cellular components within proteins upregulated in APPtg mice during memory retrieval, when compared to APPtg mice at the basal level.

Term	Count	%	PValue	Genes	Fold Enrichment	FDR
GO:0070469~resp		14.7	7.60E-	NDUFA8, NDUFB7, NDUFA5, UQCRB, NDUFB10, NDUFA4,		1.81
iratory chain	15	0588	09	NDUFA2, NDUFB3, NDUFB1, UQCR10, UQCRQ,	6.732143	E-06

				NDUFS5, NDUFS4, CYCS, NDUFV2		
GO:0005747~mit ochondrial respiratory chain complex I	11	10.7 8431	3.43E- 06	NDUFA8, NDUFB7, NDUFB10, NDUFA5, NDUFA4, NDUFS5, NDUFA2, NDUFS4, NDUFB3, NDUFB1, NDUFV2	6.283333	4.08 E-04
GO:0005743~mit ochondrial inner membrane	26	25.4 902	6.87E- 06	NDUFB7, UQCRB, NDUFB10, NDUFB3, ATP5K, NDUFB1, UQCR10, ATP5H, ATP5O, COX6A1, CLU, ATP5L, NDUFV2, NDUFA8, NDUFA5, NDUFA4, NDUFA2, TIMM44, COX6C, SOD2, SDHB, COX6B1, UQCRQ, NDUFS5, NDUFS4, MCU	2.565969	5.45 E-04
GO:0005739~mit ochondrion	47	46.0 7843	4.02E- 05	NDUFB7, UQCRB, NDUFB10, NDUFB3, CISD1, ATP5K, NDUFB1, ACAA1B, AK4, ACAA1A, UQCR10, ATP5H, ATP5O, COX6A1, CLU, ATP5L, PGRMC1, PRDX5, COMTD1, HINT2, SCP2, PRDX1, CKB, ATP6V1E1, NDUFV2, FIS1, NDUFA8, NDUFA5, NDUFA4, MTX2, NDUFA2, TIMM44, COX6C, DYNLL1, SOD2, SDHB, PRDX6, SOD1, COX6B1, UQCRQ, NDUFS5, NDUFS4, RAB35, CYCS, GARS, PGAM5, MCU	1.684316	0.00 239
GO:0000502~prot easome complex	8	7.84 3137	0.00123	PSMA5, PSMA6, PSMD6, PSMC6, PSMD7, PSMA1, PSMA2, TXNL1	4.569697	0.05 866
GO:0019773~prot easome core complex, alpha- subunit complex	4	3.92 1569	0.00649	PSMA5, PSMA6, PSMA1, PSMA2	9.425	0.19 308 6
GO:0005782~per oxisomal matrix	4	3.92 1569	0.00649	PRDX5, SCP2, PRDX1, ACAA1A	9.425	0.19 308 6

	ı		T	1		
GO:0000276~mit ochondrial proton-						
transporting ATP synthase						0.19
complex, coupling factor F(o)	4	3.92 1569	0.00649	ATP5K, ATP5H, ATP5O, ATP5L	9.425	308 6
GO:0005753~mit ochondrial						0.34
proton- transporting ATP		3.92	0.01287	АТР5К, АТР5Н, АТР5О,		052
synthase complex	4	1569	7	ATP5L	7.54	2
GO:0005751~mit ochondrial						0.37
respiratory chain complex IV	4	3.92 1569	0.01703 9	NDUFA4, COX6C, COX6A1, COX6B1	6.854545	161 6
GO:0005777~per		5.88	0.01803	FIS1, PRDX5, SCP2,		0.37 161
oxisome	6	2353	9	ACAA1B, ACAA1A, SOD1	3.77	6
GO:0031966~mit ochondrial		7.84	0.01873	NDUFA4, NDUFA2, CFL1, COX6C, COX6A1, SDHB,		0.37 161
membrane	8	3137	7	CLU, COX6B1	2.845283	6
GO:0097418~neu		2.94	0.02461			0.45 056
rofibrillary tangle	3	1176	1	NEFM, MAPT, CLU	11.31	8
GO:0005839~prot easome core		3.92	0.03352	PSMA5, PSMA6, PSMA1,		0.56 988
complex	4	1569	3	PSMA2	5.385714	9
				SNAP25, ATP5H, SOD2, ATP5O, COX6A1, SOD1,		
				STIP1, PRDX1, CYCS, MBP,		0.59
GO:0043209~mye lin sheath	15	14.7 0588	0.03776 5	NEFM, CKB, TAGLN3, NDUFV2, PPIA	1.756211	920 7
GO:0045263~prot						
on-transporting ATP synthase						0.71
complex, coupling factor F(o)	3	2.94 1176	0.04824 3	ATP5K, ATP5H, ATP5L	8.078571	761 8
GO:0005758~mit						
ochondrial intermembrane		4.90	0.06194	NDUFA8, NDUFB7,		0.82 190
space	5	1961	3	NDUFS5, CYCS, SOD1	3.25	4

GO:0005750~mit						
ochondrial						0.82
respiratory chain		2.94	0.06216			190
complex III	3	1176	1	UQCRB, UQCRQ, UQCR10	7.06875	4

Wild-Type Basal v. APPtg Basal- 20% Upregulated

Table 51. DAVID Gene Ontology output table for enriched cellular components within proteins upregulated in APPtg mice at the basal level, when compared to WT mice at the basal level.

Term	Count	%	PValue	Genes	Fold Enrichmen t	FDR
CO-0022507				CDC CDC27 MAYOC		
GO:0032587 ~ruffle		5.7971	5.39E-	SRC, CDC37, MYO6, TPM1, HIP1R, PIP5K1C,		1.00E+0
membrane	8	01	03	CLASP2, PPP1R9B	3.543233	0
				·		
GO:0048786		5.0724	6.15E-	APP, UNC13A, SLC32A1,		1.00E+0
~presynaptic active zone	7	64	0.156-	GAD1, TPRGL, PPFIA3, PPFIA2	3.968421	0
active zone	,	04	03	FFIIAZ	3.300421	U
				EPHA4, ACTR2, DBNL,		
				SRC, ITPR1, HIP1R, CASK,		
				ADD3, PPP1R9A, DCLK1,		
				PPP1R9B, GRIN1, ADD2,		
				RIMS1, CACNG8, CAPZB,		
GO:0014069				LRRC7, MYO6, ADGRL1,		
~postsynapti		15.942	1.17E-	PIP5K1C, DLGAP2,		1.00E+0
c density	22	03	02	RAPGEF4	1.722677	0
GO:0098685				EPHA4, CACNG8, IQSEC2,		
~Schaffer				CAPZB, ROCK2, NRXN1,		
collateral -		7.9710	1.44E-	MYO6, ITPR1, TNR, CASK,		
CA1 synapse	11	14	02	EPN1	2.362155	1
				ROCK2, SRC, NRXN1,		
				ITSN1, ADAM22,		
				PPP1R9A, ADD2, RIMS1,		
				CACNG8, MYO6, TNR,		
				PIP5K1C, DLGAP2,		
GO:0098978				PPFIA3, PPFIA2, DLGAP4,		
~glutamater		20.289		EPHA4, UNC13A, IQSEC2,		
gic synapse	28	86	0.02324	AP3D1, GRIN1, BCAN, CACNB4, LRRC7,	1.497517	1

				KCNMA1, CSPG5,		
				ADGRL1, RAPGEF4		
				ADGREI, RAFGEF4		
GO:0002189						
~ribose						
phosphate						
diphosphoki						
nase		2.1739	0.02659			
complex	3	13	5	PRPS2, PRPS1, PRPS1L3	10.6297	1
Complex		13		7 KI 32, F KI 31, F KI 3123	10.0237	1
				NRXN1, ITSN1, ITPR1,		
				PPP1R9A, HAPLN1,		
				PPP1R9B, SYNPR, RIMS1,		
				GRM2, CACNG8, GPC1,		
				MYO6, DLGAP2, PPFIA3,		
				PPFIA2, DLGAP4, MPST,		
				EPHA4, UNC13A, DBNL,		
				ATP6AP1, SLC32A1,		
				GAD1, CASK, SLC6A11,		
				GRIN1, BCAN, CACNB4,		
60-0045303		26.006	0.02722	LRRC7, MADD, CSPG5,		
GO:0045202	26	26.086	0.02732	ADGRL1, TLN2, PABPC1,	4 202725	
~synapse	36	96	5	TPRGL, PAFAH1B1	1.382725	1
				SH3GLB1, SRC, NRXN1,		
				ITSN1, ITPR1, HIP1R,		
				CASK, SLC1A4, PPP1R9A,		
				CACNA1E, PPP1R9B,		
				GRIN1, SRR, PDE10A,		
				CAPZB, KIF5C, GPC1,		
GO:0043025				MYO6, KCNMA1,		
		16.666	0.02742			
~neuronal	23			DLGAP4, PAFAH1B1,	1.567199	1
cell body	23	67	6	SCN1A, RAPGEF4	1.56/199	1
GO:0031012						
~extracellula		3.6231	0.03255	BCAN, GPC1, TNR, GLG1,		
r matrix	5	88	9	HAPLN1	3.936926	1
				APP, EPHA4, ITSN1,		
				HIP1R, ASAP1, PPP1R9A,		
GO:0043197				PPP1R9B, GRIN1, CAPZB,		
~dendritic		9.4202	0.03451	LRRC7, DLGAP2, PPFIA2,		
spine	13	9	5	RAPGEF4	1.899465	1
CO-0005005						
GO:0005905		4 2 4 7 0	0.03600	ADD MAYOR ITCNIA		
~clathrin-		4.3478	0.03608	APP, MYO6, ITSN1,	2 4 40 5 44	
coated pit	6	26	1	HIP1R, EPS15L1, EPN1	3.149541	1
	I	<u> </u>	<u> </u>	1	I .	ı

GO:0005903						
~brush		3.6231	0.03906	CAPZB, MYO6, MYO18A,		
border	5	88	5	ADD3, RAPGEF4	3.729719	1
60 0000056						
GO:0099056						
~integral component						
of				EPHA4, NRXN1, ADGRL1,		
presynaptic		5.0724	0.04041	SLC6A11, CACNA1E,		
membrane	7	64	9	SCN1A, GRIN1	2.681366	1
				SH3GLB1, APP, DBNL,		
				ATP6AP1, SLC32A1,		
				ATP8A1, HEXB, ITSN1, AP1B1, ITPR1, HIP1R,		
				FMN2, ADD2, SYNPR,		
GO:0031410				EHD3, RAB12, MYO6,		
~cytoplasmic		15.217	0.04891	TPRGL, TECPR1, SCYL2,		
vesicle	21	39	7	PPFIA3	1.518528	1
GO:0098831						
~presynaptic						
active zone						
cytoplasmic		2.8985	0.05717	RIMS1, UNC13A, IQSEC2,		
component	4	51	8	PPFIA3	4.360902	1
GO:0030665						
~clathrin-						
coated						
vesicle		2.1739	0.06059			
membrane	3	13	1	DBNL, AP1B1, HIP1R	7.086466	1
GO:0031594				ADD EDITAL LINE(12A		
~neuromusc		5.0724	0.06223	APP, EPHA4, UNC13A, NRXN1, SYNJ2BP,		
ular junction	7	64	8	PPP1R9A, DLGAP4	2.419769	1
aidi juliction	,	0-1	0		2.413703	-
				APP, EPHA4, SLC32A1,		
				NRXN1, SYNJ2BP, CKAP4,		
GO:0009986		9.4202	0.06564	GRIN1, BCAN, GPC1, TNR, CSPG5, LRRC8A,		
~cell surface	13	9.4202	4	PPFIA2	1.721945	1
cen surface	13	,	7	111104	1.721343	1
GO:0098982				BCAN, RIMS1, SLC32A1,		
~GABA-ergic		5.7971	0.07255	NRXN1, ITPR1, CSPG5,		
synapse	8	01	7	SLC6A11, CACNA1E	2.139311	1
GO:0000139				SH3GLB1, DBNL, VAPA,		
~Golgi		6.5217	0.07411	RAB12, AP3D1, GNAI3,		
membrane	9	39	6	MYO18A, CSPG5, GLG1	1.993069	1
			Ì			

GO:0097060 ~synaptic membrane	6	4.3478 26	0.07595 5	UNC13A, SRC, ITPR1, HIP1R, CASK, GRIN1	2.576897	1
GO:0005938 ~cell cortex	8	5.7971 01	0.07869 8	ACTR2, DBNL, GAD1, HIP1R, FMN2, ADD3, CLASP2, PAFAH1B1	2.099694	1
GO:0098839 ~postsynapti c density membrane	5	3.6231 88	0.09237 6	EPHA4, CACNG8, IQSEC2, SYNJ2BP, GRIN1	2.834586	1

Wild-Type Memory Retrieval v. APPtg Memory Retrieval- 20% Upregulated

No results.

Wild-Type Basal v. Wild-Type Memory Retrieval- 20% Downregulated

Table 52. DAVID Gene Ontology output table for enriched cellular components within proteins downregulated in WT mice during memory retrieval, when compared to WT mice at the basal level.

					Fold	
Term	Count	%	PValue	Genes	Enrichment	FDR
				HSPA9, OAT,		
				PCX, ABAT,		
				OGDHL,		
GO:0005759~mitochondrial				ACADSB, DLD,		
matrix	8	16	4.28E-03	GLS	3.696078	8.00E-01
GO:0098871~postsynaptic				MYO6,		
actin cytoskeleton	3	6	2.41E-02	PPP1R9A, DBN1	11.78125	1.00E+00
				UNC13A,		
				ROCK2, AP3D1,		
				AKAP5,		
GO:0098978~glutamatergic				PPP1R9A,		
synapse	13	26	2.49E-02	GRM3, RIMS1,	1.926494	1.00E+00
Зупарэс	15	20	2.75L-02	SYNJ1, MYO6,	1.520454	1.002100

				PIP5K1C, PLCB1, DBN1, PPFIA3		
GO:0098831~presynaptic active zone cytoplasmic component	3	6	3.99E-02	RIMS1, UNC13A, PPFIA3	9.0625	1
GO:0098830~presynaptic endosome	2	4	0.049259	AP3D1, SNAP91	39.27083	1
GO:0043005~neuron projection	10	20	0.073395	GRM3, CYFIP2, MPST, SYNPR, UNC13A, SYNJ1, DCTN1, ABAT, PPP1R9A, SNAP91	1.852398	1
GO:0045252~oxoglutarate dehydrogenase complex	2	4	0.09614	OGDHL, DLD	19.63542	1

APPtg Basal v. APPtg Memory Retrieval- 20% Downregulated

Table 53. DAVID Gene Ontology output table for enriched cellular components within proteins downregulated in APPtg mice during memory retrieval, when compared to APPtg mice at the basal level.

Term	Count	%	PValue	Genes	Fold Enrichment	FDR
Term	Count	70	Pvalue	Genes	Enrichment	FUK
				AP3D1,		
GO:0030123~AP-3				AP3S1,		
adaptor complex	3	20	3.05E-04	AP3B2	94.25	1.86E-02
				AP3D1,		
GO:0030117~membrane				AP3S1,		
coat	3	20	3.24E-03	AP3B2	31.41667	9.89E-02
				AP3D1,		
GO:1904115~axon				AP3S1,		
cytoplasm	3	20	1.62E-02	AP3B2	13.96296	2.63E-01
				AP3D1,		
				VPS26A,		
GO:0005769~early				AP3S1,		
endosome	4	26.66667	1.72E-02	AP3B2	6.528139	0.262844

GO:0010008~endosome				AP3D1, VPS26A,		
membrane	3	20	0.026505	SCYL2	10.77143	0.284109
				AP3D1,		
GO:0005802~trans-Golgi				AP3S1,		
network	3	20	0.027945	AP3B2	10.47222	0.284109
				PACS1,		
				AP3D1,		
				AP3S1,		
GO:0005794~Golgi				AP3B2,		
apparatus	5	33.33333	0.041683	SCYL2	3.378136	0.363235

Wild-Type Basal v. APPtg Basal- 20% Downregulated

Table 54. DAVID Gene Ontology output table for enriched cellular components within proteins downregulated in WT mice at the basal level, when compared to APPtg mice at the basal level.

Term	Count	%	PValue	Genes	Fold Enrichment	FDR
GO:0005743 ~mitochondr		45.2	2.755	ACADVL, UQCRB, NDUFB6, MTFP1, TIMM9, COX7A2, UQCR10, COX5B, COX6A1, HSD17B10, COX5A, CHCHD3, CHCHD6, SLC25A22, SNCA, NDUFA7, NDUFA5, NDUFA5, NDUFA2, IDH2, DHRS1, COQ6, HADHB,		1.005.0
ial inner membrane	26	15.2 9412	3.75E- 03	UQCRQ, NDUFS6, NDUFS5, PGAM5	1.779523	1.00E+0 0
GO:0070469 ~respiratory chain	9	5.29 4118	9.85E- 03	NDUFA7, NDUFB6, NDUFA5, UQCRB, UQCRQ, NDUFS6, NDUFS5, NDUFA2, UQCR10	2.897947	1.00E+0 0
GO:0032432 ~actin filament bundle	3	1.76 4706	1.40E- 02	MARCKS, PLS3, CRYAB	14.16774	1.00E+0 0

GO:0005739 ~mitochondr ion GO:0005751	51	30	4.02E- 02	ALDH1L1, ACADVL, SLC44A2, DBI, ETFA, PARK7, COX6A1, COMTD1, CHCHD3, HINT2, CHCHD6, C1QBP, ATP6V1E1, ACOT9, HADHB, NDUFS6, NDUFS5, RAB35, PGAM5, CRYAB, PPID, NDUFB6, MTFP1, UQCRB, TIMM9, COX7A2, AK4, ACAA1A, UQCR10, COX5B, MFF, HSD17B10, COX5A, SLC25A27, PRDX3, PRDX1, SLC25A22, DECR1, SNCA, FIS1, NDUFA7, NDUFA5, MTX2, NDUFA2, IDH2, HSPE1, DHRS1, COQ6, QDPR, UQCRQ, OCIAD1	1.261003	1
~mitochondr ial respiratory chain complex IV	4	2.35 2941	0.04653 8	COX7A2, COX5B, COX6A1, COX5A	4.722581	1
GO:0005839 ~proteasome core complex	4	2.35 2941	0.05747	PSMA3, PSMB5, PSMA1, PSMA7	4.359305	1
GO:0005615 ~extracellula r space	12	7.05 8824	0.06068 4	ALAD, PCMT1, FABP3, C1QBP, CDH13, CPE, DBI, APOE, NPTXR, PAM, PDIA6, SNCA	1.808648	1
GO:0000502 ~proteasome complex	6	3.52 9412	0.07658	PSMA3, PSMB5, PSMD7, PSMA1, PSMC1, PSMA7	2.575953	1
GO:0019773 ~proteasome core complex, alpha- subunit complex	3	1.76 4706	0.08126 4	PSMA3, PSMA1, PSMA7	6.071889	1

GO:0030125 ~clathrin vesicle coat	3	1.76 4706	0.08126 4	NECAP1, CLTB, CLTA	6.071889	1
GO:0005747 ~mitochondr ial						
respiratory chain complex I	6	3.52 9412	0.08493	NDUFA7, NDUFB6, NDUFA5, NDUFS6, NDUFS5, NDUFA2	2.50019	1

Wild-Type Memory Retrieval v. APPtg Memory Retrieval - 20% Downregulated

Table 55. DAVID Gene Ontology output table for enriched cellular components within proteins downregulated in APPtg mice during memory retrieval, when compared to WT mice during memory retrieval.

Term	Count	%	PValue	Genes	Fold Enrichment	FDR
				PAM,		
GO:0048471~perinuclear				NDRG1,		
region of cytoplasm	3	60	4.31E-03	SIRT2	19.51195	2.07E-01
GO:0043209~myelin				NDRG1,		
sheath	2	40	2.69E-02	SIRT2	55.28385	4.90E-01
				PAM,		
GO:0043204~perikaryon	2	40	3.06E-02	SIRT2	48.46804	4.90E-01
				NDRG1,		
GO:0005874~microtubule	2	40	5.04E-02	SIRT2	29.24105	0.604776
GO:0098978~glutamatergic				NDRG1,		
synapse	2	40	0.071971	SIRT2	20.33429	0.604776
				NDRG1,		
GO:0005813~centrosome	2	40	0.075597	SIRT2	19.33424	0.604776

3. Gene Ontology- Molecular Function

Wild-Type Basal v. WT Memory Retrieval - 20% Upregulated

Table 56. DAVID Gene Ontology output table for enriched molecular function within proteins upregulated in WT mice during memory retrieval, when compared to WT mice at the basal level.

					Fold	
Term	Coun	%	PValue	Genes	Enrichmen t	FDR
Term	_	70	1 Value			I DIX
				PRDX3,		
				PRDX2,		
				PRDX5, PRDX1,		
GO:0051920~peroxiredoxin		4.19580		PARK7,		0.00268
activity	6	4.13380	7.94E-06	PRDX6	14.47154	3
				PRDX3,		
				PRDX2,		
				PRDX5,		
GO:0004601~peroxidase		3.49650		PRDX1,		0.10100
activity	5	3	6.26E-04	PRDX6	10.33682	3
				PRDX3,		
				PRDX2,		
				PRDX5,		
GO:0016209~antioxidant		3.49650	0.00118	PRDX1,		0.10100
activity	5	3	6	PRDX6	9.044715	3
				PRDX3,		
GO:0008379~thioredoxin		2.79720	0.00119	PRDX2, PRDX5,		0.10100
peroxidase activity	4	3	5	PRDX3,	14.47154	3
peroxiduse detivity					14.47154	
				PURB, PURA,		
				PCBP1,		
GO:0003697~single-		3.49650	0.00202	PCBP1,		0.13672
stranded DNA binding	5	3.43030	3	NME1	8.039747	2
					3.555	_
				YWHAE, FIS1,		
				UQCRB,		
				NDUFA4,		
				ATP5K,		
CO.00440770		15 2046	0.04540	CLTA,		0.00770
GO:0044877~macromolecul	22	15.3846	0.01540	HBB-BS,	1 675652	0.86778
ar complex binding	22	2	4	PARK7,	1.675653	4

		ı	ī	T	T	1
				ATP5H,		
				DYNLL1,		
				ATP5O,		
				DYNLL2,		
				YWHAZ,		
				SLC9A3R1,		
				RAP1A,		
				SCP2,		
				GNA11,		
				NEFL,		
				-		
				ALDOC,		
				MAPT,		
				INA,		
				PAFAH1B2		
				NDUFA7,		
				NDUFA5,		
GO:0008137~NADH				NDUFA2,		
dehydrogenase (ubiquinone)		3.49650		NDUFS4,		0.95829
activity	5	3	0.02487	NDUFV2	4.256337	4
·						
GO:0043027~cysteine-type						
endopeptidase inhibitor				PRDX3,		
activity involved in apoptotic		2.09790	0.02551	PRDX5,		0.95829
process	3	2	7	SNCA	10.85366	4
GO:0000981~RNA						
polymerase II transcription				PURB,		
factor activity, sequence-		2.09790	0.02551	PURA,		0.95829
specific DNA binding	3	2	7	PCBP1	10.85366	4
Specific DIVI billiang	J		,		10.05500	7
				PSMA6,		
				PSMA3,		
1				PSMB2,		
GO:0004175~endopeptidase		3.49650	0.05869	PSMA7,		
activity	5	3	2	PSMA8	3.288987	1
GO:0042626~ATPase						
activity, coupled to				ATP6V1G2		
transmembrane movement		2.09790	0.07797	, ABCB8,		
of substances	3	2.09790	1	ATP6V1D	6.202091	1
	5		1	MILONID	0.202091	1
GO:0000977~RNA						
polymerase II regulatory				PURB,		
region sequence-specific		2.09790	0.07797	PURA,		
DNA binding	3	2	1	NME1	6.202091	1
				DARKZ		
1				PARK7,		
GO:0005507~copper ion		2.09790	0.07797	PARK7,		
GO:0005507~copper ion binding	3	2.09790	0.07797	7	6.202091	1

GO:0046332~SMAD binding	3	2.09790	0.07797	FKBP1A, PURB, PURA	6.202091	1
GO:0004129~cytochrome-c oxidase activity	3	2.09790	0.07797	COX7A2, COX6A1, COX5A	6.202091	1

APPtg Basal v. APPtg Memory Retrieval - 20% Upregulated

Table 57. DAVID Gene Ontology output table for enriched molecular function within proteins upregulated in APPtg mice during memory retrieval, when compared to APPtg mice at the basal level.

Term	Count	%	PValue	Genes	Fold Enrichment	FDR
				NDUFB7,		
				NDUFB10,		
				NDUFA5,		
GO:0008137~NADH				NDUFA2,		
dehydrogenase	_			NDUFS4,		
(ubiquinone) activity	6	5.882353	0.001378	NDUFV2	6.613003	0.315491
				PRDX5,		
				PRDX1,		
GO:0016209~antioxidant				PRDX6,		
activity	4	3.921569	0.006583	SOD1	9.368421	0.753719
GO:0046933~proton-				ATP5K,		
transporting ATP synthase				ATP5H,		
activity, rotational				ATP5O,		
mechanism	4	3.921569	0.013056	ATP5L	7.494737	0.884123
GO:0050633~acetyl-CoA C-				SCP2,		
myristoyltransferase				ACAA1B,		
activity	3	2.941176	0.015443	ACAA1A	14.05263	0.884123
				CISD1,		
GO:0051537~2 iron, 2				NDUFV2,		
sulfur cluster binding	3	2.941176	0.036017	SDHB	9.368421	1
				PRDX5,		
GO:0051920~peroxiredoxi				PRDX1,		
n activity	3	2.941176	0.036017	PRDX6	9.368421	1

GO:0003988~acetyl-CoA C-acyltransferase activity	3	2.941176	0.036017	SCP2, ACAA1B, ACAA1A	9.368421	1
GO:0004601~peroxidase activity	3	2.941176	0.048712	PRDX5, PRDX1, PRDX6	8.030075	1
GO:0016747~transferase activity, transferring acyl groups other than aminoacyl groups	3	2.941176	0.048712	SCP2, ACAA1B, ACAA1A	8.030075	1
GO:0051087~chaperone binding	5	4.901961	0.092461	STIP1, DNAJA2, TIMM44, MAPT, SOD1	2.838915	1

Wild-Type Basal v. APPtg Basal - 20% Upregulated

Table 58. DAVID Gene Ontology output table for enriched molecular function within proteins upregulated in APPtg mice at the basal level, when compared to WT mice at the basal level.

Term	Count	%	PValue	Genes	Fold Enrichment	FDR
				PRPS2, BCAN,		
				PRPS1, AGL,		
GO:0030246~carbohydrate				HEXB, ADGRL1,		
binding	8	5.797101	0.004063	PYGM, GLG1	3.708333	1
				ACTR2, DBNL,		
				TPM1, HIP1R,		
				ADD3,		
				PPP1R9A,		
				ACTR3B,		
				PPP1R9B,		
				ADD2, MYO6,		
GO:0051015~actin				MYO18A,		
filament binding	13	9.42029	0.009386	TLN2, CLASP2	2.259766	1

GO:0008022~protein C- terminus binding	11	7.971014	0.016221	DBNL, PABPC6, LRRC7, SRC, CDC37, ITPR1, CASK, PABPC1, SYNJ2BP, PPP1R9A, PPP1R9B	2.317708	1
GO:0005262~calcium channel activity	6	4.347826	0.024145	RYR2, CACNG8, CACNB4, ITPR1, CACNA1E, GRIN1	3.476563	1
GO:0005524~ATP binding	28	20.28986	0.027279	PRPS2, PRPS1, BRSK2, ATP8A1, ROCK2, SRC, ACTR3B, SRR, HSPH1, MTHFD1L, KIF5C, MYO6, MYO18A, PIP5K1C, STK32C, SCYL2, PRPS1L3, CCT4, CCT3, EPHA4, ACTR2, ATP6AP1, GK, CASK, BCS1L, DCLK1, EHD3, UBE2O	1.474905	1
GO:0004749~ribose phosphate diphosphokinase activity	3	2.173913	0.027552	PRPS2, PRPS1, PRPS1L3	10.42969	1
GO:0005102~receptor binding	9	6.521739	0.041686	APP, GJA1, MECR, SRC, NRXN1, TNR, CASK, SCYL2, GRIN1	2.234933	1
GO:0005216~ion channel activity	6	4.347826	0.050721	RYR2, KCNMA1, ITPR1, CACNA1E, SCN1A, GRIN1	2.877155	1

				ACTR2, DBNL, TPM1, HIP1R, FMN2, ADD3, ACTR3B, PPP1R9B, ADD2, CAPZB, MYO6,		
GO:0003779~actin binding	13	9.42029	0.069157	KCNMA1, TLN2	1.705483	1
GO:0030170~pyridoxal phosphate binding	4	2.898551	0.072333	SRR, OAT, GAD1, PYGM	3.973214	1
GO:0030276~clathrin	5	3.623188	0.075976	TOM1L2, AP1B1, HIP1R, TLN2, EPN1	3.023098	1
binding	3	3.023188	0.075976	·	3.023098	1
GO:0016208~AMP binding	3	2.173913	0.083714	PRPS2, PRPS1, PYGM	5.959821	1
GO:0005244~voltage-				CACNG8, CACNB4, KCNMA1, CACNA1E,		
gated ion channel activity	5	3.623188	0.09736	SCN1A	2.78125	1

Wild-Type Memory Retrieval v. APPtg Memory Retrieval - 20% Upregulated

Table 59. DAVID Gene Ontology output table for enriched molecular function within proteins upregulated in APPtg mice during memory retrieval, when compared to WT mice during memory retrieval.

Term	Count	%	PValue	Genes	Fold Enrichment	FDR
GO:0042802~identical protein binding	3	75	9.56E-02	APP, PSMC6, PIP4K2C	3.921533	1

Wild-Type Basal v. Wild-Type Memory Retrieval - 20% Downregulated

Table 60. DAVID Gene Ontology output table for enriched molecular function within proteins downregulated in WT mice during memory retrieval, when compared to WT mice at the basal level.

Term	Count	%	PValue	Genes	Fold Enrichment	FDR
GO:0030170~pyridoxal				OAT, ABAT,		
phosphate binding	3	6	4.50E-02	PYGM	8.47619	1
				UNC13A,		
				RASGRF2,		
				MYO6,		
GO:0005516~calmodulin				AKAP5,		
binding	5	10	5.23E-02	PLCB1	3.409962	1

APPtg Basal v. APPtg Memory Retrieval - 20% Downregulated

Table 61. DAVID Gene Ontology output table for enriched molecular function within proteins downregulated in APPtg mice during memory retrieval, when compared to APPtg mice at the basal level.

Term	Count	%	PValue	Genes	Fold Enrichment	FDR
GO:0004177~aminopeptidase activity	2	13.33333	0.038733	TPP2, BLMH	46.23377	1
GO:0004672~protein kinase activity	3	20	0.058855	GSK3A, SCYL2, PDK1	6.742424	1

Wild-Type Basal v. APPtg Basal- 20% Downregulated

Table 62. DAVID Gene Ontology output table for enriched molecular function within proteins downregulated in APPtg mice at the basal level, when compared to WT mice at the basal level.

Term	Count	%	PValue	Genes	Fold Enrichment	FDR
161111	Count	70	rvalue	Genes	Linicinnent	IDI
GO:0016491				CBR1, ALDH1L1, ACADVL,		
~oxidoreduct		11.7	0.00852	CTBP1, IDH2, AKR1A1,		
ase activity	20	6471	9	COX7A2, ETFA, DHRS1,	1.84955	1
ase activity	20	04/1	J	COX6A1, HSD17B10, COQ6,	1.04533	1

				PRDX3, QDPR, PRDX1, PHGDH, PAM, PCYOX1, DECR1, SNCA		
GO:0019205 ~nucleobase- containing compound						
kinase		1.76	0.04523			
activity	3	4706	6	AK1, CMPK1, AK4	8.212	1
GO:0019003 ~GDP		4.11	0.05268	RAB21, RAP1A, MRAS, RAP2B, RAB35, HRAS,		
binding	7	7647	9	RHOB	2.521228	1
GO:0016616 ~oxidoreduct ase activity, acting on the CH-OH group of donors, NAD or NADP as acceptor	5	2.94 1176	0.06992 5	CBR1, CTBP1, IDH2, PHGDH, DHRS1	3.110606	1
GO:0051920						
~peroxiredox in activity	3	1.76 4706	0.08631 5	PRDX3, PRDX1, PARK7	5.865714	1
GO:0004550 ~nucleoside diphosphate kinase		1.76	0.08631			
activity	3	4706	5	AK1, CMPK1, AK4	5.865714	1

Wild-Type Memory Retrieval v. APPtg Memory Retrieval- 20% Downregulated

No results.

4. KEGG Pathways

Wild-Type Basal v. Wild-Type Memory Retrieval- 20% Upregulated

Table 63. DAVID annotation tools output table of enriched KEGG pathways within proteins upregulated in WT mice during memory retrieval, when compared to WT mice at the basal level.

	Coun		PValu		Fold	
Term	t	%	е	Genes	Enrichment	FDR
mmu00190:Oxida tive phosphorylation	25	17.4 8252	3.25E- 10	UQCRB, NDUFB6, NDUFB4, NDUFB2, ATP5K, COX7A2, ATP5H, ATP5O, COX6A1, COX5A, ATP6V1E1, NDUFV2, ATP6V1D, NDUFA7, NDUFA6, ATP6V1G2, NDUFA5, NDUFA4, NDUFA2, COX6B1, UQCRQ, PPA1, NDUFS5, NDUFS4, CYCS	4.089311	4.78 E-08
mmu04932:Non- alcoholic fatty liver disease	18	12.5 8741	2.73E- 07	NDUFA7, NDUFA6, NDUFA5, UQCRB, NDUFB6, NDUFA4, NDUFB4, NDUFA2, NDUFB2, COX7A2, COX6A1, COX5A, COX6B1, UQCRQ, NDUFS5, NDUFS4, CYCS, NDUFV2	4.080702	1.93 E-05
mmu05012:Parki nson disease	29	20.2 7972	3.94E- 07	UQCRB, NDUFB6, NDUFB4, NDUFB2, COX7A2, PARK7, ATP5H, ATP5O, COX6A1, COX5A, PSMA7, PSMA8, PSMB2, PSMD4, NDUFV2, SNCA, NDUFA7, NDUFA6, NDUFA5, NDUFA4, NDUFA2, COX6B1, PSMA6, PSMA3, UQCRQ, NDUFS5, NDUFS4, CYCS, MAPT	2.639045	1.93 E-05
mmu05014:Amyo trophic lateral sclerosis	29	20.2 7972	8.60E- 07	UQCRB, DCTN2, NDUFB6, NDUFB4, NDUFB2, COX7A2, ATP5H, ATP5O, COX6A1, COX5A, PSMA7, PSMA8, PSMB2, PSMD4, NEFL, NDUFV2, RAB8A, NDUFA7, NDUFA6, NDUFA5, NDUFA4, NDUFA2, COX6B1, PSMA6, PSMA3, UQCRQ, NDUFS5, NDUFS4, CYCS	2.549282	3.16 E-05

mmu05016:Hunti ngton disease	29	20.2 7972	1.16E- 06	UQCRB, DCTN2, NDUFB6, NDUFB4, CLTB, NDUFB2, CLTA, COX7A2, ATP5H, ATP5O, COX6A1, COX5A, PSMA7, PSMA8, PSMB2, PSMD4, NDUFV2, NDUFA7, NDUFA6, NDUFA5, NDUFA4, NDUFA2, COX6B1, PSMA6, PSMA3, UQCRQ, NDUFS5, NDUFS4, CYCS	2.515063	3.42 E-05
mmu05208:Chem ical carcinogenesis - reactive oxygen species	21	14.6 8531	2.27E- 06	CBR1, NDUFA7, NDUFA6, NDUFA5, UQCRB, NDUFB6, NDUFA4, NDUFB4, NDUFA2, NDUFB2, AKR1A1, COX7A2, ATP5H, ATP5O, COX6A1, COX5A, COX6B1, UQCRQ, NDUFS5, NDUFS4, NDUFV2	3.119157	5.57 E-05
mmu04714:Ther mogenesis	20	13.9 8601	4.62E- 06	NDUFA7, NDUFA6, NDUFA5, UQCRB, NDUFB6, NDUFA4, NDUFB4, NDUFA2, NDUFB2, ATP5K, COX7A2, ATP5H, ATP5O, COX6A1, COX5A, COX6B1, UQCRQ, NDUFS5, NDUFS4, NDUFV2	3.113788	9.70 E-05
mmu05010:Alzhe imer disease	28	19.5 8042	5.52E- 06	UQCRB, NDUFB6, NDUFB4, NDUFB2, COX7A2, ATP5H, ATP5O, COX6A1, COX5A, PSMA7, PSMA8, PSMB2, PSMD4, NDUFV2, SNCA, NDUFA7, NDUFA6, NDUFA5, NDUFA4, NDUFA2, COX6B1, PSMA6, PSMA3, UQCRQ, NDUFS5, NDUFS4, CYCS, MAPT	2.396174	1.01 E-04
mmu05022:Path ways of neurodegeneratio n - multiple diseases	32	22.3 7762	1.70E- 05	UQCRB, DCTN2, NDUFB6, NDUFB4, NDUFB2, COX7A2, PARK7, ATP5H, ATP5O, COX6A1, COX5A, PSMA7, PSMA8, PSMB2, PSMD4, NEFL, NDUFV2, RAB8A, SNCA, NDUFA7, NDUFA6, NDUFA5, NDUFA4, NDUFA2, COX6B1, PSMA6, PSMA3, UQCRQ, NDUFS5, NDUFS4, CYCS, MAPT	2.08844	2.77 E-04

mmu05020:Prion disease	26	18.1 8182	2.14E- 05	UQCRB, NDUFB6, NDUFB4, NDUFB2, COX7A2, ATP5H, ATP5O, COX6A1, COX5A, PSMA7, PSMA8, PSMB2, PSMD4, NDUFV2, NDUFA7, NDUFA6, NDUFA5, NDUFA4, NDUFA2, COX6B1, PSMA6, PSMA3, UQCRQ, NDUFS5, NDUFS4, CYCS	2.349495	3.14 E-04
mmu05415:Diabe tic cardiomyopathy	20	13.9 8601	3.27E- 05	NDUFA7, NDUFA6, NDUFA5, UQCRB, NDUFB6, NDUFA4, NDUFB4, NDUFA2, GSR, NDUFB2, COX7A2, ATP5H, ATP5O, COX6A1, COX5A, COX6B1, UQCRQ, NDUFS5, NDUFS4, NDUFV2	2.749409	4.37 E-04
mmu01100:Meta bolic pathways	39	27.2 7273	0.0069 46	UQCRB, NDUFB6, NDUFB4, AK1, NDUFB2, ATP5K, COX7A2, HSD17B12, ATP5H, ATP5O, COX6A1, COX5A, SCP2, ATP6V1E1, NDUFV2, ATP6V1D, CBR1, NDUFA7, TPI1, NDUFA6, ATP6V1G2, NDUFA5, NDUFA4, NDUFA2, GSR, AKR1A1, PRDX6, DDOST, ASRGL1, COX6B1, NME1, UQCRQ, PSAT1, NDUFS5, NDUFS4, CYCS, ALDOC, PAFAH1B2, CDS2	1.427668	0.08 508 6
mmu04962:Vaso pressin-regulated water reabsorption	6	4.19 5804	0.0261 89	DCTN2, ARHGDIA, DYNLL1, DYNLL2, RAB11A, RAB11B	3.371014	0.29 614 3
mmu04723:Retro grade endocannabinoid signaling	12	8.39 1608	0.0299 88	NDUFA7, NDUFA6, NDUFB6, NDUFA5, NDUFA4, NDUFB4, GNG7, NDUFS5, NDUFA2, NDUFS4, NDUFB2, NDUFV2	1.988034	0.31 487 9
mmu03050:Prote asome	6	4.19 5804	0.0643	PSMA6, PSMA3, PSMD4, PSMB2, PSMA7, PSMA8	2.673563	0.63 014 5

APPtg Basal v. APPtg Memory Retrieval- 20% Upregulated

Table 64. DAVID annotation tools output table of enriched KEGG pathways within proteins upregulated in APPtg mice during memory retrieval, when compared to APPtg mice at the basal level.

Term	Count	%	PValue	Genes	Fold Enrichment	FDR
mmu00190: Oxidative phosphorylat ion	25	24.5 098	1.38E- 11	NDUFB7, UQCRB, NDUFB10, NDUFB3, ATP5K, UQCR10, ATP5H, ATP5O, COX6A1, ATP5L, ATP6V1E1, NDUFV2, NDUFA8, ATP6V1G1, ATP6V1G2, NDUFA5, NDUFA4, NDUFA2, COX6C, SDHB, COX6B1, UQCRQ, NDUFS5, NDUFS4, CYCS	4.658709	1.42E- 09
mmu05016: Huntington disease	31	30.3 9216	1.96E- 09	NDUFB7, UQCRB, NDUFB10, NDUFB3, CLTB, CLTA, UQCR10, ATP5H, ATP5O, COX6A1, PSMD6, PSMD7, NDUFV2, NDUFA8, NDUFA5, NDUFA4, NDUFA2, COX6C, SOD2, SDHB, SOD1, COX6B1, PSMA5, PSMA6, PSMC6, PSMA1, UQCRQ, PSMA2, NDUFS5, NDUFS4, CYCS	3.062866	8.91E- 08
mmu05012: Parkinson disease	30	29.4 1176	2.89E- 09	NDUFB7, UQCRB, NDUFB10, NDUFB3, UQCR10, ATP5H, ATP5O, COX6A1, PSMD6, PSMD7, NDUFV2, NDUFA8, NDUFA5, NDUFA4, NDUFA2, COX6C, SDHB, SOD1, COX6B1, PSMA5, PSMA6, PSMC6, PSMA1, UQCRQ, PSMA2, NDUFS5, NDUFS4, CYCS, MAPT, MCU	3.11018	8.91E- 08
mmu05020: Prion disease	30	29.4 1176	3.46E- 09	NDUFB7, UQCRB, NDUFB10, NDUFB3, UQCR10, ATP5H, ATP5O, COX6A1, STIP1, PSMD6, PSMD7, NDUFV2, NDUFA8, NDUFA5, NDUFA4, NDUFA2, COX6C, SDHB, SOD1, COX6B1, PSMA5, PSMA6,	3.088431	8.91E- 08

	1	1				
				PSMC6, PSMA1, UQCRQ,		
				PSMA2, NDUFS5, NDUFS4,		
				CYCS, MCU		
				NDUFA8, CBR1, NDUFB7,		
				NDUFA5, UQCRB, NDUFB10,		
mmu05208:				NDUFA4, NDUFA2, NDUFB3,		
Chemical				AKR1A1, UQCR10, ATP5H,		
carcinogenes				COX6C, SOD2, ATP5O,		
is - reactive				COX6A1, SDHB, SOD1,		
oxygen		22.5	6.48E-	COX6B1, UQCRQ, NDUFS5,		1.20E-
	23	4902	09	NDUFS4, NDUFV2	3.891896	07
Sp 50.00					0.00 200 0	
				NDUFB7, UQCRB, NDUFB10,		
				NDUFB3, UQCR10, ATP5H,		
				ATP5O, COX6A1, PSMD6,		
				PSMD7, NEFM, NDUFV2,		
				NDUFA8, NDUFA5, NDUFA4,		
1				NDUFA2, COX6C, SDHB, SOD1,		
mmu05014:				COX6B1, PSMA5, PSMA6,		
Amyotrophic				PSMC6, PSMA1, UQCRQ,		
lateral		29.4	6.98E-	PSMA2, NDUFS5, NDUFS4,		1.20E-
sclerosis	30	1176	09	CYCS, MCU	3.004392	07
				NDUFA8, NDUFB7, NDUFA5,		
mmu04932:				UQCRB, NDUFB10, NDUFA4,		
Non-				NDUFA2, NDUFB3, UQCR10,		
alcoholic				COX6C, COX6A1, SDHB,		
fatty liver		17.6	3.33E-	COX6B1, UQCRQ, NDUFS5,		4.89E-
I 1	18	4706	3.33E- 08	NDUFS4, CYCS, NDUFV2	4.648901	4.69E-
uisease	10	4700	00	NDOF34, CTC3, NDOFV2	4.046901	07
				NDUFB7, UQCRB, NDUFB10,		
				NDUFB3, UQCR10, ATP5H,		
				ATP5O, COX6A1, PSMD6,		
				PSMD7, NDUFV2, NDUFA8,		
				NDUFA5, NDUFA4, NDUFA2,		
				COX6C, SDHB, COX6B1,		
				PSMA5, PSMA6, PSMC6,		
mmu05010:				PSMA1, UQCRQ, PSMA2,		
Alzheimer		28.4	6.32E-	NDUFS5, NDUFS4, CYCS,		8.14E-
disease	29	3137	08	MAPT, MCU	2.827312	07
+				NDUFA8, NDUFB7, NDUFA5,		
				UQCRB, NDUFB10, NDUFA4,		
1				NDUFA2, NDUFB3, ATP5K,		
mmu04714.T				UQCR10, ATP5H, COX6C,		
mmu04714:T		20 E	0.215	ATP50, COX6A1, SDHB, ATP5L,		1.07E-
hermogenesi	21	20.5 8824	9.31E- 08	COX6B1, UQCRQ, NDUFS5, NDUFS4, NDUFV2	3.724722	1.07E- 06
S			110		~ 1/4///	1.15

mmu05022: Pathways of neurodegene ration - multiple diseases	31	30.3 9216	2.21E- 06	NDUFB7, UQCRB, NDUFB10, NDUFB3, UQCR10, ATP5H, ATP5O, COX6A1, PSMD6, PSMD7, NEFM, NDUFV2, NDUFA8, NDUFA5, NDUFA4, NDUFA2, COX6C, SDHB, SOD1, COX6B1, PSMA5, PSMA6, PSMC6, PSMA1, UQCRQ, PSMA2, NDUFS5, NDUFS4, CYCS, MAPT, MCU	2.304884	2.28E- 05
mmu05415: Diabetic cardiomyopa thy	19	18.6 2745	1.74E- 05	NDUFA8, NDUFB7, NDUFA5, UQCRB, NDUFB10, NDUFA4, NDUFA2, NDUFB3, UQCR10, ATP5H, COX6C, ATP5O, COX6A1, SDHB, COX6B1, UQCRQ, NDUFS5, NDUFS4, NDUFV2	2.975626	1.63E- 04
mmu01100: Metabolic pathways	37	36.2 7451	0.00170	NDUFB7, UQCRB, NDUFB10, AK1, NDUFB3, ATP5K, ACAA1B, AK4, ACAA1A, UQCR10, ATP5H, ATP5O, COX6A1, ATP5L, SCP2, CKB, ATP6V1E1, NDUFV2, CBR3, NDUFA8, CBR1, ATP6V1G1, TPI1, ATP6V1G2, NDUFA5, NDUFA4, NDUFA2, AKR1A1, COX6C, SDHB, PRDX6, COX6B1, UQCRQ, PSAT1, NDUFS5, NDUFS4, CYCS	1.543049	0.014 346
mmu04146: Peroxisome	7	6.86 2745	0.00181	PRDX5, SCP2, PRDX1, ACAA1B, ACAA1A, SOD2, SOD1	4.907173	0.014 346
mmu03050: Proteasome	7	6.86 2745	0.01027 3	PSMA5, PSMA6, PSMD6, PSMC6, PSMD7, PSMA1, PSMA2	3.55347	0.075 578
mmu05017:S pinocerebell ar ataxia	9	8.82 3529	0.03503	PSMA5, PSMA6, PSMD6, PSMC6, PSMD7, PSMA1, PSMA2, CYCS, MCU	2.284374	0.240 544

Wild-Type Basal v. APPtg Basal- 20% Upregulated

Table 65. DAVID annotation tools output table of enriched KEGG pathways within proteins upregulated in APPtg mice at the basal level, when compared to WT mice at the basal level.

Term	Count	%	PValu e	Genes	Fold Enrichme nt	FDR
mmu05010:Alzhe imer disease	27	15. 882 35	2.12E- 05	UQCRB, NDUFB6, COX7A2, UQCR10, KLC1, COX5B, COX6A1, HSD17B10, COX5A, PSMA7, PSMB5, PSMD7, APOE, HRAS, SNCA, NDUFA7, NDUFA5, NDUFA2, CSNK2A2, PSMA3, PSMA1, UQCRQ, NDUFS6, NDUFS5, PSMC1, CALM1, PPID	2.318146	4.22E- 03
mmu05208:Chem ical carcinogenesis - reactive oxygen species	18	10. 588 24	9.23E- 05	CBR1, MAP2K4, NDUFA7, NDUFA5, UQCRB, NDUFB6, NDUFA2, AKR1A1, COX7A2, UQCR10, COX5B, COX6A1, COX5A, UQCRQ, NDUFS6, NDUFS5, HRAS, GSTM5	2.788881	7.78E- 03
mmu00190:Oxida tive phosphorylation	16	9.4 117 65	1.17E- 04	NDUFA7, ATP6V1G2, NDUFA5, UQCRB, NDUFB6, NDUFA2, COX7A2, UQCR10, COX5B, COX6A1, COX5A, UQCRQ, NDUFS6, NDUFS5, ATP6V1E1, ATP6V1D	2.995465	7.78E- 03
mmu05012:Parki nson disease	23	13. 529 41	2.75E- 04	NDUFA7, NDUFA5, UQCRB, NDUFB6, NDUFA2, COX7A2, PARK7, UQCR10, KLC1, COX5B, COX6A1, COX5A, PSMA7, PSMA3, PSMB5, PSMD7, PSMA1, UQCRQ, NDUFS6, NDUFS5, PSMC1, CALM1, SNCA	2.198799	1.35E- 02
mmu05022:Path ways of neurodegeneratio n - multiple diseases	29	17. 058 82	3.39E- 04	UQCRB, DCTN2, NDUFB6, COX7A2, PARK7, UQCR10, KLC1, COX5B, COX6A1, HSD17B10, COX5A, PSMA7, PSMB5, PSMD7, HRAS, SNCA, NDUFA7, NDUFA5, NDUFA2, CSNK2A2, RAB39B, PSMA3, PSMA1, UQCRQ, NDUFS6, NDUFS5, PSMC1, CALM1, PPID	1.916216	1.35E- 02

mmu05016:Hunti ngton disease	23	13. 529 41	5.68E- 04	NDUFA7, NDUFA5, UQCRB, DCTN2, NDUFB6, NDUFA2, CLTB, CLTA, COX7A2, UQCR10, KLC1, COX5B, COX6A1, COX5A, PSMA7, PSMA3, PSMB5, PSMD7, PSMA1, UQCRQ, NDUFS6, NDUFS5, PSMC1	2.094801	1.88E- 02
mmu04932:Non- alcoholic fatty liver disease	13	7.6 470 59	1.42E- 03	NDUFA7, NDUFA5, UQCRB, NDUFB6, NDUFA2, COX7A2, UQCR10, COX5B, COX6A1, COX5A, UQCRQ, NDUFS6, NDUFS5	2.781503	3.57E- 02
mmu05020:Prion disease	21	12. 352 94	1.49E- 03	NDUFA7, NDUFA5, UQCRB, NDUFB6, NDUFA2, CSNK2A2, COX7A2, UQCR10, KLC1, COX5B, COX6A1, COX5A, PSMA7, PSMA3, PSMB5, PSMD7, PSMA1, UQCRQ, NDUFS6, NDUFS5, PSMC1	2.051242	3.57E- 02
mmu05014:Amyo trophic lateral sclerosis	22	12. 941 18	1.62E- 03	NDUFA7, NDUFA5, UQCRB, DCTN2, NDUFB6, NDUFA2, RAB39B, COX7A2, UQCR10, KLC1, COX5B, COX6A1, COX5A, PSMA7, PSMA3, PSMB5, PSMD7, PSMA1, UQCRQ, NDUFS6, NDUFS5, PSMC1	1.990275	3.57E- 02
mmu01100:Meta bolic pathways	41	24. 117 65	4.47E- 03	PDXK, DGKE, ALDH1L1, ACADVL, UQCRB, NDUFB6, PDE1A, AK1, COX7A2, AK4, ACAA1A, UQCR10, COX5B, COX6A1, HSD17B10, COX5A, ALAD, PDE4B, PHGDH, ATP6V1E1, ATP6V1D, CBR1, NDUFA7, ATP6V1G2, NDUFA5, NDUFA2, IDH2, AKR1A1, TALDO1, ASRGL1, COQ6, HADHB, QDPR, UQCRQ, NDUFS6, NDUFS5, CMPK1, PFKP, PAFAH1B2, GSTM5, CDS2	1.45056	8.20E- 02
mmu04714:Ther mogenesis	14	8.2 352 94	4.53E- 03	NDUFA7, NDUFA5, UQCRB, NDUFB6, NDUFA2, COX7A2, UQCR10, COX5B, COX6A1,	2.329806	8.20E- 02

				COX5A, UQCRQ, NDUFS6,		
				NDUFS5, HRAS		
				NDUFA7, NDUFA5, UQCRB,		
				NDUFB6, NDUFA2, COX7A2,		
mmu05415:Diabe		7.6		UQCR10, COX5B, COX6A1,		
tic		470	0.0229	COX5A, UQCRQ, NDUFS6,		0.380
cardiomyopathy	13	59	15	NDUFS5	1.991303	003
		2.9				
mmu04137:Mito		411	0.0531	FIS1, MRAS, CSNK2A2,		0.814
phagy - animal	5	76	98	PGAM5, HRAS	3.369898	345
		3.5				
mmu03050:Prote		294	0.0631	PSMA3, PSMB5, PSMD7,		0.897
asome	6	12	14	PSMA1, PSMC1, PSMA7	2.695918	122
mmu04260:Cardi		4.1		UQCRB, UQCRQ, COX7A2,		
ac muscle		176	0.0814	UQCR10, COX5B, COX6A1,		0.975
contraction	7	47	63	COX5A	2.246599	49
mmu01240:Biosy		4.1				
nthesis of		176	0.0892	ALAD, PDXK, AK1, AKR1A1,		0.975
cofactors	7	47	69	CMPK1, AK4, COQ6	2.194352	49

Wild-Type Memory Retrieval v. APPtg Memory Retrieval- 20% Upregulated

No results.

Wild-Type Basal v. Wild-Type Memory Retrieval-20% downregulated

Table 66. DAVID annotation tools output table of enriched KEGG pathways within proteins downregulated in WT mice during memory retrieval, when compared to WT mice at the basal level.

Term	Count	%	PValue	Genes	Fold Enrichment	FDR
				PCX,		
				OGDHL,		
mmu00020:Citrate cycle				ACO2,		
(TCA cycle)	5	10	3.98E-03	SDHA, DLD	7.048485	3.78E-01

				MPST, OAT, PCX, AGL, OGDHL, PYGM, ABAT, SDHA, ACADSB, ADCY5, GLS, ALDH6A1,		
mmu01100:Metabolic pathways	18	36	5.37E-03	SYNJ1, ACO2, PIP5K1C, PLCB1, DLD, ATP6V0A1	1.797064	3.78E-01
mmu00562:Inositol phosphate metabolism	4	8	9.91E-03	ALDH6A1, SYNJ1, PIP5K1C, PLCB1	8.292335	4.66E-01
mmu01200:Carbon metabolism	6	12	2.91E-02	ALDH6A1, PCX, OGDHL, ACO2, SDHA, DLD	3.253147	1.00E+00
mmu00280:Valine, leucine and isoleucine degradation	4	8	5.90E-02	ALDH6A1, ABAT, ACADSB, DLD	4.271809	1.00E+00
mmu00640:Propanoate metabolism	3	6	6.16E-02	ALDH6A1, ABAT, DLD	7.048485	1.00E+00
mmu04072:Phospholipase D signaling pathway	4	8	6.82E-02	GRM3, PIP5K1C, PLCB1, ADCY5	4.027706	1.00E+00

APPtg Basal v. APPtg Memory Retrival-20% downregulated

Table 67. DAVID annotation tools output table of enriched KEGG pathways within proteins downregulated in APPtg mice during memory retrieval, when compared to APPtg mice at the basal level.

Term	Count	%	PValue	Genes	Fold Enrichment	FDR
				HEXB,		
				AP3D1,		
				AP3S1,		
mmu04142:Lysosome	4	26.66667	6.47E-04	AP3B2	18.46032	1.62E-02

Wild-Type Basal v. APPtg Basal-20% downregulated

Table 68. DAVID annotation tools output table of enriched KEGG pathways within proteins downregulated in APPtg mice at the basal level, when compared to WT mice at the basal level.

Term	Count	%	PValue	Genes	Fold Enrichment	FDR
				SH3GLB1,		
				ACTR2,		
				EHD3,		
				IQSEC2,		
				CAPZB,		
				SRC,		
				KIF5C,		
				ASAP1,		
				EPS15L1,		
				PIP5K1C,		
				ACTR3B,		
mmu04144:Endocytosis	12	8.695652	4.59E-02	EPN1	1.85956	1.00E+00

Wild-Type Memory Retrieval v. APPtg Memory Retreival-20% downregulated

No results

5. Clustering

Wild-Type Basal v. Wild-Type Memory Retrieval-20% upregulated

Table 69. DAVID functional annotation clustering output table for annotation clusters enriched within proteins upregulated in WT mice during memory retrieval, when compared to WT mice at the basal level.

Term	Count	%	PValu e	Genes	Fold Enrichm ent	FDR
mmu00190: Oxidative phosphorylat ion	25	17.4 8252	3.25E- 10	UQCRB, NDUFB6, NDUFB4, NDUFB2, ATP5K, COX7A2, ATP5H, ATP5O, COX6A1, COX5A, ATP6V1E1, NDUFV2, ATP6V1D, NDUFA7, NDUFA6, ATP6V1G2, NDUFA5, NDUFA4, NDUFA2, COX6B1, UQCRQ, PPA1, NDUFS5, NDUFS4, CYCS	4.08931	4.78E 08
KW- 0249~Electro n transport	17	11.8 8811	2.06E- 07	NDUFA7, NDUFA6, NDUFA5, UQCRB, NDUFB6, NDUFA4, NDUFB4, TXNL1, NDUFA2, NDUFB2, NDUFB1, TMX4, UQCRQ, NDUFS5, NDUFS4, CYCS, NDUFV2	4.38669 6	9.08E 06
mmu04932: Non- alcoholic fatty liver disease	18	12.5 8741	2.73E- 07	NDUFA7, NDUFA6, NDUFA5, UQCRB, NDUFB6, NDUFA4, NDUFB4, NDUFA2, NDUFB2, COX7A2, COX6A1, COX5A, COX6B1, UQCRQ, NDUFS5, NDUFS4, CYCS, NDUFV2	4.08070 2	1.93E 05
KW- 0679~Respir atory chain	15	10.4 8951	3.63E- 07	NDUFA7, NDUFA6, NDUFA5, UQCRB, NDUFB6, NDUFA4, NDUFB4, NDUFA2, NDUFB2, NDUFB1, UQCRQ, NDUFS5, NDUFS4, CYCS, NDUFV2	4.86077 1	9.08E 06
mmu05012: Parkinson disease	29	20.2 7972	3.94E- 07	UQCRB, NDUFB6, NDUFB4, NDUFB2, COX7A2, PARK7, ATP5H, ATP5O, COX6A1, COX5A, PSMA7, PSMA8, PSMB2, PSMD4, NDUFV2, SNCA, NDUFA7, NDUFA6, NDUFA5, NDUFA4, NDUFA2, COX6B1,	2.63904 5	1.93E 05

				PSMA6, PSMA3, UQCRQ, NDUFS5, NDUFS4, CYCS, MAPT		
mmu05014: Amyotrophic lateral sclerosis	29	20.2 7972	8.60E- 07	UQCRB, DCTN2, NDUFB6, NDUFB4, NDUFB2, COX7A2, ATP5H, ATP5O, COX6A1, COX5A, PSMA7, PSMA8, PSMB2, PSMD4, NEFL, NDUFV2, RAB8A, NDUFA7, NDUFA6, NDUFA5, NDUFA4, NDUFA2, COX6B1, PSMA6, PSMA3, UQCRQ, NDUFS5, NDUFS4, CYCS	2.54928 2	3.16E- 05
mmu05016: Huntington disease	29	20.2 7972	1.16E- 06	UQCRB, DCTN2, NDUFB6, NDUFB4, CLTB, NDUFB2, CLTA, COX7A2, ATP5H, ATP5O, COX6A1, COX5A, PSMA7, PSMA8, PSMB2, PSMD4, NDUFV2, NDUFA7, NDUFA6, NDUFA5, NDUFA4, NDUFA2, COX6B1, PSMA6, PSMA3, UQCRQ, NDUFS5, NDUFS4, CYCS	2.51506 3	3.42E- 05
mmu05208: Chemical carcinogenes is - reactive oxygen species	21	14.6 8531	2.27E- 06	CBR1, NDUFA7, NDUFA6, NDUFA5, UQCRB, NDUFB6, NDUFA4, NDUFB4, NDUFB2, AKR1A1, COX7A2, ATP5H, ATP5O, COX6A1, COX5A, COX6B1, UQCRQ, NDUFS5, NDUFS4, NDUFV2	3.11915 7	5.57E- 05
GO:0070469 ~respiratory chain	14	9.79 021	2.86E- 06	NDUFA7, NDUFA6, NDUFA5, UQCRB, NDUFB6, NDUFA4, NDUFA2, NDUFB2, NDUFB1, UQCRQ, NDUFS5, NDUFS4, CYCS, NDUFV2	4.65432 1	7.83E- 04
mmu04714:T hermogenesi s	20	13.9 8601	4.62E- 06	NDUFA7, NDUFA6, NDUFA5, UQCRB, NDUFB6, NDUFA4, NDUFB4, NDUFA2, NDUFB2, ATP5K, COX7A2, ATP5H, ATP5O, COX6A1, COX5A, COX6B1, UQCRQ, NDUFS5, NDUFS4, NDUFV2	3.11378 8	9.70E- 05
mmu05010: Alzheimer disease	28	19.5 8042	5.52E- 06	UQCRB, NDUFB6, NDUFB4, NDUFB2, COX7A2, ATP5H, ATP5O, COX6A1, COX5A, PSMA7, PSMA8, PSMB2, PSMD4, NDUFV2, SNCA, NDUFA7, NDUFA6, NDUFA5, NDUFA4, NDUFA2, COX6B1, PSMA6, PSMA3, UQCRQ, NDUFS5, NDUFS4, CYCS, MAPT	2.39617 4	1.01E- 04

	1		1	T	1	,
GO:0042776 ~mitochondr ial ATP synthesis coupled proton transport	14	9.79 021	6.56E- 06	NDUFA7, NDUFA6, NDUFA5, NDUFB6, NDUFB4, NDUFA2, NDUFB2, ATP5K, NDUFB1, ATP5H, ATP5O, NDUFS5, NDUFS4, NDUFV2	4.35319 9	6.53E- 03
GO:0005747 ~mitochondr ial respiratory chain complex I	12	8.39 1608	7.82E- 06	NDUFA7, NDUFA6, NDUFB6, NDUFA5, NDUFA4, NDUFB4, NDUFS5, NDUFA2, NDUFS4, NDUFB2, NDUFB1, NDUFV2	5.07744 1	1.07E- 03
mmu05022: Pathways of neurodegene ration - multiple diseases	32	22.3 7762	1.70E- 05	UQCRB, DCTN2, NDUFB6, NDUFB4, NDUFB2, COX7A2, PARK7, ATP5H, ATP5O, COX6A1, COX5A, PSMA7, PSMA8, PSMB2, PSMD4, NEFL, NDUFV2, RAB8A, SNCA, NDUFA7, NDUFA6, NDUFA5, NDUFA4, NDUFA2, COX6B1, PSMA6, PSMA3, UQCRQ, NDUFS5, NDUFS4, CYCS, MAPT	2.08844	2.77E- 04
mmu05020: Prion disease	26	18.1 8182	2.14E- 05	UQCRB, NDUFB6, NDUFB4, NDUFB2, COX7A2, ATP5H, ATP5O, COX6A1, COX5A, PSMA7, PSMA8, PSMB2, PSMD4, NDUFV2, NDUFA7, NDUFA6, NDUFA5, NDUFA4, NDUFA2, COX6B1, PSMA6, PSMA3, UQCRQ, NDUFS5, NDUFS4, CYCS	2.34949	3.14E- 04
mmu05415: Diabetic cardiomyopa thy	20	13.9 8601	3.27E- 05	NDUFA7, NDUFA6, NDUFA5, UQCRB, NDUFB6, NDUFA4, NDUFB4, NDUFA2, GSR, NDUFB2, COX7A2, ATP5H, ATP5O, COX6A1, COX5A, COX6B1, UQCRQ, NDUFS5, NDUFS4, NDUFV2	2.74940 9	4.37E- 04
GO:0009060 ~aerobic respiration	12	8.39 1608	5.89E- 05	NDUFA7, NDUFA6, NDUFB6, NDUFA5, UQCRB, NDUFB4, NDUFS5, NDUFA2, NDUFS4, NDUFB2, NDUFB1, NDUFV2	4.19772 7	2.60E- 02
KW- 0999~Mitoch ondrion inner membrane	23	16.0 8392	8.31E- 05	NDUFA7, NDUFA6, NDUFA5, UQCRB, APOOL, NDUFB6, NDUFA4, NDUFB4, NDUFA2, NDUFB2, ATP5K, NDUFB1, COX7A2, ABCB8, ATP5H, ATP5O, COX6A1, COX5A,	2.41968	2.41E- 03

				COVERT LICCRO NIDUESE		
				COX6B1, UQCRQ, NDUFS5,		
				NDUFS4, NDUFV2		
GO:0032981 ~mitochondr ial respiratory chain complex I		6.29	1.94E-	NDUFA6, NDUFB6, NDUFA5, NDUFB4, NDUFS5, NDUFA2,	3.70387	3.22E-
assembly	9	3706	03	NDUFS4, NDUFB2, NDUFB1	7	01
GO:0005743 ~mitochondr ial inner membrane	25	17.4 8252	2.97E- 03	SLC27A1, UQCRB, NDUFB6, NDUFB4, NDUFB2, ATP5K, NDUFB1, COX7A2, ABCB8, ATP5H, ATP5O, COX6A1, COX5A, NDUFV2, SNCA, NDUFA7, NDUFA6, APOOL, NDUFA5, NDUFA4, NDUFA2, COX6B1, UQCRQ, NDUFS5, NDUFS4	1.82761	1.63E- 01
GO:0005739 ~mitochondr ion	52	36.3 6364	5.25E- 03	YWHAE, SLC27A1, PEBP1, PARK7, COX6A1, HINT2, SCP2, FAM162A, ATP6V1E1, DYNLL1, YWHAZ, NME1, COX6B1, NDUFS5, NDUFS4, ALDOC, NDUFB6, UQCRB, RAB1B, NDUFB4, ATP5K, NDUFB2, NDUFB1, COX7A2, ABCB8, ATP5H, ATP5O, COX5A, NAPG, SLC25A27, PRDX3, PRDX2, PRDX5, PRDX1, TPPP, NDUFV2, SNCA, NIPSNAP3B, FIS1, NDUFA7, NDUFA6, APOOL, NDUFA5, NDUFA4, MTX2, GSR, NDUFA2, PRDX6, RAB11A, RAB11B, UQCRQ, CYCS	1.38036 9	0.212 959
mmu01100: Metabolic pathways	39	27.2 7273	6.95E- 03	UQCRB, NDUFB6, NDUFB4, AK1, NDUFB2, ATP5K, COX7A2, HSD17B12, ATP5H, ATP5O, COX6A1, COX5A, SCP2, ATP6V1E1, NDUFV2, ATP6V1D, CBR1, NDUFA7, TP11, NDUFA6, ATP6V1G2, NDUFA5, NDUFA4, NDUFA2, GSR, AKR1A1, PRDX6, DDOST, ASRGL1, COX6B1, NME1, UQCRQ, PSAT1, NDUFS5, NDUFS4, CYCS, ALDOC, PAFAH1B2, CDS2	1.42766 8	8.51E- 02
GO:0008137 ~NADH dehydrogena se	5	3.49 6503	2.49E- 02	NDUFA7, NDUFA5, NDUFA2, NDUFS4, NDUFV2	4.25633 7	0.958 294

	ı	1	T	T	ı	T
(ubiquinone) activity						
mmu04723: Retrograde endocannabi noid signaling	12	8.39 1608	0.0299 88	NDUFA7, NDUFA6, NDUFB6, NDUFA5, NDUFA4, NDUFB4, GNG7, NDUFS5, NDUFA2, NDUFS4, NDUFB2, NDUFV2	1.98803 4	0.314 879
KW- 0496~Mitoch ondrion	35	24.4 7552	0.0361 96	SLC27A1, UQCRB, NDUFB6, NDUFB4, NDUFB2, ATP5K, NDUFB1, COX7A2, ABCB8, PARK7, ATP5H, ATP5O, COX6A1, COX5A, PRDX3, PRDX5, HINT2, SCP2, FAM162A, NDUFV2, FIS1, NDUFA7, NDUFA6, APOOL, NDUFA5, NDUFA4, MTX2, NDUFA2, GSR, DYNLL1, COX6B1, UQCRQ, NDUFS5, NDUFS4, CYCS	1.36034	0.349 899
Cluster 2- Enric				·	1.50054	055
					Fold	
Term	Count	%	PValue	Genes	Enrichm ent	FDR
GO:0051920 ~peroxiredox in activity	6	4.19 5804	7.94E- 06	PRDX3, PRDX2, PRDX5, PRDX1, PARK7, PRDX6	14.4715 4	0.002 683
KW- 0676~Redox- active center	8	5.59 4406	1.39E- 05	PRDX3, PRDX2, TMX4, PRDX5, PRDX1, TXNL1, GSR, PRDX6	8.55438 6	1.53E- 04
GO:0042744 ~hydrogen peroxide catabolic process	6	4.19 5804	7.85E- 05	PRDX3, PRDX2, PRDX5, PRDX1, HBB-BS, PRDX6	10.4943	0.026 023
ACT_SITE:Cys teine sulfenic acid (-SOH) intermediate	5	3.49 6503	9.52E- 05	PRDX3, PRDX2, PRDX5, PRDX1, PRDX6	14.6507 9	0.024 941
KW- 0049~Antioxi dant	5	3.49 6503	1.63E- 04	PRDX3, PRDX2, PRDX5, PRDX1, PRDX6	13.6616 2	0.006 194

KW-						
0575~Peroxi		3.49	3.63E-	PRDX3, PRDX2, PRDX5, PRDX1,	11.7099	0.006
dase	5	6503	04	PRDX6	6	9
DOMAIN:Thi		4.89	3.90E-	PRDX3, PRDX2, TMX4, PRDX5,	6.40972	0.051
oredoxin	7	5105	04	PRDX1, TXNL1, PRDX6	2	137
IPR013766:T						
hioredoxin		4.89	5.12E-	PRDX3, PRDX2, TMX4, PRDX5,	6.10555	0.100
domain	7	5105	04	PRDX1, TXNL1, PRDX6	6	185
GO:0004601						
~peroxidase		3.49	6.26E-	PRDX3, PRDX2, PRDX5, PRDX1,	10.3368	0.101
activity	5	6503	04	PRDX6	2	003
GO:0045454		4.10	0.705	DDDV2 DDDV2 DDDV5 DDDV4	C 00C21	0.174
~cell redox		4.19	8.79E-	PRDX3, PRDX2, PRDX5, PRDX1,	6.99621	0.174
homeostasis	6	5804	04	GSR, PRDX6	2	867
GO:0016209						
~antioxidant		3.49	0.0011	PRDX3, PRDX2, PRDX5, PRDX1,	9.04471	0.101
activity	5	6503	86	PRDX6	5	003
GO:0008379						
~thioredoxin						
peroxidase		2.79	0.0011		14.4715	0.101
activity	4	7203	95	PRDX3, PRDX2, PRDX5, PRDX1	4	003
IPR000866:Al						
kyl						
hydroperoxi						
de reductase						
subunit C/						
Thiol specific		2.79	0.0013		13.9555	0.100
antioxidant	4	7203	36	PRDX3, PRDX2, PRDX1, PRDX6	6	185
IPR019479:P						
eroxiredoxin,		2.79	0.0013		13.9555	0.100
C-terminal	4	7203	36	PRDX3, PRDX2, PRDX1, PRDX6	6	185
GO:0006979						
~response to				PRDX3, PRDX2, PRDX5, NDUFA6,		
oxidative		6.29	0.0023	NDUFB4, PRDX1, PEBP1, PARK7,	3.59805	0.337
stress	9	3706	72	PRDX6	2	193
PIRSF000239						
:peroxiredoxi		2.09	0.0141			0.254
n, AhpC type	3	7902	6	PRDX2, PRDX1, PRDX6	13.2381	887
				, , -		
IPR024706:P		2.00	0.04.43		12.0555	0.435
eroxiredoxin,	2	2.09	0.0143	DDDV3 DDDV1 DDDV6	13.9555	0.425
AhpC-type	3	7902	66	PRDX2, PRDX1, PRDX6	6	167

	T					
KW- 0560~Oxidor eductase	13	9.09 0909	0.0822 89	CBR1, GSR, AKR1A1, COX7A2, HSD17B12, COX6A1, PRDX6, PRDX3, PRDX2, PRDX5, PRDX1, NDUFV2, PAM	1.62687 9	1
GO:0016491 ~oxidoreduct ase activity	14	9.79 021	0.1378 58	CBR1, GSR, AKR1A1, COX7A2, HSD17B12, COX6A1, PRDX6, PRDX3, PRDX2, PRDX5, PRDX1, NDUFV2, PAM, SNCA	1.47884 4	1
KW- 1015~Disulfi de bond	15	10.4 8951	0.6315 4	TXNL1, NDUFA2, GSR, CLTB, PEBP1, COX6B1, PRDX3, PRDX2, TMX4, PRDX5, FABP5, NDUFS5, PRDX1, MAPT, PAM	1.00742 7	1
Cluster 3-Enric	hment So	core: 1.6	69961589	96347273		
Term	Count	%	PValue	Genes	Fold Enrichm ent	FDR
GO:0051920 ~peroxiredox in activity	6	4.19 5804	7.94E- 06	PRDX3, PRDX2, PRDX5, PRDX1, PARK7, PRDX6	14.4715 4	0.002 683
GO:0034599 ~cellular response to oxidative stress	7	4.89 5105	5.04E- 04	PRDX3, PRDX2, PRDX5, GSR, PARK7, PPIA, SNCA	6.12168 6	0.125 269
GO:0043027 ~cysteine- type endopeptida se inhibitor activity involved in apoptotic process	3	2.09 7902	0.0255 17	PRDX3, PRDX5, SNCA	10.8536 6	0.958 294
GO:0034614 ~cellular response to reactive oxygen species	3	2.09 7902	0.2071 94	PRDX3, PRDX5, PARK7	3.49810 6	0.997 994
GO:0043524 ~negative regulation of	6	4.19 5804	0.2370 56	PRDX3, PRDX2, UBE2V2, NEFL, PARK7, SNCA	1.78626 7	0.997 994

	1	1	1		ı	1
neuron						
apoptotic						
process						
60.0022406						
GO:0032496						
~response to						
lipopolysacc		2.09	0.4936		1.82509	0.997
haride	3	7902	98	PRDX3, PRDX2, SNCA	9	994
GO:0043066						
~negative						
regulation of						
_		2.40	0.0350	SLC2EA27 DDDV2 DDDVE DADV7	0.88559	0.997
apoptotic	_	3.49	0.8259	SLC25A27, PRDX3, PRDX5, PARK7,		
process	5	6503	66	SNCA	6	994
Cluster 4- Enri	chment S	core: 1.	54586035	9905563	<u> </u>	l .
	<u> </u>	1	<u> </u>		Fold	
					Enrichm	
Torm	Count	%	PValue	Conoc		FDR
Term	Count	70	Pvalue	Genes	ent	FUK
SM00948:SM		2.79	0.0037		11.1309	0.087
00948	4	7203	65	PSMA6, PSMA3, PSMA7, PSMA8	5	62
DOMAIN:PR						
OTEASOME_		2.79			7.32539	0.886
ALPHA_1	4	7203	0.0132	PSMA6, PSMA3, PSMA7, PSMA8	7	358
GO:0010499						
~proteasoma						
l ubiquitin-						
independent						
protein		2.40	0.0420	DOMAG DOMAG DOMAG DOMAG	4.00720	0.007
catabolic	_	3.49	0.0138	PSMA6, PSMA3, PSMB2, PSMA7,	4.99729	0.997
process	5	6503	39	PSMA8	4	994
GO:0005839						
~proteasome						
core		3.49	0.0139	PSMA6, PSMA3, PSMB2, PSMA7,	4.98677	0.459
complex	5	6503	56	PSMA8	2	564
IPR001353:P						
roteasome,						
subunit		3.49	0.0139	PSMA6, PSMA3, PSMB2, PSMA7,	4.98412	0.425
alpha/beta	5	6503	81	PSMA8	7	167
GO:0019773						
~proteasome						
core						
complex,		2.79	0.0150		6.98148	0.459
•	4	7203	95	PSMA6, PSMA3, PSMA7, PSMA8	1	564
alpha-		I				

subunit	<u> </u>	1	<u> </u>			
complex						
IPR000426:P						
roteasome,						
alpha-						
subunit, N- terminal		2.79	0.0151		6.97777	0.425
domain	4	7203	17	PSMA6, PSMA3, PSMA7, PSMA8	8	167
	7	7203	17	1 SIVIAO, 1 SIVIAS, 1 SIVIA7, 1 SIVIAO	0	107
IPR023332:P						
roteasome		2 70	0.0151		6.97777	0.425
A-type subunit	4	2.79 7203	17	PSMA6, PSMA3, PSMA7, PSMA8	8	167
	7	7203	17	131411.10, 131411.10, 131411.10	0	107
KW-		4.00	0.0221	DCMAAC DCMAAQ DCMADA DCMADQ	2.00076	0.220
0647~Protea	7	4.89 5105	0.0221	PSMA6, PSMA3, PSMD4, PSMB2, TXNL1, PSMA7, PSMA8	3.06076 4	0.320 779
	,	3103	23	TANLE, I SIMA, I SIMAO	7	773
GO:0000502		4.00	0.0050	201416 201412 201424 20142	2 06404	0.700
~proteasome complex	7	4.89 5105	0.0258 92	PSMA6, PSMA3, PSMD4, PSMB2, TXNL1, PSMA7, PSMA8	2.96184 1	0.709 428
complex	,	3103	92	TANLI, FSIVIA7, FSIVIA6	1	420
GO:0051603						
~proteolysis						
involved in cellular						
protein						
catabolic		3.49	0.0339	PSMA6, PSMA3, PSMB2, PSMA7,	3.88678	0.997
process	5	6503	17	PSMA8	5	994
GO:0010498						
~proteasoma						
l protein						
catabolic	_	3.49	0.0406	PSMA6, PSMA3, PSMB2, PSMA7,	3.68221	0.997
process	5	6503	66	PSMA8	7	994
GO:0004175						
~endopeptid	_	3.49	0.0586	PSMA6, PSMA3, PSMB2, PSMA7,	3.28898	
ase activity	5	6503	92	PSMA8	7	1
mmu03050:		4.19		PSMA6, PSMA3, PSMD4, PSMB2,	2.67356	0.630
Proteasome	6	5804	0.0643	PSMA7, PSMA8	3	145
GO:0043161						
~proteasome						
-mediated						
ubiquitin-		5.59	0.0646	PSMA6, NSFL1C, PSMA3, PSMD4,		0.997
dependent protein	8	4406	47	PSMB2, PCBP2, PSMA7, PSMA8	2.19489	994
protein						

catabolic process						
GO:0006511 ~ubiquitin- dependent protein						
catabolic process	6	4.19 5804	0.2104 49	PSMA6, PSMA3, TOLLIP, UBE2N, PSMA7, PSMA8	1.86565 7	0.997 994
mmu05017:S pinocerebell ar ataxia	7	4.89 5105	0.2797 13	PSMA6, PSMA3, PSMD4, PSMB2, CYCS, PSMA7, PSMA8	1.55957 9	0.948 387
Cluster 5- Enri	chment S	core: 1.2	22113576	72039433		
Term	Count	%	PValue	Genes	Fold Enrichm ent	FDR
GO:0005751 ~mitochondr ial respiratory chain complex IV	5	3.49 6503	0.0054 41	NDUFA4, COX7A2, COX6A1, COX5A, COX6B1	6.34680 1	0.212 959
GO:0006123 ~mitochondr ial electron transport, cytochrome c to oxygen	4	2.79 7203	0.0149 96	CYCS, COX7A2, COX6A1, COX5A	6.99621	0.997 994
GO:0004129 ~cytochrome -c oxidase activity	3	2.09 7902	0.0779 71	COX7A2, COX6A1, COX5A	6.20209 1	1
TOPO_DOM: Mitochondri al matrix	5	3.49 6503	0.1804 28	APOOL, UQCRQ, NDUFA4, COX7A2, COX6A1	2.21981 7	1
mmu04260: Cardiac muscle contraction	6	4.19 5804	0.1853 42	UQCRB, UQCRQ, COX7A2, COX6A1, COX5A, COX6B1	1.93833	0.948 387
TOPO_DOM: Mitochondri al	6	4.19 5804	0.2214 88	FIS1, APOOL, UQCRQ, NDUFA4, COX7A2, COX6A1	1.83134 9	1

intermembra						
ne						
Cluster 6- Enri	chment S	core: 1.	17593596	55461907		
Term	Count	%	PValue	Genes	Fold Enrichm ent	FDR
SM01391:SM 01391	3	2.09 7902	0.0251 7	NEFL, INA, GFAP	11.1309 5	0.268 484
IPR006821:In termediate filament head, DNA-					10.100	
binding domain	3	2.09 7902	0.0273 97	NEFL, INA, GFAP	10.4666 7	0.616 435
REGION:Coil 1A	3	2.09 7902	0.0569 95	NEFL, INA, GFAP	7.32539 7	0.995 513
REGION:Coil 1B	3	2.09 7902	0.0569 95	NEFL, INA, GFAP	7.32539 7	0.995 513
REGION:Hea d	3	2.09 7902	0.0569 95	NEFL, INA, GFAP	7.32539 7	0.995 513
REGION:Link er 1	3	2.09 7902	0.0569 95	NEFL, INA, GFAP	7.32539 7	0.995 513
REGION:Link er 2	3	2.09 7902	0.0569 95	NEFL, INA, GFAP	7.32539 7	0.995 513
REGION:Tail	3	2.09 7902	0.0569 95	NEFL, INA, GFAP	7.32539 7	0.995 513
DOMAIN:IF rod	3	2.09 7902	0.0569 95	NEFL, INA, GFAP	7.32539 7	0.995 513
IPR018039:In termediate filament protein,		2.00	0.0022		6 07777	
conserved site	3	2.09 7902	0.0623	NEFL, INA, GFAP	6.97777 8	1
KW- 0403~Interm ediate filament	3	2.09 7902	0.0827 88	NEFL, INA, GFAP	5.99659 9	0.586 252

4 0.992 754
754
5 0.997
994
9
1
, <u> </u>
n
FDR
0.087
8 62
5 0.425
167
6 0.886
358
6 0.537
777
3 0.997
994
3 0.997
994
3 0.995
513
15 15 15

GO:0030836						
~positive						
regulation of						
actin						
filament						
depolymeriz		2.09	0.0433		8.39545	0.997
ation	3	7902	2	CFL2, CFL1, DSTN	5	994
				, ,		
GO:0030042						
~actin						
filament						
depolymeriz		2.09	0.1054		5.24715	0.997
ation	3	7902	72	CFL2, CFL1, DSTN	9	994
GO:0048870		2.09	0.2071		3.49810	0.997
~cell motility	3	7902	94	CFL2, CFL1, DSTN	6	994
60.0045630						
GO:0015629 ~actin		4.00	0.3267	CCDD1 CEL2 CEL1 ADDCEL DCTN		0.992
	7	4.89 5105	95	CSRP1, CFL2, CFL1, ARPC5L, DSTN,	1.48092	
cytoskeleton	/	2102	95	ARPC5, SNCA	1.48092	754
mmu04666:F						
c gamma R-						
mediated		2.79	0.4066		1.72296	0.948
phagocytosis	4	7203	91	CFL2, CFL1, ARPC5L, ARPC5	3	387
KW-						
0009~Actin-		4.19	0.5804	CFL2, CFL1, TMOD2, ARPC5L, DSTN,	1.17099	
binding	6	5804	0.3004	ARPC5	6	1
_		300.		7.11.1 05		_
GO:0003779						
~actin		5.59	0.6009	GMFB, CFL2, CFL1, TMOD2,	1.09219	
binding	8	4406	12	ARPC5L, DSTN, ARPC5, SNCA	2	1
GO:0051015						
~actin						
filament		3.49	0.8127		0.90447	
binding	5	6503	49	CFL2, CFL1, ARPC5L, DSTN, ARPC5	2	1
mm::04040:						
mmu04810:						
Regulation of		2 70	0.0464		0.07600	0.040
actin	4	2.79	0.8461	CFL2, CFL1, ARPC5L, ARPC5	0.87608	0.948 387
cytoskeleton	4	7203	63	CFLZ, CFLI, ARPC3L, ARPC3	3	30/
Cluster 8- Enri	chment S	core: 0.9	93593779	96355763		
					Fold	
					Enrichm	
Term	Count	%	PValue	Genes	ent	FDR

CO-000C204		1				
GO:0006301		2.00	0.0143		12.0024	0.007
~postreplicat		2.09	0.0142	UDE3N UDE3V3 UDE3V4	13.9924	0.997
ion repair	3	7902	86	UBE2N, UBE2V2, UBE2V1	2	994
GO:0070534						
~protein						
K63-linked						
ubiquitinatio		2.09	0.0433		8.39545	0.997
n	3	7902	2	UBE2N, UBE2V2, UBE2V1	5	994
DOMAIN:UB		2.09	0.0973		5.49404	
C core	3	7902	64	UBE2N, UBE2V2, UBE2V1	8	1
IPR000608:U						
biquitin-						
conjugating		2.09	0.1059		5.23333	
enzyme, E2	3	7902	9	UBE2N, UBE2V2, UBE2V1	3	1
10004640511						
IPR016135:U						
biquitin-						
conjugating		2.00	0.4553		4.10000	
enzyme/RW	2	2.09	0.1553	LIDEAN LIDEANA LIDEANA	4.18666	1
D-like	3	7902	68	UBE2N, UBE2V2, UBE2V1	7	1
GO:0000209						
~protein						
polyubiquitin		2.09	0.3154			0.997
ation	3	7902	96	UBE2N, UBE2V2, UBE2V1	2.62358	994
KW-						
0833~Ubl						
conjugation		2.09	0.8970		0.80389	
pathway	3	7902	58	UBE2N, UBE2V2, UBE2V1	7	1
,					,	_
Cluster 9-Enric	chment So	core: 0.8	8451995	50684083		
					Fold	
					Enrichm	
Term	Count	%	PValue	Genes	ent	FDR
				YWHAE, TPI1, AHSA1, PARK7,		
KW-				DYNLL1, NME1, CSRP1, PSMD4,		
1017~Isopep		11.8	0.0999	PRDX1, PCBP1, ARHGDIA, CFL1,		0.424
tide bond	17	8811	34	PCBP2, UBE2N, MAPT, RPL18, PPIA	1.46984	718
				YWHAE, FIS1, TPI1, AHSA1, DSTN,		
				PARK7, ARPC5, DYNLL1, NME1,		
KW-				CSRP1, PSMD4, PRDX1, PCBP1,		
0832~Ubl		15.3	0.1381	ARHGDIA, CFL1, PCBP2, UBE2N,	1.31861	0.469
conjugation	22	8462	47	NEFL, MAPT, RPL18, PPIA, SNCA	9	699

CROSSLNK:GI						
ycyl lysine						
isopeptide						
(Lys-Gly)						
(interchain				PSMD4, CSRP1, PRDX1, PCBP1,		
with G-Cter		6.29	0.1608	CFL1, PCBP2, AHSA1, DYNLL1,	1.66907	
in SUMO2)	9	3706	38	RPL18	8	1
Cluster 10- En	 richment	Score: 0	.8577698	 811329418		
					Fold	
					Enrichm	
Term	Count	%	PValue	Genes	ent	FDR
GO:0003697						
~single-						
stranded		3.49	0.0020		8.03974	0.136
DNA binding	5	6503	23	PURB, PURA, PCBP1, PCBP2, NME1	7	722
GO:0000981						
~RNA						
polymerase 						
transcription factor						
activity,						
sequence-						
specific DNA		2.09	0.0255		10.8536	0.958
binding	3	7902	17	PURB, PURA, PCBP1	6	294
GO:0003677						
~DNA		3.49	0.1859		2.19265	
binding	5	6503	24	PURB, PURA, PCBP1, PCBP2, MAPT	8	1
		0303		1 01.0) 1 01.0 () 1 00.1 1) 1 00.1 2) 11.1 11		_
KW- 0238~DNA-		2.79	0.2176		2.42873	
binding	4	7203	58	PURB, PURA, PCBP1, PCBP2	2.42073	1
		, 200			_	_
GO:0003729		2 70	0.2809		2 14202	
~mRNA binding	4	2.79 7203	0.2809	PURB, PCBP1, PCBP2, PARK7	2.14393	1
	+	7203	00	I OND, FCDF1, FCDF2, PARK/	3	1
GO:0003723						
~RNA		4.89	0.3588	PURB, PURA, PSMA6, PCBP1,	1.42677	
binding	7	5105	94	PCBP2, PARK7, RPL18	2	1
KW-		0.55	. ====			
0694~RNA-		2.09	0.7072	DCDD4 DCDD3 DASY7	1.22954	
binding	3	7902	33	PCBP1, PCBP2, PARK7	5	1

GO:0045944								
~positive								
regulation of								
transcription								
from RNA								
polymerase		2.09	0.9224		0.73644	0.997		
II promoter	3	7902	07	PCBP1, PCBP2, PARK7	3	994		
Cluster 11- Enrichment Score: 0.566709575494431								
					Fold			
					Enrichm			
Term	Count	%	PValue	Genes	ent	FDR		
KW-								
0375~Hydro								
gen ion		4.19	0.0270	ATP6V1G2, ATP5K, ATP5H, ATP5O,	3.34421	0.337		
transport	6	5804	16	ATP6V1E1, ATP6V1D	1	7		
GO:0042626								
~ATPase								
activity,								
coupled to								
transmembr								
ane								
movement								
of		2.09	0.0779		6.20209			
substances	3	7902	71	ATP6V1G2, ABCB8, ATP6V1D	1	1		
GO:0000276								
~mitochondr								
ial proton-								
transporting								
ATP synthase								
complex,								
coupling		2.09	0.1058		5.23611	0.992		
factor F(o)	3	7902	93	ATP5K, ATP5H, ATP5O	1	754		
GO:0046933								
~proton-								
transporting								
ATP synthase								
activity,								
rotational		2.09	0.1462		4.34146			
mechanism	3	7902	23	АТР5К, АТР5Н, АТР5О	3	1		
GO:0005753								
~mitochondr		2.09	0.1552		4.18888	0.992		
ial proton-	3	7902	34	АТР5К, АТР5Н, АТР5О	9	754		
transporting								

ATP synthase						
complex						
GO:0015986 ~ATP						
synthesis						
coupled						
proton transport	3	2.09 7902	0.1806 29	АТР5К, АТР5Н, АТР5О	3.81611 6	0.997 994
	3	7302	23	A11 3N, A11 311, A11 30	0	334
GO:0046961 ~proton-						
transporting						
ATPase activity,						
rotational		2.09	0.2223		3.33958	
mechanism	3	7902	7	ATP6V1G2, ATP6V1E1, ATP6V1D	7	1
mmu04721:S						
ynaptic vesicle cycle	6	4.19 5804	0.2571 72	ATP6V1G2, SLC6A9, CLTB, CLTA, ATP6V1E1, ATP6V1D	1.72296 3	0.948 387
mmu05323:						
Rheumatoid		2.09	0.2618		2.98205	0.948
arthritis	3	7902	91	ATP6V1G2, ATP6V1E1, ATP6V1D	1	387
mmu04966:						
Collecting duct acid		2.09	0.2618		2.98205	0.948
secretion	3	7902	91	ATP6V1G2, ATP6V1E1, ATP6V1D	1	387
GO:0046034						
~ATP		2.70	0.2700		2.45260	0.007
metabolic process	4	2.79 7203	0.2790 51	AK1, ATP5K, ATP5H, ATP5O	2.15268 1	0.997 994
mmu04150:						
mTOR						
signaling pathway	3	2.09 7902	0.6838 62	ATP6V1G2, ATP6V1E1, ATP6V1D	1.29222	0.948 387
,	3	7902	02	AIFOVIGZ, AIFOVIEI, AIFOVID	2	367
mmu05165: Human						
papillomavir		2.79	0.6847	SLC9A3R1, ATP6V1G2, ATP6V1E1,	1.14864	0.948
us infection	4	7203	69	ATP6V1D	2	387
KW-		F F0	0.7643	ATP6V1G2, ATP5K, ABCB8, FXYD6,	0.03675	
0406~lon transport	8	5.59 4406	0.7613 62	ATP5H, ATP5O, ATP6V1E1, ATP6V1D	0.93675 4	1
,						

GO:0006811		F 50	0.7740	ATP6V1G2, ATP5K, ABCB8, FXYD6,	0.03544	0.00-
~ion		5.59	0.7713	ATP5H, ATP5O, ATP6V1E1,	0.92511	0.997
transport	8	4406	3	ATP6V1D	9	994
mmu04145:		2.09	0.8889		0.82482	0.948
Phagosome	3	7902	62	ATP6V1G2, ATP6V1E1, ATP6V1D	3	387
GO:0016887						
~ATPase		2.09	0.9490		0.65779	
activity	3	7902	17	ATP6V1G2, ABCB8, ATP5O	7	1
Cluster 12- En	richment	Score: 0	.5145793	790856175		•
					Fold	
					Enrichm	
Term	Count	%	PValue	Genes	ent	FDR
GO:0060271						
~cilium		2.79	0.1303		3.10942	0.997
assembly	4	7203	64	DYNLL1, DYNLL2, ATP6V1D, RAB8A	8	994
GO:0005813		5.59	0.3522	DCTN2, DYNLL1, DYNLL2, NDRG1,	1.37905	0.992
~centrosome	8	4406	04	ATP6V1D, RAB8A, RAB11A, NME1	8	754
					1.44444	0.992
GO:0005929		2.09	0.6227		1.44444	0.552
GO:0005929 ~cilium	3	2.09 7902	0.6227 45	DYNLL1, ATP6V1D, RAB8A	4	754
		7902	45	·		
~cilium		7902	45	·		
~cilium		7902	45	·	4	
~cilium		7902	45	·	4 Fold	
~cilium Cluster 13- En	richment	7902 Score: 0	45 . 5069982	935340182	Fold Enrichm	754
~cilium Cluster 13- En Term	richment	7902 Score: 0	45 . 5069982	935340182	Fold Enrichm	754
~cilium Cluster 13- En Term mmu04962: Vasopressin- regulated	richment	7902 Score: 0 %	45 .5069982 PValue	935340182 Genes	Fold Enrichm ent	754 FDR
~cilium Cluster 13- En Term mmu04962: Vasopressin- regulated water	richment	7902 Score: 0 % 4.19	45 .5069982 PValue 0.0261	935340182 Genes DCTN2, ARHGDIA, DYNLL1, DYNLL2,	Fold Enrichm ent 3.37101	754 FDR
~cilium Cluster 13- En Term mmu04962: Vasopressin- regulated	richment	7902 Score: 0 %	45 .5069982 PValue	935340182 Genes	Fold Enrichm ent	754 FDR
~cilium Cluster 13- En Term mmu04962: Vasopressin- regulated water	richment	7902 Score: 0 % 4.19 5804 2.09	45 .5069982 PValue 0.0261 89 0.1545	935340182 Genes DCTN2, ARHGDIA, DYNLL1, DYNLL2,	Fold Enrichm ent 3.37101 4 4.19761	754 FDR 0.296 143 0.746
~cilium Cluster 13- En Term mmu04962: Vasopressin- regulated water reabsorption	richment	7902 Score: 0 % 4.19 5804	PValue 0.0261 89	935340182 Genes DCTN2, ARHGDIA, DYNLL1, DYNLL2,	Fold Enrichm ent 3.37101	754 FDR 0.296 143
~cilium Cluster 13- En Term mmu04962: Vasopressin- regulated water reabsorption KW-	richment Count	7902 Score: 0 % 4.19 5804 2.09	45 .5069982 PValue 0.0261 89 0.1545	935340182 Genes DCTN2, ARHGDIA, DYNLL1, DYNLL2, RAB11A, RAB11B	Fold Enrichm ent 3.37101 4 4.19761	754 FDR 0.296 143 0.746
~cilium Cluster 13- En Term mmu04962: Vasopressin- regulated water reabsorption KW- 0243~Dynein	richment Count	7902 Score: 0 % 4.19 5804 2.09	45 .5069982 PValue 0.0261 89 0.1545	935340182 Genes DCTN2, ARHGDIA, DYNLL1, DYNLL2, RAB11A, RAB11B	Fold Enrichm ent 3.37101 4 4.19761	754 FDR 0.296 143 0.746 997
Term mmu04962: Vasopressin- regulated water reabsorption KW- 0243~Dynein GO:0030286	richment Count	7902 Score: 0 % 4.19 5804 2.09 7902	0.0261 89 0.1545 51	935340182 Genes DCTN2, ARHGDIA, DYNLL1, DYNLL2, RAB11A, RAB11B	Fold Enrichm ent 3.37101 4 4.19761 9	754 FDR 0.296 143 0.746
~cilium Cluster 13- En Term mmu04962: Vasopressin- regulated water reabsorption KW- 0243~Dynein GO:0030286 ~dynein	richment Count 6	7902 Score: 0 % 4.19 5804 2.09 7902 2.09	45 .5069982 PValue 0.0261 89 0.1545 51 0.1552	935340182 Genes DCTN2, ARHGDIA, DYNLL1, DYNLL2, RAB11A, RAB11B DCTN2, DYNLL1, DYNLL2	Fold Enrichm ent 3.37101 4 4.19761 9	754 FDR 0.296 143 0.746 997
Cluster 13- En Term mmu04962: Vasopressin- regulated water reabsorption KW- 0243~Dynein GO:0030286 ~dynein complex	richment Count 6	7902 Score: 0 % 4.19 5804 2.09 7902 2.09	45 .5069982 PValue 0.0261 89 0.1545 51 0.1552	935340182 Genes DCTN2, ARHGDIA, DYNLL1, DYNLL2, RAB11A, RAB11B DCTN2, DYNLL1, DYNLL2	Fold Enrichm ent 3.37101 4 4.19761 9	754 FDR 0.296 143 0.746 997
Cluster 13- En Term mmu04962: Vasopressin- regulated water reabsorption KW- 0243~Dynein GO:0030286 ~dynein complex GO:0007017	richment Count 6	7902 Score: 0 % 4.19 5804 2.09 7902 2.09	45 .5069982 PValue 0.0261 89 0.1545 51 0.1552	935340182 Genes DCTN2, ARHGDIA, DYNLL1, DYNLL2, RAB11A, RAB11B DCTN2, DYNLL1, DYNLL2	Fold Enrichm ent 3.37101 4 4.19761 9	754 FDR 0.296 143 0.746 997 0.992 754
Cluster 13- En Term mmu04962: Vasopressin- regulated water reabsorption KW- 0243~Dynein GO:0030286 ~dynein complex GO:0007017 ~microtubul	richment Count 6	7902 Score: 0 % 4.19 5804 2.09 7902 2.09 7902	45 .5069982 PValue 0.0261 89 0.1545 51 0.1552 34	935340182 Genes DCTN2, ARHGDIA, DYNLL1, DYNLL2, RAB11A, RAB11B DCTN2, DYNLL1, DYNLL2	Fold Enrichm ent 3.37101 4 4.19761 9 4.18888 9	754 FDR 0.296 143 0.746 997
Cluster 13- En Term mmu04962: Vasopressin- regulated water reabsorption KW- 0243~Dynein GO:0030286 ~dynein complex GO:0007017 ~microtubul e-based	richment Count 6 3	7902 Score: 0 % 4.19 5804 2.09 7902 2.09 7902	0.0261 89 0.1545 51 0.1552 34	935340182 Genes DCTN2, ARHGDIA, DYNLL1, DYNLL2, RAB11A, RAB11B DCTN2, DYNLL1, DYNLL2 DCTN2, DYNLL1, DYNLL2	Fold Enrichm ent 3.37101 4 4.19761 9 4.18888 9	754 FDR 0.296 143 0.746 997 0.992 754

KW- 0493~Microt		4.19	0.4662	DCTN2, MAPT, TPPP, DYNLL1,	1.33257	
ubule	6	5804	57	DYNLL2, NDRG1	7	1
GO:0008017		2.40	0.5745	MART TRRE NERGA RARAMA	4 24754	
~microtubul e binding	5	3.49 6503	0.5715 76	MAPT, TPPP, NDRG1, RAB11A, SNCA	1.24754 7	1
		0303	, ,	Sitest	,	-
mmu05132:S almonella		4.89	0.6485	DCTN2, ARPC5L, RHOG, CYCS,	1.06418	0.948
infection	7	5105	76	ARPC5, DYNLL1, DYNLL2	3	387
				·		
KW-				DCTN2, TMOD2, ARPC5L, CLTA, ARPC5, DYNLL1, DYNLL2, NDRG1,		
0206~Cytosk		11.1	0.7922	NSFL1C, CFL2, CFL1, NEFL, MAPT,	0.90271	
eleton	16	8881	2	TPPP, ATP6V1D, RAB8A	4	1
GO:0005874						
~microtubul		4.19	0.8205	DCTN2, MAPT, TPPP, DYNLL1,	0.88187	0.992
е	6	5804	24	DYNLL2, NDRG1	1	754
Cluster 14- En	richment	Score: 0	.5030037	988415091		
					Fold	
_		.,	5.7.1		Enrichm	
Term	Count	%	PValue	Genes	ent	FDR
LIPID:S-						
geranylgeran		5.59	0.0202	RAP1A, RAP2B, GNG7, RAB1B,	2.79062	0.886
yl cysteine	8	4406	98	RHOG, RAB8A, RAB11A, RAB11B	7	358
MOTIF:Effect		4.89	0.0543	RAP1A, RAP2B, RAB1B, RHOG,	2.50135	0.995
or region	7	5105	25	RAB8A, RAB11A, RAB11B	5	513
KW-						
0636~Prenyl		5.59	0.0762	RAP1A, RAP2B, GNG7, RAB1B,	2.11147	0.424
ation	8	4406	95	RHOG, RAB8A, RAB11A, RAB11B	3	718
PROPEP:Rem						
oved in mature form	8	5.59 4406	0.1064 22	RAP1A, RAP2B, GNG7, RHOG, PARK7, RAB8A, RAB11A, RAB11B	1.95343 9	1
	٥	4400	22	PARKY, RABOA, RABIIA, RABIIB	9	1
GO:0055038						
~recycling endosome		3.49	0.1201	RAP2B, NDRG1, RAB8A, RAB11A,	2.58573	0.992
membrane	5	6503	14	RAB11B	4	754
IPR001806:S						
mall GTPase		4.89	0.1209	RAP1A, RAP2B, RAB1B, RHOG,	2.03518	
superfamily	7	5105	47	RAB8A, RAB11A, RAB11B	5	1

	ı	1	1	T	1	1
IPR005225:S						
mall GTP-						
binding						
protein	_	4.89	0.2035	RAP1A, RAP2B, RAB1B, RHOG,	1.74444	
domain	7	5105	78	RAB8A, RAB11A, RAB11B	4	1
GO:0031489						
~myosin V		2.09	0.2485		3.10104	
binding	3	7902	01	RAB8A, RAB11A, RAB11B	5	1
GO:0045335						
~phagocytic		2.79	0.2603		2.23407	0.992
vesicle	4	7203	6	RAP1A, RAB8A, RAB11A, RAB11B	4	754
KW-						
0342~GTP-		5.59	0.2674	RAP1A, RAP2B, GNA11, RAB1B,	1.48160	
binding	8	4406	82	RHOG, RAB8A, RAB11A, RAB11B	7	1
10.44				DUSP3, RAB1B, PARK7, PRDX6,		
KW-		10.4	0.2442	RAB11A, ASRGL1, NUDT3, RAB11B,	4 22242	
0378~Hydrol	45	10.4	0.3113	RAP1A, HINT2, RAP2B, PPA1, TPPP,	1.22342	_
ase	15	8951	21	PAFAH1B2, RAB8A	8	1
				LRRC57, RAB1B, RHOG, PARK7,		
KW-				RAB11A, RAB11B, PRDX3, GAP43,		
0449~Lipopr		10.4	0.3919	PRDX5, RAP1A, RAP2B, VSNL1,	1.16924	
otein	15	8951	75	GNA11, GNG7, RAB8A	2	1
GO:0072659						
~protein						
localization						
to plasma		4.19	0.4521	SLC9A3R1, RAP1A, SCP2, MYADM,	1.35410	0.997
membrane	6	5804	96	RAB8A, RAB11A	6	994
GO:0003924				RAP1A, RAP2B, GNA11, RAB1B,		
~GTPase		6.29	0.4968	RHOG, TPPP, RAB8A, RAB11A,	1.17336	
activity	9	3706	49	RAB11B	8	1
GO:0019003						
~GDP		2.79	0.5073		1.48426	
binding	4	7203	58	RAP1A, RAP2B, RAB8A, RAB11B	1	1
	•			, , ,	_	_
				RAP1A, RAP2B, GNA11, RAB1B,		
GO:0005525		6.29	0.5695	RHOG, RAB8A, RAB11A, NME1,	1.10376	
~GTP binding	9	3706	84	RAB11B	2	1
GO:0055037						
~recycling		2.79	0.6320		1.24115	0.992
endosome	4	7203	62	RAP2B, RAB8A, RAB11A, RAB11B	2	754

mmu04972:						
Pancreatic		2.09	0.7343		1.17474	0.948
secretion	3	7902	84	RAP1A, RAB8A, RAB11A	7	387
				TPI1, RAB1B, RHOG, RAB11A,		
KW-				GFAP, RAB11B, PURB, RAP1A,		
0488~Methyl		9.79	0.7606	RAP2B, GNG7, NEFL, MBP, MAPT,		
ation	14	021	47	RAB8A	0.92377	1
	- '	021	17	10 (20) (0.52577	_
IPR027417:P						
-loop						
containing						
nucleoside				RAP1A, RAP2B, GNA11, RAB1B,		
triphosphate		6.99	0.8677	AK1, RHOG, ABCB8, RAB8A,	0.82577	
hydrolase	10	3007	18	RAB11A, RAB11B	3	1
				SLC27A1, RAB1B, AK1, GSR, RHOG,		
KW-				PEBP1, ABCB8, RAB11A, NME1,		
0547~Nucleo		11.1	0.8706	RAB11B, RAP1A, HINT2, RAP2B,	0.86689	
tide-binding	16	8881	43	GNA11, UBE2N, RAB8A	8	1
				222/2 242/4 24222 510540		
60 0005760		6.00	0.0005	PRDX3, RAP1A, RAP2B, SLC6A9,	0.75040	0.000
GO:0005768		6.29	0.9225	ARPC5, ATP6V1E1, RAB8A,	0.75249	0.992
~endosome	9	3706	35	RAB11A, RAB11B	5	754
KW-						
0967~Endos		4.19	0.9500	PRDX3, RAP1A, RAP2B, RAB8A,	0.67703	
ome	6	5804	59	RAB11A, RAB11B	5	1
				SLC27A1, RAB1B, AK1, RHOG,		
GO:0000166				PEBP1, ABCB8, RAB11A, NME1,		
~nucleotide		10.4	0.9979	RAB11B, RAP1A, HINT2, RAP2B,		
binding	15	8951	23	GNA11, UBE2N, RAB8A	0.59148	1
		<u> </u>	4430534	550447457		
Cluster 15- En	richment	Score: 0	.4130531	669447467		
					Fold	
					Enrichm	
Term	Count	%	PValue	Genes	ent	FDR
KW-		2.79	0.2671		2.18585	
0456~Lyase	4	7203	89	TPI1, DDT, ALDOC, PAM	9	1
,				,,		_
GO:0016829						
~lyase		2.79	0.3195		1.99607	
activity	4	7203	5	TPI1, DDT, ALDOC, PAM	5	1
GO:0003824						
~catalytic		4.19	0.6752	HINT2, TPI1, PSAT1, ALDOC, PAM,	1.05889	
activity	6	5804	78	PRDX6	4	1
Charter 15 5	 	Coomeria	205555	055440539		
Cluster 16- En	ricnment	score: 0	.295558/	350143028		

Term	Count	%	PValue	Genes	Fold Enrichm ent	FDR
GO:0006869 ~lipid transport	3	2.09 7902	0.4699 22	SLC27A1, FABP5, SCP2	1.90805 8	0.997 994
mmu03320: PPAR signaling pathway	3	2.09 7902	0.5120 43	SLC27A1, FABP5, SCP2	1.76212 1	0.948 387
KW- 0445~Lipid transport	3	2.09 7902	0.5394 99	SLC27A1, FABP5, SCP2	1.67210 5	1
Cluster 17- En	richment	Score: 0	.2344763	6927361706		
Term	Count	%	PValue	Genes	Fold Enrichm ent	FDR
mmu04721:S ynaptic vesicle cycle	6	4.19 5804	0.2571 72	ATP6V1G2, SLC6A9, CLTB, CLTA, ATP6V1E1, ATP6V1D	1.72296 3	0.948 387
GO:0031410 ~cytoplasmic vesicle	12	8.39 1608	0.8438 27	SLC27A1, PRDX5, ATP6V1G2, CLTB, RHOG, CLTA, ATP6V1E1, PAM, ATP6V1D, RAB8A, RAB11A, RAB11B	0.85487 5	0.992 754
KW- 0968~Cytopl asmic vesicle	9	6.29 3706	0.9122 09	ATP6V1G2, CLTB, CLTA, ATP6V1E1, PAM, ATP6V1D, RAB8A, RAB11A, RAB11B	0.76785 7	1
Cluster 18- Eni	richment	Score: 0	.1602729	1243680797		•
Term	Count	%	PValue	Genes	Fold Enrichm ent	FDR
mmu04144:E ndocytosis	8	5.59 4406	0.6045 46	ARPC5L, CLTB, SNX12, CLTA, ARPC5, RAB8A, RAB11A, RAB11B	1.08818 7	0.948 387
mmu04961:E ndocrine and other factor- regulated calcium reabsorption	3	2.09 7902	0.7343 84	CLTB, CLTA, RAB11A	1.17474 7	0.948 387

	4.19	0.7444	NAPB, CLTB, CLTA, NAPG, RAB11A,	0.97621	0.997
6	5804	38	RAB11B	6	994
richment	Score: 0	.1380705	2798982092		1
				Fold	
				Enrichm	
Count	%	PValue	Genes	ent	FDR
			SLC27A1, LPGAT1, NDUFB6,		
			NDUFB4, NDUFB1, COX7A2,		
	10 1	0.5110		1 02770	
26					1
20	0102	36	WITADIN, TATOO, TAINI, CD32	,	1
	18.1	0.5691		1.01583	
26	8182	63	MYADM, FXYD6, PAM, CDS2	3	1
			SLC27A1, LPGAT1, NDUFB6,		
			NDUFB4, NDUFB1, COX7A2,		
			ABCB8, HSD17B12, COX6A1, PURB,		
			PCMT1, FAM162A, CLPTM1, FIS1,		
			TMED9, APOOL, NDUFA4, DDOST,		
26	8182	55	MYADM, FXYD6, PAM, CDS2	5	1
			SLC27A1, LPGAT1, NDUFB6,		
			NDUFB4, NDUFB1, COX7A2,		
			1		
			' ' '		
	18 1	0.9954		0.69547	0.995
26	8182	9	PAM, CDS2	3	49
 richment	 Score: 0	.1072223	6475766003]
		T		Т	
				l Fold	
				Fold Enrichm	
	count 26 26 26	6 5804 richment Score: 0 Count % 18.1 26 18.1 26 18.1 26 18.1 26 18.1 26 18.1	6 5804 38 richment Score: 0.1380705 Count % PValue 18.1 0.5119 38 18.1 0.5691 8182 63 18.1 0.9665 55 18.1 0.9954 8182 9	Count % PValue Genes	Count September Septembe

	1	1	1		I	
GO:0000287 ~magnesium ion binding	5	3.49 6503	0.5992 03	PPA1, TPPP, NUDT3, NME1, SNCA	1.20596 2	1
KW- 0460~Magne sium	5	3.49 6503	0.8315 2	PPA1, GNA11, TPPP, NUDT3, NME1	0.87810 7	1
KW- 0479~Metal- binding	13	9.09 0909	0.9569 43	COX5A, NUDT3, NME1, VSNL1, CSRP1, PPA1, GNA11, EFHD2, CYCS, TPPP, NDUFV2, PAM, SNCA	0.75884 6	1
Cluster 21- En	richment	Score: 0	.1025597	1091329887		
Term	Count	%	PValue	Genes	Fold Enrichm ent	FDR
mmu05170: Human immunodefic iency virus 1 infection	5	3.49 6503	0.5420 91	GNA11, GNG7, CFL2, CFL1, CYCS	1.29222	0.948 387
mmu05163: Human cytomegalovi rus infection	3	2.09 7902	0.9253 79	GNA11, GNG7, CYCS	0.73144 7	0.948 387
mmu05200: Pathways in cancer	3	2.09 7902	0.9815 88	GNA11, GNG7, CYCS	0.53105	0.981 588
Cluster 22-Enr	ichment S	core: 0.	09798720	041167143		
Term	Count	%	PValue	Genes	Fold Enrichm ent	FDR
GO:0003824 ~catalytic activity	6	4.19 5804	0.6752 78	HINT2, TPI1, PSAT1, ALDOC, PAM, PRDX6	1.05889 4	1
mmu01230: Biosynthesis of amino acids	3	2.09 7902	0.7779 64	TPI1, PSAT1, ALDOC	1.07685 2	0.948 387
mmu01200: Carbon metabolism	3	2.09 7902	0.9673 78	TPI1, PSAT1, ALDOC	0.59641	0.967 378

Cluster 23- En	richment	Score: 0	.0841995	9896826314		
Term	Count	%	PValue	Genes	Fold Enrichm ent	FDR
GO:0030154						
~cell						
differentiatio n	7	4.89 5105	0.6374 9	PURB, PURA, GAP43, CLPTM1, INA, NME1, PSMA8	1.07634	0.997 994
GO:0007399						
~nervous		4.40	0.7745	DUDA CADAS DADAA NDUSKS	0.04220	0.007
system development	6	4.19 5804	0.7715	PURA, GAP43, RAP1A, NDUFV2, INA, NME1	0.94330 9	0.997 994
KW-						
0221~Differe ntiation	5	3.49 6503	0.8053	GAP43, CLPTM1, INA, NME1, PSMA8	0.91672 4	1
KW-						
0524~Neuro		2.79	0.8324		0.89898	
genesis	4	7203	91	GAP43, RAP1A, INA, NME1	1	1
GO:0007275 ~multicellula						
r organism		2.79	0.9077		0.75634	0.997
development	4	7203	85	GAP43, TPI1, CLPTM1, INA	7	994
KW-						
9996~Develo		2.00	0.0070		0.70006	
pmental protein	3	2.09 7902	0.9272 98	GAP43, CLPTM1, INA	0.72326	1
•	3	7302	36	GAF43, CLF HVII, HVA	2	1
KW-						
0217~Develo pmental		2.09	0.9272		0.72326	
protein	3	7902	98	GAP43, CLPTM1, INA	2	1
Cluster 24- En	 richment	Score: 0	 .0708250	6632858317		
					Fold	
					Enrichm	
Term	Count	%	PValue	Genes	ent	FDR
KW-				NAPB, TMED9, MTX2, RAB1B,		
0653~Protei		6.99	0.7899	SNX12, LIN7A, NAPG, RAB8A,	0.90481	
n transport	10	3007	16	RAB11A, RAB11B	9	1
GO:0015031				NAPB, TMED9, MTX2, RAB1B,		
~protein		6.99	0.8360	SNX12, LIN7A, NAPG, RAB8A,	0.85843	0.997
transport	10	3007	05	RAB11A, RAB11B	1	994

GO:0005794				NSFL1C, TMED9, RAB1B, PEBP1,		
~Golgi		6.99		TPPP, NAPG, RAB8A, RAB11A,	0.75069	0.992
apparatus	10	3007	0.9284	SNCA, RAB11B	7	754

APPtg Basal v. APPtg Memory Retrieval-20% Upregulated

Table 70. DAVID functional annotation clustering output table for annotation clusters enriched within proteins upregulated in APPtg mice during memory retrieval, when compared to APPtg mice at the basal level.

Cluster 1- En	richment	Score: 6	5.4083263	8821861856		
					Fold Enric hme	
Term	Count	%	PValue	Genes	nt	FDR
mmu00190 :Oxidative				NDUFB7, UQCRB, NDUFB10, NDUFB3, ATP5K, UQCR10, ATP5H, ATP5O, COX6A1, ATP5L, ATP6V1E1, NDUFV2, NDUFA8, ATP6V1G1, ATP6V1G2, NDUFA5,		
phosphoryl ation	25	24.5 098	1.38E- 11	NDUFA4, NDUFA2, COX6C, SDHB, COX6B1, UQCRQ, NDUFS5, NDUFS4, CYCS	4.65 8709	1.42 E-09
KW- 0249~Elect ron transport	17	16.6 6667	5.73E- 10	NDUFA8, NDUFB7, NDUFA5, UQCRB, NDUFB10, NDUFA4, TXNL1, NDUFA2, NDUFB3, NDUFB1, UQCR10, SDHB, UQCRQ, NDUFS5, NDUFS4, CYCS, NDUFV2	6.29 0356	2.29 E-08
mmu05016 :Huntingto n disease	31	30.3 9216	1.96E- 09	NDUFB7, UQCRB, NDUFB10, NDUFB3, CLTB, CLTA, UQCR10, ATP5H, ATP5O, COX6A1, PSMD6, PSMD7, NDUFV2, NDUFA8, NDUFA5, NDUFA4, NDUFA2, COX6C, SOD2, SDHB, SOD1, COX6B1, PSMA5, PSMA6, PSMC6, PSMA1, UQCRQ, PSMA2, NDUFS5, NDUFS4, CYCS	3.06 2866	8.91 E-08
KW- 0679~Respi ratory chain	15	14.7 0588	2.15E- 09	NDUFA8, NDUFB7, NDUFA5, UQCRB, NDUFB10, NDUFA4, NDUFA2, NDUFB3, NDUFB1, UQCR10, UQCRQ, NDUFS5, NDUFS4, CYCS, NDUFV2	6.97 0162	4.29 E-08

mmu05012 :Parkinson disease	30	29.4 1176	2.89E- 09	NDUFB7, UQCRB, NDUFB10, NDUFB3, UQCR10, ATP5H, ATP5O, COX6A1, PSMD6, PSMD7, NDUFV2, NDUFA8, NDUFA5, NDUFA4, NDUFA2, COX6C, SDHB, SOD1, COX6B1, PSMA5, PSMA6, PSMC6, PSMA1, UQCRQ, PSMA2, NDUFS5, NDUFS4, CYCS, MAPT, MCU	3.11 018	8.91 E-08
mmu05020 :Prion disease	30	29.4 1176	3.46E- 09	NDUFB7, UQCRB, NDUFB10, NDUFB3, UQCR10, ATP5H, ATP5O, COX6A1, STIP1, PSMD6, PSMD7, NDUFV2, NDUFA8, NDUFA5, NDUFA4, NDUFA2, COX6C, SDHB, SOD1, COX6B1, PSMA5, PSMA6, PSMC6, PSMA1, UQCRQ, PSMA2, NDUFS5, NDUFS4, CYCS, MCU	3.08 8431	8.91 E-08
mmu05208 :Chemical carcinogen esis - reactive oxygen species	23	22.5 4902	6.48E- 09	NDUFA8, CBR1, NDUFB7, NDUFA5, UQCRB, NDUFB10, NDUFA4, NDUFA2, NDUFB3, AKR1A1, UQCR10, ATP5H, COX6C, SOD2, ATP5O, COX6A1, SDHB, SOD1, COX6B1, UQCRQ, NDUFS5, NDUFS4, NDUFV2	3.89 1896	1.20 E-07
mmu05014 :Amyotrop hic lateral sclerosis	30	29.4 1176	6.98E- 09	NDUFB7, UQCRB, NDUFB10, NDUFB3, UQCR10, ATP5H, ATP5O, COX6A1, PSMD6, PSMD7, NEFM, NDUFV2, NDUFA8, NDUFA5, NDUFA4, NDUFA2, COX6C, SDHB, SOD1, COX6B1, PSMA5, PSMA6, PSMC6, PSMA1, UQCRQ, PSMA2, NDUFS5, NDUFS4, CYCS, MCU	3.00 4392	1.20 E-07
GO:007046 9~respirato ry chain	15	14.7 0588	7.60E- 09	NDUFA8, NDUFB7, NDUFA5, UQCRB, NDUFB10, NDUFA4, NDUFA2, NDUFB3, NDUFB1, UQCR10, UQCRQ, NDUFS5, NDUFS4, CYCS, NDUFV2	6.73 2143	1.81 E-06
GO:004277 6~mitocho ndrial ATP synthesis coupled proton transport	15	14.7 0588	2.07E- 08	NDUFA8, NDUFB7, NDUFA5, NDUFB10, NDUFA2, NDUFB3, ATP5K, NDUFB1, ATP5H, ATP5O, SDHB, ATP5L, NDUFS5, NDUFS4, NDUFV2	6.28 2313	1.40 E-05
mmu04932 :Non- alcoholic fatty liver disease	18	17.6 4706	3.33E- 08	NDUFA8, NDUFB7, NDUFA5, UQCRB, NDUFB10, NDUFA4, NDUFA2, NDUFB3, UQCR10, COX6C, COX6A1, SDHB, COX6B1, UQCRQ, NDUFS5, NDUFS4, CYCS, NDUFV2	4.64 8901	4.89 E-07

mmu05010 :Alzheimer disease	29	28.4 3137	6.32E- 08	NDUFB7, UQCRB, NDUFB10, NDUFB3, UQCR10, ATP5H, ATP5O, COX6A1, PSMD6, PSMD7, NDUFV2, NDUFA8, NDUFA5, NDUFA4, NDUFA2, COX6C, SDHB, COX6B1, PSMA5, PSMA6, PSMC6, PSMA1, UQCRQ, PSMA2, NDUFS5, NDUFS4, CYCS, MAPT, MCU	2.82 7312	8.14 E-07
mmu04714 :Thermoge nesis	21	20.5 8824	9.31E- 08	NDUFA8, NDUFB7, NDUFA5, UQCRB, NDUFB10, NDUFA4, NDUFA2, NDUFB3, ATP5K, UQCR10, ATP5H, COX6C, ATP5O, COX6A1, SDHB, ATP5L, COX6B1, UQCRQ, NDUFS5, NDUFS4, NDUFV2	3.72 4722	1.07 E-06
KW- 0999~Mito chondrion inner membrane	24	23.5 2941	1.95E- 07	NDUFA8, NDUFB7, NDUFA5, UQCRB, NDUFB10, NDUFA4, NDUFA2, NDUFB3, ATP5K, NDUFB1, TIMM44, UQCR10, ATP5H, COX6C, ATP5O, COX6A1, SDHB, ATP5L, COX6B1, UQCRQ, NDUFS5, NDUFS4, NDUFV2, MCU	3.27 9746	5.86 E-06
GO:000906 0~aerobic respiration	13	12.7 451	3.68E- 07	NDUFA8, NDUFB7, NDUFA5, UQCRB, NDUFB10, NDUFA2, NDUFB3, NDUFB1, UQCR10, SDHB, NDUFS5, NDUFS4, NDUFV2	6.12 5255	1.24 E-04
mmu05022 :Pathways of neurodege neration - multiple diseases	31	30.3 9216	2.21E- 06	NDUFB7, UQCRB, NDUFB10, NDUFB3, UQCR10, ATP5H, ATP5O, COX6A1, PSMD6, PSMD7, NEFM, NDUFV2, NDUFA8, NDUFA5, NDUFA4, NDUFA2, COX6C, SDHB, SOD1, COX6B1, PSMA5, PSMA6, PSMC6, PSMA1, UQCRQ, PSMA2, NDUFS5, NDUFS4, CYCS, MAPT, MCU	2.30 4884	2.28 E-05
GO:000574 7~mitocho ndrial respiratory chain complex I	11	10.7 8431	3.43E- 06	NDUFA8, NDUFB7, NDUFB10, NDUFA5, NDUFA4, NDUFS5, NDUFA2, NDUFS4, NDUFB3, NDUFB1, NDUFV2	6.28 3333	4.08 E-04
GO:000574 3~mitocho ndrial inner membrane	26	25.4 902	6.87E- 06	NDUFB7, UQCRB, NDUFB10, NDUFB3, ATP5K, NDUFB1, UQCR10, ATP5H, ATP5O, COX6A1, CLU, ATP5L, NDUFV2, NDUFA8, NDUFA5, NDUFA4, NDUFA2, TIMM44, COX6C, SOD2, SDHB, COX6B1, UQCRQ, NDUFS5, NDUFS4, MCU	2.56 5969	5.45 E-04

KW- 0496~Mito chondrion	39	38.2 3529	7.36E- 06	NDUFB7, UQCRB, NDUFB10, NDUFB3, CISD1, ATP5K, NDUFB1, AK4, UQCR10, ATP5H, ATP5O, COX6A1, CLU, ATP5L, PGRMC1, PRDX5, HINT2, SCP2, CKB, NDUFV2, FIS1, NDUFA8, NDUFA5, NDUFA4, MTX2, NDUFA2, TIMM44, COX6C, DYNLL1, SOD2, SDHB, COX6B1, UQCRQ, NDUFS5, NDUFS4, CYCS, GARS, PGAM5, MCU	1.96 8986	1.10 E-04
mmu05415 :Diabetic cardiomyo pathy	19	18.6 2745	1.74E- 05	NDUFA8, NDUFB7, NDUFA5, UQCRB, NDUFB10, NDUFA4, NDUFA2, NDUFB3, UQCR10, ATP5H, COX6C, ATP5O, COX6A1, SDHB, COX6B1, UQCRQ, NDUFS5, NDUFS4, NDUFV2	2.97 5626	1.63 E-04
GO:000573 9~mitocho ndrion	47	46.0 7843	4.02E- 05	NDUFB7, UQCRB, NDUFB10, NDUFB3, CISD1, ATP5K, NDUFB1, ACAA1B, AK4, ACAA1A, UQCR10, ATP5H, ATP5O, COX6A1, CLU, ATP5L, PGRMC1, PRDX5, COMTD1, HINT2, SCP2, PRDX1, CKB, ATP6V1E1, NDUFV2, FIS1, NDUFA8, NDUFA5, NDUFA4, MTX2, NDUFA2, TIMM44, COX6C, DYNLL1, SOD2, SDHB, PRDX6, SOD1, COX6B1, UQCRQ, NDUFS5, NDUFS4, RAB35, CYCS, GARS, PGAM5, MCU	1.68 4316	0.00 239
KW- 0813~Trans port	36	35.2 9412	6.49E- 05	VPS29, NDUFB7, UQCRB, NDUFB10, NDUFB3, SNX12, ATP5K, NDUFB1, LIN7A, UQCR10, ATP5H, ATP5O, SLC4A3, ATP5L, SCP2, ATP6V1E1, NDUFV2, NDUFA8, ATP6V1G1, ATP6V1G2, NDUFA5, NDUFA4, MTX2, TXNL1, NDUFA2, TIMM44, DYNLL1, DYNLL2, SDHB, UQCRQ, NDUFS5, NDUFS4, RAB35, CYCS, ARF5, MCU	1.66 8958	8.65 E-04
GO:003298 1~mitocho ndrial respiratory chain complex I assembly	9	8.82 3529	2.53E- 04	NDUFA8, NDUFB7, NDUFB10, NDUFA5, NDUFS5, NDUFA2, NDUFS4, NDUFB3, NDUFB1	4.98 8896	0.05 69
GO:000813 7~NADH dehydroge nase	6	5.88 2353	0.0013 78	NDUFB7, NDUFB10, NDUFA5, NDUFA2, NDUFS4, NDUFV2	6.61 3003	0.31 549 1

(ubiquinon						
e) activity						
				NDUFB7, UQCRB, NDUFB10, AK1,		
				NDUFB3, ATP5K, ACAA1B, AK4, ACAA1A,		
				UQCR10, ATP5H, ATP5O, COX6A1, ATP5L,		
				SCP2, CKB, ATP6V1E1, NDUFV2, CBR3,		
				NDUFA8, CBR1, ATP6V1G1, TPI1,		
mmu01100				ATP6V1G2, NDUFA5, NDUFA4, NDUFA2,		0.01
:Metabolic		36.2	0.0017	AKR1A1, COX6C, SDHB, PRDX6, COX6B1,	1.54	434
pathways	37	7451	02	UQCRQ, PSAT1, NDUFS5, NDUFS4, CYCS	3049	6
mmu04723						
:Retrograd						
е						
endocanna				NDUFA8, NDUFB7, NDUFB10, NDUFA5,		0.45
binoid		9.80	0.0700	NDUFA4, NDUFS5, NDUFA2, NDUFS4,	1.88	110
signaling	10	3922	74	NDUFB3, NDUFV2	7374	1
Cluster 2- En	richment	Score: 1	L.8031233	955567816		
					Fold	
					Enric	
					hme	
Term	Count	%	PValue	Genes	nt	FDR
						0.47
DOMAIN:C		3.92	0.0020		13.3	866
HCH	4	1569	81	NDUFA8, NDUFB7, NDUFS5, COX6B1	7681	1
						0.83
MOTIF:Cx9		2.94	0.0218		12.0	595
C motif 1	3	1176	08	NDUFA8, NDUFB7, NDUFS5	3913	7
						0.83
MOTIF:Cx9		2.94	0.0218		12.0	595
C motif 2	3	1176	08	NDUFA8, NDUFB7, NDUFS5	3913	7
GO:000575						
8~mitocho						
ndrial .						0.82
intermemb	_	4.90	0.0619	NEUEAG NEUEEE NEUEEE ENE	2.2-	190
rane space	5	1961	43	NDUFA8, NDUFB7, NDUFS5, CYCS, SOD1	3.25	4
Cluster 3- En	richment	Score: 1	L.6745697	750733893		
					Fold	
					Enric	
					hme	
Term	Count	%	PValue	Genes	nt	FDR
					1	

60.000050	1	1	1		1	
GO:000050 2~proteaso me complex	8	7.84 3137	0.0012 32	PSMA5, PSMA6, PSMD6, PSMC6, PSMD7, PSMA1, PSMA2, TXNL1	4.56 9697	0.05 866
KW- 0647~Prote asome	8	7.84 3137	0.0012 49	PSMA5, PSMA6, PSMD6, PSMC6, PSMD7, PSMA1, PSMA2, TXNL1	4.54 3814	0.01 248 7
SM00948:S M00948	4	3.92 1569	0.0016 54	PSMA5, PSMA6, PSMA1, PSMA2	14.6 0938	0.05 293 7
DOMAIN:P ROTEASOM E_ALPHA_1	4	3.92 1569	0.0054	PSMA5, PSMA6, PSMA1, PSMA2	10.0 3261	0.62 332 6
GO:001977 3~proteaso me core complex, alpha- subunit complex	4	3.92 1569	0.0064 9	PSMA5, PSMA6, PSMA1, PSMA2	9.42 5	0.19 308 6
IPR000426: Proteasom e, alpha- subunit, N- terminal domain	4	3.92 1569	0.0066 87	PSMA5, PSMA6, PSMA1, PSMA2	9.32 6733	0.70 884 8
IPR023332: Proteasom e A-type subunit	4	3.92 1569	0.0066 87	PSMA5, PSMA6, PSMA1, PSMA2	9.32 6733	0.70 884 8
mmu03050 :Proteasom e	7	6.86 2745	0.0102 73	PSMA5, PSMA6, PSMD6, PSMC6, PSMD7, PSMA1, PSMA2	3.55 347	0.07 557 8
GO:004316 1~proteaso me- mediated ubiquitin- dependent protein						0.93
catabolic process	8	7.84 3137	0.0153 04	PSMA5, PSMA6, NSFL1C, PSMD6, PSMC6, PSMD7, PSMA1, PSMA2	2.95 6383	773 4

		1	1		1	
GO:001049						
9~proteaso						
mal						
ubiquitin-						
independe						
nt protein						
catabolic		3.92	0.0335		5.38	
process	4	1569	07	PSMA5, PSMA6, PSMA1, PSMA2	484	1
60 000500						
GO:000583						0.56
9~proteaso						0.56
me core		3.92	0.0335		5.38	988
complex	4	1569	23	PSMA5, PSMA6, PSMA1, PSMA2	5714	9
IPR001353:						
Proteasom						
e, subunit		3.92	0.0344		5.32	
alpha/beta	4	1569	54	PSMA5, PSMA6, PSMA1, PSMA2	9562	1
				, ,		
mmu05017						
:Spinocere						0.24
bellar		8.82	0.0350	PSMA5, PSMA6, PSMD6, PSMC6, PSMD7,	2.28	054
ataxia	9	3529	31	PSMA1, PSMA2, CYCS, MCU	4374	4
GO:005160						
3~proteoly						
sis involved						
in cellular						
protein						
catabolic		3.92	0.0645		4.18	
process	4	1569	75	PSMA5, PSMA6, PSMA1, PSMA2	8209	1
-						
GO:001049						
8~proteaso						
mal protein						
catabolic	_	3.92	0.0738		3.96	_
process	4	1569	58	PSMA5, PSMA6, PSMA1, PSMA2	7777	1
GO:000417						
5~endopep						
tidase		3.92	0.1062		3.40	
activity	4	1569	4	PSMA5, PSMA6, PSMA1, PSMA2	6699	1
mmu05169						
:Epstein-						0.91
Barr virus		3.92	0.1962		2.56	964
infection	4	1569	96	PSMD6, PSMC6, PSMD7, CYCS	0264	3
miechon	+	1303	90	1 JIVIDO, FJIVICO, FJIVID7, CTC3	0204	3
GO:000651		4.90	0.2081		2.09	
1~ubiquitin	5	1961	7	PSMA5, PSMA6, PSMA1, PSMA2, UBE2N	4104	1
-dependent	•				,	_

0.99 166 7
166 7
166 7
166 7
7
FDR
0.03
823
8
0.01
434
6
1
0.84
509
1
1
0.75
371
9
0.93
773
4
1
0.83
595
7
0.37
876
6

Term	Count	%	PValue	Genes	Fold Enric	FDR
Cluster 5- En	richment	Score: 1	1.5039835	6000209274	1	
GO:001649 1~oxidored uctase activity	11	10.7 8431	0.1807 71	CBR1, PRDX5, PRDX1, AKR1A1, SOD2, NDUFV2, COX6A1, SDHB, PRDX6, CBR3, SOD1	1.50 4418	1
GO:004545 4~cell redox homeostasi s	3	2.94 1176	0.1279 58	PRDX5, PRDX1, PRDX6	4.71 1735	1
GO:000697 9~response to oxidative stress	5	4.90 1961	0.1077 49	PRDX5, PRDX1, SOD2, PRDX6, SOD1	2.69 242	1
GO:004274 4~hydroge n peroxide catabolic process	3	2.94 1176	0.0621 49	PRDX5, PRDX1, PRDX6	7.06 7602	1
IPR013766: Thioredoxi n domain	4	3.92 1569	0.0490 94	PRDX5, PRDX1, TXNL1, PRDX6	4.66 3366	1
GO:000460 1~peroxida se activity	3	2.94 1176	0.0487 12	PRDX5, PRDX1, PRDX6	8.03 0075	1
DOMAIN:T hioredoxin	4	3.92 1569	0.0407 07	PRDX5, PRDX1, TXNL1, PRDX6	5.01 6304	1
KW- 0560~Oxid oreductase	11	10.7 8431	0.0366 55	CBR1, PRDX5, PRDX1, AKR1A1, SOD2, NDUFV2, COX6A1, SDHB, PRDX6, CBR3, SOD1	1.97 5108	0.37 876 6
GO:005192 0~peroxire doxin activity	3	2.94 1176	0.0360 17	PRDX5, PRDX1, PRDX6	9.36 8421	1
KW- 0676~Redo x-active center	4	3.92 1569	0.0356 35	PRDX5, PRDX1, TXNL1, PRDX6	5.23 7379	0.28 823 5

					hme nt	
KW- 0375~Hydr ogen ion transport	7	6.86 2745	9.04E- 04	ATP6V1G1, ATP6V1G2, ATP5K, ATP5H, ATP5O, ATP6V1E1, ATP5L	5.59 4717	0.00 904 2
GO:000027 6~mitocho ndrial proton- transportin g ATP synthase complex, coupling factor F(o)	4	3.92 1569	0.0064 9	ATP5K, ATP5H, ATP5O, ATP5L	9.42	0.19 308 6
GO:004603 4~ATP metabolic process	6	5.88 2353	0.0098	AK1, ATP5K, AK4, ATP5H, ATP5O, ATP5L	4.34 9294	0.84 509 1
GO:000575 3~mitocho ndrial proton- transportin g ATP synthase complex	4	3.92 1569	0.0128 77	ATP5K, ATP5H, ATP5O, ATP5L	7.54	0.34 052 2
GO:004693 3~proton- transportin g ATP synthase activity, rotational mechanism	4	3.92 1569	0.0130 56	ATP5K, ATP5H, ATP5O, ATP5L	7.49 4737	0.88 412 3
GO:001598 6~ATP synthesis coupled proton transport	4	3.92 1569	0.0170	ATP5K, ATP5H, ATP5O, ATP5L	6.85 3432	0.95 652 8

2~mitocho ndrial electron transport, ubiquinol	4	3.92 1569	0.0093 62	UQCRB, UQCRQ, CYCS, UQCR10	8.37 6417	0.84 509 1
Term G0:000612	Count	%	PValue	Genes	Fold Enric hme nt	FDR
Cluster 6- En	richment	Score: 1	450490 0	303546544	I	ı
GO:000681 1~ion transport	9	8.82 3529	0.2999 29	ATP6V1G1, ATP6V1G2, ATP5K, ATP5H, ATP5O, ATP6V1E1, SLC4A3, MCU, ATP5L	1.40 1838	1
KW- 0406~lon transport	9	8.82 3529	0.2206 08	ATP6V1G1, ATP6V1G2, ATP5K, ATP5H, ATP5O, ATP6V1E1, SLC4A3, MCU, ATP5L	1.51 1178	1
GO:001507 8~hydroge n ion transmemb rane transporter activity	3	2.94 1176	0.1475 57	ATP5K, ATP5H, ATP5L	4.32 3887	1
GO:000675 4~ATP biosyntheti c process	3	2.94 1176	0.1279 58	ATP5K, ATP5O, ATP5L	4.71 1735	1
KW- 0066~ATP synthesis	3	2.94 1176	0.0547 74	ATP5K, ATP5O, ATP5L	7.49 2925	0.43 819 5
KW- 0138~CF(0)	3	2.94 1176	0.0515 17	ATP5K, ATP5H, ATP5L	7.78 9396	0.30 910 3
GO:004526 3~proton- transportin g ATP synthase complex, coupling factor F(o)	3	2.94 1176	0.0482 43	ATP5K, ATP5H, ATP5L	8.07 8571	0.71 761 8

	1	1	1	T		
to						
cytochrom						
e c						
GO:004533						
		2.02	0.0210		6.20	
3~cellular		3.92	0.0218	LICER LICERO NELIFEA LICERA	6.28	
respiration	4	1569	55	UQCRB, UQCRQ, NDUFS4, UQCR10	2313	1
GO:000575						
0~mitocho						
ndrial						
respiratory						0.82
chain		2.94	0.0621		7.06	190
complex III	3	1176	61	UQCRB, UQCRQ, UQCR10	875	4
complex in	3	1170	01	odens, odena, odenio	073	7
mmu04260						
:Cardiac						0.75
muscle		5.88	0.1240	UQCRB, UQCRQ, UQCR10, COX6C,	2.20	163
contraction	6	2353	56	COX6A1, COX6B1	8228	2
Cluster 7- En	richment	Score: 1	L.1854277	/93770002		
					Fold	
					Enric	
					hme	
Term	Count	%	PValue	Genes	nt	FDR
remi	Count	70	Pvalue	delles	1110	FUK
mmu04146						0.01
:Peroxisom		6.86	0.0018	PRDX5, SCP2, PRDX1, ACAA1B, ACAA1A,	4.90	434
е	7	2745	11	SOD2, SOD1	7173	6
GO:000578						0.19
2~peroxiso		3.92	0.0064		9.42	308
mal matrix	4	1569	9	PRDX5, SCP2, PRDX1, ACAA1A	5	6
GO:000820						
6~bile acid						0.84
metabolic		2.04	0.0070		10.0	
		2.94	0.0079	CCD2 ACAAAD ACAAAA	18.8	509
process	3	1176	12	SCP2, ACAA1B, ACAA1A	4694	1
GO:005063						
3~acetyl-						
CoA C-						
myristoyltr						0.88
ansferase		2.94	0.0154		14.0	412
	3	1176	43	SCD2 ACAA1B ACAA1A	5263	3
activity	٦	11/0	43	SCP2, ACAA1B, ACAA1A	3203	3
GO:000577						0.37
7~peroxiso		5.88	0.0180	FIS1, PRDX5, SCP2, ACAA1B, ACAA1A,		161
me	6	2353	39	SOD1	3.77	6

KW-						0.21
0576~Pero		4.90	0.0283		4.13	255
xisome	5	1961	41	FIS1, PRDX5, SCP2, ACAA1B, ACAA1A	074	4
GO:000398						
8~acetyl-						
CoA C-						
acyltransfe						
rase		2.94	0.0360		9.36	
activity	3	1176	17	SCP2, ACAA1B, ACAA1A	8421	1
IPR020615:						
Thiolase,						
acyl-						
enzyme						
intermedia		204	0.0262		0.22	
te active	2	2.94	0.0363	SCD2 ACAAAD ACAAAA	9.32	
site	3	1176	75	SCP2, ACAA1B, ACAA1A	6733	1
GO:001674						
7~transfera						
se activity,						
transferrin						
g acyl						
groups						
other than		2.04	0.0407		0.00	
amino-acyl	2	2.94	0.0487	SCD2 ACAAAD ACAAAA	8.03	
groups	3	1176	12	SCP2, ACAA1B, ACAA1A	0075	1
DOMAIN:T		2.94	0.0554		7.52	
hiolase_N	3	1176	39	SCP2, ACAA1B, ACAA1A	4457	1
IPR020613:						
Thiolase,						
conserved		2.94	0.0633		6.99	
site	3	1176	53	SCP2, ACAA1B, ACAA1A	505	1
IPR020616:						
Thiolase, N-		2.94	0.0633		6.99	
terminal	3	1176	53	SCP2, ACAA1B, ACAA1A	505	1
IPR020617:						
Thiolase, C-		2.94	0.0633		6.99	
terminal	3	1176	53	SCP2, ACAA1B, ACAA1A	505	1
100046000						
IPR016039:						
Thiolase-		2.94	0.0786		6.21	

			<u> </u>			l
mmu01040 :Biosynthes						
is of						
unsaturate						0.80
d fatty		2.94	0.1408		4.41	617
acids	3	1176	86	SCP2, ACAA1B, ACAA1A	6456	8
acius	3	11/6	00	SCP2, ACAAIB, ACAAIA	0430	0
KW-						
0012~Acylt		2.94	0.2005		3.52	
ransferase	3	1176	7	SCP2, ACAA1B, ACAA1A	8261	1
GO:001674						
6~transfera						
se activity,						
transferrin						
g acyl		2.94	0.2853		2.81	
groups	3	1176	84	SCP2, ACAA1B, ACAA1A	0526	1
GO:000663						
5~fatty acid						
beta-		2.94	0.3425		2.45	
oxidation	3	1176	65	SCP2, ACAA1B, ACAA1A	8296	1
Oxidation	3	1170	03	JCI 2, ACANID, ACANIA	8230	1
KW-						
0443~Lipid						
metabolis		6.86	0.4036	CBR1, HINT2, SCP2, AKR1A1, ACAA1B,	1.34	
m	7	2745	04	ACAA1A, PRDX6	4884	1
mmu03320						
:PPAR						0.91
signaling		2.94	0.4408		2.00	964
pathway	3	1176	58	SCP2, ACAA1B, ACAA1A	748	3
GO:000662						
9~lipid						
metabolic		6.86	0.5343	CBR1, HINT2, SCP2, AKR1A1, ACAA1B,	1.18	
process	7	2745	43	ACAA1A, PRDX6	8546	1
•		-		, -		
mmu01212						0.04
:Fatty acid		2.64	0.6404		4 47	0.91
metabolis	2	2.94	0.6101	5000 40440 4044	1.47	964
m	3	1176	32	SCP2, ACAA1B, ACAA1A	2152	3
Cluster 8- En	richment	Score: 1	.1808115	267293193	•	•
					Fold	
					Enric	
					hme	
Term	Count	%	PValue	Genes	nt	FDR
161111	Count	70	rvalue	delles	III	FUK

KW-						0.48
0001~2Fe-		2.94	0.0222		11.8	853
2S	3	1176	06	CISD1, NDUFV2, SDHB	3784	8
GO:005153						
7~2 iron, 2						
sulfur		2.04	0.0260		0.26	
cluster binding	3	2.94 1176	0.0360	CISD1, NDUFV2, SDHB	9.36 8421	1
billullig	3	11/6	17	CISD1, NDOFV2, SDITB	0421	1
						0.60
KW-	_	4.90	0.0552	DODAGA CICDA CVCC NDLIEVA CDUB	3.28	766
0408~Iron	5	1961	42	PGRMC1, CISD1, CYCS, NDUFV2, SDHB	8288	3
KW-						
0411~Iron-		2.94	0.1374		4.43	
sulfur	3	1176	06	CISD1, NDUFV2, SDHB	9189	1
GO:005153						
6~iron-						
sulfur						
cluster		2.94 1176	0.2054	CICDA NIDUEVA COUR	3.51	4
latina altina an		III/h	41	CISD1, NDUFV2, SDHB	3158	1
binding	3	1170				
binding Cluster 9- En).8496214	 		
			 	 981406249 	Fold	
).8496214	l981406249	Fold Enric	
Cluster 9- En	richment	Score: (
			D.849621 4 PValue	3981406249 Genes	Enric	FDR
Cluster 9- En	richment	Score: (Enric hme	FDR 0.51
Cluster 9- En Term KW- 1017~Isope	Count	% 14.7	PValue	Genes TPI1, CISD1, DYNLL1, STIP1, PSMD7, PSMA1, RPS18, ARPC3, PRDX1, CFL1,	Enric hme nt	0.51 617
Cluster 9- En	richment	: Score: (PValue	Genes TPI1, CISD1, DYNLL1, STIP1, PSMD7,	Enric hme nt	0.51
Cluster 9- En Term KW- 1017~Isope	Count	% 14.7	PValue	Genes TPI1, CISD1, DYNLL1, STIP1, PSMD7, PSMA1, RPS18, ARPC3, PRDX1, CFL1,	Enric hme nt	0.51 617
Term KW- 1017~Isope ptide bond	Count	% 14.7	PValue	Genes TPI1, CISD1, DYNLL1, STIP1, PSMD7, PSMA1, RPS18, ARPC3, PRDX1, CFL1, DNAJA2, UBE2N, MAPT, RPL18, PPIA	Enric hme nt	0.51 617
Term KW- 1017~Isope ptide bond KW-	Count 15	% 14.7 0588	PValue 0.0794 11 0.1869	Genes TPI1, CISD1, DYNLL1, STIP1, PSMD7, PSMA1, RPS18, ARPC3, PRDX1, CFL1, DNAJA2, UBE2N, MAPT, RPL18, PPIA FIS1, TPI1, CISD1, DYNLL1, SOD2, CLU, STIP1, PSMD7, PSMA1, RPS18, ARPC3, PRDX1, CFL1, DNAJA2, UBE2N, MAPT,	Enric hme nt 1.57 5825	0.51 617 3
Term KW- 1017~Isope ptide bond KW- 0832~Ubl	Count	% 14.7 0588	PValue 0.0794 11	Genes TPI1, CISD1, DYNLL1, STIP1, PSMD7, PSMA1, RPS18, ARPC3, PRDX1, CFL1, DNAJA2, UBE2N, MAPT, RPL18, PPIA FIS1, TPI1, CISD1, DYNLL1, SOD2, CLU, STIP1, PSMD7, PSMA1, RPS18, ARPC3,	Enric hme nt 1.57 5825	0.51 617
Term KW- 1017~Isope ptide bond KW- 0832~Ubl conjugatio	Count 15	% 14.7 0588	PValue 0.0794 11 0.1869	Genes TPI1, CISD1, DYNLL1, STIP1, PSMD7, PSMA1, RPS18, ARPC3, PRDX1, CFL1, DNAJA2, UBE2N, MAPT, RPL18, PPIA FIS1, TPI1, CISD1, DYNLL1, SOD2, CLU, STIP1, PSMD7, PSMA1, RPS18, ARPC3, PRDX1, CFL1, DNAJA2, UBE2N, MAPT,	Enric hme nt 1.57 5825	0.51 617 3
Term KW- 1017~Isope ptide bond KW- 0832~Ubl conjugatio n	Count 15	% 14.7 0588	PValue 0.0794 11 0.1869	Genes TPI1, CISD1, DYNLL1, STIP1, PSMD7, PSMA1, RPS18, ARPC3, PRDX1, CFL1, DNAJA2, UBE2N, MAPT, RPL18, PPIA FIS1, TPI1, CISD1, DYNLL1, SOD2, CLU, STIP1, PSMD7, PSMA1, RPS18, ARPC3, PRDX1, CFL1, DNAJA2, UBE2N, MAPT,	Enric hme nt 1.57 5825	0.51 617 3
Term KW- 1017~Isope ptide bond KW- 0832~Ubl conjugatio n CROSSLNK: Glycyl lysine	Count 15	% 14.7 0588	PValue 0.0794 11 0.1869	Genes TPI1, CISD1, DYNLL1, STIP1, PSMD7, PSMA1, RPS18, ARPC3, PRDX1, CFL1, DNAJA2, UBE2N, MAPT, RPL18, PPIA FIS1, TPI1, CISD1, DYNLL1, SOD2, CLU, STIP1, PSMD7, PSMA1, RPS18, ARPC3, PRDX1, CFL1, DNAJA2, UBE2N, MAPT,	Enric hme nt 1.57 5825	0.51 617 3
Term KW- 1017~Isope ptide bond KW- 0832~Ubl conjugatio n CROSSLNK: Glycyl lysine isopeptide	Count 15	% 14.7 0588	PValue 0.0794 11 0.1869	Genes TPI1, CISD1, DYNLL1, STIP1, PSMD7, PSMA1, RPS18, ARPC3, PRDX1, CFL1, DNAJA2, UBE2N, MAPT, RPL18, PPIA FIS1, TPI1, CISD1, DYNLL1, SOD2, CLU, STIP1, PSMD7, PSMA1, RPS18, ARPC3, PRDX1, CFL1, DNAJA2, UBE2N, MAPT,	Enric hme nt 1.57 5825	0.51 617 3
Term KW- 1017~Isope ptide bond KW- 0832~Ubl conjugatio n CROSSLNK: Glycyl lysine isopeptide (Lys-Gly)	Count 15	% 14.7 0588	PValue 0.0794 11 0.1869	Genes TPI1, CISD1, DYNLL1, STIP1, PSMD7, PSMA1, RPS18, ARPC3, PRDX1, CFL1, DNAJA2, UBE2N, MAPT, RPL18, PPIA FIS1, TPI1, CISD1, DYNLL1, SOD2, CLU, STIP1, PSMD7, PSMA1, RPS18, ARPC3, PRDX1, CFL1, DNAJA2, UBE2N, MAPT,	Enric hme nt 1.57 5825	0.51 617 3
Term KW- 1017~Isope ptide bond KW- 0832~Ubl conjugatio n CROSSLNK: Glycyl lysine isopeptide (Lys-Gly) (interchain	Count 15	% 14.7 0588 17.6 4706	PValue 0.0794 11 0.1869 67	Genes TPI1, CISD1, DYNLL1, STIP1, PSMD7, PSMA1, RPS18, ARPC3, PRDX1, CFL1, DNAJA2, UBE2N, MAPT, RPL18, PPIA FIS1, TPI1, CISD1, DYNLL1, SOD2, CLU, STIP1, PSMD7, PSMA1, RPS18, ARPC3, PRDX1, CFL1, DNAJA2, UBE2N, MAPT, RPL18, PPIA	1.57 5825 1.31 0885	0.51 617 3
Term KW- 1017~Isope ptide bond KW- 0832~Ubl conjugatio n CROSSLNK: Glycyl lysine isopeptide (Lys-Gly)	Count 15	% 14.7 0588	PValue 0.0794 11 0.1869	Genes TPI1, CISD1, DYNLL1, STIP1, PSMD7, PSMA1, RPS18, ARPC3, PRDX1, CFL1, DNAJA2, UBE2N, MAPT, RPL18, PPIA FIS1, TPI1, CISD1, DYNLL1, SOD2, CLU, STIP1, PSMD7, PSMA1, RPS18, ARPC3, PRDX1, CFL1, DNAJA2, UBE2N, MAPT,	Enric hme nt 1.57 5825	0.51 617 3

Term	Count	%	PValue	Genes	Fold Enric hme nt	FDR
KW- 0375~Hydr ogen ion transport	7	6.86 2745	9.04E- 04	ATP6V1G1, ATP6V1G2, ATP5K, ATP5H, ATP5O, ATP6V1E1, ATP5L	5.59 4717	0.00 904 2
GO:190260 0~hydroge n ion transmemb rane transport	5	4.90 1961	0.0495 21	ATP6V1G1, ATP6V1G2, UQCRQ, NDUFA4, ATP6V1E1	3.49 0174	1
GO:004696 1~proton- transportin g ATPase activity, rotational mechanism	3	2.94 1176	0.1475 57	ATP6V1G1, ATP6V1G2, ATP6V1E1	4.32 3887	1
mmu04721 :Synaptic vesicle cycle	6	5.88 2353	0.1782 62	SNAP25, ATP6V1G1, ATP6V1G2, CLTB, CLTA, ATP6V1E1	1.96 2869	0.91 964 3
mmu05323 :Rheumatoi d arthritis	3	2.94 1176	0.2150 11	ATP6V1G1, ATP6V1G2, ATP6V1E1	3.39 7274	0.91 964 3
mmu04966 :Collecting duct acid secretion	3	2.94 1176	0.2150 11	ATP6V1G1, ATP6V1G2, ATP6V1E1	3.39 7274	0.91 964 3
mmu04150 :mTOR signaling pathway	3	2.94 1176	0.6101 32	ATP6V1G1, ATP6V1G2, ATP6V1E1	1.47 2152	0.91 964 3
mmu05165 :Human papillomavi rus infection	3	2.94 1176	0.8194 46	ATP6V1G1, ATP6V1G2, ATP6V1E1	0.98 1435	0.91 964 3

mmu04145 :Phagosom e	3	2.94 1176	0.8381	ATP6V1G1, ATP6V1G2, ATP6V1E1	0.93 9671	0.91 964 3
Cluster 11- F	nrichmen	t Score:	0.747938	 		
	Fold					
Term	Count	%	PValue	Genes	Enric hme nt	FDR
GO:000575 1~mitocho ndrial respiratory chain complex IV	4	3.92 1569	0.0170 39	NDUFA4, COX6C, COX6A1, COX6B1	6.85 4545	0.37 161 6
TOPO_DO M:Mitocho ndrial matrix	6	5.88 2353	0.0206 89	UQCRQ, NDUFA4, UQCR10, COX6C, COX6A1, MCU	3.64 8221	0.83 595 7
TOPO_DO M:Mitocho ndrial intermemb rane	7	6.86 2745	0.0279 96	FIS1, UQCRQ, NDUFA4, UQCR10, COX6C, COX6A1, MCU	2.92 6178	0.91 988 1
mmu04260 :Cardiac muscle contraction	6	5.88 2353	0.1240 56	UQCRB, UQCRQ, UQCR10, COX6C, COX6A1, COX6B1	2.20 8228	0.75 163 2
KW- 1133~Trans membrane helix	17	16.6 6667	0.9138 86	FIS1, NDUFA4, ATL2, NDUFB3, CISD1, NDUFB1, UQCR10, ACAA1A, COX6C, SLC4A3, COX6A1, PCMT1, COMTD1, PGRMC1, UQCRQ, PGAM5, MCU	0.83 0881	1
KW- 0812~Trans membrane	17	16.6 6667	0.9322 75	FIS1, NDUFA4, ATL2, NDUFB3, CISD1, NDUFB1, UQCR10, ACAA1A, COX6C, SLC4A3, COX6A1, PCMT1, COMTD1, PGRMC1, UQCRQ, PGAM5, MCU	0.81 3305	1
TRANSME M:Helical	15	14.7 0588	0.9965 67	FIS1, NDUFA4, ATL2, NDUFB3, NDUFB1, UQCR10, ACAA1A, COX6C, SLC4A3, COX6A1, PCMT1, PGRMC1, UQCRQ, PGAM5, MCU	0.61 6759	1

					1	
GO:001602						
1~integral				FIS1, NDUFA4, ATL2, NDUFB3, CISD1,		
component				NDUFB1, UQCR10, COX6C, SLC4A3,		0.99
of		15.6	0.9991	COX6A1, PCMT1, COMTD1, PGRMC1,	0.57	917
membrane	16	8627	75	UQCRQ, PGAM5, MCU	7778	5
					.,,,	
Cluster 12- E	nrichmer	t Score:	0.694303	1928338689		
					Fold	
					Enric	
					hme	
Term	Count	%	PValue	Genes	nt	FDR
	Count			Centes		
REPEAT:TP		2.94	0.1847		3.76	
R	3	1176	1	STIP1, FIS1, SGTA	2228	1
KW-						0.79
0802~TPR		2.94	0.1988		3.55	556
repeat	3	1176	9	STIP1, FIS1, SGTA	3936	1
IDD044000						
IPR011990:						
Tetratricop		2.02	0.2240		2.40	
eptide-like		3.92	0.2248		2.40	
helical	4	1569	98	STIP1, FIS1, PSMD6, SGTA	6899	1
Cluster 13- E	nrichmer	t Score:	0.331818	815851336	•	•
					Fold	
					Enric	
					hme	
Term	Count	%	PValue	Genes	nt	FDR
						0.60
KW-		4.90	0.0552		3.28	766
0408~Iron	5	1961	42	PGRMC1, CISD1, CYCS, NDUFV2, SDHB	8288	3
				1 ditivier, cisbr, cres, (456) 42, 35115		,
KW-		3.92	0.8961		0.78	
0862~Zinc	4	1569	11	VPS29, DNAJA2, CRIP2, SOD1	2667	1
KW-						
0479~Meta		10.7	0.9565	VPS29, PGRMC1, DNAJA2, EFHD2, CISD1,	0.74	
l-binding	11	8431	73	CYCS, CRIP2, SOD2, NDUFV2, SDHB, SOD1	6225	1
				. , . , , , , , , , , , , , , , , , , ,		
GO:004687						
2~metal		10.7	0.9939	VPS29, PGRMC1, DNAJA2, EFHD2, CISD1,	0.59	
ion binding	11	8431	73	CYCS, CRIP2, SOD2, NDUFV2, SDHB, SOD1	3963	1
Cluster 14- E	nrichmer	t Score:	0.314617	00821456934	1	
					Fold	
Term	Count	%	PValue	Genes	Enric	FDR
	1	1	1			1

					hme nt	
GO:000563 4~nucleus 30	30	29.4 1176	0.2625 85	MTPN, CLU, STIP1, PRDX5, SCP2, RPS18, PRDX1, CFL1, MBP, CKB, CBR1, TPI1, TXNL1, SGTA, DYNLL1, PRDX6, SOD1, PSMA5, PSMA6, NSFL1C, PSMC6, PSMA1, PSMA2, ARPC3, DNAJA2, UBE2N, CYCS, MAPT, TAGLN3, PPIA	1.14 939	0.99 166 7
GO:000582 9~cytosol	41	40.1 9608	0.3960 05	SNAP25, MTPN, VPS29, AK1, CLTB, CLU, STIP1, PCMT1, PRDX5, SCP2, RPS18, PRDX1, CFL1, CKB, ATP6V1E1, NDUFV2, RPL18, CBR3, ATP6V1G1, TPI1, TXNL1, SGTA, AKR1A1, DYNLL1, PRDX6, SOD1, PSMA5, FKBP1A, PSMA6, NSFL1C, IMPACT, MARCKS, PSMA1, PSAT1, PSMA2, DNAJA2, UBE2N, CYCS, GARS, MAPT, PPIA	1.06 0151	0.99 166 7
KW- 0963~Cyto plasm	47	46.0 7843	0.6183 41	SNAP25, MTPN, VPS29, WIPF3, AK1, ARPC5L, CLTA, CLU, STIP1, PCMT1, PRDX5, SCP2, DPYSL5, RPS18, PRDX1, CFL1, MBP, NEFM, CKB, RPL18, CBR3, CBR1, TPI1, TXNL1, SGTA, TMOD2, AKR1A1, DYNLL1, DYNLL2, MAPK8IP3, PRDX6, SOD1, PSMA5, FKBP1A, PSMA6, NSFL1C, IMPACT, MARCKS, PSMC6, PSMA1, PSMA2, ARPC3, UBE2N, GARS, MAPT, PPIA, ARF5	0.99 0994	1
GO:000573 7~cytoplas m	54	52.9 4118	0.8576 96	SNAP25, VPS29, WIPF3, ARPC5L, CLTA, CLU, PCMT1, HINT2, SCP2, DPYSL5, RPS18, CFL1, NEFM, ATP6V1E1, CBR1, TPI1, TMOD2, AKR1A1, DYNLL1, DYNLL2, MAPK8IP3, PSMA5, PSMA6, IMPACT, PSMA1, PSMA2, GARS, MAPT, PPIA, ARF5, MTPN, AK1, AK4, STIP1, PRDX5, PRDX1, MBP, CKB, RPL18, CBR3, MTX2, TXNL1, SGTA, SOD2, PRDX6, SOD1, FKBP1A, NSFL1C, MARCKS, PSMC6, PSAT1, ARPC3, DNAJA2, UBE2N	0.92 7894	0.99 166 7
Cluster 15- E	nrichmer	it Score:	0.313407	 <mark>/</mark> 4087848435	<u> </u>	<u> </u>
Term	Count	%	PValue	Genes	Fold Enric hme nt	FDR

04444	I		1	T	1	0.04
mmu04144		0.02	0.2006	VDC20 ADDC2 WIDE2 DAD25 ADDC51	1 20	0.91
:Endocytosi		8.82	0.3006	VPS29, ARPC3, WIPF3, RAB35, ARPC5L,	1.39	964
S	9	3529	87	CLTB, SNX12, CLTA, ARF5	467	3
GO:000688						
6~intracell						
ular						
protein		5.88	0.5667	VPS29, MARCKS, CLTB, CLTA, TIMM44,	1.19	
transport	6	2353	91	ARF5	0333	1
GO:001619						
2~vesicle-						
mediated		4.90	0.6733		1.09	
transport	5	1961	49	RAB35, CLTB, CLTA, MAPK8IP3, ARF5	5752	1
Cluster 16- F	nrichmen	t Score:	0 269661	 .7649939319		
Cluster 10 E		1 30010.	1		1	1
					Fold	
					Enric	
					hme	
Term	Count	%	PValue	Genes	nt	FDR
KW-						
1000~Mito						
chondrion						
outer		4.90	0.3131		1.74	
membrane	5	1961	73	FIS1, PGRMC1, MTX2, CISD1, PGAM5	7621	1
GO:000574						
1~mitocho						
ndrial						0.99
outer		4.90	0.4957		1.36	166
membrane	5	1961	25	FIS1, PGRMC1, MTX2, CISD1, PGAM5	5942	7
TOPO_DO						
M:Cytoplas		4.90	0.9999		0.30	
mic	5	1961	77	FIS1, PGRMC1, ATL2, CISD1, SLC4A3	9648	1
Cluster 17- E	nrichmen	t Score:	0.244916	15796669305		
					Fold	
					Enric	
					hme	
Term	Count	%	PValue	Genes	nt	FDR
	203110	,,,				
KW-		6.55	0.4055		4.05	0.79
0009~Actin	_	6.86	0.1288	IMPACT, MARCKS, ARPC3, CFL1, WIPF3,	1.96	907
-binding	7	2745	83	TMOD2, ARPC5L	0145	4
mm::04CCC						0.91
mmu04666		3.92	0.3263		1.96	964
:Fc gamma R-mediated	4	1569	72	MARCKS, ARPC3, CFL1, ARPC5L	2869	3
r-mediated						

phagocytos is GO:000377 9~actin	1 0.91
9~actin binding 6.86 0.4934 IMPACT, MARCKS, ARPC3, CFL1, WIPF3, TMOD2, ARPC5L 1.23 mmu05135 :Yersinia 2.94 0.6629 1.33	
9~actin binding 6.86 0.4934 IMPACT, MARCKS, ARPC3, CFL1, WIPF3, TMOD2, ARPC5L 1.23 mmu05135 :Yersinia 2.94 0.6629 1.33	
mmu05135 :Yersinia 2.94 0.6629 1.33	
:Yersinia 2.94 0.6629 1.33	0.91
infection 3 1176 33 ARPC3, WIPF3, ARPC5L 832	964
GO:000585 SNAP25, TMOD2, ARPC5L, CLTA, DYNLL1, 6~cytoskel 13.7	0.99 166
eton 14 2549 64 CFL1, NEFM, MAPT, TAGLN3 7407	7
GO:000701	
5~actin	
filament	
organizatio 2.94 0.6832 1.28	
n 3 1176 6 MARCKS, CFL1, TMOD2 5019	1
mmu04810	
:Regulation of actin	0.91
cytoskeleto 3.92 0.7731 0.99	964
n 4 1569 09 MRAS, ARPC3, CFL1, ARPC5L 8069	3
GO:005101	
5~actin	
filament 3.92 0.8073 0.93 binding 4 1569 78 MARCKS, ARPC3, CFL1, ARPC5L 6842	1
KW- NSFL1C, MARCKS, ARPC3, CFL1, TMOD2, 0206~Cytos 10.7 0.8902 ARPC5L, CLTA, NEFM, MAPT, DYNLL1, 0.80	
keleton 11 8431 69 DYNLL2 6161	1
GO:009897	
8~glutamat	
ergic 5.88 0.9991 SNAP25, MARCKS, CFL1, ARPC5L, CLTA, 0.42	0.99
synapse 6 2353 4 DYNLL2 6792	914
Fold	
Enrice hme	
Term Count % PValue Genes nt	FDR
KW-	0.79
0009~Actin 6.86 0.1288 IMPACT, MARCKS, ARPC3, CFL1, WIPF3, 1.96	907
-binding 7 2745 83 TMOD2, ARPC5L 0145	4

	1		1			
mmu04666 :Fc gamma R-mediated phagocytos is	4	3.92 1569	0.3263	MARCKS, ARPC3, CFL1, ARPC5L	1.96 2869	0.91 964 3
GO:000377 9~actin binding	7	6.86 2745	0.4934 25	IMPACT, MARCKS, ARPC3, CFL1, WIPF3, TMOD2, ARPC5L	1.23 7339	1
mmu05135 :Yersinia infection	3	2.94 1176	0.6629	ARPC3, WIPF3, ARPC5L	1.33 832	0.91 964 3
GO:000585 6~cytoskel eton	14	13.7 2549	0.6810 64	SNAP25, TMOD2, ARPC5L, CLTA, DYNLL1, DYNLL2, CLU, NSFL1C, MARCKS, ARPC3, CFL1, NEFM, MAPT, TAGLN3	0.97 7407	0.99 166 7
GO:009897 8~glutamat ergic synapse	6	5.88 2353	0.9991	SNAP25, MARCKS, CFL1, ARPC5L, CLTA, DYNLL2	0.42 6792	0.99 914
Cluster 18- E	nrichmen	t Score:	0.224632	20852818871		
Term	Count	%	PValue	Genes	Fold Enric hme nt	FDR
KW- 0168~Coat ed pit	3	2.94 1176	0.3591 92	RAB35, CLTB, CLTA	2.37 0686	1
GO:000590 5~clathrin- coated pit	3	2.94 1176	0.4191 67	RAB35, CLTB, CLTA	2.09 4444	0.99 166 7
GO:001619 2~vesicle- mediated transport	5	4.90 1961	0.6733 49	RAB35, CLTB, CLTA, MAPK8IP3, ARF5	1.09 5752	1
GO:003141 0~cytoplas mic vesicle	9	8.82 3529	0.8269 66	PRDX5, ATP6V1G2, RAB35, CLTB, CLTA, ATP6V1E1, CLU, MAPK8IP3, SOD1	0.86 5561	0.99 166 7
KW- 0968~Cyto plasmic vesicle	7	6.86 2745	0.8982 51	ATP6V1G2, RAB35, CLTB, CLTA, ATP6V1E1, CLU, MAPK8IP3	0.77 5773	1

Cluster 19- E	nrichmer	it Score:	0.208166	602238532186		
					Fold Enric hme	
Term	Count	%	PValue	Genes	nt	FDR
GO:003245						
6~endocyti		2.94	0.3425		2.45	
c recycling	3	1176	65	VPS29, RAB35, SNX12	8296	1
KW-						
0653~Prote						
in		6.86	0.7933	VPS29, MTX2, RAB35, SNX12, TIMM44,	0.90	
transport	7	2745	96	LIN7A, ARF5	8233	1
GO:001503						
1~protein		6.86	0.8735	VPS29, MTX2, RAB35, SNX12, TIMM44,	0.80	
transport	7	2745	13	LIN7A, ARF5	9378	1
Cluster 20- E	nrichmen	t Score:	0.118055	508603252067		
					Fold	
					Enric	
					hme	
Term	Count	%	PValue	Genes	nt	FDR
LIPID:S-						
palmitoyl		3.92	0.6915		1.13	
cysteine	4	1569	27	SNAP25, PRDX5, SLC4A3, SOD1	0435	1
KW-				SNAP25, PRDX5, MARCKS, NDUFB7,		
0449~Lipop		9.80	0.7369	MRAS, DNAJA2, RAB35, SLC4A3, ARF5,	0.94	
rotein	10	3922	93	SOD1	7128	1
KW-						
0564~Palmi		3.92	0.8680		0.83	
tate	4	1569	85	SNAP25, PRDX5, SLC4A3, SOD1	089	1
Cluster 21- E	nrichmen	t Score:	0.047027	 		
					Fold	
					Enric	
					hme	
Term	Count	%	PValue	Genes	nt	FDR
KW-						
0342~GTP-		4.90	0.6834		1.07	
binding	5	1961	84	MRAS, ATL2, RAB35, AK4, ARF5	6167	1
IPR005225:		2.04	0.0003		0.00	
Small GTP-	3	2.94 1176	0.8092 25	MRAS, RAB35, ARF5	0.99 9293	1
binding	٦	11/6	23	IVINAS, NAUSS, ANTS	3233	1

	1	ı	1	T		
protein						
domain						
GO:000552						
5~GTP		4.90	0.8836		0.79	
binding	5	1961	06	MRAS, ATL2, RAB35, AK4, ARF5	3934	1
billaling		1301		WINAS, ATEZ, NABSS, ANT, ANTS	3334	-
IPR027417:						
P-loop						
containing						
nucleoside						
triphosphat		6.86	0.9000	PSMC6, MRAS, AK1, ATL2, RAB35, AK4,	0.77	
e hydrolase	7	2745	04	ARF5	2629	1
GO:000392						
4~GTPase		3.92	0.9422		0.67	
activity	4	1569	41	MRAS, ATL2, RAB35, ARF5	5202	1
KW-						
0547~Nucl						
eotide-		11.7	0.9577	PSMC6, HINT2, MRAS, AK1, ATL2, RAB35,	0.75	
binding	12	6471	59	UBE2N, TIMM44, GARS, AK4, CKB, ARF5	5607	1
10.11						
KW-		6.06	0.0054	DCNACC AVA LIBEAN TINANAAA CABC	0.67	
0067~ATP-	_	6.86	0.9654	PSMC6, AK1, UBE2N, TIMM44, GARS,	0.67	4
binding	7	2745	59	AK4, CKB	3698	1
GO:000552						
4~ATP		7.84	0.9915	PSMC6, AK1, DNAJA2, UBE2N, TIMM44,	0.56	
binding	8	3137	66	GARS, AK4, CKB	7783	1
GO:000016						
6~nucleoti		11.7	0.9930	PSMC6, HINT2, MRAS, AK1, ATL2, RAB35,	0.61	
de binding	12	6471	71	UBE2N, TIMM44, GARS, AK4, CKB, ARF5	2649	1
de billullig	12	0471	/1	OBEZIV, HIVIWI44, GANS, AR4, CRB, ARI S	2049	1
Cluster 22- E	nrichmen	t Score:	0.026821	.790658358116		
					Fold	
					Enric	
					hme	
Term	Count	%	PValue	Genes	nt	FDR
KW-						
0418~Kinas		3.92	0.8457		0.87	
	4	1569	51	AK1, AK4, CKB, MAPK8IP3	1176	1
е	4	1203	31	ANI, ANI, CND, WAPNOIFS	11/0	1
GO:001630						
1~kinase		3.92	0.9319		0.70	
activity	4	1569	04	AK1, AK4, CKB, MAPK8IP3	0443	1

KW- 0067~ATP- binding	7	6.86 2745	0.9654 59	PSMC6, AK1, UBE2N, TIMM44, GARS, AK4, CKB	0.67 3698	1			
GO:001631 0~phospho		2.94	0.9732		0.56				
rylation	3	1176	45	AK1, AK4, CKB	5408	1			
GO:000552 4~ATP		7.84	0.9915	PSMC6, AK1, DNAJA2, UBE2N, TIMM44,	0.56				
binding	8	3137	66	GARS, AK4, CKB	7783	1			
Cluster 23- Enrichment Score: 0.005204590681130565									
					Fold Enric hme				
Term	Count	%	PValue	Genes	nt	FDR			
GO:003042 4~axon	6	5.88 2353	0.9661 66	SNAP25, MTPN, GARS, NEFM, MAPT, MAPK8IP3	0.63 5393	0.99 166 7			
GO:004299 5~cell projection	7	6.86 2745	0.9991 1	ARPC3, CFL1, GARS, NEFM, MBP, MAPT, MAPK8IP3	0.45 0341	0.99 911			
KW- 0966~Cell projection	6	5.88 2353	0.9993 58	ARPC3, CFL1, GARS, NEFM, MAPT, MAPK8IP3	0.41 7822	1			

Wild-Type Basal v. APPtg Basal- 20% Upregulated

Table 71. DAVID functional annotation clustering output table for annotation clusters enriched within proteins upregulated in APPtg mice at the basal level, when compared to WT mice at the basal level.

Cluster 1- Enrichment Score: 1.7151323831527738								
					Fold			
					Enrich			
Term	Count	%	PValue	Genes	ment	FDR		
		5.7						
IPR001478:P		971	1.48E-	RIMS1, LRRC7, MYO18A, GM20498,	2.9599	1.00		
DZ domain	8	01	02	CASK, SYNJ2BP, PPP1R9A, PPP1R9B	37	E+00		

		1	T		ı	
DOMAIN:PD Z	8	5.7 971 01	1.58E- 02	RIMS1, LRRC7, MYO18A, GM20498, CASK, SYNJ2BP, PPP1R9A, PPP1R9B	2.9220 42	1.00 E+00
SM00228:PD Z	8	5.7 971 01	3.05E- 02	RIMS1, LRRC7, MYO18A, GM20498, CASK, SYNJ2BP, PPP1R9A, PPP1R9B	2.5236 17	1.00 E+00
Cluster 2- Enri	chment S	core: 1	.6762702	598189836		
Term	Count	%	PValue	Genes	Fold Enrich ment	FDR
GO:0006897 ~endocytosis	11	7.9 710 14	7.25E- 03	APP, EHD3, DBNL, MYO6, ITSN1, HIP1R, EPS15L1, TLN2, PIP5K1C, SYNJ2BP, EPN1	2.6047 44	1.00 E+00
KW- 0254~Endoc ytosis	9	6.5 217 39	1.06E- 02	APP, DBNL, MYO6, ITSN1, HIP1R, EPS15L1, PIP5K1C, SYNJ2BP, EPN1	2.8015 87	5.94 E-01
GO:0005905 ~clathrin- coated pit	6	4.3 478 26	3.61E- 02	APP, MYO6, ITSN1, HIP1R, EPS15L1, EPN1	3.1495 41	1.00 E+00
KW- 0168~Coated pit	5	3.6 231 88	7.11E- 02	APP, MYO6, ITSN1, EPS15L1, EPN1	3.0908 13	5.72 E-01
Cluster 3- Enri	chment S	core: 1	.1607536	263892448		
Term	Count	%	PValue	Genes	Fold Enrich ment	FDR
GO:0009156 ~ribonucleos ide monophosph ate biosynthetic process	3	2.1 739 13	1.39E- 02	PRPS2, PRPS1, PRPS1L3	14.207 69	1.00 E+00
IPR000842:P hosphoribos yl pyrophospha te synthetase, conserved		2.1 739	1.42E-		14.059	1.00
site	3	13	02	PRPS2, PRPS1, PRPS1L3	7	E+00

		ı	1	Т	1	
GO:0006015						
~5-						
phosphoribo						
se 1-						
diphosphate		2.1				
biosynthetic		739	2.65E-		10.655	1.00
process	3	13	02	PRPS2, PRPS1, PRPS1L3	77	E+00
process)	15	02	1 1 1 32, 1 1 1 31, 1 1 1 3123	, ,	L.00
GO:0002189						
~ribose						
phosphate						
diphosphoki		2.1				
nase		739	2.66E-		10.629	1.00
complex	3	13	02	PRPS2, PRPS1, PRPS1L3	7	E+00
Complex	J	10	02	110 32,110 31,110 3123	,	2.00
IPR000836:P						
hosphoribos		2.1				
yltransferase		739	2.70E-		10.544	1.00
domain	3	13	02	PRPS2, PRPS1, PRPS1L3	78	E+00
IPR005946:Ri						
bose-						
		2.4				
phosphate		2.1				
diphosphoki		739	2.70E-		10.544	1.00
nase	3	13	02	PRPS2, PRPS1, PRPS1L3	78	E+00
GO:0004749						
~ribose						
phosphate		2.1				
diphosphoki		739	2.76E-		10.429	1.00
nase activity	3	13	02	PRPS2, PRPS1, PRPS1L3	69	E+00
riase activity	7	13	02	7 KI 32, I KI 31, I KI 31L3	05	L100
KW-						
0545~Nucleo		2.1				0.85
tide		739	3.06E-		9.8055	695
biosynthesis	3	13	02	PRPS2, PRPS1, PRPS1L3	56	2
GO:0009116						
~nucleoside		2.1				
metabolic		739	6.03E-		7.1038	1.00
	2			DDDC2 DDDC1 DDDC112		
process	3	13	02	PRPS2, PRPS1, PRPS1L3	46	E+00
GO:0006164						
~purine						
nucleotide		2.1				
biosynthetic		739	1.51E-		4.2623	
process	3	13	01	PRPS2, PRPS1, PRPS1L3	08	1
•						

00000		2.6				
mmu00230:		3.6				
Purine		231	0.1617	PRPS2, PRPS1, PDE10A, AMPD2,	2.3002	
metabolism	5	88	52	PRPS1L3	37	1
60.000007		F 0				
GO:0000287		5.0				
~magnesium		724	0.2532	PRPS2, PRPS1, SRR, BRSK2, ATP8A1,	1.6223	
ion binding	7	64	54	BPNT1, PRPS1L3	96	1
mmu00030:						
		2.4				
Pentose		2.1				
phosphate		739	0.2662		2.9443	
pathway	3	13	31	PRPS2, PRPS1, PRPS1L3	04	1
mmu01200:		3.6				
Carbon		231	0.6485	PRPS2, PRPS1, ALDH6A1, SDHC,	1.1324	
metabolism	5	88	64	PRPS1L3	25	1
mmu01230:						
Biosynthesis		2.1				
of amino		739	0.7099		1.2267	
acids	3	13	35	PRPS2, PRPS1, PRPS1L3	93	1
		13		1111 32, 1111 31, 1111 3113		_
Cluster 4- Enri	ichment S	core: 1	L.1603250	0694185652		

					Fold	
					Enrich	
Term	Count	%	PValue	Genes	ment	FDR
				NRXN1, ITSN1, ITPR1, PPP1R9A,		
				HAPLN1, PPP1R9B, SYNPR, RIMS1,		
				GRM2, CACNG8, GPC1, MYO6, DLGAP2,		
				PPFIA3, PPFIA2, DLGAP4, MPST, EPHA4,		
				UNC13A, DBNL, ATP6AP1, SLC32A1,		
				GAD1, CASK, SLC6A11, GRIN1, BCAN,		
		26.		CACNB4, LRRC7, MADD, CSPG5,		
GO:0045202		086	0.0273	ADGRL1, TLN2, PABPC1, TPRGL,	1.3827	
~synapse	36	96	25	PAFAH1B1	25	1
				SRC, NRXN1, ITSN1, MTDH, PPP1R9B,		
				SYNPR, RIMS1, GRM2, GJA1, CACNG8,		
				PIP5K1C, PCDH1, DLGAP2, PPFIA2,		
		19.		MPST, EPHA4, UNC13A, DBNL,		
GO:0030054		565	0.1026	ATP6AP1, SYNJ2BP, GRIN1, VAPA,	1.3150	
~cell junction	27	22	66	LRRC7, CSPG5, ADGRL1, TLN2, TPRGL	14	1
				MPST, EPHA4, UNC13A, DBNL,		
				ATP6AP1, SLC32A1, NRXN1, ITSN1,		
KW-		15.		PPP1R9B, GRIN1, SYNPR, RIMS1, GRM2,		
0770~Synaps		217	0.1177	CACNG8, LRRC7, CSPG5, ADGRL1, TLN2,	1.3633	0.57
е	21	39	72	DLGAP2, TPRGL, PPFIA2	45	179

Cluster 5- Enri	chment S	core: 1	L.1422476	000488115		
Term	Count	%	PValue	Genes	Fold Enrich ment	FDR
GO:0098831 ~presynaptic active zone cytoplasmic component	4	2.8 985 51	0.0571 78	RIMS1, UNC13A, IQSEC2, PPFIA3	4.3609 02	1
GO:0016081 ~synaptic vesicle docking	3	2.1 739 13	0.0806	RIMS1, UNC13A, PPFIA3	6.0890 11	1
GO:0007269 ~neurotrans mitter secretion Cluster 6- Enri	5	3.6 231 88	0.0811 95	RIMS1, GRM2, UNC13A, NRXN1, PPFIA3	2.9599 36	1
Cluster 6- Ellir	Tillient 3	core. I	1.1292102	.004703024	T	Π
Term	Count	%	PValue	Genes	Fold Enrich ment	FDR
GO:0051015 ~actin filament binding	13	9.4 202 9	0.0093 86	ACTR2, DBNL, TPM1, HIP1R, ADD3, PPP1R9A, ACTR3B, PPP1R9B, ADD2, MYO6, MYO18A, TLN2, CLASP2	2.2597 66	1
KW- 0009~Actin- binding	12	8.6 956 52	0.0418 01	ACTR2, DBNL, CAPZB, MYO6, TPM1, MYO18A, HIP1R, FMN2, ADD3, ACTR3B, PPP1R9B, ADD2	1.8850 17	0.66 881 7
GO:0003779 ~actin binding	13	9.4 202 9	0.0691 57	ACTR2, DBNL, TPM1, HIP1R, FMN2, ADD3, ACTR3B, PPP1R9B, ADD2, CAPZB, MYO6, KCNMA1, TLN2	1.7054 83	1
KW- 0206~Cytosk eleton	23	16. 666 67	0.1306 95	ACTR2, BRSK2, DBNL, ROCK2, SRC, TPM1, GNAI3, FMN2, ADD3, ACTR3B, CKAP4, GLG1, PPP1R9B, ADD2, CLIP2, CAPZB, KIF5C, HECW2, MYO18A, TLN2, PAFAH1B1, CCT4, CLASP2	1.3185 81	0.57 179
GO:0005856 ~cytoskeleto n	24	17. 391 3	0.1761 48	ACTR2, BRSK2, DBNL, ROCK2, SRC, TPM1, GNAI3, HIP1R, FMN2, ADD3, PPP1R9A, ACTR3B, CKAP4, GLG1, PPP1R9B, ADD2, CLIP2, CAPZB, HECW2,	1.2598 16	1

	1	1				1
				MYO18A, TLN2, PAFAH1B1, CCT4, CLASP2		
GO:0005200						
~structural						
constituent		3.6				
of		231	0.2685		1.8792	
cytoskeleton	5	88	83	ACTR2, TPM1, TLN2, ADD3, ADD2	23	1
Cluster 7- Enri						
Cluster 7- Lilli	·	TOTE. 1	1.0711242			ı
					Fold	
_	_			_	Enrich	
Term	Count	%	PValue	Genes	ment	FDR
IPR013761:St						
erile alpha		2.8				
motif/pointe		985	0.0583		4.3260	
d domain	4	51	37	EPHA4, PPP1R9A, PPFIA3, PPFIA2	62	1
IPR001660:St						
erile alpha		2.8				
motif		985	0.0583		4.3260	
domain	4	51	37	EPHA4, PPP1R9A, PPFIA3, PPFIA2	62	1
		2.8				
DOMAIN:SA		985	0.0602		4.2706	
М	4	51	09	EPHA4, PPP1R9A, PPFIA3, PPFIA2	77	1
		2.8				
SM00454:SA		985	0.0842		3.6883	
М	4	51	32	EPHA4, PPP1R9A, PPFIA3, PPFIA2	63	1
GO:0061001						
~regulation						
of dendritic						
spine		2.1				
morphogene		739	0.2554		3.0445	
sis	3	13	75	EPHA4, PPP1R9A, PPFIA2	05	1
Cluster 8- Enri	chment S	core: 1	L.0404036	5813316888	<u>.I</u>	<u> </u>
					Fold	
					Enrich	
Term	Count	%	PValue	Genes	ment	FDR
KW-		10.		SH3GLB1, APP, DBNL, ATP8A1, AP3D1,	+	
0333~Golgi		144	0.0459	AP1B1, GLG1, PACS1, RAB12, MYO6,	1.7614	0.57
apparatus	14	93	27	MYO18A, CSPG5, SCYL2, CLASP2	9	179
1-1	1	1			1	

GO:0000139		6.5	1		<u> </u>	
~Golgi		217	0.0741	SH3GLB1, DBNL, VAPA, RAB12, AP3D1,	1.9930	
membrane	9	39	16		69	1
memorane	9	39	16	GNAI3, MYO18A, CSPG5, GLG1	69	1
				SH3GLB1, APP, EPHA4, DBNL, ATP8A1,		
GO:0005794		12.		AP3D1, AP1B1, GNAI3, GLG1, GJA1,		
~Golgi		318	0.2222	PACS1, RAB12, MYO6, MYO18A, CSPG5,	1.2953	
apparatus	17	84	34	SCYL2, CLASP2	76	1
Cluster 9- Enri	ichment S	core: 0	 .9190907	 7758142892		
					Fold	
					Enrich	
Term	Count	%	PValue	Genes	ment	FDR
	Count		1 Value	Genes	mene	
KW-		3.6				0.54
0245~EGF-		231	0.0549		3.3197	972
like domain	5	88	72	BCAN, NRXN1, ADAM22, CSPG5, TNR	17	1
IPR000742:E						
pidermal						
growth		2.8				
factor-like		985	0.1130		3.3081	
	4			DCAN NEVNIL ADAMAS THE		1
domain	4	51	94	BCAN, NRXN1, ADAM22, TNR	65	1
		2.8				
DOMAIN:EG		985	0.1164		3.2658	
F-like	4	51	25	BCAN, NRXN1, ADAM22, CSPG5	12	1
		2.1				
SM00181:EG		739	0.2910		2.7662	
F	3	13	78	BCAN, NRXN1, TNR	72	1
					'-	_
Cluster 10- En	richment	Score:	0.846082	22977190687	T	ı
					Fold	
_					Enrich	
Term	Count	%	PValue	Genes	ment	FDR
GO:0005262						
~calcium		4.3				
channel		478	0.0241	RYR2, CACNG8, CACNB4, ITPR1,	3.4765	
activity	6	26	45	CACNA1E, GRIN1	63	1
•	-			,		
KW-		3.6				0.66
0107~Calciu		231	0.0327	RYR2, CACNG8, CACNB4, ITPR1,	3.8809	881
m channel	5	88	42	CACNA1E	18	7
GO:0006874						
~cellular		3.6				
calcium ion		231	0.1265		2.5370	
homeostasis	5	88	96	RYR2, CACNB4, HEXB, PYGM, GRIN1	88	1
11011100310313				MINZ, CACIDA, HEAD, HIGIVI, GILINI	00	_

	ı	1	1	T	_	
mmu04921: Oxytocin signaling pathway	7	5.0 724 64	0.1289 38	RYR2, CACNG8, CACNB4, ROCK2, SRC, ITPR1, GNAI3	1.9817 43	1
mmu05410: Hypertrophic cardiomyopa thy	4	2.8 985 51	0.1454 17	RYR2, CACNG8, CACNB4, TPM1	2.9443 04	1
KW- 0109~Calciu m transport	5	3.6 231 88	1.70E- 01	RYR2, CACNG8, CACNB4, ITPR1, CACNA1E	2.2541 51	1
GO:0006816 ~calcium ion transport	6	4.3 478 26	0.1768 76	RYR2, CACNG8, CACNB4, ITPR1, CACNA1E, GRIN1	1.9824 69	1
mmu05412: Arrhythmoge nic right ventricular cardiomyopa thy	4	2.8 985 51	0.1962 96	RYR2, CACNG8, GJA1, CACNB4	2.5602 64	1
mmu05414: Dilated cardiomyopa thy	4	2.8 985 51	0.2508 27	RYR2, CACNG8, CACNB4, TPM1	2.2648 49	1
Cluster 11- En	richment	Score:	0.806015	51352635841		
Term	Count	%	PValue	Genes	Fold Enrich ment	FDR
DOMAIN:Ion _trans	5	3.6 231 88	0.0023 74	RYR2, KCNMA1, ITPR1, CACNA1E, SCN1A	7.7109 44	0.40 721 1
IPR005821:lo n transport domain	5	3.6 231 88	0.0136 24	RYR2, KCNMA1, ITPR1, CACNA1E, SCN1A	5.0213 22	1
GO:0007628 ~adult walking behavior	5	3.6 231 88	0.0213 91	ABHD12, EPHA4, CACNB4, KCNMA1, SCN1A	4.4399 04	1
GO:0005262 ~calcium	6	4.3 478 26	0.0241 45	RYR2, CACNG8, CACNB4, ITPR1, CACNA1E, GRIN1	3.4765 63	1

channel activity						
KW- 0107~Calciu m channel	5	3.6 231 88	0.0327 42	RYR2, CACNG8, CACNB4, ITPR1, CACNA1E	3.8809 18	0.66 881 7
KW- 0407~lon channel	9	6.5 217 39	0.0383	RYR2, CACNG8, CACNB4, KCNMA1, ITPR1, LRRC8A, CACNA1E, SCN1A, GRIN1	2.2406 81	0.66 881 7
GO:0005216 ~ion channel activity	6	4.3 478 26	0.0507 21	RYR2, KCNMA1, ITPR1, CACNA1E, SCN1A, GRIN1	2.8771 55	1
GO:0005244 ~voltage- gated ion channel activity	5	3.6 231 88	0.0973 6	CACNG8, CACNB4, KCNMA1, CACNA1E, SCN1A	2.7812 5	1
GO:0034765 ~regulation of ion transmembr ane transport	5	3.6 231 88	0.1027 27	CACNG8, CACNB4, KCNMA1, CACNA1E, SCN1A	2.7322 49	1
KW- 0851~Voltag e-gated channel	5	3.6 231 88	0.1105 35	CACNG8, CACNB4, KCNMA1, CACNA1E, SCN1A	2.6390 24	1
GO:0006874 *cellular calcium ion homeostasis	5	3.6 231 88	0.1265 96	RYR2, CACNB4, HEXB, PYGM, GRIN1	2.5370 88	1
GO:0042391 ~regulation of membrane potential	5	3.6 231 88	0.1525 66	RIMS1, CACNB4, KCNMA1, SCN1A, GRIN1	2.3679 49	1
KW- 0109~Calciu m transport	5	3.6 231 88	0.1699 01	RYR2, CACNG8, CACNB4, ITPR1, CACNA1E	2.2541 51	1
GO:0006816 ~calcium ion transport	6	4.3 478 26	0.1768 76	RYR2, CACNG8, CACNB4, ITPR1, CACNA1E, GRIN1	1.9824 69	1

CO:00E1C40		1				
GO:0051649 ~establishme						
nt of		3.6				
			0.2560	DVD2 CACK CACNA1E DAEALI1D1	1 0100	
localization	_	231	0.2560	RYR2, CASK, CACNA1E, PAFAH1B1,	1.9199	4
in cell	5	88	18	SCN1A	58	1
GO:0005245						
~voltage-						
gated						
calcium		2.1				
channel		739	0.2635		2.9799	
activity	3	13	33	CACNG8, CACNB4, CACNA1E	11	1
GO:0070588						
~calcium ion						
transmembr		2.8				
ane		985	0.2711		2.1857	
transport	4	51	91	RYR2, CACNB4, ITPR1, CACNA1E	99	1
	7) <u> </u>	MM2, CACIOT, III M1, CACIVATE	<i></i>	_
KW-		5.0	0.000			
0675~Recept		724	0.2890	GRM2, EPHA4, RYR2, ITPR1, ADAM22,	1.5394	
or	7	64	97	ADGRL1, GRIN1	31	1
GO:0006811		7.9		RYR2, CACNG8, CACNB4, ATP6AP1,		
~ion		710	0.3350	KCNMA1, ITPR1, LRRC8A, CACNA1E,	1.2916	
transport	11	14	96	SCN1A, GRIN1, ADD2	08	1
KW-						
1071~Ligand		2.1				
-gated ion		739	0.3677		2.3285	
channel	3	13	41	RYR2, ITPR1, GRIN1	51	1
			'-		J-	_
KW-		9.4		RYR2, UNC13A, NRXN1, ITSN1, ITPR1,		
0106~Calciu		202	0.4109	EPS15L1, CACNA1E, GRIN1, EHD3,	1.1711	
m	13	9	8	CACNG8, CACNB4, KCNMA1, FKBP8	23	1
GO:0001666		2.8				
~response to		985	0.4469		1.6237	
hypoxia	4	51	85	RYR2, KCNMA1, ITPR1, PYGM	36	1
mmu04713:		2.8				
Circadian		985	0.5446		1.4020	
entrainment	4	51	88	RYR2, ITPR1, GNAI3, GRIN1	49	1
GO:0055085						
~transmemb		4.3				
rane		4.3	0.5485	RYR2, GJA1, KCNMA1, ITPR1, CACNA1E,	1.2178	
	6	26	55	SCN1A	02	1
transport	Ü	20	<i>JJ</i>	SCIATY	02	1

			T		1	
KW-		7.2		RYR2, CACNG8, CACNB4, ATP6AP1,		
0406~lon		463	0.5556	KCNMA1, ITPR1, LRRC8A, CACNA1E,	1.0986	
transport	10	77	77	SCN1A, GRIN1	62	1
mmu04972:		2.1				
Pancreatic		739	0.6629		1.3383	
secretion	3	13	33	RYR2, KCNMA1, ITPR1	2	1
				, - ,		
mmu04020:						
Calcium		2.8				
signaling		985	0.6926		1.1324	
pathway	4	51	42	RYR2, ITPR1, CACNA1E, GRIN1	25	1
mmu04724:		2.8				
Glutamatergi		985	0.7409		1.0515	
c synapse	4	51	18	GRM2, ITPR1, GNAI3, GRIN1	37	1
, ,	<u> </u>			,,	-	_
mmu04010:						
MAPK		2.1				
signaling		739	0.9133		0.7614	
pathway	3	13	42	CACNG8, CACNB4, CACNA1E	58	1
Cluster 12- En	richment	Score:	0.762732	20185852414		
			1		Fold	
					Enrich	
Torm	Count	%	PValue	Genes		FDR
Term	Count	70	Pvalue	Genes	ment	FDR
GO:0030170						
~pyridoxal		2.8				
phosphate		985	0.0723		3.9732	
binding	4	51	33	SRR, OAT, GAD1, PYGM	14	1
KW-						
		2.8				
0663~Pyrido			0.1002		2 4252	
xal	4	985	6	SDD OAT CADA DVCAA	3.4352 94	1
phosphate	4	51	0	SRR, OAT, GAD1, PYGM	94	1
GO:0003824		4.3				
~catalytic		478	0.7101		1.0175	
activity	6	26	37	SRR, PDE10A, OAT, ECI1, GAD1, PYGM	3	1
Cluster 13- En	richment	Score:	0.749795	3782446511		L
					Fold	
Torm	Courat	0/	DValue	Conos	Enrich	רטט
Term	Count	%	PValue	Genes	ment	FDR
IPR000261:E						
PS15		2.1				
homology		739	0.0270		10.544	
(EH)	3	13	08	EHD3, ITSN1, EPS15L1	78	1
-						

	1		,	T	1	1
DOMAIN:EH	3	2.1 739 13	0.0276 74	EHD3, ITSN1, EPS15L1	10.409 77	1
		2.4		, ,		
		2.1 739	0.0360		8.9903	
SM00027:EH	3	13	25	EHD3, ITSN1, EPS15L1	85	1
510100027.211	, , , , , , , , , , , , , , , , , , ,	15	23		03	_
GO:0005509		9.4		RYR2, UNC13A, PCDHGC5, NRXN1,		
~calcium ion		202	0.1012	ITSN1, ITPR1, EPS15L1, CACNA1E,	1.5998	
binding	13	9	3	GRIN1, BCAN, EHD3, SRR, PCDH1	34	1
GO:0016197		2.1				
~endosomal		739	0.3088		2.6639	
transport	3	13	85	EHD3, ITSN1, EPS15L1	42	1
		3.6				
DOMAIN:EF-		231	0.4035		1.5421	
hand	5	88	78	RYR2, EHD3, ITSN1, EPS15L1, CACNA1E	89	1
KW-		0.4		RYR2, UNC13A, NRXN1, ITSN1, ITPR1,		
0106~Calciu		9.4	0.4109	EPS15L1, CACNA1E, GRIN1, EHD3,	1.1711	
m	13	9	8	CACNG8, CACNB4, KCNMA1, FKBP8	23	1
	13			Created, create i, iterativity, i ker	23	_
IPR002048:E		3.6				
F-hand	_	231	0.4268		1.4957	
domain	5	88	55	RYR2, EHD3, ITSN1, EPS15L1, CACNA1E	13	1
IPR011992:E		2.8				
F-hand-like		985	0.7114		1.1027	
domain	4	51	75	RYR2, EHD3, ITSN1, EPS15L1	22	1
IPR018247:E						
F-Hand 1,		2.1				
calcium-		739	0.7491		1.1399	
binding site	3	13	49	EHD3, ITSN1, EPS15L1	76	1
Cluster 14- En	richment	Score:	0.728040	0228641575		
					Fold	
					Enrich	
Term	Count	%	PValue	Genes	ment	FDR
	_				_	
KW- 0654~Proteo		2.8	0.0101		7 0077	0.12
LINS/ITPROTON		985 51	0.0101 96	DCAN CDC1 CSDCE TND	7.8977	187
	1		סע ו	BCAN, GPC1, CSPG5, TNR	93	8
glycan	4	21				
	4	3.6				
glycan	5		0.0325	BCAN, GPC1, TNR, GLG1, HAPLN1	3.9369	

KW-		2.1				
			4 545		4 2652	0.50
0272~Extrac		739	1.51E-		4.2653	0.58
ellular matrix	3	13	01	BCAN, TNR, HAPLN1	23	542
KW-		4.3				0.84
0964~Secret		478	0.3231		1.5797	662
	6	26	18	DCAN ADD CDC1 TND HADING ITEC1	49	
ed	В	20	10	BCAN, APP, GPC1, TNR, HAPLN1, ITFG1	49	3
GO:0007417						
~central						
nervous		2.1				
system		739	0.3873		2.2433	
development	3	13	22	BCAN, APP, HAPLN1	2	1
development	3	13	22	BCAN, AFF, HAFLINI	2	1
GO:0005576		5.0				
~extracellula		724	0.4303	BCAN, APP, HSPH1, GPC1, TNR,	1.3228	
r region	7	64	7	HAPLN1, ITFG1	07	1
				,		
IPR013783:I		3.6				
mmunoglob		231	0.7096		1.0492	
ulin-like fold	5	88	46	BCAN, EPHA4, VAPA, TNR, HAPLN1	31	1
		3.6				
CO:000E61E	1					
GO:0005615			0.7045		0.0440	
~extracellula	_	231	0.7845	DCAN ADD USVD CDC4 TND	0.9448	
	5		0.7845	BCAN, APP, HEXB, GPC1, TNR	0.9448 62	1
~extracellula		231 88	4			1
~extracellula r space		231 88	4			1
~extracellula r space		231 88	4		62 Fold	1
~extracellula r space Cluster 15-Eni	richment	231 88 Score:	4 0.727242	0296787512	62 Fold Enrich	
~extracellula r space		231 88	4		62 Fold	1 FDR
~extracellula r space Cluster 15-Eni	richment	231 88 Score:	4 0.727242	0296787512	62 Fold Enrich	
~extracellula r space Cluster 15-Eni	richment	231 88 Score:	4 0.727242	0296787512	62 Fold Enrich	
~extracellula r space Cluster 15-Eni	richment	231 88 Score: % 2.8	4 0.727242 PValue	0296787512	Fold Enrich ment	
~extracellula r space Cluster 15-Eni Term	Count	231 88 Score: % 2.8 985 51	9.727242 PValue 0.1164	0296787512 Genes	Fold Enrich ment 3.2658	FDR
~extracellula r space Cluster 15-Eni Term	Count	231 88 Score: % 2.8 985 51 2.8	9.727242 PValue 0.1164 25	0296787512 Genes	Fold Enrich ment 3.2658	FDR
~extracellula r space Cluster 15-Eni Term	Count	231 88 Score: % 2.8 985 51	9.727242 PValue 0.1164	0296787512 Genes	Fold Enrich ment 3.2658	FDR
~extracellula r space Cluster 15-Eni Term	Count	231 88 Score: % 2.8 985 51 2.8	9.727242 PValue 0.1164 25	0296787512 Genes	Fold Enrich ment 3.2658	FDR
~extracellula r space Cluster 15-Eni Term REPEAT:4	Count 4	231 88 Score: % 2.8 985 51 2.8 985 51	PValue 0.1164 25 0.1498	0296787512 Genes SYNPR, RYR2, FMN2, EPN1	Fold Enrich ment 3.2658 12 2.9220	FDR
~extracellula r space Cluster 15-Eni Term REPEAT:4	Count 4	231 88 Score: % 2.8 985 51 2.8 985 51 2.8	9.727242 PValue 0.1164 25 0.1498 12	0296787512 Genes SYNPR, RYR2, FMN2, EPN1	Fold Enrich ment 3.2658 12 2.9220 42	FDR
~extracellula r space Cluster 15-Eni Term REPEAT:4	Count 4	231 88 Score: % 2.8 985 51 2.8 985 51 2.8 985	9.727242 PValue 0.1164 25 0.1498 12 0.2238	O296787512 Genes SYNPR, RYR2, FMN2, EPN1 SYNPR, RYR2, FMN2, EPN1	Fold Enrich ment 3.2658 12 2.9220 42 2.4138	FDR 1
~extracellula r space Cluster 15-Eni Term REPEAT:4	Count 4	231 88 Score: % 2.8 985 51 2.8 985 51 2.8	9.727242 PValue 0.1164 25 0.1498 12	0296787512 Genes SYNPR, RYR2, FMN2, EPN1	Fold Enrich ment 3.2658 12 2.9220 42	FDR
~extracellula r space Cluster 15-Eni Term REPEAT:4	Count 4	231 88 Score: % 2.8 985 51 2.8 985 51 2.8 985	9.727242 PValue 0.1164 25 0.1498 12 0.2238	O296787512 Genes SYNPR, RYR2, FMN2, EPN1 SYNPR, RYR2, FMN2, EPN1	Fold Enrich ment 3.2658 12 2.9220 42 2.4138	FDR 1
~extracellula r space Cluster 15-Eni Term REPEAT:4	Count 4	231 88 Score: % 2.8 985 51 2.8 985 51 2.8 985 51	9.727242 PValue 0.1164 25 0.1498 12 0.2238	O296787512 Genes SYNPR, RYR2, FMN2, EPN1 SYNPR, RYR2, FMN2, EPN1	Fold Enrich ment 3.2658 12 2.9220 42 2.4138	FDR 1
~extracellula r space Cluster 15-Eni Term REPEAT:4	Count 4	231 88 Score: % 2.8 985 51 2.8 985 51 2.8 985 51 2.8	9.727242 PValue 0.1164 25 0.1498 12 0.2238 63	O296787512 Genes SYNPR, RYR2, FMN2, EPN1 SYNPR, RYR2, FMN2, EPN1	Fold Enrich ment 3.2658 12 2.9220 42 2.4138 61	FDR 1
~extracellula r space Cluster 15-Eni Term REPEAT:4 REPEAT:3	Count 4	231 88 Score: % 2.8 985 51 2.8 985 51 2.8 985 51 2.8	9.727242 PValue 0.1164 25 0.1498 12 0.2238 63	O296787512 Genes SYNPR, RYR2, FMN2, EPN1 SYNPR, RYR2, FMN2, EPN1 SYNPR, RYR2, FMN2, EPN1	Fold Enrich ment 3.2658 12 2.9220 42 2.4138 61	FDR 1
~extracellula r space Cluster 15-Eni Term REPEAT:4 REPEAT:3	Count 4	231 88 Score: % 2.8 985 51 2.8 985 51 2.8 985 51 2.8	9.727242 PValue 0.1164 25 0.1498 12 0.2238 63 0.2238 63	O296787512 Genes SYNPR, RYR2, FMN2, EPN1 SYNPR, RYR2, FMN2, EPN1 SYNPR, RYR2, FMN2, EPN1	Fold Enrich ment 3.2658 12 2.9220 42 2.4138 61 2.4138	FDR 1
~extracellula r space Cluster 15-Eni Term REPEAT:4 REPEAT:3	Count 4	231 88 Score: % 2.8 985 51 2.8 985 51 2.8 985 51 2.8	9.727242 PValue 0.1164 25 0.1498 12 0.2238 63	O296787512 Genes SYNPR, RYR2, FMN2, EPN1 SYNPR, RYR2, FMN2, EPN1 SYNPR, RYR2, FMN2, EPN1	Fold Enrich ment 3.2658 12 2.9220 42 2.4138 61	FDR 1

Cluster 16- Enrichment Score: 0.6555755563868145								
Term	Count	%	PValue	Genes	Fold Enrich ment	FDR		
KW- 1003~Cell membrane	40	28. 985 51	0.0904 71	APP, ATP8A1, ROCK2, SRC, NRXN1, ITSN1, GNAI3, ADAM22, FMN2, ADD3, GLG1, PPP1R9B, ADD2, RIMS1, GRM2, GJA1, CACNG8, GPC1, MYO6, LRRC8A, PIP5K1C, DLGAP2, CLASP2, SCN1A, EPHA4, UNC13A, DBNL, CASK, SLC6A11, EPS15L1, CKAP4, EPN1, GRIN1, EHD3, VAPA, MADD, KCNMA1, CSPG5, ADGRL1, TLN2	1.2336 44	0.57 179		
KW- 0472~Memb rane	78	56. 521 74	0.1757 69	APP, RYR2, ATP8A1, ITSN1, FMN2, PPP1R9B, ABHD12, LACTB, GRM2, SYNPR, RIMS1, GJA1, AIFM1, ABHD16A, PSMD1, DLGAP2, SCYL2, SCN1A, DLGAP4, SH3GLB1, EPHA4, UNC13A, DBNL, ATP6AP1, SLC32A1, VPS13C, AP1B1, CASK, SDHC, SLC6A11, EPS15L1, BCS1L, CKAP4, EPN1, ITFG1, MADD, KCNMA1, FKBP8, GM20498, TLN2, PAFAH1B1, RAPGEF4, BRSK2, ROCK2, SRC, NRXN1, ITPR1, GNAI3, ADAM22, ASAP1, SLC1A4, ADD3, CACNA1E, GLG1, MTDH, ADD2, CACNG8, GPC1, MYO6, LRRC8A, PIP5K1C, SRGAP3, PCDH1, CLASP2, GK, PCDHGC5, AP3D1, HIP1R, SYNJ2BP, ACADSB, GRIN1, EHD3, VAPA, RAB12, CSPG5, ADGRL1, TPRGL, TECPR1	1.0808 81	0.61 519 2		
GO:0005886 ~plasma membrane	52	37. 681 16	0.3785 67	APP, RYR2, ATP8A1, ITSN1, FMN2, PPP1R9B, GRM2, RIMS1, GJA1, DLGAP2, SCN1A, TBC1D10B, DLGAP4, EPHA4, UNC13A, DBNL, SLC32A1, CASK, EPS15L1, CKAP4, EPN1, ITFG1, CACNB4, LRRC7, MADD, KCNMA1, TLN2, RAPGEF4, ROCK2, SRC, NRXN1, ITPR1, GNAI3, ADAM22, SLC1A4, ADD3, GLG1, ADD2, SRR, CACNG8, GPC1, MYO6, LRRC8A, PIP5K1C, CLASP2, HIP1R, GRIN1, EHD3, VAPA, RAB12, CSPG5, ADGRL1	1.0558 63	1		

SM00239:C2	4	2.8 985 51	0.5625 01	RIMS1, UNC13A, HECW2, ITSN1	1.3699 63	1
DOMAIN:C2	4	2.8 985 51	0.5367 7	RIMS1, UNC13A, HECW2, ITSN1	1.4235 59	1
IPR000008:C 2 calcium- dependent membrane targeting	4	2.8 985 51	0.5277 74	RIMS1, UNC13A, HECW2, ITSN1	1.4420 21	1
GO:0006887 ~exocytosis	6	4.3 478 26	0.1422 09	RIMS1, BRSK2, UNC13A, ITSN1, PIP5K1C, RAPGEF4	2.1311 54	1
GO:0042734 ~presynaptic membrane	7	5.0 724 64	0.1143 94	RIMS1, GRM2, UNC13A, NRXN1, ITSN1, CASK, ADGRL1	2.0668 86	1
KW- 0268~Exocyt osis	6	4.3 478 26	0.0537 05	RIMS1, BRSK2, UNC13A, ITSN1, PIP5K1C, RAPGEF4	2.8015 87	1
Term	Count	%	PValue	Genes	Fold Enrich ment	FDR
Cluster 17- En	richment	Score:	0.642716	60416532073		<u> </u>
GO:0016020 ~membrane	76	55. 072 46	0.3963	APP, RYR2, ATP8A1, HEXB, ITSN1, FMN2, PPP1R9B, ABHD12, GRM2, SYNPR, RIMS1, GJA1, AIFM1, CAPZB, ABHD16A, SBF1, DLGAP2, SCYL2, SCN1A, DLGAP4, SH3GLB1, EPHA4, UNC13A, DBNL, ATP6AP1, SLC32A1, VPS13C, AP1B1, CASK, SDHC, SLC6A11, EPS15L1, BCS1L, CKAP4, EPN1, ITFG1, TOM1L2, MADD, KCNMA1, FKBP8, TLN2, PAFAH1B1, RAPGEF4, ROCK2, SRC, NRXN1, ITPR1, GNAI3, ADAM22, ASAP1, SLC1A4, ADD3, CACNA1E, GLG1, MTDH, ADD2, CACNG8, GPC1, MYO6, LRRC8A, PIP5K1C, CLASP2, GK, PCDHGC5, AP3D1, HIP1R, GRIN1, EHD3, PDE10A, VAPA, RAB12, CSPG5, ADGRL1, OSBPL1A, TPRGL, TECPR1	1.0327 35	1

					Fold	
					Enrich	
Term	Count	%	PValue	Genes	ment	FDR
				PRPS2, PRPS1, BRSK2, ATP8A1, ROCK2,		
				SRC, ACTR3B, SRR, HSPH1, MTHFD1L,		
				KIF5C, MYO6, MYO18A, PIP5K1C,		
		20.		STK32C, SCYL2, PRPS1L3, CCT4, CCT3,		
GO:0005524		289	0.0272	EPHA4, ACTR2, ATP6AP1, GK, CASK,	1.4749	
~ATP binding	28	86	79	BCS1L, DCLK1, EHD3, UBE2O	05	1
				PRPS2, PRPS1, BRSK2, ATP8A1, ROCK2,		
				SRC, ACTR3B, SRR, HSPH1, MTHFD1L,		
				KIF5C, MYO6, MYO18A, PIP5K1C,		
KW-		18.		STK32C, PRPS1L3, CCT4, CCT3, EPHA4,		
0067~ATP-		840	0.0564	ACTR2, GK, CASK, BCS1L, DCLK1, EHD3,	1.3615	
binding	26	58	49	UBE2O	49	1
GO:0016301		8.6	0.1247	PRPS2, PRPS1, EPHA4, BRSK2, GK,	1 5505	
~kinase	4.2	956	0.1347	ROCK2, SRC, CASK, PIP5K1C, PRPS1L3,	1.5595	
activity	12	52	89	DCLK1, STK32C	79	1
GO:0004672		6.5				
~protein		6.5	0.4350	EDITA 4 DDCK3 DOCK3 CDC CACK	4 7202	
kinase		217	0.1359	EPHA4, BRSK2, ROCK2, SRC, CASK,	1.7382	1
activity	9	39	49	DCLK1, STK32C, SCYL2, PPP1R9B	81	1
GO:0016310		7.9		PRPS2, PRPS1, EPHA4, BRSK2, GK,		
~phosphoryl		710	0.1544	ROCK2, SRC, CASK, PIP5K1C, DCLK1,	1.5628	
ation	11	14	86	STK32C	46	1
		8.6		PRPS2, PRPS1, EPHA4, BRSK2, GK,		
KW-		956	0.1739	ROCK2, SRC, CASK, PIP5K1C, PRPS1L3,	1.4661	
0418~Kinase	12	52	79	DCLK1, STK32C	25	1
IPR000719:P						
rotein						
kinase,		5.7	0.4706	EDUA A DDCK2 DOCK2 CDC CACK	4 7042	
catalytic		971	0.1796	EPHA4, BRSK2, ROCK2, SRC, CASK,	1.7042	
domain	8	01	48	DCLK1, STK32C, SCYL2	06	1
DOMAIN:Pro		5.7 971	0.1879	EPHA4, BRSK2, ROCK2, SRC, CASK,	1.6823	
tein kinase	8	01	2	DCLK1, STK32C, SCYL2	88	1
	0	01	_	Delat, Stroze, Serie	00	_
IPR011009:P		5.7				
rotein kinase-like		971	0.1005	EDHAA BDCK3 BOCK3 CDC CACK	1 6540	
domain			0.1995 96	EPHA4, BRSK2, ROCK2, SRC, CASK,	1.6540 83	1
uUIIIaifi	8	01	90	DCLK1, STK32C, SCYL2	03	1

GO:0035556						
~intracellular signal transduction	8	5.7 971 01	0.2022 75	BRSK2, UNC13A, ROCK2, SRC, ITSN1, DCLK1, STK32C, RAPGEF4	1.6472 69	1
GO:0006468 ~protein phosphorylat	0	6.5	0.2381	APP, EPHA4, BRSK2, ROCK2, SRC, CASK,	1.5043	1
ion	9	39	73	DCLK1, STK32C, SCYL2	44	1
KW- 0808~Transf erase	19	13. 768 12	0.2505 64	PRPS2, MPST, PRPS1, EPHA4, BRSK2, OAT, GK, ROCK2, SRC, AGL, CASK, PYGM, DCLK1, HECW2, DBT, UBE2O, PIP5K1C, PRPS1L3, STK32C	1.2289 57	1
GO:0018105 ~peptidyl- serine phosphorylat ion	5	3.6 231 88	0.2560 18	BRSK2, ROCK2, SRC, DCLK1, STK32C	1.9199 58	1
GO:0016740 ~transferase activity	17	12. 318 84	0.2809 78	PRPS2, MPST, PRPS1, EPHA4, BRSK2, OAT, GK, ROCK2, SRC, CASK, PYGM, DCLK1, HECW2, DBT, UBE2O, PIP5K1C, STK32C	1.2377 29	1
SM00220:S_ TKc	7	5.0 724 64	0.3105 16	EPHA4, BRSK2, ROCK2, CASK, DCLK1, STK32C, SCYL2	1.4983 97	1
IPR017441:P rotein kinase, ATP binding site	6	4.3 478 26	0.3322 81	EPHA4, BRSK2, ROCK2, SRC, DCLK1, STK32C	1.5621 89	1
GO:0000166 ~nucleotide binding	29	21. 014 49	0.3757	PRPS2, PRPS1, BRSK2, ATP8A1, ROCK2, SRC, GNAI3, PYGM, ACTR3B, SRR, HSPH1, MTHFD1L, MYO6, MYO18A, PIP5K1C, STK32C, CCT4, CCT3, EPHA4, ACTR2, GK, CASK, BCS1L, DCLK1, EHD3, PDE10A, RAB12, UBE2O, RAPGEF4	1.0988 59	1
KW- 0547~Nucleo tide-binding	31	22. 463 77	0.4225 57	PRPS2, PRPS1, BRSK2, ATP8A1, ROCK2, SRC, GNAI3, PYGM, ACTR3B, SRR, HSPH1, MTHFD1L, KIF5C, MYO6, MYO18A, PIP5K1C, STK32C, PRPS1L3, CCT4, CCT3, EPHA4, ACTR2, GK, CASK, BCS1L, DCLK1, EHD3, PDE10A, RAB12, UBE2O, RAPGEF4	1.0621 09	1

1	1	ı		1	1
5	88	66	BRSK2, ROCK2, CASK, DCLK1, STK32C	67	1
	3.6				
	231	0.6580		1.1214	
5	88	7	BRSK2, ROCK2, CASK, DCLK1, STK32C	72	1
	2.8				
		0.7240		1.0815	
4			BRSK2, ROCK2, DCLK1, STK32C		1
					_
		0.0000		0.00:5	
10	77	21	SRC, AMPD2, ACADSB, DCLK1, STK32C	57	1
richment	Score:	0.605543	791475061		•
				Fold	
				Enrich	
Count	%	PValue	Genes	ment	FDR
	5.7				
	_	0 1514	SH3GLR1 DRNL CACNR4 SRC ITSN1	1 7853	
Q.					1
0		00	CASIL, ASAL I, SILGAL S		_
	5.7				
	971	0.1587	SH3GLB1, DBNL, CACNB4, SRC, ITSN1,	1.7625	
8	01	62	CASK, ASAP1, SRGAP3	01	1
	5.7				
	971	0.2484	SH3GLB1, DBNL, CACNB4, SRC, ITSN1,	1.5420	
8	01	07	CASK, ASAP1, SRGAP3	62	1
	2 1				
		0.2564		2 0270	
2			DRNI SDC ASAD1		1
3	13	0	DDINL, SKC, ASAPI	5/	1
	5.0				
	724	0.2953	SH3GLB1, DBNL, SRC, ITSN1, CASK,	1.5256	
7	64	75	ASAP1, SRGAP3	41	1
	2.1				
		0.5444		4 7	
3	13	83	SH3GLB1, ASAP1, SRGAP3	63	1
	4 10 richment 8 8 8	3.6 231 5 88 2.8 985 4 7.2 463 77 richment Score: Count % 5.7 971 8 01 5.7 971 8 01 5.7 971 8 01 5.7 971 8 01 5.7 971 8 5.7 971 8 5.7 971 8 5.7 971 8 5.7 971 8 5.7	5 231 0.6319 88 66 3.6 231 0.6580 5 88 7 2.8 985 0.7240 4 51 09 7.2 463 0.8092 77 21 richment Score: 0.605543 Count % PValue 5.7 971 0.1514 01 66 5.7 971 0.1587 01 62 8 5.7 971 0.2484 01 07 8 5.7 971 0.2484 01 07 3 5.0 724 0.2953 7 64 75 2.1	5 231	5 231

domain/BAR						
domain						
Cluster 19- En	richment	Score:	0.590718	3535893234		
Term	Count	%	PValue	Genes	Fold Enrich ment	FDR
REPEAT:HEA T 8	3	2.1 739 13	0.1567 16	AP3D1, CLASP2, IPO5	4.1639 1	1
REPEAT:HEA T 7	3	2.1 739 13	0.1829 71	AP3D1, CLASP2, IPO5	3.7853 73	1
REPEAT:HEA T 6	3	2.1 739 13	0.2098 06	AP3D1, CLASP2, IPO5	3.4699 25	1
GO:0005802 ~trans-Golgi network	5	3.6 231 88	0.2418 23	ATP8A1, AP3D1, AP1B1, MYO18A, CLASP2	1.9684 63	1
REPEAT:HEA T 1	3	2.1 739 13	0.2643 82	AP3D1, CLASP2, IPO5	2.9742 21	1
REPEAT:HEA T 2	3	2.1 739 13	0.2643 82	AP3D1, CLASP2, IPO5	2.9742 21	1
REPEAT:HEA T 3	3	2.1 739 13	0.2643 82	AP3D1, CLASP2, IPO5	2.9742 21	1
REPEAT:HEA T 4	3	2.1 739 13	0.2643 82	AP3D1, CLASP2, IPO5	2.9742 21	1
REPEAT:HEA T 5	3	2.1 739 13	0.2643 82	AP3D1, CLASP2, IPO5	2.9742 21	1
IPR011989:A rmadillo-like helical	6	4.3 478 26	0.2893 86	AP3D1, AP1B1, PSMD1, SCYL2, CLASP2, IPO5	1.6540 83	1
IPR016024:A rmadillo- type fold	6	4.3 478 26	0.5843 13	AP3D1, AP1B1, PSMD1, SCYL2, CLASP2, IPO5	1.1716 42	1

Cluster 20- En	richment	Score:	0.586448	80699218039		
Term	Count	%	PValue	Genes	Fold Enrich ment	FDR
DOMAIN:PH	7	5.0 724 64	0.1954 88	IQSEC2, ROCK2, ITSN1, ASAP1, OSBPL1A, SBF1, TECPR1	1.7665 07	1
IPR011993:PI eckstrin homology- like domain	9	6.5 217 39	0.1985 13	APP, IQSEC2, ROCK2, ITSN1, ASAP1, TLN2, OSBPL1A, SBF1, TECPR1	1.5817 16	1
GO:0005085 ~guanyl- nucleotide exchange factor activity	5	3.6 231 88	0.2523 78	IQSEC2, MADD, ITSN1, SBF1, RAPGEF4	1.9314 24	1
IPR001849:Pl eckstrin homology domain	6	4.3 478 26	0.2893 86	IQSEC2, ROCK2, ITSN1, ASAP1, OSBPL1A, SBF1	1.6540 83	1
SM00233:PH	6	4.3 478 26	0.4124 03	IQSEC2, ROCK2, ITSN1, ASAP1, OSBPL1A, SBF1	1.4102 56	1
Cluster 21- En	richment	Score:	0.576119	2610698398	-1	
Term	Count	%	PValue	Genes	Fold Enrich ment	FDR
GO:0098982 ~GABA-ergic synapse	8	5.7 971 01	0.0725 57	BCAN, RIMS1, SLC32A1, NRXN1, ITPR1, CSPG5, SLC6A11, CACNA1E	2.1393 11	1
GO:0006836 ~neurotrans mitter transport	3	2.1 739 13	0.3353 57	RIMS1, SLC32A1, SLC6A11	2.5072	1
KW- 0532~Neurot ransmitter transport	3	2.1 739 13	0.3437 48	RIMS1, SLC32A1, SLC6A11	2.4513 89	1

mmu04721:S		2.8				
ynaptic		985	0.5930		1.3085	
vesicle cycle	4	51	59	RIMS1, UNC13A, SLC32A1, SLC6A11	79	1
Cluster 22- En	richment	Score:	0.543084	1630153816	I	l
					Fold	
_					Enrich	
Term	Count	%	PValue	Genes	ment	FDR
				RYR2, APP, BRSK2, ATP8A1, NRXN1,		
				ADAM22, ITPR1, SLC1A4, CACNA1E,		
				GLG1, MTDH, ABHD12, SYNPR, LACTB,		
				GRM2, GJA1, CACNG8, ABHD16A,		
				AIFM1, PSMD1, LRRC8A, SRGAP3,		
				PCDH1, SCN1A, EPHA4, ATP6AP1,		
				SLC32A1, PCDHGC5, CASK, SDHC,		
		29.		SLC6A11, BCS1L, ACADSB, CKAP4,		
TRANSMEM:		710	0.1723	ITFG1, GRIN1, VAPA, KCNMA1, FKBP8,	1.1661	
Helical	41	14	38	CSPG5, ADGRL1	22	1
				APP, RYR2, ATP8A1, ITSN1, FMN2,		
				PPP1R9B, ABHD12, LACTB, GRM2,		
				SYNPR, RIMS1, GJA1, AIFM1, ABHD16A,		
				PSMD1, DLGAP2, SCYL2, SCN1A,		
				DLGAP4, SH3GLB1, EPHA4, UNC13A,		
				DBNL, ATP6AP1, SLC32A1, VPS13C,		
				AP1B1, CASK, SDHC, SLC6A11, EPS15L1,		
				BCS1L, CKAP4, EPN1, ITFG1, MADD,		
				KCNMA1, FKBP8, GM20498, TLN2,		
				PAFAH1B1, RAPGEF4, BRSK2, ROCK2,		
				SRC, NRXN1, ITPR1, GNAI3, ADAM22,		
				ASAP1, SLC1A4, ADD3, CACNA1E, GLG1,		
				MTDH, ADD2, CACNG8, GPC1, MYO6,		
				LRRC8A, PIP5K1C, SRGAP3, PCDH1,		
KW-		56.	0.4757	CLASP2, GK, PCDHGC5, AP3D1, HIP1R,	4 0000	0.61
0472~Memb	70	521	0.1757	SYNJ2BP, ACADSB, GRIN1, EHD3, VAPA,	1.0808	519
rane	78	74	69	RAB12, CSPG5, ADGRL1, TPRGL, TECPR1	81	2
				RYR2, APP, BRSK2, ATP8A1, NRXN1,		
				ADAM22, ITPR1, SLC1A4, CACNA1E,		
				GLG1, MTDH, ABHD12, SYNPR, LACTB,		
				GRM2, GJA1, CACNG8, ABHD16A,		
				AIFM1, PSMD1, LRRC8A, SRGAP3,		
GO:0016021				SCN1A, EPHA4, ATP6AP1, SLC32A1,		
~integral				CASK, SDHC, SLC6A11, BCS1L, ACADSB,		
component		30.	0.0115	CKAP4, ITFG1, GRIN1, VAPA, MADD,	4 4 4 5 5	
of	43	434	0.2116	KCNMA1, FKBP8, GM20498, CSPG5,	1.1403	1
membrane	42	78	78	ADGRL1, TECPR1	51	1

TOPO_DOM: Cytoplasmic	28	20. 289 86	0.2119 87	RYR2, APP, ATP8A1, NRXN1, ADAM22, ITPR1, SLC1A4, CACNA1E, GLG1, MTDH, ABHD12, SYNPR, GRM2, GJA1, ABHD16A, LRRC8A, SCN1A, EPHA4, ATP6AP1, SLC32A1, SLC6A11, SYNJ2BP, CKAP4, GRIN1, VAPA, KCNMA1, CSPG5, ADGRL1	1.1994 8	1
TOPO_DOM: Extracellular	18	13. 043 48	0.2904 28	APP, EPHA4, NRXN1, ADAM22, SLC6A11, SLC1A4, CACNA1E, CKAP4, GLG1, GRIN1, ABHD12, GRM2, GJA1, KCNMA1, CSPG5, ADGRL1, LRRC8A, SCN1A	1.2187 05	1
KW- 0812~Trans membrane	43	31. 159 42	0.6288 53	RYR2, APP, BRSK2, ATP8A1, NRXN1, ADAM22, ITPR1, SLC1A4, CACNA1E, GLG1, MTDH, ABHD12, SYNPR, LACTB, GRM2, GJA1, CACNG8, ABHD16A, AIFM1, PSMD1, LRRC8A, SRGAP3, PCDH1, SCN1A, EPHA4, ATP6AP1, SLC32A1, PCDHGC5, CASK, SDHC, SLC6A11, BCS1L, SYNJ2BP, ACADSB, CKAP4, ITFG1, GRIN1, VAPA, KCNMA1, FKBP8, GM20498, CSPG5, ADGRL1	0.9882 54	1
KW- 1133~Trans membrane helix	42	30. 434 78	0.6360 86	RYR2, APP, BRSK2, ATP8A1, NRXN1, ADAM22, ITPR1, SLC1A4, CACNA1E, GLG1, MTDH, ABHD12, SYNPR, LACTB, GRM2, GJA1, CACNG8, ABHD16A, AIFM1, PSMD1, LRRC8A, SRGAP3, PCDH1, SCN1A, EPHA4, ATP6AP1, SLC32A1, CASK, SDHC, SLC6A11, BCS1L, SYNJ2BP, ACADSB, CKAP4, ITFG1, GRIN1, VAPA, KCNMA1, FKBP8, GM20498, CSPG5, ADGRL1	0.9861 32	1
Cluster 23- En	 richment	Score:	0.516427	 100104354		
Term	Count	%	PValue	Genes	Fold Enrich ment	FDR
GO:0005783 ~endoplasmi c reticulum	20	14. 492 75	0.1899 73	SH3GLB1, APP, EPHA4, RYR2, BRSK2, ATP6AP1, ATP8A1, NRXN1, ITPR1, AHSA1, FMN2, CKAP4, MTDH, GRIN1, ABHD12, GJA1, VAPA, KCNMA1, FKBP8, CSPG5	1.2884 48	1

	1	ı	ı	T	П	I
GO:0005789		7.0		ADUDAS DVDS VADA ATDCADA ITDDA		
~endoplasmi c reticulum		7.9	0.3000	ABHD12, RYR2, VAPA, ATP6AP1, ITPR1,	1 2224	
membrane	11	710	0.3000	GNAI3, CSPG5, FMN2, CKAP4, MTDH, GRIN1	1.3324 98	1
membrane	11	14	01	GMMI	36	1
KW-						
0256~Endopl		9.4		APP, BRSK2, ATP6AP1, ATP8A1, VPS13C,		
asmic	40	202	0.4953	ITPR1, AHSA1, CKAP4, MTDH, ABHD12,	1.1134	
reticulum	13	9	42	GJA1, VAPA, CSPG5	38	1
Cluster 24-Enr	ichment	Score:	0.492053	74415864234		
					Fold	
					Enrich	
Term	Count	%	PValue	Genes	ment	FDR
GO:0006915		6.5				
~apoptotic		217	0.1727	SH3GLB1, APP, GJA1, BRSK2, AIFM1,	1.6393	
process	9	39	86	MADD, ITPR1, HIP1R, FKBP8	49	1
•				, ,		
KW-		5.0 724	0.2202	CHACLES ADD DECKS ALEMS MADE	1 4526	
0053~Apopt osis	7	64	0.3382 63	SH3GLB1, APP, BRSK2, AIFM1, MADD, ITPR1, FKBP8	1.4526 75	1
USIS	,	04	03	TIFKI, I KDFO	73	1
CROSSLNK:GI						
ycyl lysine						
isopeptide						
(Lys-Gly)		2.0				
(interchain with G-Cter		2.8 985	0.5715		1.3541	
in ubiquitin)	4	51	8	APP, AIFM1, ITPR1, FKBP8	1.3341	1
•					17	_
Cluster 25- En	richment	Score:	0.444427	/37704350754		
					Fold	
					Enrich	
Term	Count	%	PValue	Genes	ment	FDR
GO:0098839						
~postsynapti		3.6				
c density		231	0.0923	EPHA4, CACNG8, IQSEC2, SYNJ2BP,	2.8345	
membrane	5	88	76	GRIN1	86	1
GO:0045211		4.3				
~postsynapti		478	0.6020	GRM2, EPHA4, CACNG8, DBNL,	1.1491	
c membrane	6	26	04	KCNMA1, GRIN1	57	1
KVV						
KW- 0628~Postsy		2.1				
naptic cell		739	0.8347		0.9478	
membrane	3	13	58	EPHA4, CACNG8, GRIN1	49	1
					1	-

Cluster 26- En	richment	Score:	0.431423	61258397044		
Term	Count	%	PValue	Genes	Fold Enrich ment	FDR
TOPO_DOM: Cytoplasmic	28	20. 289 86	0.2119 87	RYR2, APP, ATP8A1, NRXN1, ADAM22, ITPR1, SLC1A4, CACNA1E, GLG1, MTDH, ABHD12, SYNPR, GRM2, GJA1, ABHD16A, LRRC8A, SCN1A, EPHA4, ATP6AP1, SLC32A1, SLC6A11, SYNJ2BP, CKAP4, GRIN1, VAPA, KCNMA1, CSPG5, ADGRL1	1.1994 8	1
CARBOHYD: N-linked (GlcNAc) asparagine	24	17. 391 3	0.2265 26	APP, EPHA4, ATP6AP1, PCDHGC5, HEXB, NRXN1, ADAM22, SLC6A11, SLC1A4, CACNA1E, GLG1, HAPLN1, ITFG1, GRIN1, ABHD12, BCAN, SYNPR, GRM2, GPC1, TNR, CSPG5, ADGRL1, LRRC8A, SCN1A	1.2157	1
TOPO_DOM: Extracellular	18	13. 043 48	0.2904 28	APP, EPHA4, NRXN1, ADAM22, SLC6A11, SLC1A4, CACNA1E, CKAP4, GLG1, GRIN1, ABHD12, GRM2, GJA1, KCNMA1, CSPG5, ADGRL1, LRRC8A, SCN1A	1.2187 05	1
KW- 1015~Disulfi de bond	19	13. 768 12	0.3371 66	CCT3, MPST, APP, ATP6AP1, HEXB, NRXN1, ADAM22, CACNA1E, HAPLN1, GRIN1, BCAN, GRM2, GJA1, GPC1, TNR, CSPG5, ADGRL1, LRRC8A, SCN1A	1.1723 29	1
KW- 0325~Glycop rotein	23	16. 666 67	0.6107 77	APP, EPHA4, ATP6AP1, HEXB, NRXN1, ADAM22, SLC6A11, SLC1A4, CACNA1E, GLG1, HAPLN1, ITFG1, GRIN1, ABHD12, BCAN, SYNPR, GRM2, GPC1, TNR, CSPG5, ADGRL1, LRRC8A, SCN1A	1.0027 96	1
KW- 0732~Signal	19	13. 768 12	0.8979	APP, EPHA4, ATP6AP1, PCDHGC5, HEXB, NRXN1, ADAM22, SLC1A4, GLG1, ITFG1, GRIN1, BCAN, SYNPR, GRM2, GPC1, TNR, CSPG5, ADGRL1, PCDH1	0.8348 11	1
Cluster 27- En	ricnment	Score:	0.428435	1905/85155/5	l	ı
Term	Count	%	PValue	Genes	Fold Enrich ment	FDR
mmu04921: Oxytocin	7	5.0 724 64	0.1289 38	RYR2, CACNG8, CACNB4, ROCK2, SRC, ITPR1, GNAI3	1.9817 43	1

	1	1		T	I	1
signaling						
pathway						
mmu04713:		2.8				
Circadian		985	0.5446		1.4020	
	4	51	88	DVD2 ITDD1 CNAI2 CDIN1	49	1
entrainment	4	51	88	RYR2, ITPR1, GNAI3, GRIN1	49	1
mmu04371:						
Apelin		2.1				
signaling		739	0.7381		1.1622	
pathway	3	13	83	RYR2, ITPR1, GNAI3	25	1
Cluster 28- En	l richment	Score:	0.416777	75713331566		
					Fold	
					Enrich	
Term	Count	%	PValue	Genes	ment	FDR
	Count	/0	1 value	Cenes	ment	, 51
		3.6				
GO:0030175		231	0.3058	EPHA4, LRRC7, MYO6, PPP1R9A,	1.7716	
~filopodium	5	88	82	PPP1R9B	17	1
GO:0007015						
~actin		3.6				
filament		231	0.3696	MYO6, TPM1, HIP1R, PPP1R9A,	1.6145	
	5	88	46	PPP1R9B	1.0143	1
organization	5	00	40	PPPIR9B	1	1
GO:0015629		4.3				
~actin		478	0.4969	LRRC7, MYO6, TPM1, FMN2, PPP1R9A,	1.2884	
cytoskeleton	6	26	65	PPP1R9B	48	1
Cluster 29- En	richment	Score:	0.406661	.02707893154	<u> </u>	
					Fold	
					Enrich	
Term	Count	%	PValue	Genes	ment	FDR
101111	Count	/0	i value	Genes	ment	וטו
GO:0007399						
~nervous		6.5				
system		217	0.2789	PRPS1, APP, EPHA4, BRSK2, CSPG5,	1.4367	
development	9	39	43	PRPS1L3, DCLK1, PPP1R9B, PAFAH1B1	33	1
KW-		5.0				
0524~Neuro		724	0.3242	EPHA4, BRSK2, CSPG5, PPP1R9A, DCLK1,	1.4761	
	7				_	1
genesis	7	64	2	PPP1R9B, PAFAH1B1	05	1
KW-						
9996~Develo		5.0				
pmental		724	0.4005	EPHA4, RYR2, CSPG5, FMN2, DCLK1,	1.3583	
protein	7	64	12	PPP1R9B, PAFAH1B1	21	1
•		1		<u> </u>		

KW-						
0217~Develo		5.0				
pmental		724	0.4005	EPHA4, RYR2, CSPG5, FMN2, DCLK1,	1.3583	
•	7	64	12	PPP1R9B, PAFAH1B1	21	1
protein	/	04	12	PPPIR9B, PAPARIBI	21	1
GO:0007275						
~multicellula		5.0				
r organism		724	0.4149	EPHA4, RYR2, CSPG5, FMN2, DCLK1,	1.3439	
development	7	64	18	PPP1R9B, PAFAH1B1	71	1
·						
GO:0030154						
~cell		5.7				
differentiatio		971	0.4538	RIMS1, UNC13A, SRC, CSPG5, LRRC8A,	1.2490	
n	8	01	35	DCLK1, PPP1R9B, PAFAH1B1	28	1
KW-		5.0				
0221~Differe		724	0.5211	RIMS1, UNC13A, CSPG5, LRRC8A,	1.2041	
ntiation	7	64	0.3211		_	1
IIIIation	/	04	07	DCLK1, PPP1R9B, PAFAH1B1	91	1
Cluster 30- En	richment	Score:	0.387425	07577246776		
					Fold	
					Enrich	
Term	Count	%	PValue	Genes	ment	FDR
GO:0051010						
~microtubul		2.1				
امصم متناميم		739	0.1561		4.1718	
e plus-end		133	0.1301		4.1/10	
binding	3	13	42	CLIP2, CLASP2, PAFAH1B1	75	1
binding	3	13		CLIP2, CLASP2, PAFAH1B1		1
binding GO:0005881	3	13	42	CLIP2, CLASP2, PAFAH1B1	75	1
binding GO:0005881 ~cytoplasmic		13 2.1 739	0.2832		75 2.8345	
binding GO:0005881	3	13	42	CLIP2, CLASP2, PAFAH1B1 CLIP2, CLASP2, PAFAH1B1	75	1
binding GO:0005881 ~cytoplasmic		13 2.1 739	0.2832		75 2.8345	
GO:0005881 ~cytoplasmic microtubule		13 2.1 739 13	0.2832		75 2.8345	
GO:0005881 ~cytoplasmic microtubule GO:0008017		13 2.1 739 13 4.3	0.2832 73	CLIP2, CLASP2, PAFAH1B1	75 2.8345 86	
binding GO:0005881 ~cytoplasmic microtubule GO:0008017 ~microtubul e binding	3	13 2.1 739 13 4.3 478	0.2832 73 0.3992	CLIP2, CLASP2, PAFAH1B1 CLIP2, VAPA, KIF5C, FMN2, CLASP2,	75 2.8345 86 1.4385	1
binding GO:0005881 ~cytoplasmic microtubule GO:0008017 ~microtubul e binding GO:0015630	3	13 2.1 739 13 4.3 478 26	0.2832 73 0.3992	CLIP2, CLASP2, PAFAH1B1 CLIP2, VAPA, KIF5C, FMN2, CLASP2,	75 2.8345 86 1.4385	1
binding GO:0005881 ~cytoplasmic microtubule GO:0008017 ~microtubul e binding GO:0015630 ~microtubul	3	13 2.1 739 13 4.3 478 26	0.2832 73 0.3992 82	CLIP2, CLASP2, PAFAH1B1 CLIP2, VAPA, KIF5C, FMN2, CLASP2,	75 2.8345 86 1.4385 78	1
binding GO:0005881 ~cytoplasmic microtubule GO:0008017 ~microtubul e binding GO:0015630 ~microtubul e	3	13 2.1 739 13 4.3 478 26	0.2832 73 0.3992 82	CLIP2, CLASP2, PAFAH1B1 CLIP2, VAPA, KIF5C, FMN2, CLASP2, PAFAH1B1	75 2.8345 86 1.4385 78	1
binding GO:0005881 ~cytoplasmic microtubule GO:0008017 ~microtubul e binding GO:0015630 ~microtubul	3	13 2.1 739 13 4.3 478 26	0.2832 73 0.3992 82	CLIP2, CLASP2, PAFAH1B1 CLIP2, VAPA, KIF5C, FMN2, CLASP2,	75 2.8345 86 1.4385 78	1
binding GO:0005881 ~cytoplasmic microtubule GO:0008017 ~microtubul e binding GO:0015630 ~microtubul e	3	13 2.1 739 13 4.3 478 26	0.2832 73 0.3992 82	CLIP2, CLASP2, PAFAH1B1 CLIP2, VAPA, KIF5C, FMN2, CLASP2, PAFAH1B1	75 2.8345 86 1.4385 78	1
binding GO:0005881 ~cytoplasmic microtubule GO:0008017 ~microtubul e binding GO:0015630 ~microtubul e cytoskeleton	3	13 2.1 739 13 4.3 478 26 3.6 231 88	0.2832 73 0.3992 82	CLIP2, CLASP2, PAFAH1B1 CLIP2, VAPA, KIF5C, FMN2, CLASP2, PAFAH1B1	75 2.8345 86 1.4385 78	1
binding GO:0005881 ~cytoplasmic microtubule GO:0008017 ~microtubul e binding GO:0015630 ~microtubul e cytoskeleton GO:0005874	3	13 2.1 739 13 4.3 478 26 3.6 231 88 5.0	0.2832 73 0.3992 82 0.4846 26	CLIP2, CLASP2, PAFAH1B1 CLIP2, VAPA, KIF5C, FMN2, CLASP2, PAFAH1B1 CLIP2, VAPA, DBT, CLASP2, PAFAH1B1	75 2.8345 86 1.4385 78 1.3895 03	1
binding GO:0005881 ~cytoplasmic microtubule GO:0008017 ~microtubul e binding GO:0015630 ~microtubul e cytoskeleton GO:0005874 ~microtubul e	3 6 5	13 2.1 739 13 4.3 478 26 3.6 231 88 5.0 724 64	0.2832 73 0.3992 82 0.4846 26	CLIP2, CLASP2, PAFAH1B1 CLIP2, VAPA, KIF5C, FMN2, CLASP2, PAFAH1B1 CLIP2, VAPA, DBT, CLASP2, PAFAH1B1 CCT3, CLIP2, HSPH1, KIF5C, CCT4,	75 2.8345 86 1.4385 78 1.3895 03	1 1
binding GO:0005881 ~cytoplasmic microtubule GO:0008017 ~microtubul e binding GO:0015630 ~microtubul e cytoskeleton GO:0005874 ~microtubul e KW-	3 6 5	2.1 739 13 4.3 478 26 3.6 231 88 5.0 724 64 2.8	0.2832 73 0.3992 82 0.4846 26 0.6671 01	CLIP2, CLASP2, PAFAH1B1 CLIP2, VAPA, KIF5C, FMN2, CLASP2, PAFAH1B1 CLIP2, VAPA, DBT, CLASP2, PAFAH1B1 CCT3, CLIP2, HSPH1, KIF5C, CCT4,	75 2.8345 86 1.4385 78 1.3895 03 1.0443 21	1 1
binding GO:0005881 ~cytoplasmic microtubule GO:0008017 ~microtubul e binding GO:0015630 ~microtubul e cytoskeleton GO:0005874 ~microtubul e	3 6 5	13 2.1 739 13 4.3 478 26 3.6 231 88 5.0 724 64	0.2832 73 0.3992 82 0.4846 26	CLIP2, CLASP2, PAFAH1B1 CLIP2, VAPA, KIF5C, FMN2, CLASP2, PAFAH1B1 CLIP2, VAPA, DBT, CLASP2, PAFAH1B1 CCT3, CLIP2, HSPH1, KIF5C, CCT4,	75 2.8345 86 1.4385 78 1.3895 03	1 1

Term	Count	%	PValue	Genes	Fold Enrich ment	FDR
mmu04611: Platelet activation	5	3.6 231 88	0.1123 7	ROCK2, SRC, ITPR1, GNAI3, TLN2	2.6288 43	1
mmu04921: Oxytocin signaling pathway	7	5.0 724 64	0.1289 38	RYR2, CACNG8, CACNB4, ROCK2, SRC, ITPR1, GNAI3	1.9817 43	1
mmu04360: Axon guidance	5	3.6 231 88	0.3883	EPHA4, ROCK2, SRC, GNAI3, SRGAP3	1.5661 19	1
mmu04540: Gap junction	4	2.8 985 51	0.4755 19	GJA1, SRC, ITPR1, GNAI3	1.5496 34	1
mmu05205: Proteoglycan s in cancer	4	2.8 985 51	0.5278 66	ROCK2, SRC, GPC1, ITPR1	1.4362 46	1
mmu04915:E strogen signaling pathway	3	2.1 739 13	0.6792 33	SRC, ITPR1, GNAI3	1.2989 58	1
mmu05163: Human cytomegalovi rus infection	4	2.8 985 51	0.7052 96	ROCK2, SRC, ITPR1, GNAI3	1.1110 58	1
mmu04062: Chemokine signaling pathway	3	2.1 739 13	0.7514 22	ROCK2, SRC, GNAI3	1.1324 25	1
mmu05417:L ipid and atherosclero sis	3	2.1 739 13	0.7877 81	ROCK2, SRC, ITPR1	1.0515 37	1
Cluster 32- En	richment	Score:	0.342488	316289494405		I
Term	Count	%	PValue	Genes	Fold Enrich ment	FDR

	2.1				
	739	0.3395		2.4740	
3	13	94	SRR, PDE10A, PYGM	85	1
	2.8				
4	51	54	SRR, PDE10A, HEXB, PYGM	62	1
	4.3				
6	26	37	SRR, PDE10A, OAT, ECI1, GAD1, PYGM	3	1
richment	Score:	0.337831	60389972017		•
				Fold	
				Enrich	
Count	%	PValue	Genes	ment	FDR
	4.3			1	
	478	0.1422	CCT3, HSPH1, CDC37, FKBP8, AHSA1,	2.1311	
6	26	09	CCT4	54	1
	3.6				
	231	0.4981		1.3661	
5	88	23	CCT3, EPHA4, CDC37, HIP1R, CCT4	24	1
	3.6				
				1.2217	
5	88	45	CCT3, CDC37, AHSA1, BCS1L, CCT4	71	1
3	13	47	CCT3, CDC37, CCT4	05	1
	3.6				
_					
5	88	4	CCT3, HSPH1, KIF5C, BCS1L, CCT4	04	1
richment	Score:	0.310224	43064517663		
				Fold	
				Enrich	
Count	%	PValue	Genes	ment	FDR
	3.6				
	231	0.1751		2.2305	
5	88	9	ACTR2, ROCK2, SRC, PIP5K1C, ACTR3B	33	1
	2.8				
4	2.8 985 51	0.3263	ACTR2, ASAP1, PIP5K1C, ACTR3B	1.9628 69	
	6 Count 6 5 3 5 richment Count	3 739 3 2.8 985 4 51 4.3 478 6 26 richment Score: Count % 4.3 478 6 26 3.6 231 5 88 2.1 739 3 13 5 88 richment Score: Count % 3.6 231 5 88	3	3 13 94 SRR, PDE10A, PYGM 2.8 985 0.3892 51 54 SRR, PDE10A, HEXB, PYGM 4.3 478 0.7101 26 37 SRR, PDE10A, OAT, ECI1, GAD1, PYGM richment Score: 0.33783160389972017 Count % PValue Genes 4.3 478 0.1422 CCT3, HSPH1, CDC37, FKBP8, AHSA1, CCT4 5 3.6 231 0.4981 88 23 CCT3, EPHA4, CDC37, HIP1R, CCT4 3.6 231 0.5876 5 88 45 CCT3, CDC37, AHSA1, BCS1L, CCT4 2.1 739 0.6954 3 13 47 CCT3, CDC37, CCT4 5 88 45 CCT3, CDC37, CCT4 7 CCT3, CDC37, CCT4 7 CCT3, CDC37, CCT4 7 CCT3, CDC37, CCT4 7 CCT3, CDC37, CCT4 7 CCT3, CDC37, CCT4 7 CCT3, CDC37, CCT4 7 CCT3, CDC37, CCT4 7 CCT3, CDC37, CCT4 7 CCT3, CDC37, CCT4 7 CCT3, CDC37, CCT4 7 CCT3, CDC37, CCT4 7 CCT3, CDC37, CCT4	3

mediated						
phagocytosis						
mmu04810:						
Regulation of		3.6				
actin		231	0.5694		1.2475	
cytoskeleton	5	88	13	ACTR2, ROCK2, SRC, PIP5K1C, ACTR3B	86	1
mmu05100:						
Bacterial						
invasion of		2.1				
epithelial		739	0.6792		1.2989	
cells	3	13	33	ACTR2, SRC, ACTR3B	58	1
				7.6		_
		2.8				
mmu04530:T		985	0.7409		1.0515	
ight junction	4	51	18	ACTR2, ROCK2, SRC, ACTR3B	37	1
				, , ,		
mmu05132:S		3.6				
almonella		231	0.8398		0.8659	
infection	5	88	74	ACTR2, ROCK2, KIF5C, MYO6, ACTR3B	72	1
		<u> </u>				
Cluster 35- En	richment	Score:	0.197882	208376236902		
					Fold	
					Enrich	
Т	C	0/	D) / a loos	Carra		- FDD
Term	Count	%	PValue	Genes	ment	FDR
GO:0016477		4.3				
~cell		478	0.2957	SRC, GPC1, MYO18A, CLASP2, PPP1R9B,	1.6393	
migration	6	26	04	PAFAH1B1	49	1
illigiation		20	04	FAIAIIDI	43	*
		5.0				
GO:0005813		724	0.5067	BRSK2, LRRC7, ROCK2, GNAI3, SLC1A4,	1.2248	
~centrosome	7	64	56	CCT4, PAFAH1B1	21	1
certifosome	,	• •		6611,17417411251		-
KW-		2.1				
0498~Mitosi		739	0.7118		1.2256	
S	3	13	27	BRSK2, CLASP2, PAFAH1B1	94	1
				· · ·		
		2.8				
GO:0051301		985	0.7525		1.0332	
~cell division	4	51	53	BRSK2, GNAI3, CLASP2, PAFAH1B1	87	1
		3.6				
GO:0007049		231	0.7737		0.9599	
~cell cycle	5	88	68	BRSK2, SRC, GNAI3, CLASP2, PAFAH1B1	79	1
		1				
KW-		2.8				
0132~Cell		985	0.7921		0.9684	
division	4	51	65	BRSK2, GNAI3, CLASP2, PAFAH1B1	5	1

KW-		3.6				
0131~Cell		231	0.8372		0.8716	
cycle	5	88	05	BRSK2, SRC, GNAI3, CLASP2, PAFAH1B1	05	1
Cluster 36- En	richment	Score:	0.182191	04899292218	-	
					Fold	
					Enrich	
Term	Count	%	PValue	Genes	ment	FDR
KW-		7.9		PRPS2, PRPS1, SRR, BRSK2, ATP8A1,		
0460~Magne		710	0.3927	ROCK2, KCNMA1, GNAI3, BPNT1,	1.2216	
sium	11	14	42	STK32C, GRIN1	02	1
				PRPS2, PRPS1, APP, BRSK2, UNC13A,		
				ATP8A1, ROCK2, NRXN1, ITSN1, GNAI3,		
GO:0046872		15.		SDHC, AMPD2, ASAP1, EPS15L1,		
~metal ion		942	0.8388	CACNA1E, RIMS1, EHD3, SRR, PDE10A,	0.8816	
binding	22	03	58	KCNMA1, BPNT1, STK32C	64	1
				PRPS2, PRPS1, APP, BRSK2, UNC13A,		
				ATP8A1, ROCK2, PCDHGC5, NRXN1,		
				ITSN1, GNAI3, SDHC, AMPD2, ASAP1,		
KW-		17.		EPS15L1, CACNA1E, RIMS1, EHD3, SRR,		
0479~Metal-		391	0.8622	PDE10A, KCNMA1, BPNT1, PRPS1L3,	0.8858	
binding	24	3	46	STK32C	92	1
Cluster 37- En	richment	Score:	0.137987	793171570653	1	l
					Fold	
					Enrich	
Term	Count	%	PValue	Genes	ment	FDR
mmu04924:		2.1				
Renin		739	0.3927		2.2082	
secretion	3	13	36	KCNMA1, ITPR1, GNAI3	28	1
mmu04022:c						
GMP-PKG		2.8				
signaling		985	0.6084		1.2801	
pathway	4	51	48	ROCK2, KCNMA1, ITPR1, GNAI3	32	1
<u> </u>		3.6				
KW-					I 0 70E3	l
KW- 0564~Palmit		231	0.8903	CACNG8, KCNMA1, ITPR1, GNAI3,	0.7852	
KW-	5		0.8903 76	CACNG8, KCNMA1, ITPR1, GNAI3, CKAP4	92	1
KW- 0564~Palmit ate LIPID:S-	5	231 88 2.1	76		92	1
KW- 0564~Palmit ate	5	231 88				1

KW-		5.7				
0449~Lipopr		971	0.9905	CACNG8, SRC, RAB12, GPC1, KCNMA1,	0.5728	
otein	8	01	24	ITPR1, GNAI3, CKAP4	97	1
Cluster 38- En	 richment	Score:	0.092818	 867333534953		
					Fold	
					Enrich	
Term	Count	%	PValue	Genes	ment	FDR
TRANSMEM:		2.1				
Helical;		739	0.6066		1.4871	
Name=7	3	13	27	GRM2, ADGRL1, SLC6A11	11	1
TRANSMEM:		2.1				
Helical;		739	0.8258		0.9683	
Name=3	3	13	96	GRM2, ADGRL1, SLC6A11	51	1
TRANSMEM:		2.1				
Helical;		739	0.8258		0.9683	
Name=6	3	13	96	GRM2, ADGRL1, SLC6A11	51	1
TRANSMEM:		2.1				
Helical;		739	0.8449		0.9253	
Name=5	3	13	45	GRM2, ADGRL1, SLC6A11	13	1
TRANSMEM:		2.1				
Helical;		739	0.8620		0.8859	
Name=1	3	13	97	GRM2, ADGRL1, SLC6A11	38	1
TRANSMEM:		2.1				
Helical;		739	0.8620		0.8859	
Name=2	3	13	97	GRM2, ADGRL1, SLC6A11	38	1
TRANSMEM:		2.1				
Helical;		739	0.8620	00140 400014 5105444	0.8859	
Name=4	3	13	97	GRM2, ADGRL1, SLC6A11	38	1
Cluster 39- En	richment	Score:	0.085198	342492929318		
					Fold	
					Enrich	
Term	Count	%	PValue	Genes	ment	FDR
mmu00280:						
Valine,						
leucine and		2.8				
isoleucine		985	0.3833		1.7844	
degradation	4	51	27	ALDH6A1, ALDH2, DBT, ACADSB	27	1

Γ				T		
		8.6		LACTB, PDHX, ALDH6A1, OAT, MECR,		
TRANSIT:Mit		956	0.7461	ALDH2, MTHFD1L, AIFM1, ECI1, DBT,	0.9357	
ochondrion	12	52	11	SDHC, ACADSB	1	1
				MPST, SH3GLB1, PDHX, OAT, MECR, GK,		
				SRC, VPS13C, ECI1, SDHC, BCS1L,		
KW-		15.		SYNJ2BP, ACADSB, ABHD12, LACTB,		
0496~Mitoch		942	0.8586	ALDH6A1, AIFM1, ALDH2, MTHFD1L,	0.8688	
ondrion	22	03	57	DBT, FKBP8, GM20498	62	1
KW-		8.6		LACTB, PDHX, ALDH6A1, OAT, MECR,		
0809~Transit		956	0.9238	ALDH2, MTHFD1L, AIFM1, ECI1, DBT,	0.7751	
peptide	12	52	43	SDHC, ACADSB	99	1
		2.1				
KW-		739	0.9404		0.6901	
0520~NAD	3	13	13	ALDH6A1, ALDH2, AIFM1	26	1
		-		· · ·		
				APP, OAT, SRC, ECI1, ABHD12, LACTB,		
				GJA1, ALDH2, MTHFD1L, AIFM1, DBT,		
				MPST, SH3GLB1, PDHX, MECR, GK,		
GO:0005739		19.		GAD1, VPS13C, HIP1R, SDHC, BCS1L,		
~mitochondr		565	0.9905	SYNJ2BP, ACADSB, SND1, ALDH6A1,	0.7275	
ion	27	22	2	KCNMA1, FKBP8	08	1
GO:0016491		3.6				
~oxidoreduct		231	0.9918	ALDH6A1, MECR, ALDH2, AIFM1,	0.5075	
ase activity	5	88	28	ACADSB	27	1
KW-		3.6				
0560~Oxidor		231	0.9931	ALDH6A1, MECR, ALDH2, AIFM1,	0.5036	
eductase	5	88	23	ACADSB	31	1
Cluster 40- En	richment	Score:	0.058336	228612767439		
					Fold	
					Enrich	
Term	Count	%	PValue	Genes	ment	FDR
GO:0006886		1				
~intracellular		4.3				
protein		478	0.8083	RIMS1, TOM1L2, AP3D1, AP1B1,	0.8973	
transport	6	26	35	TBC1D10B, IPO5	28	1
GO:0015031		6.5				
~protein		217	0.8994	TOM1L2, EHD3, RAB12, MYO6, ITSN1,	0.7844	
transport	9	39	26	AP3D1, AP1B1, FMN2, IPO5	74	1
KW-		6.5				
0653~Protei		217	0.9192	TOM1L2, EHD3, RAB12, MYO6, ITSN1,	0.7640	
n transport	9	39	51	AP3D1, AP1B1, FMN2, IPO5	69	1
				7.1. 351,711 151,71VIIV2,11 03		
		•			•	

Term	Count	%	PValue	Genes	Fold Enrich ment	FDR
mmu05017:S		2.1				
pinocerebell		739	0.9133		0.7614	
ar ataxia	3	13	42	ITPR1, PSMD1, GRIN1	58	1
		4.3				
mmu05020:		478	0.9739	RYR2, KIF5C, ITPR1, PSMD1, SDHC,	0.6176	
Prion disease	6	26	82	GRIN1	86	1
mmu05010:		4.3				
Alzheimer		478	0.9827		0.5849	
disease	6	26	35	APP, KIF5C, ITPR1, PSMD1, SDHC, GRIN1	61	1
mmu05012:		3.6				
Parkinson		231	0.9911		0.5183	
disease	5	88	45	KIF5C, ITPR1, GNAI3, PSMD1, SDHC	63	1
mmu05016:		3.6				
Huntington		231	0.9940		0.4940	
disease	5	88	98	KIF5C, ITPR1, PSMD1, SDHC, GRIN1	11	1
mmu05022:						
Pathways of						
neurodegene						
ration -		5.0				
multiple	_	724	0.9958	APP, RYR2, KIF5C, ITPR1, PSMD1, SDHC,	0.5204	
diseases	7	64	19	GRIN1	58	1
mmu05014:						
Amyotrophic		2.8				
lateral		985	0.9984	WIFE DOLLAR CRUE CONT.	0.4005	
sclerosis	4	51	59	KIF5C, PSMD1, SDHC, GRIN1	86	1

Wild-Type Memory Retrieval v. APPtg Memory Retrieval-20% Upregulated

Table 72. DAVID functional annotation clustering output table for annotation clusters enriched within proteins upregulated in APPtg mice during memory retrieval, when compared to WT mice during memory retrieval.

Cluster 1- Enrichment Score: 0.47186001504263037

Term	Count	%	PValue	Genes	Fold Enrichment	FDR
GO:0042802~identical protein binding	3	75	9.56E-02	APP, PSMC6, PIP4K2C	3.921533	1.00E+00
KW- 0597~Phosphoprotein	4	100	4.50E-01	APP, PSMC6, PIP4K2C, SLC4A3	1.304768	1.00E+00
KW-0963~Cytoplasm	3	75	4.85E-01	APP, PSMC6, PIP4K2C	1.530057	1.00E+00
GO:0005737~cytoplasm	3	75	6.21E-01	APP, PSMC6, PIP4K2C	1.290541	1.00E+00

Wild-Type Basal v. Wild-Type Memory Retrieval- 20% Downregulated

Table 73. DAVID functional annotation clustering output table for annotation clusters enriched within proteins downregulated in WT mice during memory retrieval, when compared to WT mice at the basal level.

Cluster 1- Enrichment Score: 1.6885023696804387							
Term	Count	%	PValue	Genes	Fold Enrichment	FDR	
GO:0016081~synaptic vesicle docking	3	6	1.13E-02	RIMS1, UNC13A, PPFIA3	17.20807	1.00E+00	
GO:0007269~neurotransmitter secretion	4	8	1.91E-02	RIMS1, UNC13A, PPFIA3, SNAP91	6.692029	1.00E+00	
GO:0098831~presynaptic active zone cytoplasmic component	3	6	3.99E-02	RIMS1, UNC13A, PPFIA3	9.0625	1.00E+00	
Cluster 2- Enrichment Score: 1.6815504597577644							
Term	Count	%	PValue	Genes	Fold Enrichment	FDR	

		1	I	T	I	
				HSPA9,		
				OAT, PCX,		
				IMMT,		
				OGDHL,		
				ABAT,		
				SDHA,		
				ACADSB,		
				LRPPRC,		
				-		
				GLS,		
				ALDH6A1,		
				OPA1,		
KW-0809~Transit peptide	14	28	1.39E-03	ACO2, DLD	2.493207	1.67E-02
				HSPA9,		
				OAT, PCX,		
				IMMT,		
				ABAT,		
				SDHA,		
				ACADSB,		
				LRPPRC,		
				-		
				GLS,		
				ALDH6A1,		
				OPA1,		
TRANSIT:Mitochondrion	13	26	1.39E-03	ACO2, DLD	2.751433	1.96E-01
				HSPA9,		
				OAT, PCX,		
				ABAT,		
				OGDHL,		
GO:0005759~mitochondrial				ACADSB,		
matrix	8	16	4.28E-03	DLD, GLS	3.696078	8.00E-01
matrix	0	10	4.281-03		3.030078	8.00L-01
				HSPA9,		
				MPST,		
				OAT, PCX,		
				IMMT,		
				ABAT,		
				SDHA,		
				BCS1L,		
				ACADSB,		
				LRPPRC,		
				GLS,		
				ALDH6A1,		
				OPA1,		
KW-0496~Mitochondrion	15	30	4.87E-02	ACO2, DLD	1.632407	9.63E-01
				HSPA9,		
GO:0005739~mitochondrion	16	32	3.18E-01	MPST,	1.19455	1.00E+00
GO.0003733 HIILOCHOHOHOH	10	32	3.10E-01	OAT, PCX,	1.13433	1.006+00

	ı		ı	ı	T	
				IMMT, OGDHL, ABAT, SDHA, BCS1L, ACADSB, LRPPRC, GLS, ALDH6A1, OPA1, ACO2, DLD		
KW-0007~Acetylation	22	44	6.36E-01	HSPA9, MPST, CYFIP2, OAT, PCX, AP3D1, IMMT, PYGM, ABAT, EPS15L1, SDHA, ACADSB, LRPPRC, GLS, ALDH6A1, OPA1, DNAJC5, KIF21A, ACO2, PIP5K1C, DLD, DBN1	0.993941	1.00E+00
Cluster 3- Enrichment Score: 1.343	 1177983	 	 579			
Term	Count	%	PValue	Genes	Fold Enrichment	FDR
mmu00562:Inositol phosphate metabolism	4	8	9.91E-03	ALDH6A1, SYNJ1, PIP5K1C, PLCB1	8.292335	4.66E-01
GO:0046488~phosphatidylinositol metabolic process	3	6	1.13E-02	SYNJ1, PIP5K1C, PLCB1	17.20807	1.00E+00
mmu04070:Phosphatidylinositol signaling system	3	6	1.30E-01	SYNJ1, PIP5K1C, PLCB1	4.596838	1.00E+00

		1	I	l		
				PCX, SYNJ1,		
				PIP5K1C,		
				PLCB1,		
KW-0443~Lipid metabolism	5	10	2.93E-01	ACADSB	1.755637	1.00E+00
Cluster 4- Enrichment Score: 1.304	8342812	3841	1			
					Fold	
Term	Count	%	PValue	Genes	Enrichment	FDR
				PCX,		
				OGDHL,		
mmu00020:Citrate cycle (TCA cycle)	5	10	3.98E-03	ACO2, SDHA, DLD	7.048485	0.378293
cyclej	J	10	3.961-03	·	7.046463	0.376293
				ALDH6A1,		
				PCX, OGDHL,		
				ACO2,		
mmu01200:Carbon metabolism	6	12	0.029055	SDHA, DLD	3.253147	1
				OGDHL,		
GO:0006099~tricarboxylic acid				ACO2,		
cycle	3	6	0.098555	SDHA	5.475296	1
				ALDH6A1,		
				OGDHL,		
				SDHA, ACADSB,		
KW-0560~Oxidoreductase	5	10	0.529004	DLD	1.290553	1
Cluster 5- Enrichment Score: 0.606	 	4809	 75			
					Fold	
Term	Count	%	PValue	Genes	Enrichment	FDR
				ALDH6A1,		
				ABAT,		
mmu00280:Valine, leucine and				ACADSB,		
isoleucine degradation	4	8	5.90E-02	DLD	4.271809	1.00E+00
				SDHA,		
GO:0050660~flavin adenine dinucleotide binding	3	6	1.01E-01	ACADSB, DLD	5.393939	1
amadeodae billallig			1.011,01		3.33333	1
				SDHA,		
KW-0274~FAD	3	6	2.04E-01	ACADSB, DLD	3.421875	1
0271 1710		J	2.070 01	0.0	5.1210/5	

	1		ı	ı	ī	
				SDHA,		
KW 0395~Elayapratain	3	6	2.23E-01	ACADSB, DLD	3.220588	1
KW-0285~Flavoprotein	3	0	2.236-01	DLD	3.220300	1
				ALDH6A1,		
				OGDHL,		
				SDHA,		
				ACADSB,		
KW-0560~Oxidoreductase	5	10	5.29E-01	DLD	1.290553	1
				ROCK2,		
				WNK2,		
				SDHA,		
				ACADSB,		
ACT_SITE:Proton acceptor	5	10	5.94E-01	DLD	1.199792	1
				ALDH6A1,		
CO.004 C4045 - 11 1				SDHA,		
GO:0016491~oxidoreductase			6 725 04	ACADSB,	4.45.4007	_
activity	4	8	6.72E-01	DLD	1.154907	1
Cluster 6- Enrichment Score: 0.557	5145686	4055	505			
					Fold	
Term	Count	%	PValue	Genes	Enrichment	FDR
				RIMS1,		
IPR000008:C2 calcium-dependent				UNC13A,		
membrane targeting	3	6	0.25392	PLCB1	3.019231	1
				RIMS1,		
				UNC13A,		
DOMAIN:C2	3	6	0.269409	PLCB1	2.897959	1
				RIMS1,		
				UNC13A,		
SM00239:C2	3	6	0.310704	PLCB1	2.585253	1
Cluster 7- Enrichment Score: 0.557	3508417	8425	15	ı	ı	<u> </u>
					Fold	
Term	Count	%	PValue	Genes	Enrichment	FDR
				RIMS1,		
				UNC13A,		
KW-0268~Exocytosis	3	6	0.16727	PIP5K1C	3.912562	1
				RIMS1,		
				UNC13A,		
GO:0006887~exocytosis	3	6	0.254527	PIP5K1C	3.011413	1
KIM OOGE~Call investigation	4	0	0.400700	RIMS1,	1 470407	1
KW-0965~Cell junction	4	8	0.499799	UNC13A,	1.478407	1

				PIP5K1C,		
				DBN1		
Cluster 8- Enrichment Score: 0.546	51070715	5011	.17			
					Fold	
Term	Count	%	PValue	Genes	Enrichment	FDR
				UNC13A,		
				ROCK2,		
				WNK2,		
GO:0035556~intracellular signal				PLCB1,		
transduction	5	10	8.42E-02	ADCY5	2.909578	1
				ROCK2,		
				PLCB1,		
mmu04611:Platelet activation	3	6	1.78E-01	ADCY5	3.775974	1
				ROCK2,		
mmu04270: Vascular smooth				PLCB1,		
muscle contraction	3	6	0.239637	ADCY5	3.109626	1
				ROCK2,		
mmu04062:Chemokine signaling				PLCB1,		
pathway	3	6	0.29172	ADCY5	2.710956	1
				ROCK2,		
mmu04022:cGMP-PKG signaling				PLCB1,		
pathway	3	6	0.36401	ADCY5	2.298419	1
				ROCK2,		
mmu04921:Oxytocin signaling				PLCB1,		
pathway	3	6	0.423995	ADCY5	2.033217	1
				ROCK2,		
mmu05163:Human				PLCB1,		
cytomegalovirus infection	3	6	0.433741	ADCY5	1.994854	1
				ROCK2,		
				PLCB1,		
mmu05200:Pathways in cancer	3	6	0.608799	ADCY5	1.448319	1
Cluster 9- Enrichment Score: 0.542	9970838	9955	31	1	1	
					Fold	
Term	Count	%	PValue	Genes	Enrichment	FDR
				OAT,		
GO:0030170~pyridoxal				ABAT,		
phosphate binding	3	6	0.045018	PYGM	8.47619	1

	1		1	1	1	1
				OAT,		
KW 0663~Duridoval phosphoto	2	6	0.056370	ABAT, PYGM	7.2	1
KW-0663~Pyridoxal phosphate	3	0	0.056278	PYGIVI	7.3	1
				OAT, PCX,		
				ABAT,		
GO:0003824~catalytic activity	4	8	0.330667	PYGM	1.929539	1
				MPST,		
				OAT,		
				ROCK2,		
				WNK2,		
				ABAT,		
CO.0016740xtransfarasa activity	7	14	0 221245	PYGM, PIP5K1C	1 44069	1
GO:0016740~transferase activity	7	14	0.331345	PIPSKIC	1.44968	1
				MPST,		
				OAT,		
				ROCK2, WNK2,		
				AGL,		
				ABAT,		
				PYGM,		
KW-0808~Transferase	8	16	0.364533	PIP5K1C	1.32598	1
				ROCK2,		
				WNK2,		
GO:0016310~phosphorylation	3	6	0.711591	PIP5K1C	1.204565	1
				ROCK2,		
				WNK2,		
GO:0016301~kinase activity	3	6	0.754478	PIP5K1C	1.109034	1
				ROCK2,		
				WNK2,		
KW-0418~Kinase	3	6	0.833714	PIP5K1C	0.939236	1
Cluster 10- Enrichment Score: 0.51	3408367	3497	' 215	<u> </u>	<u> </u>	<u> </u>
					Fold	
Term	Count	%	PValue	Genes	Enrichment	FDR
				MYO6,		
GO:0098871~postsynaptic actin				PPP1R9A,		
cytoskeleton	3	6	0.02411	DBN1	11.78125	1
				GRM3,		
				RIMS1,		
				MYO6,		
CO.0014060000ctc				AKAP5,		
GO:0014069~postsynaptic density	8	16	0.158065	PIP5K1C,	1.735727	1
General		10	0.130003	PPP1R9A,	1.733727	-

				DBN1,		
				SNAP91		
				MYO6, PPP1R9A,		
GO:0030175~filopodium	3	6	0.263109	DBN1	2.945313	1
GO:0007015~actin filament				MYO6, PPP1R9A,		
organization	3	6	0.291219	DBN1	2.737648	1
				RIMS1, DCTN1,		
				AKAP5,		
GO:0019901~protein kinase binding	5	10	0.425714	PPP1R9A, SNAP91	1.475954	1
				GRM3, AKAP5,		
				PPP1R9A,		
GO:0043197~dendritic spine	4	8	4.39E-01	DBN1	1.619416	1
				MYO6, PPP1R9A,		
GO:0015629~actin cytoskeleton	3	6	0.495829	DBN1	1.785038	1
GO:0051015~actin filament				MYO6, PPP1R9A,		
binding	3	6	0.5973	DBN1	1.483333	1
				DCTN1,		
				MYO6, AKAP5,		
				PPP1R9A,		
GO:0043025~neuronal cell body	6	12	0.605744	DBN1, SNAP91	1.132813	1
				MYO6,		
GO:0003779~actin binding	3	6	0.749714	AKAP5, DBN1	1.119497	1
Cluster 11- Enrichment Score: 0.51	2487451	.3268	3287	<u> </u>	<u> </u>	
Tours	Ca	0/	D\/al···	Conor	Fold	- FDD
Term	Count	%	PValue	Genes	Enrichment	FDR
				RIMS1, UNC13A,		
				MADD,		
KW 0066~Call projection	10	20	0 10261	MYO6, KIF21A,	1 501064	0.062051
KW-0966~Cell projection	10	20	0.19261	DIP2B,	1.501064	0.963051

	1		I	DIDEI(4.6	I	
				PIP5K1C,		
				DLD,		
				DBN1,		
				ADCY5		
				RIMS1,		
				UNC13A,		
				MADD,		
				MYO6,		
				KIF21A,		
				DIP2B,		
				PIP5K1C,		
				•		
				DLD,		
				DBN1,		
GO:0042995~cell projection	10	20	0.301344	ADCY5	1.340301	1
				RIMS1,		
				UNC13A,		
				PIP5K1C,		
KW-0965~Cell junction	4	8	0.499799	DBN1	1.478407	1
Cluster 12- Enrichment Score: 0.4	58130941	4439	0043			
					Fold	
Term	Count	%	PValue	Genes	Enrichment	FDR
				CVEIDO		
				CYFIP2,		
				MPST,		
				SYNPR,		
				RIMS1,		
				UNC13A,		
				AKAP5,		
				PIP5K1C,		
				PCDH1,		
				DBN1,		
GO:0030054~cell junction	10	20	0.294067	ATP6V0A1	1.349513	1
				CYFIP2,		
				MPST,		
				SYNPR,		
				RIMS1,		
				UNC13A,		
				MADD,		
				MYO6,		
				AKAP5,		
				PPP1R9A,		
				PPFIA3,		
				GLS,		
GO:0045202~synapse	1	1	i .	l	1	l .
00.0043202 Syriapse	12	24	0.304738	ATP6V0A1	1.2771	1

	1		1	T	1	T
				CYFIP2,		
				MPST,		
				SYNPR,		
				RIMS1,		
				UNC13A,		
				AKAP5,		
KW-0770~Synapse	7	14	0.471231	ATP6V0A1	1.252258	1
Cluster 13- Enrichment Score: 0.44	1 728876 9	1783	1924		<u> </u>	
					Fold	
Term	Count	%	PValue	Genes	Enrichment	FDR
				HSPA9,		
				PCX,		
				ROCK2,		
				WNK2,		
				MYO6,		
				KIF21A,		
				PIP5K1C,		
				BCS1L,		
KW-0067~ATP-binding	9	18	0.303843	ADCY5	1.335366	1
				HSPA9,		
				PCX,		
				ROCK2,		
				WNK2,		
				MYO6,		
				KIF21A,		
				PIP5K1C,		
				-		
CO-000EE240ATD bin din -		10	0.222644	BCS1L,	4 2 40 40 5	4
GO:0005524~ATP binding	9	18	0.323644	ADCY5	1.348485	1
				HSPA9,		
				PCX,		
				OPA1,		
				ROCK2,		
				WNK2,		
				MYO6,		
				KIF21A,		
				PYGM,		
				PIP5K1C,		
				· ·		
				BCS1L,		
KW-0547~Nucleotide-binding	12	24	0.391215	DLD, ADCY5	1.164894	1
				HSPA9,		
				PCX,		
CO.00001CC0::	14	22	0.433300	OPA1,	1 105500	1
GO:0000166~nucleotide binding	11	22	0.422389	ROCK2,	1.185589	1

				PIP5K1C, BCS1L, ADCY5		
Cluster 14- Enrichment Score: 0.39	6029461	6922	943	ADCIS		
					Fold	
Term	Count	%	PValue	Genes	Enrichment	FDR
				OPA1, IMMT,		
TOPO_DOM:Mitochondrial matrix	3	6	0.210937	BCS1L	3.424861	1
TOPO_DOM:Mitochondrial				OPA1, IMMT,		
intermembrane	3	6	0.356901	BCS1L	2.354592	1
GO:0005743~mitochondrial inner				MPST, PCX, OPA1, IMMT, SDHA,		
membrane	6	12	0.52596	BCS1L	1.233639	1
KW-0999~Mitochondrion inner membrane	4	8	0.658005	OPA1, IMMT, SDHA, BCS1L	1.178279	1
Cluster 15- Enrichment Score: 0.24	4867747	9917	2586	<u> </u>	<u> </u>	
Term	Count	%	PValue	Genes	Fold Enrichment	FDR
KW-0968~Cytoplasmic vesicle	6	12	0.390078	SYNPR, DNAJC5, MYO6, DLD, PPFIA3, ATP6VOA1	1.433333	1
KW-0306 Cytopiasimic vesicle	0	12	0.330078	SYNPR,	1.433333	1
				DNAJC5, MYO6, DLD,		
				PPFIA3,		

GO:0005794~Golgi apparatus	4	8	0.858609	DNAJC5, MYO6, AP3D1, ATP6V0A1	0.844534	1
Cluster 16- Enrichment Score: 0.23	 1946552					
					Fold	
Term	Count	%	PValue	Genes	Enrichment	FDR
KW-0965~Cell junction	4	8	0.499799	RIMS1, UNC13A, PIP5K1C, DBN1	1.478407	1
KW-0221~Differentiation	3	6	0.610181	RIMS1, UNC13A, DBN1	1.44147	1
GO:0030154~cell differentiation	3	6	0.660551	RIMS1, UNC13A, DBN1	1.323698	1
Cluster 17- Enrichment Score: 0.15	2810223	6709	9661			1
Term	Count	%	PValue	Genes	Fold Enrichment	FDR
KW-0863~Zinc-finger	3	6	0.419072	RIMS1, UNC13A, ROCK2	2.059122	1
GO:0046872~metal ion binding	8	16	0.78422	RIMS1, UNC13A, PCX, ROCK2, ABAT, EPS15L1, ACO2, ADCY5	0.911944	1
KW-0862~Zinc	3	6	0.850153	RIMS1, UNC13A, ROCK2	0.904959	1
KW-0479~Metal-binding	8	16	0.876064	RIMS1, UNC13A, PCX, ROCK2, ABAT, EPS15L1,	0.836676	1

			ACO2,		
			ADCY5		
'8736131	4319	916			
				Fold	
Count	%	PValue	Genes	Enrichment	FDR
			MYO6,		
4	8	0.77462	SNAP91	0.985329	1
			MYO6,		
			AP3D1,		
		0.700647	STAM,	0.0405	
4	8	0.798617	SNAP91	0.9485	1
			-		
			AP3D1,		
			STAM,		
			LRPPRC,		
			SNAP91		
9	18	0.938349	SNAP91, ATP6V0A1	0.762541	1
9 . 2330157			-	0.762541	1
			-		1
			-	0.762541 Fold Enrichment	1 FDR
2330157	9840)83462	ATP6V0A1	Fold	
2330157	9840)83462	Genes GRM3, SYNPR,	Fold	
2330157	9840)83462	Genes GRM3, SYNPR, OPA1,	Fold	
2330157	9840)83462	Genes GRM3, SYNPR, OPA1, IMMT,	Fold	
2330157	9840)83462	Genes GRM3, SYNPR, OPA1,	Fold	
2330157	9840)83462	Genes GRM3, SYNPR, OPA1, IMMT, ELFN2,	Fold	
2330157	9840)83462	Genes GRM3, SYNPR, OPA1, IMMT, ELFN2, BCS1L, PCDH1, ACADSB,	Fold	
2330157 Count	%	PValue	Genes GRM3, SYNPR, OPA1, IMMT, ELFN2, BCS1L, PCDH1, ACADSB, ADCY5,	Fold Enrichment	FDR
2330157	9840)83462	Genes GRM3, SYNPR, OPA1, IMMT, ELFN2, BCS1L, PCDH1, ACADSB, ADCY5, ATP6V0A1	Fold	
2330157 Count	%	PValue	Genes GRM3, SYNPR, OPA1, IMMT, ELFN2, BCS1L, PCDH1, ACADSB, ADCY5, ATP6V0A1 GRM3,	Fold Enrichment	FDR
2330157 Count	%	PValue	Genes GRM3, SYNPR, OPA1, IMMT, ELFN2, BCS1L, PCDH1, ACADSB, ADCY5, ATP6V0A1 GRM3, SYNPR,	Fold Enrichment	FDR
2330157 Count	%	PValue	Genes GRM3, SYNPR, OPA1, IMMT, ELFN2, BCS1L, PCDH1, ACADSB, ADCY5, ATP6V0A1 GRM3,	Fold Enrichment	FDR
2330157 Count	%	PValue	Genes GRM3, SYNPR, OPA1, IMMT, ELFN2, BCS1L, PCDH1, ACADSB, ADCY5, ATP6V0A1 GRM3, SYNPR, OPA1,	Fold Enrichment	FDR
	Count	Count %	4 8 0.77462	787361314319916 Count % PValue Genes MY06, AP3D1, STAM, SNAP91 MY06, AP3D1, STAM, STAM, STAM, STAM, STAM, STAM, AP3D1, STAM, STAM, AP3D1, STAM, AP3D1, STAM, AP3D1, STAM, AP3D1, AP3D1, AP3D1, AP3D1, AP3D1, AP3D1, AP3D1,	787361314319916 Count % PValue Genes Fold Enrichment MYO6, AP3D1, STAM, SNAP91 0.985329 MYO6, AP3D1, STAM, SNAP91 0.9485 RIMS1, DCTN1, MYO6, AP3D1, STAM, SNAP91, STAM, SNAP91, STAM, SNAP91, STAM, SNAP91, STAM, SNAP91, STAM, SDHA, SDHA,

	I	1	1		I	1
				ACADSB,		
				ADCY5,		
				ATP6V0A1		
				GRM3,		
				ELFN2,		
TOPO_DOM:Extracellular	3	6	0.976664	ADCY5	0.551319	1
				CDM2		
				GRM3, SYNPR,		
				ELFN2,		
				ADCY5,		
TOPO_DOM:Cytoplasmic	5	10	9.79E-01	ATP6V0A1	0.581381	1
			002.02		0.002002	_
				GRM3,		
				SYNPR,		
				ELFN2,		
WW 02250CL	_	10	0.070544	SNAP91,	0.50204	4
KW-0325~Glycoprotein	5	10	0.979544	ADCY5	0.58291	1
				GRM3,		
				SYNPR,		
CARBOHYD:N-linked (GlcNAc)				ELFN2,		
asparagine	4	8	0.981588	ADCY5	0.549978	1
				GRM3,		
				SYNPR,		
				OPA1,		
				IMMT,		
				ELFN2,		
				BCS1L,		
				PCDH1,		
				ACADSB,		
				ADCY5,		
KW-1133~Transmembrane helix	10	20	0.989351	ATP6V0A1	0.647268	1
				GRM3,		
				SYNPR,		
				OPA1,		
				IMMT,		
				ELFN2,		
				BCS1L,		
				PCDH1,		
				ACADSB,		
				ADCY5,		
KW-0812~Transmembrane	10	20	0.992043	ATP6V0A1	0.633576	1
				GRM3,		
KW-0732~Signal	4	8	0.993455	SYNPR,	0.484499	1
				STINPK,		

		ELFN2,	
		PCDH1	

APPtg Basal v. APPtg Memory Retrieval- 20% Downregulated

Table 74. DAVID functional annotation clustering output table for annotation clusters enriched within proteins downregulated in APPtg mice during memory retrieval, when compared to APPtg mice at the basal level.

Cluster 1- Enri	Cluster 1- Enrichment Score: 2.0391349263929923									
Term	Count	%	PVal ue	Genes	Fold Enrichme nt	FDR				
GO:0030123 ~AP-3 adaptor complex	3	20	3.05 E-04	AP3D1, AP3S1, AP3B2	94.25	1.86E- 02				
GO:0016183 ~synaptic vesicle coating	3	20	3.18 E-04	AP3D1, AP3S1, AP3B2	92.35	2.40E- 02				
GO:0035654 *cargo loading into clathrin- coated vesicle, AP-3-			3.18			2.40E-				
mediated	3	20	E-04	AP3D1, AP3S1, AP3B2	92.35	02				
GO:0048490 ~anterograd e synaptic vesicle transport	3	20	5.27 E-04	AP3D1, AP3S1, AP3B2	73.88	2.65E- 02				
mmu04142:L ysosome	4	26. 666 67	6.47 E-04	HEXB, AP3D1, AP3S1, AP3B2	18.46032	1.62E- 02				
GO:0036465 ~synaptic	3	20	1.46 E-03	AP3D1, AP3S1, AP3B2	46.175	4.40E- 02				

vesicle recycling						
GO:0046907 ~intracellular transport	3	20	1.46 E-03	AP3D1, AP3S1, AP3B2	46.175	4.40E- 02
GO:0008089 ~anterograd e axonal transport	3	20	2.32 E-03	AP3D1, AP3S1, AP3B2	36.94	5.84E- 02
GO:0030117 ~membrane coat	3	20	3.24 E-03	AP3D1, AP3S1, AP3B2	31.41667	9.89E- 02
IPR011989:A rmadillo-like helical	4	26. 666 67	5.51 E-03	AP3D1, PSMD1, AP3B2, SCYL2	9.85098	2.37E- 01
KW- 0333~Golgi apparatus	5	33. 333 33	7.29 E-03	PACS1, AP3D1, AP3S1, AP3B2, SCYL2	5.572061	8.74E- 02
IPR016024:A rmadillo- type fold	4	26. 666 67	1.44 E-02	AP3D1, PSMD1, AP3B2, SCYL2	6.977778	3.09E- 01
GO:1904115 ~axon cytoplasm	3	20	1.62 E-02	AP3D1, AP3S1, AP3B2	13.96296	2.63E- 01
GO:0005769 ~early endosome	4	26. 666 67	1.72 E-02	AP3D1, VPS26A, AP3S1, AP3B2	6.528139	2.63E- 01
GO:0005802 ~trans-Golgi network	3	20	2.79 E-02	AP3D1, AP3S1, AP3B2	10.47222	2.84E- 01
GO:0006886 ~intracellular protein transport	4	26. 666 67	3.17 E-02	AP3D1, VPS26A, AP3S1, AP3B2	5.184561	6.13E- 01
GO:0005794 ~Golgi apparatus	5	33. 333 33	4.17 E-02	PACS1, AP3D1, AP3S1, AP3B2, SCYL2	3.378136	3.63E- 01
KW- 0653~Protei n transport	4	26. 666 67	6.76 E-02	AP3D1, VPS26A, AP3S1, AP3B2	3.438312	5.64E- 01

	1		<u> </u>		1
	26.				
	666	1.13			6.78E-
4	67	E-01	HEXB, AP3S1, AP3B2, SCYL2	3.071429	01
	26.				
	666	1.19			1.00E+0
4	67	E-01	AP3D1, VPS26A, AP3S1, AP3B2	3.021677	0
		1.36			
3	20	E-01	AP3D1, AP3S1, AP3B2	4.295349	1
	26.				
	666	1.72			1.00E+0
4	67	E-01	HEXB, AP3S1, AP3B2, SCYL2	2.564626	0
	26.				
	666	5.96			
4	67	E-01	AP3D1, VPS26A, AP3S1, AP3B2	1.228538	1
chment S	core: ().817552	27336699847		1
				Fold	
		PVal		Enrichme	
Count	%	ue	Genes	nt	FDR
		0.05			
3	20	8855	GSK3A, SCYL2, PDK1	6.742424	1
		0.13			
3	20	3201	GSK3A, SCYL2, PDK1	4.345882	1
		0.44			
3	20	0.44 9834	GSK3A, SCYL2, PDK1	1.838843	1
		9834	GSK3A, SCYL2, PDK1 28979715888	1.838843	1
		9834		1.838843 Fold	1
		9834			1
		9834 0.59729 2		Fold	1 FDR
chment S	score: (9834 0.59729 2 PVal	28979715888	Fold Enrichme	
chment S	score: (9834 0.59729 2 PVal	28979715888	Fold Enrichme	
	4 4 4 Count 3	3 20 3 26. 666 4 67 3 26. 666 4 67 Chment Score: C	4 666 1.13 67 E-01 26. 666 1.19 67 E-01 3 20 E-01 26. 666 1.72 67 E-01 26. 666 5.96 67 E-01 Chment Score: 0.817552 Count % PVal ue 3 20 8855	4 666 1.13 67 E-01 HEXB, AP3S1, AP3B2, SCYL2 26. 666 1.19 67 E-01 AP3D1, VPS26A, AP3S1, AP3B2 3 20 E-01 AP3D1, AP3S1, AP3B2 26. 666 1.72 67 E-01 HEXB, AP3S1, AP3B2, SCYL2 4 67 E-01 HEXB, AP3S1, AP3B2, SCYL2 26. 666 5.96 67 E-01 AP3D1, VPS26A, AP3S1, AP3B2 chment Score: 0.8175527336699847 Count % PVal ue Genes 3 20 8855 GSK3A, SCYL2, PDK1	4 666 1.13 HEXB, AP3S1, AP3B2, SCYL2 3.071429 26. 666 1.19 AP3D1, VPS26A, AP3S1, AP3B2 3.021677 3 20 E-01 AP3D1, AP3S1, AP3B2 4.295349 26. 666 1.72 F-01 HEXB, AP3S1, AP3B2, SCYL2 2.564626 4 67 E-01 AP3D1, VPS26A, AP3S1, AP3B2 1.228538 chment Score: 0.8175527336699847 Count % PVal ue Genes Fold Enrichme nt 3 20 8855 GSK3A, SCYL2, PDK1 6.742424

GO:0016787 ~hydrolase activity	3	20	0.31 1998	HEXB, TPP2, BLMH	2.427273	1
GO:0042802						
~identical		26.				
protein		666	0.32			
binding	4	67	5434	HEXB, TPP2, BLMH, PDK1	1.808024	1

Wild-Type Basal v. APPtg Basal- 20% Downregulated

Table 75. DAVID functional annotation clustering output table for annotation clusters enriched within proteins downregulated in APPtg mice at the basal level, when compared to WT mice at the basal level.

Term	Count	%	PValue	Genes	Fold Enrichment	FDR
				UQCRB, NDUFB6, COX7A2,		
				UQCR10, KLC1, COX5B,		
				COX6A1, HSD17B10,		
				COX5A, PSMA7, PSMB5,		
				PSMD7, APOE, HRAS,		
				SNCA, NDUFA7, NDUFA5,		
				NDUFA2, CSNK2A2,		
mmu05010:				PSMA3, PSMA1, UQCRQ,		
Alzheimer		15.8	2.12E-	NDUFS6, NDUFS5, PSMC1,		
disease	27	8235	05	CALM1, PPID	2.318146	4.22E-03
mmu05208:				CBR1, MAP2K4, NDUFA7,		
Chemical				NDUFA5, UQCRB, NDUFB6,		
carcinogenes				NDUFA2, AKR1A1, COX7A2,		
is - reactive				UQCR10, COX5B, COX6A1,		
oxygen		10.5	9.23E-	COX5A, UQCRQ, NDUFS6,		
species	18	8824	05	NDUFS5, HRAS, GSTM5	2.788881	7.78E-03
mmu00190:				NDUFA7, ATP6V1G2,		
Oxidative				NDUFA5, UQCRB, NDUFB6,		
phosphorylat		9.41	1.17E-	NDUFA2, COX7A2,		
ion	16	1765	04	UQCR10, COX5B, COX6A1,	2.995465	7.78E-03
		1,00		COX5A, UQCRQ, NDUFS6,		1.702 00

				NDUFS5, ATP6V1E1, ATP6V1D		
mmu05012: Parkinson disease	23	13.5 2941	2.75E- 04	NDUFA7, NDUFA5, UQCRB, NDUFB6, NDUFA2, COX7A2, PARK7, UQCR10, KLC1, COX5B, COX6A1, COX5A, PSMA7, PSMA3, PSMB5, PSMD7, PSMA1, UQCRQ, NDUFS6, NDUFS5, PSMC1, CALM1, SNCA	2.198799	1.35E-02
mmu05022: Pathways of neurodegene ration - multiple diseases	29	17.0 5882	3.39E- 04	UQCRB, DCTN2, NDUFB6, COX7A2, PARK7, UQCR10, KLC1, COX5B, COX6A1, HSD17B10, COX5A, PSMA7, PSMB5, PSMD7, HRAS, SNCA, NDUFA7, NDUFA5, NDUFA2, CSNK2A2, RAB39B, PSMA3, PSMA1, UQCRQ, NDUFS6, NDUFS5, PSMC1, CALM1, PPID	1.916216	1.35E-02
mmu05016: Huntington disease	23	13.5 2941	5.68E- 04	NDUFA7, NDUFA5, UQCRB, DCTN2, NDUFB6, NDUFA2, CLTB, CLTA, COX7A2, UQCR10, KLC1, COX5B, COX6A1, COX5A, PSMA7, PSMA3, PSMB5, PSMD7, PSMA1, UQCRQ, NDUFS6, NDUFS5, PSMC1	2.094801	1.88E-02
KW- 0999~Mitoch ondrion inner membrane	21	12.3 5294	1.18E- 03	ACADVL, NDUFA7, NDUFA5, UQCRB, NDUFB6, MTFP1, TIMM9, NDUFA2, COX7A2, UQCR10, COX5B, COX6A1, COX5A, COQ6, HADHB, CHCHD3, UQCRQ, NDUFS6, NDUFS5, CHCHD6, SLC25A22	2.136207	3.77E-02
mmu04932: Non- alcoholic fatty liver disease	13	7.64 7059	1.42E- 03	NDUFA7, NDUFA5, UQCRB, NDUFB6, NDUFA2, COX7A2, UQCR10, COX5B, COX6A1, COX5A, UQCRQ, NDUFS6, NDUFS5	2.781503	3.57E-02
mmu05020: Prion disease	21	12.3 5294	1.49E- 03	NDUFA7, NDUFA5, UQCRB, NDUFB6, NDUFA2, CSNK2A2, COX7A2,	2.051242	3.57E-02

				UQCR10, KLC1, COX5B, COX6A1, COX5A, PSMA7, PSMA3, PSMB5, PSMD7, PSMA1, UQCRQ, NDUFS6, NDUFS5, PSMC1		
mmu05014: Amyotrophic lateral sclerosis	22	12.9 4118	1.62E- 03	NDUFA7, NDUFA5, UQCRB, DCTN2, NDUFB6, NDUFA2, RAB39B, COX7A2, UQCR10, KLC1, COX5B, COX6A1, COX5A, PSMA7, PSMA3, PSMB5, PSMD7, PSMA1, UQCRQ, NDUFS6, NDUFS5, PSMC1	1.990275	3.57E-02
GO:0005743 ~mitochondr ial inner membrane	26	15.2 9412	3.75E- 03	ACADVL, UQCRB, NDUFB6, MTFP1, TIMM9, COX7A2, UQCR10, COX5B, COX6A1, HSD17B10, COX5A, CHCHD3, CHCHD6, SLC25A22, SNCA, NDUFA7, NDUFA5, NDUFA2, IDH2, DHRS1, COQ6, HADHB, UQCRQ, NDUFS6, NDUFS5, PGAM5	1.779523	1.00E+0 0
mmu04714:T hermogenesi s	14	8.23 5294	4.53E- 03	NDUFA7, NDUFA5, UQCRB, NDUFB6, NDUFA2, COX7A2, UQCR10, COX5B, COX6A1, COX5A, UQCRQ, NDUFS6, NDUFS5, HRAS	2.329806	8.20E-02
KW- 0679~Respir atory chain	9	5.29 4118	7.17E- 03	NDUFA7, NDUFB6, NDUFA5, UQCRB, UQCRQ, NDUFS6, NDUFS5, NDUFA2, UQCR10	3.007317	3.60E-01
GO:0070469 ~respiratory chain	9	5.29 4118	9.85E- 03	NDUFA7, NDUFB6, NDUFA5, UQCRB, UQCRQ, NDUFS6, NDUFS5, NDUFA2, UQCR10	2.897947	1.00E+0 0
KW- 0249~Electro n transport	10	5.88 2353	1.09E- 02	NDUFA7, NDUFB6, NDUFA5, UQCRB, UQCRQ, NDUFS6, NDUFS5, NDUFA2, ETFA, UQCR10	2.592515	3.60E-01
mmu05415: Diabetic	13	7.64 7059	2.29E- 02	NDUFA7, NDUFA5, UQCRB, NDUFB6, NDUFA2, COX7A2, UQCR10, COX5B,	1.991303	3.80E-01

cardiomyopa thy GO:0005747 ~mitochondr				COX6A1, COX5A, UQCRQ, NDUFS6, NDUFS5		
GO:0005747 ~mitochondr						
~mitochondr				,		
ial respiratory				NDUFA7, NDUFB6,		
chain		3.52	8.49E-	NDUFA5, NDUFS6,		1.00E+0
complex I 6	5	9412	02	NDUFS5, NDUFA2	2.50019	0
GO:0042776 ~mitochondr ial ATP synthesis coupled		2.52	4 225	NDUFA7, NDUFB6,		1.005.0
proton transport 6	5	3.52 9412	1.22E- 01	NDUFA5, NDUFS6, NDUFS5, NDUFA2	2.23993	1.00E+0 0
'	-		- =			-
GO:0009060 ~aerobic		3.52	1.33E-	NDUFA7, NDUFB6, NDUFA5, NDUFS6,		1.00E+0
respiration 6	5	9412	01	NDUFS5, NDUFA2	2.180985	0
GO:0032981 ~mitochondr ial respiratory chain						
complex I		2.94	2.25E-	NDUFB6, NDUFA5,		1.00E+0
assembly 5	5	1176	01	NDUFS6, NDUFS5, NDUFA2	2.031309	0
GO:0006120 mitochondr ial electron transport, NADH to ubiquinone 3	3	1.76 4706	3.49E- 01	NDUFA7, NDUFB6, NDUFS6	2.437571	1
mmu04723: Retrograde endocannabi noid signaling 6	5	3.52 9412	7.16E- 01	NDUFA7, NDUFB6, NDUFA5, NDUFS6, NDUFS5, NDUFA2	1.010969	9.75E-01
				,		
Cluster 2- Enrichi	iment Sc	ore: 1.6	0.0118690]			
GO:0005743 ~mitochondr ial inner		15.2	0.00375	ACADVL, UQCRB, NDUFB6, MTFP1, TIMM9, COX7A2, UQCR10, COX5B, COX6A1, HSD17B10, COX5A, CHCHD3, CHCHD6,	4 770505	
membrane 2	26	9412	4	SLC25A22, SNCA, NDUFA7,	1.779523	1

				NDUFA5, NDUFA2, IDH2, DHRS1, COQ6, HADHB, UQCRQ, NDUFS6, NDUFS5, PGAM5		
GO:0005739 ~mitochondr ion	51	30	0.04018	ALDH1L1, ACADVL, SLC44A2, DBI, ETFA, PARK7, COX6A1, COMTD1, CHCHD3, HINT2, CHCHD6, C1QBP, ATP6V1E1, ACOT9, HADHB, NDUFS6, NDUFS5, RAB35, PGAM5, CRYAB, PPID, NDUFB6, MTFP1, UQCRB, TIMM9, COX7A2, AK4, ACAA1A, UQCR10, COX5B, MFF, HSD17B10, COX5A, SLC25A27, PRDX3, PRDX1, SLC25A22, DECR1, SNCA, FIS1, NDUFA7, NDUFA5, MTX2, NDUFA2, IDH2, HSPE1, DHRS1, COQ6, QDPR, UQCRQ, OCIAD1	1.261003	1
KW- 0496~Mitoch ondrion	36	21.1 7647	0.06211	ACADVL, UQCRB, NDUFB6, MTFP1, TIMM9, COX7A2, AK4, ETFA, PARK7, UQCR10, MFF, COX5B, COX6A1, HSD17B10, COX5A, PRDX3, CHCHD3, HINT2, C1QBP, CHCHD6, SLC25A22, DECR1, FIS1, ACOT9, NDUFA7, NDUFA5, MTX2, NDUFA2, IDH2, HSPE1, COQ6, HADHB, UQCRQ, NDUFS6, NDUFS5, PGAM5	1.304554	0.71758 4
Cluster 3- Enri	chment s	core: 1.3	358235181! -	51106	T	1
GO:0006123 ~mitochondr ial electron transport, cytochrome c to oxygen	4	2.35 2941	0.02220 9	COX7A2, COX5B, COX6A1, COX5A	6.139068	1
GO:0005751 ~mitochondr ial	4	2.35 2941	0.04653 8	COX7A2, COX5B, COX6A1, COX5A	4.722581	1

respiratory chain complex IV						
mmu04260: Cardiac muscle		4.11	0.08146	UQCRB, UQCRQ, COX7A2, UQCR10, COX5B, COX6A1,		
contraction	7	7647	3	COX5A	2.246599	0.97549
Cluster 4- Enri	chment s	core: 1.3	330033005	9604775		
MOTIF:Cx9C motif 1	3	1.76 4706	0.04148 7	CHCHD3, CHCHD6, NDUFS5	8.604	1
MOTIF:Cx9C motif 2	3	1.76 4706	0.04148 7	CHCHD3, CHCHD6, NDUFS5	8.604	1
DOMAIN:CH CH	3	1.76 4706	0.05944 1	CHCHD3, CHCHD6, NDUFS5	7.17	1
Cluster 5- Enri	chment s	core: 1.0	55156481	280672		
PROPEP:Rem oved in mature form	12	7.05 8824	0.00247 8	RAB21, RAP1A, PSMB5, MRAS, RAP2B, PALM, DNAJA2, RHOG, CDH13, PARK7, HRAS, RHOB	2.820984	0.85985 7
KW- 0636~Prenyl ation	11	6.47 0588	0.00515	RAB21, RAP1A, MRAS, RAP2B, PALM, DNAJA2, RAB35, RHOG, RAB39B, HRAS, RHOB	2.73252	0.05410
MOTIF:Effect or region	9	5.29 4118	0.00589	RAB21, RAP1A, MRAS, RAP2B, RAB35, RHOG, RAB39B, HRAS, RHOB	3.147805	1
IPR020849:S mall GTPase superfamily, Ras type	5	2.94 1176	0.00776 5	RAB21, RAP1A, MRAS, RAP2B, HRAS	5.819979	1
IPR001806:S mall GTPase superfamily	9	5.29 4118	0.01582 6	RAB21, RAP1A, MRAS, RAP2B, RAB35, RHOG, RAB39B, HRAS, RHOB	2.674714	1
KW- 0449~Lipopr otein	23	13.5 2941	0.02670	LRRC57, HPCA, RHOG, RAB39B, PARK7, RHOB, PRDX3, GNA13, RAB21, MARCKS, RAP1A, CHCHD3, MRAS, RAP2B, PSMC1, CHCHD6, PALM, DNAJA2,	1.573269	0.18690 7

	<u> </u>			DADSE CIDD1 CDU13		
				RAB35, S1PR1, CDH13, APOE, HRAS		
				711 62) 1110 18		
IPR005225:S						
mall GTP-						
binding protein		5.29	0.04153	RAB21, RAP1A, MRAS, RAP2B, RAB35, RHOG,		
domain	9	4118	7	RAB39B, HRAS, RHOB	2.244849	1
domain	,	4110	,	MADSSE, TIMAS, MICO	2.244043	1
GO:0019003				RAB21, RAP1A, MRAS,		
~GDP		4.11	0.05268	RAP2B, RAB35, HRAS,		
binding	7	7647	9	RHOB	2.521228	1
LIPID:S-				RAB21, RAP1A, MRAS,		
geranylgeran		4.11	0.05405	RAP2B, RAB35, RHOG,		
yl cysteine	7	7647	9	RAB39B	2.5095	1
				GNA13, RAB21, RAP1A,		
KW-				MRAS, RAP2B, RAB35,		
0342~GTP-		6.47	0.26586	RHOG, RAB39B, AK4, HRAS,		
binding	11	0588	1	RHOB	1.361359	1
				GNA13, RAB21, RAP1A,		
60-0005535		6.47	0.27426	MRAS, RAP2B, RAB35,		
GO:0005525 ~GTP binding	11	6.47 0588	0.37126 5	RHOG, RAB39B, AK4, HRAS,	1.254611	1
GTP billding	11	0388	5	KHUB	1.254611	1
				GNA13, RAB21, RAP1A,		
GO:0003924				MRAS, RAP2B, RAB35,		
~GTPase		5.88	0.40459	RHOG, RAB39B, HRAS,		
activity	10	2353	4	RHOB	1.244242	1
GO:0007264						
~small						
GTPase						
mediated						
signal		2.35	0.40782			
transduction	4	2941	6	RAP1A, RHOG, HRAS, RHOB	1.726613	1
IPR027417:P						
-loop				AK1, RHOG, RAB39B, AK4,		
containing				RHOB, GNA13, RAB21,		
nucleoside				RAP1A, MRAS, RAP2B,		
triphosphate		8.23	0.55613	PSMC1, RAB35, CMPK1,		
hydrolase	14	5294	4	HRAS	1.062779	1
				MAP2K4, RHOG, RAB39B,		
KW-		40 =	0.60.15-	DHRS1, RHOB, GFAP,		
0488~Methyl	10	10.5	0.60425	RAB21, RAP1A, MRAS,	1 015447	1
ation	18	8824	2	RAP2B, DPYSL5, PALM,	1.015417	1
	1	1	İ	. , ,	İ	<u> </u>

				DNAJA2, PITPNM2, CALM1,		
				HRAS, CRYAB, VTI1B		
				GNA13, DGKE, RAP1A,		
GO:0007165				MRAS, RAP2B, PDE1A,		
~signal		7.05	0.65435	PDE4B, S1PR1, GPR37L1,		
transduction	12	8824	6	NDRG1, HRAS, RHOB	1.004575	1
GO:0000166 ~nucleotide binding	22	12.9 4118	0.98040 9	DARS, MAP2K4, PDXK, DGKE, CSNK2A2, AK1, RHOG, RAB39B, AK4, RHOB, GNA13, RAB21, RAP1A, HINT2, MRAS, RAP2B, PSMC1, RAB35, UBE2N, CMPK1, HRAS, PFKP	0.730841	1
				DARS, MAP2K4, PDXK,		
				DGKE, CSNK2A2, AK1,		
				RHOG, RAB39B, AK4,		
				RHOB, GNA13, RAB21,		
				RAP1A, HINT2, MRAS,		
KW-				RAP2B, PSMC1, RAB35,		
0547~Nucleo	22	12.9	0.99169	UBE2N, CMPK1, HRAS,	0.724224	
tide-binding	22	4118	6	PFKP	0.724334	1
Cluster 6- Enri	chment s	core: 0.9	988542435!	5458768		
SM00102:AD		1.76	0.06675			
F	3	4706	6	GMFB, CFL2, TWF1	6.746914	1
DOMAIN:AD		1.76				
F-H	3	4706	0.12453	GMFB, CFL2, TWF1	4.78	1
IPR002108:A						
ctin-binding,						
cofilin/tropo		1.76	0.13019			
myosin type	3	4706	9	GMFB, CFL2, TWF1	4.655983	1
Cluster 7- Enri	chment s	core: 0.9	36248950	5165028	l	-
		1.76	0.02606			
REGION:LID	3	4706	7	AK1, CMPK1, AK4	10.755	1
REGION:NM		1.76	0.02606			
Р	3	4706	7	AK1, CMPK1, AK4	10.755	1
IPR000850:A						
denylate		1.76				
kinase	3	4706	0.04359	AK1, CMPK1, AK4	8.380769	1
denylate	3		0.04359	AK1, CMPK1, AK4	8.380769	1

	1	1	1		1	,
GO:0019205						
~nucleobase-						
containing						
compound						
kinase		1.76	0.04523			
activity	3	4706	6	AK1, CMPK1, AK4	8.212	1
GO:0006165						
~nucleoside						
diphosphate		1.70				
phosphorylat	2	1.76	0.00204	AV1 CNADV1 AVA	C 00C4F3	1
ion	3	4706	0.06364	AK1, CMPK1, AK4	6.906452	1
GO:0009142						
~nucleoside						
triphosphate						
biosynthetic		1.76				
process	3	4706	0.06364	AK1, CMPK1, AK4	6.906452	1
GO:0006139						
~nucleobase-						
containing						
compound						
metabolic		1.76	0.08497			
process	3	4706	6	AK1, CMPK1, AK4	5.919816	1
GO:0004550						
~nucleoside						
diphosphate						
kinase		1.76	0.08631			
activity	3	4706	5	AK1, CMPK1, AK4	5.865714	1
				. ,		
mmu01240:						
Biosynthesis		4.11	8.93E-	ALAD, PDXK, AK1, AKR1A1,		
of cofactors	7	7647	02	CMPK1, AK4, COQ6	2.194352	0.97549
mmu01232:						
Nucleotide		1.76	0.41250			
metabolism	3	4706	4	AK1, CMPK1, AK4	2.128357	0.97549
				MAP2K4, PDXK, DGKE, AK1,		
KW-		4.70	0.73392	CSNK2A2, CMPK1, AK4,		
0418~Kinase	8	5882	4	PFKP	0.962338	1
GO:0016310				MAP2K4, PDXK, DGKE, AK1,		
~phosphoryl		4.70	0.75990	CSNK2A2, CMPK1, AK4,		
ation	8	5882	1	PFKP	0.936468	1
	-					
GO:0016301				MAP2K4, PDXK, DGKE, AK1,		
~kinase		4.70	0.82475	CSNK2A2, CMPK1, AK4,		
activity	8	5882	3	PFKP	0.868995	1
	<u> </u>	1	1	L		

Cluster 8- Enrichment score: 0.8749102997698915									
SM00948:SM 00948	3	1.76 4706	0.04143 6	PSMA3, PSMA1, PSMA7	8.674603	1			
GO:0005839 ~proteasome core complex	4	2.35 2941	0.05747	PSMA3, PSMB5, PSMA1, PSMA7	4.359305	1			
IPR001353:P roteasome, subunit alpha/beta	4	2.35 2941	0.05953	PSMA3, PSMB5, PSMA1, PSMA7	4.29783	1			
mmu03050: Proteasome	6	3.52 9412	0.06311 4	PSMA3, PSMB5, PSMD7, PSMA1, PSMC1, PSMA7	2.695918	0.89712 2			
KW- 0647~Protea some	6	3.52 9412	0.06727 4	PSMA3, PSMB5, PSMD7, PSMA1, PSMC1, PSMA7	2.670259	0.71758 4			
GO:0000502 ~proteasome complex	6	3.52 9412	0.07658 3	PSMA3, PSMB5, PSMD7, PSMA1, PSMC1, PSMA7	2.575953	1			
DOMAIN:Pro teasome alpha-type subunits	3	1.76 4706	0.07950 9	PSMA3, PSMA1, PSMA7	6.145714	1			
GO:0019773 ~proteasome core complex, alpha- subunit complex	3	1.76 4706	0.08126 4	PSMA3, PSMA1, PSMA7	6.071889	1			
IPR023332:P roteasome A-type subunit	3	1.76 4706	0.08333	PSMA3, PSMA1, PSMA7	5.986264	1			
IPR000426:P roteasome, alpha- subunit, N- terminal domain	3	1.76 4706	0.08333	PSMA3, PSMA1, PSMA7	5.986264	1			

	Ī	1	T	T	1	,
GO:0051603						
~proteolysis						
involved in						
cellular						
protein						
catabolic		2.35	0.15186	PSMA3, PSMB5, PSMA1,		
	4				2.00700	1
process	4	2941	2	PSMA7	2.90798	1
GO:0010498						
~proteasoma						
I protein						
catabolic		2.35	0.15186	PSMA3, PSMB5, PSMA1,		
process	4	2941	2	PSMA7	2.90798	1
•						
mmu05017:S		2.52	0.40407	DCMAAA DCMADE DCMADA		
pinocerebell	_	3.52	0.48407	PSMA3, PSMB5, PSMD7,	1 204477	0.07540
ar ataxia	6	9412	4	PSMA1, PSMC1, PSMA7	1.304477	0.97549
CROSSLNK:GI						
ycyl lysine						
isopeptide						
(Lys-Gly)						
(interchain						
with G-Cter		2.35	0.67186	PSMD7, PSMA1, PSMC1,		
in ubiquitin)	4	2941	5	HRAS	1.170612	1
	4	2941	J	TINAS	1.170012	1
GO:0006511						
~ubiquitin-						
dependent						
protein						
catabolic		2.35	0.73556	PSMA3, PSMA1, UBE2N,		
process	4	2941	5	PSMA7	1.062531	1
	7	2341	3	1 31417 (7	1.002551	-
GO:0043161						
~proteasome						
-mediated						
ubiquitin-						
dependent						
protein						
catabolic		1.76	0.87917			
process	3	4706	6	PSMB5, PSMD7, PSMC1	0.845688	1
•					0.0.15000	_
Cluster 9- Enri	chment so	core: 0.8	3516868568	8025209		
mmu04260:						
Cardiac				UQCRB, UQCRQ, COX7A2,		
muscle		4.11	0.08146	UQCR10, COX5B, COX6A1,		
contraction	7	7647	3	COX5A	2.246599	0.97549
_					_	

	1	1	T		T	,
GO:0005750						
~mitochondr						
ial						
respiratory						
chain		1.76	0.12713			
complex III	3	4706	4	UQCRB, UQCRQ, UQCR10	4.722581	1
GO:0006122						
~mitochondr						
ial electron						
transport,						
ubiquinol to						
cytochrome		1.76	0.15827			
C	3	4706	2	UQCRB, UQCRQ, UQCR10	4.143871	1
			_	0 401127 0 401147 0 401120		
GO:0045333 ~cellular		1.76	0.23912			
	2			LIOCRE LIOCRO LIOCRIO	2 107502	1
respiration	3	4706	6	UQCRB, UQCRQ, UQCR10	3.187593	1
Cluster 10- En	richment	score: 0	.80118750	47990299		
				ACADVL, UQCRB, NDUFB6,		
				MTFP1, TIMM9, COX7A2,		
				AK4, ETFA, PARK7,		
				UQCR10, MFF, COX5B,		
				COX6A1, HSD17B10,		
				COX5A, PRDX3, CHCHD3,		
				HINT2, C1QBP, CHCHD6,		
				SLC25A22, DECR1, FIS1,		
				ACOT9, NDUFA7, NDUFA5,		
				MTX2, NDUFA2, IDH2,		
KW-				HSPE1, COQ6, HADHB,		
0496~Mitoch		21.1		UQCRQ, NDUFS6, NDUFS5,		0.71758
ondrion	36	7647	0.06211	PGAM5	1.304554	4
				ACOTO ACADVIL IDUIZ		
				ACOT9, ACADVL, IDH2, COX7A2, ETFA, ACAA1A,		
				COX5B, COX6A1, COX5A,		
KW-						
		0.41	0.12752	COQ6, HADHB, PRDX3,		
0809~Transit	16	9.41	0.13753	HINT2, NDUFS6, C1QBP,	1 411020	1
peptide	16	1765	8	DECR1	1.411938	1
				ACOT9, ACADVL, IDH2,		
				COX7A2, ETFA, COX5B,		
				COX6A1, COX5A, COQ6,		
TRANSIT:Mit		8.82	0.46222	HADHB, PRDX3, HINT2,		
ochondrion	15	3529	3	NDUFS6, C1QBP, DECR1	1.120313	1
Cluster 11- En	richemen	t score:	0.6014299	531903391	<u> </u>	<u> </u>

mmu04260: Cardiac muscle contraction	7	4.11 7647	0.08146 3	UQCRB, UQCRQ, COX7A2, UQCR10, COX5B, COX6A1, COX5A	2.246599	0.97549
TOPO_DOM: Mitochondri						
intermembra ne	6	3.52 9412	0.37450	FIS1, UQCRQ, COX7A2, UQCR10, MFF, COX6A1	1.483448	1
TOPO_DOM: Mitochondri al matrix	4	2.35 2941	0.51439 4	UQCRQ, COX7A2, UQCR10, COX6A1	1.470769	1
Cluster 12: En			579686709	08205071		_
	Tenment	score. u	.5/9000/0:	702333/1	Т	T
GO:0006631 ~fatty acid metabolic		4.70	0.09555	HADHB, ACADVL, NDUFS6, DBI, ACAA1A, HSD17B10,		
process	8	5882	1	DECR1, SNCA	2.00915	1
GO:0006635 ~fatty acid						
beta- oxidation	5	2.94 1176	0.11174	HADHB, ACADVL, ACAA1A, HSD17B10, DECR1	2.656328	1
KW- 0443~Lipid		7.64	0.11360	CBR1, ACADVL, DGKE, LPGAT1, AKR1A1, ACAA1A, HSD17B10, HADHB, HINT2, PAM, PAFAH1B2, DECR1,		
metabolism	13	7059	4	CDS2	1.551394	1
GO:0006629 ~lipid metabolic		8.23	0.14813	CBR1, ACADVL, DGKE, LPGAT1, AKR1A1, ACAA1A, HSD17B10, HADHB, HINT2, APOE, PAM, PAFAH1B2,	4.455005	
process	14	5294	6	DECR1, CDS2	1.465005	1
GO:0042645 ~mitochondr ial nucleoid	3	1.76 4706	0.33715 6	HADHB, ACADVL, HSD17B10	2.50019	1
KW- 0276~Fatty acid metabolism	5	2.94 1176	0.34203	HADHB, ACADVL, ACAA1A, HSD17B10, DECR1	1.670732	1
mmu00071:F atty acid degradation	3	1.76 4706	0.62240 7	HADHB, ACADVL, ACAA1A	1.444242	0.97549

mmu01212:F atty acid		1.76	0.66053			
metabolism	3	4706	8	HADHB, ACADVL, ACAA1A	1.347959	0.97549
mmu00280: Valine,						
leucine and						
isoleucine		1.76		HADHB, ACAA1A,		
degradation	3	4706	0.71194	HSD17B10	1.225417	0.97549
Cluster 13: En					1.223 117	0.57515
		SCOI E. 0	.50705171	/ 0301 4 01		<u> </u>
GO:0090141						
~positive						
regulation of mitochondri		1.76	0.08497			
al fission	3	4706	6	FIS1, PGAM5, MFF	5.919816	1
	3	4700	O	1131, 1 GAIVIS, IVII I	3.313610	1
GO:0005741						
~mitochondr						
ial outer		4.11	0.45737	HADHB, FIS1, SLC44A2,		
membrane	7	7647	2	MTX2, PGAM5, MFF, SNCA	1.287977	1
KW-						
1000~Mitoch						
ondrion						
outer		2.94	0.51201	HADHB, FIS1, MTX2,		
membrane	5	1176	2	PGAM5, MFF	1.343526	1
Cluster 14: En	richment	score: 0	.56031876	19854242	1	
GO:0016616						
~oxidoreduct						
ase activity,						
acting on the						
CH-OH group						
of donors,						
NAD or						
NADP as		2.94	0.06992	CBR1, CTBP1, IDH2,		
acceptor	5	1176	5	PHGDH, DHRS1	3.110606	1
GO:0051287						
		2.35	0.37311	CTBP1, IDH2, PHGDH,		
~NAD	1 -	2941	7	HSD17B10	1.824889	1
	4					
~NAD binding KW-	4	2.35		CTBP1, PHGDH, DHRS1,		

Name							
one 8 5882 2 PDIA6, PPID 2.036948 1 GO:0006457	KW-				ST13, TIMM9, DNAJA2,		
GO:0006457 "protein folding 5 1176 5 1176 5 CRYAB, PPID 1.606152 1 GO:0051082 "unfolded protein binding 4 2941 9 CRYAB, PPID 1.520741 1 GO:0051087 "chaperone binding 4 2941 6 ST13, TIMM9, DNAJA2, HSPE1, L47964 1 Cluster 16- Enrichment score: 0.5180979126620917 GO:0030125 "clathrin vesicle coat 3 4706 4 NECAP1, CLTB, CLTA 6.071889 1 GO:0016192 "vesicle mediated transport 6 9412 4 CLTA, RAB39, VTI1B 0.910741 1 Cluster 17- Enrichment score: 0.4648374090140741 m_fcer1Path way:Fc Epsilon Receptor I Signaling in Marcells 3 4706 3 MAP2K4, CALM1, HRAS 3.75 1 m_tcrPathw ay:T Cell Receptor Signaling Pathway 3 4706 3 MAP2K4, CALM1, HRAS 3.75 1 m_pyk2Path way:Links between Pyk2 and 1.76 0.23870	0143~Chaper		4.70	0.08651	PARK7, HSPE1, CRYAB,		
**Typrotein folding	one	8	5882	2	PDIA6, PPID	2.036948	1
**Protein folding							
folding 5 1176 5 CRYAB, PPID 1.606152 1 G0:0051082	GO:0006457						
Co:0051082	~protein		2.94	0.37431	DNAJA2, HSPE1, PPIB,		
**Tunfolded protein binding	folding	5	1176	5	CRYAB, PPID	1.606152	1
**Tunfolded protein binding							
protein binding 4 2.35							
binding 4 2941 9 CRYAB 1.520741 1 GO:0051087 "chaperone binding 4 2941 6 HSPE1 1.47964 1 Cluster 16- Enrichment score: 0.5180979126620917 GO:0030125 "clathrin vesicle coat 3 4706 4 NECAP1, CLTB, CLTA 6.071889 1 GO:0005905 "clathrin-coated pit 4 2941 3 NECAP1, RAB35, CLTB, CLTA 1.666793 1 GO:0016192 "vesicle-mediated transport 6 9412 4 CLTA, RAB39B, VTI1B 0.910741 1 Cluster 17- Enrichment score: 0.4648374090140741 m_fcer1Path way:Fc Epsilon Receptor I Signaling in Mast Cells 3 4706 3 MAP2K4, CALM1, HRAS 3.75 1 m_tcrPathw ay:T Cell Receptor Signaling Pathway 3 4706 3 MAP2K4, CALM1, HRAS 3.75 1 m_pyk2Path way:Links between Pyk2 and 1.76 0.23870	~unfolded						
Concept	protein		2.35	0.49178	ST13, DNAJA2, HSPE1,		
"Chaperone binding 4 2.35 and part of the binding 0.51055 and part of the binding ST13, TIMM9, DNAJA2, HSPE1 1.47964 1 Cluster 16- Enrichment score: 0.5180979126620917 GO:030125 or Clathrin vesicle coat 1.76 and part of the binding of the bindin	binding	4	2941	9	CRYAB	1.520741	1
"Chaperone binding 4 2.35 by 2941 0.51055 by 2941 ST13, TIMM9, DNAJA2, HSPE1 1.47964 1 Cluster 16- Enrichment score: 0.5180979126620917 GO:030125 "Clathrin vesicle coat 1.76 by 20.08126 NECAP1, CLTB, CLTA 6.071889 1 GO:0005905 "Clathrin-coated pit 2.35 by 2941 0.43048 by 2941 NECAP1, RAB35, CLTB, CLTA 1.666793 1 GO:0016192 "Vesicle-mediated transport 3.52 by 412 by 42	60.0054007						
binding 4 2941 6 HSPE1 1.47964 1 Cluster 16- Enrichment score: 0.5180979126620917 GO:0030125							ļ
Cluster 16- Enrichment score: 0.5180979126620917 GO:0030125	·		2.35	0.51055	ST13, TIMM9, DNAJA2,		
GO:0030125 ~clathrin vesicle coat 3	binding	4	2941	6	HSPE1	1.47964	1
GO:0030125 ~clathrin vesicle coat 3	Cluster 16- En	 richment	score: 0	.51809791	 26620917		
~Clathrin 1.76 0.08126 NECAP1, CLTB, CLTA 6.071889 1 GO:0005905 2.35 0.43048 NECAP1, RAB35, CLTB, CLTA 1.666793 1 GO:0016192 2.941 3 NECAP1, RABEP1, CLTB, CLTB, CLTA 1.666793 1 GO:0016192 NECAP1, RABEP1, CLTB, CLTB, CLTA, RABSPH, CLTB, CLTA, RABSPH, RAMSPH, RAMSPH, RAMSPH, RAMSPH, RAMSPH, RAMSPH, RAMSPH, RAMSPH, RAMSPH, RAMSPH, RAMSPH, RAMSPH, RAMSPH, RAMSPH, RAMSPH, RAMSPH, RAMSP		1		T	T	ı	T
vesicle coat 3 4706 4 NECAP1, CLTB, CLTA 6.071889 1 GO:0005905 ~ Clathrin-coated pit 4 2941 3 NECAP1, RAB35, CLTB, CLTA 1.666793 1 GO:0016192 ~ Vesicle-mediated transport 6 9412 4 NECAP1, RABEP1, CLTB, CLTB, CLTA, RAB39B, VTI1B 0.910741 1 Cluster 17- Enrichment score: 0.4648374090140741 m_fcer1Path way:Fc Epsilon Receptor I Signaling in Mast Cells 1.76 0.16727 A706 MAP2K4, CALM1, HRAS 3.75 1 m_tcrPathw ay:T Cell Receptor Signaling Pathway 1.76 0.16727 A706 MAP2K4, CALM1, HRAS 3.75 1 m_pyk2Path way:Links between Pyk2 and 1.76 0.23870 0.23870 0.23870 0.23870							
GO:0005905 ~clathrin- coated pit 4 2941 3 NECAP1, RAB35, CLTB, CltA 1.666793 1 GO:0016192 ~vesicle- mediated transport 6 9412 4 NECAP1, RABEP1, CLTB, CLTA, RAB39B, VTI1B 0.910741 1 Cluster 17- Enrichment score: 0.4648374090140741 m_fcer1Path way:Fc Epsilon Receptor I Signaling in Mast Cells 3 4706 3 MAP2K4, CALM1, HRAS 3.75 1 m_pyk2Path way:Links between Pyk2 and 1.76 0.23870	~clathrin		1.76	0.08126			ļ
~clathrin-coated pit 2.35 0.43048 NECAP1, RAB35, CLTB, CLTA 1.666793 1 GO:0016192 ~vesicle-mediated transport 3.52 0.79772 NECAP1, RABEP1, CLTB, CLTB, CLTB, CLTA, RAB39B, VTI1B 0.910741 1 Cluster 17- Enrichment score: 0.4648374090140741 Image: Mast Cells and Mast Cells are represented by the color of the col	vesicle coat	3	4706	4	NECAP1, CLTB, CLTA	6.071889	1
~Clathrin-coated pit 2.35 0.43048 NECAP1, RAB35, CLTB, CLTA 1.666793 1 GO:0016192 ~vesicle-mediated transport 3.52 0.79772 NECAP1, RABEP1, CLTB, CLTB, CLTB, CLTA, RAB39B, VTI1B 0.910741 1 Cluster 17- Enrichment score: 0.4648374090140741 Image: Mast Cells and Mast Cells are represented by the color of the col	CO:000E00E						
coated pit 4 2941 3 CLTA 1.666793 1 GO:0016192			2.25	0.42040	NECADA DADAE CLED		
GO:0016192 ~vesicle- mediated transport 6 9412 4 NECAP1, RABEP1, CLTB, CLTA, RAB39B, VTI1B 0.910741 1 Cluster 17- Enrichment score: 0.4648374090140741 m_fcer1Path way:Fc Epsilon Receptor I Signaling in Mast Cells 3 4706 3 MAP2K4, CALM1, HRAS 3.75 1 m_tcrPathw ay:T Cell Receptor Signaling Pathway 3 4706 3 MAP2K4, CALM1, HRAS 3.75 1 m_pyk2Path way:Links between Pyk2 and 1.76 0.23870						4 666700	
~vesicle-mediated transport 3.52 0.79772 NECAP1, RABEP1, CLTB, CLTB, CLTA, RAB39B, VTi1B 0.910741 1 Cluster 17- Enrichment score: 0.4648374090140741 m_fcer1Path way:Fc Epsilon Receptor I Signaling in Mast Cells 1.76 0.16727 MAP2K4, CALM1, HRAS 3.75 1 m_tcrPathw ay:T Cell Receptor Signaling Pathway 1.76 0.16727 MAP2K4, CALM1, HRAS 3.75 1 m_pyk2Path way:Links between Pyk2 and 1.76 0.23870 MAP2K4, CALM1, HRAS 3.75 1	coated pit	4	2941	3	CLIA	1.666/93	1
~vesicle-mediated transport 3.52 0.79772 NECAP1, RABEP1, CLTB, CLTB, CLTA, RAB39B, VTi1B 0.910741 1 Cluster 17- Enrichment score: 0.4648374090140741 m_fcer1Path way:Fc Epsilon Receptor I Signaling in Mast Cells 1.76 0.16727 MAP2K4, CALM1, HRAS 3.75 1 m_tcrPathw ay:T Cell Receptor Signaling Pathway 1.76 0.16727 MAP2K4, CALM1, HRAS 3.75 1 m_pyk2Path way:Links between Pyk2 and 1.76 0.23870 MAP2K4, CALM1, HRAS 3.75 1	GO:0016192						
mediated transport 3.52 0.79772 NECAP1, RABEP1, CLTB, CLTB, CLTA, RAB39B, VTI1B 0.910741 1 Cluster 17- Enrichment score: 0.4648374090140741 m_fcer1Path way:Fc Epsilon Receptor I Signaling in Mast Cells 1.76 0.16727 MAP2K4, CALM1, HRAS 3.75 1 m_tcrPathw ay:T Cell Receptor Signaling Pathway 1.76 0.16727 MAP2K4, CALM1, HRAS 3.75 1 m_pyk2Path way:Links between Pyk2 and 1.76 0.23870 0.23870 0.23870 0.23870							
transport 6 9412 4 CLTA, RAB39B, VTI1B 0.910741 1 Cluster 17- Enrichment score: 0.4648374090140741 m_fcer1Path way:Fc Epsilon Receptor I Signaling in Mast Cells 3 4706 3 MAP2K4, CALM1, HRAS 3.75 1 m_tcrPathw ay:T Cell Receptor Signaling 1.76 0.16727 Pathway 3 4706 3 MAP2K4, CALM1, HRAS 3.75 1 m_pyk2Path way:Links between Pyk2 and 1.76 0.23870			2 52	0.70772	NECAD1 DARED1 CITE		
Cluster 17- Enrichment score: 0.4648374090140741 m_fcer1Path						0.010741	1
m_fcer1Path way:Fc Epsilon 1.76 0.16727 Receptor I 3 4706 3 Mast Cells 3 4706 3 MAP2K4, CALM1, HRAS 3.75 1 m_tcrPathw ay:T Cell Receptor Signaling Pathway 1.76 0.16727 Pathway 3 4706 3 MAP2K4, CALM1, HRAS 3.75 1 m_pyk2Path way:Links between Pyk2 and 1.76 0.23870	transport	0	9412	4	CLIA, KABS9B, VIIIB	0.910741	1
way:Fc Epsilon Receptor I 3ignaling in Mast Cells 3 4706 3 MAP2K4, CALM1, HRAS 3.75 1 1 m_tcrPathw ay:T Cell 1.76 Receptor Signaling Pathway 1.76 0.16727 Pathway 3 MAP2K4, CALM1, HRAS 3.75 1 m_pyk2Path way:Links between Pyk2 and 1.76 0.23870 1	Cluster 17- En	richment	score: 0	.464837409	90140741		
way:Fc Epsilon Receptor I Signaling in Mast Cells 3 4706 3 MAP2K4, CALM1, HRAS 3.75 1 1 m_tcrPathw ay:T Cell Receptor Signaling Pathway 1.76 0.16727 Pathway 3 4706 3 MAP2K4, CALM1, HRAS 3.75 1 m_pyk2Path way:Links between Pyk2 and 1.76 0.23870	m fcer1Path						
Epsilon Receptor I 1.76 0.16727 <t< td=""><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	_						
Receptor I Signaling in 1.76 0.16727 MAP2K4, CALM1, HRAS 3.75 1 Mast Cells 3 4706 3 MAP2K4, CALM1, HRAS 3.75 1 m_tcrPathw ay:T Cell Receptor Signaling Pathway 1.76 0.16727 3 MAP2K4, CALM1, HRAS 3.75 1 m_pyk2Path way:Links between Pyk2 and 1.76 0.23870 0.23870 0.23870 0.23870	•						
Signaling in Mast Cells 1.76 0.16727 MAP2K4, CALM1, HRAS 3.75 1 m_tcrPathw ay:T Cell Receptor Signaling Pathway 1.76 0.16727 MAP2K4, CALM1, HRAS 3.75 1 m_pyk2Path way:Links between Pyk2 and 1.76 0.23870 0.23870 0.23870 0.23870	•						
Mast Cells 3 4706 3 MAP2K4, CALM1, HRAS 3.75 1 m_tcrPathw ay:T Cell Receptor Signaling Pathway 1.76 0.16727 0.16727 3 MAP2K4, CALM1, HRAS 3.75 1 m_pyk2Path way:Links between Pyk2 and 1.76 0.23870 1.76 0.23870 1	· ·		4.76	0.46707			
m_tcrPathw ay:T Cell Receptor Signaling 1.76 0.16727 Pathway 3 4706 3 MAP2K4, CALM1, HRAS 3.75 1 m_pyk2Path way:Links between Pyk2 and 1.76 0.23870							
ay:T Cell Receptor Signaling Pathway 3	Mast Cells	3	4706	3	MAP2K4, CALM1, HRAS	3.75	1
ay:T Cell Receptor Signaling Pathway 3	m tcrPathw						
Receptor 1.76 0.16727	_						
Signaling Pathway 1.76 0.16727 0.16727 3 MAP2K4, CALM1, HRAS 3.75 1 m_pyk2Path way:Links between Pyk2 and 1.76 0.23870 0.23870 0.23870 0.23870	•						
Pathway 3 4706 3 MAP2K4, CALM1, HRAS 3.75 1 m_pyk2Path way:Links between Pyk2 and 1.76 0.23870 0.23870 0.23870			1 70	0.16727			
m_pyk2Path way:Links between Pyk2 and 1.76 0.23870						2.75	
way:Links between Pyk2 and 1.76 0.23870	Patnway	3	4/06	3	MAP2K4, CALM1, HRAS	3./5	1
way:Links between Pyk2 and 1.76 0.23870	m_pyk2Path						
between Pyk2 and 1.76 0.23870							
Pyk2 and 1.76 0.23870	•						
			1 76	0 23870			
IVIAP KITIASES 3 4700 3 IVIAF ZR4, CALIVII, FIRAS 3 1	-	2			MANDOKA CALNAL HDAG	2	1
	wap kiliases		7,00		IVII II ZICT, CALIVIT, IIIAS		_

	1	1	ı	T	T	1
m_at1rPath way:Angiote nsin II mediated activation of JNK Pathway via Pyk2 dependent		1.76				
signaling	3	4706	0.26315	MAP2K4, CALM1, HRAS	2.8125	1
mmu05417:L ipid and atherosclero sis	4	2.35 2941	0.64038 9	MAP2K4, RAP1A, CALM1, HRAS	1.225417	0.97549
mmu05167: Kaposi sarcoma- associated herpesvirus infection	3	1.76 4706	0.69556 1	MAP2K4, CALM1, HRAS	1.263712	0.97549
mmu04912: GnRH						
signaling		1.76				
pathway	3	4706	0.71194	MAP2K4, CALM1, HRAS	1.225417	0.97549
Cluster 18- En	richment	score: 0	.43823095	67673749		
REPEAT:TPR	4	2.35 2941	0.1399	FIS1, ST13, KLC1, PPID	3.018947	1
KW- 0802~TPR repeat	4	2.35 2941	0.19089 6	FIS1, ST13, KLC1, PPID	2.601626	1
SM00028:TP R	3	1.76 4706	0.28939 9	ST13, KLC1, PPID	2.760101	1
IPR019734:T etratricopept ide repeat	3	1.76 4706	0.47133 7	ST13, KLC1, PPID	1.90472	1
REPEAT:TPR 3	3	1.76 4706	0.50360 5	ST13, KLC1, PPID	1.7925	1
REPEAT:TPR 1	3	1.76 4706	0.5474	ST13, KLC1, PPID	1.654615	1
REPEAT:TPR 2	3	1.76 4706	0.5474	ST13, KLC1, PPID	1.654615	1

IDD044000 T	1	1	1	T	1	
IPR011990:T						
etratricopept ide-like		2.35	0.56755			
helical	4	2941	9	FIS1, ST13, KLC1, PPID	1.362727	1
					1.502727	_
Cluster 19- En	richment	score: 0	.43246860	54574155		
IPR020849:S						
mall GTPase						
superfamily,		2.94	0.00776	RAB21, RAP1A, MRAS,		
Ras type	5	1176	5	RAP2B, HRAS	5.819979	1
mmu05417:L						
ipid and						
atherosclero		2.35	0.64038	MAP2K4, RAP1A, CALM1,		
sis	4	2941	9	HRAS	1.225417	0.97549
mmu04722:						
Neurotrophi						
n signaling		1.76	0.66053			
pathway	3	4706	8	RAP1A, CALM1, HRAS	1.347959	0.97549
		., .,		10 (1 27 () 67 (217) 2 7 110 (6	1.0 1,7 555	0.373.13
mmu04010:						
MAPK						
signaling	_	2.94	0.68241	MAP2K4, RAP1A, MRAS,	4 007064	0.075.40
pathway	5	1176	2	DUSP3, HRAS	1.087064	0.97549
mmu04015:						
Rap1						
signaling		2.35	0.72602	RAP1A, MRAS, CALM1,		
pathway	4	2941	4	HRAS	1.078367	0.97549
mmu04720:L						
ong-term		1.76	0.75674			
potentiation	3	4706	6	RAP1A, CALM1, HRAS	1.123299	0.97549
mmu04014:						
Ras signaling		2.35	0.76255	RAP1A, MRAS, CALM1,		
pathway	4	2941	4	HRAS	1.017328	0.97549
Cluster 20- En	richment	score: U	.42325823	9239409		_
KW-						
0676~Redox-		1.76	0.35381			
active center	3	4706	6	PRDX3, PRDX1, PDIA6	2.394678	1
DOMAIN:Thi		1.76	0.38323			
oredoxin	3	4706	6	PRDX3, PRDX1, PDIA6	2.264211	1
IPR013766:T						
hioredoxin		1.76	0.39626			
domain	3	4706	2	PRDX3, PRDX1, PDIA6	2.205466	1

Cluster 21- En	richment	score: 0	.41674600	283241503		
REPEAT:1	4	2.35 2941	0.32556 7	GLTP, APOE, NDRG1, SNCA	1.977931	1
REPEAT:2	4	2.35 2941	0.32556 7	GLTP, APOE, NDRG1, SNCA	1.977931	1
GO:0008289 ~lipid binding	7	4.11 7647	0.53025	GLTP, FIS1, FABP3, PITPNM2, DBI, APOE, SNCA	1.197583	1
Cluster 22- En	ırichment	score: 0	.40948001	1 669903844		
GO:0000221 ~vacuolar proton- transporting V-type ATPase, V1 domain	3	1.76 4706	0.12713	ATP6V1G2, ATP6V1E1, ATP6V1D	4.722581	1
GO:0046961 ~proton- transporting ATPase activity, rotational mechanism	3	1.76 4706	0.21466 6	ATP6V1G2, ATP6V1E1, ATP6V1D	3.421667	1
mmu04966: Collecting duct acid secretion	3	1.76 4706	0.21840	ATP6V1G2, ATP6V1E1, ATP6V1D	3.369898	0.97549
KW- 0375~Hydro gen ion transport	3	1.76 4706	0.23324	ATP6V1G2, ATP6V1E1, ATP6V1D	3.222125	1
mmu05323: Rheumatoid arthritis	3	1.76 4706	0.24647 5	ATP6V1G2, ATP6V1E1, ATP6V1D	3.110675	0.97549
GO:0097401 ~synaptic vesicle lumen acidification	3	1.76 4706	0.26666	ATP6V1G2, ATP6V1E1, ATP6V1D	2.959908	1
GO:0098850 ~extrinsic	3	1.76 4706	0.33715 6	ATP6V1G2, ATP6V1E1, ATP6V1D	2.50019	1

		1	T	T	1	
component						
of synaptic						
vesicle						
membrane						
mmu04721:S						
ynaptic		2.94	0.47481	ATP6V1G2, CLTB, CLTA,		
vesicle cycle	5	1176	9	ATP6V1E1, ATP6V1D	1.404124	0.97549
2.1.52						
mmu04150:						
mTOR		2.25	0.50055	ATDC) (4.62, ATDC) (4.64		
signaling		2.35	0.50055	ATP6V1G2, ATP6V1E1,		
pathway	4	2941	8	HRAS, ATP6V1D	1.497732	0.97549
GO:1902600						
~hydrogen						
ion						
transmembr						
ane		1.76	0.50121	ATP6V1G2, ATP6V1E1,		
transport	3	4706	5	ATP6V1D	1.801683	1
mmu05165:						
Human						
papillomavir		2.94	0.57079	ATP6V1G2, PSMC1,		
us infection	5	1176	2	ATP6V1E1, HRAS, ATP6V1D	1.24811	0.97549
					1.2.011	0.575.15
mmu04145:		1.76	0.89502	ATP6V1G2, ATP6V1E1,		
Phagosome	3	4706	7	ATP6V1D	0.808776	0.97549
KW-						
0406~lon		2.35	0.99112	ATP6V1G2, FXYD6,		
transport	4	2941	8	ATP6V1E1, ATP6V1D	0.493003	1
GO:0006811						
~ion		2.35	0.99577	ATP6V1G2, FXYD6,		
transport	4	2941	1	ATP6V1E1, ATP6V1D	0.442013	1
Cluster 23- En			27605917	FF0074F0F		
Cluster 25- Eli	richment	score: u	.3/60361/			
GO:0043524						
~negative						
regulation of						
neuron						
apoptotic		3.52	0.34709	SLC25A27, PRDX3, APOE,		
process	6	9412	6	PARK7, HRAS, SNCA	1.534767	1
GO:0043066						
~negative						
regulation of				SLC25A27, PRDX3, PDXK,		
apoptotic		4.70	0.44931	AKR1A1, PARK7, CRYAB,		
process	8	5882	8	PPID, SNCA	1.255718	1
L						

-	•		1		T	1
GO:0034599						
~cellular						
response to						
oxidative		1.76	0.47733			
stress	3	4706	4	PRDX3, PARK7, SNCA	1.883578	1
Cluster 24- En	richmont	ccoro: 0	26670250	00206227		
Cluster 24- Eli		score: u				
l		1.76	0.25249			
SM00033:CH	3	4706	4	SPTBN4, PLS3, TAGLN3	3.036111	1
DOMAIN:Cal						
ponin-						
homology		1.76	0.48071			
(CH)	3	4706	5	SPTBN4, PLS3, TAGLN3	1.870435	1
				, ,		
IPR001715:C						
alponin						
homology		1.76	0.51820			
domain	3	4706	8	SPTBN4, PLS3, TAGLN3	1.745994	1
GO:0051015						
~actin				SPTBN4, MARCKS, ABLIM2,		
filament		4.70	0.54267	CFL2, ARPC5L, PLS3, TWF1,		
binding	8	5882	9	TAGLN3	1.152561	1
	.*.1		22250477	442024507		
Cluster 25- En	ricnment	score: u	.323584774	443081507		
KW-		2.35	0.44082	ACADVL, ETFA, COQ6,		
0274~FAD	4	2941	6	PCYOX1	1.630719	1
KW-						
0285~Flavop		2.35	0.47937	ACADVL, ETFA, COQ6,		
rotein	4	2941	1	PCYOX1	1.540123	1
rotein	4	2941	1	PCTOXI	1.540125	1
GO:0050660						
~flavin						
adenine						
dinucleotide		1.76	0.50618			
binding	3	4706	2	ACADVL, ETFA, COQ6	1.785217	1
Cluster 26- En	richment	score: 0	.32025544	1 790384614		
GO:0005791						
~rough						
endoplasmic		2.35				
reticulum	4	2.35	0.19683	BAIAP2, RPL18, RPL6, SNCA	2.575953	1
reticuluill	+	2J41	0.13003	DAIAFZ, NELTO, NELO, SINCA	2.373333	1
GO:0005840		2.35	0.59067			
~ribosome	4	2941	6	RPLP1, RPL18, RPL6, SNCA	1.317929	1
			<u> </u>			

GO:0098794				PURA, RPLP1, HPCA,		
~postsynaps		4.11	0.94144	BAIAP2, RPL6, PSMA7,		
e	7	7647	2	SNCA	0.703363	1
Cluster 27- En	richment	score: 0	31688808	122192825		
	·	score. u	.51000000	123133633	T	
GO:0000122						
~negative						
regulation of						
transcription						
from RNA		2.04	0.45772	DUDA CTDD4 C4 CDD		
polymerase	_	2.94	0.45772	PURA, CTBP1, C1QBP,	4 420044	
II promoter	5	1176	1	TAGLN3, PPID	1.438844	1
KW-						
0804~Transc		2.94	0.49472	PURA, CHCHD3, CTBP1,		
ription	5	1176	9	C1QBP, CSNK2A2	1.366962	1
KW-						
0805~Transc						
ription		2.94	0.49472	PURA, CHCHD3, CTBP1,		
regulation	5	1176	9	C1QBP, CSNK2A2	1.366962	1
Cluster 28- En	richment	score: 0	.30708284	74198248	l	1
SM00054:EF		2.35	0.25169			
h	4	2941	6	HPCA, EFHD2, PLS3, CALM1	2.248971	1
DOMAIN:EF-		1.76	0.35762			
hand 4	3	4706	1	CAPNS1, HPCA, CALM1	2.39	1
DOMAIN:EF-		2.94	0.36373	CAPNS1, HPCA, EFHD2,		
hand 2	5	1176	4	PLS3, CALM1	1.629545	1
DOMAIN:EF-		2.94	0.49124	CAPNS1, HPCA, EFHD2,		
hand	5	1176	1	PLS3, CALM1	1.378846	1
IPR002048:E						
F-hand	1	2.04	0.51366	CARNICA LIBCA EFLIDA		
r-iiaiiu		2.94	0.51266	CAPNS1, HPCA, EFHD2,		
domain	5	1176	1	PLS3, CALM1	1.343072	1
	5				1.343072	1
domain	3	1176			1.343072 1.7208	1
domain DOMAIN:EF-		1176 1.76	1	PLS3, CALM1		
domain DOMAIN:EF- hand 3		1176 1.76 4706	0.52584	PLS3, CALM1		
DOMAIN:EF- hand 3	3	1176 1.76 4706 2.35	1 0.52584 0.56572	PLS3, CALM1 CAPNS1, HPCA, CALM1	1.7208	1
DOMAIN:EF- hand 3 DOMAIN:EF- hand 1	3	1176 1.76 4706 2.35	1 0.52584 0.56572	PLS3, CALM1 CAPNS1, HPCA, CALM1	1.7208	1
DOMAIN:EF- hand 3 DOMAIN:EF- hand 1 IPR018247:E	3	1176 1.76 4706 2.35	1 0.52584 0.56572	PLS3, CALM1 CAPNS1, HPCA, CALM1	1.7208	1

	1	1	1	T	T	
IPR011992:E						
F-hand-like	_	2.94		CAPNS1, HPCA, EFHD2,		
domain	5	1176	0.60137	PLS3, CALM1	1.204134	1
				CAPNS1, HPCA, PITPNM2,		
KW-				EFHD2, CLTB, PLS3, CLTA,		
0106~Calciu		7.05	0.66621	CDH13, KLC1, CALM1,		
m	12	8824	1	NPTXR, PAM	0.996008	1
GO:0005509				CAPNS1, HPCA, PITPNM2,		
~calcium ion		5.29		EFHD2, PLS3, CDH13,		
binding	9	4118	0.70962	CALM1, PAM, SNCA	0.977619	1
Cluster 29- En	richment	score: 0	.30007976	4872977	1	
GO:0015629				ABLIM2, CSRP1, CFL2,		
~actin		4.70	0.25902	ARPC5L, TWF1, TAGLN3,		
cytoskeleton	8	5882	4	BAIAP2, SNCA	1.531648	1
•				,		
				SPTBN4, MARCKS, GMFB,		
GO:0003779				ABLIM2, CFL2, HPCA,		
~actin		6.47	0.35101	TMOD2, ARPC5L, PLS3,		
binding	11	0588	8	TWF1, SNCA	1.275876	1
		4.70				
		5882				
		3529				
GO:0051015		4117				
~actin		+A27		SPTBN4, MARCKS, ABLIM2,		
filament		1:C2	0.54267	CFL2, ARPC5L, PLS3, TWF1,		
binding	8	73	9	TAGLN3	1.152561	1
KW-				SPTBN4, MARCKS, CFL2,		
0009~Actin-		4.11	0.57907	TMOD2, ARPC5L, PLS3,		
binding	7	7647	3	TWF1	1.137657	1
billulig	,	7047	3	IVVII	1.137037	1
mmu04666:F						
c gamma R-						
mediated		1.76	0.67843			
phagocytosis	3	4706	2	MARCKS, CFL2, ARPC5L	1.304477	0.97549
GO:0005884						
~actin		1.76	0.81671			
filament	3	4706	2	SPTBN4, PLS3, TWF1	0.988447	1
Cluster 30- En	 richment	score: 0	.28131427	 577325174		
KW-						
0865~Zymog		1.76	0.17737			0.93120
en	3	4706	2	PSMB5, CPE, PARK7	3.86166	5
			_		3.22_00	

GO:0006508		3.52	0.56206	PSMB5, CAPNS1, SCRN3,		
~proteolysis	6	9412	9	CPE, PARK7, ASRGL1	1.201122	1
GO:0008233						
~peptidase		2.94	0.63166	PSMB5, PSMD7, CPE,		
activity	5	1176	5	PARK7, ASRGL1	1.159887	1
activity	,	1170	3	TANKI, ASKOLI	1.133007	1
KW-						
0645~Protea		2.35	0.68032	PSMB5, CPE, PARK7,		
se	4	2941	5	ASRGL1	1.152989	1
ACT_SITE:Nu		1.76				
cleophile	3	4706	0.91527	PSMB5, PARK7, ASRGL1	0.754737	1
Cluster 31- En	⊥ richment	score: 0	.27349858	│ 416720274		
	1	1	1		Т	
LIPID:S-		444	0.35503	CNIA42 DADOD DAVA		
palmitoyl	_	4.11	0.35582	GNA13, RAP2B, PALM,	4.42.5	
cysteine	7	7647	3	S1PR1, PARK7, HRAS, RHOB	1.434	1
KW-				GNA13, PRDX3, RAP2B,		
0564~Palmit		4.70	0.45791	PALM, S1PR1, PARK7,		
ate	8	5882	2	HRAS, RHOB	1.244784	1
60 0004535						
GO:0001525		4.76	0.66574			
~angiogenesi		1.76	0.66571			
S	3	4706	1	GNA13, S1PR1, RHOB	1.336733	1
mmu04071:S						
phingolipid						
signaling		1.76	0.74251			
pathway	3	4706	3	GNA13, S1PR1, HRAS	1.155394	0.97549
Cluster 32- 0.2	 25578995	 3672624	 9			
04240	1	1	1	T	<u> </u>	1
mmu04218:		2.25	0.05074			
Cellular		2.35	0.35971			
senescence	4	2941	3	MRAS, CALM1, HRAS, PPID	1.859254	0.97549
mmu04625:						
C-type lectin						
receptor						
signaling		1.76	0.41250			
pathway	3	4706	4	MRAS, CALM1, HRAS	2.128357	0.97549
mmu04371:						
Apelin						
signaling		2.35	0.64038	GNA13, MRAS, CALM1,		
pathway	4	2.33	9	HRAS	1.225417	0.97549
patriway 		Z 341	<u> </u>	TINAS	1.22341/	0.57545
mmu04015:		2.35	0.72602	RAP1A, MRAS, CALM1,		
	4	2941	4	HRAS	1.078367	0.97549
Rap1						

ai analina	1			<u> </u>		
signaling pathway						
mmu04014:						
Ras signaling		2.35	0.76255	RAP1A, MRAS, CALM1,		
pathway	4	2941	4	HRAS	1.017328	0.97549
Cluster 33- En	richment	score- 0	.21966773	969124903		
				PDXK, DGKE, TIMM9,		
				PDE1A, ADAP1, COX5B,		
KW-		7.64	0.35678	ALAD, ABLIM2, CSRP1,		
0862~Zinc	13	7059	9	DNAJA2, CPE, PAM, CRYAB	1.21753	1
				PDXK, DGKE, PDE1A,		
				TIMM9, HPCA, COX5B,		
				COX5A, NUDT3, ALAD,		
				GNA13, ABLIM2, CSRP1,		
				CAPNS1, EFHD2, PDE4B,		
				PLS3, SNCA, IDH2, ADAP1,		
KW-				HDHD2, PITPNM2, DNAJA2,		
0479~Metal-		17.0	0.76217	CDH13, CPE, CALM1,		
binding	29	5882	6	NPTXR, CRYAB, PAM, PFKP	0.941387	1
				PDXK, DGKE, PDE1A,		
				TIMM9, HPCA, ENDOD1,		
				COX5B, COX5A, ALAD,		
				GNA13, ABLIM2, CSRP1,		
				CAPNS1, EFHD2, PDE4B,		
				PLS3, SNCA, IDH2, HSPE1,		
GO:0046872				HDHD2, PITPNM2, DNAJA2,		
~metal ion		16.4	0.80636	CDH13, CPE, NPTXR,		
binding	28	7059	1	CRYAB, PAM, PFKP	0.90812	1
Cluster 34- En	richment	score: 0	.21804932	04604778		
mmu04810:						
Regulation of						
actin		3.52	0.56944	GNA13, MRAS, CFL2,		
cytoskeleton	6	9412	2	ARPC5L, BAIAP2, HRAS	1.189376	0.97549
mmu04072:						
Diameter Press	ĺ					
Phospholipas						•
e D signaling		2.35	0.60807			
	4	2.35 2941	0.60807 7	GNA13, DGKE, MRAS, HRAS	1.283771	0.97549
e D signaling	4			GNA13, DGKE, MRAS, HRAS	1.283771	0.97549
e D signaling pathway	4			GNA13, DGKE, MRAS, HRAS	1.283771	0.97549
e D signaling pathway mmu04371:	4			GNA13, DGKE, MRAS, HRAS GNA13, MRAS, CALM1,	1.283771	0.97549

richmen	t score: 0	.21649451	44060664		
4	2.35 2941	0.43048	NECAP1, RAB35, CLTB, CLTA	1.666793	1
			DARSE CITE CITA	4 502275	
3	4/06	4	RAB35, CLTB, CLTA	1.582375	1
	3.52	0.91012	RABEP1, RAB35, ARPC5L,		
6	9412	4	CLTB, CLTA, HRAS	0.755865	0.97549
richmen	t score: 0	.20042304	82210217		"
			RAB21, PRDX3, RAP1A,		
			RAP2B, RABEP1, RAB35,		
	7.05	0.53336	S1PR1, FLOT1, OCIAD1,		
12	8824	3	APOE, RHOB, VTI1B	1.095491	1
			RAB21, PRDX3, RAP1A,		
	4.11	0.66764	RABEP1, FLOT1, APOE,		
7	7647	2	RHOB	1.043939	1
			RHOB, PRDX3, RAB21,		
			RABEP1, RAP1A, RAP2B,		
			RAB35, S1PR1, FLOT1,		
	8.23	0.70333	EXOC4, OCIAD1, APOE,		
14	5294	9	ATP6V1E1, VTI1B	0.962856	1
ichment	score: 0.	166829469	00842498	ı	
	3.52	0.54679	C1QBP, ENDOD1, CPE,		
6	9412	3	APOE, CRYAB, SNCA	1.22069	1
	4.11	0.58018	C1QBP, ENDOD1, CPE,		
7	7647	3	APOE, PAM, CRYAB, SNCA	1.139933	1
	2.35	0.99568			
4	2941	9	C1QBP, APOE, PAM, CRYAB	0.442742	1
richmen	t score: 0	.15665707	396650488	l	
1					
I			1	1	ı
	1.76	0.46371			
3	1.76 4706	0.46371 4	RPLP1, RPL18, RPL6	1.931965	1
3			RPLP1, RPL18, RPL6 NDUFA7, RPLP1, RPL18,	1.931965	1
	4 3 6 richmen 12 7 14 7 4	2.35 2941 1.76 3	2.35	1.76	2.35

				T	T	•
constituent of ribosome						
GO:0005840		2.35	0.59067			
~ribosome	4	2941	6	RPLP1, RPL18, RPL6, SNCA	1.317929	1
mmu03010:		1.76				
Ribosome	3	4706	0.71194	RPLP1, RPL18, RPL6	1.225417	0.97549
GO:0022626						
~cytosolic		1.76	0.71673			
ribosome	3	4706	2	RPLP1, RPL18, RPL6	1.214378	1
GO:0002181						
~cytoplasmic		1.76	0.73019			
translation	3	4706	3	RPLP1, RPL18, RPL6	1.183963	1
KW-						
0689~Riboso		1.76	0.74514			
mal protein	3	4706	9	RPLP1, RPL18, RPL6	1.145783	1
KW-						
0687~Ribonu		1.76	0.83102			
cleoprotein	3	4706	2	RPLP1, RPL18, RPL6	0.954819	1
стеоргосет		4700		M Li 1, M LIO, M LO	0.554615	_
mmu05171:						
Coronavirus						
disease -		1.76	0.85706			
COVID-19	3	4706	3	RPLP1, RPL18, RPL6	0.898639	0.97549
GO:1990904						
~ribonucleop						
rotein		1.76	0.94689			
complex	3	4706	5	RPLP1, RPL18, RPL6	0.664113	1
-					0.004113	1
Cluster 39- Enr	icnment	score: u	.11036781	9/23945/6		
TRANSMEM:						
Helical;		1.76	0.72493			
Name=7	3	4706	6	SLC2A13, S1PR1, GPR37L1	1.195	1
TRANSMEM:						
Helical;		2.35	0.75786	SLC2A13, S1PR1, GPR37L1,		
Name=3	4	2941	5	SLC25A22	1.024286	1
TRANSMEM:						
Helical;		2.35	0.75786	SLC2A13, S1PR1, GPR37L1,		
Name=6	4	2941	5	SLC25A22	1.024286	1
TRANSMEM:						
Helical;		2.35	0.77884	SLC2A13, S1PR1, GPR37L1,		
Name=5	4	2941	9	SLC25A22	0.988966	1
	•			51020, 122	3.330300	_

TRANSMEM:						
Helical;		2.35	0.79832	SLC2A13, S1PR1, GPR37L1,		
Name=4	4	2941	7	SLC25A22	0.956	1
Traine 1	•	23.1	,	313237,122	0.550	_
TRANSMEM:						
Helical;		2.35	0.80752	SLC2A13, S1PR1, GPR37L1,		
Name=1	4	2941	1	SLC25A22	0.940328	1
TRANSMEM:						
Helical;		2.35	0.80752	SLC2A13, S1PR1, GPR37L1,		
Name=2	4	2941	1	SLC25A22	0.940328	1
Cluster 40- En	richment	score: 0	.09743139	654225756		
				MAP2K4, PDXK, DGKE,		
1				LPGAT1, CSNK2A2, AK1,		
				TALDO1, AK4, ACAA1A,		
KW-				HADHB, PCMT1, COMTD1,		
0808~Transf			0.50685	UBE2N, CMPK1, PFKP,		
erase	17	10	9	GSTM5, CDS2	1.073185	1
				AAABSWA BBWW BOWE		
				MAP2K4, PDXK, DGKE,		
				LPGAT1, CSNK2A2, AK1,		
				TALDO1, AK4, ACAA1A,		
GO:0016740				HADHB, PCMT1, COMTD1,		
~transferase			0.59320	UBE2N, CMPK1, PFKP,		
activity	17	10	8	GSTM5, CDS2	1.024993	1
activity		10		6511113, 6532	1.02 1333	_
				MAP2K4, PDXK, DGKE, AK1,		
KW-		4.70	0.73392	CSNK2A2, CMPK1, AK4,		
0418~Kinase	8	5882	4	PFKP	0.962338	1
GO:0016310				MAP2K4, PDXK, DGKE, AK1,		
~phosphoryl		4.70	0.75990	CSNK2A2, CMPK1, AK4,		
ation	8	5882	1	PFKP	0.936468	1
GO:0016301				MAP2K4, PDXK, DGKE, AK1,		
~kinase		4.70	0.82475	CSNK2A2, CMPK1, AK4,		
activity	8	5882	3	PFKP	0.868995	1
		1		DADC MARRIES BOYE		-
				DARS, MAP2K4, PDXK,		
				DGKE, CSNK2A2, AK1,		
				RHOG, RAB39B, AK4,		
				RHOB, GNA13, RAB21,		
				RAP1A, HINT2, MRAS,		
GO:0000166				RAP2B, PSMC1, RAB35,		
~nucleotide		12.9	0.98040	UBE2N, CMPK1, HRAS,		
	22	4118	9	PFKP	0.720941	1
binding	22	4119	٦	FINE	0.730841	1
60.000553		0.00	0.00044	DARS, MAP2K4, PDXK,		
GO:0005524		8.82	0.98811	DGKE, CSNK2A2, AK1,		
~ATP binding	15	3529	6	TWF1, AK4, HSPE1,	0.660129	1
	1	1	1	· •• · ±, / · · · ¬, · · · · · · .	1	

				PRPSAP1, PSMC1, DNAJA2,		
				UBE2N, CMPK1, PFKP		
KW-				DARS, MAP2K4, PDXK, DGKE, CSNK2A2, AK1, RHOG, RAB39B, AK4, RHOB, GNA13, RAB21, RAP1A, HINT2, MRAS, RAP2B, PSMC1, RAB35,		
0547~Nucleo tide-binding	22	12.9 4118	0.99169 6	UBE2N, CMPK1, HRAS, PFKP	0.724334	1
KW- 0067~ATP- binding	11	6.47 0588	0.99930	DARS, MAP2K4, PDXK, DGKE, PSMC1, AK1, CSNK2A2, UBE2N, CMPK1, AK4, PFKP	0.527586	1
Cluster 41- En	l richment	score: 0	.09707518	932629637		
mmu04371: Apelin signaling		2.35	0.64038	GNA13, MRAS, CALM1,		
pathway	4	2941	9	HRAS	1.225417	0.97549
mmu05200: Pathways in cancer	5	2.94 1176	0.84872 9	GNA13, CTBP1, CALM1, HRAS, GSTM5	0.853139	0.97549
mmu05163: Human		4.76	0.04003			
cytomegalovi rus infection	3	1.76 4706	0.94093 9	GNA13, CALM1, HRAS	0.685403	0.97549
Cluster 42- En	richment	score: 0	.05266331	9924344844		-
KW- 0732~Signal	19	11.1 7647	0.55188 8	CADM4, HEPACAM, ENDOD1, AK4, GPR37L1, PDIA6, COQ6, HINT2, PSMD7, EMC1, CMPK1, CDH13, CPE, FXYD6, APOE, PPIB, NPTXR, PAM, PCYOX1	1.039435	1
KW- 0325~Glycop rotein	17	10	0.99221	CADM4, SLC44A2, HEPACAM, SLC2A13, GPR37L1, PSMA7, PSMA1, EMC1, S1PR1, CDH13, CPE, MAL2, APOE, NPTXR, PAM, PFKP, PCYOX1	0.657678	1
CARBOHYD: N-linked	13	7.64 7059	0.99674	CADM4, SLC44A2, HEPACAM, SLC2A13, GPR37L1, EMC1, S1PR1,	0.582563	1

	Т	T .	1	T	T	T
(GlcNAc)				CDH13, CPE, MAL2, NPTXR,		
asparagine				PAM, PCYOX1		
				CADM4, SLC44A2,		
				HEPACAM, SLC2A13,		
TOPO_DOM:		4.70		S1PR1, FXYD6, GPR37L1,		
Extracellular	8	5882	0.99937	NPTXR	0.453439	1
Extracellular	0	3002	0.33337	INFIAR	0.433439	1
				FIS1, CADM4, SLC44A2,		
				HEPACAM, SLC2A13,		
				GPR37L1, MFF, EMC1,		
TOPO_DOM:		8.23	0.99981	S1PR1, MAL2, FXYD6,		
Cytoplasmic	14	5294	1	NPTXR, PAM, VTI1B	0.505693	1
Ol	.•		04204260	7005034003		
Cluster 43- En	ricnment	score: u	.01281360	7896924083		
				DGKE, LPGAT1, NDUFB6,		
1				MTFP1, SLC44A2,		
				HEPACAM, ENDOD1,		
				COX7A2, ACAA1A,		
				UQCR10, MFF, COX6A1,		
				PCMT1, COMTD1, EMC1,		
				S1PR1, MAL2, SLC25A22,		
				VTI1B, FIS1, CADM4,		
KW-				SLC2A13, GPR37L1,		
1133~Trans				UQCRQ, FXYD6, PGAM5,		
membrane		17.6	0.92523	NPTXR, PAM, PCYOX1,		
helix	30	4706	6	CDS2	0.853856	1
				DGKE, LPGAT1, NDUFB6,		
				MTFP1, SLC44A2,		
				HEPACAM, ENDOD1,		
				COX7A2, ACAA1A,		
				UQCR10, MFF, COX6A1,		
				PCMT1, COMTD1, EMC1,		
				S1PR1, MAL2, SLC25A22,		
				VTI1B, FIS1, CADM4,		
				SLC2A13, GPR37L1,		
KW-				UQCRQ, FXYD6, PGAM5,		
0812~Trans		17.6		NPTXR, PAM, PCYOX1,		
membrane	30	4706	0.94029	CDS2	0.84158	1
				DOVE LDCAT1 NIDUEDO		
				DGKE, LPGAT1, NDUFB6,		
				MTFP1, SLC44A2,		
				HEPACAM, ENDOD1,		
				COX7A2, ACAA1A,		
				UQCR10, MFF, COX6A1,		
TRANSMEM:		17.0	0.99502	PCMT1, EMC1, S1PR1,		
Helical	29	5882	5	MAL2, SLC25A22, VTI1B,	0.709659	1
				FIS1, CADM4, SLC2A13,		

TOPO_DOM: Cytoplasmic	14	8.23 5294	0.99981	FIS1, CADM4, SLC44A2, HEPACAM, SLC2A13, GPR37L1, MFF, EMC1, S1PR1, MAL2, FXYD6, NPTXR, PAM, VTI1B	0.505693	1
GO:0016021 ~integral component of membrane	27	15.8 8235	0.99693	GPR37L1, UQCRQ, FXYD6, PGAM5, NPTXR, PAM, PCYOX1, CDS2 DGKE, LPGAT1, MTFP1, SLC44A2, HEPACAM, ENDOD1, COX7A2, ACAA1A, MFF, COX6A1, SLC25A27, PCMT1, COMTD1, EMC1, S1PR1, MAL2, SLC25A22, VTI1B, FIS1, CADM4, SLC2A13, GPR37L1, PGAM5, NPTXR, PAM, PCYOX1, CDS2	0.683088	1

Wild-Type Memory Retrieval v. APPtg Memory Retrieval- 20% Downregulated

Table 76. DAVID functional annotation clustering output table for annotation clusters enriched within proteins downregulated in APPtg mice during memory retrieval, when compared to WT mice during memory retrieval.

Cluster 1- Enri	chment S	core: (0.8423343	358003652		
Term	Count	%	PValue	Genes	Fold Enrichment	FDR
GO:0048471 ~perinuclear region of cytoplasm	3	60	0.0043 14	PAM, NDRG1, SIRT2	19.51195	0.20 707 4
GO:0005829 ~cytosol	3	60	0.1025 52	PAM, NDRG1, SIRT2	3.778299	0.70 321 7
GO:0005886 ~plasma membrane	3	60	0.1955 09	PAM, NDRG1, SIRT2	2.645688	1
GO:0016020 ~membrane	3	60	0.2394 25	PAM, NDRG1, SIRT2	2.356334	1

KW- 0472~Memb rane	3	60	0.2691 33	PAM, NDRG1, SIRT2	1.927549	0.73 355 6
KW- 0597~Phosp hoprotein	3	60	0.3646 94	PAM, NDRG1, SIRT2	1.655863	1
REGION:Diso rdered	3	60	0.6245 94	PAM, NDRG1, SIRT2	1.284587	1

6. Functional Classification

Wild-Type Basal v. Wild-Type Memory Retrieval-20% Upregulated

Table 77. DAVID functional classification output table for proteins upregulated in WT mice during memory retrieval, when compared to WT mice at the basal level.

Gene Group 1 Enrichment Score: 4.56061471590555
Ndufb4 NADH:ubiquinone oxidoreductase subunit B4(Ndufb4)
Uqcrq ubiquinol-cytochrome c reductase, complex III subunit VII(Uqcrq)
Ndufs4 NADH:ubiquinone oxidoreductase core subunit S4(Ndufs4)
Uqcrb ubiquinol-cytochrome c reductase binding protein(Uqcrb)
Ndufa4 Ndufa4, mitochondrial complex associated(Ndufa4)
Ndufa2 NADH:ubiquinone oxidoreductase subunit A2(Ndufa2)
Cox7a2 cytochrome c oxidase subunit 7A2(Cox7a2)
Ndufb1 NADH:ubiquinone oxidoreductase subunit B1(Ndufb1)
Cox6a1 cytochrome c oxidase subunit 6A1(Cox6a1)
Cox5a cytochrome c oxidase subunit 5A(Cox5a)
Ndufs5 NADH:ubiquinone oxidoreductase core subunit S5(Ndufs5)
Atp5o ATP synthase, H+ transporting, mitochondrial F1 complex, O subunit(Atp5o)

Atp5k ATP synthase, H+ transporting, mitochondrial F1F0 complex, subunit E(Atp5k)
Cox6b1 cytochrome c oxidase, subunit 6B1(Cox6b1)
Ndufa6 NADH:ubiquinone oxidoreductase subunit A6(Ndufa6)
Apool apolipoprotein O-like(Apool)
Ndufb6 NADH:ubiquinone oxidoreductase subunit B6(Ndufb6)
Ndufa7 NADH:ubiquinone oxidoreductase subunit A7(Ndufa7)
Ndufa5 NADH:ubiquinone oxidoreductase subunit A5(Ndufa5)
Atp5h ATP synthase, H+ transporting, mitochondrial F0 complex, subunit D(Atp5h)
Ndufv2 NADH:ubiquinone oxidoreductase core subunit V2(Ndufv2)
Gene Group 2 Enrichment Score: 2.5369240722120243
Prdx6 peroxiredoxin 6(Prdx6)
Prdx3 peroxiredoxin 3(Prdx3)
Prdx1 peroxiredoxin 1(Prdx1)
Prdx5 peroxiredoxin 5(Prdx5)
Prdx2 peroxiredoxin 2(Prdx2)
Gene Group 3 Enrichment Score: 2.2542664079951886
Psma8 proteasome subunit alpha 8(Psma8)
Psma6 proteasome subunit alpha 6(Psma6)
Psma3 proteasome subunit alpha 3(Psma3)
Psmd4 proteasome (prosome, macropain) 26S subunit, non-ATPase, 4(Psmd4)
Psmb2 proteasome (prosome, macropain) subunit, beta type 2(Psmb2)
Psma7 proteasome subunit alpha 7(Psma7)
Gene Group 4 Enrichment Score: 0.6346788572182275
Rab11b RAB11B, member RAS oncogene family(Rab11b)
Rab8a RAB8A, member RAS oncogene family(Rab8a)
l .

Rap2b RAP2B, member of RAS oncogene family(Rap2b)						
Rhog ras homolog family member G(Rhog)						
Rab11a RAB11A, member RAS oncogene family(Rab11a)						
Rab1b RAB1B, member RAS oncogene family(Rab1b)						
Gene Group 5 Enrichment Score: 0.2751755184711442						
Apool apolipoprotein O-like(Apool)						
Clptm1 cleft lip and palate associated transmembrane protein 1(Clptm1)						
Tmx4 thioredoxin-related transmembrane protein 4(Tmx4)						
Fxyd6 FXYD domain-containing ion transport regulator 6(Fxyd6)						

APPtg Basal v. APPtg Memory Retrieval- 20% Upregulated

Table 78. DAVID functional classification output table for proteins upregulated in APPtg mice during memory retrieval, when compared to APPtg mice at the basal level.

Gene G	roup 1 Enrichment Score: 6.386830970422354
Uqcrq	ubiquinol-cytochrome c reductase, complex III subunit VII(Uqcrq)
Ndufs4	NADH:ubiquinone oxidoreductase core subunit S4(Ndufs4)
Ndufa4	Ndufa4, mitochondrial complex associated(Ndufa4)
Uqcrb	ubiquinol-cytochrome c reductase binding protein(Uqcrb)
Ndufa2	NADH:ubiquinone oxidoreductase subunit A2(Ndufa2)
Ndufb3	NADH:ubiquinone oxidoreductase subunit B3(Ndufb3)
Ndufa8	NADH:ubiquinone oxidoreductase subunit A8(Ndufa8)
Ndufb7	NADH:ubiquinone oxidoreductase subunit B7(Ndufb7)
Mcu	mitochondrial calcium uniporter(Mcu)
Ndufb1	NADH:ubiquinone oxidoreductase subunit B1(Ndufb1)

Cox6c	cytochro	ome c oxidase subunit 6C(Cox6c)	
Cox6a1	cytochro	me c oxidase subunit 6A1(Cox6a1)	
Atp5l	ATP synt	chase, H+ transporting, mitochondrial FO complex, subunit G(Atp5I)	
Uqcr10	ubiquino	ol-cytochrome c reductase, complex III subunit X(Uqcr10)	
Ndufs5	NADH:uk	biquinone oxidoreductase core subunit S5(Ndufs5)	
Atp5o	ATP synt	thase, H+ transporting, mitochondrial F1 complex, O subunit(Atp5o)	
Atp5k	ATP synt	chase, H+ transporting, mitochondrial F1F0 complex, subunit E(Atp5k)	
Cox6b1	cytochro	ome c oxidase, subunit 6B1(Cox6b1)	
Ndufa5	NADH:ul	biquinone oxidoreductase subunit A5(Ndufa5)	
Ndufb10	NADH:u	biquinone oxidoreductase subunit B10(Ndufb10)	
Atp5h	ATP synt	thase, H+ transporting, mitochondrial F0 complex, subunit D(Atp5h)	
Ndufv2	NADH:uk	biquinone oxidoreductase core subunit V2(Ndufv2)	
Sdhb	succinate	e dehydrogenase complex, subunit B, iron sulfur (Ip)(Sdhb)	
Gene G	roup 2	Enrichment Score: 2.7421860596388368	
Psma6	proteaso	ome subunit alpha 6(Psma6)	
Psma5	proteaso	ome subunit alpha 5(Psma5)	
Psma1	proteaso	ome subunit alpha 1(Psma1)	
Psmd7	proteaso	ome (prosome, macropain) 26S subunit, non-ATPase, 7(Psmd7)	
Psmd6	proteaso	ome (prosome, macropain) 26S subunit, non-ATPase, 6(Psmd6)	
Psma2	proteaso	me subunit alpha 2(Psma2)	
Psmc6	proteasor	me (prosome, macropain) 26S subunit, ATPase, 6(Psmc6)	

Wild-Type Basal v. APPtg Basal- 20% Upregulated

Table 79. DAVID functional classification output table for proteins upregulated in APPtg mice at the basal level, when compared to WT mice at the basal level.

Gene G	iroup 1	Enric	hment So	core: 3.0 9	9068016	6370255	3		
Pacs1	Pacs1 phosphofurin acidic cluster sorting protein 1(Pacs1)								
Ccdc177	coiled-c	coil don	nain cont	aining 17	7(Ccdc1	177)			

Kbtbd11 kelch repeat and BTB (POZ) domain containing 11(Kbtbd11)
6430548M08Rik RIKEN cDNA 6430548M08 gene(6430548M08Rik)

Wild-Type Memory Retrieval v. APPtg Memory Retrieval-20% Upregulated

No results.

Wild-Type Basal v. Wild-Type Memory Retrieval- 20% Downregulated

No results.

APPtg Basal v. APPtg Memory Retrieval- 20% Downregulated

No results.

Wild-Type Basal v. APPtg Basal- 20% Downregulated

Table 80. DAVID functional classification output table for proteins downregulated in APPtg mice at the basal level, when compared to WT mice at the basal level.

Gene Gro	oup 1 Enrichment Score: 3.090680163702553
Pacs1	phosphofurin acidic cluster sorting protein 1(Pacs1)
Ccdc177	coiled-coil domain containing 177(Ccdc177)
Kbtbd11	kelch repeat and BTB (POZ) domain containing 11(Kbtbd11)
6430548N	108Rik RIKEN cDNA 6430548M08 gene(6430548M08Rik)

Wild-Type Memory Retrieval v. APPtg Memory Retrieval- 20% Downregulated

No results.

DAVID Analysis on Proteins that fail to become appropriately regulated during memory retrieval and proteins that are inappropriately regulated during memory retrieval in APPtg mice, when compared to WT mice during memory retrieval

Proteins that fail to become upregulated during memory retrieval

Biological Process

Table 81. DAVID Gene Ontology output table for enriched biological processes within proteins that fail to become upregulated during memory retrieval in APPtg mice, when compared to WT mice during memory retrieval.

	Coun				Fold	FD
Term	t	%	PValue	Genes	Enrichment	R
				PRDX3,		
				PRDX2,		
GO:0034599~cellular				GSR,		
response to oxidative		5.0505050	0.0113813	PARK7,	5.4217171	
stress	5	5	1	SNCA	7	1
				NDUFA7,		
				NDUFA6,		
GO:0042776~mitochondria				NDUFB6,		
I ATP synthesis coupled		5.0505050	0.0642405	NDUFB4,	3.2237237	
proton transport	5	5	1	NDUFB2	2	1
				NDUFA7,		
				NDUFA6,		
				NDUFB6,		
GO:0009060~aerobic		5.0505050	0.0696088	NDUFB4,	3.1388888	
respiration	5	5	5	NDUFB2	9	1
				PRDX3,		
				PRDX2,		
				NDUFA6,		
GO:0006979~response to		5.0505050	0.0696088	NDUFB4,	3.1388888	
oxidative stress	5	5	5	PARK7	9	1

GO:0043524~negative regulation of neuron apoptotic process	6	6.0606060 6	0.0700410 9	SLC25A27 , PRDX3, PRDX2, NEFL, PARK7, SNCA	2.6506172 8	1
GO:0006268~DNA unwinding involved in DNA replication	2	2.0202020	0.0812065 3	PURB, PURA	23.855555 6	1
GO:0051252~regulation of RNA metabolic process	2	2.0202020	0.0812065	PCBP1, PCBP2	23.85555 6	1
GO:0045109~intermediate filament organization	3	3.0303030 3	0.0856327 7	NEFL, INA, GFAP	5.9638888 9	1
GO:0001933~negative regulation of protein phosphorylation	4	4.0404040 4	0.0900683	MYADM, PEBP1, PARK7, SNCA	3.6700854 7	1

Molecular Function

Table 82. DAVID Gene Ontology output table for enriched molecular functions within proteins that fail to become upregulated during memory retrieval in APPtg mice, when compared to WT mice during memory retrieval.

Term	Coun	%	PValue	Genes	Fold Enrichmen t	FDR
Term	L	/0	Pvalue	Genes	l l	FUK
				PURB,		
				PURA,		
				PCBP1,		
GO:0003697~single-		5.0505050		PCBP2,	11.185064	0.1692453
stranded DNA binding	5	5	6.44E-04	NME1	9	9
GO:0000981~RNA						
polymerase II						
transcription factor				PURB,		
activity, sequence-		3.0303030		PURA,	14.764285	
specific DNA binding	3	3	0.0147232	PCBP1	7	1
GO:0000977~RNA						
polymerase II regulatory				PURB,		
region sequence-specific		3.0303030		PURA,	10.545918	
DNA binding	3	3	0.0293395	NME1	4	1

GO:0051920~peroxiredox in activity	3	3.0303030 3	0.0293395	PRDX3, PRDX2, PARK7	10.545918 4	1
GO:0005507~copper ion binding	3	3.0303030	0.0477431 6	PARK7, PAM, SNCA	8.2023809 5	1
GO:0019900~kinase binding	5	5.0505050 5	0.0684069	PRDX3, TOLLIP, PEBP1, PARK7, GFAP	3.1547619	1
GO:0003924~GTPase activity	9	9.0909090 9	0.0702566 7	RAP1A, RAP2B, GNA11, RAB1B, RHOG, TPPP, RAB6B, RAB8A, RAB11 B	2.0133116 9	1
GO:0032422~purine-rich negative regulatory element binding	2	2.0202020	0.0787158 7	PURB, PURA	24.607142 9	1
GO:0003691~double- stranded telomeric DNA binding	2	2.0202020	0.0787158 7	PURB, PURA	24.607142 9	1
GO:0004332~fructose- bisphosphate aldolase activity	2	2.0202020	0.0787158 7	ALDOC , ALDOA	24.607142 9	1

Cellular Component

Table 83. DAVID Gene Ontology output table for enriched cellular components within proteins that fail to become upregulated during memory retrieval in APPtg mice, when compared to WT mice during memory retrieval.

						Fold		
Te	erm	Count	%	PValue	Genes	Enrichment	FDR	

GO:0043209~myelin sheath	14	14.1414141	0.00957118	CNRIP1, PEBP1, NDRG1, COX5A, NAPG, GFAP, NME1, PRDX3, PRDX2, RAP1A, NEFL, TPPP, ALDOA, INA	2.16462518	1
GO:0005793~endoplasmic reticulum-Golgi intermediate compartment	4	4.04040404	0.02492203	TMED9, RAB1B, RAB6B, PDIA6	6.06868132	1
GO:0005882~intermediate filament	4	4.04040404	0.03424857	NEFL, INA, GFAP, NME1	5.39438339	1
GO:0005615~extracellular space	9	9.09090909	0.03484422	FABP5, DDT, ARHGDIA, SPARCL1, PEBP1, ALDOA, PAM, PDIA6, SNCA	2.32417582	1
GO:0000502~proteasome complex	5	5.05050505	0.04273988	PSMA3, PSMD4, PSMB2, PSMC1, PSMA7	3.67798868	1
GO:0005747~mitochondrial respiratory chain complex I	5	5.05050505	0.04697697	NDUFA7, NDUFA6, NDUFB6, NDUFB4, NDUFB2	3.56981254	1
GO:0005839~proteasome core complex	3	3.03030303	0.09569237	PSMA3, PSMB2, PSMA7	5.60185968	1

<u>Proteins that are inappropriately upregulated in APPtg mice during memory retrieval (upregulated when they are not upregulated in WT mice)</u>

Biological Process

Table 84. DAVID Gene Ontology output table for enriched biological processes within proteins that are inappropriately upregulated during memory retrieval in APPtg mice, when compared to WT mice during memory retrieval.

	Coun				Fold Enrichme	
Term	t	%	PValue	Genes	nt	FDR
				NDUFA8,		
				NDUFB9, NDUFB7,		
				NDUFB1		
GO:0042776~mitochond				0,		
rial ATP synthesis		10.526315	0.0019713	NDUFB3,	6.3302211	0.4654494
coupled proton transport	6	8	3	SDHB	3	5
				NDUFA8,		
				NDUFB9,		
				NDUFB7, NDUFB1		
				0,		
GO:0009060~aerobic		10.526315	0.0022270	NDUFB3,	6.1636363	0.4654494
respiration	6	8	3	SDHB	6	5
				NDUFA8,		
				NDUFB9,		
CO-00220040va-it				NDUFB7,		
GO:0032981~mitochond rial respiratory chain		8.7719298	0.0094743	NDUFB1 0,	5.7406417	
complex I assembly	5	2	1	NDUFB3	1	1
GO:0042554~superoxide		3.5087719	0.0496815	SOD2,	39.036363	
anion generation	2	3	8	SOD1	6	1
GO:0000303~response		3.5087719	0.0496815	SOD2,	39.036363	
to superoxide	2	3	8	SOD1	6	1
GO:0006801~superoxide		3.5087719	0.0496815	SOD2,	39.036363	
metabolic process	2	3	8	SOD1	6	1

GO:0050665~hydrogen peroxide biosynthetic process	2	3.5087719 3	0.0736056 8	SOD2, SOD1	26.024242 4	1
GO:0051603~proteolysis involved in cellular		5.2631578	0.0808370	PSMA5, PSMA1,	6.1636363	
protein catabolic process	3	9	6	PSMA2	6	1
GO:0010498~proteasom				PSMA5,		
al protein catabolic		5.2631578	0.0808370	PSMA1,	6.1636363	
process	3	9	6	PSMA2	6	1
GO:0019430~removal of		3.5087719	0.0969383	SOD2,	19.518181	
superoxide radicals	2	3	7	SOD1	8	1

Cellular Component

Table 85. DAVID Gene Ontology output table for enriched cellular components within proteins that are inappropriately upregulated during memory retrieval in APPtg mice, when compared to WT mice during memory retrieval.

Term	Coun	%	PValue	Genes	Fold Enrichme nt	FDR
GO:0000502~proteasome complex	6	10.526315	0.0010202 6	PSMA5, PSMD6, PSMC6, PSMD7, PSMA1, PSMA2	7.3024793 4	0.1118157 9
GO:0005743~mitochondr ial inner membrane	14	24.561403 5	0.0012153 9	NDUFB9, NDUFA8, NDUFB7, NDUFB1 0, NDUFB3, TIMM44, UQCR10, COX6C, SOD2, SDHB,	2.6648858 3	0.1118157 9

				CLU, CHCHD3, PGAM5,		
				MCU		
				NDUFA8, NDUFB9, NDUFB7, NDUFB1		
GO:0070469~respiratory chain	6	10.526315 8	0.0038057	0, NDUFB3, UQCR10	5.4768595	0.2334174 5
GO:0005747~mitochondr				NDUFA8, NDUFB9, NDUFB7, NDUFB1		
ial respiratory chain complex I	5	8.7719298 2	0.0085887	0, NDUFB3	5.9064171 1	0.3532780 4
GO:0019773~proteasome core complex, alphasubunit complex	3	5.2631578 9	0.0113875 5	PSMA5, PSMA1, PSMA2	17.212987	0.3532780
				NDUFB9, NDUFA8, NDUFB7, NDUFB1 0, NDUFB3, CISD1, TIMM44, AK4, UQCR10, ACAA1A, COX6C, SOD2, SDHB, CLU, SOD1, COMTD1		
GO:0005739~mitochondr	23	40.350877 2	0.0115199 4	PGRMC1 , CHCHD3, RAB35, GARS, PGAM5,	1.6121529 4	0.3532780 4

				CKB, MCU		
GO:0005839~proteasome core complex	3	5.2631578 9	0.0385103	PSMA5, PSMA1, PSMA2	9.2685314 7	1
GO:0099026~anchored component of presynaptic membrane	2	3.5087719 3	0.0943161	SNAP25, MARCKS	20.081818	1

Molecular Function

Table 86. DAVID Gene Ontology output table for enriched biological processes within proteins that are inappropriately upregulated during memory retrieval in APPtg mice, when compared to WT mice during memory retrieval.

					Fold	
Term	Count	%	PValue	Genes	Enrichment	FDR
GO:0004784~superoxide				SOD2,		
dismutase activity	2	3.50877193	0.04497026	SOD1	43.0625	1
				STIP1,		
				DNAJA2,		
GO:0051087~chaperone				TIMM44,		
binding	4	7.01754386	0.04990131	SOD1	4.65540541	1

Proteins that fail to become downregulated during memory retrieval in APPtg mice

Biological Process

Table 87. DAVID Gene Ontology output table for enriched biological processes within proteins that fail to become downregulated during memory retrieval in APPtg mice, when compared to WT mice during memory retrieval.

	Cou				Fold Enrichme	
Term	nt	%	PValue	Genes	nt	FDR
				NTRK2, SLC12A5, SYNJ1, PRKAR2 B, CTNND2, NRXN1, NRXN3, AMPH, PLCB1, SHANK3, SHANK2,		
GO:0007612~learning	12	11.00917 43	7.37E-07	PPP1R9 B	6.507703 97	8.88E-04
GO:0016079~synaptic vesicle exocytosis	7	6.422018 35	9.98E-05	RPH3A, UNC13A , SV2B, SYT1, CADPS, PPFIA3, SPTBN2	8.262232	0.060140 38
GO:0061001~regulation of dendritic spine morphogenesis	6	5.504587 16	3.74E-04	DNM3, EPHA4, ABI2, PPP1R9 A, SHANK3, SRCIN1	8.599465 95	0.112231 41
GO:0050808~synapse organization	9	8.256880 73	4.64E-04	PCDHGC 5, CTNND2 , CTNNB1 , ATP2B2, BSN, SHANK3,	4.630481 67	0.112231 41

	T	1		1		1
				SHANK2,		
				PPFIA3,		
				SYN1		
				DNM3,		
				NRXN1,		
				MYO6,		
				NRXN3,		
				BSN,		
				SHANK3,		
GO:0007416~synapse		7.339449		SHANK2,	5.350778	0.112231
assembly	8	54	4.66E-04	SPTBN2	82	41
assems.,		J .		01 15112	02	
				RIMS1,		
				SV2B,		
				SYT1,		
				PRKCB,		
				MYO6,		
				NRXN3,		
GO:2000300~regulation of		7.339449	0.001044	SYN1,	4.721275	0.209780
synaptic vesicle exocytosis	8	54	55	STXBP5L	43	24
				RIMS1,		
				UNC13A		
				, SYT1,		
				NRXN1,		
				NRXN3,		
GO:0007269~neurotransmitt		6.422018	0.001289	PPFIA3,	5.402228	0.221954
er secretion	7	35	36	SYN1	61	16
				GRM3,		
				SYNPR,		
				SYNGAP		
				1,		
				CAMKV,		
				PRKAR2		
				В,		
				DLGAP1,		
				PPP1R9		
				Α,		
				DLGAP2,		
60.0050004		0.474011	0.004=00	SHANK3,	2.004033	0.704000
GO:0050804~modulation of	4.0	9.174311	0.004789	PPP1R9	2.994838	0.721360
synaptic transmission	10	93	12	В	89	61
				RIMS1,		
				SYNGAP		
GO:0048167~regulation of		5.504587	0.007647	1,	4.630481	0.864725
synaptic plasticity	6	16	0.007047	CTNND2	67	59
Syriaptic plasticity		-	52	, MYO6,	"	

				ATP2B2, SHANK3		
				CTNNB1		
GO:0051963~regulation of synapse assembly	4	3.669724 77	0.007903 56	PPP1R9 A, OGT, SRCIN1	8.917964 69	0.864725 59
GO:0016082~synaptic vesicle priming	5	4.587155 96	0.008117 63	RPH3A, RIMS1, UNC13A , SYNJ1, CADPS	5.901594 28	0.864725 59
GO:0007155~cell adhesion	12	11.00917 43	0.008791 7	CYFIP2, EPHA4, PCDHGC 5, CTNND2, NRXN1, NRXN3, CTNNB1, PKP4, NRCAM, TLN2, PLCB1, PCDH1	2.407850 47	0.864725 59
GO:0030534~adult behavior	5	4.587155 96	0.010046 6	NRXN1, NRXN3, SHANK3, SHANK2, SPTBN2	5.573727 93	0.864725 59
GO:0098974~postsynaptic actin cytoskeleton organization	5	4.587155 96	0.010046 6	ABI2, ROCK2, PPP1R9 A, SRCIN1, DBN1	5.573727 93	0.864725 59
GO:0097091~synaptic vesicle clustering	4	3.669724 77	0.010889 31	NRXN1, CTNNB1 , BSN, SYN1	8.026168 22	0.874774 95
GO:0007268~chemical synaptic transmission	9	8.256880 73	0.011927 7	SLC12A5 , UNC13A	2.821699 77	0.898305 19

Г		1	T	Т	T	1
				, SV2B,		
				NRXN1,		
				MYO6,		
				NRXN3,		
				CTNNB1		
				, DI CAD1		
				DLGAP1,		
				GLS		
				NTRK2,		
				RIMS1,		
				UNC13A		
				,		
				RASGRF		
				2,		
GO:0060291~long-term		5.504587	0.016234	SHANK3,	3.883629	
synaptic potentiation	6	16	07	SHANK2	79	1
,	_	_	_		-	
				PRKCB,		
				ANXA7,		
				ATP2B3,		
				ATP2B2,		
CO:000C0740;!l.:lanlai::::-		F F04F07	0.016334	1	2 002620	
GO:0006874~cellular calcium	_	5.504587	0.016234	PYGM,	3.883629	
ion homeostasis	6	16	07	ATP2B1	79	1
				NRXN1,		
				NRXN3,		
CO:0071C2F%;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;		2.660724	0.010573		6.688473	
GO:0071625~vocalization		3.669724	0.018573	SHANK3,		
behavior	4	77	97	SHANK2	52	1
				RIMS1,		
GO:0000E3E~prographic		2.752293	0.021897	UNC13A	12.03925	
GO:0099525~presynaptic	_					
dense core vesicle exocytosis	3	58	35	, CADPS	23	1
				RPH3A,		
GO:0061669~spontaneous		2.752293	0.021897	RIMS1,	12.03925	
-	2					
neurotransmitter secretion	3	58	35	SYT1	23	1
				HSPA9,		
				NTRK2,		
		1		EPHA4,		
				WNK2,		
GO:0046777~protein		5.504587	0.026533	CAMK2	3.439786	
autophosphorylation	6	16	29	G, HK1	38	1
				DO CIVE		
				ROCK2,		
				MYO18		
GO:0007249~I-kappaB		2.752293	0.031796	Α,	10.03271	
kinase/NF-kappaB signaling	3	58	64	CTNNB1	03	1
		1				

	1		1	DIN 464	1	1
GO:0016081~synaptic vesicle docking	3	2.752293 58	0.031796 64	RIMS1, UNC13A , PPFIA3	10.03271 03	1
GO:0032024~positive regulation of insulin secretion	5	4.587155 96	0.036262 15	GLUD1, PRKCB, ANXA7, ABAT, PLCB1	3.858734 72	1
GO:0018105~peptidyl-serine phosphorylation	6	5.504587 16	0.040286 49	NTRK2, BRSK2, CAMKV, ROCK2, PRKCB, HK1	3.086987 78	1
GO:0001843~neural tube closure	4	3.669724 77	0.040968 61	NCKAP1, MTHFD1 L, OPA1, ROCK2	5.016355 14	1
GO:0040011~locomotion	3	2.752293 58	0.043098 76	WDR1, ATP2B2, SHANK3	8.599465 95	1
GO:0046847~filopodium assembly	3	2.752293 58	0.043098 76	DNM3, NRXN1, PPP1R9 B	8.599465 95	1
GO:2000310~regulation of NMDA receptor activity	3	2.752293 58	0.043098 76	RPH3A, RASGRF 2, NRXN1	8.599465 95	1
GO:0007207~phospholipase C-activating G-protein coupled acetylcholine receptor signaling pathway	3	2.752293 58	0.043098 76	PRKCB, ANXA7, PLCB1	8.599465 95	1
GO:0051968~positive regulation of synaptic transmission, glutamatergic	4	3.669724 77	0.048008	NTRK2, NRXN1, SHANK3, SHANK2	4.721275 43	1
GO:0007399~nervous system development	10	9.174311 93	0.049177 35	NTRK2, EPHA4, BRSK2, ABI2, CTNNB1	2.047491 89	1

				, DIP2B, SDHA, CAMK2 G, DBN1, PPP1R9 B		
GO:0030036~actin cytoskeleton organization	8	7.339449 54	0.054090 56	CAP1, WDR1, ROCK2, ACTN1, SPTAN1, SPTBN1, SPTBN2, PPP1R9 B	2.293190 92	1
GO:0061098~positive regulation of protein tyrosine kinase activity	3	2.752293 58	0.069283 82	EPHA4, ABI2, SRCIN1	6.688473 52	1
GO:0098884~postsynaptic neurotransmitter receptor internalization	3	2.752293 58	0.069283 82	DNM3, SYNJ1, MYO6	6.688473 52	1
GO:0016358~dendrite development	4	3.669724 77	0.072373 17	SYNGAP 1, ABI2, MYO6, PPP1R9 B	4.013084 11	1
		E 504507	0.073343	RPH3A, RIMS1, BRSK2, UNC13A	2.647222	
GO:0006887~exocytosis	6	5.504587 16	0.073219 35	SRCIN1, STXBP5L	2.617228 77	1
				CYFIP2, CTNND2 , CTNNB1 , PKP4,		
GO:0098609~cell-cell adhesion	6	5.504587 16	0.078852 41	NRCAM, TLN2	2.561543 05	1

					T	T
GO:0035640~exploration behavior	3	2.752293 58	0.083882 45	ABAT, SHANK3, SHANK2	6.019626 17	1
GO:0048015~phosphatidylin ositol-mediated signaling	3	2.752293 58	0.083882 45	SYNJ1, PLCB1, OGT	6.019626 17	1
GO:2000463~positive regulation of excitatory postsynaptic potential	4	3.669724 77	0.091125 94	RIMS1, NRXN1, SHANK3, DBN1	3.648258 28	1
GO:0000902~cell morphogenesis	4	3.669724 77	0.091125 94	CYFIP2, CAP1, NCKAP1, ATP2B2	3.648258 28	1
GO:0048617~embryonic foregut morphogenesis	2	1.834862 39	0.096326 78	NCKAP1, CTNNB1	20.06542 06	1
GO:0097338~response to clozapine	2	1.834862 39	0.096326 78	PRKAR2 B, PPP1R9 B	20.06542 06	1
GO:0097117~guanylate kinase-associated protein clustering	2	1.834862 39	0.096326 78	NRXN1, SHANK3	20.06542 06	1
GO:0051571~positive regulation of histone H3-K4 methylation	2	1.834862 39	0.096326 78	CTNNB1 , OGT	20.06542 06	1
GO:0007015~actin filament organization	6	5.504587 16	0.097107 48	CAP1, ACTN1, MYO6, PPP1R9 A, DBN1, PPP1R9 B	2.407850 47	1
GO:0009410~response to xenobiotic stimulus	7	6.422018 35	0.098004 86	POR, SLC12A5 , PRKCB, MYO6, CTNNB1 , ABAT, SHANK2	2.160891 45	1

GO:0018108~peptidyl- tyrosine phosphorylation	3	2.752293 58	0.099313 74	EPHA4, ABI2, HK1	5.472387 43	1
GO:0006103~2-oxoglutarate metabolic process	3	2.752293 58	0.099313 74	OGDH, OGDHL, DLD	5.472387 43	1

Cellular Component

Table 88. DAVID Gene Ontology output table for enriched cellular components within proteins that fail to become downregulated during memory retrieval in APPtg mice, when compared to WT mice during memory retrieval.

	Coun				Fold Enrichme	
Term	t	%	PValue	Genes	nt	FDR
				ROCK2,		
				NRXN1,		
				CTNND2,		
				NRXN3,		
				ADAM22,		
				PPP1R9A,		
				GRM3,		
				RIMS1,		
				SYNGAP1		
				, CAMKV,		
				SV2B,		
				PRKAR2B,		
				MYO6,		
				NRCAM,		
				DLGAP1,		
				BSN,		
				SPTAN1,		
				DLGAP2,		
				SPTBN1,		
				PPFIA3,		
				SPTBN2,		
CO.00007022dutamatam		27 614670		EPHA4,	2 4020706	
GO:0098978~glutamater	41	37.614678	1 005 00	NTRK2,	2.4028706	E 70E 0C
gic synapse	41	9	1.99E-08	UNC13A,	4	5.79E-06

				SYT1, ACTN1, CADPS,		
				ATP2B3, ATP2B2,		
				ATP2B1, SRCIN1,		
				DNM3, ABI2,		
				SYNJ1, CTNNB1,		
				AMPH, PLCB1,		
				SHANK3, OGT,		
				DBN1, SHANK2		
				CAP1, WDR1, ACTN1, LANCL2, PPP1R9A, SPTAN1,		
				DBN1, SPTBN1,		
GO:0030864~cortical actin cytoskeleton	10	9.1743119	1.53E-05	SPTBN2, PPP1R9B	6.1980920	0.0015720 5
				NCKAP1, WDR1,		
				NRXN1, CTNND2,		
				ADAM22, ADCY5,		
				PPP1R9B, RPH3A,		
				RIMS1, MYO6,		
				MAP6, NRCAM,		
				KIF21A, DIP2B,		
				BSN, SPTAN1,		
GO:0042995~cell		31.192660		SPTBN1, SPTBN2,		0.0015720
projection	34	6	1.62E-05	CLASP2,	2.0946564	5

		1		ED.14.4		1
				EPHA4,		
				NTRK2,		
				UNC13A,		
				SLC12A5,		
				ACTN1,		
				ATP2B1,		
				SRCIN1,		
				ABI2,		
				MADD,		
				CTNNB1,		
				DLD,		
				SHANK3,		
				OGT,		
				DBN1,		
				SHANK2		
				CYFIP2,		
				NRXN1,		
				PPP1R9A,		
				GLS,		
				PPP1R9B,		
				RPH3A,		
				SYNPR,		
				RIMS1,		
				SYNGAP1		
				, SV2B,		
				MYO6,		
				NRCAM,		
				DLGAP1,		
				BSN,		
				DLGAP2,		
				PPFIA3,		
				ATP6V0A		
				1, MPST,		
				EPHA4,		
				NTRK2,		
				UNC13A,		
				SLC12A5,		
				ATP6AP1,		
				SYT1,		
				CADPS,		
				ATP2B2,		
				ATP2B2,		
				SRCIN1,		
				SYN1,		
		34.862385		DNM3,	1.7426922	0.0188890
GO:0045202~synapse	38	3	2.60E-04	ABI2,	4	4
				MADD,	•	-

				CTNNB1, AMPH, TLN2, SHANK3, OGT, SHANK2 MPST, CYFIP2, EPHA4, UNC13A, SLC12A5, SYT1, DCTN1, ATP2B2, ABAT, PPP1R9A, SRCIN1, PPP1R9B, GRM3, RPH3A, SYNPR, SYNJ1, SV2B, MAP6, NRCAM, CAMK2G, SHANK3,		
GO:0043005~neuron projection	23	21.100917 4	0.0016600	OGT, SHANK2	1.9766184 3	0.0833815 5
GO:0014069~postsynapti			0.0017192	NTRK2, EPHA4, CTNND2, PPP1R9A, SRCIN1, SYN1, PPP1R9B, GRM3, DNM3, RIMS1, SYNGAP1, MYO6, PKP4, DLGAP1, BSN,	2.0650373	0.0833815
c density	21	19.266055	1	CAMK2G, DLGAP2,	9	5

GO:0048786~presynaptic	7	6.4220183	0.0021414	SHANK3, DBN1, SHANK2, SPTBN1 GRM3, NTRK2, UNC13A, BSN, SHANK2, PPFIA3, SYN1	4.9371008	0.0882768
active zone	7	5	4	NCKAP1, WDR1, RASGRF2, CTNND2, PPP1R9B, GRM3, RPH3A, SMPD3, RIMS1, SYNGAP1, CAMKV, ANXA7, NRCAM, KIF21A, DLGAP1, SPTAN1, DLGAP2, CAP1, EPHA4, UNC13A, PRKCB, ACTN1, EPS15L1, DNM3, DNAJC5,	9	
GO:0005886~plasma membrane	56	51.376146 8	0.0026046 5	MADD, LANCL2, AMPH, PKP4, TLN2, PLCB1, SHANK3, DBN1, SHANK2, ROCK2,	1.3652054 9	0.0882768 1

				NRXN1, ADAM22, ADCY5, PRKAR2B,		
				MYO6, PCDH1, SPTBN1, SPTBN2, ATP6VOA		
				1, CLASP2, NTRK2, SLC12A5,		
				SYT1, ATP2B3, ATP2B2, ATP2B1, STXBP5L,		
				WNK2, CTNNB1, SMAP1, OGT		
				NTRK2, EPHA4, ACTN1, PPP1R9A, PPP1R9B, GRM3,		
				RPH3A, DNM3, ABI2, PRKAR2B, DLGAP2,		
GO:0043197~dendritic spine	14	12.844036 7	0.0027302	SHANK3, DBN1, SHANK2	2.5118583 5	0.0882768 1
				NTRK2, UNC13A, SYT1, NRXN1, BSN,		
GO:0060076~excitatory synapse	7	6.4220183 5	0.0036282	SHANK3, DBN1	4.4742476 9	0.1055806 7
GO:0005759~mitochondr ial matrix	12	11.009174 3	0.0043961 1	HSPA9, GLUD1, OAT, PCX,	2.6391875 7	0.1138694 8

				OGDH, LONP1, ABAT, OGDHL, ACO2, ACADSB, DLD, GLS		
GO:0098831~presynaptic active zone cytoplasmic component	5	4.5871559 6	0.0046956 5	RIMS1, UNC13A, CTNNB1, BSN, PPFIA3	6.8179012 3	0.1138694 8
GO:0030175~filopodium	7	6.4220183 5	0.0066601 9	EPHA4, ABI2, MYO6, PPP1R9A, SRCIN1, DBN1, PPP1R9B	3.9771090 5	0.1490857 3
GO:0005916~fascia adherens	4	3.6697247 7	0.0074965 8	ACTN1, CTNNB1, TLN2, SPTAN1	9.0905349 8	0.1558217 8
GO:0030672~synaptic vesicle membrane	11	10.091743	0.0094429	RPH3A, SYNPR, UNC13A, SV2B, SYT1, ATP6AP1, DNAJC5, ATP2B1, BSN, SYN1, ATP6V0A	2.5279858 5	0.1745872 7
vesicle membrane	11	1	4	WDR1, ABI2, ACTN1, CTNNB1, PKP4, PCDH1, SPTAN1,	5	/
GO:0030054~cell junction	9	8.2568807 3	0.0097585	SPTBN1, SPTBN2	2.9219576 7	0.1745872 7

				GRM3,		
				RIMS1, EPHA4,		
				UNC13A,		
				SYT1,		
				NRXN1,		
				NRXN3, CTNNB1,		
				ATP2B3,		
GO:0042734~presynaptic		10.091743	0.0101992	ATP2B2,	2.4998971	0.1745872
membrane	11	1	6	ATP2B1	2	7
GO:0045252~oxoglutarat				OGDH,		
e dehydrogenase		2.7522935		OGDHL,	15.340277	0.2115068
complex	3	8	0.0130829	DLD	8	6
				SYT1,		
				AMPH, SYN1,		
				SPTBN1,		
GO:0043229~intracellular		4.5871559	0.0138237	ATP6V0A	5.1134259	0.2117220
organelle	5	6	8	1	3	7
				RIMS1,		
				NRXN1,		
				NRXN3,		
				ATP2B3, ATP2B2,		
				ATP2B1,		
				BSN,		
GO:0098982~GABA-ergic		8.2568807	0.0152347	PLCB1,	2.7071078	0.2216652
synapse	9	3	3	OGT	4	7
				RPH3A,		
				EPHA4,		
				UNC13A, DNAJC5,		
				NRXN1,		
GO:0031594~neuromusc		6.4220183		PPP1R9A,	3.2539983	0.2443055
ular junction	7	5	0.0176303	STXBP5L	2	8
				RPH3A,		
				SYNPR,		
				SV2B, SYT1,		
				DNAJC5,		
				MADD,		
GO:0008021~synaptic		11.009174	0.0185045	WDR7,	2.1720747	0.2447643
vesicle	12	3	2	AMPH,	3	5
				BSN,		

	1	1	I	0.0	1	
				SYN1,		
				SPTBN2,		
				ATP6V0A		
				1		
				BRSK2,		
				WDR1,		
				ROCK2,		
				DCTN1,		
				ACTN1,		
				PPP1R9A,		
				SRCIN1,		
				LRPPRC,		
				SYN1,		
				PPP1R9B,		
				DNM3,		
				ABI2,		
				MYO18A,		
				MAP6,		
				CTNNB1,		
				PKP4,		
				KIF21A,		
				AMPH,		
				TLN2,		
				BSN,		
				SPTAN1,		
				DBN1,		
GO:0005856~cytoskeleto		22.018348	0.0195946	SPTBN1,	1.5886371	0.2479154
n	24	6	9	CLASP2	8	1
				ABI2,		
				MYO6,		
GO:0098871~postsynapti		3.6697247	0.0221537	PPP1R9A,	6.2934472	0.2686145
c actin cytoskeleton	4	7	8	DBN1	9	9
C detili cytoskeletoli	_	′	J		,	,
				SYT1,		
GO:0042584~chromaffin		2.7522935		DNAJC5,	10.226851	0.3434292
granule membrane	3	8	0.0306844	ANXA7	9	2
				PRKCB,		
		2.7522935		SPTBN1,	10.226851	0.3434292
GO:0008091~spectrin	3	8	0.0306844	SPTBN2	9	2
				EPHA4,		
				WDR1,		
				ABI2,		
				CTNND2,		
				ACTN1,		
GO:0070161~anchoring		9.1743119	0.0332333	CTNNB1,	2.1993229	0.3581819
junction	10	3	8		8	7
L				PKP4,		

		1	I	I	I	
				TLN2,		
				DBN1,		
				PPP1R9B		
				NTRK2,		
				EPHA4,		
				UNC13A,		
				SYT1,		
				DCTN1,		
				ADAM22,		
				SRCIN1,		
				SYN1,		
				GRM3,		
				DNM3,		
				MYO6,		
				MADD,		
				MAP6,		
				NRCAM,		
		15 506330	0.0245912	KIF21A,	1 6061607	
CO:002042488888	17	15.596330	0.0345812	DIP2B,	1.6961607	0.2502070
GO:0030424~axon	17	3	4	BSN	9	0.3593979
				CYFIP2,		
GO:0031209~SCAR		2.7522935		NCKAP1,	8.7658730	0.4036790
complex	3	8	0.0416164	ABI2	2	4
				LINC12A		
CO:000E709~Colai		2.7522935		UNC13A,	8.7658730	0.4026700
GO:0005798~Golgi- associated vesicle	2		0.0416164	MAP6,		0.4036790
associated vesicle	3	8	0.0416164	BSN	2	4
				DCTN1,		
				CTNNB1,		
		3.6697247		PKP4,	4.5452674	
GO:0000922~spindle pole	4	7	0.0530543	CLASP2	9	0.4929497
				NITDIA		
				NTRK2,		
				EPHA4,		
				CTNND2,		
				ATP2B2,		
				PPP1R9A,		
				SRCIN1,		
				SYN1,		
				PPP1R9B,		
				ABI2,		
				OPA1,		
				PRKAR2B,		
				MAP6,		
		15.596330	0.0542075	KIF21A,	1.6023638	
GO:0030425~dendrite	17	3	3	DIP2B,	8	0.4929497
				BSN,		

				DLGAP2,		
				DBN1		
				SYNJ1,		
GO:0098688~parallel				ATP2B3,		
fiber to Purkinje cell		3.6697247	0.0608496	ATP2B2,	4.3060428	0.5281075
synapse	4	7	2	SPTBN2	8	9
				RPH3A,		
				DNM3,		
				UNC13A,		
				SYNJ1, DNAJC5,		
				CADPS,		
				NRXN3,		
				AMPH,		
				BSN,		
		11 000174	0.0024240	SRCIN1,	1 7015652	0.5304075
GO:0098793~presynapse	12	11.009174	0.0634340	SYN1, SPTBN2	1.7915652 9	0.5281075 9
GO:0038733 presynapse	12	3	7		3	3
				EPHA4,		
				ABI2, CTNND2,		
				CTNNB1,		
GO:0005912~adherens		5.5045871	0.0635180	PKP4,	2.7271604	0.5281075
junction	6	6	9	PPP1R9B	9	9
				SYNGAP1		
				,		
CO 000000000001				CTNNB1,		
GO:0099092~postsynapti c density, intracellular		4.5871559	0.0722960	DLGAP1, DLGAP2,	3.0990460	
component	5	6	7	SHANK3	2	0.5843932
'						
				EPHA4, NRXN1,		
GO:0044295~axonal		3.6697247	0.0779309	DBN1,	3.8959435	0.6129165
growth cone	4	7	7	CLASP2	6	2
				ATP2B2,		
GO:0098684~photorecep		2.7522935	0.0811423	AMPH,	6.1361111	0.6213794
tor ribbon synapse	3	8	4	ATP2B1	1	8
				SYNPR,		
				SV2B,		
00 00000000				SYT1,		
GO:0030285~integral component of synaptic		4.5871559	0.0860152	ATP2B1, ATP6V0A	2.9219576	0.6314295
vesicle membrane	5	6	7	1	7	6
	_	-				-

				GRM3, RPH3A, NTRK2,		
				EPHA4,		
				CTNNB1,		
				NRCAM,		
				ATP2B2,		
				DLGAP1,		
				SHANK3,		
GO:0045211~postsynapti		10.091743	0.0867944	DBN1,	1.7577401	0.6314295
c membrane	11	1	4	SHANK2	6	6
GO:0098683~cochlear		1.8348623	0.0945510	MYO6,	20.453703	0.6660147
hair cell ribbon synapse	2	9	3	BSN	7	8
				ATP2B2,		
GO:0032591~dendritic		2.7522935	0.0961258	ATP2B1,	5.5782828	0.6660147
spine membrane	3	8	4	PPP1R9B	3	8

Molecular Function

Table 89. DAVID Gene Ontology output table for enriched molecular functions within proteins that fail to become downregulated during memory retrieval in APPtg mice, when compared to WT mice during memory retrieval.

Term	Coun	%	PValue	Genes	Fold Enrichmen t	FDR
GO:0005516~calmodul in binding	12	11.009174 3	3.70E-04	UNC13A, SYT1, CAMKV, RASGRF2, MYO6, MAP6, ATP2B2, ATP2B1, PLCB1, SPTAN1, CAMK2G, SPTBN1	3.5257995 7	0.1173487 9
GO:0051015~actin filament binding	13	11.926605 5	0.0022661 7	WDR1, ACTN1,	2.6938345 9	0.3591886 7

				PPP1R9A, PPP1R9B, RPH3A, MYO6, MYO18A, TLN2, SPTAN1, DBN1, SPTBN1,		
				SPTBN2, CLASP2		
GO:1905056~calcium- transporting ATPase activity involved in regulation of presynaptic cytosolic calcium ion concentration	3	2.7522935 8	0.0072774 5	ATP2B3, ATP2B2, ATP2B1	19.685714 3	0.7689835 4
GO:0098919~structura I constituent of postsynaptic density	4	3.6697247 7	0.0151941	CTNND2, DLGAP1, SHANK3, SHANK2	7.1584415 6	0.9945910 5
GO:0005509~calcium ion binding	13	11.926605 5	0.0215852 1	UNC13A, SYT1, PCDHGC5, NRXN1, ACTN1, CADPS, ATP2B2, EPS15L1, RPH3A, ANXA7, PLCB1, PCDH1, SPTAN1	2.0310657 6	0.9945910 5
GO:0019829~cation- transporting ATPase	_	2.7522935	0.0226958	ATP2B3, ATP2B2,	11.811428	0.9945910
activity	3	8	9	ATP2B1 POR,	6	5
GO:0009055~electron carrier activity	4	3.6697247 7	0.0244746	NDUFS1, SDHA, ACADSB	6.0571428 6	0.9945910
GO:0008022~protein C-terminus binding	9	8.2568807 3	0.0297463 5	SYT1, SYNJ1,	2.3942084 9	0.9945910 5

				CTNNB1, ATP2B2, AMPH, PPP1R9A, SHANK3, SHANK2, PPP1R9B		
GO:0005246~calcium channel regulator activity	4	3.6697247 7	0.0300323	GRM3, PRKCB, NRXN1, NRXN3	5.6244898	0.9945910 5
GO:0004672~protein kinase activity	10	9.1743119 3	0.0318894 5	NTRK2, EPHA4, BRSK2, CAMKV, ROCK2, PRKCB, WNK2, CAMK2G, PPP1R9B, HK1	2.2118780 1	0.9945910 5
				HSPA9, NTRK2, EPHA4, BRSK2, PCX, ATP6AP1, ROCK2, PRKCB, ATP2B3, ATP2B1, BCS1L, SYN1, ADCY5, HK1, GLUD1, CAMKV, MTHFD1L, WNK2, MYO6, MYO18A, LONP1,		
GO:0005524~ATP binding	24	22.018348 6	0.0345126	KIF21A, CAMK2G	1.5046405 8	0.9945910 5

	1	T	1	1
		CYFIP2,		
		NCKAP1,		
		GDA,		
		PPP1R9A,		
		PPP1R9B,		
		HK1, GLS,		
		RPH3A,		
		SMPD3,		
		RIMS1,		
		SYNGAP1,		
		OPA1,		
		ANXA7,		
		NRCAM,		
		DLGAP1,		
		BSN,		
		SPTAN1,		
		CAP1,		
		EPHA4,		
		UNC13A,		
		PRKCB,		
		ACTN1,		
		EPS15L1,		
		SRCIN1,		
		DNM3,		
		DNAJC5,		
		AMPH,		
		NDUFS1,		
		TLN2,		
		PLCB1,		
		DLD,		
		SHANK3,		
		DBN1,		
		BRSK2,		
		DCTN1,		
		ROCK2,		
		NRXN1,		
		NRXN3,		
		ADAM22,		
		ADCY5,		
		SAMM50,		
		PRKAR2B,		
		MYO6,		
		PCDH1,		
		SPTBN1,		
		ATP6V0A		
GO:0005515~protein 55.963302		1,	1.1854181	
binding 61 8	0.0428536	CLASP2,	4	1
		HSPA9,		

				NTRK2, SYT1, AGL, CADPS, IMMT, ATP2B1, STAM, LRPPRC, GLUD1, SYNJ1, CTNNB1, SMAP1, OGT		
GO:0005388~calcium- transporting ATPase activity	3	2.7522935 8	0.0446160 1	ATP2B3, ATP2B2, ATP2B1	8.4367346 9	1
GO:0017124~SH3 domain binding	6	5.5045871 6	0.0566288	RIMS1, SYNGAP1, ABI2, SYNJ1, SHANK3, SHANK2	2.8122449	1
GO:0003779~actin binding	11	10.091743 1	0.0685085 5	CAP1, WDR1, ACTN1, MYO6, TLN2, SPTAN1, SHANK3, DBN1, SYN1, SPTBN1, PPP1R9B	1.8351089 6	1
GO:0042731~PH domain binding	2	1.8348623 9	0.0981205 1	EPHA4, LONP1	19.685714 3	1

<u>Proteins inappropriately downregulated in APPtg mice during memory retrieval (proteins downregulated in APPtg mice during memory retrieval but not in WT mice during memory retrieval)</u>

Biological Process

Table 90. DAVID Gene Ontology output table for enriched biological processes within proteins that are inappropriately downregulated during memory retrieval in APPtg mice, when compared to WT mice during memory retrieval.

					Fold	
Term	Count	%	PValue	Genes	Enrichment	FDR
				GSK3A,		
				PTK2B,		
				TNIK,		
				CDC42BPB,		
				STK32C,		
				SCYL2,		
GO:0006468~protein				MTOR,		
phosphorylation	8	20	0.00196859	PDK1	4.19438339	1
				GSK3A,		
				PTK2B,		
				TNIK,		
				CDC42BPB,		
				PFKP,		
				STK32C,		
	_			MTOR,		
GO:0016310~phosphorylation	8	20	0.00385143	PDK1	3.73229031	1
				USP14,		
				GRM2,		
				GABBR1,		
GO:0007268~chemical synaptic				NRXN2,		
transmission	5	12.5	0.02479324	PAFAH1B1	4.30088141	1
				GSK3A,		
				STK32C,		
GO:0018105~peptidyl-serine				MTOR,		
phosphorylation	4	10	0.03015603	PDK1	5.64628534	1
				GRM2,		
GO:0042220~response to				PTK2B,		
cocaine	3	7.5	0.03131687	MTOR	10.3221154	1
GO:0051012~microtubule				MAP4,		
sliding	2	5	0.03509307	PAFAH1B1	55.0512821	1

GO:1904000~positive				SGIP1,		
regulation of eating behavior	2	5	0.03509307	MTOR	55.0512821	1
GO:0007166~cell surface receptor signaling pathway	3	7.5	0.03905462	ADGRB2, PTK2B, PDK1	9.17521368	1
GO:0018107~peptidyl- threonine phosphorylation	3	7.5	0.04316954	GSK3A, CDC42BPB, MTOR	8.69230769	1
GO:0005975~carbohydrate metabolic process	4	10	0.04603269	GSK3A, HEXB, MPI, PDK1	4.787068	1
GO:0014048~regulation of glutamate secretion	2	5	0.052187	GRM2, GABBR1	36.7008547	1
GO:0007165~signal				GRM2, GSK3A, GABBR1, ADGRB2, PTK2B, NRXN2,		
transduction	7	17.5	0.0663871	ANK1	2.33550894	1
GO:0051896~regulation of protein kinase B signaling	2	5	0.06898592	GRM2, MTOR	27.525641	1
GO:0016183~synaptic vesicle coating	2	5	0.06898592	AP3S1, AP3B2	27.525641	1
GO:0007281~germ cell development	2	5	0.06898592	MTOR, PAFAH1B1	27.525641	1
GO:0035654~cargo loading into clathrin-coated vesicle, AP-3-mediated	2	5	0.06898592	AP3S1, AP3B2	27.525641	1
GO:0070885~negative regulation of calcineurin-NFAT signaling cascade	2	5	0.0854948	ATP2B4, MTOR	22.0205128	1
GO:0033173~calcineurin-NFAT signaling cascade	2	5	0.0854948	ADGRB2, MTOR	22.0205128	1
GO:0048490∼anterograde synaptic vesicle transport	2	5	0.0854948	AP3S1, AP3B2	22.0205128	1

Cellular Component

Table 91. DAVID Gene Ontology output table for enriched cellular components within proteins that are inappropriately downregulated during memory retrieval in APPtg mice, when compared to WT mice during memory retrieval.

					Fold	
Term	Count	%	PValue	Genes	Enrichment	FDR
				CLTC,		
GO:0030117~membrane				AP3S1,		
coat	3	7.5	0.02189119	AP3B2	12.4567669	1
				USP14,		
				ATP8A1,		
				HEXB, CLTC,		
				NRXN2,		
				VPS26A,		
				GRM2,		
				APMAP,		
				PTK2B,		
				AP3S1,		
				SLC25A22,		
				SCYL2,		
				GABBR1,		
				SGIP1,		
				SACM1L,		
				SLC2A13,		
				ATP2B4,		
				CDC42BPB,		
				ANK1, AP3B2,		
				MTOR,		
				AFG3L2,		
				PPP5C,		
				ADGRB2,		
				RIMBP2,		
				PFKP,		
GO:0016020~membrane	27	67.5	0.03763336	PAFAH1B1	1.30037501	1
GO:0030136~clathrin-				SGIP1,		
coated vesicle	3	7.5	0.073732	CLTC, SCYL2	6.45906433	1
				USP14,		
				ATP8A1,		
GO:0031410~cytoplasmic				HEXB, CLTC,		
vesicle	8	20	0.07375388	AP3S1,	2.07612782	1
Vesicie	٦		0.07575500	AP3B2,	2.07012702	_

				SCYL2,		
				MTOR		
				AP3S1,		
GO:1904115~axon				AP3B2,		
cytoplasm	3	7.5	0.07858633	PAFAH1B1	6.22838346	1
GO:0030123~AP-3 adaptor				AP3S1,		
complex	2	5	0.0964872	AP3B2	19.377193	1

Molecular Function

Table 92. DAVID Gene Ontology output table for enriched molecular functions within proteins that are inappropriately downregulated during memory retrieval in APPtg mice, when compared to WT mice during memory retrieval.

	Coun				Fold Enrichmen	
Term	t	%	PValue	Genes	t	FDR
				GSK3A,		
				PTK2B,		
				TNIK,		
				CDC42BPB		
				, STK32C,		
				SCYL2,		
GO:0004672~protein kinase				MTOR,	5.0215608	0.0951292
activity	8	20	6.52E-04	PDK1	9	7
				GSK3A,		
				ATP8A1,		
				ATP2B4,		
				CDC42BPB		
				, MTOR,		
				AFG3L2,		
				PPP5C,		
				PTK2B,		
				TNIK,		
				PFKP,		
				STK32C,		
		32.	0.0049073	SCYL2,	2.3128765	0.2433685
GO:0005524~ATP binding	13	5	9	PDK1	7	7

				GSK3A,		
				PTK2B,		
				TNIK,		
				CDC42BPB		
				, PFKP,		
				STK32C,		
			0.0050007	MTOR,	3.5469755	0.2433685
GO:0016301~kinase activity	8	20	2	PDK1	5	7
				GSK3A,		
				TNIK,		
				CDC42BPB		
GO:0004674~protein				, STK32C,		
serine/threonine kinase			0.0085983	MTOR,	4.4691891	0.2653862
activity	6	15	6	PDK1	9	7
1	_		-		-	
				GSK3A,		
				PTK2B,		
				TNIK,		
GO:0004712~protein				CDC42BPB		
serine/threonine/tyrosine	_		0.0090885	, STK32C,	4.4103840	0.2653862
kinase activity	6	15	7	MTOR	7	7
				PDP1,		
				PPP5C,		
				HEXB,		
				PTK2B,		
				CDC42BPB		
				, PFKP,		
				MTOR,		
GO:0044877~macromolecul		22.	0.0226179	PAFAH1B1	2.4289071	0.5503707
ar complex binding	9	5	8	, PDK1	7	7
		-		GABBR1,		
GO:0004888~transmembran			0.0303691	ADGRB2,	10.474662	0.6334128
e signaling receptor activity	3	7.5	0.0303091	NRXN2	2	0.0334128
c signaining receptor activity	,	ر. ,	_	INIXAINA		
				GRM2,		
GO:0004930~G-protein			0.0418887	GABBR1,	8.8207681	0.7644689
coupled receptor activity	3	7.5	1	ADGRB2	4	7
				PDP1,		
				USP14,		
				AFG3L2,		
				PPP5C,		
				ATP8A1,		
				SACM1L,		
				HEXB,		
GO:0016787~hydrolase		22.	0.0641634	TPP2,	1.9872876	
activity	9	5	3	BLMH	8	1

GO:0008233~peptidase activity	4	10	0.0810994	USP14, AFG3L2, TPP2, BLMH	3.7874484 7	1
GO:0000166~nucleotide binding	12	30	0.0853324 3	AFG3L2, GSK3A, ATP8A1, ATP2B4, PTK2B, TNIK, CDC42BPB, ADSS, PFKP, STK32C, MTOR, PDK1	1.6271319 9	1
GO:0016740~transferase activity	8	20	0.0917338 8	GSK3A, PTK2B, TNIK, CDC42BPB , PFKP, STK32C, MTOR, PDK1	1.9688058 1	1
GO:0005515~protoin		57	0.0070672	USP14, GSK3A, GABBR1, ATP8A1, SGIP1, SACM1L, CLTC, ATP2B4, NRXN2, VPS26A, CDC42BPB, ANK1, MTOR, AFG3L2, PPP5C, ADGRB2, PSMD3, PSMD1, PTK2B,	1 2684026	
GO:0005515~protein binding	23	57. 5	0.0970673 4	TNIK, MAP4,	1.2684026 6	1

		SCYL2,	
		PAFAH1B1	