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Abstract 

 

The provision of a secure, continuous energy supply is becoming an issue for all sectors of 

society and the food processing industry as a major energy user must address these issues.  

This paper identifies anaerobic digestion as an opportunity to go some way to achieving 

energy security in a sustainable manner.  However, a number of energy management and 

waste reduction concepts must also be brought into play if the environmental, social and 

economic aspects of sustainability are to be balanced.    The reporting of such activity will 

help to promote the green credentials of the industry.   Cleaner production, supply chain and 

life cycle assessment approaches all have a part to play as tools supporting a new vision for 

integrated energy and waste management.  Our reliance on high-energy processing, such as 

canning and freezing/chill storage, might also need re-assessment together with processing 

based on hurdle technology.   Finally, the concepts of energy and power management for a 

distributed energy generation system must be brought into the food processing industry.  

 



 

1. Introduction 

 

The food processing industry (FPI) is the major manufacturing sector in the UK (about 15% 

of the total manufacturing output with a turnover of £70 billion) and a major employer (about 

400-500,000 people directly, about 14% of the total manufacturing workforce). It is the 

fourth highest industrial energy user (70 TWh and 13 million tonnes of carbon dioxide in 

2000) (Carbon Trust, 2006) and also a waste producer in its own right and any steps it takes 

towards sustainable practices will be a major benefit in the UK fight towards a sustainable 

future.   The waste arisings in the UK food industry supply chain indicate that the 

manufacturing element  (FPI) generates about 2.5 million tonnes of food waste (about 50% of 

total food manufacturing waste) compared with 8.3 million tonnes of food waste generated by 

households  and 600,000 tonnes by the hospitality industry.(WRAP, 2010, 2011).    The 

sector includes over 6,500 businesses most of which are small or medium-sized enterprises.  

 However, as a processing sector the FPI sits in between the supplier of its raw materials 

(agriculture and fisheries) and its consumers (the food retail sector and ultimately the 

consumer – you and me).  The FPI is the buyer of about two-thirds to three-quarters of all UK 

agricultural produce and involves about 1.2 million people indirectly in the food supply 

chain.  Thus, when considering the sustainability credentials of the FPI we must take into 

account its position in the supply chain from raw materials to final disposal.  A decision on 

the limits of the responsibility of the FPI will have a marked influence on the sector’s impact 

on the environment (such as energy usage and Greenhouse Gas (GHG) emissions), society 

and economics.  It could be argued that the major arbiters of sustainability are the big 

supermarkets which dominate UK food retailing and who, in appealing to consumer pressure 

for sustainable foods, make demands on the FPI and before that to the agriculture and fishing 



sectors for sustainable practices which can be evidenced.  Techniques such as Life Cycle 

Assessment (LCA), Carbon Footprinting (CF), Eco-labelling, Supply Chain management and 

responsible resourcing have all been used to promote the sustainability credentials of the food 

industry as a whole.  The Triple Bottom Line (TBL) approach which recognises the need for 

environmental, social and economic balance in attaining sustainability should be reflected by 

companies in their Corporate Social Responsibility (CSR) activities.   

 

Food processing covers a wide range of technologies which are designed to make the final 

products safe, stable and attractive to the consumer (a combination of different flavours, 

aromas and textures).  These technologies involve varying degrees of energy consumption in 

the primary production, processing (see Table 1), retail distribution, use by the consumer and 

final disposal.   Another major concern for the sustainability of the FPI is water usage which 

occurs in cleaning and washing; grading and transport and process heat, steam generation and 

cooling operations.  Water usage is also associated with the generation of polluting effluents 

and the potential loss of valuable by-products.   These four elements: energy, water usage, 

effluents and valuable by-product recovery are crucial elements in improving the 

sustainability of the FPI and are also bound up in the concept of cleaner production which is a 

process analysis aimed at roughly the same goals.  All these issues are considered for the fish 

processing industry as a good example for the challenges facing the FPI generally (Hall, 

2010). This paper will deal only with energy, indicating sustainable generation options and 

the wider concepts associated with this particular process element which must be addressed 

to provide an all-encompassing solution.     

 

 

 



2. Energy 

 

The high energy usage in the FPI (as indicated in Table 2 in comparison to other industrial 

sectors) allied to the rising cost and tighter availability of fossil fuels suggests that alternative, 

long-term energy supplies must be investigated.   The extent of autogeneration of electricity 

by the food industry is currently low, averaging around 400 MW annually from 2005 – 2010. 

(DECC, 2011), suggesting that there is a big gap between consumption and autogeneration 

which could be made up, to some extent, by appropriate renewable energy recovery from 

wastes.    

 In addition, new attitudes to energy management and accounting are required and even a 

reassessment of how we process and distribute food in an energy-limited world.  The first 

consideration is deciding the most appropriate alternative energy system for the FPI taking 

into account the resources at its disposal, energy demands and site-specific issues.  In 

addition, the management and integration of energy generation and usage for the FPI must 

take its place in the wider context of national energy strategy and policy.  Finally, we must 

identify the tools which will allow a thorough analysis of energy usage so that improvements 

can be evidenced. 

 

2.1 Anaerobic digestion 

 

Given the nature of the raw materials available one technology which seems well suited to 

the FPI is Anaerobic Digestion (AD) a process in which biodegradable material is broken 

down by micro-organisms, in the absence of oxygen, to yield biogas (mainly methane with 

some carbon dioxide). 



The process typically operates at mesophilic (25 - 45
o
C) or thermophilic (55 - 70

o
C) 

temperatures with the higher temperature range enhancing the extent and rate of biogas 

production but at the expense of the need for greater control and sophisticated equipment.  A 

low temperature (psychrophilic) system (5 - 15
o
C) is possible providing a simple, low cost 

but low performance option.  The AD process can be batch or continuous, the raw material at 

high or low solids content and operated in single or multistage fashion.  Some plants operate 

a pasteurisation process to ensure bacterial hygiene in the final digestate to conform to the 

EU Animal By-products Regulations where appropriate (EU Commission, 2002) although the 

thermophilic process should meet these requirements.  The raw material can be, “seeded” to 

establish a high population of anaerobic organisms and speed up the AD process.   Thus, we 

have a flexible system which could be operated in association with a food processing plant 

under a variety of conditions and technology levels.  Other products from the AD process are 

a nutritious liquor (which if not utilised is a potential pollutant) and a solid residue 

(containing lignocelluloses, for example, unaffected by the AD organisms) which can be used 

as a soil conditioner.  The process is the same as that which occurs naturally in landfill but 

the methane is utilised rather than contributing to GHG in the atmosphere.  The methane 

produced can be used to generate heat and/or electricity (mainly via Combined Heat and 

Power (CHP) plant), fed into the national grid (as biomethane) or used as a vehicle fuel, after 

suitable removal of contaminants in both cases, some may be recycled to provide 

thermophilic conditions in the AD plant.  Thus the AD process contributes to a reduction in 

GHG emissions (and carbon footprint) by: 

- the replacement of fossil fuels (resource substitution) 

- reducing methane from landfill (carbon dioxide produced by burning the methane is 

about 25 times less damaging as a GHG and is recycled by green plants ) 



- reduced vehicle movements (the waste is used on-site) which complies with the 

proximity principle of  treating and processing waste as near to the source of 

production as possible 

- biogas and/or electricity are used on-site (no losses in electricity grid transmission, 

typically 9%)  (Environmental KTN, 2007). 

 

In addition, the use of AD by food processing plants is attractive because: 

- it contributes to energy security for all or part of their processing needs and by the 

sale of excess energy to a national supply grid 

- most food wastes can be utilised alone or in combination 

- the AD plant will be on-site so there is no need to move potentially dangerous wastes 

off site with the need for movement permits 

- many food processing factories will be purpose-built on sites distant from the general 

public so that common environmental nuisances (smell and vermin) can be minimised 

(these are important planning issues in the UK) 

- food processors are experienced in handling their processing wastes and understand 

their nature 

- the AD process (a fermentation) is not unfamiliar technology for food processors 

- the AD technology is well established (SCP, 2008).   

 

Another concept driving AD as an energy option is that of, “decentralised energy”, also 

known as distributed energy.  The concept covers a wide range of technologies not reliant on 

the high-voltage electricity transmission network or a gas grid and leads to: 



- the efficient use of  energy by CHP and reduced transmission losses (30-40% of 

power station fuel is converted to waste heat and cooling requires access to adequate 

water supplies)  

- the use of renewable low CF energy sources 

- flexibility of generation 

- energy security 

- an awareness of energy generation by the community through closer engagement with 

the generation process – a very necessary attitudinal change.    

 

Barriers to the take-up of AD (or any other decentralised energy generation) by industry are a 

combination of financial, technology and management issues.  Financial considerations 

include the current high initial capital cost of new technology which should be offset by 

lower operating costs (cheaper energy) and the means to achieve a balance between these two 

elements.  Other financial considerations are the arrangements for buying and selling energy 

to a national grid, and fluctuations in fuel prices which make the calculation of savings 

difficult.  These are essentially accounting issues and may require a new management vision 

if the new technologies are to be given a fair chance.  Application of a full LCA and CF for a 

process which account for the full cost of carbon (and emissions) might be such a vision.  

Although decentralised energy technologies are well developed and proven there is still 

uncertainty attached to them in some quarters which could be ameliorated by the introduction 

of validation and certification schemes and development of a service and maintenance sector 

in support of the technology.  Finally, there is a need for a new generation of decentralised 

energy sector professionals to manage the technology, regulatory issues such as planning and 

the contractual relationships covering the energy produced (Environmental KTN, 2007). 



In addition, the take-up of any new technology is also affected by political, macro-economic 

and social factors which can act as stimulants or barriers e.g. Renewable Energy Certificates 

(ROCs) are awarded in the EU to renewable energy sold to the central electricity network 

which works as a financial incentive.  Feed-in-tariffs (FIT) have been introduced in the UK 

since April 2010 along similar lines to encourage renewable energy generation, reward 

reduced use of the grid and to pay for power exported to the grid.   On the other hand low 

landfill taxes will encourage that practice by being cheaper than installing technology to 

utilise the waste.  The EU approach is for a steadily increasing land fill tax which will one 

day make the alternatives attractive (SCP, 2008). 

Another influence on FPI energy performance is the UK Government CRC Energy Efficiency 

Scheme (previously the Carbon Reduction Commitment) which is a mandatory scheme to 

report and price carbon emissions from substantial energy users (more than 6,000 MWh pa 

equivalent to an annual energy bill of £500,000).  The CRC came into force in 2010, aiming 

to drive down carbon emissions, and in the light of experience since that date a simplification 

of the scheme is being put in place.  Participants in the scheme will be able to buy allowances 

for carbon emissions annually (based on their previous year’s emissions) and those showing 

good carbon emission reduction will benefit year on year.  The scheme will publish 

performance league tables giving participants a reputational incentive through reporting their 

carbon reduction activities.   Thus, the socio-political dimensions of energy management, 

carbon reduction and climate change will have a bearing on the approach of the FPI to 

technologies such as AD.     

The AD process itself consists of four biological stages in transforming the raw material into 

the biogas (see Figure 1): 



- hydrolysis of the large organic polymers (carbohydrates, lipids and proteins) into their 

small molecular weight constituents (simple sugars, fatty acids and amino acids) 

- acidogenesis conversion of the small molecular weight components into carbonic 

acids, volatile fatty acids (VFA) and alcohols with hydrogen, carbon dioxide and 

ammonia as by-products.  High levels of VFA will reduce the system pH which will 

inhibit the methanogenic bacteria in stage four below.  

- acetogenesis conversion of products of acidogenesis into mainly acetic acid (with 

carbon dioxide and water) through the action of acetogenic bacteria 

- methanogenesis conversion of acetic acid (and hydrogen produced along the way) 

into methane (with some carbon dioxide and water) which occurs best at pH 6-5 – 8.0 

through the action of methanogenic bacteria.  The composition of the biogas can 

range from 50 - 75% methane and 25 – 50% carbon dioxide with traces of other gases 

such as hydrogen sulphide, nitrogen and hydrogen.  These minor contaminants must 

be removed as they cause corrosion in generators, vehicle engines and mains 

pipelines.  The conversion of biogas to biomethane, suitable for mains injection, also 

increases the calorific value of the product.  

 

The extent and rate of conversion of raw material into biogas is highly dependent on the 

nature of the feedstock which, above all, should be of consistent composition and free of 

contamination by plastic, glass and metal.  The raw material C:N ratio is important as 

ammonia is a potent inhibitor of the methanogenic bacteria so that protein-rich raw material 

(such as from fish processing) may require balancing with the addition of carbohydrate-rich 

material (Ward & Slater, 2002).  On the other hand carbohydrate-rich material leads to high 

VFA and hence low pH, also inhibiting the methanogenic bacteria, which can be buffered by 

the ammonia producing protein-rich material.   However, co-digestion of carbohydrate-rich 



and protein-rich materials does not always give the expected results (Callaghan et al., 2002).     

Moisture content is crucial in terms of mechanical handling, pumping and plant size but also 

determines the hydraulic retention time (HRT) for the process – the time during which the 

material is held in the reactor.  Liquid wastes tend to have a short HRT but solid wastes may 

take over 30 days and require good mixing (Ward & Slater, 2002).   These are all factors 

which for a food processing plant are under their control as they are using their own materials 

and are responsible for their condition.  

 

Other technologies for converting waste to energy over a range of conditions exist such as: 

- direct combustion (incineration) using high capacity (100 - 250,000 ton per annum) 

conventional fluidised beds and, “moving grate”, systems.   Great care must be taken 

to ensure complete combustion and flue gas clean up takes up a considerable part of 

the process.  Incineration in approved plants is the only route for the most dangerous, 

Category 1, food by-products (EU Commission, 2002) and probably not appropriate 

for energy substitution in the FPI 

- gasification where the biomass is  heated  (above 750
o
C) in a low-oxygen atmosphere 

to generate syngas, a mixture of hydrogen and carbon monoxide, which fuels a 

generator for electricity (and heat in CHP).  Plasma systems (at 6 - 10,000
o
C) yield 

gas and a vitrified slag. 

- pyrolysis in anaerobic conditions (above 430
o
C) yielding a crude petroleum-like 

mixture including fuel gases. Pyrolysis at 250 - 300
o
C yields biochar which is added 

to soils to improve fertility and sequester carbon (Sohi et al., 2010) as in the terra 

preta soils of the Amazon basin .   

 



When compared to these alternatives AD is a good option in terms of conversion efficiency, 

scale of operation, carbon savings and affordability (Defra, 2007).  For AD the conversion 

efficiencies are 30 – 35% (for electricity) and 80% (for CHP) and a 20,000 ton per annum 

plant needed a capital outlay of £7.3 million (Defra, 2007). A SWOT analysis for anaerobic 

digestion for food processing waste indicates the issues facing the up-take of this technology.  

The Strengths relate mainly to the suitability of the technology to food wastes generally and 

the Weaknesses are for specific food wastes as a raw material (and the need for co-digestion 

mentioned earlier) with some process scale and materials handling problems.  The 

Opportunities are great and are mainly in the need for the food processing industry to respond 

to the changing energy provision situation whilst the Threats are from competing 

technologies and peripheral activities.   For example, small scale wind turbines (rated at < 50 

kW) and designed for the specific food processing plant site would be an alternative and 

compatible technology provided the wind conditions were suitable.   Such a threat, if it exists, 

could be overcome by an energy management system which utilised both forms of energy 

generation (see 2.3 below).  However, the latest UK Government AD Strategy and Action 

Plan emphasises the importance of waste-to-energy conversion and the great potential for the 

technology to utilise FPI wastes (Defra, 2011).       

The inevitable result of the continuing focus on energy and waste savings in all aspects of 

society (brought about by the climate change and the global energy resource and supply 

debates) is the integration of energy and waste management in the processing industries.  The 

use of carbon as a currency of account would connect these, apparently different, aspects of 

production.  The feasibility of using waste as a source of energy, as opposed to conversion to 

other valuable by-products, will become an issue as cost and availability of fossil fuels 

becomes problematic.  For example, energy usage in the transport of food and food products 

is an important factor, particularly where international trade is common.  The production of 



biodiesel as a transport fuel from seed oils by transesterification of the triglycerides into 

methyl esters is well established and the use of fish oils as a raw material has also been 

demonstrated.  The biodiesel could also be used in generators for off-grid electricity 

production.   This is still an example of by-product utilisation, but shows, once again, that 

there is scope for the FPI sector to work beyond its normal boundaries in a sustainability area 

to beneficial effect.  

2.2 Energy saving and alternative processing 

The manipulation of temperature for food processing and in the supply chain has overtaken 

other traditional methods such that heat processing, mechanical drying and the removal of 

heat are the predominant methods of food preservation in the developed world.  Processes 

based on salting, pickling, fermentation and other means of altering water activity are seen as 

poorer products.   Notwithstanding the interest in Europe and North America in, “ethnic”, 

foods with strong flavours, many consumers have lost the taste for high salt, vinegary or 

fermented flavours, odours and tastes.    Their presence has also been associated with, 

“chemical”, food, unnecessary additives and, “E numbers”, all with negative connotations.   

However, these low-tech approaches are also low energy, being effective at ambient 

temperatures and form the basis for many traditional foods where empirical approaches have 

developed products over many years (Leistner, 2000). 

 

 The use of a combination of barriers to microbial growth and possible spoilage or 

pathogenicity has been called, “hurdle technology”, (Leistner, 1978, 1985) and many 

potential hurdles for foods have been identified (Leistner, 1999) including those which also 

change the food flavour in addition to enhancing safety (for example the products of Maillard 

reactions).  Table 3 gives a list of selected hurdles which could be applied and the use of high 

or low temperatures are included although, with sustainable processing in mind, hurdle 



technology should be applied to reduce the severity of heat treatments and the need for low 

temperature storage.  The hurdle technology approach has not been widely adopted through a 

combination of consumer and producer perceptions of the danger of, “getting it wrong”, and 

the relatively low cost of energy which make thermal processing acceptable.  The need for a 

more sustainable and energy efficient FPI should bring about a reassessment of multi-barrier 

food processing.    

 

In the meantime, efforts are being made to make inevitable heat-related processing, such as 

thermal processing and freezing/chill storage more energy efficient.  Energy savings can be 

made retrospectively or, better still, done at the initial design stage and should be allied to 

good management practices which make the best use of the specific process characteristics. 

For example energy consumption can be reduced in the freezing/chilling sector by:  

- reducing the freezing time as this will reduce other energy usage associated with the 

central process 

- reducing heat leakage caused by poor insulation of the pipes and valves and through 

the doors and curtains in cold stores.  Good cold store management will reduce the 

number of loading and unloading events and lessen the frequency and length of time 

when doors are open and also the  contribution  from the body heat of workers in the 

store and so save on the energy required to maintain the cold store temperature     

- limiting defrosting cycles.  Defrosting is necessary to remove moisture (from the 

food product) which has been circulated to the condenser, reducing its efficiency, 

and must be removed by closing down the freezing operation and warming the 

condenser to melt the ice.  The need for defrosting can be reduced by packaging and 

good plant management – balancing freezing rate against defrosting schedules 



- controlling the use of heat-generating fans which circulate air in the system as 

significant energy savings can be made without compromising the freezing rate  

- Lighting controls can be motion activated to dim the lights when not needed and 

energy-savings bulbs and lighting strips can all contribute to less energy usage and 

maintain the cold store temperature   

- recycling waste heat removed in the freezing operation, where condenser heat in 

particular  can be used for pre-heating boiler and clean-up water.  

Attempts to improve the freezing process usually concentrate on reducing the freezing time 

and techniques tend to be adjuncts to the conventional technologies and have not yet achieved 

commercial acceptability.  Some examples are: 

- partial freezing where the fish is reduced to a temperature below -1
o
C with only 30-

70% of the water frozen (“superchilling”) has been described for many years 

(Kreuzer, 1969).    

- ultrasonics involves the use of sound waves throughout the product to increase ice 

crystal nucleation leading to small crystals and better texture (Nesvadba, 2003). 

- Pressure shift freezing is another process giving rapid ice crystal nucleation 

throughout the product.  The product is first pressurised to 2000 atmospheres, 

chilled to -18
o
C and, on release of the pressure, rapid nucleation of the liquid water 

takes place, followed by further freezing (Li and Sun, 2002).  There are some 

problems with the combination of technologies at play but research continues, 

particularly in Japan (Kolbe and Kramer, 2007) where high pressure food 

processing is well developed. 



- adsorption refrigeration has been promoted as an energy efficient process which 

can utilise waste energy from other parts of the processing plant, from renewable 

sources (geothermal or solar) and from diesel generators which are common in off-

grid locations.  It is also based on ammonia as the refrigerant and water as an 

adsorbent (good sustainability options).  The process uses molecular forces and 

thermal energy for compression of the refrigerant and release to the high-pressure 

side of the cycle unlike a conventional mechanical system (Kallenberg, 2003).  . 

- air-impingement freezers are air-blast systems with high velocity jets directing cold 

air onto the food surface which favour rapid freezing rates for thin products (fish 

fillets for example) similar to cryogenic systems (Salvadori and Mascheroni, 2002).  

 

2.3 Energy management    

 

Energy management has already been mentioned in the context of the attitude of the FPI to 

new energy generation, such as by AD, and the need for a new vision was proposed through 

new approaches to financial and energy accounting (LCA and CF).   However, the emergence 

of distributed/decentralised energy generation (for example, AD, wind, solar, tidal, micro-

hydro and ground-source-heat-pumps) in tandem with current centralised power generation 

(conventional power stations and the national grid) also demands a new vision for Energy and 

Power Management (EPM).   An EPM system is required which can monitor and control 

multi-directional energy flows to ensure security of supply (for example, local, “Islands”, of 

generation which could be linked to a, “Mainland” grid), best-cost supply (in-house or grid) 

and develop the contractual/commercial relationships which would be governed by these 

EPM systems.  The evolution of a, “Smart Grid”, is the current holy grail and will rely on a 



new generation of monitoring devices and, most importantly, communications for the control 

and coupling together of more than one energy generation regime at a specific location and 

its relationship with a national grid (Rodriguez-Roncero, 2008).   A food processing plant 

could utilise a combination of wind, solar and AD energy to be used for heat and power (via 

CHP) and for fuelling its vehicles and reduce dependency on the national grid.  Future 

developments should allow energy storage and possibly hydrogen-based fuel options.   The 

concept of EPM must be embraced by all energy users from large utilities to individual 

homes; the FPI is no exception and given its high energy usage should be one of the flag 

bearers for this new approach.    

 

 

3. Supply chain approach   

 

Successful companies, particularly those large companies with many business interactions, 

have used interventions in the supply chain to streamline operations and gain commercial 

benefits through: increased efficiency and productivity; product development and reduced 

waste.  A reasonable question to ask is, can the same approach reduce GHG emissions, 

reduce the CF and promote reduced energy consumption?  The answer is undoubtedly, 

“Yes”, but when GHG emissions, an LCA or a CF are taken into account current operations 

along the supply chain might require change to have a positive environmental impact.  

Actions to reduce the CF, such as energy (or water usage) reductions, will also give overt 

economic benefits (or might not be considered for implementation at all) but can also 

contribute to good public relations (contributing to CSR and the TBL).  The supply chain 

approach must be applied in an all-embracing manner, rather than each company in the chain 

(including the central operation) looking only at the contribution of their own activities with a 



cumulative effect– which would be the traditional way to proceed.  Such a co-ordinated 

approach demands collaboration (and trust) up and down the supply chain, around the central 

operation, with savings being identified for the product as a whole.  The Carbon Trust in the 

UK is one organisation which has developed supply chain models and supported case studies 

(Carbon Trust, 2006).  Figure 2 illustrates the components of the supply chain carbon savings 

methodology indicating where carbon savings can be made by the central operation and the 

supply chain.  There is great emphasis in the analysis on energy saving and generation to 

reduce the CF.  

    

The FPI which processes primary products for the consumer is a good example of the supply 

chain approach.  The emissions associated with supplying food to the plate can be divided 

into: direct emissions from energy consumed in the home; indirect emissions from the supply 

chain and travel emissions in getting the food to the home.  Direct emissions in the home 

represent about 23%, indirect emissions along the supply chain are 69% and transport is 8% 

(Carbon Trust, 2006).  Thus, the food industry has a large supply chain component which, if 

mobilised appropriately, could have a massive SD impact and the central company by 

influencing its suppliers could have global impact and deliver genuine TBL benefits.  The 

FPI with its emphasis on trade, and particularly developing-to-developed country product 

flows could be a prime example of beneficial supply chain interventions.  For example, Iles 

(2007) argued that seafood producers could be made more accountable through a production 

chain view and associated pressures making them more transparent in the process and 

suggested ways to achieve this, such as: 

 

-  identify and track companies to remove their invisibility 

-  develop product chain campaigns so that companies influenced each other 



-  develop mechanisms to compare companies to improve industry practices 

-  develop methods to track consumption, production and management changes 

- develop interactive consumer tools so that consumers get feedback on their purchasing 

habits which can also be fed back to the producers. 

 

Further, Thrane et al (2009) emphasised the importance of the supply chain approach for 

ecolabelling which would include not only the fishing operations but also the post-landing 

operations which have been shown to have high environmental impact.  

 

4. Global Reporting Initiative reporting 

 

The Global Reporting Initiative (GRI) has developed sustainability reporting guidelines to 

encompass the three areas of the TBL – the current guidelines are the third generation (G3) 

and still subject to scrutiny and change.  Starting from a number of common principles the 

reporting framework (based on the G3 guidelines) includes specific sector supplements to 

reflect unique sectoral issues and community impacts. It is also developing supply chain 

sustainability issues through a Global Action Network (GAN) project (Global Reporting 

Initiative, 2010).   Food Processing is one of the specific sectors covered and the main sector 

topics for reporting were developed in a two year process involving a varied working group 

from the FPI and are given here: 

 

- Sourcing 

- Labour/management relations 

- Healthy and affordable food 

- Public policy 



- Costumer Health and safety 

- Product and service labelling 

- Marketing communications 

- Breeding and genetics 

- Animal husbandry 

- Transportation, Handling and Slaughter. 

 

The topics listed above reflect the particularly sensitive business of food production and the 

consumer’s perception of the industry where expectations are becoming more and more 

stringent.   Energy generation and savings are not included but a similar exercise done now 

would undoubtedly have it high on the agenda.  A fundamental question raised earlier is 

whether there can be a coherent approach to sustainability in the FPI sector and, if not, is this 

important?   The development of a standardised set of sustainability criteria would have 

benefits such as: 

 

- making realistic comparisons between companies and different sub-sectors 

- ensuring robust methodologies of assessment through application in a variety of settings 

- making knowledge transfer from industry-to-industry or academia-to-industry easier 

- establishing a common language of sustainability to be used in negotiations and 

enforcement of (inter)nationally agreed treaties and protocols  

- giving legitimacy to CSR and make communication with the lay public more transparent 

- reducing the cost of producing LCA through economies of scale and standardisation of 

inputs with IT-based support. 

-  



At the same time the different scale of operation and range of processes and products within 

the FPI sector militates against a rigid approach and some sub-sectors face specific 

sustainability issues which must be addressed in a unique manner – energy usage being a 

good example.   GRI does provide downloads of protocols addressing the topics listed above 

as reporting guidelines (Global Reporting Initiative, 2010).   Although only one approach to 

sustainability reporting in business the GRI does point the way towards making the TBI the 

real bottom line. 

 

 

5. Cleaner Production 

 

Cleaner Production (CP) aims to reduce waste, generate new products and reduce energy and 

water usage as a contribution to the LCA of the FPI and has been defined as, “the continuous 

application of an integrated, preventive, environmental strategy applied to processes, 

products and services to increase overall efficiency and reduce risk to humans and the 

environment”, (UNEP, 2000).   A similar approach is that of, “eco-efficiency”, which 

recognises the need for sustainable exploitation of renewable natural resources, such as for 

food production.  

 

 The application of CP in the FPI is significant because of its central role and major 

contribution to the CP and LCA of food products.   CP can be applied: from product and 

process design, through distribution to final disposal in a pro-active manner rather than as an, 

“end-of-pipe” application (i.e. it can also be applied through the supply chain).  The 

application of a CP assessment follows a very similar series of phases as does the LCA such 

that information gleaned for one form of assessment could be used for the other.   The CP 



assessment phases are: Planning and organisation; Pre-assessment; Assessment; Evaluation 

and feasibility study and Implementation and continuation (UNEP, 1996) and thus very 

similar to those of the LCA.   The contribution of CP (and eco-efficiency) to the SD agenda 

could evolve in such a way that the three concepts may become inseparable in time and CP 

will contribute to the TBL through protecting the environment, process worker and consumer, 

improving process efficiency and increasing profitability and competitiveness (UNEP, 2000).   

The social benefits accruing from this approach could be direct, in job security and profits 

shared by all, and indirect through long-term sustainability of the FPI.     

 

 

6. LCA development 

 

Life Cycle Assessment (also called Life Cycle Analysis) is the investigation and evaluation 

of all the environmental impacts of a given product, process or service.   Concepts such as CF 

and Ecolabelling rely on LCA for their credence as it is provides a methodology which has 

some international standing and uniformity.  However, there are variants on the basic LCA 

definition, some being broader or narrower than others and an LCA can be used for specific 

elements of a product stream, such as energy, although there is scope for error due to the 

complex supply chains involved in the FPI, as mentioned above.   The brief description of an 

LCA process given here is based on that of the International Standards Organisation 14040 

Series which is a generally recognised (ISO, 2006).  The origins of the approach can be 

traced back to the 1970s in the UK, USA, Sweden and Switzerland (Boustead, 1996, Hunt 

and Franklin, 1996, Oberbacher et al., 1996) and its development in the FPI at large has been 

supported by work in Scandinavia (Morgensen et al., 2009). 

An LCA will normally be divided into four activities: 



Phase 1: Goal and Scope: the goal decides which aspects of the operation are included 

(setting the system boundaries), whether all aspects are included or specific aspects such as 

energy. The system boundaries are set by the scope definition and can be divided into four 

phases: (1) pre-manufacture, (2) manufacture, (3) packaging and distribution and (4) use and 

end of life. Consideration of all phases would be, “cradle-to-grave”, or can be more limited 

such as, “cradle-to- factory gate”, which would only include the first two phases.  This phase 

also decides the purpose of the LCA and for whom it is being done as this will affect the data 

collected and its conversion to meaningful units.   

If a processing plant produces more than one product (co-products) then there must be an 

allocation of impact between them. The simplest approach is that of system allocation which 

can be made on the simple basis of the mass of product or the economic value of the product.  

However, this approach does not seem to discern between any differences in process 

operations which lead to the co-products – not all process operations have equal impact. An 

alternative approach (preferred by the ISO 14040 series) is system expansion whereby the co-

products are considered as alternatives to other products available globally and an allowance 

made for this substitution in calculating the impact for the main process.    

Phase 2: Inventory analysis: is a data collection phase and includes all inputs (e.g. energy), 

outputs (products) and emissions (to air, water, soil and solids) or those selected for 

inclusion.  Accurate, relevant information is essential and must be available or derived from 

secondary data such as utility bills for gas and electricity.   Various databases exist for 

generic activities such as conventional electricity generation and some for specific food 

processes to make life easier.  This activity is the most time consuming and challenging if a 

company has not attempted any such exercise before.  It is also revealing for a particular site 

to discover whether its overall utility bills are accurate and adequately reflect the distribution 

of energy usage on-site.  For energy savings to be made it is essential to pinpoint the, “hot 



spots”, and this might entail sub-metering within the overall plant set-up.  Furthermore, a 

production system can be broken down into unit processes, batch or seasonal/annual 

production, whichever best defines the system in meaningful numbers – this is called the 

functional unit. 

Phase 3: Life Cycle Impact Analysis: in this activity the inventory analysis information is 

processed and first of all assigned to an environmental impact category with appropriate units 

which may conform to systems such as ISO 14000 Series or be process-specific.  Six 

common environmental impact categories are: 

- global warming where the main contributor is combustion of fossil fuels for various 

reasons and expressed as carbon dioxide equivalents (most relevant to energy 

generation and resource substitution by renewable generation) 

- acidification which affects waters, forests and in some cases buildings is caused 

mainly by combustion for electricity, heating and transport and expressed as sulphur 

dioxide equivalents 

- eutrophication which leads to algal blooms and oxygen depletion and fish deaths is 

caused mainly by fertiliser nitrogen run off into waters and expressed as nitrate 

equivalents 

- ozone depletion caused by man-made halocarbons (CFCs, HCFCs etc) 

- land use in the production of products and expressed as hectares per year (or m
2
 per 

year) 

- photochemical smog from volatile organic compounds (VOCs) produced from 

unburnt petrol and diesel and organic solvents causes respiratory problems and 

reduces agriculture yields - expressed as ethane equivalents. 

 



These categories are not exclusive and for certain applications the categories can be 

simplified or made process-specific.  Once categorised, any emissions should be converted to 

the reference units for that category using equivalence factors.   For CF, and hence energy-

related calculations, all inventory items are equated to GHG emissions and will require 

conversion to carbon dioxide equivalents for other gases, such as methane.  Udo de Haes and 

Heijungs (2007) discussing the use of LCA in energy analysis recognised its fundamental 

importance in all life cycles and capability of being separated from other aspects.  The 

traditional form of energy balance familiar to all process engineers is analogous to an LCA in 

many ways suggesting that tools for energy analysis within an LCA for the FPI will become 

available.     

A sensitivity check will determine the accuracy of the inventory data whilst a normalisation 

process will compare the relevant data to a reference system such as an existing process, for 

example.  Normalisation gives a relative magnitude of the process under consideration 

against impacts which are known and already quantified.   Finally, the inventory data can be 

weighted in terms of the most important environmental impact.  The weighting criteria are, 

again, areas of debate and can be based on: the judgement of a panel of experts; financial 

considerations and targets set by the company or government edict. 

Phase 4: Life Cycle Interpretation: the results of the impact analysis are compared with the 

original goal and scope of the project and judged, somewhat subjectively, against them.  This 

analysis need not be left until the end of the LCA process but can take place continuously to 

ensure that the LCA is really achieving the goals and the scope is correct.  This iterative 

approach to the interpretation of data will allow incremental improvements and/or changes to 

the goals and scope as necessary.   The final interpretations should indicate the completeness 

of the data, the appropriateness of the analysis and reach conclusions and lead to 

recommendations for process improvement.      



These four core elements of LCA are available in several software packages which lead the 

user through the phases, provide generic categories and conversion factors and impact 

assessment models.  Variants for specific applications and sectors abound and international 

cooperation has lead to greater uniformity and consolidation of methodologies (Finkbeiner et 

al., 2006).   A recent review of LCA in the food industry (Roy et al., 2009) described its use 

for a variety of agricultural products (bread making, dairy, meat among others) but also 

included packaging, land and water use and waste management considerations.   Common 

problems were: a lack of common functional units, the influence of non-food usage of crops 

such as for biofuels and the purpose of an LCA itself in a world with population, land and 

water pressures.  To reflect the latter case the functional unit could be the provision of a 

secure, healthy or a balanced diet and the production, distribution and consumption of foods 

should reflect this in any LCA.   Indeed the LCA approach has evolved, such that now 

separate environmental LCAs (E-LCA) and social LCAs (S-LCA) are recognised (Benoit et 

al., 2010).   A combination of an S-LCA with the GRI approach would lead the FPI towards 

the full TBL as the socio-economic spheres are addressed.       

As mentioned earlier, there is a demand for a new vision of energy management in the FPI 

and the thorough application of an LCA and a supply chain methodology are the potential 

tools which would give a sustainability-orientated approach.  Figure 3 shows the basic system 

boundaries which could be set up to isolate a food processing plant from peripheral activities 

(factory gate-to-finished product approach) for energy generation and usage, but indicating 

the nature of the external activities.   Although limited it does offer the factory the 

opportunity to assess the central operation of the FPI concerned. When supported by a supply 

chain analysis the influence of the peripherals can be added in perhaps with overall energy 

saving potential.  The ability to use these tools to give a specific and global view of an FPI 



will demand a new vision by management, a new accountancy and sustainability awareness 

not recognised in the past. 

 

 

7. Conclusions 

If the FPI is to get to grips with energy management it must embrace the widest definition of 

the subject and utilise the tools at its disposal to achieve these aims.  The UK multi-agency 

Global Food Security Strategic Plan 2011-2016 has four research themes, of which, two are 

resource efficiency and sustainable food production and supply, with GHG, energy and waste 

reduction as major goals within these themes.  The strategic plan is a response to the national 

and global drivers which will impact and on food security and hence on the FPI and its 

supply chain (author’s emphasis). Therefore, the use of CF and LCA, the Supply Chain 

approach and the advent of smart grids and a new energy management vision will all be 

needed for the strategy to succeed. 
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