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Abstract

Two-dimensional (plane) elasticity equations in solid mechanics are solved numerically with
the use of an ensemble of physics-informed neural networks (PINNs). The system of
equations consists of the kinematic definitions, ie. the straindisplacement relations, the
equilibrium equations connecting a stress tensor with external loading forces and the
isotropic constitutive relations for stress and strain tensors. Different boundary conditions
for the strain tensor and displacements are considered. The proposed computational
approach is based on principles of artificial intelligence and uses a developed open source
machine learning platform, scientific software Tensorflow, written in Python and Keras
library, an application programming interface, intended for a deep learning. A deep learning
is performed through training the physics-informed neural network (PINN) model in order to
fit the plain elasticity equations and given boundary conditions at collocation points. The
numerical technique is tested on an example, where the exact solution is given. Two examples
with plane stress problems are calculated with the proposed multi-PINN model. The
numerical solution is compared with results obtained after using commercial finite element
software. The numerical results have shown that an application of a multi-network approach
is more beneficial in comparison with using a single PINN with many outputs. The derived
results confirmed the efficiency of the introduced methodology. The proposed technique can
be extended and applied to the structures with nonlinear material properties.

Keywords: Plane elasticity equations, Partial differential equation, Physics-informed neural network
model, Computational artificial intelligence, Numerical simulation algorithm.



1 Introduction

Partial differential equations (PDEs) are used for mathematical modelling in many areas
of applied mathematics and mechanics, like physical, biological, financial and economics
problems. The underlying laws in those problems are expressed in the form of PDEs and
the related mathematical analysis is focused on the investigation of well-posedness and
uniqueness of solution. For practical applications with complicated domains, boundary
or initial conditions and properties of the continuous media, it is impossible to find
closed-form analytical solutions. Therefore, the question of numerical approximation of
the solution arises. Numerical mathematics and computational mechanics deal with this
question.

Artificial neural networks (ANNs) have been developed for the solution of machine
learning problems based on examples. The well-known example is the feedforward
backpropagation neural network model, which is trained based on given input-output
relations (data-set) in the sense of a supervised learning. These data can be created from
a model, describing, e.g. mechanical phenomena or measured in the laboratory. Training
is in fact an iterative process of the optimization problem to find the parameters of the
neural network in order to get an approximate solution. It's response for various inputs,
in a least squares sense.

Artificial neural networks have been adopted in different areas of science and
engineering, where data-set for training and testing are available. In particular, ANNs are
employed in elastoplastic and contact problems in mechanics by using the minimization
of energy. The Hopfield and Tank neural networks have been proposed by Kortesis and
Panagiotopoulos [22]. Inverse and parameter-identification problems in mechanics have
been solved by using backpropagation neural networks in Stavroulakis et al. [38], [39],
Stavroulakis [37], Drosopoulos and Stavroulakis [8], [9] Waszczyszyn and Ziemianski
[42]. Buckling loads in nonlinear problems for elastic plates have been calculated in
Muradova and Stavroulakis [31]. A recent review of classical usage of neural networks
within computational mechanics has been written in Yagawa and Oishi [44].

ANNSs have also been used to solve differential equations. In particular, usage of ANNs
for the solution of partial and ordinary differential equations has been proposed in the
similar works of Kortesis and Panagiotopoulos [22], Theocaris and Panagiotopoulos [41]
and Lagaris et al. [24]. Potential energy optimization can be integrated in the neural
network training and lead to the Deep Energy methods. Alternatively, the partial
differential equations and initial or/and boundary conditions are approximated on
collocation points by using automatic differentiation of the neural network.

After some years, the developments and the accumulated experience in the field of
deep learning and the appearance of user-friendly software that allows for automatic
differentiation in neural networks, led to the development of physics-informed neural
networks (PINNs) for solving direct and inverse problems, e.g. by Karniadakis et al. [19],
Raissi et al. [33], Tartakovsky et al. [40], Kadeethum et al. [18] and Faroughi et al. [11].
The unterlying idea behind PINNSs is the minimization of the energy functional or an error
functional, that is the residual ofthe PDE and the required initial and boundary conditions
(Guo and Haghighat [14]). Recently, PINNs have become one of the major numerical
techniques in solving scientific and engineering problems involving ordinary or partial



differential equations. It is one of the most promising research directions in
computational artificial intelligence which can model and solve direct and inverse
problems in mechanics within a unified framework, thanks to automatic differentiation
and modern open-source scientific software. In addition, PINNs can be combined with
classical numerical methods, e.g, spectral elements, achieving both high accuracy of
computations and flexibility.

PINNs have been applied in a wide range of scientific computing applications, e.g. in
direct and inverse problems, Karniadakis [19], Raissi et al. [33], Baydin et al. [2], Meade
and Fernadez [28], Shin et al. [36], in solid mechanics, Haghighat et al. [15], [16],
Muradova and Stavroulakis [29], [30], Katsikis et al. [20], in computational fluid dynamics
(CFD), Cai et al. [4], Haghighat et al [15] and in electromagnetics, Chen et al. [6].

In [32], a framework of finite-strain elasto-plasticity is proposed using PINNs,
considering rate-independent isotropic hardening. A mixed formulation approach
involving PINNs is proposed in [34], requiring up to first-order derivatives to construct
the physical loss functions. A PINNs framework is suggested in [10], presenting a mixed
formulation that can be used to find a solution for a non-uniform beam resting on an
elastic foundation, subjected to arbitrary external loading. In [17] a mixed formulation is
presented using PINNs, aiming to solve multi-physical problems, emphasizing in a
stationary thermo-mechanically coupled system of equations. A PINN formulation is
provided in [3], analyzing the nonlinear buckling behaviour of a three-dimensional
functionally graded porous, slender beam, which rests on a Winkler-Pasternak
foundation. In [5] the accuracy of the deep energy method, a type of PINN adopting the
principle of minimum potential energy to predict the mechanical response, is investigated
using a random Fourier feature mapping and other techniques.

Another recent direction in the field is the application of neural operators, where the
papers ofLu et al. [27] adopting the DeepONet neural operator, as well as Liet al. [25] and
Kovachki [23], using a Fourier Neural Operator (FNO) can be mentioned. These
techniques are more general, in the sense that they learn how to approximate differential
equations and then can solve any new problem, with different initial and/or boundary
conditions and physical parameters. The DeepONet has a NN for encoding the discrete
input function space and a NN for encoding the domain of the output functions and it is
based on the universal approximation theorem. In the FNO approach the integral kernel
is parameterized in the Fourier space.

In this work a computational intelligence scheme, based on an ensemble of PINNs, is
applied to the problem of two-dimensional elasticity. The proposed computational
approach is based on principles of artificial intelligence and uses Tensorflow, an open
source machine learning scientific software, and Keras library, an application
programming interface intended for a deep learning, both written in Python. A deep
learning is performed through training the PINN model in order to fit the plain elasticity
equations and associated boundary conditions at collocation points. The numerical
technique is tested on an example, where the exact solution is given.

Here, in contrast with the scientific computing methodology using artificial neural
networks [16], eight unknowns are considered in the plain elasticity equations with given
boundary conditions and external loading forces. The equations from the theory of
elasticity are simulated and solved with the use of ensemble of PINNs, formulating a



multi-PINN model. This model combines and connects two types of neural networks: a
surrogate and a residual neural network. The proposed architecture of the multiPINN
provides eight surrogate networks for the unknowns and one residual network for
training.

Itis noted that an approximate differentiation is an ill-posed problem in the sense that
if a function is approximated with some error, then the error of calculating the
approximate derivatives of this function can be quite big. For instance, the calculation of
the strains and stresses using the derivative of displacements involves an error, since
within traditional finite element analysis the displacement field is approximately
determined and calculating its derivative may increase the error. To overcome this issue,
one neural network is considered in this article for each unknown in the elasticity
equations. Thus, eight surrogate networks are intended for the unknown functions,
namely, the components of the strain and the stress tensors as well as the unknown
displacement field, respectively. The residual network provides the residuals of the partial
differential equations (PDEs) and of the boundary conditions. The proposed scheme
suggests, therefore, a novel PINNs architecture aiming to overcome the mentioned
accuracy issue. This summarizes the innovation of this work, since to the authors best
knowledge limited relevant literature can be found.

The numerical technique is tested on an example where the exact solution, i.e.
displacement components in x and y directions and external forces are known. The
predicted stress and strain tensor are computed by the PINN model. An investigation is
also conducted that includes the loss function, as well as the choice of the number of
hidden layers, neurons, training iterations, training samples (collocation points), and
batch sizes. To verify the proposed scheme, the displacements in the predicted by the
PINN model are compared with the exact solution at discrete points. Two examples are
also considered, where the numerical solution is compared with results, obtained after
using commercial finite element software ABAQUS. The sensitivity of the PINN’s
performance with respect to the hyperparameters, i.e., the number of layers, neurons,
training samples (collocation points) and the required time of computations has been
investigated.

The article is organized as follows. In Section 2 the plain elasticity equations are
described. The architecture of the proposed multi-PINN model is presented in Section
3. Here, the eight surrogate networks and the one residual network are constructed. In
Section 4 an introduction of the computational algorithm is provided, including the
feedforward neural network and backpropagation. The description of the algorithm in
Python programming environment with using key commands and methods of the
scientific software Tensorflow and Keras library is given. Section 5 presents numerical
examples, where the proposed PINN is applied on structural problems. Discussions and
conclusions are given in Section 6.

2 Elasticity equations

The elasticity basic equations consist of equilibrium equations of stresses, constitutive
equations that relate stresses and strains (Hooke’s law) and strain-displacement



relations. In two-dimensional case the partial differential equations for stresses with
external body forces read,

0ij+ fi=0, (1)

where 011 =0xx, 022 = 0yyand 012 = gxyare the components of the stress tensor and the their
partial derivatives oj; The functions fi = fx, f2= fyare external forces. The constitutive
equations in isotropic linear case are

0ij = ASijekk + 2UEi), (2)

where €11 = &xy, £22= €yyand €12 = €xy = €21 = gyxare the components of the strain tensor and
Aand yp are the Lam’e parameters.
The strain-displacement linear relations are written as

eij = 5 (Uij + 1) 3)
where u1 = uxand uz = uyare the displacements in x and y directions, respectively. In the
formulas (1)-(3), x,y are the Cartesian coordinates and (x,y) € Q, where  is the domain
of definition for the stresses, strains and displacements.

When a nonlinear material law is true, then equations (2) are replaced by nonlinear
constitutive relations (e.g. the Ogden polynomial models).

3 Architecture of the multi-physics informed neural
network model

As itis known, artificial neural networks (ANNs) have been created on the principles of
biological neural networks. A neural network consists of input, hidden and output layers.
Each layer provides neurons, which are connected with the neurons from the previous
and next layers. The procedure which supplies the network with an information
spreading from the input layer to the outputs, going through all the hidden layers with
neurons, is called feedforward. For a network with two input variables, the neurons in the
layers within the feedforward process, are connected with the formulas

z0=(xy) (4
Zk = S(Wg 21 + bk), k= 1,2, ...,Nl_ (5)

where the pair (x,y) represents the input of the NN (neural network), Wkis the matrix of
dimensions (nw-1) xnk) containing the weights, bkis the bias vector between k-1 and k
layers of the neural network, and N;- 1 is the number of the hidden layers.

The training of a network is perhaps the most important part of machine learning
since through this process aloss function (predicting the error of the neural network) is
minimized and the weights and biases are updated. For minimizing the loss function, itis
necessary to calculate the derivatives of the function with respect to its variables, weights



and biases. The backpropagation algorithm calculates all the necessary derivatives using
the rule of chain differentiation, starting from the last layer and moving backwards to the
input layer of the neural network.

Main optimization algorithms used in ANN training, are the Gradient Decent
Algorithm ([35]), the L-BFGS ( Limited-Memory Broyden-Fletcher-Goldfarb-Shanno),
([26], [12], [43]) and the Adam (Adaptive Moment Estimation) algorithm ([21]). The
Gradient Decent Algorithm minimizes the loss error function with respect to the weights
and the biases of the network which change in the opposite direction of the feedforward
process. The partial derivatives of the function with respect to each parameter are
calculated. The L-BFGS algorithm belongs to the family of quasi-Newton methods
developed by Broyden, Fletcher, Goldfard and Shanno. Newton’s method for minimization
problems requires the calculation of the Hessian matrix of the objective function, i.e. it
requires the calculation of second derivatives with respect to all the parameters, which is
computationally prohibitive in deep learning problems. In contrast, the quasi-Newton
methods approach find zeroes or local maxima and minima of functions.

PINNs are neural networks that allow solving ordinary and partial differential
equations in a specific domain area. The PINNs output is linearly dependent on the last
hidden layer. The output layer does not enter the activation function as usually happens
in ANNs. Therefore, instead of (4), (5) it is obtained

z0=(xy) (6)
Zk= S(WiT - Z-1+ bi), k=1,2,...,N;- 1, (7)
R ®

Here, for the investigated elasticity problem (1)-(3) the proposed ensemble-PINN model
combines and connects two types of neural networks: eight surrogate networks and one
residual network. The surrogate neural networks are intended for computing the
components of the stress tensor, oj (0j = 0j), the components of the strain tensor, &;(&;=
€ji) and the displacement field, uxand uy, respectively. These surrogate networks take as
input the coordinates of collocation points, where the equilibrium equations (1), stress-
strain constitutive law (2), strain-displacement relations (3) and given boundary
conditions are calculated. During the training process, each surrogate neural network
constructs an approximate solution, based on the activation functions, weights and biases
of the feedforward algorithm (6), (7) and (8). The neural quantities (expansions)
oNN NN NN ulVN ] )

ij %ij > %z and“v of the unknown functions oy &j uxand uy, respectively of the
system (1)-(3) which satisfy the associated boundary conditions, are the corresponding
outputs of the surrogate models. The architecture of the surrogate models, depicting the
output components of the stress, the strain and the displacements, are shown in Figures

1, 2 and 3, respectively.



Fig. 1: Architecture of the three surrogate neural models o'V, i,j = 1,2 (0xx, 0yy and oxy =

oyx) with the partial derivatives 0N computed by the automatic differentiation in the

multi-PINN.

Fig. 2: Architecture of the three surrogate neural models e¥Vj;, i,j = 1,2 (&xx, Eyyand &) in

the multi-PINN.

The residual network takes the input (the collocation points for the system and for the
boundary conditions) and the output from each surrogate network for training the multi-
PINN. The architecture of the residual model is illustrated in Figure 4. The residual

expressions are given below

E1 = OxxxNN + OxyyNN + fx,
E2 = 0xy,xNN + GyyyNN + fy,

E3 = 0xxNN — A(ENNxx + ENNyy ) — 2LLENNxx ,



NN NN
Fig. 3: Architecture of the two surrogate neural models Y1~ and %2 (Uz and uy) with

UNN

the partial derivatives "7 computed by the automatic differentiation in the multi-PINN.

_ NN NN NN NN
E, = Oyy — )‘(Ezmc +€yy )7 2U€yy

Es = ob)¥ —2uelY

Ty
_ NN NN
Es = Cxz — Upm
_ NN __ NN
Er = ey Uy,y

1
NN NN NN
Es = Exy — 5( z,y +uy,;c )

s

The output of the residual network is the loss error function, which is calculated as the
mean square error (MSE),

MSE = MSE. + MSE}, (9)

where MSE. is the loss error function for the system (1)-(3) and MSE} is the loss error for
the associated boundary conditions. The residual MSE. is computed as

Ny N2 8

MSE, = N11N2 ZZZ(E’“(%’%W

i=1 j=1k=1

where (x;y;) are the interior collocation points on the mesh NixN:. For the boundary
conditions, in case of the rectangular domain (0,/1)x(0,2), where I, > are the lengths of
the sides of the rectangular area, is considered as the investigated structure, the residual
MSE}) is written as

N>

MSE, = Ni Z [(Bo(0,4:))% + Ey(l1, 4i))?]

251

+E Z [(B(i,0)) + Ep(2s,12))?]

=1 s
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Fig. 4: Architecture of the residual model in the multi-PINN.

where Ep(0,y1), Ep(l1,yi), Eb(x;0) and Ep(x;L2) are the residuals on the boundaries and (0,y:),
(l,yi), (x;,0) and (x;I2) are the boundary collocation points.
All the residuals for the system (1)-(3) are being computed during the training

process. Therefore, the residual is the error obtained after substituting the approximate
oNN NN NN ulVN )
» i 0 Yz and Yy from the surrogate networks, in the system of

solution for“ij
equations (1)-(3).

It isnoted that the calculation of the residual requires computation of the differential
operators, entering in the system. This calculation is performed using automatic
differentiation ([2], [13]) that allows determining the differential operators at any given
point without adopting any discretization and mesh as it usually happens in difference
methods. The residual network provides the surrogate networks with the loss function
(mean square error). The parameters of the neural networks, namely, the weights and
biases, are being updated during the training process by minimizing the error function
(9), within backpropagation. Updating of the weights and biases is usually considered
using a stochastic optimizer, such as the Stochastic Gradient Descent (SGD) and Adam'’s
method [21]. Here, the residual network updates the surrogate networks’ weights and
biases using the residual obtained from the residual network, adopting the Adam
optimization algorithm. From a computational point of view, one of the advantages of
using PINN methods for scientific computing is the possibility of exploiting high-
performance algorithms, such as the Tensorflow [1] or PyTorch and Keras library [7],
designed specifically for deep learning and artificial intelligence.



4 Computational algorithm with feedforward and

backpropagation

In this section the proposed computational procedure ofsolving the system (1)(3) using
Python programming scientific software Tensorflow, “built in” Keras is described. In
order to optimize the weights and biases the Adam’s optimization algorithm is applied.
The training set is divided into butches. The steps for the implementation of the
technique, with some key functions and modules on Python using automatic
differentiation method of Tensorflow and Keras library for deep learning, are presented
below!

1.

11.

12.

Import all necessary Python libraries:
Numpy, Tensorflow, Keras, Matplotlib.pyplot

etc.

Set up physical parameters of the problem.

Set up input, training and test samples (collocation points), output and a number of
training iterations (epochs) for the neural networks.

Assign the input data for the neural networks. Two input vectors X,y are considered,
which are the coordinates of the collocation points defined for the system

(1)-(3) and for the boundary conditions.
NN NN NN

N
€5 > Uz andY  with using

N
Construct the surrogate net models fori;

keras.Input, keras.layers.Dense, keras.models.Model

methods.
Set up the boundary conditions.
Compose functions in Python for the automatic differentiation using Tensorflow

GradientTape

module.

Implement the automatic differentiation by calling the Python def functions, defined
in Step 7.

Formulate the residuals E1,Ej,...Es (see Figure 4) for the system (1)-(3) and the
residual-vector Epof the associated boundary conditions. 10. Construct the residual

model, based on the Keras method keras.models

including the variables x,y as input and the residuals Ej,E3,...,Es, and Epas output.
Provide the input values for the residual model from Step 3 for creating training and
testing input data and the values Ei= 0, i = 1,2,...,8 Ep= 0 for creating the training
output.

Compile  the  residual neural model using the Keras module

keras.models.Model.compile

1The entire software package is available upon request.
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with the help of the built in Adam’s optimizer and Mean Square Error modules.

13. Train the multi-PINN model (the residual with the surrogate models) with the
training input and output data.

14. Sketch graphs for the model accuracy, model loss and approximate solution for the
system using Matplotlib software.

5 Numerical examples

Example 1: Verification of the multi-PINN model using an analytical solution

In order to solve the equations (1)-(3) it is needed to set up boundary conditions. In
order to have a unique solution for (1)-(3) eight boundary conditions are needed to set
up. These boundary conditions will be derived for the displacements and the
components of the stress tensor of the investigated structures.

For a verification of the multi-PINN model an example similar with the example from
the article [16] has been tested. The structure has arectangular shape, 0 <x<h,0<y<
L, where I, Iz are the lengths of the sides, and it is fixed on the side y = 0 and under
extension on the other parallel side y = . The boundary conditions read

ux(x,0) = 0, uy(x,0) = 0, ux(x,I2) = 0, oyy(x,12) = P(x),
(10)
ow(0y) = 0, uy(0,y) = 0, ox(l,y) = 0, y(hy) =0,

where the function P(x) = (A + 2u)Qsin(mx). The
external extension forces are:
fo = X [4A7? cos(2mz) sin(my) — 7 cos(mz) Qy®]
+u [9AT? cos(2mz) sin(my) — m cos(mz)Qy?] (11)
fy = A [-3sin(7z)Qy* + 2An> sin(27rx) cos(y)]
+p [—6sin(nz)Qy* + 2A7” sin(27x) cos(my) + 7 sin(nx)Qy* /4] (12)

and the exact solution of the problem (1)-(3), (10)-(12), is written as

ux(x.y) = Acos(2mx)sin(my), (13)

uy(x.y) = Qsin(mx)y*/4. (14)

Is is considered a case of square structure, i.e. 1 = I = 1m. The structure is shown on

Figure 5. The Lam’e parameters take the values A =1, u = 0.5 (in GPa), respectively. The

displacements, the strain and stress components have been computed with A=0.02 and

Q =0.5. The samples (collocation points) for training data and the collocation points for

test data have been taken 1600 (N1= N2=40) and 900 respectively. The batch size is 64.

The loss error function after 15000 epochs (training iterations) of the PINN with 4

hidden layers [15,30,30,15] neurons is 1.04-10-4. On Figures 6, 7 the neural approximate
and exact (13), (14) solutions at the collocation points are presented. The error

11
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Fig. 5: Structure with the fixed and with extensional loading edges. of

approximation is

6x=max |uNNy (xiyj) — uk(xiyj)| <2.46 - 103, k=1,2.
i)

On Figure 8 the surfaces of the neural solution are shown. The predicted components of
the stress and strain tensors at the collocation points, computed by the PINN are sketched
on Figures 9, 10.

Example 2

In this example the structure from Example 1 but with a constant extension stress
loading P(x) = const= 0.3 GPa (or 300MPa) and fx= f,= 0 is considered. The boundary
conditions for the displacements and strain functions are the same, i.e., as in (10). The
neural solution of the problem (1)-(3), (10) is compared with the finite element
approximation from ABAQUS. The constructed PINN consists of 4 hidden layers with
[15,30,30,15] neurons. For training the PINN 15000 epochs (iterations), 64 batch size
have been provided. A number of the collocation points (samples) has been taken 625
(25x25) and a number of test collocation points has been taken 225, respectively.

Correspondingly for ABAQUS 25x25 nodes have been taken. The force, which is equal
to 0.012GN (or 12 x 103KN), that makes a total force in 25 collocation points equal to
0.012 x 25 = 0.3GN (applied at a surface of 1m2). For a simulation using ABAQUS the same
boundary conditions (10) have been taken.

12
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Fig. 6: Displacement (in m) after the training of the multi-PINN and the exact solution ux.
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Fig. 7: Displacementy  (in m) after the training of the multi-PINN and the exact solution
Uy.

The modulus elasticity E and v, which are needed to input to the ABAQUS can be
computed from the relations
\— Ev _ E
T -2 "o,

The computed solutions with the application of ABAQUS at the nodes and the PINN at the
collocation points are presented in Figures 11-18.

The numerous numerical experiments have shown that the accuracy of computations
depends mostly on a number and a choice of collocation points, a number of epochs,
layers and neurons. Table 1 shows the loss error estimates with respect to the

13
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PINN.
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Fig. 9: Strain functions ~z=

number of epochs, layers and neurons. A deep learning provides a fast convergence of the
approximate solution (output of the NN) to the exact solution, however during the
process of minimization an accumulation of errors can be occur, which is a result of the
complexity of the neural network. Therefore, the parameters of the neural network and a
number of samples (collocation points) should be chosen carefully. A choice of collocation
points is also important in order to predict a behaviour of the solution.
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Fig. 10: Stress functions (in GPa) after the training of the multiPINN.

Fig. 11: Displacement ux (in m) of the structure,

multi-PINN.
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Fig. 12: Displacement uy (in m) of the structure, computed with using: a) ABAQUS, b)

multi-PINN.

15



(hgi 75%) 10 el 00062
000 -0.0027
ot
o
008 -0.0296
0.0 1-0.0386
83% £-0.0476
0.086 +-0.0566

-0.0655
-0.0745
-0.0835
-0.0924
-0.1014

0.8 10

(@) (b)

Fig. 13: Strain functions &xxof the structure, computed with using: a) ABAQUS, b) multi-
PINN.
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Fig. 14: Strain functions &y of the structure, computed with using: a) ABAQUS, b) multi-
PINN.
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Fig. 15: Strain functions &xy of the structure, computed with using: a) ABAQUS, b) multi-
PINN.
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Fig. 16: Stress functions ox (in GPa) of the structure, computed with using: a) ABAQUS,
b) multi-PINN.
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Fig. 17: Stress functions oy, (in GPa) of the structure, computed with using: a) ABAQUS,
b) multi-PINN.
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Fig. 18: Stress functions oy (in GPa) of the structure, computed with using: a) ABAQUS,
b) multi-PINN.
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Fig. 19: Structure with the opening, the fixed and the extensional loading edges.

Table 1: The model loss for different values of the training parameters

Neurons in Layers Epochs  Training Samples Loss Function = Time(min.)
[15,15] 2000 625 3.64-10* 6
[15,15] 4000 625 1.78-10* 12
[15,15] 10000 625 1.08-10* 28
[15,15] 15000 625 8.82-10°° 33
[15,20,15] 2000 900 9.46- 105 6
[15,20,15] 4000 900 8.68- 105 12
[15,30,30,15] 2000 900 8.12-10°3 6.5
[15,30,30,15] 4000 900 2.37-10°3 13
[15,30,30,15] 4000 1600 490-10- 15
[15,30,30,15] 15000 1600 1.22-10-5 56
[15,30,30,15] 40000 1600 8.35-10° 125

Example 3: The plane stress structure with an opening

A plane stress structure with an opening and with the constant extension stress loading
P(x) = const = 0.3GPa in the y-direction and fx = f,= 0 is considered (see Figure 19). The
boundary conditions are shown on Figure 20. Here I1 = 1.5m, = 1m. The square opening
with the width and the height equal to 0.5m is considered, and an equal distance from the
opening till the right and left edges of the structure is taken.
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Fig. 20: The elements of the structure with the opening.

For the training of the PINN the domain of structure was divided into 3 parts
(rectangular elements). For the first element and the third elements 13x41, for the second
element 15x20 collocation points (training samples) are used.

The constructed PINN consists of 4 hidden layers with [15,30,30,15] neurons. For
training the PINN 15000 epochs (iterations), 64 batch size have been provided. The loss
error is 5.4703 - 10-5. The neural solution of the problem (1)-(3) with opening is
compared with the finite element approximation from ABAQUS. Correspondingly an
equivalent mesh has been adopted in the commercial software. The force, which is equal
to 0.018GN (or 18x103 KN) has been applied to each node on the edge y = L. This provides
a total force 0.018GN x 25 (collocation points) applied to the area of 1.5m? resulting in the
stress 0.3GPa.

The complexity of the geometry influences the accuracy of computations. The
sensitivity of the neural models with respect to layers and neurons with the same number
of collocation points can be seen in Figure 21. From Figure 21 we can conclude that deep
learning, i.e., many layers and neurons can provide fast decreasing of the loss function
(MSE) with increasing number of training iterations (epochs) and convergence to an exact
solution of the problem. The time of computations for Example 3 is similar with the time
of computations for Example 2.

The predicted solution by the multi-PINN and by using ABAQUS are illustrated in
Figures 22-29.

It can be noted that a choice of collocation points can be also based on random
distribution in each part of the structure domain. A deep learning provides a fast
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Fig. 21: The computed MSE (loss error) with different number of layers and neurons.
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Fig. 22: Displacement uy (in m) of the structure, computed with using: a) ABAQUS, b)
multi-PINN.

convergence of the numerical solution of the PINN to the exact solution. A choice of
collocation points is important in order to have a good convergence and predict a
behaviour of the solution. Note that the number of training iterations (epochs) for
reaching desirable accuracy increases in more complex problems.

6 Conclusions

An ensemble of PINNs has been proposed for solving two-dimensional elasticity

equations. The developed multi-PINN consists of eight surrogate models for unknowns
oNN NN NN NN _NN _NN NN uNN :
xx 2 Yyy 0 Yxy o “mx v Syy o zy 0 “zz and “yy and one residual model for a con-

struction of loss error function, training the PINN and minimizing the error. As result
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Fig. 23: Displacement uy (in m) of the structure, computed with using: a) ABAQUS, b)
multi-PINN.
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Fig. 24: Displacement exx of the structure, computed with using: a) ABAQUS, b) multi-
PINN.

of training optimal values for weights and biases of the multi-PINNs for different elastic
problems have been obtained.

The proposed machine learning method utilizes equilibrium conditions and linear
elasticity equations in a novel architecture of the ensemble of surrogate models
considering unknown stresses, strains and displacements. The model is then able to
predict the mechanical response of two-dimensional structures without pre-existing,
input and output data. The proposed architecture ofthe multi-PINN model in comparison
with classical finite element analysis and other numerical techniques (e.g., difference
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methods) aims to reduce the error of calculating the strains, stresses and displacements
because of introducing unknown strains, stresses and displacements directly in the

EEQ
(Avg: 75%)

0.2669
0.2407
0.2145
0.1883
0.1621
+0.1359
£0.1097
+0.0835
0.0573
0.0311
0.0049
-0.0213
-0.0475

(a) (b)

Fig. 25: Displacement ey of the structure, computed with using: a) ABAQUS, b) multi-
PINN.
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Fig. 26: Displacement eyy of the structure, computed with using: a) ABAQUS, b) multi-
PINN.

multi-PINN model and using automatic differentiation, based on the chain rule for
computing the derivatives. Here it should be noticed that usage of automatic
differentiation, based on the chain rule in PINN leads to lower numerical error in
comparison to numerical differentiation within finite difference methods. Therefore, by
using PINNs we can obtain more accurate estimates for the derivatives. However, in
problems with phenomena of multi-solutions the use of the PINN techniques may be
limited. In this case a combination with classical approaches, e.g., spectral finite elements
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etc. can be performed. Before solving some problem by applying PINN it must be
guaranteed an existence and uniqueness of the solution of the considered model,
involving ordinary or partial differential equations.
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Fig. 27: Displacement sx (in GPa) of the structure, computed with using: a) ABAQUS, b)
multi-PINN.
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Fig. 28: Displacement sy, (in GPa) of the structure, computed with using: a) ABAQUS, b)
multi-PINN.

The proposed technique has been tested on an example when the exact solution is
known. The approach with eight surrogate models and one residual model provides a high
rate of convergence and good accuracy. The results have been compared with the results,
obtained after using FEMs of ABAQUS in two examples of structure (a rectangular plane
stress and a rectangular plane stress with an opening). Here the nodes have been
considered as collocation points. In the example of structure with an opening the domain
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of the definition of the solution is divided into parts (elements) and training of the multi-
PINN at collocation points (samples) is performed in each part in order to improve the
simulation process of computing the unknowns of the problem. This approach can be
applied to structures with more complex geometry.
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Fig. 29: Displacement sy, (in GPa) of the structure, computed with using: a) ABAQUS, b)
multi-PINN.

Comparison with the results obtained from the commercial software indicates that the
contour plot distributions of displacements, strains and stresses derived from the
proposed multi-PINN model are pretty similar to the ones received from the commercial
software. Some differences near the boundaries (higher-lower) values of the multi-PINN
model and commercial finite element analysis plots are obtained, attributed to the
approximate nature of the proposed approach and the traditional finite element analysis
as well as to parameters like the mesh density and the number of collocation points.

The accuracy and the computational effort required for the implementation of the
model depend on the number of collocation points, adopted for the simulation. A
significant part in the implementation of the method is the consideration of appropriate
stress and displacement boundary conditions. The combination and type of these
conditions influence the applicability and generalizability of the method.

The described technique can be extended to structures with nonlinear material
properties, where the stress and strain tensors have nonlinear relations as well as to
geometric nonlinearities. In addition, the technique can easily be applied to
threedimensional plane elasticity problems. Furthermore, since PINNs are able to tackle
complicated mixed boundary conditions, application to homogenization and multiscale
methods is possible. Those steps are left for future investigation.
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