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Abstract 
Two-dimensional (plane) elasticity equations in solid mechanics are solved numerically with 
the use of an ensemble of physics-informed neural networks (PINNs). The system of 
equations consists of the kinematic de�initions, i.e. the straindisplacement relations, the 
equilibrium equations connecting a stress tensor with external loading forces and the 
isotropic constitutive relations for stress and strain tensors. Different boundary conditions 
for the strain tensor and displacements are considered. The proposed computational 
approach is based on principles of arti�icial intelligence and uses a developed open source 
machine learning platform, scienti�ic software Tensor�low, written in Python and Keras 
library, an application programming interface, intended for a deep learning. A deep learning 
is performed through training the physics-informed neural network (PINN) model in order to 
�it the plain elasticity equations and given boundary conditions at collocation points. The 
numerical technique is tested on an example, where the exact solution is given. Two examples 
with plane stress problems are calculated with the proposed multi-PINN model. The 
numerical solution is compared with results obtained after using commercial �inite element 
software. The numerical results have shown that an application of a multi-network approach 
is more bene�icial in comparison with using a single PINN with many outputs. The derived 
results con�irmed the ef�iciency of the introduced methodology. The proposed technique can 
be extended and applied to the structures with nonlinear material properties. 

Keywords: Plane elasticity equations, Partial differential equation, Physics-informed neural network 
model, Computational arti�icial intelligence, Numerical simulation algorithm. 



2 

1 Introduction 
Partial differential equations (PDEs) are used for mathematical modelling in many areas  
of applied mathematics and mechanics, like physical, biological, �inancial and economics 
problems. The underlying laws in those problems are expressed in the form of PDEs and 
the related mathematical analysis is focused on the investigation of well-posedness and 
uniqueness of solution. For practical applications with complicated domains, boundary  
or initial conditions and properties of the continuous media, it is impossible to �ind 
closed-form analytical solutions. Therefore, the question of numerical approximation of 
the solution arises. Numerical mathematics and computational mechanics deal with this 
question. 

Arti�icial neural networks (ANNs) have been developed for the solution of machine 
learning problems based on examples. The well-known example is the feedforward 
backpropagation neural network model, which is trained based on given input-output 
relations (data-set) in the sense of a supervised learning. These data can be created from 
a model, describing, e.g. mechanical phenomena or measured in the laboratory. Training 
is in fact an iterative process of the optimization problem to �ind the parameters of the 
neural network in order to get an approximate solution. It’s response for various inputs,  
in a least squares sense. 

Arti�icial neural networks have been adopted in different areas of science and 
engineering, where data-set for training and testing are available. In particular, ANNs are 
employed in elastoplastic and contact problems in mechanics by using the minimization 
of energy. The Hop�ield and Tank neural networks have been proposed by Kortesis and 
Panagiotopoulos [22]. Inverse and parameter-identi�ication problems in mechanics have 
been solved by using backpropagation neural networks in Stavroulakis et al. [38], [39], 
Stavroulakis [37], Drosopoulos and Stavroulakis [8], [9] Waszczyszyn and Ziemianski  
[42]. Buckling loads in nonlinear problems for elastic plates have been calculated in 
Muradova and Stavroulakis [31]. A recent review of classical usage of neural networks  
within computational mechanics has been written in Yagawa and Oishi [44]. 

ANNs have also been used to solve differential equations. In particular, usage of ANNs 
for the solution of partial and ordinary differential equations has been proposed in the 
similar works of Kortesis and Panagiotopoulos [22], Theocaris and Panagiotopoulos [41] 
and Lagaris et al. [24]. Potential energy optimization can be integrated in the neural  
network training and lead to the Deep Energy methods. Alternatively, the partial  
differential equations and initial or/and boundary conditions are approximated on 
collocation points by using automatic differentiation of the neural network. 

After some years, the developments and the accumulated experience in the �ield of 
deep learning and the appearance of user-friendly software that allows for automatic  
differentiation in neural networks, led to the development of physics-informed neural  
networks (PINNs) for solving direct and inverse problems, e.g. by Karniadakis et al. [19], 
Raissi et al. [33], Tartakovsky et al. [40], Kadeethum et al. [18] and Faroughi et al. [11]. 
The unterlying idea behind PINNs is the minimization of the energy functional or an error 
functional, that is the residual of the PDE and the required initial and boundary conditions  
(Guo and Haghighat [14]). Recently, PINNs have become one of the major numerical  
techniques in solving scienti�ic and engineering problems involving ordinary or partial  
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differential equations. It is one of the most promising research directions in 
computational arti�icial intelligence which can model and solve direct and inverse 
problems in mechanics within a uni�ied framework, thanks to automatic differentiation 
and modern open-source scienti�ic software. In addition, PINNs can be combined with 
classical numerical methods, e.g., spectral elements, achieving both high accuracy of 
computations and �lexibility. 

PINNs have been applied in a wide range of scienti�ic computing applications, e.g. in 
direct and inverse problems, Karniadakis [19], Raissi et al. [33], Baydin et al. [2], Meade 
and Fernadez [28], Shin et al. [36], in solid mechanics, Haghighat et al. [15], [16], 
Muradova and Stavroulakis [29], [30], Katsikis et al. [20], in computational �luid dynamics 
(CFD), Cai et al. [4], Haghighat et al [15] and in electromagnetics, Chen et al. [6]. 

In [32], a framework of �inite-strain elasto-plasticity is proposed using PINNs, 
considering rate-independent isotropic hardening. A mixed formulation approach 
involving PINNs is proposed in [34], requiring up to �irst-order derivatives to construct 
the physical loss functions. A PINNs framework is suggested in [10], presenting a mixed 
formulation that can be used to �ind a solution for a non-uniform beam resting on an 
elastic foundation, subjected to arbitrary external loading. In [17] a mixed formulation is 
presented using PINNs, aiming to solve multi-physical problems, emphasizing in a 
stationary thermo-mechanically coupled system of equations. A PINN formulation is 
provided in [3], analyzing the nonlinear buckling behaviour of a three-dimensional  
functionally graded porous, slender beam, which rests on a Winkler-Pasternak 
foundation. In [5] the accuracy of the deep energy method, a type of PINN adopting the 
principle of minimum potential energy to predict the mechanical response, is investigated 
using a random Fourier feature mapping and other techniques. 

Another recent direction in the �ield is the application of neural operators, where the 
papers of Lu et al. [27] adopting the DeepONet neural operator, as well as Li et al. [25] and 
Kovachki [23], using a Fourier Neural Operator (FNO) can be mentioned. These 
techniques are more general, in the sense that they learn how to approximate differential  
equations and then can solve any new problem, with different initial and/or boundary  
conditions and physical parameters. The DeepONet has a NN for encoding the discrete 
input function space and a NN for encoding the domain of the output functions and it is 
based on the universal approximation theorem. In the FNO approach the integral kernel  
is parameterized in the Fourier space. 

In this work a computational intelligence scheme, based on an ensemble of PINNs, is 
applied to the problem of two-dimensional elasticity. The proposed computational  
approach is based on principles of arti�icial intelligence and uses Tensor�low, an open 
source machine learning scienti�ic software, and Keras library, an application 
programming interface intended for a deep learning, both written in Python. A deep 
learning is performed through training the PINN model in order to �it the plain elasticity 
equations and associated boundary conditions at collocation points. The numerical  
technique is tested on an example, where the exact solution is given. 

Here, in contrast with the scienti�ic computing methodology using arti�icial neural  
networks [16], eight unknowns are considered in the plain elasticity equations with given 
boundary conditions and external loading forces. The equations from the theory of 
elasticity are simulated and solved with the use of ensemble of PINNs, formulating a 
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multi-PINN model. This model combines and connects two types of neural networks: a 
surrogate and a residual neural network. The proposed architecture of the multiPINN 
provides eight surrogate networks for the unknowns and one residual network for 
training. 

It is noted that an approximate differentiation is an ill-posed problem in the sense that 
if a function is approximated with some error, then the error of calculating the 
approximate derivatives of this function can be quite big. For instance, the calculation of 
the strains and stresses using the derivative of displacements involves an error, since 
within traditional �inite element analysis the displacement �ield is approximately  
determined and calculating its derivative may increase the error. To overcome this issue, 
one neural network is considered in this article for each unknown in the elasticity 
equations. Thus, eight surrogate networks are intended for the unknown functions,  
namely, the components of the strain and the stress tensors as well as the unknown 
displacement �ield, respectively. The residual network provides the residuals of the partial  
differential equations (PDEs) and of the boundary conditions. The proposed scheme 
suggests, therefore, a novel PINNs architecture aiming to overcome the mentioned 
accuracy issue. This summarizes the innovation of this work, since to the authors best 
knowledge limited relevant literature can be found. 

The numerical technique is tested on an example where the exact solution, i.e. 
displacement components in x and y directions and external forces are known. The 
predicted stress and strain tensor are computed by the PINN model. An investigation is 
also conducted that includes the loss function, as well as the choice of the number of 
hidden layers, neurons, training iterations, training samples (collocation points), and 
batch sizes. To verify the proposed scheme, the displacements in the predicted by the 
PINN model are compared with the exact solution at discrete points. Two examples are 
also considered, where the numerical solution is compared with results, obtained after 
using commercial �inite element software ABAQUS. The sensitivity of the PINN’s  
performance with respect to the hyperparameters, i.e., the number of layers, neurons ,  
training samples (collocation points) and the required time of computations has been 
investigated. 

The article is organized as follows. In Section 2 the plain elasticity equations are 
described. The architecture of the proposed multi-PINN model is presented in Section 
3. Here, the eight surrogate networks and the one residual network are constructed. In 
Section 4 an introduction of the computational algorithm is provided, including the 
feedforward neural network and backpropagation. The description of the algorithm in 
Python programming environment with using key commands and methods of the 
scienti�ic software Tensor�low and Keras library is given. Section 5 presents numerical  
examples, where the proposed PINN is applied on structural problems. Discussions and 
conclusions are given in Section 6. 

2 Elasticity equations 
The elasticity basic equations consist of equilibrium equations of stresses, constitutive 
equations that relate stresses and strains (Hooke’s law) and strain-displacement 
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relations. In two-dimensional case the partial differential equations for stresses with 
external body forces read, 
 σij, j + f i = 0,  (1) 

where σ11 = σxx, σ22 = σyy and σ12 = σxy are the components of the stress tensor and the their 
partial derivatives σij,j. The functions f1 = fx, f2 = fy are external forces. The constitutive 
equations in isotropic linear case are 

 σij = λδijεkk + 2µεij, (2) 

where ε11 = εxx, ε22 = εyy and ε12 = εxy = ε21 = εyx are the components of the strain tensor and 
λ and µ are the Lam´e parameters. 

The strain-displacement linear relations are written as 

 , (3) 

where u1 = ux and u2 = uy are the displacements in x and y directions, respectively. In the 
formulas (1)-(3), x,y are the Cartesian coordinates and (x,y) ∈ Ω, where Ω is the domain 
of de�inition for the stresses, strains and displacements. 

When a nonlinear material law is true, then equations (2) are replaced by nonlinear 
constitutive relations (e.g. the Ogden polynomial models). 

3 Architecture of the multi-physics informed neural 
network model 

As it is known, arti�icial neural networks (ANNs) have been created on the principles of 
biological neural networks. A neural network consists of input, hidden and output layers. 
Each layer provides neurons, which are connected with the neurons from the previous 
and next layers. The procedure which supplies the network with an information 
spreading from the input layer to the outputs, going through all the hidden layers with 
neurons, is called feedforward. For a network with two input variables, the neurons in the 
layers within the feedforward process, are connected with the formulas 

 z0 = (x,y) (4) 
 zk . (5) 

where the pair (x,y) represents the input of the NN (neural network), Wk is the matrix of 
dimensions (n(k−1) ×nk) containing the weights, bk is the bias vector between k−1 and k 
layers of the neural network, and Nl − 1 is the number of the hidden layers. 

The training of a network is perhaps the most important part of machine learning 
since through this process a loss function (predicting the error of the neural network) is 
minimized and the weights and biases are updated. For minimizing the loss function, it is 
necessary to calculate the derivatives of the function with respect to its variables, weights  
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and biases. The backpropagation algorithm calculates all the necessary derivatives using 
the rule of chain differentiation, starting from the last layer and moving backwards to the 
input layer of the neural network. 

Main optimization algorithms used in ANN training, are the Gradient Decent 
Algorithm ([35]), the L-BFGS ( Limited-Memory Broyden-Fletcher-Goldfarb-Shanno),  
([26], [12], [43]) and the Adam (Adaptive Moment Estimation) algorithm ([21]). The 
Gradient Decent Algorithm minimizes the loss error function with respect to the weights  
and the biases of the network which change in the opposite direction of the feedforward 
process. The partial derivatives of the function with respect to each parameter are 
calculated. The L-BFGS algorithm belongs to the family of quasi-Newton methods  
developed by Broyden, Fletcher, Goldfard and Shanno. Newton’s method for minimization 
problems requires the calculation of the Hessian matrix of the objective function, i.e. it 
requires the calculation of second derivatives with respect to all the parameters, which is 
computationally prohibitive in deep learning problems. In contrast, the quasi-Newton 
methods approach �ind zeroes or local maxima and minima of functions. 

PINNs are neural networks that allow solving ordinary and partial differential  
equations in a speci�ic domain area. The PINNs output is linearly dependent on the last 
hidden layer. The output layer does not enter the activation function as usually happens  
in ANNs. Therefore, instead of (4), (5) it is obtained 

z0 = (x,y) (6) 
zk = S(WkT · zk−1 + bk), k = 1,2,...,Nl − 1, (7) 

 y . (8) 

Here, for the investigated elasticity problem (1)-(3) the proposed ensemble-PINN model  
combines and connects two types of neural networks: eight surrogate networks and one 
residual network. The surrogate neural networks are intended for computing the 
components of the stress tensor, σij (σij = σji), the components of the strain tensor, εij (εij = 
εji) and the displacement �ield, ux and uy, respectively. These surrogate networks take as 
input the coordinates of collocation points, where the equilibrium equations (1), stress-
strain constitutive law (2), strain-displacement relations (3) and given boundary  
conditions are calculated. During the training process, each surrogate neural network 
constructs an approximate solution, based on the activation functions, weights and biases 
of the feedforward algorithm (6), (7) and (8). The neural quantities (expansions)

 and  of the unknown functions σij, εij, ux and uy, respectively of the 
system (1)-(3) which satisfy the associated boundary conditions, are the corresponding 
outputs of the surrogate models. The architecture of the surrogate models, depicting the 
output components of the stress, the strain and the displacements, are shown in Figures  
1, 2 and 3, respectively. 
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Fig. 1: Architecture of the three surrogate neural models σijNN, i,j = 1,2 (σxx, σyy and σxy = 
σyx) with the partial derivatives σij,jNN computed by the automatic differentiation in the 

multi-PINN. 

  
  

 

Fig. 2: Architecture of the three surrogate neural models εNNij , i,j = 1,2 (εxx, εyy and εxy) in 
the multi-PINN. 

The residual network takes the input (the collocation points for the system and for the 
boundary conditions) and the output from each surrogate network for training the multi-
PINN. The architecture of the residual model is illustrated in Figure 4. The residual  
expressions are given below 

E1 = σxx,xNN + σxy,yNN + fx, 

E2 = σxy,xNN + σyy,yNN + fy, 

E3 = σxxNN − λ(εNNxx + εNNyy ) − 2µεNNxx , 
  
  

x   

y   

… 
  

… 
  

… 
  

x   

y   

… 
  

… 
  

… 
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Fig. 3: Architecture of the two surrogate neural models  and  and uy) with 
the partial derivatives  computed by the automatic differentiation in the multi-PINN. 

, 

The output of the residual network is the loss error function, which is calculated as the 
mean square error (MSE), 

 MSE = MSEe + MSEb, (9) 

where MSEe is the loss error function for the system (1)-(3) and MSEb is the loss error for 
the associated boundary conditions. The residual MSEe is computed as 

, 

where (xi,yj) are the interior collocation points on the mesh N1xN2. For the boundary  
conditions, in case of the rectangular domain (0,l1)×(0,l2), where l1, l2 are the lengths of 
the sides of the rectangular area, is considered as the investigated structure, the residual  
MSEb is written as 

, 

x   

y   

… 
  

… 
  

… 
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Fig. 4: Architecture of the residual model in the multi-PINN. 

where Eb(0,yi), Eb(l1,yi), Eb(xi,0) and Eb(xi,l2) are the residuals on the boundaries and (0,yi), 
(l1,yi), (xi,0) and (xi,l2) are the boundary collocation points. 

All the residuals for the system (1)-(3) are being computed during the training 
process. Therefore, the residual is the error obtained after substituting the approximate 
solution for   and   from the surrogate networks, in the system of 
equations (1)-(3). 

It is noted that the calculation of the residual requires computation of the differential  
operators, entering in the system. This calculation is performed using automatic  
differentiation ([2], [13]) that allows determining the differential operators at any given 
point without adopting any discretization and mesh as it usually happens in difference 
methods. The residual network provides the surrogate networks with the loss function 
(mean square error). The parameters of the neural networks, namely, the weights and 
biases, are being updated during the training process by minimizing the error function 
(9), within backpropagation. Updating of the weights and biases is usually considered 
using a stochastic optimizer, such as the Stochastic Gradient Descent (SGD) and Adam’s  
method [21]. Here, the residual network updates the surrogate networks’ weights and 
biases using the residual obtained from the residual network, adopting the Adam 
optimization algorithm. From a computational point of view, one of the advantages of 
using PINN methods for scienti�ic computing is the possibility of exploiting high-
performance algorithms, such as the Tensor�low [1] or PyTorch and Keras library [7], 
designed speci�ically for deep learning and arti�icial intelligence. 
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4 Computational algorithm with feedforward and 
backpropagation 

In this section the proposed computational procedure of solving the system (1)(3) using 
Python programming scienti�ic software Tensor�low, “built in” Keras is described. In 
order to optimize the weights and biases the Adam’s optimization algorithm is applied.  
The training set is divided into butches. The steps for the implementation of the 
technique, with some key functions and modules on Python using automatic  
differentiation method of Tensor�low and Keras library for deep learning, are presented 
below1 

1. Import all necessary Python libraries: 

Numpy, Tensorflow, Keras, Matplotlib.pyplot 

etc. 
2. Set up physical parameters of the problem. 
3. Set up input, training and test samples (collocation points), output and a number of 

training iterations (epochs) for the neural networks. 
4. Assign the input data for the neural networks. Two input vectors x,y are considered,  

which are the coordinates of the collocation points de�ined for the system 
(1)-(3) and for the boundary conditions. 

5. Construct the surrogate net models for  and  with using 
keras.Input, keras.layers.Dense, keras.models.Model 

methods. 
6. Set up the boundary conditions. 
7. Compose functions in Python for the automatic differentiation using Tensor�low 

GradientTape 

module. 
8. Implement the automatic differentiation by calling the Python def functions, de�ined 

in Step 7. 
9. Formulate the residuals E1,E2,...,E8 (see Figure 4) for the system (1)-(3) and the 

residual-vector Eb of the associated boundary conditions. 10. Construct the residual  
model, based on the Keras method keras.models 

including the variables x,y as input and the residuals E1,E2,...,E8, and Eb as output. 
11.  Provide the input values for the residual model from Step 3 for creating training and 

testing input data and the values Ei = 0, i = 1,2,...,8, Eb = 0 for creating the training 
output. 

12.  Compile the residual neural model using the Keras module 

keras.models.Model.compile 

 
1 The entire software package is available upon request. 



11 

with the help of the built in Adam’s optimizer and Mean Square Error modules. 
13.  Train the multi-PINN model (the residual with the surrogate models) with the 

training input and output data. 
14.  Sketch graphs for the model accuracy, model loss and approximate solution for the 

system using Matplotlib software. 

5 Numerical examples 
Example 1: Verification of the multi-PINN model using an analytical solution 
In order to solve the equations (1)-(3) it is needed to set up boundary conditions. In 
order to have a unique solution for (1)-(3) eight boundary conditions are needed to set 
up. These boundary conditions will be derived for the displacements and the 
components of the stress tensor of the investigated structures. 

For a veri�ication of the multi-PINN model an example similar with the example from 
the article [16] has been tested. The structure has a rectangular shape, 0 ≤ x ≤ l1,0 ≤ y ≤ 
l2, where l1, l2 are the lengths of the sides, and it is �ixed on the side y = 0 and under 
extension on the other parallel side y = l2. The boundary conditions read 

ux(x,0) = 0, uy(x,0) = 0, ux(x,l2) = 0, σyy(x,l2) = P(x), 
(10) 

σxx(0,y) = 0, uy(0,y) = 0, σxx(l1,y) = 0, uy(l1,y) = 0, 

where the function P(x) = (λ + 2µ)Qsin(πx). The 
external extension forces are: 

 

and the exact solution of the problem (1)-(3), (10)-(12), is written as 
ux(x,y) = Acos(2πx)sin(πy), (13) 
uy(x,y) = Qsin(πx)y4/4. (14) 

Is is considered a case of square structure, i.e. l1 = l2 = 1m. The structure is shown on 
Figure 5. The Lam´e parameters take the values λ = 1, µ = 0.5 (in GPa), respectively. The 
displacements, the strain and stress components have been computed with A = 0.02 and 
Q = 0.5. The samples (collocation points) for training data and the collocation points for 
test data have been taken 1600 (N1 = N2 = 40) and 900 respectively. The batch size is 64.  

The loss error function after 15000 epochs (training iterations) of the PINN with 4 
hidden layers [15,30,30,15] neurons is 1.04·10−4. On Figures 6, 7 the neural approximate 
and exact (13), (14) solutions at the collocation points are presented. The error 
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Fig. 5: Structure with the �ixed and with extensional loading edges. of 

approximation is 

 δx = max |uNNk (xi,yj) − uk(xi,yj)| < 2.46 · 10−3, k = 1,2. 
(xi,yj) 

On Figure 8 the surfaces of the neural solution are shown. The predicted components of 
the stress and strain tensors at the collocation points, computed by the PINN are sketched 
on Figures 9, 10. 

Example 2 
In this example the structure from Example 1 but with a constant extension stress 
loading P(x) = const = 0.3 GPa (or 300MPa) and fx = fy = 0 is considered. The boundary 
conditions for the displacements and strain functions are the same, i.e., as in (10). The 
neural solution of the problem (1)-(3), (10) is compared with the �inite element 
approximation from ABAQUS. The constructed PINN consists of 4 hidden layers with 
[15,30,30,15] neurons. For training the PINN 15000 epochs (iterations), 64 batch size 
have been provided. A number of the collocation points (samples) has been taken 625 
(25x25) and a number of test collocation points has been taken 225, respectively. 

Correspondingly for ABAQUS 25x25 nodes have been taken. The force, which is equal  
to 0.012GN (or 12 × 103KN), that makes a total force in 25 collocation points equal to 
0.012 × 25 = 0.3GN (applied at a surface of 1m2). For a simulation using ABAQUS the same 
boundary conditions (10) have been taken. 

x   

y   

0   
l 1   

l 2   
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Fig. 6: Displacement (in m) after the training of the multi-PINN and the exact solution ux. 

 
Fig. 7: Displacement  (in m) after the training of the multi-PINN and the exact solution 
uy. 

The modulus elasticity E and ν, which are needed to input to the ABAQUS can be 
computed from the relations 

. 

The computed solutions with the application of ABAQUS at the nodes and the PINN at the 
collocation points are presented in Figures 11-18. 

The numerous numerical experiments have shown that the accuracy of computations  
depends mostly on a number and a choice of collocation points, a number of epochs,  
layers and neurons. Table 1 shows the loss error estimates with respect to the 

u NN 
x 
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Fig. 8: Surfaces for the displacements (solution) and (in m) after the training of the multi-
PINN. 

 
Fig. 9: Strain functions  after the training of the multi-PINN. 

number of epochs, layers and neurons. A deep learning provides a fast convergence of the 
approximate solution (output of the NN) to the exact solution, however during the 
process of minimization an accumulation of errors can be occur, which is a result of the 
complexity of the neural network. Therefore, the parameters of the neural network and a 
number of samples (collocation points) should be chosen carefully. A choice of collocation 
points is also important in order to predict a behaviour of the solution. 

u NN 
x u NN 

y 
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Fig. 10: Stress functions (in GPa) after the training of the multiPINN. 

 
(a) 

(b) 

Fig. 11: Displacement ux (in m) of the structure, computed with using: a) ABAQUS, b) 
multi-PINN. 

 
(a) 

(b) 

Fig. 12: Displacement uy (in m) of the structure, computed with using: a) ABAQUS, b) 
multi-PINN. 

s NN 
xx ,s NN 

yy ,s NN 
xy 
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 (a) (b) 

Fig. 13: Strain functions εxx of the structure, computed with using: a) ABAQUS, b) multi-
PINN. 

 
 (a) (b) 

Fig. 14: Strain functions εyy of the structure, computed with using: a) ABAQUS, b) multi-
PINN. 

 
 (a) (b) 

Fig. 15: Strain functions εxy of the structure, computed with using: a) ABAQUS, b) multi-
PINN. 
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 (a) (b) 

Fig. 16: Stress functions σxx (in GPa) of the structure, computed with using: a) ABAQUS,  
b) multi-PINN. 

 
 (a) (b) 

Fig. 17: Stress functions σyy (in GPa) of the structure, computed with using: a) ABAQUS,  
b) multi-PINN. 

 
 (a) (b) 

Fig. 18: Stress functions σxy (in GPa) of the structure, computed with using: a) ABAQUS,  
b) multi-PINN. 
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Fig. 19: Structure with the opening, the �ixed and the extensional loading edges. 

Table 1: The model loss for different values of the training parameters 
Neurons in Layers Epochs Training Samples Loss Function Time(min.) 

[15,15] 2000 625 3.64 · 10−4 6 
[15,15] 4000 625 1.78 · 10−4 12 
[15,15] 10000 625 1.08 · 10−4 28 
[15,15] 15000 625 8.82 · 10−5 33 
[15,20,15] 2000 900 9.46 · 10−5 6 
[15,20,15] 4000 900 8.68 · 10−5 12 
[15,30,30,15] 2000 900 8.12 · 10−5 6.5 
[15,30,30,15] 4000 900 2.37 · 10−5 13 
[15,30,30,15] 4000 1600 4.90 · 10−5 15 
[15,30,30,15] 15000 1600 1.22 · 10−5 56 
[15,30,30,15] 40000 1600 8.35 · 10−6 125 

Example 3: The plane stress structure with an opening 
A plane stress structure with an opening and with the constant extension stress loading 
P(x) = const = 0.3GPa in the y-direction and fx = fy = 0 is considered (see Figure 19). The 
boundary conditions are shown on Figure 20. Here l1 = 1.5m, l2 = 1m. The square opening 
with the width and the height equal to 0.5m is considered, and an equal distance from the 
opening till the right and left edges of the structure is taken. 

x   

y   

0   
l 1   

l 2   
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Fig. 20: The elements of the structure with the opening. 

For the training of the PINN the domain of structure was divided into 3 parts  
(rectangular elements). For the �irst element and the third elements 13x41, for the second 
element 15x20 collocation points (training samples) are used. 

The constructed PINN consists of 4 hidden layers with [15,30,30,15] neurons. For 
training the PINN 15000 epochs (iterations), 64 batch size have been provided. The loss 
error is 5.4703 · 10−5. The neural solution of the problem (1)-(3) with opening is 
compared with the �inite element approximation from ABAQUS. Correspondingly an 
equivalent mesh has been adopted in the commercial software. The force, which is equal  
to 0.018GN (or 18×103 KN) has been applied to each node on the edge y = l2. This provides  
a total force 0.018GN x 25 (collocation points) applied to the area of 1.5m2 resulting in the 
stress 0.3GPa. 

The complexity of the geometry in�luences the accuracy of computations. The 
sensitivity of the neural models with respect to layers and neurons with the same number 
of collocation points can be seen in Figure 21. From Figure 21 we can conclude that deep 
learning, i.e., many layers and neurons can provide fast decreasing of the loss function 
(MSE) with increasing number of training iterations (epochs) and convergence to an exact 
solution of the problem. The time of computations for Example 3 is similar with the time 
of computations for Example 2. 

The predicted solution by the multi-PINN and by using ABAQUS are illustrated in 
Figures 22-29. 

It can be noted that a choice of collocation points can be also based on random 
distribution in each part of the structure domain. A deep learning provides a fast 

x   

y   

0   
l 1   

l 2   1   

2   

3   
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Fig. 21: The computed MSE (loss error) with different number of layers and neurons. 

 
 (a) (b) 

Fig. 22: Displacement ux (in m) of the structure, computed with using: a) ABAQUS, b) 
multi-PINN. 

convergence of the numerical solution of the PINN to the exact solution. A choice of 
collocation points is important in order to have a good convergence and predict a 
behaviour of the solution. Note that the number of training iterations (epochs) for 
reaching desirable accuracy increases in more complex problems. 

6 Conclusions 
An ensemble of PINNs has been proposed for solving two-dimensional elasticity  

equations. The developed multi-PINN consists of eight surrogate models for unknowns 
 and  and one residual model for a con- 

struction of loss error function, training the PINN and minimizing the error. As result 
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 (a) (b) 

Fig. 23: Displacement uy (in m) of the structure, computed with using: a) ABAQUS, b) 
multi-PINN. 

 
 (a) (b) 

Fig. 24: Displacement exx of the structure, computed with using: a) ABAQUS, b) multi-
PINN. 

of training optimal values for weights and biases of the multi-PINNs for different elastic 
problems have been obtained. 

The proposed machine learning method utilizes equilibrium conditions and linear 
elasticity equations in a novel architecture of the ensemble of surrogate models 
considering unknown stresses, strains and displacements. The model is then able to 
predict the mechanical response of two-dimensional structures without pre-existing,  
input and output data. The proposed architecture of the multi-PINN model in comparison 
with classical �inite element analysis and other numerical techniques (e.g., difference 
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methods) aims to reduce the error of calculating the strains, stresses and displacements  
because of introducing unknown strains, stresses and displacements directly in the 

 
 (a) (b) 

Fig. 25: Displacement eyy of the structure, computed with using: a) ABAQUS, b) multi-
PINN. 

 
 (a) (b) 

Fig. 26: Displacement exy of the structure, computed with using: a) ABAQUS, b) multi-
PINN. 

multi-PINN model and using automatic differentiation, based on the chain rule for 
computing the derivatives. Here it should be noticed that usage of automatic  
differentiation, based on the chain rule in PINN leads to lower numerical error in 
comparison to numerical differentiation within �inite difference methods. Therefore, by 
using PINNs we can obtain more accurate estimates for the derivatives. However, in 
problems with phenomena of multi-solutions the use of the PINN techniques may be 
limited. In this case a combination with classical approaches, e.g., spectral �inite elements  
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etc. can be performed. Before solving some problem by applying PINN it must be 
guaranteed an existence and uniqueness of the solution of the considered model, 
involving ordinary or partial differential equations. 

 
 (a) (b) 

Fig. 27: Displacement sxx (in GPa) of the structure, computed with using: a) ABAQUS, b) 
multi-PINN. 

 
 (a) (b) 

Fig. 28: Displacement syy (in GPa) of the structure, computed with using: a) ABAQUS, b) 
multi-PINN. 

The proposed technique has been tested on an example when the exact solution is 
known. The approach with eight surrogate models and one residual model provides a high 
rate of convergence and good accuracy. The results have been compared with the results, 
obtained after using FEMs of ABAQUS in two examples of structure (a rectangular plane 
stress and a rectangular plane stress with an opening). Here the nodes have been 
considered as collocation points. In the example of structure with an opening the domain 
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of the de�inition of the solution is divided into parts (elements) and training of the multi-
PINN at collocation points (samples) is performed in each part in order to improve the 
simulation process of computing the unknowns of the problem. This approach can be 
applied to structures with more complex geometry. 

 
 (a) (b) 

Fig. 29: Displacement sxy (in GPa) of the structure, computed with using: a) ABAQUS, b) 
multi-PINN. 

Comparison with the results obtained from the commercial software indicates that the 
contour plot distributions of displacements, strains and stresses derived from the 
proposed multi-PINN model are pretty similar to the ones received from the commercial  
software. Some differences near the boundaries (higher-lower) values of the multi-PINN 
model and commercial �inite element analysis plots are obtained, attributed to the 
approximate nature of the proposed approach and the traditional �inite element analysis  
as well as to parameters like the mesh density and the number of collocation points. 

The accuracy and the computational effort required for the implementation of the 
model depend on the number of collocation points, adopted for the simulation. A 
signi�icant part in the implementation of the method is the consideration of appropriate 
stress and displacement boundary conditions. The combination and type of these 
conditions in�luence the applicability and generalizability of the method. 

The described technique can be extended to structures with nonlinear material  
properties, where the stress and strain tensors have nonlinear relations as well as to 
geometric nonlinearities. In addition, the technique can easily be applied to 
threedimensional plane elasticity problems. Furthermore, since PINNs are able to tackle 
complicated mixed boundary conditions, application to homogenization and multiscale 
methods is possible. Those steps are left for future investigation. 
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