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Abstract—Urban life has already embraced many urban
metaverse use cases to increase the Quality of Life (QoL) by
overcoming temporal and spatial restrictions, and the trend
indicates that this would expedite exponentially in the years to
come. Cybercommunities instilled with metaverse technologies
should provide their residents with functional, safe, secure, and
private worlds with high Quality of Experiences (QoE) to readily
evolve and mitigate the problems of urbanisation. Cybersecu-
rity and privacy protection are the two crucial challenges in
making secure and reliable urban metaverse cyberspaces thrive,
as cybercrime activities are expected to be rampant in this
ecosystem with trillion dollars of economic value in the years
to come. Ensuring seamless connectivity, data accuracy, and
user privacy are critical aspects that need further attention
for the efficacy of urban metaverse cyberspaces with Urban
Twins (UTs), particularly, from technical, legislative, and ethical
standpoints. A large number of transactions and immersive
experiences shall be managed safely in an automated manner
in urban metaverse cyberspaces. In this direction, this paper
presents a blockchain-enabled method for immersive device-
based Decentralized Privacy-Preserving Machine Learning (BE-
DPPML) authentication and verification. It can be effectively
instrumented against identity theft and impersonation, as well
as against the theft of credentials, identities, or avatars.

Index Terms—Metaverse, Urban Twins (UTs), Digital Twins
(DTs), cybersecurity, cyberthreats, blockchain.

I. INTRODUCTION

Urban metaverse worlds/cyberspaces – an extension of res-
idents and urban society, where the virtual and the physically
real blend and are more organically integrated within the
Cybercommunity of Wisdom (CoW) and where real-person
resident avatars, government avatars, governmental entities,
organisations, businesses, and avatars driven by Artificial Intel-
ligence (i.e. AI bots or virtual users) can interact – would im-
pact urban ways of living significantly on a global scale, with
many practical implementations by democratising skills/assets
within an urban ecosystem. The approaches behind “Inter-
net of Everything (IoE)” [1] combine people, organisations,
processes, things, and data into a tangible, coherent frame-
work known as Cyber-Physical Systems (CPSs). CPSs are

employed to create Cyber-Physical Social Systems (CPSSs)
that work together to create a smarter, more interconnected
world [2]. Accurate digital replication of real-world fragments
of urbanisation (SC Digital Twins (DTs) (i.e., Urban Twins
(UTs)) at various granularities can be achieved in the virtual
plane through UTs [3]. Readers are referred to the previous
studies [4], [5], [6], [7], [8] for the examples of DTs. In
highly synchronized environments, similar DTs are used not
only to govern urban assets effectively and efficiently, but also
to make it easier for urban services to be incorporated into
metaverse worlds, facilitating a more immersive experience
that improves the Quality of Life (QoL) through improved
Quality of Experiences (QoE). The success of urban metaverse
communities, augmented with the CoW, depends on the quality
of data-driven UTs, the seamless exchange of data between
cyber and physical urban worlds (e.g. between residents and
their counterpart “3D Avatars” – pseudo-physical presence)
and the processing of the data effectively and efficiently with
no vicious interventions and threats. The urban metaverse, an
extension of CPSSs, has the potential to affect its residents
dramatically with its enriched sets of capabilities beyond the
digital environment in a variety of aspects where users would
spend more time in urban metaverse cyberspaces as metaverse
technologies improve and immersive cyberspaces, with a rich
set of experiences, grow with UTs. Cybersecurity and privacy
protection are the two crucial challenges in making secure and
reliable urban cyberspaces thrive, as cybercrime activities are
expected to be rampant in this ecosystem with trillion dollars
of economic value in the years to come.

Using advanced infusion metaverse technologies (e.g.
VR/AR headset, full haptic body suits, i.e. Motion Capture
Suits (MoCaps)) increases the quality of resident experi-
ences in the urban ecosystem. On one hand, incorporating
these immersive devices into urban metaverse worlds in-
volves technical, security, and privacy challenges. On the
other hand, the abilities of these devices can be instru-
mented to improve privacy and security when paired with



additional technological innovations like AI and blockchain.
Our research question in this research can be summarised
as: How can metaverse and urban ecosystems be moulded
to generate safe and secure urban metaverse cyberspaces?
Can the concepts of Web3, “you control your identity” and
“you control your own data”, work in this moulded ecosystem
as intended to alleviate privacy concerns? In this direction,
in this paper, a blockchain-based authentication approach,
which uses metaverse-immersive devices to generate Privacy-
Preserving Machine Learning (PPML) or Privacy-Preserving
Deep Learning (PPDL) models, is designed. This design, by
avoiding single-point failure and eliminating a trusted third
party for the verification of the authenticity of models, can
be instrumented effectively against identity impersonation and
theft of credentials, identity, or avatars within urban metaverse
cyberspaces – without renouncing targeted functional abilities
of the immersive devices and the essential objectives of the
urban metaverse cyberspaces.

II. BACKGROUND AND LITERATURE SURVEY
A. Urban Metaverse Cyberspaces

Metaverse cyberspaces can be classified as centralised that
is controlled by a central entity (e.g. Meta) and decentralised
(e.g. Decentraland) that is user-owned and most of the con-
trol is in the hands of their users. The urban metaverse
ecosystem is the interconnected network of blockchain-based
decentralised cybercommunities, i.e. UMaaSs, and resident
avatars can navigate from one cybercommunity to another with
interoperable abilities and they can build their UMaaS worlds.
Large numbers of transactions and immersive experiences shall
be managed in a safely automated manner in urban metaverse
cyberspaces. AI can play a significant role in securing trans-
actions through ML models equipped with Swarm AI (SAI).
Urban metaverse cyberspaces are composed of both centralised
and decentralised architecture regarding the objectives of the
cyberspaces, some of which are controlled by the local city
governments and some of which (i..e., user-owned, user-
centric) may be managed by their users or together with
the local government. Blockchain, as a distributed database,
provides unique data structures (i.e. crypto worlds) that were
designed to make many people interact/transact with each
other without thinking about privacy too much. On the other
hand, Distributed Ledger Technology (DLT) aims to incorpo-
rate privacy into the transactions further. Blockchain, a type
of DLT, is implemented as a decentralised Peer-to-Peer (P2P)
network and stores a digital ledger in a distributed and secure
manner; smart contracts extend the capabilities of blockchain
technology; they are executable codes that can convert into
software all the terms and conditions of an agreement between
various entities and are deployed on the blockchain; some
of the advantages provided by smart contracts are automa-
tion, access control, trust-building, and elimination of third-
party execution [9]. The key components of the metaverse
in developing urban worlds (Urban Metaverse-as-a-Services
(UMaaSs)) are summarised in [10] with a variety of metaverse
cybercommunities. UMaaSs are the ubiquitous fragmented

parallel urban environments, which make it possible to ef-
fectively customise certain urban metaverse services [10].
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Fig. 1: Cyberthreats against Urban Metaverse-as-a-Services
(UMaaSs) (red) and basic countermeasures (blue).

B. Cyberthreats To Metaverse Cyberspaces

Cybersecurity threats against the metaverse as well as
privacy concerns are analysed in [11], [12], [13], [14]. The
drivers behind cyberattacks can be for a variety of reasons such
as money-driven, ego-satisfaction, curiosity, or joy-motive
through privacy intrusion. Urban metaverse cyber worlds, on
the new and more evolved decentralised 3D Web3, harbour
new types of threats in addition to the current threats we
are very much familiar with on web2 due to their immersive
nature and new types of assets [15]. Vast amounts of data
including movements, preferences, emotions and biometrics
will be collected in the urban cybercommunities. This Big
Data (BD) is subject to potential data breaches, unauthorised
access, and misuse of sensitive information [16]. New and
effective approaches (e.g. [17]) are necessary to turn large
volumes of information into wisdom/insights at their sites and
to transfer the required abstract insightful form of the data to
the entities which demand this – considering the privacy and
security of data [18]. The main threats that can be launched in
urban cybercommunities are demonstrated in Fig. 1 along with
the basic countermeasures. These cyberthreats are intertwined
with one another and it is difficult to differentiate them with
distinctive borders. These cyberthreats are elaborated in [19].
We need to get ready to deal with these hazards while we are
embracing many promising potentials within this new type of
Immersive urban ecosystem.



C. Countermeasures To Cyberthreats

The countermeasures (Fig. 1) against the aforementioned
cyberthreats (Sections II-B) in the urban metaverse ecosystem
are elaborated in [19]. Urban metaverse cyberspaces should
facilitate the exchange of information in a trusted way through
the metaverse ecosystem built on decentralised blockchain
technologies. Blockchain, with its privacy-preserving mech-
anisms by verifying the training process securely, has been
recently employed to enable the secure generation of SAI in a
distributed manner. A blockchain FL (BlockFL) mechanism,
enabling on-device ML without any centralised, training data
or coordination by utilising a consensus mechanism is pro-
posed in [20] to generate local models on mobile devices by
exchanging and verifying the parameter updates via blockchain
to avoid the aforementioned concerns. BlockFL shows that
a malicious miner will never form a new blockchain whose
length is longer than a blockchain formed by honest miners
and the overtake probability goes to zero if just a few blocks
have already been chained by honest miners. Although the
malicious miner begins the first Proof-of-Work (PoW) – con-
sensus hash generation mechanism – with the honest miners,
the larger number of miners prevents the overtake. Some
recent studies in the literature aim at reducing the cyberthreats
using automated detection and prevention approaches. Chen
et al. [21] aim to address the threat from GAN attacks
pose to collaborative deep learning (CDL) and propose a
model-preserving CDL framework, called MP-CLF, which can
effectively resist the GAN attack. An adversary detection-
deactivation method for metaverse-oriented CDL is proposed
in [22] to avoid GAN attacks. A blockchain-based, differ-
entially private, decentralised DL framework, which enables
parties to derive more accurate local models in a fair and
private manner, is proposed in [23]. A privacy-preserving two-
party distributed algorithm of backpropagation which allows
a neural network to be trained without requiring either party
to reveal the individual data to the other is presented in [24].

Standard FL/CL model generation tools based on wearable
devices can be provided by the main urban city, or the
developers of the metaverse devices, to users to train their
models in a standard way, through which messages can be
communicated between the entities in an automated manner
using advanced AI techniques. However, updated gradients
may reveal individual private or actual information when asso-
ciated with data attributes and structures. Therefore, encryption
mechanisms provide further privacy protection. Secure queries
on sensitive private data through the aforementioned models
without revealing their contents are possible using an agreed-
upon, encrypted subset of the feature vector. The content of the
query or input for trained models can be verified, allowing for
computation and then the result is returned based on an authen-
tication mechanism, e.g. HE (Fig. 1). However, in addition to
the inefficiency of homomorphic-based encryption, the authen-
ticity of local or global models cannot be guaranteed without
the authentication of a trusted third party. But, every third party
within the urban metaverse ecosystem is untrusted, concerning

privacy in particular, considering semi-honest parties or honest
but curious parties. In this sense, the main urban entity and its
cybercommunity entities (i.e. UMaaSs) should be addressing
the concerns of its residents appropriately, privacy concerns
in particular, without requiring the authentication of a third
party, while immersing themselves with urban experiences
and executing their transactions. Therefore, a blockchain-based
approach, which is elaborated in the following subsection, is
proposed in this research. The proposed authentication and
verification approach, the so-called BE-DPPML, addresses
those aforementioned concerns effectively and efficiently.

III. BLOCKCHAIN-ENABLED DECENTRALISED
PRIVACY-PRESERVING MACHINE LEARNING

(BE-DPPML) AUTHENTICATION AND
VERIFICATION

Large numbers of daily transactions and actions, taking
place in a short period of time, require an efficient way of
authentication, while the complexity of transactions and, more
importantly, the complexity of cyberattacks is significantly
increasing with newly developed metaverse technologies, par-
ticularly with wearable immersive metaverse devices. No
third-party entity, including a centralised server/government,
is trusted – considering semi-honest parties or honest but
curious parties on the encryption-based and fully decentralised
blockchain architecture in which data is supposed to be
owned by its producers and is not managed by a centralised
authority – which makes this ecosystem an ideal target for
cybercriminals to exploit maliciously. Adverse events need to
be detected in real-time to avoid dire circumstances such as
losing individual data, NFTs, virtual real estate, cryptocur-
rency, or a breach of privacy on the blockchain in which
traceability of transactions and actions is difficult to follow,
due to the nature of the blockchain ecosystem with high
level of data sovereignty and privacy. It needs to be assured
that effective AI-based cybersecurity solutions are in place to
defend residents from attacks without renouncing this nature.
AI approaches can learn patterns with ML models that indi-
cate a normal or abnormal transaction/action or cyberthreats.
Automated solutions with privacy-preserving mechanisms can
mitigate the cyberthreats effectively within the urban meta-
verse ecosystem. SAI, merged with blockchain, can play a
prominent role in securing transactions and all other actions
with a high level of privacy.

Authentication of residents and verifying their true identities
without a third party or a central authority is imperative in
developing private and secure urban metaverse cybercommu-
nities. Regular identity checks are crucial to both address
fake avatars or avatars that have been stolen via unauthorised
access to user credentials and avoid their imminent adverse
consequences – such as breach of privacy and loss of as-
sets. Individual data that can be used for authentication is

1Readers are referred to https://teslasuit.io/blog/teslasuit-
motion-capture-system/ for the MoCap and to
https://freedspace.com.au/tracklab/products/brands/manus-vr/optitrack-
gloves-by-manus/ for the HTT images.
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Fig. 2: User-based DPPML model generation using immersive
metaverse devices. The next block which is being added to the
distributed ledger has the most recent model update where as
the last block has the final model itself.1

composed of i) biographic identification data such as name,
surname, date of birth, and ii) biometric identification data
as biological characteristics (DNA, facial features, height,
fingerprints, iris features, vein features, and palm features)
and behavioural/gesture patterns (facial expressions, move-
ment patterns (gait), lip motion, emotion expression or re-
actions to interactions using physiological responses, voice
pitch patterns/prints, and speech patterns). Automated Emotion
Recognition (AER) and Automated Behaviour Recognition
(ABR) technologies can detect humans’ emotional/behavioural
states in real-time using facial expressions, voice attributes,
text, body movements, and neurological signals and have a
broad range of applications across many sectors [25]. Using
these features to train networks and models raises privacy
and ethical concerns in various aspects. Privacy and ethical
concerns in applying AI for learning expressions and patterns
using the aforementioned individual features, which is out of
the scope of this research, are explored in [26] for interested
readers. The way of building DL gesture models should
consider these privacy and ethical concerns as well as the
regulatory framework. Human beings, with their body and
behavioural/gesture signatures, are drastically different from
each other in many ways, and they can be identified based
on their biological or behavioural/gesture characteristics with
a high level of identification assurance. It is worth mentioning
that physics-based character skills of individuals can be gained
through reinforcement learning, which can improve the realism
of individuals in regard to avatars [27] as well. Every action or
transaction during the immersive interaction of individuals can
be copied into the metaverse ecosystem. These consecutive
actions or transactions generate particular patterns, in other
words, a cyber identity of individuals, that differentiates them

Data: System input: IDMoCap.IP & IDMoCap.Port & meR.ID
Data: Instant input: F = {A1, A2, . . . , Asize} &

S =
{
F1, F2, . . . , Fepoch

}
Result: Alg. 2 < −− (UpdateQueue & IDMoCap & meR.id &

ContinueUpdate)
int iteration = 0;
bool ContinueUpdate = true;
=> Start data streaming from the device and parameter selection;
UDPServer udpserver = new UDPServer();
=> Thread for streaming data from IDMoCap;;
Thread serverThread = new Thread(() => udpserver.Listen());
=> Thread for filtering targeted attributes,
F = {A1, A2, . . . , Asize};

Thread dataHandlerThreadAtr = new Thread(() =>
SubscribeToEvent(udpserver));

=> IDMoCap gesture parameters and local model training;
while ContinueUpdate == true do

=> Start streaming from the device;
[meR.Data ]= serverThread.Start(IDMoCap.IP,
IDMoCap.Port, meR.credentials);

=> Start filtering for attribute selection;
[F ] = dataHandlerThreadAtr.Start(meR.Data);
=> Add filtered attributes to data samples until reaching the

epoch size;
S += [F ];
=> Continue training until weight differences is very small as

such |wL − wL−1| ≤ ϵ ;
if (S.size == epoch) && (|wL − wL−1| > ϵ) then

iteration += 1 ;
=> Feed the local model training with
S =

{
F1, F2, . . . , Fepoch

}
;

[αiteration, witeration] = localTrain(S);
=> place the obtained update parameters in queue;
UpdateQueue += (αiteration, witeration,timestamp);
=> Empty the sample array, S, for the next epoch feed;
S = “”;

else
=> Training has reached a satisfactory level, quit local

training and global uodates;
ContinueUpdate = false;

end
end

Algorithm 1: Individual authentication modelling
per immersive device: Local training (ID
={IDMoCap, IDHeadSetFace, IDHeadSetLip,
IDHandTrackingSet, . . . , IDsize}.

from other users. Within this context, immersive metaverse
devices can help residents protect the boundaries of their
privacy despite the security and privacy challenges that come
with these devices, particularly VR/AR headsets. The ca-
pabilities of these devices can be instrumented to improve
privacy and security when combined with other technologies
such as blockchain and SAI. The actions of residents can be
profiled through their bodies, coupled with advanced multiple
sensory technologies that are based on a variety of body
signatures, while interacting with the metaverse ecosystem,
particularly by using VR headsets and full haptic body suits,
i.e. MoCaps, equipped with multi-sensory abilities enabling
tactile sensation. Users immerse themselves with full-body
haptic suits including finger and full-body tracking sets, by
which every motion can be replicated in virtual worlds and
the real world with a bidirectional haptic interaction (e.g.
touch, and handshake in a virtual environment). A sequence
of these motions can build our unique body features by



Data: System input: meR & IDMoCap &
Blockchain(IDMoCap).genesis & PoW

Data: Instant input: Blockchain(IDMoCap).nodes &
UpdateQueue & ContinueUpdate

Result: & meR.MID & ledger
=> Blockchain node assignment;
Blockchain(IDMoCap).nodes += meR;
=> Nonce mining and global model update;
while (ContinueUpdate == true) —— (UpdateQueue.Size ¿ 0) do

if (UpdateQueue.Size ¿ 0)) then
=> Get the gradient updates from the queue based on

FIFO;
UpdateParameters = UpdateQueue.updateparameters;
=> Download the last added block;
LastAddedBlock = Blockchain(IDMoCap).lastblock;
=> Get all the candidate blocks from nodes;
CandidateBlocks =

Blockchain(IDMoCap).nodes.candidateblocks;
=> Place the global updates in the body of the candidate

block;
Blockchain(IDMoCap).nodes(meR).candidateblock.body

(meR) = UpdateParameters;
=> Send the candidate block to all nodes in the

blockchain PoW;
Blockchain(IDMoCap).nodes.candidateblocks +=

Blockchain(IDMoCap).nodes(meR).candidateblock;
=> Run consensus hash generation mechanism to achieve

a hash smaller than the target value based on the
difficulty of PoW;

while (ContinueUpdate == true) ——
(UpdateQueue.Size ¿ 0) do

hash = PoW.Operations;
if (hash ¡ PoW.difficulty) then

=> Hashing is achieved. Inform all other nodes;
Blockchain(IDMoCap).newhash == hash;
Blockchain(IDMoCap).newblock =

Blockchain(IDMoCap).nodes(meR).candidateblock;

=> New block is added to the ledger;
Blockchain(IDMoCap).ledger +=

Blockchain(IDMoCap).newblock;
=> Delete the updated parameters from queue;
UpdateQueue.first.Delete;

else if (Blockchain(IDMoCap).newhash.state ==
true) then

=> Hashing is achieved by another node;
=> New block is added to the ledger;
Blockchain(IDMoCap).ledger +=

Blockchain(IDMoCap).newblock;
end
else

=> Continue hashing;
end

end
end

Algorithm 2: Individual authentication and verification
modelling per immersive device: Global update with
blockchain.

extracting the patterns from users’ gesture cues, which leads
to patterns distinguishing us from the rest of the world. These
patterns, as well as the aforementioned distinctive individ-
ual signatures, can be utilised effectively for authentication
purposes via a diverse range of metaverse technologies (e.g.
VR/AR headsets, MoCaps, haptics gloves, and HTT), different
types of many other Wearable Sensors (WSs)), which are
improving with larger sets of options and a diverse range of
attributes [28], [29]. For instance, Wearable Resistive Sensors
(WRSs) that could directly characterise joint movements are

one of the most promising technologies for hand gesture
recognition due to their easy integration, low cost, and simple
signal acquisition [30].

The urban metaverse cyberspaces and associated entities are
distributed on the decentralised public and private ledgers.
AI models are required to be trained at the edges locally
and encrypted update gradients need to be transferred to
construct larger or global models regarding the principles of
CL/FL as expressed earlier in Section II. In order to improve
collaboration in learning, the privacy concerns of each data
subject should be addressed by extending the concept of
privacy protection to the original learning entity [31]. In this
vein, a DPPML scheme, based on transparency and personal
consent, is developed using the cyber gesture signature with
wearable immersive devices to protect users’ privacy while
verifying the authenticity of the subject, where the data
subjects are in more control with further security measures.
Cyber signatures, which make the subject different from other
subjects, can be built through their body language using tightly
coupled immersive wearable metaverse devices as visualised
in Fig. 2. The pseudo codes of model training with a MoCap
device are presented on blockchain in Algorithms 1 and 2.
More specifically, Algorithm 1 shows the local training of
the model with epochs fed by the particular online instant
features acquired from the device, which is worn by one of the
active nodes on the blockchain whereas Algorithm 2 displays
the global model update with the blockchain operations for
verification of the update gradients acquired from all the
active nodes on the blockchain through blockchain mining.
Algorithm 1 is run by each node individually at the edges
locally whereas Algorithm 2 is run on blockchain by all the
active nodes where current nodes can leave and new nodes can
join at any time. From a more technical standpoint, the gesture
feature set for particular attributes, F = {A1, A2, . . . , Asize},
of resident entities, R = {R1, R2, . . . , Rsize}, need to be
trained per individual with an epoch sample size, S =
{F1, F2, . . . , Fepoch}. Local weights (wL) and global weights
(wG) are synchronously updated after every epoch iteration
to generate particular vocal or gesture models, MID, per
immersive device, ID, as displayed in Eq. 1.

ID = {IDMoCap, IDHeadSetFace, IDHeadSetLip,

IDHandTrackingSet, IDV ocalAtr, . . . , IDsize}
(1)

Residents, R, perform the PoW operations with a block gen-
eration rate of λ and whoever is successful in reaching a hash
key, by finding a nonce that is smaller than the target value
based on the difficulty of PoW, places the candidate block
with their locally trained, updated model gradient parameters
along with the other emerging models updated successfully by
other nodes similarly with the previous PoW operations. Then,
they continue mining with the agreed-upon PoW and update
their model parameters likewise obtained from the next local
epoch operations until their models converge to a solution that
satisfies a targeted accuracy rate, Acc, (i.e. |wG −wG−1| ≤ ϵ
where ϵ is a very small value). The last blocks during the



training process with block mining, which stores each resi-
dent’s individual aggregated local model updates, are added to
the blockchain with their block headers and block bodies as a
distributed ledger (Fig. 2), and downloaded by other residents,
R, as nodes in the blockchain to carry on the next PoW
operations with a newly generated candidate block. The body
of the block has the last generated hash key corresponding to
the individual resident model. In other words, all the updated
particular models are transferred to the last block with the
hash keys that are used to update the gradients for those
models. All the other residents/miners quit the current PoW
operations when they receive the new block that is added
to the blockchain to download this block and start the PoW
operations from scratch, with the most recent updates using
their candidate blocks with their updates, which are distributed
to all other nodes. During this process, every resident, who
performs the PoW for his/her model update parameter with
a successful hashing, verifies all the previous model updates
with the previous PoW operations as well, which are updated
by other residents for their model training. The residents
whose models have converged to a solution either stop the
PoW operations and leave the mining as a node or continue
as is to verify other residents’ model updates with their current,
successful updates, without providing further input updates –
considering that the mining reward is still applicable even
though data reward is no longer offered. The creation of
blocks in chronological order, through the PoW consensus
mechanism per ID, stops when no resident remains as an
active node, where all the models of residents – per ID – that
are expected to be completed as new nodes get added to the
blockchain to build their models. Local model updates for all
residents as nodes are aggregated at the last block separately,
leading to final global models that correspond to individual
residents. In other words, the blockchain expands further when
new residents join the MetaCyberCity or UMaaSs. Users
are not allowed to be successful for two consecutive PoW
hashing in order not to verify their own model updates, which
aims to include multiple verifications with distributed ledgers
with timestamps. The final block is composed of the final
aggregated individual models of residents per ID as in Eq.
2 for ID, MoCap, until new nodes join.

MIDMoCap
= {R1(MIDMoCap

)
, R2(MIDMoCap

)
,

R3(MIDMoCap
)
, . . . , Rsize(MIDMoCap

)
}

(2)

Residents upload their local true gradient updates (wL) to
form their model truthfully, with the required timestamp his-
tory where models, generated using false parameters, cannot
result in authenticating the model owners during the use of the
particular immersive device. Every entity feeds the DL model
training process with the model-specific encrypted parameters
until the model converges to a desired solution within a
UMaaS or MetaCyberCity. The original user data is retained
with the data owner and not shared with third parties and all
the communicated packets are delivered between the entities
using P2P/E2E ciphertexts to avoid any possible data leakage,

Data: System input:
MIDMoCap

= {R1(MIDMoCap
)
, R2(MIDMoCap

)
,

R3(MIDMoCap
)
, . . . , Rsize(MIDMoCap

)
}

Data: Instant input: F = {A1, A2, . . . , Asize} &
S = {F1, F2, . . . , Fk} & Rme(MIDMoCap

)
&

meR.PrivateKey & Rme(MIDMoCap
)
.meR.hash

Result: True & False & NoModel & NotSufficientlyTrained
bool ModelVal = False;
=> Find the user model;
Rme(MIDMoCap

)
= Blockchain(IDMoCap) < −− (meR.ID);

=> Proceed only if the user has a trained model;
if (Rme(MIDMoCap

)
= Null) then

=> The user has no pre-trained model for this immersive
device;

return null;
exit;

else
=> Proceed only for the authorised user with correct

credentials;
IsCredentials = Rme(MIDMoCap

)
< −−

(meR.PrivateKey, Rme(MIDMoCap
)
.meR.hash);

if (IsCredentials = True) then
=> Check if the model is trained sufficiently (Acc, (i.e.
|wG − wG−1| ≤ ϵ);

if (Rme(MIDMoCap
)
.LearningState ==

NotSufficientlyTrained)) then
return NotSufficientlyTrained;
exit;

else
=> Test the samples with their features until it

returns a true value;
foreach (F ∈ S) do

ModelVal = Rme(MIDMoCap
)
< −−

F = {A1, A2, . . . , Asize};
if (ModelVal == True)) then

=> Identity is proved;
return ModelVal;
exit;

else
=> Continue testing with next features (F)

in samples (S);
end

end
=> False is assigned to ModelVal if no true value is

not returned for any attribute set;
=> Most probably, the credentials have been stolen;
return ModelVal;

end
else

=> The user credentials are not verified to run the model;
=> Either the credentials are wrongly entered or the

avatar is impersonated;
return 0;
exit;

end
end

Algorithm 3: Proof of identity using blockchain-based
DPPML pre-trained models with immersive devices where
ID = IDMoCap.

which aims to preserve both the data’s sovereignty – and
privacy, to a certain extent. Updated gradients may reveal indi-
vidual private or actual information when associated with data
attributes and structures. Therefore, encryption mechanisms
provide further privacy protection even though the updated
gradients or communicated packets have been anonymised.



CITY-1

Resident -1

Resident -2

Resident -3

Resident -4

Resident -5

Resident -7: Sara Monic (Victim) Resident -6

E2E/P2P encryption
Resident -7: Sara Monic

Avatar theft
or 

impersonation

E2E/P2P encryptionE2E/P2P encryption

E2
E/

P
2

P
 e

n
cr

yp
ti

o
n

E2
E/

P
2

P
 e

n
cr

yp
ti

o
nE2

E/P
2

P
 en

cryp
tio

n
E2

E/P
2

P
 en

cryp
tio

n

Decentralised
Privacy-Preserving 
Machine Learning 

(DPPML) for 
Cybersecurity of 

Cyber 
Communities

Decentralised
Privacy-Preserving 
Machine Learning 

(DPPML) for 
Cybersecurity of 

Cyber 
Communities

Behavioural pattern model
Gesture  pattern model
Biometric face model
Biometric iris model

Biometric vocal model
Biometric brain wave model
Individual transaction model

Behavioural pattern model
Gesture pattern model
Biometric face model
Biometric iris model

Biometric vocal model
Biometric brain wave model
Individual transaction model

Fig. 3: Detection of avatar theft and identity impersonation.
Quarantine of a harmful user to avoid possible cyberattacks.

The above operations are repeated for all ID using different
blockchain forms.

Global gesture models, which are verified by other residents
in the MetaCyberCity or UMaaSs and employ a PoW consen-
sus mechanism, are employed to be used for authentication
mechanisms as proof, which has been implemented in Al-
gorithm 3, regularly during the immersive actions/activities,
when requested by any active user in UMaaSs, or when
required under particular circumstances such as before com-
pleting asset transactions to ensure the identity of the other
party. In our approach, the use of the model to authenticate a
resident with the blockchain-based model can be allowed by
the resident using the private key and the last hash key that is
associated with the particular user-/device-based model in the
body of the block. Here, the blockchain is employed to provide
trust among entities in modelling gestures using every online
training phase automated by ID, i.e. epoch, by avoiding single
point failure regarding the training in a central server and not
requiring a trusted third party for the verification of the authen-
ticity of the model and data from which the model is generated.
From a more technical standpoint, the gesture feature set
for particular attributes from the particular immersive device,
F = {A1, A2, . . . , Asize}, of the resident entity, R = meR,
need to be run with the model using a couple of sample size,
S = {F1, F2, . . . , Fk}. The model results in either providing
the authentication proof with a successful outcome where one
of the feature sets is recognised or rejecting the authentication
with an unsuccessful outcome with no recognition for any
of the attribute sets in the sample array. Each entity knows
nothing about the trained data and its providers‘ identity while

using the global ML models in an automated manner with the
entity parameters to get a targeted classified outcome needed.
The global model construction and use of this model should
ensure that there is no adversarial entity collaborating with
the process, which can be avoided using effective E2E/P2P
encryption mechanisms (Fig. 3). These gesture models, aiming
at authenticating the other party through the use of immersive
devices, can be instrumented effectively against the theft of
credentials, identity, or avatars. Regular biometric checks can
be implemented with the proposed approach to ensure that the
avatar in action represents the intended correct person.

IV. DISCUSSION AND CONCLUSION

Metaverse worlds, enabling rich communication channels,
have already become a part of our daily routine and an in-
creasing number of people are embracing the growing number
of metaverse worlds with immersive devices. Urban metaverse
cyberspaces, as the main communication/interaction channel,
will be connecting urban places and residents not only to one
another within a city but also to the rest of the world [32].
These cyber worlds will be a target for cybercriminals to
exploit as their economic value increases with newly created
assets, and as the urge to reveal privacy via immersive devices
is becoming a reality for residents, while controlling the
boundaries of privacy is getting difficult with these devices. *

The metaverse cybercommunities, using decentralised data
structures on private and public ledgers and interoperability
architecture, may not be managed by a single entity, which
makes it more difficult to track down and stop attackers. There-
fore, it is more important to detect possible cyberattacks and
avoid deceptive activities proactively, with preventive solutions
where it may not be possible to take fraudulent transactions
back. Cybercommunities instilled with metaverse technologies
should provide their residents with functional, safe, secure, and
private worlds with high QoE to readily evolve and mitigate
the problems of urbanisation. There is a research gap in
revealing potential cyberthreats in urban metaverse worlds and
addressing these threats. Regular identity authentication during
interactions or before executing transactions in the urban
metaverse worlds is crucial to address identity impersonation
and theft of credentials, identity, or avatars and avoid their
imminent adverse consequences. Our research question was
if we can turn the abilities of immersive metaverse devices
into the residents’ advantage in providing their security and
avoiding a breach of privacy. In a broader perspective, if it
is possible to build a trustworthy, urban metaverse cybercom-
munity, without requiring a centralised government to protect
our privacy or a third party to mediate between entities, e.g.
for a transaction. This research designs a novel blockchain-
enabled DPPML (BE-DPPML) authentication and verification
approach, based on physics-based characters of individuals
(i.e. body cyber footprint/identity – e.g. facial expressions,
movement patterns (gait), lip motion, emotional expression or
reactions to experiences using physiological responses, voice
pitch patterns/prints, and speech patterns [33]) obtained from
immersive metaverse wearable devices (e.g. VR/AR headset,



MoCaps, haptics gloves, HTT). In this way, cyber signature
models, with a diverse range of attributes, are built step by
step, verified by other residents and placed in blockchain
ledgers to be employed whenever needed to verify the authen-
ticity of the residents/avatars even if all the credentials are in
the hands of cybercriminals. As a future work, the signatures
obtained from a couple of sensors will be fused for a more
advanced gesture model [34] and the proposed system is aimed
to be integrated into metaverse cyberspaces.

V. LIMITATIONS OF THE RESEARCH
The particular BE-DPPML gesture models may not work

properly with the changing body gesture conditions, depend-
ing on the changing body structures such as broken leg,
arm, or finger, varying mood states, and illness. This can
be compensated using alternative DPPML gesture models,
which are trained separately with multiple immersive devices.
The proof of identity can be obtained from the alternative
model (e.g. HTT) if it does not work for a particular model
(e.g. MoCap). The proposed authentication approach in this
research requires the collaboration and cooperation of users
in metaverse cyberspaces to mine the blocks and verify their
authenticity as block miners. Users can be encouraged to
take part in block mining activities by earning particular
cryptocurrencies allocated to metaverse cyberspaces.
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