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Intelligent airborne monitoring 
of man-made marine objects 
using Machine Learning 
techniques - Part I
The objective of this study is to create a new platform for the automated detection 
of irregularly shaped man-made marine objects (ISMMMOs) in large datasets 
derived from marine aerial survey imagery. We present here the first part of the 
paper. The concluding part of the paper will be published in the next issue
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Abstract

The marine economy has historically 
been highly diversified and prolific due to 
the fact that the Earth's oceans comprise 
two-thirds of its total surface area. As 
technology advances, leading enterprises 
and ecological organisations are building 
and mobilising new devices supported 
by cutting-edge marine mechatronics 
solutions to explore and harness this 
challenging environment. Automated 
tracking of these types of industries and 
the marine life around them can help 
us figure out what's causing the current 
changes in species numbers, predict what 
could happen in the future, and create 
the right policies to help reduce the 
environmental impact and make the planet 
more sustainable. The objective of this 
study is to create a new platform for the 
automated detection of irregularly shaped 
man-made marine objects (ISMMMOs) 
in large datasets derived from marine 
aerial survey imagery. In this context, a 
novel nonparametric methodology, which 
harbours several hybrid statistical Machine 
Learning (ML) methods, was developed 
to automatically segment ISMMMOs 
on the sea surface in large surveys. This 
methodology was validated on a wide 
range of marine domains, providing 
robust empirical proof of concept. 

This approach enables the detection of 
ISMMMOs automatically, without any 
prior training, with accuracy (ACC), 
Matthews correlation coefficient (MCC), 
negative predictive value (NPV), positive 
predictive value (PPV), specificity (Sp) 
and sensitivity (Se) over 0.95. The outlined 
methodology can be utilised for a variety 
of purposes, but it's especially useful for 
researchers and policymakers who want to 
keep an eye on how the maritime industry 
is deploying and make sure the right 
policies are in place to meet regulatory and 
legal requirements to promote maritime 
tech innovation and shape what the future 
looks like for the marine ecosystem. For 
the first time in the literature, a method, 
the so-called ISMMMOD, has been 
developed to automate the detection of 
all types of ISMMMOs by statistical ML 
techniques that require no prior training, 
which will pioneer the monitoring of 
human footprint in the marine ecosystem.

1. Introduction

The process of marine spatial planning 
is highly contentious due to the presence 
of multiple stakeholders, often with 
conflicting objectives and values (Elrick-
Barr et al., 2022). The maritime economy 
has historically been highly diversified 
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and prolific due to the fact that the Earth's 
oceans comprise two-thirds of its total 
surface area. As technology advances, 
leading enterprises and ecological 
organisations are building and mobilising 
new devices supported by cutting-
edge marine mechatronics solutions 
(Shi et al., 2017) within the framework 
of Automation of Everything (AoE) 
(Kuru and Yetgin, 2019) to explore and 
harness this challenging environment. 
More specifically, robotic vehicles, 
autonomous vehicles, and surface vessels 
have been deployed for the offshore 
industries and deep sea archaeology, ocean 
engineering projects, rescue operations 
and environmental measurements for 
the last several decades. For instance, 
the Argo program, an international 
collaboration, has deployed approximately 
3900 instruments in the world's oceans 
to facilitate the collection of data for 
climatological and oceanographic studies. 
(Riser et al., 2016). Besides, artificial 
structures such as gas, oil and deep seabed 
mining platforms, offshore renewable 
energy harvesting technologies such as oil 
and gas installations, wind farms and wave 
energy converters, fish farms, ships, boats 
and yachts for transportation, autonomous 
marine vehicles from unmanned ships to 
smaller vessels are becoming inevitable 
components of the offshore environment. 
For instance, in recent years, the offshore 
wind industry has seen a remarkable 
expansion, with an annual rate of growth 
of 25%, for constructing offshore 
energy islands to meet the reduction 
of gas emission targets (Zhang et al., 
2021). These may conflict with nature 
conservation objectives, such as habitat 
loss or species endangerment. In other 
words, this rapidly expanding industry, 
which allows for extensive, ongoing 
human influence in the marine domain, has 
the potential to have a significant impact 
on the marine environment, particularly 
on the marine floor, on turtles, fish, and 
birds. For instance, the population of 
monitored seabirds, which account for 
about 19% of the all seabird populations, 
declined by almost 70% from 1950 to 
2010 (Paleczny et al., 2015), resulting 
in a net loss of almost 3 billion (%29) 
birds since 1970 (Rosenberg et al., 

2019). The decline of bird populations 
serves as a stark reminder of the need 
for immediate action to mitigate threats 
to the eventual decline of avifauna and 
the resulting degradation of ecosystem 
health, functionality, and services 
(Rosenberg et al., 2019). Intervention 
into nature is a natural consequence of 
human activities, however, when managed 
effectively, these interventions can be 
beneficial not only to the environment, 
but also to the ongoing development of 
civilisation (S`anchez-Marr`e et al., 2004). 
To better understand the planet and to 
ensure effective conservation planning, 
it is essential to have a comprehensive 
understanding of the species, habitats, and 
sites that require protection. Unfortunately, 
for the majority of species and regions, 
comprehensive quantitative knowledge is 
not yet available (Bibby et al., 1998). One 
of the key objectives of the development 
and utilisation of ecological models and 
applications is to influence the ecological 
policy practices, outputs and results in 
a beneficial manner (McIntosh et al., 
2011). There is an urgent need to monitor 
the environmental upheavals, impacts 
and possible trends with environmental 
time series analysis, models and tools 
as the footprint of human activities 
increases with the rapid development of 
the industry. In this manner, modelling, 
automated detection, location and real-
time monitoring of industrial sites and 
ecosystems around them can help uncover 
the current and potential future effects 
on nature. Furthermore, the insights 
observed and models developed based 
on these insights may help researchers 
and policymakers to monitor this diverse 
ecosystem along with the associated 
maritime industries and thereby help 
to determine the legal and regulatory 
requirements for reducing the ecological 
foot-print concerning immediate 
foreseeable environmental problems. 

There are numerous studies in the 
literature to detect underwater man-made 
objects (MMOs) within a limited region of 
interest (RoI) using underwater imagery, 
robots or sonography. For instance, Abu 
et al. (Abu and Diamant, 2022) proposes a 
contour-based features analysis method to 

discern underwater MMOs from natural 
environment considering that contours 
of MMOs' are supposed to be smoother 
than natural objects. There are a limited 
number of studies in the literature to 
detect specific types of surface marine 
MMOs using supervised Machine 
Learning (ML) and Deep Learning (DL) 
approaches that require prior training 
in the marine ecosystem. For instance, 
Han et al. (Han et al., 2022) proposed 
a DL technique titled LCSE-ResNet to 
detect, classify and locate vessels and 
oil platforms based on remote optical 
imagery, by which all other MMOs are 
excluded. There are no studies in the 
literature that investigates the detection of 
all types of surface marine MMOs, which 
makes this research the first study of its 
kind. Most irregularly shaped man-made 
marine objects (ISMMMOs) are made 
of materials such as metal, treated wood, 
fibreglass, PVC plastic, glass, or concrete 
and they have different types of irregular 
shapes and colours. Hence, it is infeasible 
to apply: i) a template matching technique 
based on a specific object to input as 
a template, and ii) a supervised ML 
approach based on a prior knowledge/
similar datasets to train similar 
objects and then detect these objects 
automatically. Moreover, the current 
clustering algorithms used to group visual 
datasets are not capable of accomplishing 
this task with a high degree of precision 
(Kuru et al., 2013; Kuru and Khan, 2018), 
particularly for objects with indefinite 
shapes. Therefore, a new method is 
needed to realise this objective. On one 
hand, automatic detection of ISMMMOs 
is not easy based on two main reasons 
which pose a considerable challenge: 
i) the rapidly changing background 
depending on the camera, water turbidity, 
weather, wind, wave speed and period, 
sun glint and density of clouds, and ii) 
various non-definitive morphologies 
of MMOs. On the other hand, the 
characteristics of ISMMMOs differ from 
the natural environment and other natural 
objects within this ecosystem regarding 
the composition, features of the surface, 
saturation of light and colourfulness 
relative to the brightness to which an 
area radiate a varying amount of light. 
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Many studies aim to detect marine natural 
objects in sea areas using stationary land-
based fixed cameras, in particular, sea 
animals: detection of animals in deep-sea 
video (Mehrnejad et al., 2013), detection 
of sharks using multispectral imaging 
(Lopez et al., 2014), and detection of killer 
whales using infrared spectrum (Graber, 
2011). Furthermore, aerial surveys from 
a helicopter or small aircraft have been 
conducted for many years to detect, locate 
and monitor specific marine animals 
using human-based visual observations. 
Although there are several studies for 
the detection of MMOs such as ship 
(Saur et al., 2011), specific objects (e.g., 
boats, humans) on the ocean surface 
using infrared cameras (Leira et al., 
2015). To the best of our understanding, 
there is no study that aims to detect all 
kinds of ISMMMOs automatically with 
unsupervised approaches using standard 
advanced cameras and aerial surveys, 
in particular, from the perspective of 
ecology. Aerial surveys provide a cost-
effective way to collect environmental 
information over large areas in a short 
amount of time; however, they may not 
provide reliable data if not conducted 
correctly (Davis et al., 2022). Long-
term data using standardised and well-
structured approaches are the best 
way to measure change in ecology; 
unfortunately, this data is not available 
for most biogeographical regions 
(Clements and Robinson, 2022) due to 
the cost of data processing with intensive 
human intervention. In this sense, this 
study mainly aims to fill this gap in the 
scientific literature either by processing 
the collected data in an automated way, 
with no human intervention, to separate 
several hundreds of ISMMMOs from 
large surveys, or by processing images 
as they are streamed from the airborne 
camera systems to monitor ISMMMOs 
with their geospatial locations immediately 
with a novel approach using statistical 
ML techniques and HSV colour mode. 

In a conventional marine survey program, 
there may be a large number of images, 
e.g., around a million, collected over a 
period of one year to be analysed for a 
particular site, and it is labour-intensive 

to categorise the data into two groups: 
positive images containing man- made 
material and negative images without 
man-made material. In fact, many of the 
surveys that APEM Ltd.3 has acquired 
indicate that 95% of the aerial survey 
images do not accommodate any targeted 
object (Kuru et al., 2023). According 
to some research on visual perception, 
humans perceive only a small portion of 
an environment or scene in detail under 
typical viewing conditions (Noe et al., 
2000), which may result in discarding 
other details that should be taken into 
account. Although the elements that 
influence how a scene is perceived are 
not yet known, it appears that focus is a 
significant factor (Noe et al., 2000). Within 
this context, detection of ISMMMOs 
in large-scale images within very large 
surveys is a non-trivial task and labour-
intensive. Therefore, the utilisation of 
automated intelligent computer systems 
to automate this work would be highly 
advantageous in order to facilitate the 
development of efficient environmental 
models with real-world inputs.

To the best of our knowledge, this study, 
for the first time, explicitly investigates 
the automatic detection of offshore 
ISMMMOs to assist researchers, 
environmentalists, and policymakers in 
monitoring and managing the various 
applications of the maritime industry and 
to provide guidance on the necessary 
regulations and legal requirements. 

In order to illustrate the novelty 
of this research, specific 
contributions are listed below. 
1.	 A novel methodology, the so-

called ISMMMOD, that detects and 
splits ISMMMOs automatically in 
large-scale images in typical very 
large marine surveys is built.

2.	 The ISMMMOD is developed using 
the HSV colour space and statistical 
analysis of histograms of the channels 
in this space based on the ROC 
(receiver operating characteristic) 
curve analysis. The techniques in 
the methodology differ man-made-
built structures from natural maritime 
habitats (i.e., waves, sea animals, 

Fig. 1. Overall methodology. The images as they stream are automatically placed in the queue 
array to be processed in an automated way.  
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birds, seawater) in various aspects, in 
particular, composition, features of 
the surface and saturation of light.

The rest of this document is structured 
as follows: The methodology is 
revealed in Section 2. The datasets on 
which the methodology is built and 
tested are explored in Section 3. A 
summary of the findings is provided 
in Section 4. Discussions are outlined 
in Section 5. Section 6 draws a 
conclusion as well as future potential 
works. Finally, the limitations of the 
study are disclosed in Section 7.

2. Methodology

All types of mobile and stationary human 
activities – human foot-print – are required 
to be monitored on a regular basis and 
most of these activities involve the use 
of non-uniform, human built structures 
in multiple shapes during the exploration 
and exploitation of these tough marine 
ecosystem. Detecting these non-uniform 
structures on their highly dynamic 
background entails the development of 
a new technique that is not based on 
pretrained uniform object classifiers, but 
based on the features independent from 
their shapes. In this respect, we would 
like to reveal the features that are different 
from the maritime ecosystem by which 
a new detection method is aimed to be 
developed. Built structures differ from 
the natural maritime habitats and their 
creatures in various aspects, in particular, 
composition, features of the surface 
and saturation of light. The saturation 
level of ISMMMOs significantly varies 
from their surroundings (i.e., waves, sea 

animals, birds, seawater). More explicitly, 
the saturation level of these ISMMMOs 
is more intense than that of the natural 
marine life, and in this study, more 
saturated sections in images considering 
this distinguishing feature are made 
distinct to detect these artificial objects. 
More specifically, the methodology is 
based on the HSV colour space (elaborated 
in Section 2.1) and statistical analysis 
of histograms of the channels in this 
space (elaborated in Section 2.2). The 
essential phases of the technique and 
its automated execution are depicted 
in Fig. 1. The dynamic thresholding in 
the implementation of the methodology 
is presented in Algorithm 1 and the 
automated implementation of the overall 
methodology is presented in Algorithms 
2 and 3 which are placed in Appendix 
A. The execution of the methodology 
is exemplified for the images in Figs. 
11a, 12a, 13a, 14a, 15a. The techniques 
in this research was built with Matlab 
R2020a. The interface is shown in Fig. 
2. Generally speaking, in the proposed 
approach, the aerial image in RGB colour 
space is converted into HSV colour space 
and then the converted image is split 
into three components (i.e., channels), 
namely H, S and V that are designed to 
approximate the human vision. The result 
is a 3D matrix with elements of Hue, 
Saturation and Value. In the next step, 
the histograms of these components are 
computed as illustrated in the first rows 
of Figs. 11b, 12b, 13b, 14b, 15b. Then, 
the dynamically calculated threshold 
value is applied to S component along 
with shifting the H channel. At the end, 
the morphological operations, namely, 
masking, filter, and smoothing are 
carried out to extract the required area by 

suppressing the irrelevant parts mentioned 
in Section 2.3 such as glinting regions. 
The statistical terms used throughout 
the paper are explained regarding the 
scope of this paper in Table 3 for the 
readers who are not familiar with these 
commonly used terms for the statistical 
analysis related to the confusion matrix. 

Before revealing the methodology on data 
samples in detail, we would like to explore 
the basic concepts of the HSV colour 
space in Section 2.1 to shed light on the 
developed techniques. Then, the phases of 
the methodology (Fig. 1) are disclosed on 
the sample images acquired from various 
image surveys. The dynamic thresholding 
phase for S channel is explained in 
Section 2.2. The phases of the masking 
and dilation are presented in Section 2.3. 

2.1. HSV and its applications 
in the methodology 

The main colour models are RGB, HSV, 
CIELAB, CMYK, and XYZ. The colour 
models different from the RGB are 
employed to realise different objectives 
because several fundamental issues can 
not be addressed using the additive RGB 
colour mode for image segmentation such 
that it is not viable to get the luminance 
of the image regarding human perception. 
For instance, the CIELAB colour 
space that is close to the human visual 
perception is applied to H&E stained 
microscopical images to correct the Kohler 
illumination problem in microscopical 
images (Kuru, 2014). Likewise, HSV 
provides a close representation of human 
visual perception of colour in cylindrical-
coordinate representations as illustrated 
in Fig. 4 whereas the RGB colour mode 
represents the colours processing in the 
human biological visual system (Loesdau 
et al., 2014). HSV stands for i) the hue that 
corresponds to the angle (from the red at 
0◦, to the green at 120◦ and the blue at 240◦, 
and then back to red again at 360◦), more 
explicitly, moving from red to yellow to 
green to cyan to blue to magenta and back 
to red, ii) the saturation that corresponds 
to the distance from the axis (i.e., radius), 
the brightness of the colour, and iii) the 
value indicating the luminance or intensity.

Fig. 2. User interfaces. Left: the main platform developed for multi purpose environmental 
applications. Right: man-made object detection and splitting interface that can be opened from 
the main platform. 
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In HSV, the component, hue, has the 
most control over the colour information 
compared to the other components 
in terms of determining the colour 
information whereas the saturation 
designates the colourfulness relative 
to the brightness based on the amount 
of light it appears to absorb and how 
much light it seems to be emitting. The 
saturation characteristics of ISMMMOs 
are significantly different from those of 
the sea background and maritime animals, 
as explained earlier. Therefore, we 
process the chromatic hue and saturation 
components to reveal the artificial objects 
not belonging to the natural marine 
environment. First, the hue component 
is shifted by 180◦ to suppress the blueish 
background into reddish (Fig. 4) as shown 
in the examples in Figs. 11c, 12c, 13c, 
14c, 15c and in the technical reports in 
the supplements. Second, more saturated 
sections of the image are made more 
distinctive as explained in Section 2.2. 

2.2. Dynamic thresholding 
in S channel 

It is observed that the closer the values 
of histogram S are to the centre, with 
respect to the distribution of histograms, 
the likelier the pixels are of representing 
the background and natural marine life, 
and vice versa the more likelier they 
represent ISMMMOs wherever these 
values get away from the axis meaning 
that saturation is greater. However, 
there is no specific value that makes this 
separation distinct based on the different 
features of the images acquired in different 
circumstances, mainly different lighting 
times of the day, month, season, and type 
of camera. Furthermore, the distribution 
of the histogram values plays a major role 
in representing the characteristics of the 
image regarding the colourfulness relative 
to the brightness to which to which an 
area radiate a varying amount of light as 
explained in Section 1. The objective is 
to separate more saturated regions from 
less saturated ones to determine if there 
is an unnatural object. All threshold 
values and necessary parameters need to 
be determined based on the distribution 
and features of datasets in many surveys 

without any user intervention due to 
the maritime dynamics and image 
capturing techniques. It is noteworthy 
to emphasise that the saturation values 
are almost normally distributed with 
a Gaussian function as displayed in 
Eq. 1. The exact distribution of data 
points using this Gaussian function is 
presented in Fig. 5 with respect to the σ.

	 (1)

In the first instance, a viable threshold 

value that separates more saturated 
regions from less saturated ones is found 
using 145 images with ISMMMOs and 
5000 images with no ISMMMOs which 
were acquired from 22 aerial surveys as 
shown Fig. 3 I. A ROC curve is an ideal 
figure to observe how the classification 
model performs at various classification 
cut-off points using TPR (True Positive 
Rate) and FPR (False Positive Rate) (1-
TNR) (Table 3). Hence, a ROC curve is 
established using a large set of threshold 
values, i.e., cut-off points (i.e., 17) for the 

Fig. 3. Use of datasets during model construction, testing, evaluation, and validation of the 
model.  

Fig. 4. Model of the HSV colour space. The left image is the courtesy of the author in 
(Rosebrock, 2017). 
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purpose of determining the optimal cut-
off point, which is the point of the curve 
nearest to the upper left-hand corner. The 
results are shown in Table 4. The optimum 
cut-off point, 0.17, is found, which is 
between the cut-off points of 0.15 and 
0.20 as displayed in Fig. 6, and this results 
in 0.856 (i.e., TP = 124) and 0.817 (i.e., 
TN = 817) and 0.80 for sensitivity (Se), 
specificity (Sp) and accuracy (i.e., ACC) 
respectively. However, these outcomes 
are far away from our objectives in terms 
of separating images with ISMMMOs 
from others within large-scale surveys 

with higher accuracy rates. In other 
words, in order to achieve the desired 
separation (i.e., (Se) > 0.95, Sp > 0.95, 
and ACC > 0.95), a curve that is much 
closer to the top left-hand side of the ROC 
figure is required where the area under 
the ROC curve (i.e., AUC) increases, 
which is a desirable outcome for a test.

The saturation varies significantly, in 
particular, from one survey to another 
based on the changing conditions as 
mentioned above and demonstrated in the 
technical reports in the supplements with 

many examples.4 Therefore, the designs 
of various ROC curves are based on the 
several most important sections of the 
histogram concerning the distribution 
of the saturation, and Se and Sp values 
by determining the required number of 
dynamic cut-off points for increasing 
the Se and Sp values significantly. 
Technically speaking, i) the mean values 
(μ) and standard deviations (σ) are 
acquired following the histogram of the 
S components are obtained from those 
145 images mentioned earlier, ii) they are 
classified based on their μ values and iii) 

Fig. 5. Generation of the probability 
distribution using the Gaussian 
function in Eq. 1 and representation 
of the standard deviation (σ) of 
saturation values from μ. Areas: 
blue (one σ of μ): 0.6826; orange: 
0.2718; magenta: 0.0428; sides 
(right of 3σ and left of -3σ): 
0.0027. (For interpretation of the 
references to colour in this figure 
legend, the reader is referred to the 
web version of this article.) 

Fig. 6. ROC Curve for Table 4 based on TPR 
(y-axis) and FPR (x-axis) at 17 classification 
thresholds: The best cut-off point is 0.17 that 
is closest to the upper left corner of the curve 
between the cut-off points 0.15 and 0.20. 

Fig. 7. ROC Curve for Table 5: The best cut-
off point is μ - 2σ.  

Fig. 8. ROC Curve for Table 6: The best cut-off 
point is μ - σ/2.  

Fig. 9. ROC Curve for Table 7: The best cut-
off point is μ.  

Fig. 10. ROC Curve for μs where <0.17 (Table 
8): The best cut-off point is μ + 4σ.

22 | CoordinatesCoordinates  October 2024



those classes are analysed separately to find out the 
best cut-off points for each class. The sections on 
which the ROC curves are analysed are depicted in 
Figs. 7, 8, 9, 10 and in Tables 5, 6, 7 and 8 based on 
the distribution of the histogram using the statistical 
analysis of the μ and σ values where the cut-off 
points on the ROC curves are specified based on 
the times of σ in the both directions of μ (Fig. 5). 

The number of the cut-off points for each class is 
specified based on the distribution of the histogram 
values. This analysis is mainly carried out to 
find out i) if there is an evident saturated region 
in the image that distinctively differs from the 
other majority regions regarding the features of 
saturation and most importantly ii) what the best 
cut-off points making this distinction resulting 
in higher Se and Sp values are. The histogram 
values based on the obtained best cut-off points are 
transformed to the most outer side of the radius in 
S channel and set to 1 to make the most saturated 
sections more distinct, in other words, the probable 
ISMMMOs visible using the masking and dilation 
techniques mentioned in Section 2.3. Several 
examples are presented in Figs. 11, 12, 13, 14 and 
15. The observed best cut-off points regarding the 
analysed sections along with their Se and Sp values 
in those ROC curves are summarised in Table 9. 
The implementation of dynamic thresholding is 
presented in Algorithm 1 and exemplified in Figs. 
11d, 12d, 13d, 14d, 15d with several examples along 
with H shifting whose new histograms are presented 
in the second rows of Figs. 11b, 12b, 13b, 14b, 15b. 

The methodology was developed using the 
characteristics and distribution of 22 surveys with 
around 3 million large-scale images that have 
been acquired in the various geographical regions, 
and in the various time zones and seasons. The 
images with no ISMMMOs were exploited to 
obtain the general characteristic of the background 
whereas the images with ISMMMOs were used to 
determine the general characteristics of ISMMMOs. 
Both features are merged in the methodology to 
distinguish the ISMMMOs from its background 
and consequently discern the positive images 
from the negative images for further analysis. 

2.3. Masking and dilation 

Two masks are applied on the image acquired 
from the dynamic thresholding technique on H 
and S channels mentioned above, one of which 
is for detecting the blueish part and the other one 
is for removing the unwanted background parts 

Fig. 11. Stationary example 1: man-made object detection.  

Fig. 12. Stationary example 2: man-made object detection.  
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Fig. 13. Stationary example 3: man-made object detection.  Fig. 14. Moving example 1: man-made object detection.  

Fig. 15. Moving example 2: man-made object detection.  

from the image. First mask (i.e.,((ImgR < 0.25&ImgG < 
0.80&ImgB = 1)&(ImgR < (ImgB)&ImgG < (ImgB) ) )) 
makes the blueish sections visible by suppressing all other 
sections, in particular, reddish parts that dominantly indicate 
the background of sea as depicted in Figs. 11e, 12e, 13e, 
14e, 15e and in our technical reports. After applying this 
mask, the obtained image is dilated and holes are filled 
to make ISMMMOs coherent as shown in Figs. 11f, 12f, 
13f, 14f, 15f. This process is mainly performed to gain the 
complete white areas of objects that are not obtained with 
the proposed technique as elaborated in Sections 5 and 7.

There might be several small unwanted dots that are not a 
part of the ISMMMOs after applying the first mask, usually a 
process of glinting sections after the HSV processing phase. 
Around 20% of the blank images come up with similar small 
dots usually after dilation and filling holes in the image as 
depicted in Fig. 16h). Several examples for these types of 
processed images can be reached from our technical report 
(e.g., examples 4, 6, 7, 15, 17, 19, 20 in MarineObjects_
Man- made_Technical_Blank_1.pdf) in the supplements. 
These small sections are much smaller than the ISMMMOs 
and are discarded by applying a size mask technique. In the 
last phase of the implementation, the images with detected 
ISMMMOs are labelled as positive images and placed in a 
separate directory by the application for further analysis.
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Table 1: Formulas for converting from RGB to HSV colour space. 

Table 2: Formulas for converting from HSV to RGB colour space.

Table 3: Main statistical terms and calculations used throughout the paper.

Table 4: Finding the optimum point using 17 cut-off points. 145 images with 
ISMMMOs

Table 5: Statistical analysis using 11 cut-off points: 29 
images with ISMMMOs where μs > 0.50.

Table 6: Statistical analysis using 7 cut-off points. 55 images 
with ISMMMOs where μs >0.25 and < 0.50.
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End notes

1 https://apem-inc.com

2 https://www.apemltd.co.uk

3 APEM Ltd. is an environmental company and 
proposes novel solutions for environmental 
problems (https://www.apemltd.co.uk).

4 The reports from 1 to 7 titled as MarineObjects_
Man-made_Supplement are for ISMMMOs and the 
reports from 1 to 5 titled as MarineObjects_Man-
made_Supplement_Blank are for blank images.

© 2023 The Author(s). Published by Elsevier B.V. 
in Ecological Informatics 78 (2023) 102285. This 
is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

The paper is republished with authors’ 
permission.To be concluded in next issue. x

Table 7: Statistical analysis using 7 cut-off points. 21 images with ISMMMOs 
where μs > 0.17 and < 0.25.

Table 8: Statistical analysis using 10 cut-off points. 40 images with ISMMMOs 
where μs < 0.17.

Table 9: Dynamic threshold points for S channel based on μ and σ acquired from the statistical analysis of the images using several cut-off points as 
depicted in Tables 5, 6, 7, 8. The most closest pointi to the upper left corner of the ROC curve indicate the ideal cut-off points as shown in Figs. 7, 8, 9, 10.

Appendix A. Pseudo codes of the methodology based on the Matlab syntax

26 | CoordinatesCoordinates  October 2024



References

[1] C. E. Elrick-Barr, J. S. Zimmerhackel, G. Hill, J. Clifton, F. Ackermann, M. Burton, E. S. Harvey, Man-made structures in the marine

environment: A review of stakeholders’ social and economic values and perceptions, Environmental Science & Policy 129 (2022) 12–18.

doi:https://doi.org/10.1016/j.envsci.2021.12.006.

[2] Y. Shi, C. Shen, H. Fang, H. Li, Advanced control in marine mechatronic systems: A survey, IEEE/ASME Transactions on Mechatronics

22 (3) (2017) 1121–1131. doi:10.1109/TMECH.2017.2660528.

[3] K. Kuru, H. Yetgin, Transformation to advanced mechatronics systems within new industrial revolution: A novel framework in automation

of everything (aoe), IEEE Access 7 (2019) 41395–41415. doi:10.1109/ACCESS.2019.2907809.

[4] S. C. Riser, H. J. Freeland, D. Roemmich, S. Wijffels, A. Troisi, M. Belbéoch, D. Gilbert, J. Xu, S. Pouliquen, A. Thresher, P.-Y. L. Traon,
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