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of man-made marine objects
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The objective of this study is to create a new platform for the automated detection
of irregularly shaped man-made marine objects (ISMMMOs) in large datasets
derived from marine aerial survey imagery. We present here the first part of the
paper. The concluding part of the paper will be published in the next issue
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Abstract

The marine economy has historically
been highly diversified and prolific due to
the fact that the Earth's oceans comprise
two-thirds of its total surface area. As
technology advances, leading enterprises
and ecological organisations are building
and mobilising new devices supported

by cutting-edge marine mechatronics
solutions to explore and harness this
challenging environment. Automated
tracking of these types of industries and
the marine life around them can help

us figure out what's causing the current
changes in species numbers, predict what
could happen in the future, and create

the right policies to help reduce the
environmental impact and make the planet
more sustainable. The objective of this
study is to create a new platform for the
automated detection of irregularly shaped
man-made marine objects (ISMMMOs)
in large datasets derived from marine
aerial survey imagery. In this context, a
novel nonparametric methodology, which
harbours several hybrid statistical Machine
Learning (ML) methods, was developed
to automatically segment ISMMMOs

on the sea surface in large surveys. This
methodology was validated on a wide
range of marine domains, providing
robust empirical proof of concept.

This approach enables the detection of
ISMMMOs automatically, without any
prior training, with accuracy (ACC),
Matthews correlation coefficient (MCC),
negative predictive value (NPV), positive
predictive value (PPV), specificity (Sp)
and sensitivity (Se) over 0.95. The outlined
methodology can be utilised for a variety
of purposes, but it's especially useful for
researchers and policymakers who want to
keep an eye on how the maritime industry
is deploying and make sure the right
policies are in place to meet regulatory and
legal requirements to promote maritime
tech innovation and shape what the future
looks like for the marine ecosystem. For
the first time in the literature, a method,
the so-called ISMMMOD, has been
developed to automate the detection of

all types of ISMMMOs by statistical ML
techniques that require no prior training,
which will pioneer the monitoring of
human footprint in the marine ecosystem.

1. Introduction

The process of marine spatial planning

is highly contentious due to the presence
of multiple stakeholders, often with
conflicting objectives and values (Elrick-
Barr et al., 2022). The maritime economy
has historically been highly diversified
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and prolific due to the fact that the Earth's
oceans comprise two-thirds of its total
surface area. As technology advances,
leading enterprises and ecological
organisations are building and mobilising
new devices supported by cutting-

edge marine mechatronics solutions

(Shi et al., 2017) within the framework

of Automation of Everything (AoE)
(Kuru and Yetgin, 2019) to explore and
harness this challenging environment.
More specifically, robotic vehicles,
autonomous vehicles, and surface vessels
have been deployed for the offshore
industries and deep sea archaeology, ocean
engineering projects, rescue operations
and environmental measurements for

the last several decades. For instance,

the Argo program, an international
collaboration, has deployed approximately
3900 instruments in the world's oceans

to facilitate the collection of data for
climatological and oceanographic studies.
(Riser et al., 2016). Besides, artificial
structures such as gas, oil and deep seabed
mining platforms, offshore renewable
energy harvesting technologies such as oil
and gas installations, wind farms and wave
energy converters, fish farms, ships, boats
and yachts for transportation, autonomous
marine vehicles from unmanned ships to
smaller vessels are becoming inevitable
components of the offshore environment.
For instance, in recent years, the offshore
wind industry has seen a remarkable
expansion, with an annual rate of growth
of 25%, for constructing offshore

energy islands to meet the reduction

of gas emission targets (Zhang et al.,
2021). These may conflict with nature
conservation objectives, such as habitat
loss or species endangerment. In other
words, this rapidly expanding industry,
which allows for extensive, ongoing
human influence in the marine domain, has
the potential to have a significant impact
on the marine environment, particularly
on the marine floor, on turtles, fish, and
birds. For instance, the population of
monitored seabirds, which account for
about 19% of the all seabird populations,
declined by almost 70% from 1950 to
2010 (Paleczny et al., 2015), resulting

in a net loss of almost 3 billion (%29)
birds since 1970 (Rosenberg et al.,
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2019). The decline of bird populations
serves as a stark reminder of the need

for immediate action to mitigate threats

to the eventual decline of avifauna and
the resulting degradation of ecosystem
health, functionality, and services
(Rosenberg et al., 2019). Intervention

into nature is a natural consequence of
human activities, however, when managed
effectively, these interventions can be
beneficial not only to the environment,
but also to the ongoing development of
civilisation (S'anchez-Marr'e et al., 2004).
To better understand the planet and to
ensure effective conservation planning,

it is essential to have a comprehensive
understanding of the species, habitats, and
sites that require protection. Unfortunately,
for the majority of species and regions,
comprehensive quantitative knowledge is
not yet available (Bibby et al., 1998). One
of the key objectives of the development
and utilisation of ecological models and
applications is to influence the ecological
policy practices, outputs and results in

a beneficial manner (Mclntosh et al.,
2011). There is an urgent need to monitor
the environmental upheavals, impacts

and possible trends with environmental
time series analysis, models and tools

as the footprint of human activities
increases with the rapid development of
the industry. In this manner, modelling,
automated detection, location and real-
time monitoring of industrial sites and
ecosystems around them can help uncover
the current and potential future effects

on nature. Furthermore, the insights
observed and models developed based

on these insights may help researchers
and policymakers to monitor this diverse
ecosystem along with the associated
maritime industries and thereby help

to determine the legal and regulatory
requirements for reducing the ecological
foot-print concerning immediate
foreseeable environmental problems.

There are numerous studies in the
literature to detect underwater man-made
objects (MMOs) within a limited region of
interest (Rol) using underwater imagery,
robots or sonography. For instance, Abu

et al. (Abu and Diamant, 2022) proposes a
contour-based features analysis method to

discern underwater MMOs from natural
environment considering that contours

of MMOs' are supposed to be smoother
than natural objects. There are a limited
number of studies in the literature to
detect specific types of surface marine
MMOs using supervised Machine
Learning (ML) and Deep Learning (DL)
approaches that require prior training

in the marine ecosystem. For instance,
Han et al. (Han et al., 2022) proposed

a DL technique titled LCSE-ResNet to
detect, classify and locate vessels and

oil platforms based on remote optical
imagery, by which all other MMOs are
excluded. There are no studies in the
literature that investigates the detection of
all types of surface marine MMOs, which
makes this research the first study of its
kind. Most irregularly shaped man-made
marine objects ISMMMOs) are made

of materials such as metal, treated wood,
fibreglass, PVC plastic, glass, or concrete
and they have different types of irregular
shapes and colours. Hence, it is infeasible
to apply: i) a template matching technique
based on a specific object to input as

a template, and ii) a supervised ML
approach based on a prior knowledge/
similar datasets to train similar

objects and then detect these objects
automatically. Moreover, the current
clustering algorithms used to group visual
datasets are not capable of accomplishing
this task with a high degree of precision
(Kuru et al., 2013; Kuru and Khan, 2018),
particularly for objects with indefinite
shapes. Therefore, a new method is
needed to realise this objective. On one
hand, automatic detection of ISMMMOs
is not easy based on two main reasons
which pose a considerable challenge:

i) the rapidly changing background
depending on the camera, water turbidity,
weather, wind, wave speed and period,
sun glint and density of clouds, and ii)
various non-definitive morphologies

of MMOs. On the other hand, the
characteristics of ISMMMOs differ from
the natural environment and other natural
objects within this ecosystem regarding
the composition, features of the surface,
saturation of light and colourfulness
relative to the brightness to which an
area radiate a varying amount of light.



Many studies aim to detect marine natural
objects in sea areas using stationary land-
based fixed cameras, in particular, sea
animals: detection of animals in deep-sea
video (Mehrnejad et al., 2013), detection
of sharks using multispectral imaging
(Lopez et al., 2014), and detection of killer
whales using infrared spectrum (Graber,
2011). Furthermore, aerial surveys from
a helicopter or small aircraft have been
conducted for many years to detect, locate
and monitor specific marine animals
using human-based visual observations.
Although there are several studies for

the detection of MMOs such as ship
(Saur et al., 2011), specific objects (e.g.,
boats, humans) on the ocean surface
using infrared cameras (Leira et al.,
2015). To the best of our understanding,
there is no study that aims to detect all
kinds of ISMMMOs automatically with
unsupervised approaches using standard
advanced cameras and aerial surveys,

in particular, from the perspective of
ecology. Aerial surveys provide a cost-
effective way to collect environmental
information over large areas in a short
amount of time; however, they may not
provide reliable data if not conducted
correctly (Davis et al., 2022). Long-
term data using standardised and well-
structured approaches are the best

way to measure change in ecology;
unfortunately, this data is not available
for most biogeographical regions
(Clements and Robinson, 2022) due to
the cost of data processing with intensive
human intervention. In this sense, this
study mainly aims to fill this gap in the
scientific literature either by processing
the collected data in an automated way,
with no human intervention, to separate
several hundreds of ISMMMOs from
large surveys, or by processing images
as they are streamed from the airborne
camera systems to monitor ISMMMOs
with their geospatial locations immediately
with a novel approach using statistical
ML techniques and HSV colour mode.

In a conventional marine survey program,
there may be a large number of images,
e.g., around a million, collected over a
period of one year to be analysed for a
particular site, and it is labour-intensive

to categorise the data into two groups:
positive images containing man- made
material and negative images without
man-made material. In fact, many of the
surveys that APEM Ltd.? has acquired
indicate that 95% of the aerial survey
images do not accommodate any targeted
object (Kuru et al., 2023). According

to some research on visual perception,
humans perceive only a small portion of
an environment or scene in detail under
typical viewing conditions (Noe et al.,
2000), which may result in discarding
other details that should be taken into
account. Although the elements that
influence how a scene is perceived are
not yet known, it appears that focus is a
significant factor (Noe et al., 2000). Within
this context, detection of ISMMMOs

in large-scale images within very large
surveys is a non-trivial task and labour-
intensive. Therefore, the utilisation of
automated intelligent computer systems
to automate this work would be highly
advantageous in order to facilitate the
development of efficient environmental
models with real-world inputs.
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To the best of our knowledge, this study,
for the first time, explicitly investigates
the automatic detection of offshore
ISMMMOs to assist researchers,
environmentalists, and policymakers in
monitoring and managing the various
applications of the maritime industry and
to provide guidance on the necessary
regulations and legal requirements.

In order to illustrate the novelty

of this research, specific

contributions are listed below.

1. A novel methodology, the so-
called ISMMMOD, that detects and
splits ISMMMOs automatically in
large-scale images in typical very
large marine surveys is built.

2. The ISMMMOD is developed using
the HSV colour space and statistical
analysis of histograms of the channels
in this space based on the ROC
(receiver operating characteristic)
curve analysis. The techniques in
the methodology differ man-made-
built structures from natural maritime
habitats (i.e., waves, sea animals,
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Fig. 1. Overall methodology. The images as they stream are automatically placed in the queue

array to be processed in an automated way.
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birds, seawater) in various aspects, in
particular, composition, features of
the surface and saturation of light.

The rest of this document is structured
as follows: The methodology is
revealed in Section 2. The datasets on
which the methodology is built and
tested are explored in Section 3. A
summary of the findings is provided
in Section 4. Discussions are outlined
in Section 5. Section 6 draws a
conclusion as well as future potential
works. Finally, the limitations of the
study are disclosed in Section 7.

2. Methodology

All types of mobile and stationary human
activities — human foot-print — are required
to be monitored on a regular basis and
most of these activities involve the use
of non-uniform, human built structures

in multiple shapes during the exploration
and exploitation of these tough marine
ecosystem. Detecting these non-uniform
structures on their highly dynamic
background entails the development of

a new technique that is not based on
pretrained uniform object classifiers, but
based on the features independent from
their shapes. In this respect, we would
like to reveal the features that are different
from the maritime ecosystem by which

a new detection method is aimed to be
developed. Built structures differ from
the natural maritime habitats and their
creatures in various aspects, in particular,
composition, features of the surface

and saturation of light. The saturation
level of ISMMMOs significantly varies
from their surroundings (i.e., waves, sea

animals, birds, seawater). More explicitly,
the saturation level of these ISMMMOs
is more intense than that of the natural
marine life, and in this study, more
saturated sections in images considering
this distinguishing feature are made
distinct to detect these artificial objects.
More specifically, the methodology is
based on the HSV colour space (elaborated
in Section 2.1) and statistical analysis

of histograms of the channels in this
space (elaborated in Section 2.2). The
essential phases of the technique and

its automated execution are depicted

in Fig. 1. The dynamic thresholding in
the implementation of the methodology
is presented in Algorithm 1 and the
automated implementation of the overall
methodology is presented in Algorithms
2 and 3 which are placed in Appendix

A. The execution of the methodology

is exemplified for the images in Figs.

11a, 12a, 13a, 14a, 15a. The techniques
in this research was built with Matlab
R2020a. The interface is shown in Fig.

2. Generally speaking, in the proposed
approach, the aerial image in RGB colour
space is converted into HSV colour space
and then the converted image is split

into three components (i.e., channels),
namely H, S and V' that are designed to
approximate the human vision. The result
is a 3D matrix with elements of Hue,
Saturation and Value. In the next step,
the histograms of these components are
computed as illustrated in the first rows
of Figs. 11b, 12b, 13b, 14b, 15b. Then,
the dynamically calculated threshold
value is applied to S component along
with shifting the A channel. At the end,
the morphological operations, namely,
masking, filter, and smoothing are
carried out to extract the required area by

Fig. 2. User interfaces. Left: the main platform developed for multi purpose environmental
applications. Right: man-made object detection and splitting interface that can be opened from
the main platform.
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suppressing the irrelevant parts mentioned
in Section 2.3 such as glinting regions.
The statistical terms used throughout

the paper are explained regarding the
scope of this paper in Table 3 for the
readers who are not familiar with these
commonly used terms for the statistical
analysis related to the confusion matrix.

Before revealing the methodology on data
samples in detail, we would like to explore
the basic concepts of the HSV colour
space in Section 2.1 to shed light on the
developed techniques. Then, the phases of
the methodology (Fig. 1) are disclosed on
the sample images acquired from various
image surveys. The dynamic thresholding
phase for S channel is explained in
Section 2.2. The phases of the masking
and dilation are presented in Section 2.3.

2.1. HSV and its applications
in the methodology

The main colour models are RGB, HSV,
CIELAB, CMYK, and XYZ. The colour
models different from the RGB are
employed to realise different objectives
because several fundamental issues can
not be addressed using the additive RGB
colour mode for image segmentation such
that it is not viable to get the luminance

of the image regarding human perception.
For instance, the CIELAB colour

space that is close to the human visual
perception is applied to H&E stained
microscopical images to correct the Kohler
illumination problem in microscopical
images (Kuru, 2014). Likewise, HSV
provides a close representation of human
visual perception of colour in cylindrical-
coordinate representations as illustrated

in Fig. 4 whereas the RGB colour mode
represents the colours processing in the
human biological visual system (Loesdau
et al., 2014). HSV stands for 1) the hue that
corresponds to the angle (from the red at
0, to the green at 120" and the blue at 240,
and then back to red again at 360°), more
explicitly, moving from red to yellow to
green to cyan to blue to magenta and back
to red, ii) the saturation that corresponds
to the distance from the axis (i.e., radius),
the brightness of the colour, and iii) the
value indicating the luminance or intensity.



In HSV, the component, hue, has the
most control over the colour information
compared to the other components

in terms of determining the colour
information whereas the saturation
designates the colourfulness relative

to the brightness based on the amount

of light it appears to absorb and how
much light it seems to be emitting. The
saturation characteristics of ISMMMOs
are significantly different from those of
the sea background and maritime animals,
as explained earlier. Therefore, we
process the chromatic hue and saturation
components to reveal the artificial objects
not belonging to the natural marine
environment. First, the hue component

is shifted by 180" to suppress the blueish
background into reddish (Fig. 4) as shown
in the examples in Figs. 11c, 12¢, 13c,
14c, 15¢ and in the technical reports in
the supplements. Second, more saturated
sections of the image are made more
distinctive as explained in Section 2.2.

2.2. Dynamic thresholding
in S channel

It is observed that the closer the values

of histogram S are to the centre, with
respect to the distribution of histograms,
the likelier the pixels are of representing
the background and natural marine life,
and vice versa the more likelier they
represent ISMMMOs wherever these
values get away from the axis meaning
that saturation is greater. However,

there is no specific value that makes this
separation distinct based on the different
features of the images acquired in different
circumstances, mainly different lighting
times of the day, month, season, and type
of camera. Furthermore, the distribution
of the histogram values plays a major role
in representing the characteristics of the
image regarding the colourfulness relative
to the brightness to which to which an
area radiate a varying amount of light as
explained in Section 1. The objective is
to separate more saturated regions from
less saturated ones to determine if there

is an unnatural object. All threshold
values and necessary parameters need to
be determined based on the distribution
and features of datasets in many surveys

without any user intervention due to value that separates more saturated

the maritime dynamics and image regions from less saturated ones is found
capturing techniques. It is noteworthy using 145 images with ISMMMOs and
to emphasise that the saturation values 5000 images with no ISMMMOs which
are almost normally distributed with were acquired from 22 aerial surveys as
a Gaussian function as displayed in shown Fig. 3 I. AROC curve is an ideal
Eq. 1. The exact distribution of data figure to observe how the classification
points using this Gaussian function is model performs at various classification
presented in Fig. 5 with respect to the c. cut-off points using TPR (True Positive
Rate) and FPR (False Positive Rate) (1-
P(x) = 6\}2_’[((-‘*”)2/ 2° e)) TNR) (Table 3). Hence, a ROC curve is
established using a large set of threshold
In the first instance, a viable threshold values, i.e., cut-off points (i.e., 17) for the
APEM DATABASE
~——{ 1. MODEL coNSTRUCTION | w“i‘:’gg:‘%‘::;;ﬁ ~—{ 1. TEST OF THE MODEL )
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Fig. 3. Use of datasets during model construction, testing, evaluation, and validation of the
model.

. -

Fig. 4. Model of the HSV colour space. The left image is the courtesy of the author in
(Rosebrock, 2017).
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purpose of determining the optimal cut-
off point, which is the point of the curve
nearest to the upper left-hand corner. The
results are shown in Table 4. The optimum
cut-off point, 0.17, is found, which is
between the cut-off points of 0.15 and
0.20 as displayed in Fig. 6, and this results
in 0.856 (i.e., TP =124) and 0.817 (i.e.,
TN = 817) and 0.80 for sensitivity (Se),
specificity (Sp) and accuracy (i.e., ACC)
respectively. However, these outcomes

are far away from our objectives in terms
of separating images with ISMMMOs
from others within large-scale surveys

# of observations (frequency)

with higher accuracy rates. In other
words, in order to achieve the desired
separation (i.e., (Se) > 0.95, Sp > 0.95,
and ACC > 0.95), a curve that is much
closer to the top left-hand side of the ROC
figure is required where the area under
the ROC curve (i.e., AUC) increases,
which is a desirable outcome for a test.

The saturation varies significantly, in
particular, from one survey to another
based on the changing conditions as
mentioned above and demonstrated in the
technical reports in the supplements with

Fig. 5. Generation of the probability
distribution using the Gaussian
function in Eq. 1 and representation
of the standard deviation (o) of
saturation values from p. Areas:
blue (one o of p): 0.6826; orange:
0.2718; magenta: 0.0428; sides
(right of 35 and left of -30):
0.0027. (For interpretation of the
references to colour in this figure

3o 20 -0 H o 200

Standard deviation of saturation values from

30 legend, the reader is referred to the
web version of this article.)

Algorithm 1: HSV colour space adjustment function where hAdjust = 0.17 and sAdjustPar = 180.

FUNCTION newImage = HSVadjustManMade(img, hAdjust,sAdjustMask):

— >convert the image from RGB colour space into HSV space;

1
2
3 hsvVAL = rgb2hsv(img);

4 hue = 360*hsvVALC(:,:,1);

5 h =hsvVAL(,;,1); s = hsvVAL(:,:,2); v = hsvVAL(:,:,3);
6 meanS = mean2(s);

7 stdS = std2(s);

8 — >perform the dynamic thresholding for S channel;

9 if meanS > 0.50 then

10 L sAdjust = meanS - 2*stdS;

1 else if meanS > 0.25 then

12 L sAdjust = means - stdS/2;

13 else if mean$ > sAdjustMask then

14| sAdjust = meanS;

15 else

16 L sAdjust = mean$S + 4*stdS;

17 8 (s > sAdjust) = 1;

18 — >perform the shifting of H channel;

19 h = (mod(hue + hAdjust, 360)) / 360;

20 — >acquire the updated RGB image from HSV space;

21 hsvVALC(, :, 1) = h; hsvVAL(, :, 2) = s; hsvVAL(:, 3, 3) = v;

22 newlmage = hsv2rgb(hsvVAL);

ROC Curve where |,>0.25 and . <0.50

Fig. 8. ROC Curve for Table 6: The best cut-off
point is p - ©/2.
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ROC Curve where ,>0.17 and j2,<0.25

Fig. 9. ROC Curve for Table 7: The best cut-
off point is p.

many examples.* Therefore, the designs
of various ROC curves are based on the
several most important sections of the
histogram concerning the distribution
of the saturation, and Se and Sp values
by determining the required number of
dynamic cut-off points for increasing
the Se and Sp values significantly.
Technically speaking, i) the mean values
(u) and standard deviations (o) are
acquired following the histogram of the
S components are obtained from those
145 images mentioned earlier, ii) they are
classified based on their u values and iii)

ROC Curve

Fig. 6. ROC Curve for Table 4 based on TPR
(y-axis) and FPR (x-axis) at 17 classification
thresholds: The best cut-off point is 0.17 that
is closest to the upper left corner of the curve
between the cut-off points 0.15 and 0.20.

ROC Curve where ., >0.50

Fig. 7. ROC Curve for Table 5: The best cut-
off point is p - 2.

ROC Curve whara i <017

_—

Fig. 10. ROC Curve for ps where <0.17 (Table
8): The best cut-off point is p + 4c.



those classes are analysed separately to find out the
best cut-off points for each class. The sections on
which the ROC curves are analysed are depicted in
Figs. 7, 8,9, 10 and in Tables 5, 6, 7 and 8 based on
the distribution of the histogram using the statistical
analysis of the p and o values where the cut-off
points on the ROC curves are specified based on
the times of ¢ in the both directions of u (Fig. 5).

The number of the cut-off points for each class is
specified based on the distribution of the histogram
values. This analysis is mainly carried out to

find out i) if there is an evident saturated region

in the image that distinctively differs from the
other majority regions regarding the features of
saturation and most importantly ii) what the best
cut-off points making this distinction resulting

in higher Se and Sp values are. The histogram
values based on the obtained best cut-off points are
transformed to the most outer side of the radius in
S channel and set to 1 to make the most saturated
sections more distinct, in other words, the probable
ISMMMOs visible using the masking and dilation
techniques mentioned in Section 2.3. Several
examples are presented in Figs. 11, 12, 13, 14 and
15. The observed best cut-off points regarding the
analysed sections along with their Se and Sp values
in those ROC curves are summarised in 7able 9.
The implementation of dynamic thresholding is
presented in Algorithm 1 and exemplified in Figs.
11d, 12d, 13d, 14d, 15d with several examples along
with H shifting whose new histograms are presented
in the second rows of Figs. 11b, 12b, 13b, 14b, 15b.

The methodology was developed using the
characteristics and distribution of 22 surveys with
around 3 million large-scale images that have
been acquired in the various geographical regions,
and in the various time zones and seasons. The
images with no ISMMMOs were exploited to
obtain the general characteristic of the background
whereas the images with ISMMMOs were used to
determine the general characteristics of ISMMMOs.
Both features are merged in the methodology to
distinguish the ISMMMOs from its background
and consequently discern the positive images

from the negative images for further analysis.

2.3. Masking and dilation

Two masks are applied on the image acquired
from the dynamic thresholding technique on A
and S channels mentioned above, one of which
is for detecting the blueish part and the other one
is for removing the unwanted background parts

il L bl i ns
Fig. 11. Stationary example 1: man-made object detection.

Fig. 12. Stationary example 2: man-made object detection.
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Fig. 13. Stationary example 3: man-made object detection. Fig. 14. Moving example 1: man-made object detection.

from the image. First mask (i.e.,((/mgR < 0.25&ImgG <
0.80&ImgB = 1)&(ImgR < (ImgB)&ImgG < (ImgB) ) ))
makes the blueish sections visible by suppressing all other
sections, in particular, reddish parts that dominantly indicate
the background of sea as depicted in Figs. 11e, 12¢, 13e,
14e, 15e and in our technical reports. After applying this
mask, the obtained image is dilated and holes are filled

to make ISMMMOs coherent as shown in Figs. 111, 12f,
131, 14f, 15f. This process is mainly performed to gain the
complete white areas of objects that are not obtained with
the proposed technique as elaborated in Sections 5 and 7.

There might be several small unwanted dots that are not a
part of the ISMMMOs after applying the first mask, usually a
process of glinting sections after the HSV processing phase.

Around 20% of the blank images come up with similar small
dots usually after dilation and filling holes in the image as
depicted in Fig. 16h). Several examples for these types of
processed images can be reached from our technical report
(e.g., examples 4, 6, 7, 15, 17, 19, 20 in MarineObjects
Man- made_Technical Blank 1.pdf) in the supplements.
These small sections are much smaller than the ISMMMOs
and are discarded by applying a size mask technique. In the
last phase of the implementation, the images with detected
ISMMMOs are labelled as positive images and placed in a

separate directory by the application for further analysis. Fig. 15. Moving example 2: man-made object detection.
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Table 1: Formulas for converting from RGB to HSV colour space.

Channel Formula Condition / Output
Rnew = Red / 255 Output: 0 < Rnew < 1 Red value mapped between 0 and 1
Gnew = Green / 255 Output: 0 < Gnew < 1 Green value mapped between 0 and 1
Bnew = Blue / 255 Output: 0 < Bnew < 1 Blue value mapped between 0 and 1
MaxRGB = Max (Rnew, Gnew, Bnew) Output: maximum assigned Maximum of three components found
MinRGB = Min (Rnew, Gnew, Bnew) Output: minimum assigned Minimum of three components found
=0 If Rnew = Gnew = Bnew Zero assigned
= 60 * ((Gnew - Bnew) / (MaxRGB - MinRGB)) + 0 If max is Rnew
Hue (H)

= 60 * ((Bnew - Rnew) / (MaxRGB - MinRGB)) + 2
= 60 * ((Rnew - Gnew) / (MaxRGB - MinRGB)) + 4

Saturation (S) =0
= (MaxRGB - MinRGB) / MaxRGB
Value (V) = MaxRGB

If max is Gnew

If max is Bnew

If Rnew = Gnew = Bnew
Else

Output: maximum assigned

Add 360 to Hue if H < 0

Zero assigned
If all components different
Maximum of three components assigned

Table 2: Formulas for converting from HSV to RGB colour space.

Channel Formula Condition / Output

Chroma (Chr) =S*V Output: Colourfulness Intermediate colour purity calculated
MidX value = Chr(1 — |(H/60)mod2 — 1 |) Output: Mid value Intermediate conversion value calculated
MidM value =V-Chr Output: Mid parameter Intermediate parameter calculated

(MidR, MidG, MidB)

= (Chr, MidX, 0)
= (MidX, Chr, 0)
= (0, Chr, MidX)
= (0, MidX, Chr)
= (MidX, 0, Chr)
= (Chr, 0, MidX)

Rback = (MidR + MidM) x 255
Gback = (MidG + MidM) x 255
Bback = (MidX + MidM) * 255

If0 <H< 60

If60 <H< 120

If 120 <H < 180

If 180 < H < 240

If 240 < H < 300

If 300 < H < 360

Output: Targeted red value
Output: Targeted green value
Output: Targeted blue value

Intermediate red, green and blue calculated based on Hue
Intermediate red, green and blue calculated based on Hue
Intermediate red, green and blue calculated based on Hue
Intermediate red, green and blue calculated based on Hue
Intermediate red, green and blue calculated based on Hue
Intermediate red, green and blue calculated based on Hue
Red value calculated using intermediate parameter

Green value calculated using intermediate parameter
Blue value calculated using intermediate parameter

Table 3: Main statistical terms and calculations used throughout the paper.

# Abbreviation Description Detail
1 P Positive An image with ISMMMO
2 N Negative An image with no ISMMMO
3 TP True Positive An image with ISMMMO is tagged as “image with ISMMMO”
4 TN True Negative An image without ISMMMO is tagged as “image without ISMMMO”
5 FP False Positive (False Alarm) An image without ISMMMO is tagged as “image with ISMMMO”
6 FN False Negative An image with ISMMMO is tagged as “image without ISMMMO™
True Positive Rate (TPR) = Se = TP / (TP + FN)
7 Se Sensitivity How strong is the test in detecting images with ISMMMO correctly.
True Negative Rate (TNR) = Sp = TN / (TN + FP)
8 Sp Specificity How strong is the test in detecting images without ISMMMO correctly.
Precision (Pr) = PPV = TP / (TP + FP)
9 PPV Positive Predictive Value How strong is the test in assigning images with ISMMMO to Positive class.
NPV = TN / (TN / FN)
10 NPV Negative Predictive Value How strong is the test in assigning images without ISMMMO to Negative class.
11 ACC Accuracy ACC = (TN + TP) / (FP + FN + TP + TN) Overall correct assignment rate of the test.
MCC = (TN * TP — FN * FP)/ \/((TP + FN)(TP + FP)(TN + FN)(TN + FP))
12 MCC Matthews Correlation Coefficient Quality of a test concerning the unbalance in classes
13 u Mean Arithmetic average of a set of observed values.
14 c Standard deviation Measurement of variation, dispersion from the average, within a set of observed values.

Table 4: Finding the optimum point using 17 cut-off points. 145 images with

Table 5: Statistical analysis using 11 cut-off points: 29

ISMMMOs images with ISMMMOs where ps > 0.50.
Cut-off TP FN TN FP Se Sp 1-Sp Cut-off ™I N i Se Sp 1-5p
u-50 29 0 432 568 1.000 0.398 0.602
0.05 141 4 517 483 0.972 0.517 0.483 u-40 29 0 653 347 1.000 0.653 0.347
u-30 29 0 917 83 1.000 0.917 0.083
0.10 132 13 585 415 0.910 0.585 0.415 -2 % o 997 3 1000 0.997 0.003
0.15 127 18 814 186 0.876 0.814 0.186 H-o 25 4 999 1 0.862 0.999 0.001
0.20 101 44 821 179 0.697 0.821 0.179 I N f?, ZB }ggg g g-;gz }Sgg g‘ggg
o .. . .
0.25 87 58 832 168 0.600 0.832 0.168 ﬁ T2 14 15 1000 o 0.483 1000 0.000
0.30 81 64 841 159 0.559 0.841 0.159 u+ 30 14 15 1000 0 0.483 1.000 0.000
W+ 4o 12 17 1000 0 0.414 1.000 0.000
0.35 76 69 835 165 0.524 0.835 0.165 450 1 18 1000 ° ppinny 1000 ey
0.40 73 72 877 123 0.503 0.877 0.123
0.45 65 80 901 99 0.448 0.901 0.099 Table 6: Statistical analysis using 7 cut-off points. 55 images
0.50 55 90 927 73 0.379 0.927 0.073 with ISMMMOs where ps >0.25 and < 0.50.
0.55 51 94 932 68 0.352 0.932 0.068
Cut-off TP FN TN FP Se Sp 1-Sp
0.60 51 94 936 64 0.352 0.936 0.064 2 p” : pow . = pyw o113
H-20 . . .
0.65 47 98 977 23 0.324 0.977 0.023 o 2 1 008 9 0.952 0.908 0.092
0.70 35 110 988 12 0.241 0.988 0.012 H-0/2 20 1 967 33 0.952 0.967 0.033
0.75 35 110 997 3 0.241 0.997 0.003 # y 20 1 987 13 0.952 0.987 0.013
H+o/2 14 7 993 7 0.667 0.993 0.007
0.80 32 113 1000 0 0.221 1.000 0.000 uteo 5 12 905 s 0.429 0.995 0.005
0.85 32 113 1000 0 0.221 1.000 0.000 Hn+ 20 4 17 998 2 0.190 0.998 0.002
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Table 7: Statistical analysis using 7 cut-off points. 21 images with ISMMMOs End notes
where ps > 0.17 and < 0.25.

Cut-off TP FN N FP Se Sp 1-Sp !https://apem-inc.com

u-20 55 0 627 373 1.000 0.627 0.373

u-o 55 0 721 279 1.000 0.721 0.279 2 https;//www,apemltd'c(),uk

p-0/2 54 1 998 2 0.982 0.998 0.002

u 47 8 1000 0 0.855 1.000 0.000 3 . .

4+ 0/2 M 14 1000 0 0.745 1.000 0.000 * APEM Ltd. is an environmental company and
H+o 32 23 1000 0 0.582 1.000 0.000 proposes novel solutions for environmental
#+20 13 42 1000 0 0.236 1.000 0.000 problems (https://www.apemltd.co.uk).

Table 8: Statistical analysis using 10 cut-off points. 40 images with ISMMMOs * The reports from 1 to 7 titled as MarineObjects_
where ps < 0.17. Man-made_Supplement are for ISMMMOs and the
Cut-off TP FN N FP Se Sp 1-Sp reports from 1 to 5 titled as MarineObjectsMan-

i-c 40 1 587 413 0.976 0.587 0.413 made_Supplement Blank are for blank images.
u-0/2 40 1 685 315 0.976 0.685 0.315

H ) 40 1 704 296 0.976 0.704 0.296 © 2023 The Author(s). Published by Elsevier B.V.
H—+o/2 40 1 781 219 0.976 0.781 0.219 . . . .
Wt o 40 1 851 149 0.976 0.851 0.149 ¥n Ecological Informgtlcs 78 (2023) 102285'. This
U+ 20 40 1 883 117 0.976 0.883 0.117 is an open access article under the CC BY license
#+ 30 39 2 903 97 0.951 0.903 0.097 (http://creativecommons.org/licenses/by/4.0/).
H+ 40 38 3 994 6 0.927 0.994 0.006

4+ 56 31 10 997 3 0.756 0.997 0.003 ) ) ) ,

4+ 60 27 14 097 3 0.659 0.997 0.003 The paper is republished with authors

permission.To be concluded in next issue. I\

Appendix A. Pseudo codes of the methodology based on the Matlab syntax

Algorithm 2: Main methodology titled startSplittingObjectsUnsupervised: Phases of the operations to detect
man-made objects in images.

Data: The target directory of a survey with images.

Result: Two directories, one of which is for images with man-made objects, and the other is for other images.

— >Variables;

infoDetail="; steps = 1; k=1; posImageCount = 0; name = "Human object detection’;

set(handles.edtGeneral, ’String’, ”); set(handles.edtDetail, ’String’, ”); set(h, Name’,”WilDetection: Splitting images using unsupervised technique’); set(h,
*Position’, [1090 50 355 50]) set(handles.edtGeneral, *String’, strcat(name,” is on process...")); set(handles.edtDetail, ’String’, *The information will be
displayed here after the process above is completed.’);

— >Create NEG and POS folder;

[parentFolder deepestFolder] = fileparts(imageDir); negSubFolder = sprintf(’ %s/NEG-%s’, imageDir, deepestFolder); posSubFolder =
sprintf(’ %s/POS-%s’, imageDir, deepestFolder);

— > Create the folders if they do not exist.;

if exist(negSubFolder, ’dir’) then
| mkdir(negSubFolder);

if exist(posSubFolder, ’dir’) then
| mkdir(posSubFolder);

— > Progress bar to show the progress of the process;

h = waitbar(0.1,"Please wait...",’CreateCancelBtn’,... "setappdata(gcbf,’canceling”,1); delete(gcbf);”)

— > Start splitting;

[Result,posImageCount] = startSplittingManMadeObjects(imageDir,posSubFolder,handles,h);
infoDetail = strcat(name,” has been completed; Total count of POS images is’, * ’, num2str(posImageCount));
c_strl=[infoDetail];

set(handles.edtDetail, ’String’, c_str); set(h,’ Name’,”WilDetection: Splitting process of man-made object detection is COMPLETED”);
waitbar(k / steps,h,sprintfC COMPLETED’));

ImDir = dir([imageDir, *.jpg’]);

totNegImageCount = length(ImDir(not([ImDir.isdir])));

set(handles.edtNegCount, *String’, num2str(totNegImageCount));

set(handles.edtGeneral, ’String’, * All tasks have been completed’);

result = ’Splitting images has been completed.’;

Table 9: Dynamic threshold points for S channel based on p and ¢ acquired from the statistical analysis of the images using several cut-off points as

depicted in Tables 5, 6, 7, 8. The most closest pointi to the upper left corner of the ROC curve indicate the ideal cut-off points as shown in Figs. 7, 8, 9, 10.

Mean of the S channel (x) threshold objective Se Sp example
> 0.50 H— 2x0 Almost all values are mapped to 1 1.00 0.997 .
Fig. 16b
> 0.25 p—0/2 Most of the values are mapped to 1 0.982 0.987 .
Fig. 12b
> sAdjustMask (i.e, 0.17) u Almost half of the values are mapped to 1 0.927 0.994 Fig. 14b
ig.
otherwise (i.e., < 0.17) pH+ 4xo Most of the values are not mapped to 1, left as is 0.96 0.95 Fig. 13b
ig.
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