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Abstract. Machine learning, a subset of artificial intelligence, shows potential for enhancing
computational fire modelling compared to traditional methods such as computational fluid
dynamics. This study explored using artificial neural networks to predict heptane fire
development within a compartment, varying heat release rates from 100 to 3000 kW and
ventilation areas from 0.16 to 4.8 m2. Avrtificial neural networks (ANNSs) were trained using
computational data from an ISO 9705 room. Network optimisation involved adjusting training-
to-validation ratios and fine-tuning hidden layer neuron counts. Results indicate optimised
ANNSs achieved less than 7% error for heat release rate predictions and 1.5% for ventilation size
predictions, with a notable computational cost reduction exceeding 10%-fold. These findings
suggest a promising future for integrating machine learning into fire engineering, significantly
reducing analysis time therefore fostering safety improvements and innovation in the field.

1. Introduction

This work investigates a crucial part of the world of fire engineering, where understanding and
predicting fire behaviour is crucial. Given the nature of the discipline, experimental data is often limited,
resulting in alternative tools being commonly used to predict fire behaviour. Among these tools,
computational fluid dynamics (CFD) stands out as the most widely used approach in both industry and
academia, but it is not without limitations, namely high computational cost. Therefore, it is crucial to
explore new tools and how they can be used to carry out modelling more effectively.

Machine learning, and in particular the use of artificial neural networks (ANNS), has been a fast-
growing area of research to be applied to numerous fields. The ANN is inspired by the way the human
brain works, which is by having neurons/nodes which are connected to each other by some constraints
[1]. Both the number of neurons and the nature of the connections are vital in the overall set up of the
network. The architecture of a neural network can consist of three main layers which are the input layer,
the hidden layer, and the output layer (see Figure 1.1). The input layer is the feature being fed into the
network, quite often this is the independent variable, and the output is what the network is being trained
to predict (dependent variable). The hidden layer(s) is used to map the input layer to the output layer.
The layers are made up of elements known as neurons. The number of neurons in the hidden layer
changes the way the input maps to the output and can result in an underfitted or overfitted model,
making it a key parameter to optimise during network training. Deep learning features networks with
multiple hidden layers; whereas, shallow neural networks (SNN) have only one [1].

A study carried out by Hodges [2] focused on how machine learning and ANNSs could be used to
predict parameters when looking into wildland fires. The dataset used for the neural network included
10,000 wildland fire spread simulations. The network was created to produce an estimate for the
standard heat flux, and it was found that the predictions had a 10% error compared to the simulated
values for 95% of scenarios. Overall, it demonstrated a reduction in computational time by the order of
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10?2 — 10°. Further to this, other researchers [3] reviewed several machine learning techniques including
deep learning with neural networks and found that predictions were 2-3 times faster than CFD
simulations. The variation in the reduction in computational time is a result of how the model is built
and what it’s predicting. This review also discussed that further work would be required to improve
techniques and increase accuracy. Research on machine learning applications to compartment fires to
obtain fire prediction has been further conducted, using transpose convolutional neural networks
(TCNN) [4]. A TCNN is a specialised type of neural network architecture that is predominantly used
for tasks involving grid-like structures such as images or spatial data. They differ from ANNSs in many
ways, with TCNNs designed to be used for image generation, whereas ANNSs can be used to produce
data and text. Recently, a method for forecasting temperatures and velocities within an enclosed space
by utilising a TCNN based on zone fire modelling has been presented [4]. The TCNN model was also
trained and validated with an extensive set of results from 1,333 CFD simulations, each characterised
by varying fire attributes, compartment configurations, and ventilation layouts. In two compartment
scenarios, the TCNN demonstrated its predictive capability by achieving temperature and velocity
estimates that closely aligned with CFD predictions, deviating by £17.2% and +0.30 m/s, respectively.
The model's robustness extended to more complex multi-compartment situations, where discrepancies
with CFD predictions were confined within a range of +11% for temperatures and +£0.25 m/s for
velocities. The need for experimental measurements and high-resolution CFD to produce a model which
is more reflective of real circumstances and the complexities of actual fire behaviour has been
highlighted.
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Figure 1.1: ANN’s general architecture for a shallow neural network.

In summary, it is evident that machine learning has huge prospects to be beneficial and become a
widely used tool within industry. There is a lot to gain from exploring ANN modelling and how this
can be used to predict actual values as opposed to producing an image, specifically in the context of
building/compartment fires. The suggested method is a step towards implementing digital twins, where
for each physical system, its digital counterpart is built and can be used to predict the response of the
physical system. This study focuses on building and using an ANN to create an algorithm that can
predict temperature at a given point in a fire compartment by varying two parameters, namely heat
release rate (HRR) and ventilation. To determine whether the ANN is a useful tool, predicted values
were compared to that which were obtained through CFD modelling, as well as what was found in
literature. This provided an insight into whether this is a technique that the industry would benefit from
further exploring and it also allowed further understanding of potential applications.

2. Methodology

2.1. Numerical methodology

Numerical analysis was performed using Fire Dynamics Simulator (FDS) version 6.8. The approach
taken was to model an 1SO 9705 room according to Hwang et al [5]. Internal dimensions of the room
measured 2.4 m x 3.6 m x 2.4 m with a single ventilation, centred at the bottom of the front wall. The
fire was modelled in the centre of the room with dimensions of 1m x 1m and heptane was used as the
fuel. The ramp up time was set to 1 second, as this would reduce the time taken to reach steady state



4th European Symposium on Fire Safety Science IOP Publishing
Journal of Physics: Conference Series 2885 (2024) 012101 doi:10.1088/1742-6596/2885/1/012101

conditions which would in turn reduce the overall model run time. Thermocouples to record gas
temperature were placed in the interior of the fire room.

2.2. Grid independence study

Before running any models, a grid independence study was carried out to determine the optimal grid
resolution to produce accurate results, without it being too computationally expensive. A grid sensitivity
study was performed for a fire with a heat release rate of 2070 kW where the ventilation area measured
200 cm in height and 80 cm in width. Figure 2.1 shows the numerical steady-state temperatures at the
rear and front thermocouple, located according to Hwang et al [5] using three different grids, cell size
of 0.20 m, 0.10 m and 0.05 m. Whilst a mesh size of 0.20 m produced lower values for temperature at
the rear thermocouple and higher values at the front thermocouple once steady state was reached, there
was no significant difference in the numerical results of a 0.10 m and 0.05 m grid cell size. Given that
a larger mesh would be more computationally cost effective, it was determined that 0.10 m would be

used for all model runs.
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Figure 2.1: Temporal distribution at front thermocouple for different mesh sizes.

2.2.1. Validation study. Numerical data collected from CFD was compared with experimental data. A
heat release rate (HRR) of 2070 kW was used as an input to replicate the model in the work of Hwang
et al [5]. The model was run until steady state was achieved (for 800 seconds) and then an average
temperature was calculated. The average temperature during this period for the front (FT) and rear
thermocouple (RT) was found to be 1195°C and 1364°C respectively. Table 2.1 shows that percentage
differences between experimental and numerical values to be less than 5% for both thermocouples.

Table 2.1: Average temperatures of CFD modelling and experiments (for validation).

RT Temperature (°C) FT Temperature (°C)
Experiments (Hwang et al, 2010) 1310 1160
CFD 1364 1195
Percentage difference 4.12% 3.02%

2.3. Machine learning — ANN

2.3.1. Data collection. Two variables were investigated, heat release rate and ventilation area, so two
datasets were required for each ANN. Each dataset was used to train and build an ANN. The CFD
model, section 2.2, was used to simulate 30 scenarios with HRR ranging from 100 kW - 3000 kW
(where ventilation area was 1.6m?) and 60 scenarios with ventilation areas ranging from 0.16 — 4.8 m?
(where HRR was 2070 kW). Each of these models were run until steady state conditions were achieved.
The average temperature over the steady state period was then calculated. Results that demonstrated
temperatures had not reached a steady state were either omitted from the dataset or reran with extended
simulation time.
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2.3.2. Building, training and validating ANNs. The ANN was built using MATLAB. It was important
to determine the number of input and output parameters that the network would have. Due to the small
dataset, it was decided that two simple networks would be created. Therefore, both networks had no
more than two inputs (HRR or width and height of ventilation area) and one output (temperature at front
thermocouple at steady state). Each dataset (see 2.3.1) was split into the training set and validation set
which were used to train and validate the networks. The training set is used to train the model and
optimise parameters such as the values of the bias and the weights of the connections of the neurons.
Using the optimal values for these parameters, the validation data could be used to evaluate and set the
internal parameters of the model (e.g. the number of neurons in the hidden layer). The optimisation of
the network was done primarily in two ways. One being the ratio of the training data to the validation
data in the dataset and the other being the number of neurons in the hidden layer. Each time the ratio
was changed, the optimal number of neurons were found based on the root mean square error (RMSE).
This would indicate how well the network was performing relative to the actual values in the dataset.
Once optimisation was complete for the training and validation data, the ANNs could be assessed
against new data points. Input points were fed into the network to obtain the predicted values for
temperature. Comparing these to results found in research papers, experimental data and numerical data
obtained through CFD modelling can show whether the ANN model is able to produce accurate
predictions.

3. Results & Discussion

3.1. Effect of HRR

3.1.1. Training and optimisation. The dataset was made of 30 points of varying heat release rate
(ranging from 100 — 3000 kW). As described in section 2, the network was created with varying ratios
and number of neurons. For each ratio, the optimal number of neurons was determined. In the case of a
70:30 ratio of training data to validation data, Figure 3.1, it can be seen the optimal number would be 6
or 8 neurons. This was repeated for the different ratios and each optimised ANN was run 5 times before
an average was taken. This was a crucial step as the ANN re-trains each time it is run. For each run, the
results were analysed based on the RMSE and correlation coefficient (R value). The results for the
optimised networks can be seen in the tables below.

Table 3.1: Average R value from the 5 runs/iterations of the ANN.

Training: Number of
Validationgdata neurons in the Average R value (4 5. .)
ratio hidden layer Training Validation All
50:50 4 0.9997 0.9966 0.9990
50:50 5 0.9999 0.9978 0.9986
60:40 4 1.0000 0.9996 0.9997
60:40 6 0.9999 0.9958 0.9976
70:30 6 0.9999 0.9997 0.9998
70:30 8 0.9844 0.9955 0.9841
80:20 5 0.9998 0.9998 0.9998
80:20 8 0.9973 0.9998 0.9980

It’s important to know what the R value represents to gain a comprehensive understanding of the
results being produced by the network. Regression analysis enables an understanding of how the
changes in the independent variable(s) are associated with the changes in the dependent variables.
Typically, higher values of R suggest that the model is better fitted to the data. Therefore, the best fitted
model based on the R value can be seen to be the 70:30 ratio with 6 neurons in the hidden layer, as its
R value for ‘All’ is the highest (R=0.9998, as per Table 3.1). Other scenarios have a higher R value for
training and validation — 60:40 with 4 neurons in the hidden layer and 80:20 with 5 neurons in the
hidden layer. The R value for All” accounts for both the training and validation data, so it is the scenario
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where the ANN is well fitted to both. The results of this analysis were also in line with the RMSE
calculated which was lowest for the test data when the network was run with a 70:30 ratio and 6 neurons
were in the hidden layer, which indicates this to be the optimal ANN.
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Figure 3.1: RMSE value for training and validation data (zoomed in snapshot on the right).
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3.1.2. Testing the network. Test data was fed into the ANN, consisting of three data points (630 kW,
1080 kW and 2070 kW). The temperature at steady state for 630 kW and 2070 kW was obtained through
running the FDS model. The temperature when the HRR was 1080 kW, however, was extracted from
Hwang’s study [5]. Table 3.2 shows percentage error calculated for each network. The best results were
produced when there was a 70:30 training to validation data ratio with 6 neurons in the hidden layer,
with an overall average error of 2.36%.

Table 3.2: Average percentage error for test data for different scenarios.

Training: Val | Number of neurons Average percentage error (%) Overall average
data ratio in the hidden layer 630 KW 1080 KW | 2070 kKW error (%)
50:50 4 1.19 9.25 0.34 3.59
50:50 5 1.88 6.61 1.09 3.19
60:40 4 1.00 7.64 0.32 2.99
60:40 6 2.80 6.67 0.26 3.24
70:30 6 0.59 6.21 0.28 2.36
70:30 8 2.97 7.70 0.65 3.77
80:20 5 0.45 7.81 0.63 2.96
80:20 8 2.84 8.39 1.09 4.10

3.2. Effect of ventilation

The optimised network in this case was obtained in the same way as above, except a larger dataset of
60 was used (Section 2.3.1). This was due to the independent variable being the ventilation area,
therefore both the height and width of the opening were changed. For this network, the 80:20 ratio
appeared to be the best performing network based on the R value. However, when the models were
tested, it was noted that the network with a 60:40 ratio and 5 neurons in the hidden layer provided the
best predictions. High regression values do not always guarantee the best test predictions due to the risk
of overfitting. Whilst the model may excel when it comes to the dataset, it may fail to capture the
broader patterns present in real-world data which are required to produce accurate predictions for test
data. The network was again tested with three new data points (0.8m x 2m, 1m x 2m and 2m x 1.6m),
all of which were obtained through CFD simulations. The optimal network produced extremely accurate
results, with a percentage error of less than 1.5% for all test points.

3.3. Comparison of run time

The trained and optimised ANNSs produced accurate results. The predictions were obtained significantly
faster than running a CFD model. It is important to note that the comparison does not include set up or
optimisation time as this can depend on the ability of the user. The CFD run time can also be lowered
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through the use of a better computer processor. With this said, the results show that using the ANN is
considerably more computationally cost effective, as seen in Table 3.3. The results show that using the
artificial neural network is considerably more computationally cost effective. This is in line with the
results in some literature which found computational time was reduced by an order of 102 — 10° [2],
however proved to be more effective than other research into machine learning where run time was only
reduced 2-3-fold [3]. The accuracy of the CFD model can also be compared to the accuracy of the ANN.
When the results of the CFD model were validated against those results found in literature (see section
2.1.2), the percentage error was under 5%. The results from the ANN when compared to those obtained
from CFD modelling were also less than 5%. This implies that a well built and optimised ANN can
produce results with a similar margin of error as produced from CFD modelling.

Table 3.3: model run time for the test data, including training time for MATLAB

Run Time (seconds) Ventilation Run Time (seconds)
HRR (kW) )
FDS MATLAB area (m?) FDS MATLAB
630 11400 0.8x2 8013
1080 16560 1 1x2 7462 1
2070 19080 2x16 9650
Total 47040 1 Total 25125 1

4. Conclusion & Recommendations

The machine learning model proved to be effective in reducing computational time, holding significant
implications for real-time decision-making in critical fire engineering scenarios. The ANNs displayed
remarkable accuracy in predicting thermal responses, with percentage errors consistently below 7% for
HRR and below 1.5% for ventilation area. The study highlights the potential of machine learning and
ANNSs in fire engineering but emphasises the need for further work. The model accurately predicts
values within the dataset range but needs testing outside this range for broader applicability. Broadening
the model's scope by including more parameters and exploring time as a variable could enhance its
predictive power, although this would increase complexity. This would also establish how accurately
an ANN performs in response to real-life changes that could occur. The study underscores the
importance of high-quality datasets and suggests exploring models built solely from experimental data
or using a hybrid approach. Additionally, comparing different types of ANN models in fire engineering
could provide insights into the most effective approach. Overall, whilst the study considers a simple
scenario, it demonstrates a good foundation for utilising ANNSs in fire engineering, with opportunities
for enhancing complexity, exploring diverse datasets, and investigating alternate architectures to
improve safety and efficiency in fire engineering practices.
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