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ABSTRACT

The stellar mass distribution in star-forming regions, stellar clusters and associations, the initial mass function (IMF), appears to
be invariant across different star-forming environments, and is consistent with the IMF observed in the Galactic field. Deviations
from the field, or standard, IMF, if genuine, would be considered strong evidence for a different set of physics at play during the
formation of stars in the birth region in question. We analyse N-body simulations of the evolution of spatially and kinematically
substructured star-forming regions to identify the formation of binary star clusters, where two (sub)clusters which form from
the same Giant Molecular Cloud orbit a common centre of mass. We then compare the mass distributions of stars in each of
the subclusters and compare them to the standard IMF, which we use to draw the stellar masses in the star-forming region from
which the binary cluster(s) form. In each binary cluster that forms, the mass distributions of stars in one subcluster deviates from
the standard IMF, and drastically so when we apply similar mass resolution limits as for the observed binary clusters. Therefore,
if a binary subcluster is observed to have an unusual IMF, this may simply be the result of dynamical evolution, rather than
different physical conditions for star formation in these systems.

Key words: methods: statistical — stars: luminosity function, mass function — galaxies: star clusters: general.

1 INTRODUCTION

The majority of stars form in groups with tens, to thousands, of
other stars (Lada & Lada 2003; Bressert et al. 2010). Some of these
groups become long-lived star clusters (Kruijssen 2012), although
most seem to be part of association-like complexes (Wright 2020;
Wright et al. 2023) which dissolve into the Galactic disc on relatively
short (<20 Myr) time-scales.

The distribution of stellar masses — the initial mass function
(IMF) — appears largely invariant across many different astrophysical
environments (see reviews by e.g. Bastian, Covey & Meyer 2010;
Offner et al. 2014; Hennebelle & Grudi¢ 2024, though see Dib
et al. 2010, Dib & Basu 2018; Dib 2022, 2023, Matzner 2024
and Tanvir & Krumholz 2024 for arguments to the contrary, and
Guszejnov, Hopkins & Graus 2019 for arguments against universality
outside of the Milky Way). Bastian et al. (2010) assert that there is
very little difference between the IMFs of bound, dense star clusters,
and the IMFs of less dense and unbound stellar associations. We
might therefore expect any observed variations in the IMF between
star clusters, or a different IMF from that observed in the Galactic
field, to indicate a significant deviation from the physics of star
formation in the majority of stellar clusters and associations.

A clustered environment in which we would not expect variations
in the IMF is in so-called binary clusters (Slesnick, Hillenbrand &
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Massey 2002). These are two (sub)clusters which orbit a common
centre of mass (they do not appear to simply be chance projections),
and are fairly common in both the Milky Way (Vereshchagin et al.
2022) and in the Large Magellanic Cloud (up to 40 per cent of open
clusters may be part of a binary pair, de La Fuente Marcos & de La
Fuente Marcos 2009). Because of their close proximity and presumed
shared orbit, they are thought to have formed within the same Giant
Molecular Cloud (Dieball, Miiller & Grebel 2002; Dalessandro et al.
2018; Song et al. 2022) and therefore we would expect the subclusters
to have formed at similar (or identical) metallicities (De Silva et al.
2015), and gas densities (Casado & Hendy 2023).

Whilst their formation mechanisms are currently unclear (e.g. a
small number may form via capture, Camargo 2021), binary clusters
can form from the dynamical evolution of a single star-forming
region. In some simulations of kinematically substructured star-
forming regions, the stars coalesce into two (or more) subclusters
(Parker et al. 2014; Arnold et al. 2017; Parker & Wright 2018;
Schoettler et al. 2019; Darma, Arifyanto & Kouwenhoven 2021;
Blaylock-Squibbs & Parker 2023), which appear similar to the
observed binary clusters (Arnold et al. 2017; Darma et al. 2021).
Indeed, in their simulations, Darma et al. (2021) reproduce the
frequency of observed binary clusters (20 per cent—40 per cent), and
the mass ratios of the subclusters.

In these simulated star-forming regions, the stars are drawn from an
IMF that is consistent with the Galactic field IMF (e.g. Maschberger
2013). However, the subclusters often have a low mass ratio (one
of the subclusters contains significantly more stars than the other,
Darma et al. 2021) and the massive stars often all appear to congregate
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in just one of the subclusters (Parker et al. 2014; Blaylock-Squibbs &
Parker 2023).

In our previous work, we did not analyse the mass functions of the
subclusters to look for variations, and deviations from the standard
IMF. If binary clusters do form from the evolution of a single unbound
star-forming region (as postulated by Arnold et al. 2017) with a
universal IMF, how often are the IMFs of the subclusters statistically
different?

In this work, we ask whether a ‘standard’ IMF can be altered due
to the dynamical evolution of a star-forming region and the formation
of a binary star cluster. We recognize, however, that this does not test
whether a non-universal IMF would subsequently evolve to resemble
a universal IMF, in either binary or single star clusters (see e.g.
Kouwenhoven et al. 2014, for an example of dynamical evolution of
non-standard IMFs in single clusters).

In this paper, we identify binary clusters in similar simulations
to those in Arnold et al. (2017), and then compare the stellar mass
distributions of the subclusters to look for variations from the IMF
from which the stellar masses for the birth star-forming regions were
drawn. The paper is organized as follows. In Section 2, we describe
the set-up and execution of the N-body simulations. We present our
results in Section 3, we provide a discussion in Section 4, and we
conclude in Section 5.

2 METHODS

In this section, we describe the set-up of our N-body simulations,
before describing the alogorithms we use to identify binary star
clusters in the simulations.

2.1 N-body simulations

The simulations contain N, = 1000 stars drawn from a Maschberger
(2013) IMF with a probability distribution of the form

m\ m 1-a\
p(m) (—) 1+ (*) . €8
w 122

Here, © = 0.2 Mg, is the characteristic stellar mass, « = 2.3 is the
Salpeter (1955) power-law exponent for higher mass stars, and § =
1.4 describes the slope of the IMF for low-mass objects (which also
deviates from the lognormal form; Bastian et al. 2010). We randomly
sample this distribution in the mass range 0.1-50 M. This results
in a total mass for each region between 550 and 650 M, with the
variation simply due to stochastic sampling of this function.

In previous papers (e.g. Parker et al. 2014; Arnold et al. 2017), we
have shown that binary star clusters can form from the dynamical evo-
lution of kinematically substructured star-forming regions. In those
simulations, relatively close stars have small velocity dispersions (cf.
Larson 1982), which enables the long-term survival of substructure in
unbound star-forming regions. Substructure in star-forming regions
that are bound tends to be erased by dynamical encounters. However,
Parker et al. (2014) show that in the absence of kinematic substructure
(small velocity dispersions in the spatial substructure), unbound star-
forming regions also erase substructure.

We set up our simulations with substructure using the box-fractal
method (Cartwright & Whitworth 2004; Goodwin & Whitworth
2004; Daffern-Powell & Parker 2020). The method is described in
detail in the aforementioned cited papers, but we describe it briefly
again here.

We set up a cube with side length Ny, =2, which is then
divided into Ng;, smaller subcubes. A particle is placed at the centre
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of each subcube and the probability of that particle’s cube being
subdivided is N(fv’}, where D is the fractal dimension. A low fractal
dimension (e.g. D = 1.6), means the probability of a cube maturing
is low, which terminates the subdivision and creates a substructured
distribution. A high fractal dimension (e.g. D = 3.0) leads to a high
probability of a cube maturing and subdividing again, resulting
in a much smoother distribution. We adopt a fractal dimension of
D = 1.6 in our simulations.

The particles at the final generation of subdivision become the stars
in the simulation, and are assigned a small amount of positional noise
to prevent the fractal having a grid-like appearance. The velocities
of the first generation of particles are drawn from a Gaussian of
mean zero, and the subsequent generations in the subdivision inherit
this velocity, plus a small random component that decreases through
each subdivision. This results in nearby stars having very similar
velocities, but the velocities of distant stars can be very different.

Finally, the velocities of the stars are scaled to a virial ratio
avir = T/|2|, where T is the total kinetic energy and |2| is the
total gravitational potential energy of the stars, respectively. Our
simulations are slightly supervirial, where oy = 0.9 (ayir = 0.5 is
virial equilibrium).

We do not include primordial binary stars in the simulations.

We run 20 versions of the same simulation, identical apart from
the random number seed used to initialize the masses, positions,
and velocities of the stars. We evolve the star-forming regions as
pure N-body simulations using the fourth-order Hermite integrator
kira within the Starlab environment (Portegies Zwart etal. 1999,
2001).

As discussed in Parker et al. (2014) and Arnold et al. (2017), the
evolution of these supervirial, spatially and kinematically substruc-
tured star-forming regions can result in very different morphologies.
In addition to our binary clusters, some simulations can remain highly
filamentary, or form three or four subclusters. In this work, we analyse
only the simulations that formed binary clusters.

The simulations are run for 10 Myr and we check whether there
are binary clusters every 0.1 Myr throughout the simulations.

2.2 Binary cluster identification

To robustly identify binary clusters, we first check for distinct
subclusters in space using the Density-Based Spatial Clustering of
Applications with Noise (DBSCAN, Ester et al. 1996) algorithm.
DBSCAN group points together that are within a specified search
radius of one another, and then discards groups that have too few
points in them. We use the implementation of DBSCAN in the
scikit-learn PYTHON package (Pedregosa et al. 2011), adopting a
search radius of 3 pc and a minimum subcluster size of N = 10. As
our simulated star-forming regions expand from initial radii of 1 pc,
to radii of 10s pc, this choice of search radius facilitates the robust
indentification of subclusters when they form.

We then use the INdex to Define Inherent Clustering And TEn-
dencies (INDICATE, Buckner et al. 2019; Blaylock-Squibbs et al.
2022) algorithm to assess the level of clustering of each individual
star assigned to each subclusters. INDICATE works by comparing
a distribution of stars to a uniform control grid of the same average
density as the distribution of stars. The average distance, 7, to the
nth nearest neighbour is calculated for the control grid. For each
individual star, we determine how many stars are within 7 compared
to the average; if this number is significantly higher the star is said
to be clustered.

Finally, once we have identified stars in each subcluster using
DBSCAN and INDICATE, we check that the total energy of each
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Figure 1. A snapshot after 5 Myr of evolution of a star-forming region in
the first of our two simulations that forms a binary cluster. The 10 most
massive stars are shown by the red triangles, and all are located in one of the
subclusters.

star is negative, meaning that the star is gravitationally bound to the
subcluster.

We note that Darma et al. (2021) use an alternative method to find
binary clusters in their simulations. They use a minimum spanning
tree (MST) to link all of the stars via a single path, and then identify
groups based on whether a star lies more than a certain MST branch
length away from other stars. The stars that are less than a certain
branch length from their connecting star in the MST are grouped
together. Similarly, Parker & Wright (2018) identify groups using
the friends-of-friends algorithm, which groups stars based on nearest
neighbour distances and velocities. If we adopted either method we
would likely identify the same binary clusters, but the exact stellar
membership may vary.

3 RESULTS

‘We analyse a suite of 20 simulations of supervirial (expanding) star-
forming regions and visually identify two that subsequently form a
distinct binary cluster system, using DBSCAN and INDICATE as
outlined in Section 2.2. We analyse each of the simulations in the
x — y plane, x — z plane, y — z plane, and in 3D.

We show a snapshot from one of our two simulations that forms
a binary cluster in Fig. 1. Whilst two distinct subclusters are clearly
visible, the ten most massive stars (shown by the red triangles) are
all located in the more massive subcluster.

This simulation forms a binary cluster from just after 2 Myr, which
remains until the end of the simulation. The snapshot we show in
Fig. 1 is at 5Myr.

In Fig. 2, we show the stars in this simulation (again after 5 Myr
of evolution) identified as members of the two subclusters with
DBSCAN and INDICATE. Members of the more massive/populous
subcluster (‘Cluster 0’) are shown in blue (285 stars with a total mass
of 356 M), and members of the lower mass subcluster (‘Cluster 1)
are shown in orange (112 stars with a total mass of 85 Mg). Stars not
assigned to either cluster are shown by the black points. The mass
distribution of stars in each of these subclusters are then compared
to a standard Maschberger (2013) IMF.

MNRAS 536, 492-497 (2025)
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Figure 2. Plot showing an example binary cluster from our simulations at
an age of 5 Myr, with the stars coloured according to the subclusters there are
assigned to with DBSCAN. The black points are stars that are not assigned
to either subcluster.

Many of the observed binary clusters are located at significant
distances from the Sun (kpcs) and so the lower mass limit for stars that
can be individually resolved can be as high as 1 M. We perform our
analysis on the entire simulation data, before restricting the sample
to stars with masses exceeding 0.2, 0.3, and 0.4 Mg

For each subcluster, we perform one-sample Kolmogorov-
Smirnov tests Daniel (1990) and one-sample Cramér-von Mises tests
Csorg6 & Faraway (1996) to compare the mass distribution of each
subcluster to the standard Maschberger IMF used to generate the
whole population.

The minimum KS-test p-values for each simulation that forms a
binary cluster are shown in Tables 1 and 2. The columns in each
table are the lower mass limit (below which stars are not included in
the KS test), and then the KS p-value for each subcluster in various
projections. Where the p-value falls below 0.1, we reject the null
hypothesis that the mass function in the subcluster shares the same
underlying parent distribution as the normal Maschberger (2013)
IMF used to set up the masses in the simulations.

In Fig. 3, we visualize the evolution of the 3D data from our
first simulation (Table 1) where we impose a minimum mass of
0.3 M, for our IMF comparisons. Each line represents the p-value
for each subcluster IMF comparison as the simulation evolves (the
star-forming region forms a distinct binary cluster after ~2.1 Myr). In
this simulation, the KS test between the mass function of Subcluster 1
(shown by the orange line) and the standard Maschberger (2013) IMF
suggests the two mass functions do not share the same underlying
parent distribution.

The deviation from the input IMF of the simulation in Subcluster
11is likely due to the massive stars all residing in the other subcluster.
This has been routinely observed in similar simulations Arnold et al.
(2017), Parker & Wright (2018), Park, Goodwin & Kim (2020), and
is usually simply due to random dynamic motion within the original
spatial and kinematic substructure, rather than any differences in
the initial conditions. To demonstrate this, we compare the IMF
of Subluster 1 to 100 randomly generated IMFs with the same
lower mass cut-off (0.3 Mg). This is shown in Fig. 4, where the
dot—dashed black line is the IMF from Subcluster 1, and the 100
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Table 1. Minimum KS-test p-values for our first simulation in which a binary cluster forms. Columns are the stellar minimum mass in the IMF
comparisons, and then the smallest p-values calculated from KS tests between the mass function of the subclusters and the Maschberger (2013) IMF, in
different projections. p-values below 0.1 are shown in bold font.

Lower mass limit x — y plane x — z plane y — z plane 3D

Mg) Cluster 0 Cluster 1 Cluster 0 Cluster 1 Cluster 0 Cluster 1 Cluster 0 Cluster 1
0.1 0.59820 0.48283 0.48249 0.44278 0.75322 0.33696 0.38451 0.37001
0.2 0.38424 0.17151 0.40682 0.14866 0.48792 0.12405 0.40006 0.14086
0.3 0.17972 0.03390 0.20263 0.02776 0.17919 0.02699 0.16804 0.02206
0.4 0.32499 0.00746 0.42828 0.00516 0.26908 0.00842 0.28671 0.00516

Table 2. Minimum KS-test p-values for our second simulation in which a binary cluster forms. Columns are the stellar minimum mass in the IMF
comparisons, and then the smallest p-values calculated from KS tests between the mass function of the subclusters and the Maschberger (2013) IMF, in
different projections. p-values below 0.1 are shown in bold font.

Lower mass limit

Mo) Cluster 0

x — y plane

Cluster 1

x — z plane

Cluster 0

Cluster 1

y — z plane

Cluster 0

Cluster 1

3D

Cluster 0 Cluster 1

0.1 0.64328
0.2 0.56805
0.3 0.13998
0.4 0.94218

0.13556
0.04982
0.24801
0.48598

0.72191
0.72085
0.15601
0.82477

0.39337
0.19499
0.54855
0.43458

0.46959
0.81819
0.14256
0.79448

0.37119
0.19662
0.52831
0.81981

0.73853
0.50805
0.09353
0.93308

0.26136
0.18027
0.33140
0.35565

1.00
0.904 —— Cluster 0
0.804 Cluster 1
0.70
0.60
0.50
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Figure 3. Evolution of the p-value for the KS test between a Maschberger
(2013) IMF and the mass function in each of the subclusters of the binary
cluster that forms after 2.1 Myr in our first simulation. The blue line
corresponds to the more massive Cluster 0 and the orange line corresponds
to the less massive Cluster 1. The region where the p—value from the KS
test is less than 0.1 is shown by the grey shaded area below the dashed line.
To mimic observational limitations, stars with masses below 0.3 M, are not
included in the analysis.

random realizations are shown by the light grey lines. In 34 of these
realizations (shown by the darker grey lines), a KS test between
them and the IMF of Subcluster 1 returns a p-value <0.1, suggesting
we can reject the hypothesis that they share the same underlying
parent distribution. This exercise clearly demonstrates the deficiency
in high-mass stars in Subcluster 1 in this simulation is responsible
for the differences between the two mass functions.

4 DISCUSSION

Whilst we have shown that binary clusters that form from a star-
forming region with a normal IMF may develop subclusters whose

1 L ol

08

0.6

CDF

0.2

Mass (Mg)

Figure 4. Comparison between the IMF of the stars in Subcluster 1 in our
first simulation (Table 1), shown by the black dot—dashed line, and randomly
generated IMFs with the same lower mass cut-off (0.3 Mg). Of the 100
randomly generated IMFs (shown by the light grey lines), in 34 a KS test
between the randomly generated IMF and the simulation IMF returns a p-
value less than 0.1, suggesting we can reject the hypothesis that they share
the same underlying parent distribution (these are shown by the darker grey
lines). The simulated IMF in Subcluster 1 also appears ‘bottom heavy’ — it
contains no stars more massive than 4 Mg, and all of the more massive stars
are situated in Subcluster 0.

mass functions deviate from the IMF, there are several important
caveats to our results.

First, we do not know whether binary clusters do form from
the dynamical evolution of an unbound, spatially and kinematically
substructured star-forming region (Arnold et al. 2017). Whilst some
star-forming regions appear to be expanding (Kounkel et al. 2018),
it is unclear whether they are subtructured to the degree required to
produce the binary clusters in our simulations. However, we note
that Darma et al. (2021) show that binary clusters can also form if
the star-forming region is initially in virial equilibrium.

MNRAS 536, 492-497 (2025)
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On arelated point, our simulations do not include a background gas
potential, and clearly do not react to the removal of any such potential.
The simulations are supervirial to begin with, which could mimic
early expansion due to gas removal (Tutukov 1978; Goodwin 1997;
Baumgardt & Kroupa 2007; Shukirgaliyev et al. 2018); however,
if this occurred when substructure was still present it would likely
imply that the massive star(s) had formed first, and already started to
evolve, before any significant numbers of low-mass stars had formed.

Many observed binary clusters are older systems, and their massive
stars may have already left the main sequence, and/or been ejected
(Schoettler et al. 2019; Farias, Tan & Eyer 2020; Schoettler et al.
2020). Therefore, their mass functions may not be IMFs, and the
stellar evolution within binary clusters may act to homogenize
disparate mass functions between the subclusters (e.g. if the massive
stars are no longer present).

Observations of relatively nearby Galactic binary clusters do not
appear to display any significant variations in the mass functions
of the subclusters (e.g. & and x Per are consistent with Salpeter
1955 slope mass function, Slesnick et al. 2002). However, Bragg &
Kenyon (2005) find that & Per is mass-segregated, but x Per is not,
and intriguingly, the & Per subcluster is the more massive component
(the mass ratio of the subclusters is 0.78, Bragg & Kenyon 2005).
The simulation we present in Fig. 1 is mass-segregated in the most
massive of the subclusters, possibly due to the most massive stars
all residing in this subcluster and dominating their local potential
well (Parker et al. 2014; Parker & Dale 2017). A similar result is
found when simulating clusters close to the Galactic centre (Park
et al. 2020). Park et al. (2020) find that the strong tidal field near
the Galactic centre shears apart star-forming regions, but subclusters
form in the tidal tails of the sheared regions. These subclusters can
be significantly mass-segregated with a top-heavy IMF, or not mass-
segregated at all, depending on the (stochastic) dynamical evolution
of the star-forming region.

That there are massive stars in the 12.8 Myr k- and x-Per system
suggests that either the massive stars take significant time to form
after low-mass star formation, or that massive stars prolong their lives
due to either significant (100kms™") rotation (Limongi & Chieffi
2018), or through mergers (Schneider et al. 2014). In our simulations,
the stars all form at the same time, but this may be a valid assumption
in light of these recent developments in our understanding of massive
star evolution.

Whilst many studies show that the removal of the gas potential by
feedback from massive stars can dominate the dynamical evolution
of star-forming regions, analysis of hydrodynamical simulations
(Lucas, Bonnell & Dale 2020) suggests that supernovae do not cause
the destruction of the star-forming region, but rather the energy from
the supernova(e) simply leaks out through the path of least resistance,
such as a cavity or low-density part of the gas cloud.

5 CONCLUSIONS

We analyse N-body simulations of the dynamical evolution of
supervirial (unbound) star-forming regions and identify those regions
that form binary star clusters — two subclusters orbiting a common
centre of mass. We then compare the mass distributions of stars in
the subclusters to a standard IMFE. Our conclusions are the following:

(1) In a set of 20 simulations, identical apart from the random
number seed used to initialize the masses, positions, and velocities
of stars, two form obvious binary clusters.

(i1) In both simulations, a KS test between the mass distribution
of stars in one of the subclusters, and the IMF used as an input to

MNRAS 536, 492497 (2025)

the simulations, returns a low p—value, such that we can reject the
hypothesis that they share the same underlying parent distribution.

(iii) The apparent deviation from the standard IMF happens less
often if we include stars down to the hydrogen-burning limit. Whilst
most observations of binary clusters are only sensitive to individual
stellar masses of ~0.5 Mg, future observations may probe lower
masses. We would not expect any deviation from the standard IMF
if observations were complete down to 0.1 Mg.

Our results demonstrate that observed variations in an IMF in
binary star clusters can result from the dynamical evolution of a
single population of stars with a standard IMF.
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