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Abstract

The widespread use of wireless networks to transfer an enormous amount of sensitive infor-
mation has caused a plethora of vulnerabilities and privacy issues. The management
frames, particularly authentication and association frames, are vulnerable to cyberattacks
and it is a significant concern. Existing research in Wi-Fi attack detection focused on obtain-
ing high detection accuracy while neglecting modern traffic and attack scenarios such as
key reinstallation or unauthorized decryption attacks. This study proposed a novel approach
using the AWID 3 dataset for cyberattack detection. The retained features were analyzed to
assess their transferability, creating a lightweight and cost-effective model. A decision tree
with a recursive feature elimination method was implemented for the extraction of the
reduced features subset, and an additional feature wlan_radio.signal_dbm was used in
combination with the extracted feature subset. Several deep learning and machine learning
models were implemented, where DT and CNN achieved promising classification results.
Further, feature transferability and generalizability were evaluated, and their detection per-
formance was analyzed across different network versions where CNN outperformed other
classification models. The practical implications of this research are crucial for the secure
automation of wireless intrusion detection frameworks and tools in personal and enterprise
paradigms.

1. Introduction

Wireless transmission networks have led to substantial advances in data networking and com-
munications, as well as the establishment of integrated networks. The rapid progress of infor-
mation and communication technologies (ICTs) has offered numerous benefits to system
users, but these technologies also have various vulnerabilities that might be exploited by net-
work adversaries [1]. Cyberattacks such as malware attacks, classified data breaches, denial of
service, phishing, and other security-related incidents have increased significantly in recent
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years. A cyberattack or a cyber threat refers to any unauthorized event or trespassing that com-
promises the network and carries out diverse malicious operations such as identity theft,
spoofing, exfiltration, or exploitation of sensitive data and network resources [2]. A cyber-
attack identification mechanism is a proactive approach that analyzes network traffic, identi-
fies anomalies, and classifies cyber threats in the network [3].

Wi-Fi, or the IEEE-802.11 wireless local area networking (WLAN) standard, is crucial in
daily life. IEEE-802.11 networks are at the forefront of this rapid change to a wireless space
due to their potential to provide fast speed, enhanced mobility, usability, and cost-effective
installation and maintenance expenses [4]. IEEE802.11-based wireless networks are widely
used in homes, businesses, and public places, but also in critical infrastructures such as hospi-
tals or manufacturing facilities where their availability is vital. Wi-Fi’s success may be attrib-
uted to a variety of factors, including well-defined use cases, deployment and configuration
flexibility, and the accessibility of inexpensive, highly interoperable hardware [5].

As IEEE802.11-based networks became more ubiquitous, so did the possibility for hackers
and other malicious activities to exploit them. Wi-Fi networks were initially open with data
moving over the unencrypted medium. Individuals connected to their companies through
public Wi-Fi networks such as coffee shops or libraries were always vulnerable to security
threats. Anyone with a Wi-Fi receiver in the public space premises could access and interpret
the sniffed data. Over the years, several approaches have been introduced to prevent security
threats. Wired equivalent privacy (WEP) was the first scheme for the prevention of cyberat-
tacks, but it had several flaws and soon became unreliable [6]. Later, Wi-Fi-protected access
(WPA), WPA2, and WPA3 were introduced to secure wireless networks via authentication
and encryption [7]. However, these standards are also vulnerable to cyberattacks with compro-
mised encryption keys as authentication/association attacks are risky if the pre-shared key is
down even though protected management frames (PMF) are operative.

Conventional or traditional intrusion detection systems require skilled human expertise to
analyze network traffic patterns for cyber-attack detection, and attackers are generally familiar
with the working of these mechanisms [8-10], which leads to several challenges. With
advancements in network environments and the use of transformative technologies, the nature
of attacks is also modified. Therefore, contemporary intrusion detection systems leverage
advanced technologies such as machine learning or deep learning for cyber-attack detection in
a specific environment including Wi-Fi in an IoT environment The amount of network data
has significantly risen due to the increasing prevalence of connectivity, cloud services, and the
Internet of Things (IoT) [11]. Due to this huge volume of data transmission through modern
high-speed/ bandwidth communication networks, cyber-attack detection has become ineffi-
cient [12]. Due to this, in-depth automated monitoring of network traffic is required to iden-
tify distinct network attacks. Machine learning and deep learning approaches have the
potential to revolutionize technology and operations as they address the problem of big data.
Neural networks and various other deep learning techniques consistently achieve com-
mendable results in addressing classification problems [13]. Incorporating these techniques
allows for intelligently analyzing and discovering useful insights and patterns to detect attacks
or security threats [14]. This could be the key to lightweight and cost-effective intrusion detec-
tion systems. This domain’s main shortcoming is that most publicly available benchmark wire-
less traffic datasets are outdated and do not include recent attack scenarios such as key
reinstallation (Krack) or unauthorized decryption (Kr00k) attacks. It is crucial to acknowledge
that the AWID3 dataset stands out as an exception in this regard, as it encompasses a more
comprehensive range of scenarios, including those involving Krack and Kr00k attacks. There-
fore, it is imperative to highlight the significance of the AWID3 dataset, emphasizing its rele-
vance. Existing wireless attack datasets do not include the enterprise version of the 802.11
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protocols. Another essential overlooked factor is the selection of appropriate performance
metrics as accuracy measures do not demonstrate insights into the results [15-17]. However,
it’s important to note that this specific issue falls outside the scope of the current research.
Therefore, an effective system is required that can indicate any data breach or vulnerability in
the network before any major loss of sensitive data.

Additionally, cyberattack detection is still a major challenge due to the ubiquity of success-
ful cyberattacks publicized in the mainstream media. While there are some incredible cyber-
attack detection results, they frequently rely on certain datasets and can’t always work well in a
variety of real-world settings. In other words, while these models can thrive on their training
data, their performance on varied network traffic remains uncertain. This highlights the need
for intrusion detection features that are successfully transferable across different 802.11 data-
sets. The concept of feature transferability is especially significant when obtaining labeled data
for the first time is excessively expensive, time-consuming, or unattainable. These are the
potential features that continuously perform well across various scenarios. Transferable fea-
tures, in the context of deep learning or machine learning models, are those that demonstrate
consistent performance and efficacy across a range of datasets or scenarios [18]. If the features
consistently maintain their performance well across diverse datasets, it shows that the pro-
posed cyber-attack detection model has real-world application potential under a variety of net-
work environments. Conversely, if the transferability of the features is limited, it will prompt
further investigations to refine the feature selection process or develop more flexible models
for broader applications in different network environments.

While extensive research has been conducted to improve the security of Wi-Fi networks, a
distinct focus on Krack and Kr00k attacks appears to be lacking. The Krack vulnerability
exploits instil flaws in the 4-way handshake protocol, allowing an attacker to reinstall a key
that is momentarily in use. This, in turn, could end up in the decryption of Wi-Fi traffic, allow-
ing unauthorized parties to discreetly intercept important information. Conversely, the kr00k
attack occurs when a device disconnects from a Wi-Fi network while still encrypting data.
Kr00k exploits a weakness in this circumstance by manipulating the flow of unencrypted pack-
ets, revealing fragments of previously encrypted data. Given the rapid growth of cyber threats,
this omission creates a crucial information gap in the attempts to adequately protect wireless
networks. Additionally, it’s evident that a substantial portion of prior research heavily relies on
the AWID dataset. This dataset, however, has shown limitations over time, particularly
because it does not include the most recent attack instances. This disparity is especially obvious
in the case of protected management frames (PMF), a critical component in modern secure
Wi-Fi networks. The absence of PMF in AWID is an important consideration for evaluating
intrusion detection systems in the context of modern Wi-Fi security because it plays a critical
role in reinforcing the authentication and association process. Another shortcoming is that
many of the previous studies have focused on home-based Wi-Fi environments. These studies
failed to recognize the necessity of testing their techniques and solutions in enterprise network
environments. As the network setups, protocols, and security need to change significantly in
corporate settings, this omission limits the practical relevance of research findings. Addition-
ally, the absence of evaluation of generalization and transferability of features, so that the fea-
tures can be used across different network conditions, is a major shortcoming in the existing
literature. In this study, an innovative, lightweight cyber-attack detection model is proposed to
identify existing attacks. These include Krack, Kr00k, de-authentication, and disassociation
attacks. In the proposed methodology, recursive feature elimination (RFE) was used to extract
8 out of 16 MAC layer and physical layer features, proposed by [4], and tested using several
classifiers including decision trees (DT), random forest (RF), extra trees (ETs), light gradient
boost machine (GBM), multi-layer perceptron (MLP) and convolutional neural network
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(CNN). Moreover, the extracted features were used for the analysis across different datasets to

test whether the given features are conceivably transferable. The results of this research offered
valuable information regarding how transferable and generalizable the retained features are. If
the features consistently show effective performance across diverse datasets, it suggests that the
proposed cyber-attack detection model can be successfully implemented in real-world scenar-

ios with varying network conditions, making it more practical and valuable. The following are

the main contributions of this work:

« A decision tree with recursive feature elimination has been used to extract a reduced feature
set. Several classifiers were tested on these features for attack detection.

o The transferability of the extracted features has been evaluated with AWID and AWID 3.

« A decision tree with RFE was used to extract a reduced feature set of the most meaningful
features for each attack. These features expedite the attack detection process with a reduced
number of computations and training time.

o Feature generalization of these reduced feature sets has been studied across the different data
sets. Selected features for de-authentication and disassociation attacks from AWID 3 have
been used in the AWID dataset for classification.

The summary of this research is structured in the following manner: section 2 sheds light
on existing literature regarding cyber-attack detection. Section 3 discusses the pre-processing
and feature selection process. Tree-based and MLP approaches for cyber-attack detection are
reviewed in Section 4. Section 5 presents experimentation and results including feature trans-
ferability. Research work is concluded in section 6, with future work.

2. Literature survey

The three primary methods for analyzing network traffic to detect attacks are classified as sig-
nature detection, anomaly detection, and hybrid techniques that integrate both signature and
anomaly detection techniques [19]. Signature-based detection identifies cyberattacks using
predetermined signatures stored in the signature database. Whenever an attack occurs, the
attack’s signatures are compared with the signature database, and the alert is generated if the
attack signatures match the ones in the database. The signature database needs to be updated
constantly to keep up with new attacks. Still, this technique only detects those attacks that are
present in the database and does not detect zero-day attacks [20-22]. Anomaly detection is a
dynamic approach that analyzes network traffic and notifies if there is any anomalous varia-
tion or abnormal behaviour in the network. Although it detects unknown attacks, there exists
a greater risk of a high false-positive rate (FPR) as not every anomaly or variation in the net-
work is a sign of intrusion [8, 23]. Conventional intrusion detection technology has been
extensively studied for the past few years. The integration of AI, however, has transformed it
even if it might not have excellent real-time detection performance. Nevertheless, researchers
are focusing on machine learning (ML) and deep learning (DL) techniques since they have
demonstrated a considerable increase in accuracy and a reduction in FPR. Several widely used
publicly available benchmark datasets including NSL-KDD, CIC-IDS2017, AWID, and
UNSW_NBI5 are available for research purposes.

2.1. Conventional network intrusion research paradigm

Various ML and DL approaches have been proposed which can improve efficiency and lessen
the execution time of intrusion detection mechanisms. In a research work [24], multiple super-
vised learning techniques embracing artificial neural network (ANN), decision tree, random
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forest, and unsupervised techniques including K-means, self-organizing map (SOM), and
expectation maximization (EM) algorithms were applied to CIC-IDS2017. Some algorithms
demonstrated high accuracy while others such as SOM and EM failed to detect targeted
attacks. A novel network structure of deep belief network (DBN) was proposed based on an
artificial fish swarm algorithm (AFSA), genetic algorithm (GA), and particle swarm optimiza-
tion (PSO) to detect network intrusions in NSL-KDD [25]. Although this model attained 98%
accuracy, a higher number of layers can increase computational costs. The work in [26] pro-
posed a hybrid technique to detect intrusions based on feature selection and classification
using UNB ISCX 2012 and CIC-IDS2018 datasets in the Apache Spark environment. A stacked
auto-encoder (SAE) performed feature selection and a support vector machine (SVM) algo-
rithm was used for intrusion detection. Results demonstrated 90.2% accuracy with reduced
training time. A hybrid technique consisting of K-means clustering with RF, CNN, and long
short-term memory (LSTM) was applied in the Apache Spark environment [27]. Adaptive
synthetic sampling was used to solve imbalanced datasets. The results showed 85% accuracy
on NSL-KDD and 99.9% accuracy on CIC-IDS 2017. In [28], principal component analysis
(PCA) and mutual information (MI) with LSTM were implemented for dimensionality reduc-
tion and classification of cyber-attacks. LSTM-PCA achieved the highest accuracy of 99.36%.
Three feature selection techniques comprising autoencoder (AE), the stacked autoencoder
(SAE), and deep autoencoder (DAE) with DNN were applied to indicate data breach in
CIC-IDS2018 and NSL-KDD [29] where DAE-DNN attained the highest accuracy. DAE for
feature selection and recurrent neural networks (RNN) for classification were implemented on
CIC-IDS2018 and Bot-IoT [30]. The highest accuracy for the Bot-IoT dataset 98.39% was
obtained with DAE while significant results for CIC-IDS2018 were obtained with RNN,
97.38% accuracy. The major shortcoming was the lack of details of actual experimentation. In
this work [32], The BAT optimal feature selection method to identify the most relevant fea-
tures. To evaluate the accuracy of intrusion detection, the Support Vector Machine (SVM)
classifier was tested using the KDD99 benchmark dataset. When compared to alternative
machine learning algorithms, this approach outperformed others with a detection accuracy of
99%. The Perceptual-Pigeon-Galvanized-Optimization(PPGO) approach was used to choose
the best parameters for intrusion detection in datasets NSL-KDD, CICIDS, and Bot-IoT [33].
Then the Likelihood Naive Bayes (LNB) classification method was implemented outperform-
ing previous models with a remarkable accuracy rate of 99%. The study introduced a novel fea-
ture selection method based on the Capuchin-Search-Algorithm (CapSA). CNN-CapSA was
evaluated using four IoT-Cloud datasets: NSL-KDD, BoT-IoT, KDD99, and CIC2017, and sur-
passed other state-of-the-art methods with approximately 99% accuracy. The study [34] pro-
posed HetloT-CNN IDS, an advanced Intrusion Detection System (IDS) that used a
Convolutional-Neural-Network (CNN) built for the HetloT (Heterogeneous Internet of
Things) environment. The HetloT-CNN IDS achieved high accuracy scores of 99.75% for
binary classifications, 99.95% for 8-class classifications, and 99.99% for 13-class classifications.

2.2. Contemporary Wi-Fi intrusion research paradigm

The significance of intrusion detection in securing networks has drawn the attention of
numerous researchers. Numerous publications proposed novel methodologies for intrusion
detection for wireless sensors and Wi-Fi networks. Technologies like wireless networks, 4G,
IoT, and others transmit a substantial amount of data and are pre-disposed to various cyberat-
tacks and security risks that might jeopardize the reliability and confidentiality of information
or services. Wi-Fi networks are nearly universally used in businesses nowadays to give employ-
ees access to the Internet. Business stakeholders have become more concerned about Wi-Fi
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networks and operational security. As the dynamics of technology and attack strategies are
expanding, the IDS must be scalable and adaptable to counter new attacks.

Several techniques have been proposed to detect cyberattacks on wireless networks. In [34],
two models were introduced to draw out additional features using SAE, the features were then
combined with the original features based on the amount of mutual information shared
between the features and class labels. It was then merged with the radial basis function classi-
fier (RBFC) to evaluate results on the AWID dataset. Results showed that RBFC acquired 98%
accuracy with 7 optimal features. A novel system KTRACKER was proposed to detect novel
cyber threats such as key re-installation (Krack) on Wi-Fi-protected access (WPA2) [35]. It
grouped handshake packets and used traffic analysis to find KRACK. Cat boost attained the
highest accuracy out of the three machine learning models XGBoost, Light Gradient Boosting
Machine (Light GBM), and Cat boost. In a recent study, a feed-forward-deep-neural-network
(FFDNN) wireless-IDS system using a wrapper-based feature-extraction unit (WFEU) was
introduced [36]. The WFEU extraction approach involved the extra trees algorithm to extract
optimum feature selection. The proficiency of the proposed model was examined using the
UNSW-NB15 and AWID intrusion detection datasets. The proposed model acquired higher
detection accuracy than existing techniques. Overall, the accuracies of 99.66% and 99.77%
with 26 features from AWID, and 87% and 77% with 22 features using UNSW_NB for binary
and multiclass classification were attained respectively.

A novel, conditional deep-belief-network (CDBN), technique was proposed to detect wire-
less network intrusions in real-time and identify cyber-attacks [37]. A stacked contractive auto-
encoder (SCAE) approach was presented for the reduction of data dimensionality to mitigate
the effects of its unbalanced nature and data redundancy on detection accuracy. The experi-
mental results showed better detection accuracy and speed, with an average detection time of
1.14 ms and 97.4% detection accuracy. Most modern IDSs utilize machine learning approaches
that suffer from performance deterioration when used against an adversary and are unable to
achieve a balance between accuracy and false-positive rate (FPR). Due to the open-sharing
nature of wireless technology, organizations continue to have serious concerns about Wi-Fi
security. A significant number of impersonation attacks were misclassified into injection attacks
in previous studies. To overcome this limitation, a dual-stage Wi-Fi network-intrusion-detec-
tion (WNIDS) method, based on machine learning, was proposed to increase the detection
accuracy for injection and impersonation threats in a Wi-Fi network [38]. In the first stage, the
RF outperformed other models to classify the attacks into three classes normal, flooding, and
unified impersonation or injection attacks from the AWID-CLS-R test dataset. In the second
stage, NB outperformed other models by correctly classifying the unified attack instances into
impersonation attacks and injection attacks with an accuracy of 99.42%. To prevent overfitting,
a feature separation approach based on word embedding was developed to speed up calcula-
tions [39]. For classification, a dual/limited attention mechanism was proposed instead of global
attention. These approaches were utilized with the UNSW-NB15 and AWID datasets where the
gated recurrent unit (GRU) attained the highest accuracy of 93.47% on the AWID dataset and
RNN attained 94.96% accuracy on the UNSW-NBI15 dataset. However, only the accuracy metric
was used as an evaluation metric even though accuracy alone is not a reliable metric.

Another novel system, the Wi-Fi intrusion-detection-system (WIDS), proposed an anoma-
lous behaviour analysis technique to identify assaults on Wi-Fi networks with significantly
high accuracy and reduced rate of false alarms [40]. In this technique, n-grams were imple-
mented to represent the normal behaviour of the Wi-Fi protocol, and several machine learning
models were used to distinguish Wi-Fi traffic as normal or malicious. This technique was eval-
uated using numerous datasets gathered locally at the University of Arizona and the AWID
dataset classified all Wi-Fi protocol assaults with low false positives (0.0174) and a variable low
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rate of false negatives for different attacks. [41] classified DoS attacks using an ensemble tech-
nique. Recursive feature elimination (RFE) was used for the selection of features and then an
ensemble classifier, using RF, SVM, and Swell with 10-fold cross-validation, for classification
with AWID-CLS-Test dataset. The outcomes demonstrated a precision of 99.98% and 0.12
FPR. For wireless intrusion detection, a feature selection technique based on Fuzzy C-Means
(FCM) was introduced, which used the distance between the FCM centre point and the data
point to determine the difference between the normal and attack centre distances, and then
used the distances to pick the features [42]. This method was tested using the AWID dataset,
and the findings demonstrated that it was quite accurate in attack detection. Researchers have
lately deemed the 5G network environment to be significant, owing to the advancement of net-
work communication and the growing number of users. As a result, wireless network security
of 5G networks has become a crucial concern. This study made two major advances in the
detection of network assaults [43]. Numerous ML and DL approaches, including multi-class
neural networks, multi-class decision jungle, decision trees, KNN and multi-class decision for-
est were used to construct an intelligent system that classifies data into normal and abnormal
traffic to detect cyber assaults. Using the AWID3 dataset, the performance was evaluated using
the Omnet++ simulator tool to retrieve a subset of the packet transmission performance data-
set for a run time of 20 seconds. This network attained 99% accuracy, however, only accuracy
is used for evaluation metrics. Furthermore, ‘frame.time.epoch’is a time series feature and
should be preprocessed accordingly. [44] proposed an intrusion detection technique for wire-
less sensor networks based on graph neural networks and Lyapunov optimization in this
study. The AWID dataset was utilized for GNN with the Lyapunov optimization loss function.
The acquired results were better than the previous SVM-based works. However, no confusion
matrix or false alarm rate has been calculated. By resampling training data and redefining
rewards in reinforcement learning, the research creates an environmental agent that improves
intrusion detection [45]. In a multi-classification experiment, the system, AE-SAC, achieves
excellent performance, with an accuracy of 84.15% and an F1-score of 83.97% on the
NSL-KDD dataset and an accuracy and F1-score exceeding 98.9% on the AWID dataset.
Related work with the critical analysis is presented in Table 1.

In the extant literature, most of the research studies did not include modern Wi-Fi traffic.
Many studies were conducted using publicly available datasets including even outdated
KDD99 and NSL-KDD datasets launched in 1999 and 2009 with 42 features that do not reflect
modern attack scenarios [24]. Other datasets that are widely used in research do not include
the latest Wi-Fi attack scenarios such as ISCX 2012 is based on emulated traffic with 82 fea-
tures and does not reflect the effectiveness of a practical network environment. It is comprised
of over 2 million traffic packets, and attacks represent 2% of the whole traffic [26].
UNSW-NBI5 is based on a simulated network and consists of 49 features, 175,341 normal traf-
fic, and 82,332 anomaly classes making it a highly imbalanced dataset. In 2017, CIC-IDS2017
was introduced, and later CIC-IDS2018. These datasets contain various recent cyberattacks,
such as brute-force attacks on FTP and SSH servers, denial-of-service attacks(DoS), Heart-
bleed attacks, and other online attacks such as XSS, SQL injection, and brute-force attacks.
These statistics include assaults that were absent from the earlier datasets, such as infiltration,
botnets, and DDoS attacks. Another benefit of this dataset is that the normal traffic generated
in this dataset is based on network protocols such as HTTP, HTTPS, FTP, SSH, E-malil, etc.,
which is closer to a real-time network environment than the previous datasets [24]. The major
shortcoming of the research with these datasets is that they do not include Wi-Fi attack scenar-
ios. All these datasets are based on a wired network. Aegean Wi-Fi Intrusion Detection Dataset
(AWID) is the only benchmark dataset that consists of attacks related to wireless intrusion net-
works. It provides a freely accessible dataset of legitimate and malicious traffic directed against
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Table 1. Significant summary of literature.
Title

Weietal. [25] - | Optimization method for
2019 IDS

Kasongo et al.
[36]—(2020)

Problem

Feature reduction for
wireless IDS

Reyes et al. Two-stage wireless IDS
[38]- 2020
Lietal. [39] Feature separation method
-2021 for IDS to improve

accuracy

Laghrissi et al. LSTM approach for IDS

[28]- 2021
Sharafaldin etal. | ML for anomaly-based
[24] -2021 DS
Mujahid et al. Wireless IDS for 5g
[43]1—(2022) networks
Agrawal etal. | Krack detection using ML
[35]- (2022)
Shitharth etal. | Optimization method for
[32]-(2022) DS
Shitharth etal. | Optimal feature selection

[31]-(2022) method for IDS
https://doi.org/10.1371/journal.pone.0306747.t001

Feature selection Technique Dataset Result Gap
N/A PSO- AFSA-GA-DBN NSL-KDD 99.85% | Doesn’t reflect modern traffic
(41) scenarios
WFEU FFDNN UNSW_NBI5, 77.17%, Absence of multiclass
AWID 99.77% classification
RFE, RF, NB, SHAP, ET, AWID 99.99% | Doesn’t include the latest Wi-
Chi-square, XGBoost, Fi attack scenarios
Correlation, Bagging,
Feature LightGBM
Importance,
PSO
Word Embedding RNN, LSTM, GRU AWID, 94.96%, | only accuracy for evaluation
UNSW_NBI15 93.47% measures
PCA, PCA-LSTM, LSTM-MI KDD99 99.44% Outdated dataset
MI
N/A CNN, RF, ANN, SOM, CIC-IDS2017 Approx.
EM, k-NN 99%
Pearson correlation DT, NN, kNN, Decision AWID3 99% Time-based feature ‘frame.
Jungle, Decision Forest time.epoch’ is not
preprocessed properly
N/A LightGBM, XGBoost, AWID3 87.12% | accuracy should be increased
Catboost
Perceptual-Pigeon- Likelihood Naive Bayes NSL-KDD, CICIDS, |  99% | Doesn’t include the latest Wi-
Galvanized-Optimization and Bot-IoT Fi attack scenarios
(PPGO)
BAT SVM KDD99, 99% Doesn’t reflect modern traffic
Algorithm scenarios

802.11 networks. This is the first dataset that includes 802.11 attacks [46] but still does not
include Krack and Kr00k attacks. The focus of this work is to extract the most meaningful fea-
tures to have a secure Wi-Fi system. Wrapper approaches, such as RFE, use machine learning
algorithms to regulate the performance of selected features and frequently outperform filter
methods in terms of predictive accuracy [47].

Furthermore, the existing literature failed to extract and analyze the generalized features for
each attack including Krack and Kr00k, and authentication attacks which include de-authenti-
cation and disassociation attacks. AWID3 benchmark dataset includes these attacks and
focuses on enterprise adaptations of the protocol unit thus considered more challenging than
AWID and providing greater security methods.

However, another significant shortcoming in current research is the lack of evaluation on
the generalization of trained models with other datasets. The lack of evaluation in this regard
raises uncertainties about the transferability and generalizability of the features and models.
Without such evaluation, it remains unclear whether the proposed cyber-attack detection
model will perform well and provide accurate results in real-world scenarios with varying net-
work conditions. Consequently, as a result, additional research and testing are crucial to ascer-
tain whether the retained features can be used successfully across various datasets, ensuring
their dependability and usability in a wider spectrum of network environments.

3. Methodology

Corporate Wi-Fi networks are vital for both businesses and public administrations, offering a
highly adaptable and secure infrastructure. Access points face vulnerabilities like
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Fig 1. Wi-Fi intrusion detection system.

https://doi.org/10.1371/journal.pone.0306747.9001

deauthentication, disassociation attacks, and the KRACK attack, which exploits the four-way
handshake. Recently, the Kr00k attack has emerged as a critical threat, specifically targeting
Wi-Fi chips. These risks demand vigilant security measures to protect wireless networks and
devices. Fig 1 shows the framework for a secure Wi-Fi network. One of the prime objectives of
this research is to improve the detection rate of attacks with fewer features. Fig 2 outlines the
proposed methodology for this research study. To conduct the proposed strategy and experi-
mentation, the AWID3 dataset is utilized. Generally, the datasets consist of missing values,
special characters, and different data types. Therefore, preprocessing of the dataset is per-
formed in the second step. In the third step, the feature selection algorithm is utilized to get a
minimized set of features using a recursive feature elimination algorithm, and several classifi-
cation algorithms including DT, RF, ET, Light GBM, MLP, and CNN were used for classifica-
tion. In the next step, DT-RFE was used to get features for each attack and classification was
performed to analyze the accuracy of these features. In the last step, it was analyzed if the fea-
tures for each attack were transferable. It is worth noting that while deep learning algorithms
are known for their capacity to automatically learn hierarchical features and could be powerful,
they might come with increased computational demands. Deep learning models often require
a large amount of data for training, and the effectiveness of such models is typically observed
in more extensive datasets. As the AWID 3 dataset is relatively small and lacks the complexity
that could benefit deep learning, simpler models like decision trees performed better.

Data Pre-processing \
Training Phase

Identitying and
- missing|
I -II
] values 5 reE | _> ---
Val
alues 10 fold CV

Normalize the muoL c'“’"‘" / Measure Performance
T I | Accuracy | Precision |
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Fig 2. Proposed methodology.
https://doi.org/10.1371/journal.pone.0306747.g002
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3.1. Feature selection using recursive feature elimination

The purpose of feature selection is the minimization of the time and space complexity of the
model. Detection of attacks through reduced features and processing time without any delay
will lead to an efficient lightweight IDS. RFE is a method for feature selection that uses a classi-
fier to build the model. A machine learning model is trained and assessed using various feature
subsets to determine the optimal feature subset that leads to improved performance of the
model. The RFE process begins with training a machine learning model on an entire set of fea-
tures, followed by ranking the features in order of significance to the model’s performance.
The model is then retrained and assessed with a smaller set of features after the least significant
feature is eliminated. This process is repeated iteratively until a predetermined number of fea-
tures is reached, or until a desired level of performance is achieved. The feature importance
score for each feature is computed (Eq 1), and the feature with the lowest value is removed
from the subset.

n

§(i) = Zk:l (onin — Tc) Eql

Wrapper-based RFE differs from other feature selection methods, such as filter-based or
embedded methods, in that it evaluates the impact of feature subsets on the specific machine
learning model being used, rather than just measuring the correlation between features and
the target variable.

3.2. Decision tree

The decision tree is a type of supervised learning technique to tackle classification problems. A
DT’s components include leaves, branches, and nodes. The branches indicate the collection of
features that result in the class labels, whereas the leaves represent the labels for each class.
Both discrete and continuous data sets can be used with these branches. The samples are cate-
gorized into two or more homogeneous sets by the DT approach. The classification process
works in a top-to-down sequence, and an optimal conclusion is attained when the proper cate-
gory of the leaf node is discovered. However, decision trees face overfitting problems. Decision
Trees separate data at each node using splitting criteria such as Gini impurity(D) from a differ-
ent number of classes(C) in the dataset where p; is the probability of an instance in D belong-
ing to class i as shown in Eq 2.

Gini(D) =1~ (p)’ Eq2

For each feature and value, the algorithm examines the splitting criterion and chooses
the one that minimizes the criterion. The data is split recursively into child nodes until a
halting criterion is reached. It assigns a class label or numerical value based on the majority
class or mean value when it reaches a leaf node. Algorithm 1 demonstrates the decision tree
process.

3.3. Random Forest

The RF method, an ensemble learning technique, is used for tackling classification and regres-
sion issues. Unlike decision trees, the random forest classifier uses numerous DTs to classify a
given dataset. These decision trees calculate the entropy of features and then split the samples
layer by layer. As a result, the dataset instances are divided according to the desired column.
Random forest overcomes the problem of overfitting as opposed to decision trees. Random
Forest is an ensemble learning method that uses numerous decision trees to improve predic-
tion accuracy. Let (X, Y) represent the dataset, with X representing the feature matrix of shape
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Input: Training Data T (D)
Output: Model Prediction M
#Gini Index Calculation:
Function Ginilndex{D):
C = number of classes, Gini = 1.0
for each classifrom 1to C:
pi = proportion of data pointsinclassiin D
Gini = pi*2
Return Gini
#iNode Splitting with Gini Index:
Function SplitNodeGini(D, attributes):
Select the best attribute to split the node based on Gini Index
For each possible split:
Split the node into child nodes
Calculate the Gini Index for each child node
Choose the split that results in the lowest Gini Index
fiDecision Tree Processing Algorithm:
Function BuildDecisionTreeGini(D, attributes):
If stopping condition is met:
Create a leaf node with the most common class in D
Return the leaf node
If all data points in D have the same class:
Create a leaf node with class = class of the data points
Return the leaf node
If attributes are empty:
Create a leaf node with the most common class in D
Return the leaf node
Othenwise:
Split the node using the best attribute with the lowest Gini Index
Create a decision node for the selected attribute
For each possible attribute value:
Recursively call BuildDecisionTreeGini() on child node and subset of data
Return the decision node
#Main Decision Tree Algorithm:
M = BuildDecisionTreeGini(T, all_attributes)
Return M

Algorithm 1. DT Algorithm.

https://doi.org/10.1371/journal.pone.0306747.9003

(n, p), with n instances and p features, and Y representing the target variable. Then bootstrap
of the dataset is created by randomly picking n instances from the original dataset with
replacement. The original dataset (Xb, Yb) is the same size as the sampled dataset (Xb, Yb).
For each tree, choose a subset of m features at random from the total p features. Create a deci-
sion tree T with (Xb, Yb) and the randomly chosen m characteristics. Create N decision trees
using the preceding procedure to construct a Random Forest {T1, T2,. .., TN}. To determine
the most prevalent class for classification, employ a majority vote among the tree predictions
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just like in Eq 3.
Y, = mode(T,(X,

n VIEW)7

TZ(Xnew)’ et Tn(Xnew)) Eq3

3.4. Extra Tree

This algorithm attempts to fit randomized decision trees on distinct sub-samples of the dataset
and implements the notion of averaging to improve accuracy as well as efficiency to overcome
the overfitting problem. The extra tree algorithm uses the standard top-down approach to gen-
erate a sequence of raw gradient or regression trees. ETs are distinct from conventional tree-
based clustering algorithms in such a way that they separate nodes by arbitrarily cutting points
and construct the tree using the entire learning sample. Extra trees are similar to random for-
ests. Compared to Random Forest, Extra Trees can be trained more quickly because the split
thresholds are chosen at random and there is no need to look for the best thresholds.

3.5. Light Gradient Boosting Machine

The LightGBM method incorporates two innovative techniques: gradient-based one-side sam-
pling (GOSS) with exclusive feature bundling (EFB). XGBoost is a deep-learning algorithm
used for regression and classification tasks. For classification, the goal is to minimize the log
loss function for n number of data points where y; is the true class label and p; is the probability
of class for data point I as given in Eq 4.

L(H) = ijl(yilog(pi) + (1 —yi)log(l - pz)) Eq4

It builds an ensemble of decision trees, called boosted trees, to make predictions. The objec-
tive function uses two regularization terms: L1 Regularization (Lasso) and L2 Regularization
(Ridge), aiming to prevent overfitting and maximize gain scores. The ensemble’s predictions
are weighted according to performance.

3.6. Multilayer Perceptron

One of the most often used feed-forward neural networks is the multi-layer-perceptron (MLP)
neural network. MLP neurons are linked in a one-way and one-directional manner. The MLP
design is as follows: the initial layer that feeds the network with input variables is called the
input layer, the last layer is called the output layer, and all the layers in between are called hid-
den layers. The hidden layer, which consists of m neurons, computes a weighted sum of inputs
and expresses it for the jth neuron by passing it through an activation function as shown in

Eq 5. Where Z; is the weighted sum of neuron j. The weight known as Wj; is what connects the
ith input neuron to the jth hidden neuron and the bias for neuron j is b;. The weighted sum of
the output neuron can be expressed as in Eq 6 where Zy is the k-th output neuron’s weighted
sum, ¢y is the bias for the k-th output neuron, and Vj is the weight connecting the j-th hidden
neuron to the k-th output neuron.

Z=" (X.Wy)+b Eg5

Z, = ZJZI(A]..ij) +¢ Eq6

It is provided with the necessary structural flexibility and representational capabilities, as
well as access to a diverse set of data samples.
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3.7. Convolutional Neural Network

CNNss are designed to learn spatial and temporal patterns in data. In the context of intrusion
detection, CNNs can be used to learn patterns in the independent features of the dataset. The
convolutional layer is the fundamental component of CNN, where a series of filters are applied
to the input image to generate feature maps. The mathematical equation is given in Eq 7 where
in the I feature map, Z;; s the value at position (i, j). The I-th layer’s filter at position (m,n)
has assigned a weight Wm,nm. In the (I-1)-th layer’s feature map, Xi,m, jm[l'l]
position (i+m, j+n). Following feature extraction, pooling layers are used to analyze the data
and minimize the spatial dimensions of feature maps where P; s the pooled value at position
(i, j) and Ay [ etc. are the values at corresponding positions in the activated feature map

is the value at

given in Eq 8. This is then followed by fully connected layers, which make the final prediction.
The weights of the filters and fully connected layers are learned through training the network
on a labeled dataset. This is demonstrated in algorithm 2. For example, if the independent fea-
tures of the intrusion detection dataset are network packets, a CNN can be used to learn pat-
terns in the packet’s header fields such as source-IP and destination-IP addresses, port
numbers, and protocol type. By learning these patterns, CNN can detect anomalies in the net-
work traffic, which may indicate an intrusion.

i Jh—1 Jw—1 1
the Zjj =" > (Wh,X[,50) + b Eq7
I
Pz[[]] = maX(Agl',ZjaA’[zr]z',2j+1vA’[2”i+1,2ja Ag]i-%—lzj-#l) Eq8

3.8. Feature transferability

The effectiveness of intrusion detection systems (IDS) is assessed using consolidated metrics
such as precision, recall, F1 score, and AUC score. As anticipated, all IDS models achieve
remarkably high F1 scores, ranging from 0.98 to 1, and AUC scores, ranging from 0.97 to 0.99,
when trained and tested on individual datasets like AWID and AWID3. These findings are
consistent with prior research on IDSs applied to publicly available datasets and underscore
the models’ efficacy in their specific contexts.

However, the transferability of these high-performing models to an unseen dataset leads to
diverse outcomes. The performance may vary, indicating that the models’ exceptional perfor-
mance on a specific dataset does not automatically guarantee their ability to generalize to
novel and unseen datasets under a distinctive network environment.

Undoubtedly, a pivotal question arises: Can the chosen set of features be seamlessly trans-
ferred across datasets? To probe this matter, the model, having undergone training with the
retained features, undergoes comprehensive testing using unseen network traffic. This evalua-
tion encompasses real-time scenarios and diverse network environments, empowering
researchers to gauge the enduring efficacy and broad applicability of the retained features
beyond the confines of the original dataset. This evaluation assumes paramount significance as
it validates the feasibility and versatility of the proposed cyber-attack detection model in
dynamic and varied network conditions.

3.9. Dataset description

Contrary to the first Aegean Wi-Fi Intrusion Detection Dataset (AWID), the AWID3 dataset
focuses on enterprise adaptations of the protocol unit and is thus considered more challenging
than AWID providing greater security methods such as the usage of protected management
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Input: df & dataset
Output: Prediction Rasults
for xin df do
for epoch in range{num_epochs):
# Feature Extraction with Convolutional Layers
for layer in range(num_layers):
for i in range(height):
for j in range(width):
Zij = bias[layer]
for m in range(filter_height):
for n in range(filter_width):
Zij += weight{layer][m][n] * X[i + m][j + n][layer]
Zij = activation_func (Zij)
output[i](j][layer] = Zij

if layer < num_layers - 1:
# Apply Pooling
for i in range(pooled_height):
for j in range(pooled_wiidth):
Pifj](il[tayer] = max(
output[2 * j][2 * i][layer],
output[2 *j][2 * i + 1][layer],
output[2 * j + 1][2 * i][layer],
output[2 * j+1][2 * i + 1][layer] )
for sample in range{num_samples):
# Perform classification using the feature maps
Return classification score as prediction resulits

Algorithm 2. Convolutional Neural Network (CNN).

https://doi.org/10.1371/journal.pone.0306747.9004

frames (PMF), introduced with the 802.11w amendment, and support for various network
designs. AWID?3 is a publicly accessible database of Wi-Fi network traffic that includes actual
traces of both legitimate and unwanted 802.11 activity. It captures numerous different attacks
launched against the IEEE 802.1X extensible authentication protocol (EAP) system. This data-
set focuses primarily on attacks related to 802.11 and higher-layer attacks. Furthermore, new
802.11-specific attacks, such as Krack and Kr00k, have been included for analysis. In this
research, a minimized edition of the dataset has been used consisting of four types of attacks
de-authentication, dissociation, Krack, Kr00k, and benign traffic.
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Fig 3. Classes distribution.
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3.10. Data preprocessing

Timestamps, numerals, hexadecimal digits, strings, etc. are examples of features’ data types.
The AWID3 dataset is an unbalanced distribution of records. For this research, the imbalance
property of the dataset is not altered. Fig 3 demonstrates the distribution of the number of

instances in the dataset.

For the feature selection phase, time-based features such as the frame.timedelta, frame.
time_delta_displayed etc. have been discarded since the focus is not the time-based analysis.
Only, cherry-picked MAC and physical layer features were selected and proposed in [4]. These
features were considered due to their potential to function as a solid foundation for the devel-
opment of a reliable, easy-to-handle, and economical 802.11 cyber threat detection system.
The features with their description are presented in Table 2.

Table 2. Selected features.

Feature Name

Description

1. Frame.len

Frame Length

2. Radiotap.length

Frame header length

3. Radiotap.dbm_ansignal

Present flag antenna signal (dbm)

4. Wlan.duration

Duration time

5. Radiotap.present.tsft

Present flag (Timing Synchronization Function Timer)

6. Radiotap.channel.freq

Channel frequency value

7. Radiotap.channel.type.cck

Complementary Code Keying-flag

8. Radiotap.channel.type.ofdm

Orthogonal Frequency Multiplexing-flag

9. Wlan.fc.type

Type- Flag

10. Wlan.fc.subtype

Subtype-Flag

11. Wlan.fc.ds

Distribution System-status flag

12. Wlan.fc.frag

More fragments-flag

13. Wlan.fc.retry

Retry-flag

14. Wlan.fc.pwrmgt

Power management-flag

15. Wlan.fc.moredata

More data-flag

16. Wlan.fc.protected

Protected frame-flag

https://doi.org/10.1371/journal.pone.0306747.t1002
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Table 3. Parameters of tree-based classifiers.

AWID3 dataset contains a few missing values in the instances. To encounter this problem,
records that contain any missing values have been dropped. Here, wlan.fc.ds represents hexa-
decimal strings which are converted to numerical using label encoding. There exists a signifi-
cant difference between the ranges of feature values, such as radiotap. channel.freq begins
from 1000 while, the maximum value of radiotap. length for this dataset is approximately 100.
In the given formula, the step size of the gradient descent will change depending on whether
feature value X is present in the formula. Different step sizes for each feature will result from
the differences in feature ranges. Data needs to be normalized before feeding it to the model to
make sure that the gradient descent progresses evenly towards the local minima and that the
steps for gradient descent are updated at the same pace for all the features demonstrated in
Eq9.

1 n . oy
0, =0,- a—z‘ (y(x7) — y)x)? Eq9

For the trained classification algorithm to work properly, the primary data must first
undergo some sort of data normalization due to the high level of irregularity present in the pri-
mary data. If the data is not normalized, the model will be dominated by variables on a larger
scale, which will have a detrimental effect on the model’s efficiency. As a result, normalization
is an absolute necessity. The min-max scaling method given in Eq 10 can be used to rationalize
the set of diverse data.

o X- min(x)
max(x) — min(x)

Eql0

3.11. Parameter configuration

For the decision tree, the maximum number of leaf nodes is set to 200. The minimum sample
size per leaf was raised to 2 to compel each leaf to collect pertinent information. Additionally, a
minimal cost-complexity pruning impact was added using the ccp_alpha complexity parame-
ter like regularization. When set to the minimum value, pruning iteratively locates the node
with the "weakest connection." The weakest link is defined by its effectual alpha, with the
nodes with the lowest effective alpha deleted first. The same parameter values used for the DT
were evaluated for RF, with favourable results. Regarding ET, the maximum number of leaf
nodes is set to 500, maximum depth of nodes is 300 with n_estimators set to 200. Table 3
shows the parameters of the tree-based algorithms.

Multi-layer perceptron was applied to detect network attacks where the parameters
included adaptive moment estimation (Adam) as an optimizer with a 0.0001 learning rate. As
shown in Table 4, the parameters of the convolutional neural network included a 0.001 learn-
ing rate and an Adam optimizer. Early stopping for both models was specified to run the
model 2 times more before stopping to avoid overfitting. The activation function adopted was

Parameters Tree Based Models

Decision Tree Random Forest Light GBM Extra Trees
Min_samples_leaf 2 2 2 2
Max_leaf_nodes 100 100 50 500
Max_depth 30 30 30 300
Ccp_alpha l.e-3 l.e-3 - l.e-3

N_extimators -

https://doi.org/10.1371/journal.pone.0306747.t003

- - 200
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Table 4. DNN architectures.

Parameters MLP CNN
Activator Relu, Softmax (Output) Relu, Softmax (Output)
Optimizer ADAM ADAM
Learning rate 0.001 0.01
Loss Categorical cross-entropy Categorical cross-entropy
Hidden layers 5 3
Neurons per layer 512,256,128, 64 128, 32,16
Batch size 128 128
Conv Layer - 5
MaxPooling - 2

https://doi.org/10.1371/journal.pone.0306747.t1004

the rectified linear activation unit, and the output was softmax. To lessen overfitting, dropout
layers, and early stopping were used.

3.12. Feature transferability evaluation

The main differentiation between AWID (possibly referring to AWID2) and AWID3 lies in
their distinct emphases and contexts. Although both datasets pertain to Wi-Fi intrusion detec-
tion, AWID3 is specifically tailored for corporate applications of the protocol, which often
entails more robust security features. The key differences can be summarized as follows:

« Protocol Focus:

AWID (AWID?2) centers around conventional Wi-Fi intrusion detection scenarios, while
AWID3 is geared towards business implementations of the protocol.

« Security Measures:

AWID3 considers the incorporation of enhanced security measures that are prevalent in
business settings. This includes the utilization of Protected Management Frames (PMF), intro-
duced with the 802.11w amendment, which enhances Wi-Fi network security.

o Network Architecture:

AWID3 considers a wide range of network architectures commonly observed in commer-
cial organizations. Consequently, the dataset encompasses information from more intricate
network configurations unique to business Wi-Fi deployments.

Conclusively, while both AWID (AWID2) and AWID3 are pertinent to Wi-Fi intrusion
detection, AWID3 provides a more specialized and focused dataset tailored for detecting intru-
sions in enterprise Wi-Fi environments. Its emphasis on better security mechanisms and
diverse network designs enhances its relevance for real-world applications in the corporate
sector.

The primary objective of testing feature transferability is to identify the most robust and
advantageous features that can be effectively applied and generalized across diverse network
environments, especially between a general Wi-Fi network setting and an enterprise network
setting. This research aims to uncover features that retain their effectiveness when transferred
from a general Wi-Fi network environment to a corporate Wi-Fi network environment, with a
specific focus on AWID3, which pertains to enterprise versions of the protocol. The incorpo-
ration of stronger security measures and varying network topologies in the corporate context
may necessitate the utilization of specific features for efficient intrusion detection.
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Both datasets share common instances of deauthentication attacks. The training set encom-
passes AWID2-CLS-R, containing only the Normal and Flooding classes, while the test set
comprises AWID3 Deauth. pcap, featuring solely the Normal and Deauthentication traffic.

4. Experiments and results discussion

This section discusses the feature selection and classification process. The model was created
on Google Colab with T4 GPU using the open-source TensorFlow Keras framework. Data pre-
processing was performed to remove any inconsistencies. This consisted of handling missing
information, standardizing data formats, and implementing the required transformations to
ensure consistency and correctness. Machine learning models were trained and assessed. This
entailed dividing the dataset into training and testing subsets, employing cross-validation tech-
niques, and utilizing suitable evaluation metrics to measure model performance. The ethical
aspects of implementing automated wireless intrusion detection methods were addressed. The
data collected and analysed by these technologies was solely utilised to improve network secu-
rity and combat cyber-attacks. Ethical considerations require that the data be treated responsi-
bly and ethically, with strict measures in place to protect sensitive information from
unauthorised access or misuse. By following these ethical standards, it was assured that auto-
mated intrusion detection systems positively contribute to network security while respecting
individual privacy rights and sustaining faith in technology. The AWID3 dataset used in these
experiments has 5 classes: normal, de-authentication, disassociation, Krack, and Kr00k. Intru-
sion detection datasets are generally highly imbalanced as attack traffic is always significantly
less than normal traffic. In this case, balancing the data with the use of oversampling tech-
niques would not be appropriate. In this approach, stratified k-fold with 10-fold cross-valida-
tion (CV) has been implemented to neutralize the imbalance characteristic of the dataset.

4.1. Evaluation metrics

The following are the appropriate evaluation metrics to detect cyberattacks. The efficiency of
the proposed methodology has been evaluated using a confusion matrix that consists of true-
positive (TP), true-negative (TN), false-positive (FP), and false-negative (FN) as defined below:

o True-positive (TP): number of instances successfully categorized as cyber-attacks.

o True-negative (TN): number of instances that are categorized as normal/regular network
traffic.

« False-positive (FP): number of instances wrongly categorized as any cyber-attack.
o False-negative (FN): number of instances of cyberattacks remained undetected by IDS.

Accuracy, Precision, Recall, and F1 measures have all been used in this study as assessment
metrics based on the characteristics of the confusion matrix.

Accuracy: The ratio of cases in the dataset that the model correctly identified. The higher
the accuracy, the better the model applied.

TruePositve + TrueNegutive

Accuracy =
TruePUsitive + TrueNegative + FalsePositive + FalseNegative

Precision: The ratio of the number of true positive instances that are classified exactly to
the total number of positive instances (true positive and false positive).

Tru ePosi tive

Precision =
Truep,,, + False

‘positive
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Recall: The ratio of true positive instances that are precisely labeled as true positive to all
true positive instances. This means the value of recall will be low when the FN rate is high.

Recall = Triypin
Truepositive + Falsepusitive

F1-score: This is referred to as the harmonic mean of the accuracy and recall metrics. It is
regarded as a useful assessment criterion for unbalanced data.

2 Truepositve
+ False

positive

1 — =
f1 — score T Trie

positive

+ Fa lseNegative

4.2. Feature selection and classification for all attacks

The process of feature selection presented various limitations throughout the investigation.
One notable limitation revolved around the potential existence of irrelevant or redundant fea-
tures within the dataset. The extensive features, while furnishing information, introduced
complexities in discerning the most pertinent ones. Moreover, ensuring the transferability of
chosen features across diverse network environments emerged as a persistent challenge. The
ever-changing landscape of wireless networks compounded the intricacies of the feature selec-
tion procedure. Despite the application of rigorous methodologies, the ongoing struggle to
strike a balance between achieving a lightweight model and maintaining requisite detection
accuracy remained a formidable constraint. The wrapper method ranks the feature subsets
according to how well they can classify the objects using the learning machine. Fundamentally,
recursive feature elimination prioritizes features based on a relevance metric. RFE acts as a
greedy algorithm and strategically performs feature ranking by prioritizing features by recur-
sively finding the reliant collinear features while removing the weak features. In this approach,
RFE with a decision tree (DT-RFE) has been implemented and the eight most relevant features
have been extracted that will be ideal for building a cost-effective, lightweight IDS, reducing
the dimensions of data. DT-RFE can categorize powerful predictors of a given outcome with-
out assuming the model’s internal mechanism. As mentioned above, DT-RFE selects the most
meaningful features based on their ranks. Table 5 shows the most relevant selected features.
Apart from these 8 features, another feature wlan_radio.signal_dbm, which represents the
broadcasting device’s signal strength, was used for classification. When used with the radiotap.
dbm antsignal, it can help pinpoint flooding and impersonation attacks. The use of this feature
in combination with the other features reduced the false-positive rate. Certainly, "wlan_radio.
signal_dbm" is essential to the cyberattack detection feature selection process. This feature rep-
resents a wireless network’s signal strength and provides important information about the reli-
ability and quality of the Wi-Fi connection. When "wlan_radio.signal_dbm" was incorporated

Table 5. DT-RFE features.

Selected Features
frame.len
radiotap.channel.flags.cck
radiotap.channel.freq
radiotap.dbm_antsignal
wlan.duration
wlan.fc.retry
wlan.fc.subtype
wlan.fc.type

© (N[O [0 [B @ [N

https://doi.org/10.1371/journal.pone.0306747.t1005
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CNN 99.82%
99.82%
99.82%
MLP 39.76%
99.77%
99.76%
Random Forest 99.79%
99.79%
99.79%
.83%
Extra Trees 35.79%
99.80%
99.79%
Light GBM 99.58%
99.5%%
99.58
Decision tree 99.82%
99.82%
99.82%

99.40% 99.50% 99.60% 99.70% 99.80% 99.90% 100.00%
Decision tree Light GBM Extra Trees Random Forest MLP CNN
| Average AUC 99.90% 99.73% 99.83% 99.89% 99.87% 99.89%
Average F1 Score 99.82% 99.58% 99.79% 99.79% 99.76% 99.82%
m Average Recall 99.82% 99.58% 99.79% 99.79% 99.76% 99.82%
m Average Precision 99.82% 99.59% 99.80% 99.79% 99.77% 99.82%
W Average Accuracy 99.82% 99.58% 99.79% 99.79% 99.76% 99.82%
W Average AUC Average F1 Score M Average Recall M Average Precision M Average Accuracy

Fig 4. Performance evaluation.

https://doi.org/10.1371/journal.pone.0306747.9006

along with a subset of eight other relevant attributes, the number of false positives during
cyberattack detection was significantly reduced. This decrease suggests that by providing
insightful contextual information about the wireless network environment, "wlan_radio.sig-
nal_dbm" enhances the selected subset of attributes. This feature integration improves the
intrusion detection system’s overall accuracy and effectiveness by providing more insights into
network behavior and possible security threats. The classification results are shown later in

Fig 4. Since the dataset is imbalanced, the results should be considered in terms of the F1-score
and area under the curve (AUC) score.

From Table 5, it is observed that CNN and DT have attained the best results in terms of
accuracy, precision, recall, F1-score, and AUC score. However, the decision tree attained
slightly better results in terms of F1-score, AUC score, and processing time of 99.82%, 99.90%,
and 20.2s respectively. Decision Tree also attained the highest recall value of 99.82%. A high
recall value is essential in wireless networks. If an attack instance is incorrectly classified as reg-
ular network traffic, it can cause a major loss of data in real-world businesses.

Regarding deep learning architectures, the validation loss is less than the training because
of the dropout layers used in the model [4]. Figs 5 and 6 show the average loss among all folds.
To train the MLP and CNN architectures, it was found that the number of samples was insuffi-
cient. The ideal loss value was easily obtained by these architectures within four to five epochs.
The models were therefore trained with quite a small loss, with the loss decreasing by a trivial
0.001 after each epoch. Summing up the results, machine learning models can be used to train
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data for an economical and time-saving cyber-attack detection mechanism. That would be
suitable for small and medium enterprises (SMEs) as well. However, for large-scale data, DNN
models are preferred.
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Fig 6. CNN.
https://doi.org/10.1371/journal.pone.0306747.9008
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Fig 7. Decision tree.

https://doi.org/10.1371/journal.pone.0306747.9009

The confusion matrices in Figs 7-12 demonstrate the average confusion matrices of classi-
fier analysis. Normal, de-authentication, and Krack attacks demonstrated significant accuracy
as less than 100 instances are falsely classified with tree-based models. Whereas Light GBM
and MLP classifiers had a hard time differentiating between Kr00k and disassociation attacks.
Approximately 400 instances of these attacks were falsely classified even with 16 features set.
Fig 13 shows that DT and CNN have the least number of misclassified instances.

These results demonstrate that the DT-RFE method can reduce features from 16 to 8 for
the detection of these attacks using DT. This could be helpful for attack detection in an enter-
prise network. With 8 core features and an additional feature out of 16, the proposed method
can detect Wi-Fi cyber-attack with little processing time and a high detection rate.

Furthermore, stratified cross-validation proved efficient to alleviate the effects of overfitting
and class imbalance. Despite being under-presented de-authentication and Krack classes with
only 38,942 and 49,990 samples, the detection rate is quite high.

4.3. Feature transferability

According to the analysis done by [4], 30 features and 27 features were not transferable
whereas 13 feature sets and 5 feature sets were transferable, but the results attained needed
to be improved. For this purpose, radiotap.channel.flags.cck and radiotap.dbm_antsignal
were excluded to better comprehend this result. Radiotap.channel.freq, radiotap.flags.type.
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cck, and other features fall under this category. The fact that AWID2 and AWID3 were
recorded on several radio stations had an impact on this decision. Furthermore, neither of
the two flag-based features provided insightful information for identifying flooding
assaults. Only the best models from ML and DL techniques such as DT and CNN have been
used to evaluate the transferability of features and the evaluation of the results is given in
Fig 14.

The confusion matrices of both DT and CNN with these features are given in Figs 15 and
16. The Decision Tree (DT) model shows zero instances of normal traffic being misclassified
as flooding, resulting in no false positives. However, there is a significant issue with false nega-
tives, where around 84,000 instances of deauthentication attacks are wrongly classified as nor-
mal. On the other hand, the Convolutional Neural Network (CNN) exhibits notably low
numbers of both false positives and false negatives, making it a superior choice for feature
transferability.

CNN'’s superior performance in accuracy, precision, recall, and F1-score indicate its effec-
tiveness in handling the classification task compared to DT. These results suggest that for this
specific problem, CNN is a more suitable choice, as it provides a higher overall predictive capa-
bility with better precision and recall. The results demonstrated that these 6 features are trans-
ferable, achieving 90% and 97% F1 scores respectively.
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4.4. Recursive feature elimination for reduced feature set

DT-RFE was applied on 4 separate datasets (de-authentication/normal, disassociation/normal,
Krack/normal, KrOOk/normal). A different subset of features has been extracted with three of
the most useful features out of the mentioned 16 features. A stratified cross-validation score
equal to 5-fold is used to avoid over-fitting and handle data imbalance problems. For each
attack, different subsets of features are identified. These feature subsets could classify the
incoming cyberattacks based on 3 top ranking features. Table 6 shows the combination of fea-
tures for each attack.

Table 7 demonstrates the performance of algorithms on each attack. Three classifiers with
the best performance including DT, RF, and ET were used for testing the AWID3 dataset. Ran-
dom forest attained superficial results with maximum AUC and F1 scores for each attack. The
decision tree completed the analysis in 2 seconds for de-authentication attacks. However, for
the rest of the attacks, the decision tree was prone to overfitting.

The confusion matrices in Figs 17-25 show the average results of all 10 folds for machine
learning analysis. It is observed that with ET, approximately, only 150 instances were
misclassified.

It is simpler to understand the model’s results when a more condensed collection of features
is used. You can more easily see the significance of each aspect in classifying various attacks.
The modelling process can be streamlined, model performance can be improved, and a better
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knowledge of the essential features driving attack classification can be obtained by choosing
distinct feature subsets for classifying cyberattacks depending on the top-ranking features.
When working with complicated, high-dimensional datasets, it is a useful strategy.

4.5. Feature generalization

Generalization refers to the capability of the classification model to adapt to previously unseen
data. In this experiment, the attack classification is performed to evaluate the generalization of
the extracted features of each attack. The reduced feature subsets for de-authentication and
disassociation attacks were used to perform analysis on the AWID dataset.

Table 8 demonstrates the performance of feature generalization on the AWID dataset.
AWID consists of two attacks from the AWID3 dataset which are de-authentication and disas-
sociation attacks. The three most relevant features of each attack from AWID3 were tested on
the AWID dataset with tree-based models. For de-authentication attacks, RF, DT, and ET
while for disassociation attacks, RF and ET were utilized.

The results confirm the feasibility of feature generalization and demonstrate that the
extracted features from each type of attack can be effectively applied to another dataset with
different network conditions for attack classification.
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4.6. Comparison with state-of-the-art techniques

The proposed models exhibit impressive resilience against several cyberattacks, such as
deauthentication, Krack, and Kr00k. These models have demonstrated the ability to efficiently
identify and counteract these types of attacks, protecting wireless networks’ security and integ-
rity, through extensive testing and assessment. Even in the midst of the complexity of real-
world network environments, these models can recognize patterns and abnormalities indica-
tive of these particular attacks by utilizing significant machine learning and deep learning
approaches. This robustness highlights the dependability and effectiveness of the proposed
approach in defending against a variety of cyber-attacks, offering enhanced security to both
network administrators. Since the imbalanced nature of data is maintained, the F1-score
should be considered rather than accuracy for evaluation. The execution time of the proposed
methods was less than the previous state-of-the-art techniques. Table 9 compares the proposed
work performance measures with state-of-the-art techniques. Only the weighted values of the
evaluation measures were considered.

Table 10 presents the outcomes of various models in terms of their performance metrics,
including accuracy, precision, recall, and F1 score. To determine if the features could be
applied to various network situations, these metrics were assessed using various sets of fea-
tures. The results suggest that the proposed CNN model achieved a notable level of accuracy
and well-balanced performance across precision, recall, and F1 scores, even with a smaller set
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Table 6. Features for each attack.
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of features. Furthermore, the performance of the Decision Tree (DT) models varied based on
the number of features used, indicating the significance of feature selection in influencing the
effectiveness of the models.

5. Conclusion and future works

An adversary can access a victim’s critical details by launching a series of attacks on the net-
work. Intelligent machine/ deep learning-based cyberattack detection mechanisms have
gained popularity due to their high efficiency and automation. This study aimed at developing
a Wi-Fi-based attack detection system. The decision tree with recursive feature elimination
was used to extract the most meaningful features for a cost-effective, lightweight, and time-effi-
cient system to detect cyberattacks. However, apart from 16 features, wlan_radio.signal_dbm
with eight other relevant features significantly reduced false positives. Different tree-based
algorithms, such as decision tree, random forest, Light GBM, extra trees, MLP, and CNN have

Disassociation Krack Kr00k

“frame.len’, "wlan.fe.type’, ’radiotap. channel. freq’, ’frame.len’,

"wlan.duration’ "wlan. duration’, "wlan.fe.type’,
"wlan.fc. protected’ "wlan.fc.subtype’
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Table 7. Performance metrics for feature reduction of each attack.

Model Accuracy Precision Recall F1 score AUC score Execution time
Deauthentication Attacks

Random forest 99.99% 99.99% 99.99% 99.99% 99.99% 1min 50s

Extra trees 99.33% 99.40% 99.33% 99.35% 99.64% 1min 9s

Decision Tree 99.18% 99.28% 99.18% 99.21% 99.56% 2.2s

Disassociation Attacks

Random forest 99.72% 99.73% 99.72% 99.72% 99.83% 57.7s

Extra trees 99.92% 99.92% 99.92% 99.92% 99.93% 49.5s
Krack Attacks

Random Forest 99.17% 99.18% 99.17% 99.16% 99.43% 27.5s

Extra Trees 99.88% 99.89% 99.88% 99.88% 99.78% 23s
Kr00k Attacks

Random Forest 99.91% 99.91% 99.91% 99.91% 99.95% 3min 44s

Extra Trees 99.81% 99.92% 99.81% 99.81% 99.88% 3min 18s

https://doi.org/10.1371/journal.pone.0306747.t007
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Fig 17. Random forest.
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been used to detect four types of cyber-attacks (de-authentication, disassociation, Krack, and
Kr00k) from the AWID3 dataset. In terms of accuracy, precision, recall, F1 score, and AUC,
both Decision Trees (DT) and Convolutional Neural Networks (CNN) appear to perform
exceptionally well. They obtain 99.82% accuracy for a five-class classification issue, which is
comparable to or slightly better than other state-of-the-art models such as LightGBM, Extreme
Trees (ET), and Multilayer Perceptron (MLP). The proposed approach showed that machine
learning tree-based models would be appropriate for a lightweight IDS as it provides fewer
computations with minimum execution time and better classification of attacks whereas MLP
and CNN can be implemented for handling large and complex data. Furthermore, the evalua-
tion of various metrics across extracted feature sets highlights the transferability of the features
in diverse network contexts. The CNN model showcased impressive accuracy and a balanced
performance with fewer features, while the DT models’ effectiveness varied based on feature
quantity, emphasizing the crucial role of feature selection. The features for each attack were
extracted using DT-RFE. The three best models DT, RF, and ET were used to evaluate the
extracted features, and RF along with ET achieved excellent results across all performance met-
rics including accuracy, precision, recall, F1 score, and execution time for attack detection.
During the evaluation, overfitting occurred with DT for disassociation, Krack, and Kr00k
attacks. Conclusively, features were utilized with the AWID dataset to find out if the extracted
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features were generic or not. Both deauthentication and disassociation attacks in AWID were
evaluated where RF and ET achieved high AUC and F1 scores. This research provides both
theoretical and practical implications in the field of secure Wi-Fi communication in enterprise
networks. The study’s practicality extends beyond specific datasets by taking into account the
transferability of proposed features and models to various network contexts or situations.
While the experimentation was carried out on benchmark Wi-Fi datasets, the absence of dif-
ferent benchmark datasets restricted the examination of other Wi-Fi network situations. Also,
the suggested features are designed for Wi-Fi-based network setups which may limit their use
in wired network settings. Despite this restriction, the study provides vital insights into Wi-Fi
network security and sets the framework for future research to improve detection capabilities
in a variety of network scenarios. The major shortcoming of this research is the unavailability
of a proprietary dataset which is attributed to resource constraints, including budget, time, or
the necessary infrastructure to collect and compile data for experimentation. For holistic secu-
rity, future works can consider the development of newer datasets with attack and benign traf-
fic from both enterprise and industrial networks and use different feature extraction and
evaluation techniques for comparisons. The development of diversified datasets, exploration
of different feature extraction methods, and rigorous evaluation can enhance the quality and
applicability of intrusion detection systems in real-world network security. Collaboration and
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https://doi.org/10.1371/journal.pone.0306747.9027
Table 8. Feature generalization using AWID dataset.
Model Accuracy Precision Recall F1 score AUC score Execution Time
Deauthentication Attack
Random Forest 96.66% 96.86% 96.66% 96.65% 96.48% 5.77s
Extra Trees 96.76% 96.53% 96.76% 96.75% 96.59% 2s
Decision Tree 96.66% 96.87% 96.66% 96.65% 96.49% 111 ms
Disassociation Attacks
Random Forest 99.99% 99.99% 99.99% 99.99% 99.99 7 min
Extra Trees 99.99% 99.99% 99.99% 99.99% 99.99 3 min
https://doi.org/10.1371/journal.pone.0306747.t008
Table 9. Comparison with state-of-the-art techniques.
Model Features Classes Accuracy Precision Recall F1 score AUC Balanced
LightGBM ([35] 5 3 82.57 82.33 82.57 82.18 -
ET [4] 16 3 99.96 99.75 99.28 99.52 99.49% -
MLP [4] 16 3 99.73 99.65 95.68 97.55 96.47%
kNN [48] 30 2 99% - - - v
Proposed work (DT) 8 5 99.82% 99.82% 99.82% 99.82% 99.90% -
Proposed work (CNN) 8 5 99.82% 99.82% 99.82% 99.82% 99.89% -

https://doi.org/10.1371/journal.pone.0306747.t009
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Table 10. Transferability—state-of-the-art performance.

Model Features Accuracy Precision Recall F1 score
DT [4] 30 & 27 97.61 48.80 49.81 49.30
DT [4] 13 99.63 98.69 93.48 95.93
DT [4] 5 99.63 98.69 93.41 95.89
Proposed CNN 6 97 98 97 97

https://doi.org/10.1371/journal.pone.0306747.t010

resource-sharing within the research community can also play a vital role in addressing these
challenges.
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