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Abstract

The widespread use of wireless networks to transfer an enormous amount of sensitive infor-

mation has caused a plethora of vulnerabilities and privacy issues. The management

frames, particularly authentication and association frames, are vulnerable to cyberattacks

and it is a significant concern. Existing research in Wi-Fi attack detection focused on obtain-

ing high detection accuracy while neglecting modern traffic and attack scenarios such as

key reinstallation or unauthorized decryption attacks. This study proposed a novel approach

using the AWID 3 dataset for cyberattack detection. The retained features were analyzed to

assess their transferability, creating a lightweight and cost-effective model. A decision tree

with a recursive feature elimination method was implemented for the extraction of the

reduced features subset, and an additional feature wlan_radio.signal_dbm was used in

combination with the extracted feature subset. Several deep learning and machine learning

models were implemented, where DT and CNN achieved promising classification results.

Further, feature transferability and generalizability were evaluated, and their detection per-

formance was analyzed across different network versions where CNN outperformed other

classification models. The practical implications of this research are crucial for the secure

automation of wireless intrusion detection frameworks and tools in personal and enterprise

paradigms.

1. Introduction

Wireless transmission networks have led to substantial advances in data networking and com-

munications, as well as the establishment of integrated networks. The rapid progress of infor-

mation and communication technologies (ICTs) has offered numerous benefits to system

users, but these technologies also have various vulnerabilities that might be exploited by net-

work adversaries [1]. Cyberattacks such as malware attacks, classified data breaches, denial of

service, phishing, and other security-related incidents have increased significantly in recent
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years. A cyberattack or a cyber threat refers to any unauthorized event or trespassing that com-

promises the network and carries out diverse malicious operations such as identity theft,

spoofing, exfiltration, or exploitation of sensitive data and network resources [2]. A cyber-

attack identification mechanism is a proactive approach that analyzes network traffic, identi-

fies anomalies, and classifies cyber threats in the network [3].

Wi-Fi, or the IEEE-802.11 wireless local area networking (WLAN) standard, is crucial in

daily life. IEEE-802.11 networks are at the forefront of this rapid change to a wireless space

due to their potential to provide fast speed, enhanced mobility, usability, and cost-effective

installation and maintenance expenses [4]. IEEE802.11-based wireless networks are widely

used in homes, businesses, and public places, but also in critical infrastructures such as hospi-

tals or manufacturing facilities where their availability is vital. Wi-Fi’s success may be attrib-

uted to a variety of factors, including well-defined use cases, deployment and configuration

flexibility, and the accessibility of inexpensive, highly interoperable hardware [5].

As IEEE802.11-based networks became more ubiquitous, so did the possibility for hackers

and other malicious activities to exploit them. Wi-Fi networks were initially open with data

moving over the unencrypted medium. Individuals connected to their companies through

public Wi-Fi networks such as coffee shops or libraries were always vulnerable to security

threats. Anyone with a Wi-Fi receiver in the public space premises could access and interpret

the sniffed data. Over the years, several approaches have been introduced to prevent security

threats. Wired equivalent privacy (WEP) was the first scheme for the prevention of cyberat-

tacks, but it had several flaws and soon became unreliable [6]. Later, Wi-Fi-protected access

(WPA), WPA2, and WPA3 were introduced to secure wireless networks via authentication

and encryption [7]. However, these standards are also vulnerable to cyberattacks with compro-

mised encryption keys as authentication/association attacks are risky if the pre-shared key is

down even though protected management frames (PMF) are operative.

Conventional or traditional intrusion detection systems require skilled human expertise to

analyze network traffic patterns for cyber-attack detection, and attackers are generally familiar

with the working of these mechanisms [8–10], which leads to several challenges. With

advancements in network environments and the use of transformative technologies, the nature

of attacks is also modified. Therefore, contemporary intrusion detection systems leverage

advanced technologies such as machine learning or deep learning for cyber-attack detection in

a specific environment including Wi-Fi in an IoT environment The amount of network data

has significantly risen due to the increasing prevalence of connectivity, cloud services, and the

Internet of Things (IoT) [11]. Due to this huge volume of data transmission through modern

high-speed/ bandwidth communication networks, cyber-attack detection has become ineffi-

cient [12]. Due to this, in-depth automated monitoring of network traffic is required to iden-

tify distinct network attacks. Machine learning and deep learning approaches have the

potential to revolutionize technology and operations as they address the problem of big data.

Neural networks and various other deep learning techniques consistently achieve com-

mendable results in addressing classification problems [13]. Incorporating these techniques

allows for intelligently analyzing and discovering useful insights and patterns to detect attacks

or security threats [14]. This could be the key to lightweight and cost-effective intrusion detec-

tion systems. This domain’s main shortcoming is that most publicly available benchmark wire-

less traffic datasets are outdated and do not include recent attack scenarios such as key

reinstallation (Krack) or unauthorized decryption (Kr00k) attacks. It is crucial to acknowledge

that the AWID3 dataset stands out as an exception in this regard, as it encompasses a more

comprehensive range of scenarios, including those involving Krack and Kr00k attacks. There-

fore, it is imperative to highlight the significance of the AWID3 dataset, emphasizing its rele-

vance. Existing wireless attack datasets do not include the enterprise version of the 802.11
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protocols. Another essential overlooked factor is the selection of appropriate performance

metrics as accuracy measures do not demonstrate insights into the results [15–17]. However,

it’s important to note that this specific issue falls outside the scope of the current research.

Therefore, an effective system is required that can indicate any data breach or vulnerability in

the network before any major loss of sensitive data.

Additionally, cyberattack detection is still a major challenge due to the ubiquity of success-

ful cyberattacks publicized in the mainstream media. While there are some incredible cyber-

attack detection results, they frequently rely on certain datasets and can’t always work well in a

variety of real-world settings. In other words, while these models can thrive on their training

data, their performance on varied network traffic remains uncertain. This highlights the need

for intrusion detection features that are successfully transferable across different 802.11 data-

sets. The concept of feature transferability is especially significant when obtaining labeled data

for the first time is excessively expensive, time-consuming, or unattainable. These are the

potential features that continuously perform well across various scenarios. Transferable fea-

tures, in the context of deep learning or machine learning models, are those that demonstrate

consistent performance and efficacy across a range of datasets or scenarios [18]. If the features

consistently maintain their performance well across diverse datasets, it shows that the pro-

posed cyber-attack detection model has real-world application potential under a variety of net-

work environments. Conversely, if the transferability of the features is limited, it will prompt

further investigations to refine the feature selection process or develop more flexible models

for broader applications in different network environments.

While extensive research has been conducted to improve the security of Wi-Fi networks, a

distinct focus on Krack and Kr00k attacks appears to be lacking. The Krack vulnerability

exploits instil flaws in the 4-way handshake protocol, allowing an attacker to reinstall a key

that is momentarily in use. This, in turn, could end up in the decryption of Wi-Fi traffic, allow-

ing unauthorized parties to discreetly intercept important information. Conversely, the kr00k

attack occurs when a device disconnects from a Wi-Fi network while still encrypting data.

Kr00k exploits a weakness in this circumstance by manipulating the flow of unencrypted pack-

ets, revealing fragments of previously encrypted data. Given the rapid growth of cyber threats,

this omission creates a crucial information gap in the attempts to adequately protect wireless

networks. Additionally, it’s evident that a substantial portion of prior research heavily relies on

the AWID dataset. This dataset, however, has shown limitations over time, particularly

because it does not include the most recent attack instances. This disparity is especially obvious

in the case of protected management frames (PMF), a critical component in modern secure

Wi-Fi networks. The absence of PMF in AWID is an important consideration for evaluating

intrusion detection systems in the context of modern Wi-Fi security because it plays a critical

role in reinforcing the authentication and association process. Another shortcoming is that

many of the previous studies have focused on home-based Wi-Fi environments. These studies

failed to recognize the necessity of testing their techniques and solutions in enterprise network

environments. As the network setups, protocols, and security need to change significantly in

corporate settings, this omission limits the practical relevance of research findings. Addition-

ally, the absence of evaluation of generalization and transferability of features, so that the fea-

tures can be used across different network conditions, is a major shortcoming in the existing

literature. In this study, an innovative, lightweight cyber-attack detection model is proposed to

identify existing attacks. These include Krack, Kr00k, de-authentication, and disassociation

attacks. In the proposed methodology, recursive feature elimination (RFE) was used to extract

8 out of 16 MAC layer and physical layer features, proposed by [4], and tested using several

classifiers including decision trees (DT), random forest (RF), extra trees (ETs), light gradient

boost machine (GBM), multi-layer perceptron (MLP) and convolutional neural network
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(CNN). Moreover, the extracted features were used for the analysis across different datasets to

test whether the given features are conceivably transferable. The results of this research offered

valuable information regarding how transferable and generalizable the retained features are. If

the features consistently show effective performance across diverse datasets, it suggests that the

proposed cyber-attack detection model can be successfully implemented in real-world scenar-

ios with varying network conditions, making it more practical and valuable. The following are

the main contributions of this work:

• A decision tree with recursive feature elimination has been used to extract a reduced feature

set. Several classifiers were tested on these features for attack detection.

• The transferability of the extracted features has been evaluated with AWID and AWID 3.

• A decision tree with RFE was used to extract a reduced feature set of the most meaningful

features for each attack. These features expedite the attack detection process with a reduced

number of computations and training time.

• Feature generalization of these reduced feature sets has been studied across the different data

sets. Selected features for de-authentication and disassociation attacks from AWID 3 have

been used in the AWID dataset for classification.

The summary of this research is structured in the following manner: section 2 sheds light

on existing literature regarding cyber-attack detection. Section 3 discusses the pre-processing

and feature selection process. Tree-based and MLP approaches for cyber-attack detection are

reviewed in Section 4. Section 5 presents experimentation and results including feature trans-

ferability. Research work is concluded in section 6, with future work.

2. Literature survey

The three primary methods for analyzing network traffic to detect attacks are classified as sig-

nature detection, anomaly detection, and hybrid techniques that integrate both signature and

anomaly detection techniques [19]. Signature-based detection identifies cyberattacks using

predetermined signatures stored in the signature database. Whenever an attack occurs, the

attack’s signatures are compared with the signature database, and the alert is generated if the

attack signatures match the ones in the database. The signature database needs to be updated

constantly to keep up with new attacks. Still, this technique only detects those attacks that are

present in the database and does not detect zero-day attacks [20–22]. Anomaly detection is a

dynamic approach that analyzes network traffic and notifies if there is any anomalous varia-

tion or abnormal behaviour in the network. Although it detects unknown attacks, there exists

a greater risk of a high false-positive rate (FPR) as not every anomaly or variation in the net-

work is a sign of intrusion [8, 23]. Conventional intrusion detection technology has been

extensively studied for the past few years. The integration of AI, however, has transformed it

even if it might not have excellent real-time detection performance. Nevertheless, researchers

are focusing on machine learning (ML) and deep learning (DL) techniques since they have

demonstrated a considerable increase in accuracy and a reduction in FPR. Several widely used

publicly available benchmark datasets including NSL-KDD, CIC-IDS2017, AWID, and

UNSW_NB15 are available for research purposes.

2.1. Conventional network intrusion research paradigm

Various ML and DL approaches have been proposed which can improve efficiency and lessen

the execution time of intrusion detection mechanisms. In a research work [24], multiple super-

vised learning techniques embracing artificial neural network (ANN), decision tree, random
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forest, and unsupervised techniques including K-means, self-organizing map (SOM), and

expectation maximization (EM) algorithms were applied to CIC-IDS2017. Some algorithms

demonstrated high accuracy while others such as SOM and EM failed to detect targeted

attacks. A novel network structure of deep belief network (DBN) was proposed based on an

artificial fish swarm algorithm (AFSA), genetic algorithm (GA), and particle swarm optimiza-

tion (PSO) to detect network intrusions in NSL-KDD [25]. Although this model attained 98%

accuracy, a higher number of layers can increase computational costs. The work in [26] pro-

posed a hybrid technique to detect intrusions based on feature selection and classification

using UNB ISCX 2012 and CIC-IDS2018 datasets in the Apache Spark environment. A stacked

auto-encoder (SAE) performed feature selection and a support vector machine (SVM) algo-

rithm was used for intrusion detection. Results demonstrated 90.2% accuracy with reduced

training time. A hybrid technique consisting of K-means clustering with RF, CNN, and long

short-term memory (LSTM) was applied in the Apache Spark environment [27]. Adaptive

synthetic sampling was used to solve imbalanced datasets. The results showed 85% accuracy

on NSL-KDD and 99.9% accuracy on CIC-IDS 2017. In [28], principal component analysis

(PCA) and mutual information (MI) with LSTM were implemented for dimensionality reduc-

tion and classification of cyber-attacks. LSTM-PCA achieved the highest accuracy of 99.36%.

Three feature selection techniques comprising autoencoder (AE), the stacked autoencoder

(SAE), and deep autoencoder (DAE) with DNN were applied to indicate data breach in

CIC-IDS2018 and NSL-KDD [29] where DAE-DNN attained the highest accuracy. DAE for

feature selection and recurrent neural networks (RNN) for classification were implemented on

CIC-IDS2018 and Bot-IoT [30]. The highest accuracy for the Bot-IoT dataset 98.39% was

obtained with DAE while significant results for CIC-IDS2018 were obtained with RNN,

97.38% accuracy. The major shortcoming was the lack of details of actual experimentation. In

this work [32], The BAT optimal feature selection method to identify the most relevant fea-

tures. To evaluate the accuracy of intrusion detection, the Support Vector Machine (SVM)

classifier was tested using the KDD99 benchmark dataset. When compared to alternative

machine learning algorithms, this approach outperformed others with a detection accuracy of

99%. The Perceptual-Pigeon-Galvanized-Optimization(PPGO) approach was used to choose

the best parameters for intrusion detection in datasets NSL-KDD, CICIDS, and Bot-IoT [33].

Then the Likelihood Naive Bayes (LNB) classification method was implemented outperform-

ing previous models with a remarkable accuracy rate of 99%. The study introduced a novel fea-

ture selection method based on the Capuchin-Search-Algorithm (CapSA). CNN-CapSA was

evaluated using four IoT-Cloud datasets: NSL-KDD, BoT-IoT, KDD99, and CIC2017, and sur-

passed other state-of-the-art methods with approximately 99% accuracy. The study [34] pro-

posed HetIoT-CNN IDS, an advanced Intrusion Detection System (IDS) that used a

Convolutional-Neural-Network (CNN) built for the HetIoT (Heterogeneous Internet of

Things) environment. The HetIoT-CNN IDS achieved high accuracy scores of 99.75% for

binary classifications, 99.95% for 8-class classifications, and 99.99% for 13-class classifications.

2.2. Contemporary Wi-Fi intrusion research paradigm

The significance of intrusion detection in securing networks has drawn the attention of

numerous researchers. Numerous publications proposed novel methodologies for intrusion

detection for wireless sensors and Wi-Fi networks. Technologies like wireless networks, 4G,

IoT, and others transmit a substantial amount of data and are pre-disposed to various cyberat-

tacks and security risks that might jeopardize the reliability and confidentiality of information

or services. Wi-Fi networks are nearly universally used in businesses nowadays to give employ-

ees access to the Internet. Business stakeholders have become more concerned about Wi-Fi
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networks and operational security. As the dynamics of technology and attack strategies are

expanding, the IDS must be scalable and adaptable to counter new attacks.

Several techniques have been proposed to detect cyberattacks on wireless networks. In [34],

two models were introduced to draw out additional features using SAE, the features were then

combined with the original features based on the amount of mutual information shared

between the features and class labels. It was then merged with the radial basis function classi-

fier (RBFC) to evaluate results on the AWID dataset. Results showed that RBFC acquired 98%

accuracy with 7 optimal features. A novel system KTRACKER was proposed to detect novel

cyber threats such as key re-installation (Krack) on Wi-Fi-protected access (WPA2) [35]. It

grouped handshake packets and used traffic analysis to find KRACK. Cat boost attained the

highest accuracy out of the three machine learning models XGBoost, Light Gradient Boosting

Machine (Light GBM), and Cat boost. In a recent study, a feed-forward-deep-neural-network

(FFDNN) wireless-IDS system using a wrapper-based feature-extraction unit (WFEU) was

introduced [36]. The WFEU extraction approach involved the extra trees algorithm to extract

optimum feature selection. The proficiency of the proposed model was examined using the

UNSW-NB15 and AWID intrusion detection datasets. The proposed model acquired higher

detection accuracy than existing techniques. Overall, the accuracies of 99.66% and 99.77%

with 26 features from AWID, and 87% and 77% with 22 features using UNSW_NB for binary

and multiclass classification were attained respectively.

A novel, conditional deep-belief-network (CDBN), technique was proposed to detect wire-

less network intrusions in real-time and identify cyber-attacks [37]. A stacked contractive auto-

encoder (SCAE) approach was presented for the reduction of data dimensionality to mitigate

the effects of its unbalanced nature and data redundancy on detection accuracy. The experi-

mental results showed better detection accuracy and speed, with an average detection time of

1.14 ms and 97.4% detection accuracy. Most modern IDSs utilize machine learning approaches

that suffer from performance deterioration when used against an adversary and are unable to

achieve a balance between accuracy and false-positive rate (FPR). Due to the open-sharing

nature of wireless technology, organizations continue to have serious concerns about Wi-Fi

security. A significant number of impersonation attacks were misclassified into injection attacks

in previous studies. To overcome this limitation, a dual-stage Wi-Fi network-intrusion-detec-

tion (WNIDS) method, based on machine learning, was proposed to increase the detection

accuracy for injection and impersonation threats in a Wi-Fi network [38]. In the first stage, the

RF outperformed other models to classify the attacks into three classes normal, flooding, and

unified impersonation or injection attacks from the AWID-CLS-R test dataset. In the second

stage, NB outperformed other models by correctly classifying the unified attack instances into

impersonation attacks and injection attacks with an accuracy of 99.42%. To prevent overfitting,

a feature separation approach based on word embedding was developed to speed up calcula-

tions [39]. For classification, a dual/limited attention mechanism was proposed instead of global

attention. These approaches were utilized with the UNSW-NB15 and AWID datasets where the

gated recurrent unit (GRU) attained the highest accuracy of 93.47% on the AWID dataset and

RNN attained 94.96% accuracy on the UNSW-NB15 dataset. However, only the accuracy metric

was used as an evaluation metric even though accuracy alone is not a reliable metric.

Another novel system, the Wi-Fi intrusion-detection-system (WIDS), proposed an anoma-

lous behaviour analysis technique to identify assaults on Wi-Fi networks with significantly

high accuracy and reduced rate of false alarms [40]. In this technique, n-grams were imple-

mented to represent the normal behaviour of the Wi-Fi protocol, and several machine learning

models were used to distinguish Wi-Fi traffic as normal or malicious. This technique was eval-

uated using numerous datasets gathered locally at the University of Arizona and the AWID

dataset classified all Wi-Fi protocol assaults with low false positives (0.0174) and a variable low
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rate of false negatives for different attacks. [41] classified DoS attacks using an ensemble tech-

nique. Recursive feature elimination (RFE) was used for the selection of features and then an

ensemble classifier, using RF, SVM, and Swell with 10-fold cross-validation, for classification

with AWID-CLS-Test dataset. The outcomes demonstrated a precision of 99.98% and 0.12

FPR. For wireless intrusion detection, a feature selection technique based on Fuzzy C-Means

(FCM) was introduced, which used the distance between the FCM centre point and the data

point to determine the difference between the normal and attack centre distances, and then

used the distances to pick the features [42]. This method was tested using the AWID dataset,

and the findings demonstrated that it was quite accurate in attack detection. Researchers have

lately deemed the 5G network environment to be significant, owing to the advancement of net-

work communication and the growing number of users. As a result, wireless network security

of 5G networks has become a crucial concern. This study made two major advances in the

detection of network assaults [43]. Numerous ML and DL approaches, including multi-class

neural networks, multi-class decision jungle, decision trees, KNN and multi-class decision for-

est were used to construct an intelligent system that classifies data into normal and abnormal

traffic to detect cyber assaults. Using the AWID3 dataset, the performance was evaluated using

the Omnet++ simulator tool to retrieve a subset of the packet transmission performance data-

set for a run time of 20 seconds. This network attained 99% accuracy, however, only accuracy

is used for evaluation metrics. Furthermore, ‘frame.time.epoch’is a time series feature and

should be preprocessed accordingly. [44] proposed an intrusion detection technique for wire-

less sensor networks based on graph neural networks and Lyapunov optimization in this

study. The AWID dataset was utilized for GNN with the Lyapunov optimization loss function.

The acquired results were better than the previous SVM-based works. However, no confusion

matrix or false alarm rate has been calculated. By resampling training data and redefining

rewards in reinforcement learning, the research creates an environmental agent that improves

intrusion detection [45]. In a multi-classification experiment, the system, AE-SAC, achieves

excellent performance, with an accuracy of 84.15% and an F1-score of 83.97% on the

NSL-KDD dataset and an accuracy and F1-score exceeding 98.9% on the AWID dataset.

Related work with the critical analysis is presented in Table 1.

In the extant literature, most of the research studies did not include modern Wi-Fi traffic.

Many studies were conducted using publicly available datasets including even outdated

KDD99 and NSL-KDD datasets launched in 1999 and 2009 with 42 features that do not reflect

modern attack scenarios [24]. Other datasets that are widely used in research do not include

the latest Wi-Fi attack scenarios such as ISCX 2012 is based on emulated traffic with 82 fea-

tures and does not reflect the effectiveness of a practical network environment. It is comprised

of over 2 million traffic packets, and attacks represent 2% of the whole traffic [26].

UNSW-NB15 is based on a simulated network and consists of 49 features, 175,341 normal traf-

fic, and 82,332 anomaly classes making it a highly imbalanced dataset. In 2017, CIC-IDS2017

was introduced, and later CIC-IDS2018. These datasets contain various recent cyberattacks,

such as brute-force attacks on FTP and SSH servers, denial-of-service attacks(DoS), Heart-

bleed attacks, and other online attacks such as XSS, SQL injection, and brute-force attacks.

These statistics include assaults that were absent from the earlier datasets, such as infiltration,

botnets, and DDoS attacks. Another benefit of this dataset is that the normal traffic generated

in this dataset is based on network protocols such as HTTP, HTTPS, FTP, SSH, E-mail, etc.,

which is closer to a real-time network environment than the previous datasets [24]. The major

shortcoming of the research with these datasets is that they do not include Wi-Fi attack scenar-

ios. All these datasets are based on a wired network. Aegean Wi-Fi Intrusion Detection Dataset

(AWID) is the only benchmark dataset that consists of attacks related to wireless intrusion net-

works. It provides a freely accessible dataset of legitimate and malicious traffic directed against
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802.11 networks. This is the first dataset that includes 802.11 attacks [46] but still does not

include Krack and Kr00k attacks. The focus of this work is to extract the most meaningful fea-

tures to have a secure Wi-Fi system. Wrapper approaches, such as RFE, use machine learning

algorithms to regulate the performance of selected features and frequently outperform filter

methods in terms of predictive accuracy [47].

Furthermore, the existing literature failed to extract and analyze the generalized features for

each attack including Krack and Kr00k, and authentication attacks which include de-authenti-

cation and disassociation attacks. AWID3 benchmark dataset includes these attacks and

focuses on enterprise adaptations of the protocol unit thus considered more challenging than

AWID and providing greater security methods.

However, another significant shortcoming in current research is the lack of evaluation on

the generalization of trained models with other datasets. The lack of evaluation in this regard

raises uncertainties about the transferability and generalizability of the features and models.

Without such evaluation, it remains unclear whether the proposed cyber-attack detection

model will perform well and provide accurate results in real-world scenarios with varying net-

work conditions. Consequently, as a result, additional research and testing are crucial to ascer-

tain whether the retained features can be used successfully across various datasets, ensuring

their dependability and usability in a wider spectrum of network environments.

3. Methodology

Corporate Wi-Fi networks are vital for both businesses and public administrations, offering a

highly adaptable and secure infrastructure. Access points face vulnerabilities like

Table 1. Significant summary of literature.

Title Problem Feature selection Technique Dataset Result Gap

Wei et al. [25] -

2019

Optimization method for

IDS

N/A

(41)

PSO- AFSA-GA-DBN NSL-KDD 99.85% Doesn’t reflect modern traffic

scenarios

Kasongo et al.

[36]—(2020)

Feature reduction for

wireless IDS

WFEU FFDNN UNSW_NB15,

AWID

77.17%,

99.77%

Absence of multiclass

classification

Reyes et al.

[38]– 2020

Two-stage wireless IDS RFE,

Chi-square,

Correlation,

Feature

Importance,

PSO

RF, NB, SHAP, ET,

XGBoost,

Bagging,

LightGBM

AWID 99.99% Doesn’t include the latest Wi-

Fi attack scenarios

Li et al. [39]

-2021

Feature separation method

for IDS to improve

accuracy

Word Embedding RNN, LSTM, GRU AWID,

UNSW_NB15

94.96%,

93.47%

only accuracy for evaluation

measures

Laghrissi et al.

[28]- 2021

LSTM approach for IDS PCA,

MI

PCA-LSTM, LSTM-MI KDD99 99.44% Outdated dataset

Sharafaldin et al.

[24] -2021

ML for anomaly-based

IDS

N/A CNN, RF, ANN, SOM,

EM, k-NN

CIC-IDS2017 Approx.

99%

Mujahid et al.

[43]—(2022)

Wireless IDS for 5g

networks

Pearson correlation DT, NN, kNN, Decision

Jungle, Decision Forest

AWID3 99% Time-based feature ‘frame.

time.epoch’ is not

preprocessed properly

Agrawal et al.

[35]- (2022)

Krack detection using ML N/A LightGBM, XGBoost,

Catboost

AWID3 87.12% accuracy should be increased

Shitharth et al.

[32]-(2022)

Optimization method for

IDS

Perceptual-Pigeon-

Galvanized-Optimization

(PPGO)

Likelihood Naïve Bayes NSL-KDD, CICIDS,

and Bot-IoT

99% Doesn’t include the latest Wi-

Fi attack scenarios

Shitharth et al.

[31]-(2022)

Optimal feature selection

method for IDS

BAT

Algorithm

SVM KDD99, 99% Doesn’t reflect modern traffic

scenarios

https://doi.org/10.1371/journal.pone.0306747.t001
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deauthentication, disassociation attacks, and the KRACK attack, which exploits the four-way

handshake. Recently, the Kr00k attack has emerged as a critical threat, specifically targeting

Wi-Fi chips. These risks demand vigilant security measures to protect wireless networks and

devices. Fig 1 shows the framework for a secure Wi-Fi network. One of the prime objectives of

this research is to improve the detection rate of attacks with fewer features. Fig 2 outlines the

proposed methodology for this research study. To conduct the proposed strategy and experi-

mentation, the AWID3 dataset is utilized. Generally, the datasets consist of missing values,

special characters, and different data types. Therefore, preprocessing of the dataset is per-

formed in the second step. In the third step, the feature selection algorithm is utilized to get a

minimized set of features using a recursive feature elimination algorithm, and several classifi-

cation algorithms including DT, RF, ET, Light GBM, MLP, and CNN were used for classifica-

tion. In the next step, DT-RFE was used to get features for each attack and classification was

performed to analyze the accuracy of these features. In the last step, it was analyzed if the fea-

tures for each attack were transferable. It is worth noting that while deep learning algorithms

are known for their capacity to automatically learn hierarchical features and could be powerful,

they might come with increased computational demands. Deep learning models often require

a large amount of data for training, and the effectiveness of such models is typically observed

in more extensive datasets. As the AWID 3 dataset is relatively small and lacks the complexity

that could benefit deep learning, simpler models like decision trees performed better.

Fig 1. Wi-Fi intrusion detection system.

https://doi.org/10.1371/journal.pone.0306747.g001

Fig 2. Proposed methodology.

https://doi.org/10.1371/journal.pone.0306747.g002
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3.1. Feature selection using recursive feature elimination

The purpose of feature selection is the minimization of the time and space complexity of the

model. Detection of attacks through reduced features and processing time without any delay

will lead to an efficient lightweight IDS. RFE is a method for feature selection that uses a classi-

fier to build the model. A machine learning model is trained and assessed using various feature

subsets to determine the optimal feature subset that leads to improved performance of the

model. The RFE process begins with training a machine learning model on an entire set of fea-

tures, followed by ranking the features in order of significance to the model’s performance.

The model is then retrained and assessed with a smaller set of features after the least significant

feature is eliminated. This process is repeated iteratively until a predetermined number of fea-

tures is reached, or until a desired level of performance is achieved. The feature importance

score for each feature is computed (Eq 1), and the feature with the lowest value is removed

from the subset.

SðiÞ ¼
Xn

k¼1
ðrmin � rikÞ Eq1

Wrapper-based RFE differs from other feature selection methods, such as filter-based or

embedded methods, in that it evaluates the impact of feature subsets on the specific machine

learning model being used, rather than just measuring the correlation between features and

the target variable.

3.2. Decision tree

The decision tree is a type of supervised learning technique to tackle classification problems. A

DT’s components include leaves, branches, and nodes. The branches indicate the collection of

features that result in the class labels, whereas the leaves represent the labels for each class.

Both discrete and continuous data sets can be used with these branches. The samples are cate-

gorized into two or more homogeneous sets by the DT approach. The classification process

works in a top-to-down sequence, and an optimal conclusion is attained when the proper cate-

gory of the leaf node is discovered. However, decision trees face overfitting problems. Decision

Trees separate data at each node using splitting criteria such as Gini impurity(D) from a differ-

ent number of classes(C) in the dataset where pi is the probability of an instance in D belong-

ing to class i as shown in Eq 2.

GiniðDÞ ¼ 1 �
XC

i¼1
ðpiÞ

2
Eq2

For each feature and value, the algorithm examines the splitting criterion and chooses

the one that minimizes the criterion. The data is split recursively into child nodes until a

halting criterion is reached. It assigns a class label or numerical value based on the majority

class or mean value when it reaches a leaf node. Algorithm 1 demonstrates the decision tree

process.

3.3. Random Forest

The RF method, an ensemble learning technique, is used for tackling classification and regres-

sion issues. Unlike decision trees, the random forest classifier uses numerous DTs to classify a

given dataset. These decision trees calculate the entropy of features and then split the samples

layer by layer. As a result, the dataset instances are divided according to the desired column.

Random forest overcomes the problem of overfitting as opposed to decision trees. Random

Forest is an ensemble learning method that uses numerous decision trees to improve predic-

tion accuracy. Let (X, Y) represent the dataset, with X representing the feature matrix of shape
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(n, p), with n instances and p features, and Y representing the target variable. Then bootstrap

of the dataset is created by randomly picking n instances from the original dataset with

replacement. The original dataset (Xb, Yb) is the same size as the sampled dataset (Xb, Yb).

For each tree, choose a subset of m features at random from the total p features. Create a deci-

sion tree T with (Xb, Yb) and the randomly chosen m characteristics. Create N decision trees

using the preceding procedure to construct a Random Forest {T1, T2,. . ., TN}. To determine

the most prevalent class for classification, employ a majority vote among the tree predictions

Algorithm 1. DT Algorithm.

https://doi.org/10.1371/journal.pone.0306747.g003
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just like in Eq 3.

^Ynew ¼ modeðT1ðXnewÞ;T2ðXnewÞ; . . . ;TnðXnewÞÞ Eq3

3.4. Extra Tree

This algorithm attempts to fit randomized decision trees on distinct sub-samples of the dataset

and implements the notion of averaging to improve accuracy as well as efficiency to overcome

the overfitting problem. The extra tree algorithm uses the standard top-down approach to gen-

erate a sequence of raw gradient or regression trees. ETs are distinct from conventional tree-

based clustering algorithms in such a way that they separate nodes by arbitrarily cutting points

and construct the tree using the entire learning sample. Extra trees are similar to random for-

ests. Compared to Random Forest, Extra Trees can be trained more quickly because the split

thresholds are chosen at random and there is no need to look for the best thresholds.

3.5. Light Gradient Boosting Machine

The LightGBM method incorporates two innovative techniques: gradient-based one-side sam-

pling (GOSS) with exclusive feature bundling (EFB). XGBoost is a deep-learning algorithm

used for regression and classification tasks. For classification, the goal is to minimize the log

loss function for n number of data points where yi is the true class label and pi is the probability

of class for data point I as given in Eq 4.

LðyÞ ¼
Xn

i¼1
ðyilogðpiÞ þ ð1 � yiÞlogð1 � piÞÞ Eq4

It builds an ensemble of decision trees, called boosted trees, to make predictions. The objec-

tive function uses two regularization terms: L1 Regularization (Lasso) and L2 Regularization

(Ridge), aiming to prevent overfitting and maximize gain scores. The ensemble’s predictions

are weighted according to performance.

3.6. Multilayer Perceptron

One of the most often used feed-forward neural networks is the multi-layer-perceptron (MLP)

neural network. MLP neurons are linked in a one-way and one-directional manner. The MLP

design is as follows: the initial layer that feeds the network with input variables is called the

input layer, the last layer is called the output layer, and all the layers in between are called hid-

den layers. The hidden layer, which consists of m neurons, computes a weighted sum of inputs

and expresses it for the jth neuron by passing it through an activation function as shown in

Eq 5. Where Zj is the weighted sum of neuron j. The weight known as Wij is what connects the

ith input neuron to the jth hidden neuron and the bias for neuron j is bj. The weighted sum of

the output neuron can be expressed as in Eq 6 where Zk is the k-th output neuron’s weighted

sum, ck is the bias for the k-th output neuron, and Vjk is the weight connecting the j-th hidden

neuron to the k-th output neuron.

Zj ¼
Xn

i¼1
ðXi:WijÞ þ bj Eq5

Zk ¼
Xm

j¼1
ðAj:VjkÞ þ ck Eq6

It is provided with the necessary structural flexibility and representational capabilities, as

well as access to a diverse set of data samples.
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3.7. Convolutional Neural Network

CNNs are designed to learn spatial and temporal patterns in data. In the context of intrusion

detection, CNNs can be used to learn patterns in the independent features of the dataset. The

convolutional layer is the fundamental component of CNN, where a series of filters are applied

to the input image to generate feature maps. The mathematical equation is given in Eq 7 where

in the lth feature map, Zij
[l] is the value at position (i, j). The l-th layer’s filter at position (m,n)

has assigned a weight Wm,n
[l]. In the (l-1)-th layer’s feature map, Xi+m, j+n

[l-1] is the value at

position (i+m, j+n). Following feature extraction, pooling layers are used to analyze the data

and minimize the spatial dimensions of feature maps where Pi,j
[l] is the pooled value at position

(i, j) and A2i2j
[l], etc. are the values at corresponding positions in the activated feature map

given in Eq 8. This is then followed by fully connected layers, which make the final prediction.

The weights of the filters and fully connected layers are learned through training the network

on a labeled dataset. This is demonstrated in algorithm 2. For example, if the independent fea-

tures of the intrusion detection dataset are network packets, a CNN can be used to learn pat-

terns in the packet’s header fields such as source-IP and destination-IP addresses, port

numbers, and protocol type. By learning these patterns, CNN can detect anomalies in the net-

work traffic, which may indicate an intrusion.

the Z½l�i;j ¼
Xfh� 1

m¼0

Xfw� 1

n¼0
ðW ½l�

m;n:X
½l�
iþm;jþnÞ þ b½l� Eq7

P½l�i;j ¼ maxðA½l�2i;2j;A
½l�
2i;2jþ1;A

½l�
2iþ1;2j;A

½l�
2iþ1;2jþ1Þ Eq8

3.8. Feature transferability

The effectiveness of intrusion detection systems (IDS) is assessed using consolidated metrics

such as precision, recall, F1 score, and AUC score. As anticipated, all IDS models achieve

remarkably high F1 scores, ranging from 0.98 to 1, and AUC scores, ranging from 0.97 to 0.99,

when trained and tested on individual datasets like AWID and AWID3. These findings are

consistent with prior research on IDSs applied to publicly available datasets and underscore

the models’ efficacy in their specific contexts.

However, the transferability of these high-performing models to an unseen dataset leads to

diverse outcomes. The performance may vary, indicating that the models’ exceptional perfor-

mance on a specific dataset does not automatically guarantee their ability to generalize to

novel and unseen datasets under a distinctive network environment.

Undoubtedly, a pivotal question arises: Can the chosen set of features be seamlessly trans-

ferred across datasets? To probe this matter, the model, having undergone training with the

retained features, undergoes comprehensive testing using unseen network traffic. This evalua-

tion encompasses real-time scenarios and diverse network environments, empowering

researchers to gauge the enduring efficacy and broad applicability of the retained features

beyond the confines of the original dataset. This evaluation assumes paramount significance as

it validates the feasibility and versatility of the proposed cyber-attack detection model in

dynamic and varied network conditions.

3.9. Dataset description

Contrary to the first Aegean Wi-Fi Intrusion Detection Dataset (AWID), the AWID3 dataset

focuses on enterprise adaptations of the protocol unit and is thus considered more challenging

than AWID providing greater security methods such as the usage of protected management

PLOS ONE Feature reduction, transferability, and generalization in AWID datasets for secure Wi-Fi networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0306747 January 2, 2025 13 / 42

https://doi.org/10.1371/journal.pone.0306747


frames (PMF), introduced with the 802.11w amendment, and support for various network

designs. AWID3 is a publicly accessible database of Wi-Fi network traffic that includes actual

traces of both legitimate and unwanted 802.11 activity. It captures numerous different attacks

launched against the IEEE 802.1X extensible authentication protocol (EAP) system. This data-

set focuses primarily on attacks related to 802.11 and higher-layer attacks. Furthermore, new

802.11-specific attacks, such as Krack and Kr00k, have been included for analysis. In this

research, a minimized edition of the dataset has been used consisting of four types of attacks

de-authentication, dissociation, Krack, Kr00k, and benign traffic.

Algorithm 2. Convolutional Neural Network (CNN).

https://doi.org/10.1371/journal.pone.0306747.g004
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3.10. Data preprocessing

Timestamps, numerals, hexadecimal digits, strings, etc. are examples of features’ data types.

The AWID3 dataset is an unbalanced distribution of records. For this research, the imbalance

property of the dataset is not altered. Fig 3 demonstrates the distribution of the number of

instances in the dataset.

For the feature selection phase, time-based features such as the frame.timedelta, frame.

time_delta_displayed etc. have been discarded since the focus is not the time-based analysis.

Only, cherry-picked MAC and physical layer features were selected and proposed in [4]. These

features were considered due to their potential to function as a solid foundation for the devel-

opment of a reliable, easy-to-handle, and economical 802.11 cyber threat detection system.

The features with their description are presented in Table 2.

Fig 3. Classes distribution.

https://doi.org/10.1371/journal.pone.0306747.g005

Table 2. Selected features.

Feature Name Description

1. Frame.len Frame Length

2. Radiotap.length Frame header length

3. Radiotap.dbm_ansignal Present flag antenna signal (dbm)

4. Wlan.duration Duration time

5. Radiotap.present.tsft Present flag (Timing Synchronization Function Timer)

6. Radiotap.channel.freq Channel frequency value

7. Radiotap.channel.type.cck Complementary Code Keying-flag

8. Radiotap.channel.type.ofdm Orthogonal Frequency Multiplexing-flag

9. Wlan.fc.type Type- Flag

10. Wlan.fc.subtype Subtype-Flag

11. Wlan.fc.ds Distribution System-status flag

12. Wlan.fc.frag More fragments-flag

13. Wlan.fc.retry Retry-flag

14. Wlan.fc.pwrmgt Power management–flag

15. Wlan.fc.moredata More data-flag

16. Wlan.fc.protected Protected frame-flag

https://doi.org/10.1371/journal.pone.0306747.t002
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AWID3 dataset contains a few missing values in the instances. To encounter this problem,

records that contain any missing values have been dropped. Here, wlan.fc.ds represents hexa-

decimal strings which are converted to numerical using label encoding. There exists a signifi-

cant difference between the ranges of feature values, such as radiotap. channel.freq begins

from 1000 while, the maximum value of radiotap. length for this dataset is approximately 100.

In the given formula, the step size of the gradient descent will change depending on whether

feature value X is present in the formula. Different step sizes for each feature will result from

the differences in feature ranges. Data needs to be normalized before feeding it to the model to

make sure that the gradient descent progresses evenly towards the local minima and that the

steps for gradient descent are updated at the same pace for all the features demonstrated in

Eq 9.

;j ¼ ;j � α
1

m

Xn

i¼1
ðhθðx

ðiÞÞ � yðiÞÞxðiÞj Eq9

For the trained classification algorithm to work properly, the primary data must first

undergo some sort of data normalization due to the high level of irregularity present in the pri-

mary data. If the data is not normalized, the model will be dominated by variables on a larger

scale, which will have a detrimental effect on the model’s efficiency. As a result, normalization

is an absolute necessity. The min-max scaling method given in Eq 10 can be used to rationalize

the set of diverse data.

X0 ¼
X � minðxÞ

maxðxÞ � minðxÞ
Eq10

3.11. Parameter configuration

For the decision tree, the maximum number of leaf nodes is set to 200. The minimum sample

size per leaf was raised to 2 to compel each leaf to collect pertinent information. Additionally, a

minimal cost-complexity pruning impact was added using the ccp_alpha complexity parame-

ter like regularization. When set to the minimum value, pruning iteratively locates the node

with the "weakest connection." The weakest link is defined by its effectual alpha, with the

nodes with the lowest effective alpha deleted first. The same parameter values used for the DT

were evaluated for RF, with favourable results. Regarding ET, the maximum number of leaf

nodes is set to 500, maximum depth of nodes is 300 with n_estimators set to 200. Table 3

shows the parameters of the tree-based algorithms.

Multi-layer perceptron was applied to detect network attacks where the parameters

included adaptive moment estimation (Adam) as an optimizer with a 0.0001 learning rate. As

shown in Table 4, the parameters of the convolutional neural network included a 0.001 learn-

ing rate and an Adam optimizer. Early stopping for both models was specified to run the

model 2 times more before stopping to avoid overfitting. The activation function adopted was

Table 3. Parameters of tree-based classifiers.

Parameters Tree Based Models

Decision Tree Random Forest Light GBM Extra Trees

Min_samples_leaf 2 2 2 2

Max_leaf_nodes 100 100 50 500

Max_depth 30 30 30 300

Ccp_alpha 1.e-3 1.e-3 - 1.e-3

N_extimators - - - 200

https://doi.org/10.1371/journal.pone.0306747.t003
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the rectified linear activation unit, and the output was softmax. To lessen overfitting, dropout

layers, and early stopping were used.

3.12. Feature transferability evaluation

The main differentiation between AWID (possibly referring to AWID2) and AWID3 lies in

their distinct emphases and contexts. Although both datasets pertain to Wi-Fi intrusion detec-

tion, AWID3 is specifically tailored for corporate applications of the protocol, which often

entails more robust security features. The key differences can be summarized as follows:

• Protocol Focus:

AWID (AWID2) centers around conventional Wi-Fi intrusion detection scenarios, while

AWID3 is geared towards business implementations of the protocol.

• Security Measures:

AWID3 considers the incorporation of enhanced security measures that are prevalent in

business settings. This includes the utilization of Protected Management Frames (PMF), intro-

duced with the 802.11w amendment, which enhances Wi-Fi network security.

• Network Architecture:

AWID3 considers a wide range of network architectures commonly observed in commer-

cial organizations. Consequently, the dataset encompasses information from more intricate

network configurations unique to business Wi-Fi deployments.

Conclusively, while both AWID (AWID2) and AWID3 are pertinent to Wi-Fi intrusion

detection, AWID3 provides a more specialized and focused dataset tailored for detecting intru-

sions in enterprise Wi-Fi environments. Its emphasis on better security mechanisms and

diverse network designs enhances its relevance for real-world applications in the corporate

sector.

The primary objective of testing feature transferability is to identify the most robust and

advantageous features that can be effectively applied and generalized across diverse network

environments, especially between a general Wi-Fi network setting and an enterprise network

setting. This research aims to uncover features that retain their effectiveness when transferred

from a general Wi-Fi network environment to a corporate Wi-Fi network environment, with a

specific focus on AWID3, which pertains to enterprise versions of the protocol. The incorpo-

ration of stronger security measures and varying network topologies in the corporate context

may necessitate the utilization of specific features for efficient intrusion detection.

Table 4. DNN architectures.

Parameters MLP CNN

Activator Relu, Softmax (Output) Relu, Softmax (Output)

Optimizer ADAM ADAM

Learning rate 0.001 0.01

Loss Categorical cross-entropy Categorical cross-entropy

Hidden layers 5 3

Neurons per layer 512, 256,128, 64 128, 32,16

Batch size 128 128

Conv Layer - 5

MaxPooling - 2

https://doi.org/10.1371/journal.pone.0306747.t004
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Both datasets share common instances of deauthentication attacks. The training set encom-

passes AWID2-CLS-R, containing only the Normal and Flooding classes, while the test set

comprises AWID3 Deauth. pcap, featuring solely the Normal and Deauthentication traffic.

4. Experiments and results discussion

This section discusses the feature selection and classification process. The model was created

on Google Colab with T4 GPU using the open-source TensorFlow Keras framework. Data pre-

processing was performed to remove any inconsistencies. This consisted of handling missing

information, standardizing data formats, and implementing the required transformations to

ensure consistency and correctness. Machine learning models were trained and assessed. This

entailed dividing the dataset into training and testing subsets, employing cross-validation tech-

niques, and utilizing suitable evaluation metrics to measure model performance. The ethical

aspects of implementing automated wireless intrusion detection methods were addressed. The

data collected and analysed by these technologies was solely utilised to improve network secu-

rity and combat cyber-attacks. Ethical considerations require that the data be treated responsi-

bly and ethically, with strict measures in place to protect sensitive information from

unauthorised access or misuse. By following these ethical standards, it was assured that auto-

mated intrusion detection systems positively contribute to network security while respecting

individual privacy rights and sustaining faith in technology. The AWID3 dataset used in these

experiments has 5 classes: normal, de-authentication, disassociation, Krack, and Kr00k. Intru-

sion detection datasets are generally highly imbalanced as attack traffic is always significantly

less than normal traffic. In this case, balancing the data with the use of oversampling tech-

niques would not be appropriate. In this approach, stratified k-fold with 10-fold cross-valida-

tion (CV) has been implemented to neutralize the imbalance characteristic of the dataset.

4.1. Evaluation metrics

The following are the appropriate evaluation metrics to detect cyberattacks. The efficiency of

the proposed methodology has been evaluated using a confusion matrix that consists of true-

positive (TP), true-negative (TN), false-positive (FP), and false-negative (FN) as defined below:

• True-positive (TP): number of instances successfully categorized as cyber-attacks.

• True-negative (TN): number of instances that are categorized as normal/regular network

traffic.

• False-positive (FP): number of instances wrongly categorized as any cyber-attack.

• False-negative (FN): number of instances of cyberattacks remained undetected by IDS.

Accuracy, Precision, Recall, and F1 measures have all been used in this study as assessment

metrics based on the characteristics of the confusion matrix.

Accuracy: The ratio of cases in the dataset that the model correctly identified. The higher

the accuracy, the better the model applied.

Accuracy ¼
TruePositve þ TrueNegative

TruePositive þ TrueNegative þ FalsePositive þ FalseNegative

Precision: The ratio of the number of true positive instances that are classified exactly to

the total number of positive instances (true positive and false positive).

Precision ¼
TruePositive

TruePositve þ Falsepositive

PLOS ONE Feature reduction, transferability, and generalization in AWID datasets for secure Wi-Fi networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0306747 January 2, 2025 18 / 42

https://doi.org/10.1371/journal.pone.0306747


Recall: The ratio of true positive instances that are precisely labeled as true positive to all

true positive instances. This means the value of recall will be low when the FN rate is high.

Recall ¼
Truepositve

Truepositive þ Falsepositive

F1-score: This is referred to as the harmonic mean of the accuracy and recall metrics. It is

regarded as a useful assessment criterion for unbalanced data.

f 1 � score ¼
2Truepositve

2Truepositive þ Falsepositive þ FalseNegative

4.2. Feature selection and classification for all attacks

The process of feature selection presented various limitations throughout the investigation.

One notable limitation revolved around the potential existence of irrelevant or redundant fea-

tures within the dataset. The extensive features, while furnishing information, introduced

complexities in discerning the most pertinent ones. Moreover, ensuring the transferability of

chosen features across diverse network environments emerged as a persistent challenge. The

ever-changing landscape of wireless networks compounded the intricacies of the feature selec-

tion procedure. Despite the application of rigorous methodologies, the ongoing struggle to

strike a balance between achieving a lightweight model and maintaining requisite detection

accuracy remained a formidable constraint. The wrapper method ranks the feature subsets

according to how well they can classify the objects using the learning machine. Fundamentally,

recursive feature elimination prioritizes features based on a relevance metric. RFE acts as a

greedy algorithm and strategically performs feature ranking by prioritizing features by recur-

sively finding the reliant collinear features while removing the weak features. In this approach,

RFE with a decision tree (DT-RFE) has been implemented and the eight most relevant features

have been extracted that will be ideal for building a cost-effective, lightweight IDS, reducing

the dimensions of data. DT-RFE can categorize powerful predictors of a given outcome with-

out assuming the model’s internal mechanism. As mentioned above, DT-RFE selects the most

meaningful features based on their ranks. Table 5 shows the most relevant selected features.

Apart from these 8 features, another feature wlan_radio.signal_dbm, which represents the

broadcasting device’s signal strength, was used for classification. When used with the radiotap.

dbm antsignal, it can help pinpoint flooding and impersonation attacks. The use of this feature

in combination with the other features reduced the false-positive rate. Certainly, "wlan_radio.

signal_dbm" is essential to the cyberattack detection feature selection process. This feature rep-

resents a wireless network’s signal strength and provides important information about the reli-

ability and quality of the Wi-Fi connection. When "wlan_radio.signal_dbm" was incorporated

Table 5. DT-RFE features.

Selected Features

1 frame.len

2. radiotap.channel.flags.cck

3. radiotap.channel.freq

4. radiotap.dbm_antsignal

5. wlan.duration

6 wlan.fc.retry

7. wlan.fc.subtype

8. wlan.fc.type

https://doi.org/10.1371/journal.pone.0306747.t005
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along with a subset of eight other relevant attributes, the number of false positives during

cyberattack detection was significantly reduced. This decrease suggests that by providing

insightful contextual information about the wireless network environment, "wlan_radio.sig-

nal_dbm" enhances the selected subset of attributes. This feature integration improves the

intrusion detection system’s overall accuracy and effectiveness by providing more insights into

network behavior and possible security threats. The classification results are shown later in

Fig 4. Since the dataset is imbalanced, the results should be considered in terms of the F1-score

and area under the curve (AUC) score.

From Table 5, it is observed that CNN and DT have attained the best results in terms of

accuracy, precision, recall, F1-score, and AUC score. However, the decision tree attained

slightly better results in terms of F1-score, AUC score, and processing time of 99.82%, 99.90%,

and 20.2s respectively. Decision Tree also attained the highest recall value of 99.82%. A high

recall value is essential in wireless networks. If an attack instance is incorrectly classified as reg-

ular network traffic, it can cause a major loss of data in real-world businesses.

Regarding deep learning architectures, the validation loss is less than the training because

of the dropout layers used in the model [4]. Figs 5 and 6 show the average loss among all folds.

To train the MLP and CNN architectures, it was found that the number of samples was insuffi-

cient. The ideal loss value was easily obtained by these architectures within four to five epochs.

The models were therefore trained with quite a small loss, with the loss decreasing by a trivial

0.001 after each epoch. Summing up the results, machine learning models can be used to train

Fig 4. Performance evaluation.

https://doi.org/10.1371/journal.pone.0306747.g006
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data for an economical and time-saving cyber-attack detection mechanism. That would be

suitable for small and medium enterprises (SMEs) as well. However, for large-scale data, DNN

models are preferred.

Fig 5. MLP.

https://doi.org/10.1371/journal.pone.0306747.g007

Fig 6. CNN.

https://doi.org/10.1371/journal.pone.0306747.g008
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The confusion matrices in Figs 7–12 demonstrate the average confusion matrices of classi-

fier analysis. Normal, de-authentication, and Krack attacks demonstrated significant accuracy

as less than 100 instances are falsely classified with tree-based models. Whereas Light GBM

and MLP classifiers had a hard time differentiating between Kr00k and disassociation attacks.

Approximately 400 instances of these attacks were falsely classified even with 16 features set.

Fig 13 shows that DT and CNN have the least number of misclassified instances.

These results demonstrate that the DT-RFE method can reduce features from 16 to 8 for

the detection of these attacks using DT. This could be helpful for attack detection in an enter-

prise network. With 8 core features and an additional feature out of 16, the proposed method

can detect Wi-Fi cyber-attack with little processing time and a high detection rate.

Furthermore, stratified cross-validation proved efficient to alleviate the effects of overfitting

and class imbalance. Despite being under-presented de-authentication and Krack classes with

only 38,942 and 49,990 samples, the detection rate is quite high.

4.3. Feature transferability

According to the analysis done by [4], 30 features and 27 features were not transferable

whereas 13 feature sets and 5 feature sets were transferable, but the results attained needed

to be improved. For this purpose, radiotap.channel.flags.cck and radiotap.dbm_antsignal

were excluded to better comprehend this result. Radiotap.channel.freq, radiotap.flags.type.

Fig 7. Decision tree.

https://doi.org/10.1371/journal.pone.0306747.g009
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cck, and other features fall under this category. The fact that AWID2 and AWID3 were

recorded on several radio stations had an impact on this decision. Furthermore, neither of

the two flag-based features provided insightful information for identifying flooding

assaults. Only the best models from ML and DL techniques such as DT and CNN have been

used to evaluate the transferability of features and the evaluation of the results is given in

Fig 14.

The confusion matrices of both DT and CNN with these features are given in Figs 15 and

16. The Decision Tree (DT) model shows zero instances of normal traffic being misclassified

as flooding, resulting in no false positives. However, there is a significant issue with false nega-

tives, where around 84,000 instances of deauthentication attacks are wrongly classified as nor-

mal. On the other hand, the Convolutional Neural Network (CNN) exhibits notably low

numbers of both false positives and false negatives, making it a superior choice for feature

transferability.

CNN’s superior performance in accuracy, precision, recall, and F1-score indicate its effec-

tiveness in handling the classification task compared to DT. These results suggest that for this

specific problem, CNN is a more suitable choice, as it provides a higher overall predictive capa-

bility with better precision and recall. The results demonstrated that these 6 features are trans-

ferable, achieving 90% and 97% F1 scores respectively.

Fig 8. Random forest.

https://doi.org/10.1371/journal.pone.0306747.g010
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4.4. Recursive feature elimination for reduced feature set

DT-RFE was applied on 4 separate datasets (de-authentication/normal, disassociation/normal,

Krack/normal, Kr00k/normal). A different subset of features has been extracted with three of

the most useful features out of the mentioned 16 features. A stratified cross-validation score

equal to 5-fold is used to avoid over-fitting and handle data imbalance problems. For each

attack, different subsets of features are identified. These feature subsets could classify the

incoming cyberattacks based on 3 top ranking features. Table 6 shows the combination of fea-

tures for each attack.

Table 7 demonstrates the performance of algorithms on each attack. Three classifiers with

the best performance including DT, RF, and ET were used for testing the AWID3 dataset. Ran-

dom forest attained superficial results with maximum AUC and F1 scores for each attack. The

decision tree completed the analysis in 2 seconds for de-authentication attacks. However, for

the rest of the attacks, the decision tree was prone to overfitting.

The confusion matrices in Figs 17–25 show the average results of all 10 folds for machine

learning analysis. It is observed that with ET, approximately, only 150 instances were

misclassified.

It is simpler to understand the model’s results when a more condensed collection of features

is used. You can more easily see the significance of each aspect in classifying various attacks.

The modelling process can be streamlined, model performance can be improved, and a better

Fig 9. Extra trees.

https://doi.org/10.1371/journal.pone.0306747.g011
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knowledge of the essential features driving attack classification can be obtained by choosing

distinct feature subsets for classifying cyberattacks depending on the top-ranking features.

When working with complicated, high-dimensional datasets, it is a useful strategy.

4.5. Feature generalization

Generalization refers to the capability of the classification model to adapt to previously unseen

data. In this experiment, the attack classification is performed to evaluate the generalization of

the extracted features of each attack. The reduced feature subsets for de-authentication and

disassociation attacks were used to perform analysis on the AWID dataset.

Table 8 demonstrates the performance of feature generalization on the AWID dataset.

AWID consists of two attacks from the AWID3 dataset which are de-authentication and disas-

sociation attacks. The three most relevant features of each attack from AWID3 were tested on

the AWID dataset with tree-based models. For de-authentication attacks, RF, DT, and ET

while for disassociation attacks, RF and ET were utilized.

The results confirm the feasibility of feature generalization and demonstrate that the

extracted features from each type of attack can be effectively applied to another dataset with

different network conditions for attack classification.

Fig 10. Light GBM.

https://doi.org/10.1371/journal.pone.0306747.g012
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4.6. Comparison with state-of-the-art techniques

The proposed models exhibit impressive resilience against several cyberattacks, such as

deauthentication, Krack, and Kr00k. These models have demonstrated the ability to efficiently

identify and counteract these types of attacks, protecting wireless networks’ security and integ-

rity, through extensive testing and assessment. Even in the midst of the complexity of real-

world network environments, these models can recognize patterns and abnormalities indica-

tive of these particular attacks by utilizing significant machine learning and deep learning

approaches. This robustness highlights the dependability and effectiveness of the proposed

approach in defending against a variety of cyber-attacks, offering enhanced security to both

network administrators. Since the imbalanced nature of data is maintained, the F1-score

should be considered rather than accuracy for evaluation. The execution time of the proposed

methods was less than the previous state-of-the-art techniques. Table 9 compares the proposed

work performance measures with state-of-the-art techniques. Only the weighted values of the

evaluation measures were considered.

Table 10 presents the outcomes of various models in terms of their performance metrics,

including accuracy, precision, recall, and F1 score. To determine if the features could be

applied to various network situations, these metrics were assessed using various sets of fea-

tures. The results suggest that the proposed CNN model achieved a notable level of accuracy

and well-balanced performance across precision, recall, and F1 scores, even with a smaller set

Fig 11. MLP.

https://doi.org/10.1371/journal.pone.0306747.g013
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Fig 12. CNN.

https://doi.org/10.1371/journal.pone.0306747.g014

Fig 13. Average number of misclassified instances.

https://doi.org/10.1371/journal.pone.0306747.g015
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Fig 15. Transferability with DT.

https://doi.org/10.1371/journal.pone.0306747.g017

Fig 14. Feature transferability evaluation.

https://doi.org/10.1371/journal.pone.0306747.g016
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of features. Furthermore, the performance of the Decision Tree (DT) models varied based on

the number of features used, indicating the significance of feature selection in influencing the

effectiveness of the models.

5. Conclusion and future works

An adversary can access a victim’s critical details by launching a series of attacks on the net-

work. Intelligent machine/ deep learning-based cyberattack detection mechanisms have

gained popularity due to their high efficiency and automation. This study aimed at developing

a Wi-Fi-based attack detection system. The decision tree with recursive feature elimination

was used to extract the most meaningful features for a cost-effective, lightweight, and time-effi-

cient system to detect cyberattacks. However, apart from 16 features, wlan_radio.signal_dbm

with eight other relevant features significantly reduced false positives. Different tree-based

algorithms, such as decision tree, random forest, Light GBM, extra trees, MLP, and CNN have

Fig 16. Transferability with CNN.

https://doi.org/10.1371/journal.pone.0306747.g018

Table 6. Features for each attack.

Deauthentication Disassociation Krack Kr00k

’frame.len’, ’wlan.fc.type’, ’wlan.duration’ ’frame.len’, ’wlan.fc.type’,

’wlan.duration’

’radiotap. channel. freq’,

’wlan. duration’,

’wlan.fc. protected’

’frame.len’,

’wlan.fc.type’,

’wlan.fc.subtype’

https://doi.org/10.1371/journal.pone.0306747.t006
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Table 7. Performance metrics for feature reduction of each attack.

Model Accuracy Precision Recall F1 score AUC score Execution time

Deauthentication Attacks

Random forest 99.99% 99.99% 99.99% 99.99% 99.99% 1min 50s

Extra trees 99.33% 99.40% 99.33% 99.35% 99.64% 1min 9s

Decision Tree 99.18% 99.28% 99.18% 99.21% 99.56% 2.2s

Disassociation Attacks

Random forest 99.72% 99.73% 99.72% 99.72% 99.83% 57.7s

Extra trees 99.92% 99.92% 99.92% 99.92% 99.93% 49.5 s

Krack Attacks

Random Forest 99.17% 99.18% 99.17% 99.16% 99.43% 27.5 s

Extra Trees 99.88% 99.89% 99.88% 99.88% 99.78% 23 s

Kr00k Attacks

Random Forest 99.91% 99.91% 99.91% 99.91% 99.95% 3min 44s

Extra Trees 99.81% 99.92% 99.81% 99.81% 99.88% 3min 18s

https://doi.org/10.1371/journal.pone.0306747.t007

Fig 17. Random forest.

https://doi.org/10.1371/journal.pone.0306747.g019
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been used to detect four types of cyber-attacks (de-authentication, disassociation, Krack, and

Kr00k) from the AWID3 dataset. In terms of accuracy, precision, recall, F1 score, and AUC,

both Decision Trees (DT) and Convolutional Neural Networks (CNN) appear to perform

exceptionally well. They obtain 99.82% accuracy for a five-class classification issue, which is

comparable to or slightly better than other state-of-the-art models such as LightGBM, Extreme

Trees (ET), and Multilayer Perceptron (MLP). The proposed approach showed that machine

learning tree-based models would be appropriate for a lightweight IDS as it provides fewer

computations with minimum execution time and better classification of attacks whereas MLP

and CNN can be implemented for handling large and complex data. Furthermore, the evalua-

tion of various metrics across extracted feature sets highlights the transferability of the features

in diverse network contexts. The CNN model showcased impressive accuracy and a balanced

performance with fewer features, while the DT models’ effectiveness varied based on feature

quantity, emphasizing the crucial role of feature selection. The features for each attack were

extracted using DT-RFE. The three best models DT, RF, and ET were used to evaluate the

extracted features, and RF along with ET achieved excellent results across all performance met-

rics including accuracy, precision, recall, F1 score, and execution time for attack detection.

During the evaluation, overfitting occurred with DT for disassociation, Krack, and Kr00k

attacks. Conclusively, features were utilized with the AWID dataset to find out if the extracted

Fig 18. Extra trees.

https://doi.org/10.1371/journal.pone.0306747.g020
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features were generic or not. Both deauthentication and disassociation attacks in AWID were

evaluated where RF and ET achieved high AUC and F1 scores. This research provides both

theoretical and practical implications in the field of secure Wi-Fi communication in enterprise

networks. The study’s practicality extends beyond specific datasets by taking into account the

transferability of proposed features and models to various network contexts or situations.

While the experimentation was carried out on benchmark Wi-Fi datasets, the absence of dif-

ferent benchmark datasets restricted the examination of other Wi-Fi network situations. Also,

the suggested features are designed for Wi-Fi-based network setups which may limit their use

in wired network settings. Despite this restriction, the study provides vital insights into Wi-Fi

network security and sets the framework for future research to improve detection capabilities

in a variety of network scenarios. The major shortcoming of this research is the unavailability

of a proprietary dataset which is attributed to resource constraints, including budget, time, or

the necessary infrastructure to collect and compile data for experimentation. For holistic secu-

rity, future works can consider the development of newer datasets with attack and benign traf-

fic from both enterprise and industrial networks and use different feature extraction and

evaluation techniques for comparisons. The development of diversified datasets, exploration

of different feature extraction methods, and rigorous evaluation can enhance the quality and

applicability of intrusion detection systems in real-world network security. Collaboration and

Fig 19. Decision trees.

https://doi.org/10.1371/journal.pone.0306747.g021
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Fig 20. Random forest.

https://doi.org/10.1371/journal.pone.0306747.g022
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Fig 21. Extra trees.

https://doi.org/10.1371/journal.pone.0306747.g023
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Fig 22. Random forest.

https://doi.org/10.1371/journal.pone.0306747.g024
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Fig 23. Extra trees.

https://doi.org/10.1371/journal.pone.0306747.g025
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Fig 24. Random forest.

https://doi.org/10.1371/journal.pone.0306747.g026
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Fig 25. Extra trees.

https://doi.org/10.1371/journal.pone.0306747.g027

Table 8. Feature generalization using AWID dataset.

Model Accuracy Precision Recall F1 score AUC score Execution Time

Deauthentication Attack

Random Forest 96.66% 96.86% 96.66% 96.65% 96.48% 5.77s

Extra Trees 96.76% 96.53% 96.76% 96.75% 96.59% 2 s

Decision Tree 96.66% 96.87% 96.66% 96.65% 96.49% 111 ms

Disassociation Attacks

Random Forest 99.99% 99.99% 99.99% 99.99% 99.99 7 min

Extra Trees 99.99% 99.99% 99.99% 99.99% 99.99 3 min

https://doi.org/10.1371/journal.pone.0306747.t008

Table 9. Comparison with state-of-the-art techniques.

Model Features Classes Accuracy Precision Recall F1 score AUC Balanced

LightGBM [35] 5 3 82.57 82.33 82.57 82.18 -

ET [4] 16 3 99.96 99.75 99.28 99.52 99.49% -

MLP [4] 16 3 99.73 99.65 95.68 97.55 96.47%

kNN [48] 30 2 99% - - - ✓

Proposed work (DT) 8 5 99.82% 99.82% 99.82% 99.82% 99.90% -

Proposed work (CNN) 8 5 99.82% 99.82% 99.82% 99.82% 99.89% -

https://doi.org/10.1371/journal.pone.0306747.t009
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resource-sharing within the research community can also play a vital role in addressing these

challenges.
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