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Introduction

Alzheimer’s disease (AD) represents the most common cause of dementia, accounting for roughly 70%
of cases and as such a major health care challenge. Neuropathologically, AD is characterized by
extracellular deposition of misfolded and aggregated beta-amyloid peptides (AB) as well as formation
of intraneuronal tangles made of hyperphosphorylated tau. In addition, Alois Alzheimer had already
described the histological abnormalities of astroglia and microglia, yet for a long time activation of
these innate immune cells and their joint inflammatory reaction have been regarded as non-relevant,
bystander reaction. Epidemiological, clinical, genetic as well as experimental studies have challenged
and changed this view over the past two decades substantially. Immune mediated mechanisms have
become a field of intense research and drug development. Consequently, one must consider which
immunological process at which time point can be harnessed for therapeutic intervention. While in
general such immune modulation may include preventive, disease modifying or even acute therapeutic
strategies, it is commonly accepted that clinically silent or even inapparent disease stages may hold
the greatest potential for such interventions. Importantly, the identification and definition of AD pre-
stages, such as subjective cognitive impairment and mild cognitive impairment may allow together
with fluid and imaging biomarker findings to delineate the time, duration and site where immune
processes modification will successfully interfere with disease pathogenesis and progression. In this
review, we summarize and weight the current knowledge on immune processes in AD. From human
evidence, we will go further to the contributions of individual cellular compartments and the involved
immune mechanisms.

Evidence for an inflammatory component in Alzheimer’s disease

AD brain pathology The term “plaques” was introduced in 1898 for structures which are nowadays
well-known as amyloid plaques in AD brain, even before Alois Alzheimer described the disease??. Glial
cells surrounding these plaques were described and it was speculated that these plaques were from
glial originZ2. By now, it is well-established that microglia are activated and increased in AD brain, (1)
being associated with AR plaques®®, 7 neurofibrillary tanglesé, (3) complement factors?, and that they
(4) produce immune mediators such as cytokines, chemokines, inflammasomes and radical oxygen
species*>>4, Microglia are involved already in the asymptomatic and symptomatic disease stages'>®
and likely play a role in the clinical and pathological disease phenotypeZ.In humans, associations have
been reported for microglia with A and hyperphosphorylated (p)tau, but not between A and ptau
consistent with microglia playing a pivotal role in the AD pathogenesis®®. Diffuse AP plaques are present
in the brains of middle-aged and elderly cognitively normal people’2, and the homeostatic markers of
microglia (Ibal, P2Y12) respond to the appearance of AB%. While neuritic plaques defined by the
presence of AP, ptau and microglia are a more specific feature of AD% with microglia expressing
phagocytic markers CD68 and Macrophage Scavenger Receptor (MSR)-AZ. Of note, there is a wide
variety in AB deposits with different involvement of microglia in human AD brainsZ. AB in neuritic
plagues tends to be more fibrillar, with dense cores, and has a more varied composition with the
presence of ABsg, 42, 43, N-terminus truncated AB and other post-translationally modified forms?*-2¢, AD
cases with an atypical clinical presentation show a different spreading and morphology of pathological
hallmarks, associated with different levels and spatial localization of microglia activityZ2Z, This
supports the hypothesis that the spatial activation of microglia is involved in both the clinical and
pathological presentation of the disease. In conclusion, microglia are involved early in disease and are
instrumental for the morphology of AR deposits, spreading of pathology and the clinical presentation
of AD patientsZ..

Fluid biomarkers of inflammation While these pathological assessments require brain material,
evidence for an ongoing chronic inflammatory disease component in humans has been further
substantiated by probing of inflammatory fluid biomarkers primarily in cerebrospinal fluid or blood
samples and by the development of microglial PET tracers such as TSPO ligands. Although the first
studies on biofluid-based biomarkers for inflammation — most of all CSF or blood-based protein
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markers —date back nearly 30 years®, an unmet demand for reliable biomarkers capable of monitoring
the various aspects of AD neuroinflammation remains. Moreover, since at present disease non-
specificity of most inflammatory markers limit their value as trial outcome measures or further clinical
use. Studies on “classical” inflammation markers, like CRP or pro-inflammatory cytokines, are large in
number but have shown limited consistency in meta-analyses?22%. Quantitation of inflammatory
mediators such as cytokines in CSF can be hampered by sensitivity of detection technologies®, but
novel ultra-sensitive immunoassays including Single molecule array (Simoa), proximity extension assay
(PEA) and nucleic acid-linked immuno-sandwich assay (NULISA) or measurement in brain-derived
exosomes might overcome such limitations323%, For CSF, few proteins have emerged as robust markers
to monitor neuroinflammation in AD due to their reproducible relation to pathological features of the
disease: soluble TREM2 (STREM2) as a marker of microglial activation, YKL-40 as an astroglial
inflammation marker, and glial fibrillary acidic protein (GFAP) as a marker of general astrocytic
activation®>=’, Interestingly, the GFAP signal in AD is robustly replicated in serum and plasma;
plasma/serum GFAP concentration increases in close association with onset of cerebral amyloid plaque
pathology2%, which likely reflects astrocytic activation to the pathology®°. Extensive proteomics studies
that include validation in biofluids describe several other inflammatory messengers within sets of
proteins affected by AD pathology®. Furthermore, novel immunoassays might enable detection of
proteins like NLRP3 or ASC as biomarkers of inflammasome activation®-%2, By their nature, CSF or blood
based-fluid biomarkers will not allow for ascribing an inflammatory process to specific brain areas or
regions and thus also neither its longitudinal spread over the entire disease trajectory.

Molecular Imaging/PET Also technically more demanding such questions can be answered by
molecular imaging techniques including positron-emission tomography, that allow for temporal and
spatial analysis of the living human brain. To visualize microglial activation by molecular imaging in
human brain, radiopharmaceuticals have been developed targeting the 18 kD translocator protein
(TSPO) within the mitochondrial membrane®. Current research aims towards the development of
radiotracers targeting microglial receptors (e.g. P2X7R, P2Y12R, CX3CR1) which will allow to relate their
detection more to specific microglial functions®**>. In the 2" generation of TSPO tracers, two
radiotracers (DPA-714, PBR28) have shown higher binding potential (2-3-fold higher) in comparison to
first generation PK11195 and reduced background activity?®. In AD, it has been demonstrated, that
increased PBR28 binding (temporal, parietal) correlates to cognitive impairment and atrophy*’ as well
as regional tau and amyloid deposition®. In a longitudinal set-up (2.7 years) n=14 amyloid-positive
patients in comparison to n=8 amyloid-negative controls had a greater increase in TSPO binding in
inferior parietal lobule, precuneus, occipital cortex, hippocampus, entorhinal cortex, and combined
middle and inferior temporal cortex®. TSPO binding in temporo-parietal regions increased from 3.9%
to 6.3% per year. The change in TSPO binding correlated with cognitive worsening. The annual rate of
increased TSPO binding in temporo-parietal regions was about 5-fold higher in patients with clinical
progression compared with those who did not progress. These results indicate, that in manifest AD,
TSPO may serve as a biomarker of AD progression and response to anti-inflammatory therapies®. In
contrast, in prodromal AD, it has been demonstrated that increased DPA-714 binding in temporo-
parietal cortex was positively correlated with MMSE scores and grey matter volume, as well as amyloid
load. In addition, n=30 patients with AD were dichotomized into slow or fast decliners after 2 years of
follow-up. Excitingly, slow decliners showed higher TSPO-binding than fast decliners®. These results
demonstrate, that microglial activation appears at the prodromal and possibly at the preclinical stage
of AD, and seems to play a protective role at early disease stages>>>1. Moreover, in patients, an increase
of DPA-714 binding was observed at follow-up (mean 13.2% per year; for prodromal AD 15.8%; for
manifest AD 8.3%). The positive correlations between increasing DPA-714 binding and clinical outcome
measures (CDR, MMSE, hippocampal atrophy) suggests a detrimental effect of increasing
neuroinflammation on clinical AD progression®2. In contrast, high initial DPA-714 binding was
correlated with a low dynamic increase of microglial activation and a favorable clinical evolution.
Another study has proposed an early and late peak of microglial activation in AD trajectory®:. Together,
PET-based microglial imaging can decipher several microglial phenotypes at various disease stages and
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represents a non-invasive biomarker that may be used to assess future immune-modulating therapies
in AD.

Immune related genetics While post-mortem brain analysis, detection of inflammatory signals in
biofluids and molecular imaging had been around for quite some time, a strong impact on the
inflammatory hypothesis in AD came from genome wide association studies (GWAS), which did not
only unravel a direct genetic connection of inflammation to disease pathogenesis, but also hold
promise for the identification of inflammation-targeting therapeutic interventions. In total, the
percentage of disease risk for AD that can be attributed to genetic factors with a heritability has been
estimated between 56%-79% in twin studies®**2. The development of high-throughput genomic
approaches over the last 15 years led to a major improvement in our knowledge of AD genetics®. Thus,
GWAS and next-generation sequencing approaches have identified over 80 independent genetic loci
modulating the risk of AD>222, Pathway analysis using these genetic findings has identified both innate
and adaptive immune responses as well as inflammation in general as key contributing pathways for
AD pathogenesis®®, So it appeared that AD risk alleles are specifically enriched in active enhancers of
monocytes, macrophages and especially microglia®. In fact, close to 25% of the potential identified AD
genetic risk factors could be highly/exclusively expressed by microglia and/or linked to immune-related
function®, Several of these genes are indeed part of important pathways in microglia including ligand
activators (IL34 and APOE), immune receptors (TREM2, SPI1, MS4A4A, MS4A6A HLA-DQA1, and
CD33)%, signaling intermediates (PLCG2, PTK2B, and INPP5D) or effector mechanisms (ABI3 and
EPHA1). Besides microglial functions, additional immune-related responses have been linked to the
identified genetic signals such as complement machinery (CR1 and CLU)® or cytoskeletal machinery
(ABI3, EPHA1, and FERMT2)3>. Recently, the European Alzheimer and Dementia Biobank's (EADB) large
meta-GWAS has reaffirmed most previously detected immunological loci. Crucially, it also provided
genetic evidence linking the Linear Ubiquitin Chain Assembly Complex (LUBAC) to ADC. Comprising
SHARPIN, RBCK1, and OTULIN, LUBAC is a high-confidence AD risk factor, unique in forming linear
ubiquitin chains and pivotal in inflammation and immunity research. LUBAC is integral to NLRP3
inflammasome activation, impacting innate immune responses and AP pathology in AD. It's also
involved in autophagy, specifically in modifying TDP-43-positive neuronal inclusions, potentially
triggering autophagic clearance. Importantly, the same GWAS study also support the significance of
the TNF-a signaling pathway in AD with additional evidences. Genetic loci such as ADAM17, crucial for
TNF-a signaling activation®, and TNIP1, which inhibits this pathway®, were identified. Other elements
include SPPL2A's role in noncanonical TNF-a shedding® and PGRN's function as a TNF receptor ligand
and antagonist®’. Finally, an adaptive immune response mediated by HLA-DRB1 (and more specifically
the HLA-DRB1*04 subtype) has been also proposed, potentially by acting against Tau and especially
the acylated form at lysine K311 which is known to potentiate Tau PHF6 aggregation®. Importantly,
AD research has also shown that tau pathology dependent on AB42-evoked neuroinflammation may
be linked to microglia function as connecting both major pathological hallmarks of ADZ%72,

Epigenetics Without any doubt the above described genetic evidence for immune processes has
strongly influenced the entire field over the past decade. It is likely that in decades ahead new findings
showing how epigenetic changes modulate the AD relevant immune functions and are being
transferred vertically from our ancestors, will become equally stimulating. AD arises on the background
of complex genome-environment interactions that frequently activate epigenetic mechanisms. These
mechanisms add an additional layer of control to the genome. Emerging evidence points to an
important role of epigenetics in microglia regulation during AD pathogenesis®**“. For example, AD
genetic risk variants are mostly centered on specific regulatory regions of microglia characterized by
particular epigenetic motifs”2~¢. Microglia, as well as other tissue-resident macrophages, show a high
degree of epigenetic heterogeneity between tissues and disease states’’. They also display lineage-
specific characteristics and epigenetically primed responses according to the context and previous
events’®”,  Chromatin compaction®??, DNA methylation®8, and histone acetylation”,
methylation2848 phosphorylation®, or lactylation®’ are modified in microglia in response to
different stimuli and disease states. Additionally, epigenetic control of microglia is mediated by non-
coding RNAs, among which microRNA (miRs) play a prominent role in controlling microglia-specific
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gene-expression and proteostasis at the systems level are best studied. Changes in microglia-specific
miRs are observed in liquid biopsies of early AD patients and can predict disease progression®8, While
such epigenetic alterations can persist and even transmit across generations, they are reversible®.
Therefore, it is intriguing to note that interventions targeting epigenetic mechanisms, including
treatment with DNA methylation®! and histone deacetylase (HDAC)2? inhibitors, RNA therapeutics®2
and depletion of key components of the epigenetic machinery such as DNA methyltransferase 1
(DNMT1)%%, Tet methylcytosine dioxygenase 2 (TET2)%2, HDACs 1/2722¢, Sirtuin 1 (SIRT1)%, Embryonic
Ectoderm Development® & and Jumonji D3 (JMJD3)22 can modify microglia responses. These effects
can differ based on contextual factors and the brain’s prior state, leading to contrasting outcomes
observed during brain development, homeostasis and disease 22,2, 1% 7 |n conclusion, epigenetic
processes help to shape microglia dynamics and responses to future events’21%-18 mgaking the
epigenome an attractive drug target. Whether this hypothesis will withstand causal validation with epi-
genetic editing tools remains to be determined but, at current, it provides an exciting framewaork for
future work.

The Exposome — Can Life-style factors modulate Inflammation?

While genetic and epigenetic influences may still be viewed as “given” and “unchangeable” to date,
several life-style behaviors and environmental factors, which are collectively described as the
exposome, modify the risk to develop AD. Several of these factors are directly or indirectly linked to
the immune system:

Brain trauma Traumatic Brain Injury (TBI) is one of the most important non-genetic, non-age-related
risk factors for developing dementia, which correlates consistently with the number and severity of
TBIsi®-1% An association between a single moderate to severe TBl and AD neuropathology is less clear
with multiple studies showing no association?”1% although other studies have found an association
between TBI with a loss of consciousness and increased AR plague burden suggesting that the severity
of TBI is related to AB deposition1®11%, Notably, exposure to years of repetitive mild TBI such as occurs
in contact and collision sport athletes as well as military soldiers is a risk factor for developing chronic
traumatic encephalopathy (CTE), a neurodegenerative disease characterized by Tau pathology in the
cortical sulciand around blood vessels!!12, Both a single moderate-severe TBI and repetitive mild TBIs
are associated with chronic vascular injury and blood brain barrier disruption314 as well as a
persistent microgliosisi>18, Additionally, APP is accumulated in axons with diffuse injury after TBI,
increasing the risk for AB accumulation!Z, Due to the elevated levels of neuroinflammation common
to TBl and AD, it is hypothesized that immune responses after TBI accelerate or even trigger AD-prone
neuropathological cascades during normal aging or in individuals with a specific genetic predisposition.
Even after mild TBI, microglia and astrocytes remain persistently activated’?, secreting inflammatory
mediators such as IL-1B, IL-6, TNFa and ASC that contribute to neurodegeneration post-injury through

increased APP transcriptionl?, y-secretase expressioni?, reduced microglial phagocytosisi?t and

pathological posttranslational modifications of Tau such as hyperphosphorylation” and acetylation2,
Furthermore, in a vicious circle the accumulation of toxic peptides and proteins associated with
neurodegenerative disorders, may also enhance and perpetuate glial responses to traumatic injury,
leading to significantly higher secondary damage and accelerated neurodegeneration!Z. Persistent
neuroinflammation following TBI may also mediate the increased risk for other neurodegenerations

such as Lewy body diseasel®”12 and TDP-43 pathology*%.

Nutrition/diet/midlife obesity sedentary life style Several lifestyle factors influence dementia risk via
neuroinflammatory processest2®2’, Higher physical activity?2$12 associates with reduced dementia
risk and lower inflammatory marker in human blood3%31, The association with cognitive performance
is largely mediated by the amount of activated microglia’®2. In animal models, increased physical
activity as well as an enriched environment attenuates the neuroinflammatory response to amyloid
pathology resulting in reduced cytokine release32133-137 altered microglial phagocytic activity2”1% and
improved cognition3¥134138140 |n contrast, a sedentary lifestyle combined with a lack of balanced diet
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increases the risk for midlife obesity, midlife hypertension and diabetes'**1#2, which are established
risk factors for dementia2’. These processes can induce wide-ranging metabolic changes and systemic
chronic inflammation**14, Systemic inflammation and innate immune memory, in turn, can affect

neuroinflammatory and neurodegenerative processes in the brain’214>146  Accordingly, pro-

inflammatory dietary pattern associates with cognitive decline-related blood-proteome changes'*/,

high risk for dementia*® and reduced brain volume?* while opposite association patterns are observed
for abalanced, Mediterranean diet®>>*¢, Promoting an active, stimulating lifestyle including a balanced
diet (e.g. by multi-domain behavioral interventions>®) therefore holds promise to prevent dementia

and ameliorate neuroinflammation in AD.

Systemic infection/inflammation It has become clear that peripheral inflammation significantly impacts
dementia. For example, enhanced cognitive decline has consistently been found in patients with
existing AD pathology, who additionally experienced peripheral infections (for review see: Bettcher et
al.*®). A wide range of different infections significantly increase risk for AD and vascular dementia, and
increasing numbers of infections increase risk in a cumulative fashion®*Z, For both, AB and tau, in mice,
it has been shown that systemic inflammation, induced by exposure to bacterial lipopolysaccharide
exacerbated the respective pathology e.g. through enhanced inflammatory activation and reduced
clearancel®813 |nterestingly not only external, bacterial challenges but also sterile inflammatory
and autoimmune allergic responses affect brain inflammation®. In humans both elevated TNFa and
acute systemic inflammatory events were associated with more rapid cognitive decline over the
preceding 6 months!®’, Exacerbated pathology is often due to enhanced inflammatory responsesin the
brain of patients as well as animal models, mechanistically driven by a pre-activation or “priming” of
microglia that leads to a severe inflammatory response in the pathologically altered brain and, in turn,
drives further functional deterioration®:12, Interestingly, epidemiological studies have also provided
strong evidence that peripheral inflammation increases dementia risk when the inflammatory insult
occurs up to two decades earlier®3. The mechanisms of these long-term effects are much less clear,
but may involve epigenetic reprogramming of microglia, leading to long-lastingimmune memory in the
brain that is sufficient to alter AD pathology in mouse models”. Such epigenetically-driven changes in
microglial responses match the concept of innate immune memory as it was developed in peripheral
macrophages, where two opposing immune memory states were described: “immune training”, where
macrophages are primed to mount enhanced inflammatory responses upon exposure to subsequent
immune insults, and “immune tolerance”, where macrophages are desensitized and show strongly
reduced inflammatory activation upon restimulation®21%%, Whether microglial immune memory also
exists in the human brain, however, requires further investigation. While immune training has
beneficial functions in the periphery, such as enhanced pathogen clearance, it may drive
hyperinflammation in the brain, thereby exacerbating pathology. There is some evidence that AD
patients who died with infection show higher levels of brain IL-1 than those who died without
infection’®> and LPS-induced systemic inflammation is known to potentiate IL-13 activity, driving
further inflammasome activation and exacerbating both amyloid and tau pathology. Conversely, while
immune tolerance may lead to immune paralysis in the periphery, increasing the risk for secondary

infections, it may be beneficial in the brain by inhibiting detrimental microglial activation’>1%,

Poor oral health/parodontitis Periodontal disease represents a more subtle and chronic form of
peripheral inflammation. Further support for an influencing role of oral hygiene comes from works
linking microbiome dysbiosis to the development of development in later lifel®®1¢Z, Lipopolysaccharide
(LPS) from the outer surface membrane of Gram-negative bacteria is a strong immune system
activatori®®, Porphyromonas gingivalis, with Gram-negative characteristics is considered a keystone
bacterium® in generalised periodontitist’’. This bacterium and its virulence factors are found in
autopsied AD brainst’t1”2, The infection is responsible for causing extensive oxidative damage in a
genetically modified apolipoprotein E knock-out (ApoE”") mouse model, orally infected with P.
gingivalis to initiate experimental periodontitis’. P. gingivalis infection and P. gingivalis-LPS induced
neuroinflammation (glial cell activation) has also been studied in mice modelstZ18, Poole et al.,
(2015)Z, reported that P. gingivalis induced classical complement pathway activation following oral
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infections. A subsequent report demonstrated pro-inflammatory cytokines release such as tumor
necrosis factor-alpha (TNF-a), interleukin (IL)-6, and IL-1p in the brain tissues of middle-aged mice by
Ding et al., (2018)2. Zhang et al., (2018)1, study highlighted that the Toll-like receptor 4/nuclear
factor-kappa B (TLR4/NFkB) signaling pathway was activated. In another study Memedovski et al.,
(2020)%2° found classical and alternative activation in rat brain microglia, which according to Hanisch
(2002)*8, are responsible for secreting cytokines in the human brain. Neuroinflammation, an
important element of the AD brain pathology that appears to play a substantial role in the deteriorating
cognition and progression of the neuropathological changes (hallmark lesion formation) in AD brains.
This has also been demonstrated in mice models of experimental periodontal disease’®’, which
further sustain intrathecal chronic neuroinflammation.

Gut microbiome Next to the oral flora, the gut microbiome may influence immune processes in the
brain. Rats receiving fecal transplantation from AD patients show Alzheimer’s symptoms® and, vice
versa, fecal transplantation from healthy mice to AD model animals reduces disease pathology&31&4,
Disease microbiomes can be modified; e.g. the traditional Indian medicine Triphala in AD mice
positively affects cognitive parameters and reduces serum AR levels by shifting the microbiome to
Bacteriodetes and Verrucomicrobiota phylums with a reduction of Cyanobacteria®®>. There are several
ways of communication for the gut microbiome and the brain, including the vagus nerve, the stress-
associated HPA (hypothalamic—pituitary—adrenal) axis, direct or indirect modulation of
neurotransmitters and e.g. SCFA (short-chain fatty acids) and other metabolites (reviewed in18187),
The BBB (blood-brain-barrier) controls brain entry of peripheral immune cells and immune mediators.
Microbiome originated LPS (Lipopolysaccharide) and SCFA impairs the permeability of the BBB&-1%0
and affects homeostasis, maturation and activation of microglia e.g. by SCFA binding to FFAR2 (free
fatty acid receptor 2) or LPS to TLR4 (toll-like receptor 4)1231%2 |In GF (germ free) mice the BBB has a
higher permeability’>. The BBB permeability in GF mice is rescued by mono-colonization with SCFA-
producing bacterial strains’®. In GF mice there are global defects in microglia morphology and
maturity. Temporal eradiation of microbiome leads to severe changes in microglial properties'®.
Microglia in GF animals have enhanced AR uptake at early disease stages'®, and protect for tau
pathology related neurodegeneration®*. ABX (antibiotics) microbiome depletion in adult mice disrupts
the BBB!2 and allows invasion of peripheral immune cells to the brain. ABX dysbiosis leads to memory
impairments'®, Bifidobacterium and Lactobacillus species based probiotics therapy after ABX improves
BBB integrity and memory deficits in AD mice®1%Z, Brain invading microbial tryptophane indole
derivate metabolites!®® have an anti-inflammatory effect on microglia and astrocytes by binding the
AhR (aryl hydrocarbon receptor) which then inhibits NF-kB and the proinflammatory phenotypel®2%
(reviewed in22). BBB passing primary and microbial processed secondary bile acids bind to microglial
TGR5 (Takeda G protein-coupled receptor 5) and induce the anti-inflammatory phenotype?2 by
inhibiting the proinflammatory NF-kB pathway via PKA2%2% gnd thus the NLRP3 inflammasomeZ® as
well. The conjugated bile acid TUDCA (tauroursodeoxycholic acid) reduces glial activation in the context
of AD, resulting in reduced AR plaque formation and cognitive decline?’®. Microbiome alteration as
potential treatment to slow down disease progression or to delay disease onset is still understudied

and needs to be better understood.

It seems possible that further epidemiological risk factors contribute to AD pathogenesis by
stimulating, aggravating or accelerating neuroinflammation. Nevertheless, this may be influenced by
the individuum’s genetic background. Studying gene-exposome interactions may therefore be
important to understand which genetic background in combination with certain life-style factors
account for detrimental as well as protective effects.

Which cellular systems drive neuroinflammation in AD?
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Microglia The immune system of the central nervous system (CNS) parenchyma consists exclusively of
macrophages as innate immune cells whereas many more immune cells like lymphocytes, NK cells, ILCs
and others can be found in other CNS structures such as the dura mater?Z2%, These tissue resident
CNS macrophages belong to the family of mononuclear phagocytes that are spread across the whole
body (such as brain, liver, lung, kidney, testes, skin etc.) and settled there in distinct anatomical
compartments?® In the CNS, local macrophages exists in two distinct flavors: either as juxta-neuronal
macrophages in the parenchyma where are they traditionally called microglia (micro: small, glia: from
Greek glue) or as resident macrophages at CNS interfaces such as the leptomeninges, the perivascular
space and choroid plexus?213, These border macrophages usually summarized as CNS-associated
macrophages (CAMs). Even though CAMs are positioned at strategically important CNS boundaries
their functions are only incompletely understood and recently summarized elsewhere2224-216 Notably,
microglial cells can be observed widely across the animal kingdom (even in leech, shark etc. to humans)
covering more than 450 million years underpinning their obviously essential role for the CNSZZ, For
many years their ontogeny was unclear and bone marrow-derived monocytes were considered to be
their cells of origin?8, However, elegant fate mapping experiments have proven their prenatal origin
from distinct yolk sac progenitors described as c-kit+ non-committed erythromyeloid progenitors?2220
that engraft via the CNS surface to the embryonic mouse brain parenchyma at day E9.5 where they
locally migrate, expand and finally gain their typical arborized morphology. Nowadays, microglial cells
are very long-lived cells existing for few years that divide very slowly at rates of about 0.5 % with
considerable differences in various CNS regions in mouse and man?2-22, Microglial cells in the steady-
state CNS undergo self-renewal without any input from circulating hematopoietic cells that are
excluded by the tight BBB2242%, As typical tissue macrophages, microglial cells are thought to be
extremely sensitive and versatile watchdogs of even minute changes of their microenvironment. As
such they are considered as tremendously plastic cells that can quickly adopt several functional and
morphological phenotypes influences by the environmental cues. The recent advent of several novel
single cell technologies and innovative fate mapping studies had shed new light on the transcriptional
and cellular heterogeneity of microglia in both mouse and man2%. Microglial cells are nowadays
characterized by distinct transcriptional, epigenetic, and proteomic and functional profiles during
development, homeostasis and perturbation?>22, During pathology, several microglial states have
been defined leading to a perplexing nomenclature of context-associated microglial signatures2>22&-
23 Whether this endless description of putative novel microglial clusters or even subsets is meaningful
and whether these reflect real distinct biological conditions remains to be determined in the future.

Microglial transcriptomes and differences between murine and human microglia Nevertheless, the
identification of the microglial phenotype associated with neurodegeneration (MGnD)%% in Alzheimer
Disease (AD), also known as DAM22, has sparked considerable interest for therapeutic targeting, yet
the implications in disease progression remained conflicted. We have recently identified a negative
role of APOE4, the strongest genetic AD risk factor, in impairing microglial MGnD response to AD
pathology in mice and in humans (PMID: 37749326). A similar impairment of microglia expressing
another AD risk gene, INPP5D, to induce a response to neurodegeneration was identified, which was
restored following the genetic deletion of INPP5D or APOE42>23% Microglial deletion of APOE4 or
INPP5D harnessed astrocytes to encapsulate amyloid-b plaques via the induction of LGALS3 and the
suppression of TGFB-mediated checkpoints, associated with reduced pathology and
neurodegeneration in mice2%, In the brains of AD APOE4 carriers, we identified a similar reduction in
MGnD signaling and astrocytic activation at sites of pathology. Moreover, reanalysis of two publicly
available datasets?222% confirmed these findings, demonstrating reduced MGnD signature in AD APOE4
carriers. Taken together, these findings highlight the beneficial role of MGnD-microglia in limiting AD,
and that boosting MGnD provides an exciting therapeutic intervention approach for AD. Mouse models
of AD only partially recapitulate the complex brain environment encountered in human AD brains.
Microglia respond to a plethora of various environmental signals in AD brains, for instance, amyloid
plaques, neurofibrillary tangles, synaptic/neuronal loss, myelin debris, and altered intercellular
communication between cell types just to name a few. Beyond extrinsic factors, genetic variation in
form of single nucleotide polymorphisms (SNPs) associated with elevated AD risk, may lead to impaired
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microglial function. Lastly, although the innate immune system is highly conserved between species,
mouse and human microglia display significant differences in their gene expression profilez7.23823,
Bulk analysis of microglia cells isolated from pediatric and human brain tissue of neurotypical controls
led to the identification of a homeostatic microglia gene expression signature22%, Homeostatic
microglia marker genes include microglia-specific surface receptors such as CX3CR1, P2RY12, and
TMEM119. In recent years, the generation of single cell and single nuclei transcriptomic data from
isolated human microglia helped to reveal multiple, small subclusters -microglia states- as
characterized by the up-regulation of distinct marker genes compared to homeostatic microglia2222”,
In neurotypical brains, the up-regulation of major histocompatibility class Il (MHCII) genes such as CD74
and HLA-DRA indicate that microglia participate in antigen presentation in the brain. Other microglia
states include interferon-responsive microglia (e.g., IFITM3, IFIT1, IFIT3, ISG15), inflammatory microglia
(e.g., CCL2, CCL3, CCL4), proliferative microglia (e.g., MKI67, PCNA), and a small subset reminiscent of
mouse DAM (e.g., APOE, LPL)22,

Data on gene expression profiles of human microglia states in AD, however, is still limited. Compared
to mouse microglia, human microglia show a higher degree of variation, probably due to manifold
environmental stimuli in AD pathology but also in terms of technology (e.g., differences in microglia
isolation, sequencing technologies, single cell vs. single nuclei, postmortem interval, etc.).
Nevertheless, isolation of microglia cells from AD brains and subsequent analysis of the transcriptome
gave important insights into microglia states2224L, Reflecting the complex environmental changes in
AD, signature genes for DAM were found across several microglia clusters while MHCII microglia
number was diminished2Z. Comparison with mouse microglia isolated from an amyloid model showed
a partial overlap between mouse and human DAM with the common denominator in genes associated
with lipid metabolism and lysosomal function2?2. Regressing microglia gene expression against
amyloid-beta and phosphorylated-Tau load revealed distinct microglia responses in gene expression
to amyloid and tau pathology?*l. However, more studies are needed to dissect microglia states in terms
of brain region, disease stage, and pathology. As mentioned above, the gene expression profile of
mouse microglia substantially differs from human microglia already under homeostatic conditions.
One strategy which allows the investigation of human microglia in response to different environmental
stimuli is the transplantation of human iPSC-derived hematopoietic progenitors (HPCs) into the mouse
brain of immunodeficient mice??2 overexpressing the human colony-stimulating factor 1 for human
microglia survival?*#2%>, The presence of amyloid-beta resulted in the transition of iPSC-derived HPCs
to DAM with a partial overlap in gene expression signature to mouse DAM 10. Chimeric mouse models
allow the investigation of the response of human microglia to a microglia-autonomous genetic
perturbation such as the deletion of TREM2. Deletion of TREM2 in human microglia resulted in the loss
of the DAM response in amyloid mouse models and also changed microglia function as evidenced by
impaired phagocytosis and chemotaxis?®. Single cell RNA-seq of xenografted iPSC-derived HPCs with
the TREM2 R47H loss-of-function variant identified a cluster that resembled atherosclerotic foam
cells?*Z, Collectively, these transplantation studies may help to provide more biological and mechanistic
insights into different microglia cell states in the context of different environmental stimuli. However,
limitations of the chimeric models include a mouse environment and immunocompromised
background.

Whereas we have gained substantial insights into various microglia cell states and their underlying
gene expression profiles in recent years, the transcriptional mechanisms by which different
environmental cues in Alzheimer’s disease drive these distinct phenotypes are largely unknown.
Recent advances in sequencing technologies including ATAC-Seq, ChIP-Seq, and csRNA-Seq just to
name a few may help us to infer key transcription factors responsible for context-dependent gene
expression of microglia. Transfer of human microglia from the brain into a culture environment results
in rapid chromatin remodeling with alterations in chromatin accessibility and active gene regulatory
elements, mainly enhancers?®. A multi-omics study assessing microglia chromatin accessibility and
gene expression in AD brains identified SPI1, encoding the lineage-determining transcription PU.1as a
key regulator of microglia in ADZ. Other transcription factor family candidates include the AP-1 and

MI/TFE families, which were shown to be up-regulated in microglia isolated from AD brains?.
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Clarification of the key transcriptional regulators of microglia states may lead to the development of
novel strategies targeting microglia phenotypes.

Microglial phagocytosis may be influenced by many of the genes associated with AD that are
predominantly expressed by microglia, including TREM2, PLCG2, ABI3, CD33, PILRA, SIGLEC11, ABCA1,
ABCA7, CR1, GRN, CLU and APOE%®, APOE can opsonize AB plaques, synapses or neurons, and then
consecutively activate TREM2, PLCg2 and ABI3 to induce microglial phagocytosis, and this pathway is
potentially inhibited by CD33, PILRa and SIGLEC112%, Thus, most of the known genetic risk for AD is
potentially linked to microglial phagocytosis, but it is unclear whether this is via phagocytosis of soluble
AB, amyloid plaques, dead cells and debris, or live synapses and neurons. Plague-associated microglia
have increased expression of TREM2, which can bind AR, inducing phagocytosis of AP, causing
compaction of AB plaques, and reducing AB seeding of new plaques?22234242250  Accordingly, antibodies
that increased TREM2 expression and signaling reduced AP plaque burden in a mouse model of
amyloidosis®. Activation of TREM2 can induce the DAM expression profile of microglia, including
increased expression of the phagocytic receptors, Axl and Mer?2, which also have increased expression
in plaque-associated microglia?2?. Knockout of Ax/ and Mer in a mouse amyloid model lowered AB
phagocytosis 10-fold, and lead to a surprising and selective reduction in the number of dense-core
plagues, suggesting that microglial phagocytosis of AB via this class of receptors leads to the formation
of dense-core plaques by microglia, which is arguably a protective confinement mechanism to prevent

the release of toxic AB species®!. Fc receptors have also been shown to mediate microglial

phagocytosis of AR species bound to immune complexes?22, which is presumed to be one of the
mechanisms underlying the amyloid clearing effects of the recently FDA-approved anti-amyloid
antibodies to treat AD, aducanumab and lecanemab. Although there are still considerable
uncertainties associated with the use of these drugs, they clearly highlight and validate the potential
of amyloid clearance by microglia as a promising therapeutic avenue. Nonetheless, in later stages of
AD pathology, microglial phagocytosis may contribute to synapse loss (see synapse section below) and
neuronal loss. TREM2 can mediate microglial phagocytosis of synapses in amyloid or tau models of
AD%*255 Mer can mediate microglial phagocytosis of new-born neurons in amyloid mouse models,
limiting neurogenesis and seizures?®. Aggregated AB or tau can induce microglial phagocytosis of live
neurons in culture or in vivo, and this neuronal loss can be prevented by blocking microglial
phagocytosis, which also prevented memory loss in mice2222>2, Thus, microglial phagocytosis of AB,
synapses and neurons may affect AD onset and progression, and interventions need to focus on the

specific receptors involved.

Microglial barrier function Beyond these clearance function, microglia also function as a barrier around
sites of degeneration and injury. In AD, microglia cluster around amyloid plaques, wrapping their
processes tightly around the plague surface. This encapsulation creates a physical barrier that limits
plague expansion and leads to a more compact amyloid conformation?%2, Surrounding each amyloid
plague are hundreds of axons with spheroid enlargements? that disrupt electrical conduction and
neural circuit function2, Microglia encapsulation of plaques plays a crucial role in protecting axons by
limiting their exposure to toxic protofibrillar amyloid2%t. Microglia plaque sensing and encapsulation
are disrupted in aging?®! and with hypomorphic TREM2 human variants2®* as well as by deletion of
Trem228425 or downstream Dapl12 and Syk signaling2®®2®’ in mice. Additional receptors including
MERTK and PIEZO1 may also mediate microglia plaque sensing and barrier formation. Disruption of
these signals is associated with more diffuse plaques and greater axonal spheroid formation242%> gnd
neuritic tau hyperphosphorylationZ8, In contrast, overexpression of Trem22° or treatment with
activating TREM2 antibodies?”? enhances microglia encapsulation and reduces plaque-associated
axonal pathology. Astrocytes intermingle with microglia at the plaque interface, suggesting a
coordinated interaction?2 during barrier formation?, which may be mediated through Trem2 and
ApoE signaling?’2. Overall, the evidence suggests that targeting glial cells in AD to enhance the

formation of neuroprotective barriers could yield beneficial therapeutic effects.
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Microglial proliferation Microglia numbers may not stay the same in response to any acute or chronic
immune challenge. Microgliosis due to increased microglial proliferation represents another key
feature of AD, predicting the onset of cognitive decline22. An increase in the proliferation of microglia
is observed in post-mortem samples from AD patients, in association with upregulation of its key
mitogenic machinery, the CSF1R pathway?/*+2’%, CSF1R gene variants are also strongly associated to
LOAD susceptibility?””. These studies have been reinforced and expanded by studies in models of AD-
like pathology, helping to elucidate the timing and consequences of microglial proliferation. An
accepted mechanistic model linking microglial proliferation to AD progression starts after an early and
intimate crosstalk of microglia with nascent AB pathology, triggering microglial proliferation, observed
using in vivo imaging2L. Microglial proliferation increases progressively in proximity to AB plaques, in
a CSF1R-dependent manner?®, Prevention of microglial proliferation via inhibition of the tyrosine
kinase activity of CSF1IR impedes the degeneration of synapses, ameliorating cognition without
modifying the levels of AB in the APP/PS1 model?’, as well as the 3xTg2’® and 5xFAD models?22& of
AD-like pathology. Microglial proliferation can be prevented by alternative agents such as minocycline,
rendering similar beneficial effects over AD-like pathology?2. The inhibition of CSF1R is also a disease-
modifying mechanism in a model of tauopathy, leading to reduced neurodegeneration and an
improvement of behavioral performance. Functionally, prevention of microglial proliferation induces
a repolarization of these cells to a homeostatic phenotype?®22, |nterestingly, inhibition of microglial
proliferation is linked to a prevention of the onset of replicative senescence in microglia, associated
with the specification of the DAM phenotype?3. Collectively, these studies provide solid evidence
identifying microglial proliferation as a mechanism underpinning the contribution of the cells to the
disease and identify CSF1R as a promising target for therapy. This body of evidence underpinned
promising drug discovery programs?¢ and in coming years the field will collect valuable clinical
information about their potential efficacy in AD.

Microglial immune metabolism Although representing just 2% of our body mass, the brain is one of the
most metabolically active organs and consumes the most energy, predominantly in the form of
glucose. Glucose is broken down into pyruvate (known as glycolysis), where it can enter the Krebs cycle
to be fully metabolized to CO,. This process also reduces NAD to NADH, which is subsequently used for
oxidative phosphorylation (oxphos) and ATP generation. Recent advances in immunology have
uncovered the sophisticated role that glycolytic signaling has on powering inflammatory activity in
macrophages and peripheral immune cells, yet we are still uncovering the extent to which these
processes are used by microglia in the brain. In primary microglia, AR can trigger glycolysis with a
corresponding reduction in oxphos?2. This switch to glycolysis activated the mTOR-HIF-1a pathway,
that in turn directly regulated the production of inflammatory cytokines including IL-1828. Similar
effects have been found in murine models of AD, where microglia from APP/PS1 mice have increased
glycolytic activity8. This was recently shown to be sex dependent as microglia from aged female
APP/PS1 mice are more glycolytic and inflammatory than their male counterparts, with a
corresponding reduction in phagocytic ability?®’. Interestingly, microglia are metabolically flexible and
not solely reliant on glucose. Instead, they can also use amino acids such as glutamine, or fatty acid
oxidation to fuel important surveillance and migratory activities?®. Recent studies indicate that
microglial and macrophage glycolysis and mitochondrial function decline significantly with aging,
leading to an energy depleted state that disrupts homeostatic myeloid responses such as phagocytosis
and inflammation resolution. Several mechanisms have been identified that contribute to this change.
With age and immune stimulation, myeloid cells lose their capacity for de novo NAD+ biosynthesis
because of a distal breakdown in tryptophan metabolism#2. Moreover, with aging, glucose is shunted
away from glycolysis and towards production of glycogen, an effect driven by increased signaling by
the immune modulator Prostaglandin E, (PGE,) via its EP2 recepto?2. EP2 signaling also disrupts
glutaminolysis in aging myeloid cells, an alternative source of energy that fuels the TCA and
mitochondrial respiration via anapleurosis. Inhibition of EP2 signaling genetically and
pharmacologically restores microglial and macrophage bioenergetics and homeostatic immune
responses and reverses age-associated cognitive decline. Recent studies have also identified TREM1
(Triggering Receptor Expressed in Myeloid cells-1), an amplifier of detrimental inflammatory
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responses, as a disruptor of homeostatic myeloid glucose metabolism that contributes to cognitive
decline in aging and models of amyloidosis (Wilson et al., Nat Neuroscience, in press). Thus myeloid
metabolism directs immune responses in microglia and macrophages, which in turn regulate cognitive
function in aging and models of neurodegeneration.

Microglia senescence / fate Cellular senescence is a hallmark of ageing and age-associated diseases
including AD. Senescent cells are characterized by an irreversible proliferation arrest and profound
changes in their metabolism and behavior, preventing them from executing their physiological
function. In addition, senescent cells frequently display a senescence-associated secretory phenotype
(SASP) that is characterized by the release of various proinflammatory factors?!. SASP factors were
detected in the brain, cerebrospinal fluid and serum of patients suffering from AD222% gnd are
associated with aged and potentially senescent microglia2®. Interestingly, microglial-mediated
inflammation especially via the common SASP factor interleukin (IL)-1B was shown to contribute to tau
spreading and tau-mediated neurodegeneration’2182272298 | |ine with this, microglia have been
identified as a putative senescent population in tauopathies including AD2832%4293300  Senescent
microglia developed before the onset of neurofibrillary tangle deposition in human P301S tau-
transgenic mice (PS19 mice). Using single cell RNAseq, these microglia were found to represent a
subset of DAM2%, Remarkably, removal of senescent cells, either genetically or with senescence-
targeting pharmacological means, alleviated tau pathology, tau-mediated neurodegeneration and
cognitive deficits in this model?2, suggesting that senescent microglia contribute to disease
progression. Cellular senescence can be induced via multiple pathways. The sustained proliferation of
microglia in AB-depositing APP/PS1 mice promoted replicative senescence, ultimately fueling AB
accumulation and synaptic defects?®3, Furthermore, microglia internalizing tau aggregate-bearing
neurons or monomeric tau from the extracellular space enter a senescent state and present with a
SASP3%23% that might modulate AD pathology, neuronal function and neurodegeneration.

Astrocytes provide vital physiological functions for normal development and maintenance of the CNS
— particularly for neuron health and function®®. The altered response of astrocytes during acute
infection or brain injury and in chronic disease states is referred to as astrocyte ‘reactivity’ and any one
particular reactive response may include several heterogeneous reactive ‘sub-states’ — each with
distinct transcriptomic profiles and (likely) functional outcomes2®3%, The response of astrocytes to
neurodegenerative diseases like AD have been linked to inflammatory responses of microglia and
peripheral immune cells, pathological proteins like amyloid and Tau, barrier leakage, and many other
pathological indications. While there are many initiators of astrocyte reactive states in AD, the main
historical hallmarks are hypertrophy of fine processes, upregulation of cytoskeletal proteins like GFAP
and Vimentin, as well as increased expression of innate immune-related genes like Lipocalin 2 (Lcn2),
the protease inhibitor al-antichymotrypsin (Serpina3n), and many components of the cholesterol
synthesis pathway2%. These transcriptomic and morphological changes often occur long before
cognitive deficits. Reactive astrocytes are associated with senile plaques, and while there is
restructuring of astrocyte gross morphology their domain architecture is preserved, indicative of
isomorphic, non-proliferative astrogliosis®® and proliferation or scar formation is uncommon, except
for around amyloid plaques later in disease progression. Other reported altered functional changes in
reactive astrocytes include decreased phagocytosis, decreased glutamate uptake, loss of endfeet-
polarization and expression of AQP4 water channels, and secretion of neurotoxic compounds3%. In
particular, astrocytes in AD up-regulate expression of monoaminoxidase-B that translates to an
increased synthesis of GABA (thus increasing tonic inhibition counteracting neuronal hyperexcitability
but also casing cognitive impairments) and increased production of H,0,; similarly, H,0, is produced
by increased activity of urea cycle, implemented in detoxification of ammonium and utilization of B-
amyloid3%3%  Oxidative stress is further augmented by age-dependent decline in astrocyte anti-
oxidative system3%, thus precipitating direct neuronal injury. A substantial sub-population of
astrocytes in AD demonstrate atrophy and loss of homeostatic support, further aggravating neuronal
damage®'%. Given that astrocytes interact with up to 2 million synapses in the human brain3%, changes
in synapse forming functions likely have major contributing roles to cognitive decline. Synaptic
uncoupling of neurons projecting between brain regions, particularly in the hippocampus likely
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decrease memory function. The neurotoxic reactive astrocyte sub-state also likely plays an active role
in the degeneration of neurons and synapses®”, while other putatively protective reactive astrocytes
seem more prevalent in the early stages of disease and may help maintain CNS integrity by limiting
infiltration of peripheral immune cells*®. How astrocytes also response directly to AB deposits, remains
under investigation, but decreased astrocyte AQP4 levels could slow clearance of such pathogenic
proteins through the glymphatic system (formed between the blood vessel endothelium and astrocyte
end feet). Loss of cholesterol synthesis machinery is also important for understanding modulation of
neuroinflammation in the context of AD. As almost sole producers of cholesterol in the CNS, astrocytes
are integral for the biosynthesis of cell membranes in the brain and spinal cord. Cholesterol is also an
important trophic molecule for microglia, and evidence suggests that astrocytes expressing the AD-
associated APOE4 allele are less competent at producing and secreting cholesterol. This could initiate
a feedback loop between decreased cholesterol, driving microglial reactive states, which in turn
feedback to drive reactivity in astrocytes®2. Indeed, this astrocyte-microglia crosstalk is important for
the maintenance of many physiological microglial functions including synapse pruning and debris
clearance.

Lymphocytes and the adaptive immune system Besides the innate immune system, presented in
particular by microglia and macrophages, the adaptive immune system is increasingly recognized as
being involved in the pathogenesis of AD. The disruption of the blood-brain-barrier in AD32 resembles
an essential requirement for the possibility of peripheral lymphocytes including B- and T-cells to enter
the brain parenchyma. Indeed, pathology in transgenic AD mice is associated with infiltration of B cells
into the brain parenchyma and with immunoglobulin deposition at AR plagues (PMID: 33846335).
Furthermore, in the absence of B cells A plaque burden was reduced suggesting that B-cells might
contribute to AD pathogenesis. Importantly, the absence of B-cells reversed behavioral and memory
deficits presenting B-cells as promising targets in AD therapy development. One of the most
remarkable changes that accompany immune system aging relates to the function and maintenance
of T cells (primarily T helper cells), which are key orchestrators of the immune system. Whereas the
population of naive T cells shrinks with age, central memory, effector memory, and exhausted T cells
accumulate and often show dysregulated properties22*2¢, Low-grade chronic systemic inflammation,
which accompanies and/or is caused by processes such as tissue senescence and altered
metabolism3', acts as an additional component that contributes to the dysfunctional properties of
age-related T-cell subsets. A compelling key question is whether the emergence of such dysregulated
T-cell subsets could set the ground for the development of AD38, A support for this was evident in a
recent study in humans, demonstrating increased frequencies of pro-inflammatory CD8* CD45RA* T
effector memory (TEMRA) cells in peripheral blood of individuals with MCI and AD, as well as their
clonal expansion in the CSF, suggestive of antigen-specific reactivation3!?. CD8 T cells were also
observed within the meningeal tissues and the brain parenchyma of people with AD3%, overall
suggesting the neurotoxic capacity of dysregulated and/or antigen-experienced CD8 T cells in the
pathophysiology of AD3L, In accordance, recent reports in murine models of Tau pathology evidenced
an instrumental role of T-cell infiltration in Tau-related neurodegeneration, neuroinflammation and
cognitive deficits32%321, in association with clonal expansion of selected T cells, although their antigen
specificity remains unknown32, These observations are also reminiscent of earlier reports showing
increased frequencies of late-stage differentiated effector memory CD4* TEMRA cells in the blood3%
and clonal expansion of CD4* T cells in the CSF2 of AD patients compared to healthy controls, and
enhanced circulating AB-specific CD4* T cells in elderly individuals and people with AD32%, However,
their putative role in AD pathogenesis remains to be further defined. Nevertheless, their identity as
tissue-resident memory T-cells has been confirmed through transcriptome analysis32. Moreover, the
fact that the CD8T cells within the brain parenchyma are in direct contact with microglia cells suggests
a regulatory cross-talk between the two cell types3%. The latter was elegantly illustrated in a recent
study identifying the CXCL16—CXCR6 axis orchestrating and retaining CD8* T cells in brains of mice with
AD pathology32’. Cxcré6 deficiency reduced accumulation and clonal expansion of CD8 T cells in the
brains, and the ablation of CD8* T cells ultimately increases proinflammatory cytokine production from
microglia, together suggesting beneficial roles for brain CD8 T cells in AD pathogenesis. In contrast, the
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observed direct contact of the CD8 T cells with neurites argues for the possibility of a neurotoxic
activity®’?, this, however, requires further experimental evidence. Nevertheless, antibody-mediated
depletion of CD8 T cells in transgenic AD mice resulted in changes in the expression of neuronal genes
in the brain. Moreover, the infiltration of CD8 T cells into a 3D culture system resembling an AD
pathology led to an increase in neuroinflammation and neurodegeneration32. In summary, it is still
unclear if CD8 T cells are friends or foes in term of AD pathology. Both have been described, and it
might well depend for example on the stage of pathology. The topic certainly urges for further
investigation, in particular since immune-therapeutics targeting CD8 T cells are established in other
fields such as cancer are ready to repurposed for their use in neurodegenerative diseases such as AD.
Besides, clinical studies further suggest an altered homeostasis and suppressive function of regulatory
T cells (Tregs) — CD4* T cells that suppress excessive immune responses — in patients with AD322339,
Of note, studies in mouse models of AD-like amyloid pathology deficient in adaptive immune cells have
shown either decreased®! or worsened brain pathology®32333, supporting a complex role of T cells in
disease progression, with both detrimental and beneficial effects. In this line, blockade of PD1—a
checkpoint ligand and one of the key markers of exhausted T cells—was suggested to facilitate the
recruitment of monocyte-derived macrophages into the brain along with ameliorating the disease
process3**, although PD1 deficiency worsened disease progression in another model of AD-like amyloid
pathology23. Furthermore, AB-specific Th1 cells (secreting IFN-y), injected into the ventricles of 5xFAD
mice, not only migrate into the brain parenchyma, but also stimulate the expansion of MHCII+
microglial cells with improved capacity of AP uptake333. Genetic engineering of these T cells to
overexpress BDNF facilitated neuronal repair®®. In addition, Tregs were shown to critically control anti-
AB CD4* T cell responses®” and Tregs selective amplification via low-dose IL-2 treatment modulates
the activation of microglia and restores cognitive functions in a mouse model of AD-like amyloid
pathology3333433%8 Recent reports further evidenced that Tregs also contribute to modulate and fine
tune the balance of reactive astrocyte subtypes in AD-like pathologyl. Altogether, these studies
support an intricate interplay of T cell immunity with innate neuroinflammation in AD. It is thus
intriguing to suggest that the evolvement of dysregulated T cells with aging facilitate neurotoxic
inflammation and the progression of AD. Further characterizing immune senescence processes as well
as antigen specificity of disease-associated dysregulated T cells, and their impact on neurotoxic
inflammation, may thus pave the way toward therapeutic approaches that target peripheral adaptive
immunity and immune senescence, for rebalancing a proper peripheral-central immune crosstalk
essential to promote neural fitness or even repair in the AD brain.

Oligodendroglia Independent lines of evidence suggest causal links between oligodendrocytes in the
aging brain, secondary neuroinflammation and Alzheimer’s neuropathology. Oligodendrocytes make
myelin for rapid impulse propagation and provide metabolic support to myelinated axons*?, extending
beyond white matter tracts. Notably, there is extensive intracortical myelination of projection neurons
and interneurons®%, persisting well into the second and third decade of human life. Importantly, with
advancing age cortical myelin decreases in abundance, showing an inverse correlation with the onset
of pathologies that become the hallmark of Alzheimer’s disease®*!. Specifically, the late and thinly
myelinated regions of the human brain appear to be the first to develop Alzheimer pathology3*2.
Underlying the myelin loss is a gradual deterioration of myelin integrity, initially documented by
electron microscopy in aging primate brains®*3. This degeneration includes the cytoplasmic channels
within myelin®* required for delivering metabolic support to the encapsulated axon3*>3%, Thus,
advanced aging of the cortex is associated with axonal perturbation, myelin degeneration and
secondary inflammation3¥, the latter triggered by axon loss and the ingestion of myelin debris by
microglia leading to their proinflammatory activation3*-3°, Combining mouse models of AD with
oligodendrocyte-specific defects that cause the prematurely white matter aging phenotype it was
possible to demonstrate that myelin dysfunction drives amyloidosis and plaque formation33Z,
Interestingly, increased brain amyloid is a consequence of both, more AP processing in affected nerve
fibers and a distinct molecular phenotype of the disease-associated microglia. The latter become visibly

distracted from plaques by dysfunctional myelin, leading to less efficient clearing of AB deposits.
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Peripheral immune cells Circulating innate immunity cells such as neutrophils and monocytes migrate
into the AD brain and may contribute to disease pathogenesis. Neutrophils accumulate in the AD brain
and the peak of neutrophil infiltration in mice with AD-like disease coincides with the onset of memory
loss®>2, Indeed, transient neutrophil depletion during early disease in AD models reduces cognitive
deficit and neuropathology, suggesting these cells have a detrimental role322323, Neutrophils adhere in
brain vessels and migrate into the parenchyma but they also obstruct blood flow by plugging in brain
capillaries, thus contributing to disease development through multiple vascular mechanisms23>4,
Soluble oligomeric AB1-42 triggers the rapid activation of LFA-1 integrin, leading to neutrophil
adhesion, whereas AB deposits promote neutrophil arrest and spreading in brain venules but also
determine the intraparenchymal localization of these cells**2. LFA-1 integrin plays a key role in
neutrophil extravasation and intracapillary plugging and its blockade has therapeutic effects in mouse
AD models®>2, Neutrophils are highly reactive cells that release multiple cytotoxic molecules during AD,
including myeloperoxidase, elastase and IL-172223553%¢ They also deploy neutrophil extracellular traps
in the vasculature and inside the parenchyma, thus contributing to BBB dysfunction and brain
damage®2. Notably, circulating neutrophils have a hyperactivated phenotype in AD patients compared
to control subjects, and neutrophil abnormalities correlate with faster cognitive decline®>72,
Neutrophil indicators could therefore be suitable as disease biomarkers. MONOCYTES: In AD mice,
circulating monocytes migrate into the brain via the CCR2-CCL2 axis and contribute to the clearance of
AB2eL32 aglthough this beneficial effect has recently been challenged in the context of AD3%3%4 A
dysfunctional monocyte compartment characterized by changes in blood monocyte subsets and
phenotypes has been reported in patients with dementia, further highlighting alterations of peripheral
innate immunity cells as potential pathological drivers in AD3>%3% Understanding the phenotype of
neutrophils in AD may reveal new disease biomarkers and new therapeutic approaches targeting
neutrophil-dependent detrimental mechanisms.

Contribution of peripheral immunity and their crosstalk with microglia in AD Several Alzheimer’s
disease (AD) risk factors are expressed in microglia and peripheral immunity including the immune
checkpoints HAVCR2 (TIM3), INPP5D (SHIP1) and CD33 play a critical role in suppressing immune
effector functions. The beneficial effect of targeting immune checkpoints to harness immunity was
reported to mitigate AD pathology. CD33 was shown to inhibit monocyte®® and microglial uptake of
amyloid-B , and its deletion reduced pathology in AD mice3®’. Deletion of Inpp5d in microglia was
sufficient to protect against neuronal dystrophy in transgenic AD mice2>3%¢ (*Yin, in press).
Furthermore, recent studies identified that APOE4, the strongest genetic risk factor for late-onset AD,
impairs microglial response by inducing TGFB -mediated checkpoints (*Yin, **Liu, in press).
Mechanistically, APOE4-mediated induction of TGFB signaling impaired MGnD response via
upregulation of microglial homeostatic checkpoints, including INPP5D in mice. In addition, APOE4
genotyping prior to treatment considerations with recently approved AD therapies was recommended
due to increased incidence of ARIA®*3’L and reduced response to Lecanemab3®’2. Therefore, a
combinatorial strategy targeting amyloid-8 and immune checkpoints to restore MGnD response to
neurodegeneration (MGnD) may provide a promising therapeutic intervention for AD

Vascular cells Alzheimer himself described an increase in endothelial proliferation and growth in the
first case of AD reported?, suggesting that vascular cells become activated during the progression of
the disease. Many reports have described vascular anomalies including i) the existence of a major brain
microvascular pathology?”22”% and insufficient angiogenesis®”>=78, ii) a deficient clearance of AB due to
an altered blood-brain barrier (BBB)2, and iii) the accumulation of hypoxic markers in the brain of AD
patients and models32%3%, It has also been suggested that the vascular network associated to AB
plaques is early altered both in AD patients®%32° and models***2%, where vascular holes surrounded
by hyper-vascularized areas were found associated with AB deposits A recent multifactorial data-
driven study have shown that vascular dysfunction is an early event in the AD pathology*® and a
snRNA-seq analysis have suggested specific changes in AD associated with endothelial cells and
pericytes®* and observed an enrichment in the expression in vascular cells of AD risk genes®*.
Mechanistically, vascular activation has been associated with i) accumulation of AR in the wall of brain
vessels in the form of cerebral amyloid angiopathy (CAA)3%; ii) brain pericytes contraction®%; iii)
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clotting of blood vessels by neutrophils®>23>3; iv) infiltration of peripheral immune cells in the brain
parenchyma3’ due to the concomitant neuroinflammation3®3%°; and v) reduction in the number of
vessels through non-productive angiogenesis, which activate microglia to disassemble blood vessels
around AB plaques®?, suggesting and interesting cross-talk between microglia and blood vessels in AD.
In addition, perivascular microglia, astrocytes and pericytes may also directly affect BBB patency in
AD40L |mportantly, the pathological leakage across the BBB induced by these cells may in turn also
modulate innate immune cell function in the brain, indicating a vicious circle of vascular injury leading
to perivascular inflammation and vice versa?®, In addition to these cellular changes, major functional
mechanisms of the cerebral vasculature, such as the local increase of blood flow in response to
neuronal activity, i.e. neurovascular coupling, are also altered in AD models and patients*®. In animal
models, these detrimental effects are mediated by AP inducing the CD36-mediated generation of

reactive oxygen species in perivascular macrophages®®, as well as by phosphorylated tau disrupting

the synthesis of the vasodilator nitric oxide evoked by synaptic activity?®. These changes are
exacerbated by additional vascular effects on the capillary level, such as pericyte-mediated
vasoconstriction®%, All of these structural and functional vascular changes likely act synergistically

together with direct effects of AB to disrupt white matter integrity in AD%47,

Glymphatics The role of the blood-brain barrier (BBB) in the removal of amyloid beta (AB) from the
brain is well established, largely driving the elimination of AB*%. However, this is not the sole route of
AB removal. Typically, tissue metabolites are cleared through the lymphatic network that pervades
most body tissues. The central nervous system (CNS) parenchyma, however, lacks this comprehensive
lymphatic vasculature, leading many to presume over the decades, or even centuries, that the brain,
due to its "immune privilege" status, has no lymphatic connection to the peripheral immune system.
This belief was disproved in 2015 when functional lymphatic vessels were identified just outside the
parenchyma of the brain“® and spinal cord*?, specifically in the outermost layer of their meningeal
covering, the dura mater. While these vessels are outside the CNS parenchyma, they serve as a
lymphatic conduit for the CNS, delivering brain and spinal cord-derived molecules to the draining
lymph nodes?®, To effectively drain CNS-derived molecules, including AB, these meningeal lymphatics
must interact with the so-called glymphatic system, a conceptual model for understanding
cerebrospinal fluid (CSF) flow through the brain®l. Arterial pulsations drive CSF from peri-arterial to
intra-parenchymal spaces, and this CSF is then reabsorbed at the peri-venule spaces with the aid of the
glial Agp4 molecule*2213, When the "dirty" CSF, containing brain metabolites such as AB, leaves the
brain, it traverses the meningeal layers, a process observed in both mice** and humans*, However,
the exact path that the CSF takes remains elusive. Upon reaching the dura mater, brain-derived
molecules are sampled by dural antigen-presenting cells, and the remaining molecules are removed by
the meningeal lymphatics®**¢, Impairment of these meningeal lymphatics, either through
pharmacological or genetic manipulation or complete ligation at the entry of the draining lymph node,
results in increased deposition of amyloid plaques in the brain parenchyma and their occurrence in
previously plague-free meninges*~#2, Moreover, dysfunctional lymphatics hinder the effectiveness of
anti-amyloid antibodies in plaque clearance and lead to side effects like a compromised BBB and
abnormally activated microglia, mirroring the microglia phenotype seen in humans with AD*2, Given
that the functionality of meningeal lymphatics declines with age?2, it's plausible that these lymphatics
(or the "brain's sink") must be operational for patients to benefit from anti-amyloid therapy (and
possibly other therapies). Future therapies should aim to combine plaque removal with strategies that
enhance the function of the meningeal lymphatics.

Immune mediators and immune receptors

DAMPs and Pattern recognition receptors Damage-associated molecular patterns (DAMPs) are
molecules released upon cellular stress, tissue injury or cell dead and are considered as endogenous
danger signals*2. DAMPs include a high and diverse class of molecules which activate innate immune
system through multiple pattern recognition receptors (PRRs), which include TLRs, NLRs, AIM2-like
receptors, RLRs and CDRs*2. DAMPs accumulated in AD patients” brains react with the immune system

18



909
910
911
912
913
914
915
916
917
918

919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937

938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960

and contribute non-trivially to several aspects of the pathology and accelerate the disease
progression???, The most relevant is AB, which is able to activate microglia via multiple surface
receptors. Microglia can phagocytize AB through CD36, inducing the formation of TLR2-TLR6
heterodimer and NFKB activation#2, and via CD14, a coreceptor of TLR4, TLR6, TLR9, a6B1 integrin and
SCARAQ#2+42&428  Upon TLR activation, AP initiates NLRP3 inflammasome activation, promoting the
release of inflammatory cytokines*2®. Furthermore, AB is able also to activate NLRP1 expressed in
neurons and oligodendrocytes through different mechanisms, including TLR4 binding®. However, AB
is not the only damp found in AD brains. It has shown that other significant DAMPs as HMGBL1,
Chromogranin A, S100 proteins, circulating DNA and mt-DNA, ceramides and P2X7R have a significant
contribution in the activation of the immune system in AD#24%,

Trem2/ApoE APOE is the primary transporter of lipids and cholesterol in the brain; it also has
immunomodulatory functions that are entwined with the microglial receptor TREM2. APOE is an
activating ligand of TREM2 and TREM2 signaling sustains microglial production of APOE in the brain.
TREM2 directly binds numerous ligands including lipidated as well as recombinant non-lipidated
APOE®143  Upon binding APOE, TREM2 transmits intracellular signals that promote microglia
activation. However, the TREM2 variant R47H, which is associated with increased risk of Alzheimer’s
disease (AD), is unable to bind APOE®143, Thus, direct APOE-TREM2 interactions may sustain
microglia responses to AD pathology. Microglial transition from a homeostatic to an activation state in
mouse models of AB accumulation is partially dependent on both TREM2 and APOE2%43 |nteraction
between TREM2 on microglia and APOE within AB plagues may be crucial for compaction: AB plaques
in both APOE- and TREM2-deficient mice display filamentous morphology and are associated with
axonal dystrophy?2. Though TREM?2 affinity for APOE isoforms may be similar®3432, APOE variants are
recognized and engulfed by TREM2 at varying rates, suggesting that APOE4 may have a more marked
impact than other isoforms2#. During homeostasis, APOE is mainly secreted by astrocytes. However,
microglia, particularly those wrapped around AR plaques, secrete large amounts of APOE in AD patients
and mouse models of AD222:234238,43¢ Thjs is |argely dependent on TREM2: very little APOE is produced
by microglia either expressing the TREM2 R47H variant?*243Z or lacking a functional Trem2 gene?222,
Thus, APOE-TREM2 interactions may constitute an autocrine circuit that sustains microglia responses
to AB plaques.

Complement factors The complement system is a key contributor and regulator of inflammation, both
in the periphery and in the CNS. It has been known for over 4 decades that complement components
Clg and C3 are associated with pathological hallmarks of AD (plagues and tangles)*#38439 with multiple
more recent studies using advanced technologies to demonstrate increased expression of complement
proteins (reviewed in?%%) and generation of activation fragments in brain of AD and mouse models of
AD*L422 |f excessive, complement activation can lead to detrimental inflammation and neurotoxicity
via the C5a and C3a fragments which signal through their receptors and synergize with other innate
immune signaling pathways such as TLRs and RAGE*2%% and via the generation of terminal
membranolytic complex (C5b-9), all of which are relevant to Alzheimer’s disease progression?*>24’, The
role of C3 and the receptors for its diverse activation fragments in AD is clearly complex and regulated
by time and location (%842 and reviewed in%?). C3 knockout mice show protection from
neurodegeneration®!, spine loss**?, and excessive microglial-mediated synapse loss**?, and C3aR is a
modulator of microglial function®452, C5ar1 expression is upregulated in AD brain*>34%, |n mouse
models of AD, antibody to the proinflammatory complement activation fragment C5a, genetic ablation
of C5aR1 or pharmacologic antagonism of C5aR1 resulted in less inflammatory microglia and
astrocytes, preservation of neuronal complexity, reduction of cognitive loss and suppression of
synapse engulfment by microglia®***Z, In addition, classical complement activation (via C1, C2, C4and
C3) has a substantial role in synapse pruning during neural development and adult plasticity, but
aberrant or unregulated activation leads to excessive synapse elimination in AD mouse models
(253438439 gnd as reviewed in*Y), However, induction of C1q expression is an early response to injury,
priorto upregulation of other complement componentsin brain, and protective roles of C1lq have been
well documented (enhancement of phagocytosis, suppression of microglial medicated inflammation,

and neuroprotection) (reviewed in*%). As a result, unintended immunocompromising consequences of

19



961
962
963
964
965
966
967

968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994

995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010

targeting this component must be considered. In contrast, novel approaches to modulate neuronal
activators of the complement cascade may be selective and effective for different subtypes of AD#%2,
Thus, while a powerful arm of the immune system, protecting from infection and enhancing removal
of cell debris, activation of the complement cascade by pathological protein accumulation, signals of
weak or dying cells/synapses and disease associated cellular debris contributes to the progression of
AD. Therapeutic approaches must selectively target detrimental consequences, while maintaining
beneficial complement-mediated immune and cognitive functions.

Cytokines During AD, cytokine production is initiated by DAMPs or Ab activating pattern recognition
receptors and can be regulated at multiple steps, including cellular release. In the brain, cytokines are
released by microglia, astrocytes, lymphocytes, pericytes and other cells, and act on neighboring cells,
including the releasing cells, to drive neuroinflammation in different directions, depending on the
cytokine. For example, in microglia, activation of the NLR family pyrin domain containing 3 (NLRP3)
inflammasome generated interleukin-1f (IL-183), which reduced microglial clearance of Ap, the release
of AB-degrading enzymes, such as insulin-degrading enzyme and neprylisin, and stimulated the
production of nitric oxide and subsequent immune cascades*2?. Neurons exposed to microglia-derived
IL-1P show spine loss and reduced hippocampal long-term potentiation (LTP)*224%2, Reduced LTP has
also been reported for interleukin 2, interleukin 6 (IL-6), tumor necrosis factor o (TNFa) and other
cytokines®®*“¢’_ |L-1f3 can cause neurofibrillary tangle formation and tau pathology through a IL-1
receptor mediated, CamKIl dependent mechanisms in rodent models of AD’°, NLRP3 inflammasome
activation can also result in microglial pyroptosis, release of ASC speckles and further seeding of AB
deposition?%, More recently generation of type | interferons and other cytokines through the cGAS-
STING pathway, activated by cytosolic DNA in microglia, neurons and other cells has become a focus
of research*%L, Type | interferons are elevated in AD, and genetic deficiency for the type | interferon
receptor (IFNAR1) can be protective in some mouse models of AD?2, |L-1a (a type 1 interferon), IFN-y,
GM-CSF, IL-10 and IL-13 are elevated in AD brains in association with neurofibrillary tangles*2. IFN-y,
from infiltrating T lymphocytes, can increase microglial activation and Ab deposition in amyloid mouse
models, prevented by anti-IFN-y antibodies*. IL-10 is generally anti-inflammatory, but knockout of
the IL-10 gene in an amyloid mouse model, reduced amyloidosis, synaptic loss and cognitive deficits,
while increasing microglial activation and phagocytosis*”. IL-12 and IL-23 share a subunit and are
elevated in AD, while depletion of the subunit by genetics or antibodies reduced amyloid load and
cognitive deficits in an amyloid mouse model PMID: 23178247. Some cytokines may be protective, for
example, IL-33 is depleted in AD brains, and IL-33 knockout resulted in tau pathology and
neurodegeneration in mice®’®, whereas IL-33 injection reduced microglial activation, AB plaques,
synaptic loss and cognitive deficits in an amyloid mouse model*”,

COXx/prostanoids As key mediators of inflammation, prostanoids were initially implicated in AD
pathogenesis based on cross-sectional and longitudinal epidemiologic studies showing reduced risk for
AD in individuals taking non-steroidal anti-inflammatory drugs (NSAIDS) which inhibit both
cyclooxygenase (COX)-1 and -2422479 Although clinical trials of NSAIDS and COX-2 selective inhibitors
were abandoned due to lack of clear benefit and potential cardiovascular risks*, continued preclinical
work highlights unique roles for these enzymes in the context of AD. For example, COX-1 is
constitutively expressed by microglia®®!, and its activity was associated with memory impairment in
inflammatory models*248 and both amyloid and tau pathology in transgenic mice®. In addition,
cyclooxygenases have been implicated in communication across the blood-brain barrieri8 and
therefore might play roles linking peripheral inflammation to dementia and AD progression“€®, Other
data demonstrate unique roles for specific prostanoids and their G protein-coupled receptors. For
instance, prostaglandin E2 acting on EP2 receptors reduced amyloid phagocytosis in several
models*248 and worsened spatial memory performance in APP/PS1 and aging mice22%7, possibly by
driving age-associated changes in myeloid cell inflammatory and metabolic states?. Moreover, EP1
receptors facilitate excitotoxic injury in ischemic and AD models®24% Such findings support

interventional targets that are more specific than general COX inhibitors.
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iNOS and nitric oxide Neuroinflammation and activation of microglial into the M1 phenotype are
associated with numerous neurodegenerative conditions including AD*%. One major hallmark of
neuroinflammation is aberrant NO production by microglial-expressed inducible nitric oxide synthase
(iNOS or NOS2), a factor held responsible for aggravating pathology. iNOS generates high levels of NO
with stimulation of microglia by lipopolysaccharide*®/interferon-g resulting in a rate of NO production
at ~140pmol/min/million cells®®L. In the presence of reactive oxygen species (ROS) following NADPH-
oxidase activation, various reactive nitrogen species (RNS) are generated including the potent oxidant
peroxynitrite which enhances nitrosative stress and causes oxidative damage, nitrotyrosination and S-
nitrosylation of proteins, lipids and DNA. Evidence suggests that iNOS protein expression during the
pathology of AD and other neurodegenerative conditions is the major source for NO-mediated protein
post-translational modifications likely rendering many target proteins dysfunctional®%2%, |In AD, 3-
nitrotyrosination of y-secretase, triose-phosphate isomerase, tau or Ab itself may aggravate the
pathology?®=%, These modifications can induce a positive feedback loop by which chronic and
uncontrolled neuroinflammation causes further excessive microglial activation, resulting in release of
additional pro-inflammatory cytokines and chemokines and damage to the nervous system. In contrast
to iNOS-derived NO, Ca-dependent neuronal NOS (nNOS) activity leads to NMDA-dependent peak NO
production of ~2fmol/s (~120 pmol/min) in the entire hippocampus which increases in aged 3xTg-AD
mice due to higher nNOS protein expression®%, This enhanced NO production was also seen in APP/PS1
mice due to increased interaction between carboxy-terminal PDZ-ligand (CAPON) and nNOS*%, 3
mechanism which when disrupted prevented memory defects and dendritic loss in this model.
Additional evidence suggests that tau nitrotyrosination is caused by the enhanced nNOS-CAPON
interactions in AppNL-G-F mice>%. These data confirm a NMDAR-nNOS-dependent route contributing
to AD pathology, consistent with earlier studies and clinical trials, where application of the NMDA
receptor antagonist, memantine, an open-channel blocker, reduces excitotoxicity and ameliorates AD
pathology>®. There are various hypotheses as to where excitotoxicity and the well-described
neuroinflammation originates. Classically, accumulation of AP aggregates and cell debris are involved
in a neuroinflammatory response and augmented NO production. Indeed both fibrillary and oligomeric
forms of Ab directly activate microglial cells including iINOS expression and NO production®%>=%, Recent
studies suggest a role for a gut microbiota dysbiosis in neuroinflammation. The gut microbiota have
been found differing from healthy controls in AD patients. Gram-negative bacteria can cross the blood—
brain barrier (BBB), contribute to systemic neuroinflammation2%->1° thereby generating and releasing
neuroinflammatory molecules such as LPS, capsular proteins, fimbrillins and flagellins which can
further enter the CNS via a compromised BBB>L, In agreement with these findings, post-mortem AD
samples exhibit higher amounts of LPS, E coli K99 and other Bacteroidetes>'%2 and conversely,
preventing a dysbiosis in a mouse model of AD can alleviate symptomatic cognitive decline®2. To target
NO-mediated cytotoxicity in neurodegenerative conditions, one therapeutic approach is to suppress
overall NO production, either pharmacologically or genetically. This method showed promising
outcomes in a variety of model systems where NOS inhibition or iINOS deletion prevented or slowed
disease progression#21> However, clinical trials have not yet achieved any beneficial effects, although
phase | and Il trials (NCT02167256, NCT01864655) with Src family kinase inhibitors such as saracatinib
to suppress transcription factor NFkB21° necessary for iNOS expression, were performed212218 Perhaps
due to the advanced stage of the disease there were no clinical benefits found reiterating the need for
identifying a critical window in which these agents could exert the most clinical efficacy>12°2°,

Mutual interaction between Immune mechanisms and neurodegeneration

Inflammatory regulation of APP processing /AB Inflammation can have detrimental effects in AD by
exacerbating the generation of AB. It was proposed that pro-inflammatory cytokines could enhance
the transcription of the Amyloid Precursor Protein (APP), and/or affect AB aggregation and
generation22222, BACE1 and APP expressions can become increased by incubation with pro-
inflammatory mediators such as cytokines and ROS*2*%2Z or by events leading to chronic gliosis, such
as traumatic brain injury and stroke2¢=31, Other reports have suggested that inflammatory cytokines
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can regulate y-secretase activity by inducing the expression of interferon-induced transmembrane
protein 3 (IFITM3), which binds to y-secretase, rising amyloid-B levels>32. Interestingly, peripheral
infection, including oral administration of a periodontal pathogen can lead to an increase in APP and
BACE1 expression'’®, On the other hand, studies in animal models of amyloidosis have revealed that
low grade peripheral inflammation by injection of LPS exacerbates amyloid pathology, affecting AB
clearance mechanisms*>333334 or AB generation>2%¢, while other reports have shown the opposite
effects, with a reduction in AR when LPS is injected mtra-craniallyﬂﬁ or when mice are primed with
low doses of LPS before AB deposition®t, The effect of inflammation on APP and BACE1 expressions
has been related to the presence of consensus binding sites for various transcription factors that are
known to be regulated by inflammation (such as SMAD, NFkB, PPARy and STAT1) in the BACE1 and APP
promoters22423%341 - |n addition, changes in inflammatory markers have been associated with
alterations in epigenetic reprogramming>*2, including the expression of miRNAs regulating the
expression of genes involved in AB generation and tau phosphorylation (such as BACE1 and GSK3)>°,

Tau Evidence from the past years revealed that tau pathology can spread from cell-to-cell by a so far
unknown mechanism. Accordingly, tau can be found in the extracellular space and potentially enters
cells trans-synaptically, a phenomenon thought to be involved in disease progression®=%, |n
experimental tau-transgenic mouse models, tau pathology and tau spread were shown to be driven by
activated microglia, potentially via release of the pro-inflammatory cytokine IL-1B%%2%, |n line with
this, microglia depletion led to reduced tau transfer between neurons*¢. However, the presence of
extracellular tau can not only be a potential continuous thread for neurons directly, but also the
immune system in the brain. Recently, tau was identified as an activator of the NLRP3 inflammasome,
an important defense pathway in microglia. NLRP3 inflammasome activation was detected in brains
and CSF% of tauopathy patients and loss of inflammasome function markedly reduced progression of
tau pathology as well as tau seeding downstream of AR In another study, hyperphosphorylated and
misfolded tau from tauopathy brains activated microglial NF-kB and NLRP3 inflammasomes containing
ASC>*, Notably, myeloid-cell restricted deletion of myeloid differentiation primary response protein
88 (MyD88), a common adaptor protein for IL-1Receptor/TLR4, or ASC rescued tau pathology, and
improved cognitive function in hTau mouse model of tauopathy. Importantly, suppression of tau via
doxycycline or neutralizing pathological tau via Qb-virus like particle (VLP)-based vaccination
significantly reduced NLRP3 and ASC levels in rTg4510 mouse model of tauopathy>*’. Together, these
studies neuronally-derived tau can serve as DAMPs and trigger microglial innate immune responses.
Strategies to block tau alone and/or tau-microglia interaction could be potential therapeutic strategy
against tauopathies, including AD.

Synapses and Axons It is becoming increasingly clear that microglia play crucial roles at the neuronal
synapse (thus the term “quadripartite synapse”)24>%8, Microglia constantly contact synapses and
contribute to synaptic homeostasis and function throughout lifespan®£¢, Among the diverse
functions microglia performi®20, one key microglia-mediated mechanism during development is to
coordinate developmental synaptlc pruning via the classical complement cascade>>%2, |nterestingly,
this process becomes reactivated in a region-specific manner in various models of neurologic disease,
including those of AD>%, In both amyloid-#242 and tau-#22224 based mouse models. These studies have
shown that Clq, the initiating factor of the classical complement cascade, and/or C3, a downstream
factor in the cascade, are upregulated and localized to synapses. This subsequently leads to aberrant
elimination of the ‘tagged’ synapses by microglia®®2. Interestingly, this microglia-mediated synapse loss
has been implicated to mediate synapse loss and dysfunction not only in AD models but also models
of other neurologic diseases involving synaptopathy>>>>%8 as well as in aging®>>> and cross-species°.
These results strongly suggest that microglia play crucial roles in determining synapse fate across aging
and disease>*3. Several immune and neuronal proteins have emerged as potential upstream regulators
of microglia-mediated phagocytosis and production of Clq in AD-relevant models (for e.g.,
phosphatidyl serine (PtdSer), SPP1, TREM2, and neuronal pentraxin Nptx2)=61=63  Still, further
investigations are necessary to determine how specific synapses are being targeted and eliminated
while others remain intact®®*. This could include molecules that negatively regulate complement
proteins, such as the newly identified complement inhibitor SRPX2, or molecules that negatively
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regulate microglial phagocytosis, such as CD47 and SIRPa. Another important consideration is that
microglia-mediated synapse elimination may not always be detrimental in neurodegeneration. For
example, it has recently been shown that microglia-mediated elimination of synapses can protect
circuits from hyperexcitability in AD-related neurodegeneration. It is possible that synapse elimination
early on in neurodegeneration is serving a beneficial function to protect neurons from excitotoxicity
and detrimental in a circuit if this biology propagates uncontrolled, leading to cognitive decline. Thus,
further elucidating the timing and circuit specificity of microglia and complement-mediated synapse
elimination during neurodegeneration will improve our ability to therapeutically target these
mechanisms in disease.

Therapeutic modulation of brain immunity in preclinical models Given the compelling evidence that
manipulation of the immune system could provide disease modifying therapies for AD, there have been
extensive studies to evaluate potential immune manipulation in preclinical models of AD relevant
pathologies. Though there are multiple mechanisms to explain efficacy of anti-AB immunotherapies,
data from both successful and failed human AD clinical trials support the concept that preferential
targeting of deposited AP and subsequent microglial activation underlies efficacy. Thus, these
interventions represent a major translational success for the field as the potential proof of concept and
this mechanism of action was first obtained in amyloid depositing mouse models.

Numerous additional immune therapies are now being evaluated both in preclinical studies with
several therapies in human clinical trials. There is however little consensus regarding how to best
evaluate these novel therapies in preclinical models and which models should be used. As the balance
of positive (e.g., amyloid and/or tau reduction, synaptic integrity) and negative effects (e.g., excessive
synaptic pruning, overt toxicities, impacts on peripheral immune status) of any manipulation may limit
therapeutic benefit, the field would be well-served to utilize a rigorous and systematic approach to
evaluate these therapies in models before human trials. Indeed, the examples of immune modulation
that have opposing effects on amyloid and tau pathologies in mice, illustrate why we should insist on
a more rigorous and systematic approach to testing these novel therapies before moving them into
human testing. Few in the field would be comfortable with advancing a therapy for AD that had
opposing effects on the classic core pathologies. Yet, most immune interventions are advanced to the
clinic without rigorous testing in both models, and with only limited study of impacts on the peripheral
immune system. To increase probability of translational success and reduce the potential for doing
harm we might consider using systems level omic studies both at a cellular and multiorgan level to
assess potential benefits and liabilities of novel immune therapies. Indeed, immune manipulation in
an elderly population with AD or at risk for AD, raises many safety concerns, and we should try to de-
risk these interventions as much as possible.

Clinical trials and future therapeutic targets The modern-era study of neuroinflammation in AD began
in 1982 with the report from Eikelenboom and Stam of complement components decorating amyloid
plaques*® These results were fortified by additional studies coming from the McGeers® and Joe
Rogers!® the later 1980s. Given that the implication of inflammation in AD pathogenesis predates
articulation of the amyloid hypothesis>®, and given an assumption that such inflammation must harm
surrounding tissues, one may wonder why no agents have been approved for modification of AD
pathogenesis by modulation of inflammation, and none in late-stage clinical trials. Clinical trials to date
have resulted in null, or in some instances negative (suggesting harm), findings (reviewed up to 2018
in>®, section 6). These trials tested anti-inflammatory agents of different categories and, in some
instances, employed strategies to avoid exposure at later stages of the disease process, enrolling
relatively “young-elderly” cognitively normal individuals with a parental history of AD*®2, The most
concerning result emerged from a trial that tested the ability of the discontinued COX2-selective agent
rofecoxib to prevent “conversion” of MCl to AD dementia, producing a statistically significant hazard
ratio of 1.46 (p=0.011) in favor of incident dementia. Such findings have likely discouraged more recent
trial efforts, as a search for ‘neuroinflammation Alzheimer’s disease’ under ‘controlled clinical trials’
retrieved only 26 citations as of 6™ November 2023. The more recent citations report approaches such
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as Boswellic acids®®%; organic acids purified from plant resins), caloric restriction®®® and oral hygiene
intervention’?. Investigators described phase 1 trials of Lomecel B mesenchymal stem cells in patients
with mild AD (MSCs>2%7%; rebranded “medicinal signaling cells” by one of their discoverers to diminish
the implied stemness of the cell product>®). Recipients of Lomecel B showed no safety signals, and
measurements of plasma cytokines, hippocampal volume and MMSE produced variable results with
no clear dose-response or biomarker-clinical relationship. A senolytics cocktail of Dasatinib and
Quercetin has been trialed in a small number of early AD patients (NCT04063124; study design
reported in22%, with results at clinicaltrials.gov. There were no deaths or severe adverse events (SAE);
CSF Dasatinib was detected at ~3% of the plasma Cmax and Quercetin was not detected; CSF total tau
decreased by an estimated 3% and Ab1-42 increased by about 10%. Effects on other putative
biomarkers or cognition measures were marginal. One high-profile initiative (NCT05450549) using a
brain-penetrant TREM2 antibody, DNL919, was discontinued following observation of moderate,
reversible hematologic toxicity in a single ascending dose (SAD) safety study in healthy volunteers
(n=80;https://investors.denalitherapeutics.com/news-releases/news-release-details/denali-
therapeutics-reports-second-quarter-2023-financial). The judgment of those involved was that the
therapeutic window in AD patients would be too narrow to justify continued efforts to advance this
compound. A recent thoughtful Perspective piece®” asked the analogous question about amyloid-
lowering agents: why did it take 30 years to gain the first approvals for this approach? Their answers
point to the fundamentals of drug development, and they highlight the overwhelming importance of
biomarkers of target pathologies: amyloid and tau positron emission tomography (PET), buttressed by
cerebrospinal fluid (CSF) biomarkers. From the present review and from examining the clinical trial
literature, it becomes apparent that we (the community of neuroinflammation / neurodegeneration
researchers and developers) lack a unifying hypothesis which would enable the generation of panels
of core-pathology biomarkers. Our field would be well-advised to consider ways to accelerate clinical
development, given underlying biological uncertainty. For example, basket trials performed within a
platform trial structure allow the establishment of a combined, enlarged placebo group and
standardized protocols, against which to evaluate multiple agents simultaneously. At the same time,
considering how to enhance diversity of trial populations promises to augment the potential for real-
world success.

Next generation models and open questions

This review has highlighted the multiplicity of roles that each of many cell types are exerting on the
brain parenchyma to contribute to “neuroinflammation” along the trajectory to Alzheimer’s disease
(AD). It is thus clear that the target in AD is not a given cell type of subtype but rather a community of
cells whose intercellular communication accelerates AD pathophysiology®’®. Disruption of these
communications is an important therapeutic target, and it will require more sophisticated human in
vitro induced pluripotent stem cell- (iPSC) derived model systems than are generally available today,
as it will require not only co-culturing multiple cell subtypes together but ensuring that each of them
is in its relevant cell state. Further, complexity will need to be balanced with reproducibility, which is
critical to reduce sources of variation in the assays that will be deployed to answer specific mechanistic
guestions. These challenges are being addressed by many groups, and, while no one model system is
ideal today, some in vitro systems are showing promising results in capturing some features of disease
pathophysiology such as response to AP toxicity>”” or enhanced reproducibility. Further, simpler model
systems of cellular monocultures derived from iPSC have already shown that certain in vitro measures
correlate with complex traits captured during life, such as cognitive declineZ2’8. An added challenge is
that iPSC-derived cell types, and even cell lines, display heterogeneity in cell states even in
monocultures®”, next generation models will thus need a higher level of characterization to either
account for the diversity of cell states or, preferably, polarize the component cell types to the target
cell states needed for an experiment; work in microglia-like cells is showing the way forward using
small molecules®®. The recent development of chimeric models where human microglia is

transplanted into the mouse brain opens new avenues to tackle some of the challenges listed above.
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They provide a complex platform in which human cells are placed into a living brain “bioreactor”, where
they can interact with other CNS and systemic components and be exposed to relevant disease
challenges?8281382_|njtial characterization of this model showed that transplanted human microglia
recapitulate several baseline transcriptomic, proteomic and functional aspects of human primary
cells2#428L383 The analysis of human microglia transplanted into the brain of AD mice revealed that they
display a wide heterogeneity of cell sates that mimic time-dependent phenotypes and transcriptional
features of AD2%%°82, An additional key advantage of chimeric models is the wide range of patient
derived iPSC lines that could shed light on the impact of single or poly-genetic risk associated to AD*2,
as well as relatively straight forward genetic modifications that can be introduced at stem cell level and
can help translating from cell state to function. Although transplantation studies may provide relevant
biological and mechanistic insights into different AD genetics, microglia cell states and functions, they
come with limitations as the human cells are placed in a mouse immunodeficient host.

With enhanced multicellular in vitro and in vivo models, we will not reproduce the human brain, but
we will have a manipulable approximation of cellular communities with which to test mechanistic
guestions and obtain reproducible results that can inform therapeutic pipelines. Key questions to
pursue include defining how different microglial cell states translate into function within the brain,
prioritizing node(s) in the intercellular communication network of a pathophysiologic cellular
community for perturbation such that the community is driven towards protective states. One does
not necessarily have to perturb all cells in a community equally; perhaps perturbing a key driver cell
subtype can then effect the desired changes in the other cell types of the community. In vitro models
with a pseudo-vascular component or refined chimeric systems with re-introduction of adaptive
immune cells via T-cell transfer are particularly interesting as leveraging the propagation of immune
responses from the periphery to the CNS would be ideal for a therapeutic, avoiding the many
challenges of blood:brain barrier penetration.
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