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Introduction 144 

Alzheimer’s disease (AD) represents the most common cause of dementia, accounting for roughly 70% 145 
of cases and as such a major health care challenge. Neuropathologically, AD is characterized by 146 
extracellular deposition of misfolded and aggregated beta-amyloid peptides (Aβ) as well as formation 147 
of intraneuronal tangles made of hyperphosphorylated tau. In addition, Alois Alzheimer had already 148 
described the histological abnormalities of astroglia and microglia, yet for a long time activation of 149 
these innate immune cells and their joint inflammatory reaction have been regarded as non-relevant, 150 
bystander reaction. Epidemiological, clinical, genetic as well as experimental studies have challenged 151 
and changed this view over the past two decades substantially. Immune mediated mechanisms have 152 
become a field of intense research and drug development. Consequently, one must consider which 153 
immunological process at which time point can be harnessed for therapeutic intervention. While in 154 
general such immune modulation may include preventive, disease modifying or even acute therapeutic 155 
strategies, it is commonly accepted that clinically silent or even inapparent disease stages may hold 156 
the greatest potential for such interventions. Importantly, the identification and definition of AD pre-157 
stages, such as subjective cognitive impairment and mild cognitive impairment may allow together 158 
with fluid and imaging biomarker findings to delineate the time, duration and site where immune 159 
processes modification will successfully interfere with disease pathogenesis and progression. In this 160 
review, we summarize and weight the current knowledge on immune processes in AD. From human 161 
evidence, we will go further to the contributions of individual cellular compartments and the involved 162 
immune mechanisms. 163 

 164 

Evidence for an inflammatory component in Alzheimer’s disease 165 

AD brain pathology The term “plaques” was introduced in 1898 for structures which are nowadays 166 
well-known as amyloid plaques in AD brain, even before Alois Alzheimer described the disease2,3. Glial 167 
cells surrounding these plaques were described and it was speculated that these plaques were from 168 
glial origin2,3. By now, it is well-established that microglia are activated and increased in AD brain, (1) 169 
being associated with Aβ plaques4-6, 7 neurofibrillary tangles8, (3) complement factors4, and that they 170 
(4) produce immune mediators such as cytokines, chemokines, inflammasomes and radical oxygen 171 
species4,5,9-14. Microglia are involved already in the asymptomatic and symptomatic disease stages15,16 172 
and likely play a role in the clinical and pathological disease phenotype17.In humans, associations have 173 
been reported for microglia with Aβ and hyperphosphorylated (p)tau, but not between Aβ and ptau 174 
consistent with microglia playing a pivotal role in the AD pathogenesis18. Diffuse Aβ plaques are present 175 
in the brains of middle-aged and elderly cognitively normal people19, and the homeostatic markers of 176 
microglia (Iba1, P2Y12) respond to the appearance of Aβ20. While neuritic plaques defined by the 177 
presence of Aβ, ptau and microglia are a more specific feature of AD21 with microglia expressing 178 
phagocytic markers CD68 and Macrophage Scavenger Receptor (MSR)-A22. Of note, there is a wide 179 
variety in Aβ deposits with different involvement of microglia in human AD brains23. Aβ in neuritic 180 
plaques tends to be more fibrillar, with dense cores, and has a more varied composition with the 181 
presence of Aβ40, 42, 43, N-terminus truncated Aβ and other post-translationally modified forms24-26. AD 182 
cases with an atypical clinical presentation show a different spreading and morphology of pathological 183 
hallmarks, associated with different levels and spatial localization of microglia activity17,27. This 184 
supports the hypothesis that the spatial activation of microglia is involved in both the clinical and 185 
pathological presentation of the disease. In conclusion, microglia are involved early in disease and are 186 
instrumental for the morphology of Aβ deposits, spreading of pathology and the clinical presentation 187 
of AD patients21.  188 

Fluid biomarkers of inflammation While these pathological assessments require brain material, 189 
evidence for an ongoing chronic inflammatory disease component in humans has been further 190 
substantiated by probing of inflammatory fluid biomarkers primarily in cerebrospinal fluid or blood 191 
samples and by the development of microglial PET tracers such as TSPO ligands. Although the first 192 
studies on biofluid-based biomarkers for inflammation – most of all CSF or blood-based protein 193 
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markers – date back nearly 30 years28, an unmet demand for reliable biomarkers capable of monitoring 194 
the various aspects of AD neuroinflammation remains. Moreover, since at present disease non-195 
specificity of most inflammatory markers limit their value as trial outcome measures or further clinical 196 
use. Studies on “classical” inflammation markers, like CRP or pro-inflammatory cytokines, are large in 197 
number but have shown limited consistency in meta-analyses29,30. Quantitation of inflammatory 198 
mediators such as cytokines in CSF can be hampered by sensitivity of detection technologies31, but 199 
novel ultra-sensitive immunoassays including Single molecule array (Simoa), proximity extension assay 200 
(PEA) and nucleic acid-linked immuno-sandwich assay (NULISA) or measurement in brain-derived 201 
exosomes might overcome such limitations32-34. For CSF, few proteins have emerged as robust markers 202 
to monitor neuroinflammation in AD due to their reproducible relation to pathological features of the 203 
disease: soluble TREM2 (sTREM2) as a marker of microglial activation, YKL-40 as an astroglial 204 
inflammation marker, and glial fibrillary acidic protein (GFAP) as a marker of general astrocytic 205 
activation35-37. Interestingly, the GFAP signal in AD is robustly replicated in serum and plasma; 206 
plasma/serum GFAP concentration increases in close association with onset of cerebral amyloid plaque 207 
pathology38, which likely reflects astrocytic activation to the pathology39. Extensive proteomics studies 208 
that include validation in biofluids describe several other inflammatory messengers within sets of 209 
proteins affected by AD pathology40. Furthermore, novel immunoassays might enable detection of 210 
proteins like NLRP3 or ASC as biomarkers of inflammasome activation41,42. By their nature, CSF or blood 211 
based-fluid biomarkers will not allow for ascribing an inflammatory process to specific brain areas or 212 
regions and thus also neither its longitudinal spread over the entire disease trajectory. 213 

Molecular Imaging/PET Also technically more demanding such questions can be answered by 214 
molecular imaging techniques including positron-emission tomography, that allow for temporal and 215 
spatial analysis of the living human brain. To visualize microglial activation by molecular imaging in 216 
human brain, radiopharmaceuticals have been developed targeting the 18 kD translocator protein 217 
(TSPO) within the mitochondrial membrane43. Current research aims towards the development of 218 
radiotracers targeting microglial receptors (e.g. P2X7R, P2Y12R, CX3CR1) which will allow to relate their 219 
detection more to specific microglial functions44,45. In the 2nd generation of TSPO tracers, two 220 
radiotracers (DPA-714, PBR28) have shown higher binding potential (2-3-fold higher) in comparison to 221 
first generation PK11195 and reduced background activity46. In AD, it has been demonstrated, that 222 
increased PBR28 binding (temporal, parietal) correlates to cognitive impairment and atrophy47 as well 223 
as regional tau and amyloid deposition48. In a longitudinal set-up (2.7 years) n=14 amyloid-positive 224 
patients in comparison to n=8 amyloid-negative controls had a greater increase in TSPO binding in 225 
inferior parietal lobule, precuneus, occipital cortex, hippocampus, entorhinal cortex, and combined 226 
middle and inferior temporal cortex49. TSPO binding in temporo-parietal regions increased from 3.9% 227 
to 6.3% per year. The change in TSPO binding correlated with cognitive worsening. The annual rate of 228 
increased TSPO binding in temporo-parietal regions was about 5-fold higher in patients with clinical 229 
progression compared with those who did not progress. These results indicate, that in manifest AD, 230 
TSPO may serve as a biomarker of AD progression and response to anti-inflammatory therapies49. In 231 
contrast, in prodromal AD, it has been demonstrated that increased DPA-714 binding in temporo-232 
parietal cortex was positively correlated with MMSE scores and grey matter volume, as well as amyloid 233 
load. In addition, n=30 patients with AD were dichotomized into slow or fast decliners after 2 years of 234 
follow-up. Excitingly, slow decliners showed higher TSPO-binding than fast decliners50. These results 235 
demonstrate, that microglial activation appears at the prodromal and possibly at the preclinical stage 236 
of AD, and seems to play a protective role at early disease stages50,51. Moreover, in patients, an increase 237 
of DPA-714 binding was observed at follow-up (mean 13.2% per year; for prodromal AD 15.8%; for 238 
manifest AD 8.3%). The positive correlations between increasing DPA-714 binding and clinical outcome 239 
measures (CDR, MMSE, hippocampal atrophy) suggests a detrimental effect of increasing 240 
neuroinflammation on clinical AD progression52. In contrast, high initial DPA-714 binding was 241 
correlated with a low dynamic increase of microglial activation and a favorable clinical evolution. 242 
Another study has proposed an early and late peak of microglial activation in AD trajectory53. Together, 243 
PET-based microglial imaging can decipher several microglial phenotypes at various disease stages and 244 
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represents a non-invasive biomarker that may be used to assess future immune-modulating therapies 245 
in AD.  246 

Immune related genetics While post-mortem brain analysis, detection of inflammatory signals in 247 
biofluids and molecular imaging had been around for quite some time, a strong impact on the 248 
inflammatory hypothesis in AD came from genome wide association studies (GWAS), which did not 249 
only unravel a direct genetic connection of inflammation to disease pathogenesis, but also hold 250 
promise for the identification of inflammation-targeting therapeutic interventions. In total, the 251 
percentage of disease risk for AD that can be attributed to genetic factors with a heritability has been 252 
estimated between 56%-79% in twin studies54,55. The development of high-throughput genomic 253 
approaches over the last 15 years led to a major improvement in our knowledge of AD genetics56. Thus, 254 
GWAS and next-generation sequencing approaches have identified over 80 independent genetic loci 255 
modulating the risk of AD57,58. Pathway analysis using these genetic findings has identified both innate 256 
and adaptive immune responses as well as inflammation in general as key contributing pathways for 257 
AD pathogenesis59,60. So it appeared that AD risk alleles are specifically enriched in active enhancers of 258 
monocytes, macrophages and especially microglia61. In fact, close to 25% of the potential identified AD 259 
genetic risk factors could be highly/exclusively expressed by microglia and/or linked to immune-related 260 
function62. Several of these genes are indeed part of important pathways in microglia including ligand 261 
activators (IL34 and APOE), immune receptors (TREM2, SPI1, MS4A4A, MS4A6A HLA-DQA1, and 262 
CD33)63, signaling intermediates (PLCG2, PTK2B, and INPP5D) or effector mechanisms (ABI3 and 263 
EPHA1). Besides microglial functions, additional immune-related responses have been linked to the 264 
identified genetic signals such as complement machinery (CR1 and CLU)62 or cytoskeletal machinery 265 
(ABI3, EPHA1, and FERMT2)35.. Recently, the European Alzheimer and Dementia Biobank's (EADB) large 266 
meta-GWAS has reaffirmed most previously detected immunological loci. Crucially, it also provided 267 
genetic evidence linking the Linear Ubiquitin Chain Assembly Complex (LUBAC) to AD60. Comprising 268 
SHARPIN, RBCK1, and OTULIN, LUBAC is a high-confidence AD risk factor, unique in forming linear 269 
ubiquitin chains and pivotal in inflammation and immunity research. LUBAC is integral to NLRP3 270 
inflammasome activation, impacting innate immune responses and Aβ pathology in AD. It's also 271 
involved in autophagy, specifically in modifying TDP-43-positive neuronal inclusions, potentially 272 
triggering autophagic clearance. Importantly, the same GWAS study also support the significance of 273 
the TNF-α signaling pathway in AD with additional evidences. Genetic loci such as ADAM17, crucial for 274 
TNF-α signaling activation64, and TNIP1, which inhibits this pathway65, were identified. Other elements 275 
include SPPL2A's role in noncanonical TNF-α shedding66 and PGRN's function as a TNF receptor ligand 276 
and antagonist67. Finally, an adaptive immune response mediated by HLA-DRB1 (and more specifically 277 
the HLA-DRB1*04 subtype) has been also proposed, potentially by acting against Tau and especially 278 
the acylated form at lysine K31168 which is known to potentiate Tau PHF6 aggregation69. Importantly, 279 
AD research has also shown that tau pathology dependent on Aβ42-evoked neuroinflammation may 280 
be linked to microglia function as connecting both major pathological hallmarks of AD70-72.  281 

Epigenetics Without any doubt the above described genetic evidence for immune processes has 282 
strongly influenced the entire field over the past decade. It is likely that in decades ahead new findings 283 
showing how epigenetic changes modulate the AD relevant immune functions and are being 284 
transferred vertically from our ancestors, will become equally stimulating. AD arises on the background 285 
of complex genome-environment interactions that frequently activate epigenetic mechanisms. These 286 
mechanisms add an additional layer of control to the genome. Emerging evidence points to an 287 
important role of epigenetics in microglia regulation during AD pathogenesis38-41. For example, AD 288 
genetic risk variants are mostly centered on specific regulatory regions of microglia characterized by 289 
particular epigenetic motifs73-76. Microglia, as well as other tissue-resident macrophages, show a high 290 
degree of epigenetic heterogeneity between tissues and disease states77. They also display lineage-291 
specific characteristics and epigenetically primed responses according to the context and previous 292 
events78,79. Chromatin compaction80, DNA methylation81,82, and histone acetylation79,83, 293 
methylation79,84,85, phosphorylation80,86, or lactylation87 are modified in microglia in response to 294 
different stimuli and disease states. Additionally, epigenetic control of microglia is mediated by non-295 
coding RNAs, among which microRNA (miRs) play a prominent role in controlling microglia-specific 296 

bookmark://_ENREF_35/
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gene-expression and proteostasis at the systems level are best studied. Changes in microglia-specific 297 
miRs are observed in liquid biopsies of early AD patients and can predict disease progression88,89. While 298 
such epigenetic alterations can persist and even transmit across generations, they are reversible90. 299 
Therefore, it is intriguing to note that interventions targeting epigenetic mechanisms, including 300 
treatment with DNA methylation91 and histone deacetylase (HDAC)92 inhibitors, RNA therapeutics89,93 301 
and depletion of key components of the epigenetic machinery such as DNA methyltransferase 1 302 
(DNMT1)94, Tet methylcytosine dioxygenase 2 (TET2)95, HDACs 1/279,96, Sirtuin 1 (SIRT1)97, Embryonic 303 
Ectoderm Development98 84 and Jumonji D3 (JMJD3)85 can modify microglia responses. These effects 304 
can differ based on contextual factors and the brain’s prior state, leading to contrasting outcomes 305 
observed during brain development, homeostasis and disease 99,96, 100 77. In conclusion, epigenetic 306 
processes help to shape microglia dynamics and responses to future events79,101-103 making the 307 
epigenome an attractive drug target. Whether this hypothesis will withstand causal validation with epi-308 
genetic editing tools remains to be determined but, at current, it provides an exciting framework for 309 
future work. 310 

 311 

The Exposome – Can Life-style factors modulate Inflammation? 312 

While genetic and epigenetic influences may still be viewed as “given” and “unchangeable” to date, 313 
several life-style behaviors and environmental factors, which are collectively described as the 314 
exposome, modify the risk to develop AD. Several of these factors are directly or indirectly linked to 315 
the immune system: 316 

Brain trauma Traumatic Brain Injury (TBI) is one of the most important non-genetic, non-age-related 317 
risk factors for developing dementia, which correlates consistently with the number and severity of 318 
TBIs104-106. An association between a single moderate to severe TBI and AD neuropathology is less clear 319 
with multiple studies showing no association107,108, although other studies have found an association 320 
between TBI with a loss of consciousness and increased Aβ plaque burden suggesting that the severity 321 
of TBI is related to Aβ deposition109,110. Notably, exposure to years of repetitive mild TBI such as occurs 322 
in contact and collision sport athletes as well as military soldiers is a risk factor for developing chronic 323 
traumatic encephalopathy (CTE), a neurodegenerative disease characterized by Tau pathology in the 324 
cortical sulci and around blood vessels111,112. Both a single moderate-severe TBI and repetitive mild TBIs 325 
are associated with chronic vascular injury and blood brain barrier disruption113,114 as well as a 326 
persistent microgliosis115,116. Additionally, APP is accumulated in axons with diffuse injury after TBI, 327 
increasing the risk for Aβ accumulation117. Due to the elevated levels of neuroinflammation common 328 
to TBI and AD, it is hypothesized that immune responses after TBI accelerate or even trigger AD-prone 329 
neuropathological cascades during normal aging or in individuals with a specific genetic predisposition. 330 
Even after mild TBI, microglia and astrocytes remain persistently activated118, secreting inflammatory 331 
mediators such as IL-1β, IL-6, TNFα and ASC  that contribute to neurodegeneration post-injury through 332 
increased APP transcription119, γ-secretase expression120, reduced microglial phagocytosis121 and 333 
pathological posttranslational modifications of Tau such as hyperphosphorylation70 and acetylation122. 334 
Furthermore, in a vicious circle the accumulation of toxic peptides and proteins associated with 335 
neurodegenerative disorders, may also enhance and perpetuate glial responses to traumatic injury, 336 
leading to significantly higher secondary damage and accelerated neurodegeneration123. Persistent 337 
neuroinflammation following TBI may also mediate the increased risk for other neurodegenerations 338 
such as Lewy body disease107,124 and TDP-43 pathology125. 339 

Nutrition/diet/midlife obesity sedentary life style Several lifestyle factors influence dementia risk via 340 
neuroinflammatory processes126,127. Higher physical activity128,129 associates with reduced dementia 341 
risk  and lower inflammatory marker in human blood130,131. The association with cognitive performance 342 
is largely mediated by the amount of activated microglia132. In animal models, increased physical 343 
activity as well as an enriched environment attenuates the neuroinflammatory response to amyloid 344 
pathology resulting in reduced cytokine release130,133-137, altered microglial phagocytic activity137-139 and 345 
improved cognition133,134,138-140. In contrast, a sedentary lifestyle combined with a lack of balanced diet 346 
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increases the risk for midlife obesity, midlife hypertension and diabetes141,142, which are established 347 
risk factors for dementia127. These processes can induce wide-ranging metabolic changes and systemic 348 
chronic inflammation143,144. Systemic inflammation and innate immune memory, in turn, can affect 349 
neuroinflammatory and neurodegenerative processes in the brain79,145,146. Accordingly, pro-350 
inflammatory dietary pattern associates with cognitive decline-related blood-proteome changes147, 351 
high risk for dementia148 and reduced brain volume149 while opposite association patterns are observed 352 
for a balanced, Mediterranean diet150-154. Promoting an active, stimulating lifestyle including a balanced 353 
diet (e.g. by multi-domain behavioral interventions155) therefore holds promise to prevent dementia 354 
and ameliorate neuroinflammation in AD. 355 

Systemic infection/inflammation It has become clear that peripheral inflammation significantly impacts 356 
dementia. For example, enhanced cognitive decline has consistently been found in patients with 357 
existing AD pathology, who additionally experienced peripheral infections (for review see: Bettcher et 358 
al.156). A wide range of different infections significantly increase risk for AD and vascular dementia, and 359 
increasing numbers of infections increase risk in a cumulative fashion157. For both, Aβ and tau, in mice, 360 
it has been shown that systemic inflammation, induced by exposure to bacterial lipopolysaccharide 361 
exacerbated the respective pathology e.g. through enhanced inflammatory activation and reduced 362 
clearance145,158,159. Interestingly not only external, bacterial challenges but also sterile inflammatory 363 
and autoimmune allergic responses affect brain inflammation160. In humans both elevated TNFα and 364 
acute systemic inflammatory events were associated with more rapid cognitive decline over the 365 
preceding 6 months157. Exacerbated pathology is often due to enhanced inflammatory responses in the 366 
brain of patients as well as animal models, mechanistically driven by a pre-activation or “priming” of 367 
microglia that leads to a severe inflammatory response in the pathologically altered brain and, in turn, 368 
drives further functional deterioration161,162. Interestingly, epidemiological studies have also provided 369 
strong evidence that peripheral inflammation increases dementia risk when the inflammatory insult 370 
occurs up to two decades earlier163. The mechanisms of these long-term effects are much less clear, 371 
but may involve epigenetic reprogramming of microglia, leading to long-lasting immune memory in the 372 
brain that is sufficient to alter AD pathology in mouse models79. Such epigenetically-driven changes in 373 
microglial responses match the concept of innate immune memory as it was developed in peripheral 374 
macrophages, where two opposing immune memory states were described: “immune training”, where 375 
macrophages are primed to mount enhanced inflammatory responses upon exposure to subsequent 376 
immune insults, and “immune tolerance”, where macrophages are desensitized and show strongly 377 
reduced inflammatory activation upon restimulation162,164. Whether microglial immune memory also 378 
exists in the human brain, however, requires further investigation. While immune training has 379 
beneficial functions in the periphery, such as enhanced pathogen clearance, it may drive 380 
hyperinflammation in the brain, thereby exacerbating pathology. There is some evidence that AD 381 
patients who died with infection show higher levels of brain IL-1β than those who died without 382 
infection165 and LPS-induced systemic inflammation is known to potentiate IL-1β activity, driving 383 
further inflammasome activation and exacerbating both amyloid and tau pathology. Conversely, while 384 
immune tolerance may lead to immune paralysis in the periphery, increasing the risk for secondary 385 
infections, it may be beneficial in the brain by inhibiting detrimental microglial activation79,164. 386 

Poor oral health/parodontitis Periodontal disease represents a more subtle and chronic form of 387 
peripheral inflammation. Further support for an influencing role of oral hygiene comes from works 388 
linking microbiome dysbiosis to the development of development in later life166,167. Lipopolysaccharide 389 
(LPS) from the outer surface membrane of Gram-negative bacteria is a strong immune system 390 
activator168. Porphyromonas gingivalis, with Gram-negative characteristics is considered a keystone 391 
bacterium169 in generalised periodontitis170. This bacterium and its virulence factors are found in 392 
autopsied AD brains171-173. The infection is responsible for causing extensive oxidative damage in a 393 
genetically modified apolipoprotein E knock-out (ApoE-/-) mouse model, orally infected with P. 394 
gingivalis to initiate experimental periodontitis174. P. gingivalis infection and P. gingivalis-LPS induced 395 
neuroinflammation (glial cell activation) has also been studied in mice models175-178. Poole et al., 396 
(2015)177, reported that P. gingivalis induced classical complement pathway activation following oral 397 
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infections. A subsequent report demonstrated pro-inflammatory cytokines release such as tumor 398 
necrosis factor-alpha (TNF-α), interleukin (IL)-6, and IL-1β in the brain tissues of middle-aged mice by 399 
Ding et al., (2018)179. Zhang et al., (2018)178, study highlighted that the Toll-like receptor 4/nuclear 400 
factor-kappa B (TLR4/NFkB) signaling pathway was activated. In another study Memedovski et al., 401 
(2020)180 found classical and alternative activation in rat brain microglia, which according to Hanisch 402 
(2002)181, are responsible for secreting cytokines in the human brain. Neuroinflammation, an 403 
important element of the AD brain pathology that appears to play a substantial role in the deteriorating 404 
cognition and progression of the neuropathological changes (hallmark lesion formation) in AD brains. 405 
This has also been demonstrated in mice models of experimental periodontal disease176,178, which 406 
further sustain intrathecal chronic neuroinflammation.  407 

Gut microbiome Next to the oral flora, the gut microbiome may influence immune processes in the 408 
brain. Rats receiving fecal transplantation from AD patients show Alzheimer’s symptoms182 and, vice 409 
versa, fecal transplantation from healthy mice to AD model animals reduces disease pathology183,184. 410 
Disease microbiomes can be modified; e.g. the traditional Indian medicine Triphala in AD mice 411 
positively affects cognitive parameters and reduces serum Aβ levels by shifting the microbiome to 412 
Bacteriodetes and Verrucomicrobiota phylums with a reduction of Cyanobacteria185. There are several 413 
ways of communication for the gut microbiome and the brain, including the vagus nerve, the stress-414 
associated HPA (hypothalamic–pituitary–adrenal) axis, direct or indirect modulation of 415 
neurotransmitters and e.g. SCFA (short-chain fatty acids) and other metabolites (reviewed in186,187). 416 
The BBB (blood-brain-barrier) controls brain entry of peripheral immune cells and immune mediators. 417 
Microbiome originated LPS (Lipopolysaccharide) and SCFA impairs the permeability of the BBB188-190 418 
and affects homeostasis, maturation and activation of microglia e.g. by SCFA binding to FFAR2 (free 419 
fatty acid receptor 2) or LPS to TLR4 (toll-like receptor 4)191,192. In GF (germ free) mice the BBB has a 420 
higher permeability190. The BBB permeability in GF mice is rescued by mono-colonization with SCFA-421 
producing bacterial strains190. In GF mice there are global defects in microglia morphology and 422 
maturity. Temporal eradiation of microbiome leads to severe changes in microglial properties191. 423 
Microglia in GF animals have enhanced Aβ uptake at early disease stages193, and protect for tau 424 
pathology related neurodegeneration194. ABX (antibiotics) microbiome depletion in adult mice disrupts 425 
the BBB195 and allows invasion of peripheral immune cells to the brain. ABX dysbiosis leads to memory 426 
impairments196. Bifidobacterium and Lactobacillus species based probiotics therapy after ABX improves 427 
BBB integrity and memory deficits in AD mice185,197. Brain invading microbial tryptophane indole 428 
derivate metabolites198 have an anti-inflammatory effect on microglia and astrocytes by binding the 429 
AhR (aryl hydrocarbon receptor) which then inhibits NF-κB and the proinflammatory phenotype199,200 430 
(reviewed in201). BBB passing primary and microbial processed secondary bile acids bind to microglial 431 
TGR5 (Takeda G protein-coupled receptor 5) and induce the anti-inflammatory phenotype202 by 432 
inhibiting the proinflammatory NF-κB pathway via PKA203,204 and thus the NLRP3 inflammasome205 as 433 
well. The conjugated bile acid TUDCA (tauroursodeoxycholic acid) reduces glial activation in the context 434 
of AD, resulting in reduced Aβ plaque formation and cognitive decline206. Microbiome alteration as 435 
potential treatment to slow down disease progression or to delay disease onset is still understudied 436 
and needs to be better understood. 437 

It seems possible that further epidemiological risk factors contribute to AD pathogenesis by 438 
stimulating, aggravating or accelerating neuroinflammation. Nevertheless, this may be influenced by 439 
the individuum’s genetic background. Studying gene-exposome interactions may therefore be 440 
important to understand which genetic background in combination with certain life-style factors 441 
account for detrimental as well as protective effects. 442 

 443 

Which cellular systems drive neuroinflammation in AD? 444 
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Microglia The immune system of the central nervous system (CNS) parenchyma consists exclusively of 445 
macrophages as innate immune cells whereas many more immune cells like lymphocytes, NK cells, ILCs 446 
and others can be found in other CNS structures such as the dura mater207-209. These tissue resident 447 
CNS macrophages belong to the family of mononuclear phagocytes that are spread across the whole 448 
body (such as brain, liver, lung, kidney, testes, skin etc.) and settled there in distinct anatomical 449 
compartments210. In the CNS, local macrophages exists in two distinct flavors: either as juxta-neuronal 450 
macrophages in the parenchyma where are they traditionally called microglia (micro: small, glia: from 451 
Greek glue) or as resident macrophages at CNS interfaces such as the leptomeninges, the perivascular 452 
space and choroid plexus211-213. These border macrophages usually summarized as CNS-associated 453 
macrophages (CAMs). Even though CAMs are positioned at strategically important CNS boundaries 454 
their functions are only incompletely understood and recently summarized elsewhere92,214-216. Notably, 455 
microglial cells can be observed widely across the animal kingdom (even in leech, shark etc. to humans) 456 
covering more than 450 million years underpinning their obviously essential role for the CNS217. For 457 
many years their ontogeny was unclear and bone marrow-derived monocytes were considered to be 458 
their cells of origin218. However, elegant fate mapping experiments have proven their prenatal origin 459 
from distinct yolk sac progenitors described as c-kit+ non-committed erythromyeloid progenitors219,220 460 
that engraft via the CNS surface to the embryonic mouse brain parenchyma at day E9.5 where they 461 
locally migrate, expand and finally gain their typical arborized morphology. Nowadays, microglial cells 462 
are very long-lived cells existing for few years that divide very slowly at rates of about 0.5 % with 463 
considerable differences in various CNS regions in mouse and man221-223. Microglial cells in the steady-464 
state CNS undergo self-renewal without any input from circulating hematopoietic cells that are 465 
excluded by the tight BBB224,225. As typical tissue macrophages, microglial cells are thought to be 466 
extremely sensitive and versatile watchdogs of even minute changes of their microenvironment. As 467 
such they are considered as tremendously plastic cells that can quickly adopt several functional and 468 
morphological phenotypes influences by the environmental cues. The recent advent of several novel 469 
single cell technologies and innovative fate mapping studies had shed new light on the transcriptional 470 
and cellular heterogeneity of microglia in both mouse and man226. Microglial cells are nowadays 471 
characterized by distinct transcriptional, epigenetic, and proteomic and functional profiles during 472 
development, homeostasis and perturbation215,227. During pathology, several microglial states have 473 
been defined leading to a perplexing nomenclature of context-associated microglial signatures215,228-474 
233. Whether this endless description of putative novel microglial clusters or even subsets is meaningful 475 
and whether these reflect real distinct biological conditions remains to be determined in the future. 476 

Microglial transcriptomes and differences between murine and human microglia Nevertheless, the 477 
identification of the microglial phenotype associated with neurodegeneration (MGnD)234 in Alzheimer 478 
Disease (AD), also known as DAM229, has sparked considerable interest for therapeutic targeting, yet 479 
the implications in disease progression remained conflicted. We have recently identified a negative 480 
role of APOE4, the strongest genetic AD risk factor, in impairing microglial MGnD response to AD 481 
pathology in mice and in humans (PMID: 37749326). A similar impairment of microglia expressing 482 
another AD risk gene, INPP5D, to induce a response to neurodegeneration was identified, which was 483 
restored following the genetic deletion of INPP5D or APOE4235,236. Microglial deletion of APOE4 or 484 
INPP5D harnessed astrocytes to encapsulate amyloid-b plaques via the induction of LGALS3 and the 485 
suppression of TGFβ-mediated checkpoints, associated with reduced pathology and 486 
neurodegeneration in mice236. In the brains of AD APOE4 carriers, we identified a similar reduction in 487 
MGnD signaling and astrocytic activation at sites of pathology. Moreover, reanalysis of two publicly 488 
available datasets237,238 confirmed these findings, demonstrating reduced MGnD signature in AD APOE4 489 
carriers. Taken together, these findings highlight the beneficial role of MGnD-microglia in limiting AD, 490 
and that boosting MGnD provides an exciting therapeutic intervention approach for AD. Mouse models 491 
of AD only partially recapitulate the complex brain environment encountered in human AD brains. 492 
Microglia respond to a plethora of various environmental signals in AD brains, for instance, amyloid 493 
plaques, neurofibrillary tangles, synaptic/neuronal loss, myelin debris, and altered intercellular 494 
communication between cell types just to name a few. Beyond extrinsic factors, genetic variation in 495 
form of single nucleotide polymorphisms (SNPs) associated with elevated AD risk, may lead to impaired 496 
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microglial function. Lastly, although the innate immune system is highly conserved between species, 497 
mouse and human microglia display significant differences in their gene expression profile217,238,239. 498 
Bulk analysis of microglia cells isolated from pediatric and human brain tissue of neurotypical controls 499 
led to the identification of a homeostatic microglia gene expression signature239,240. Homeostatic 500 
microglia marker genes include microglia-specific surface receptors such as CX3CR1, P2RY12, and 501 
TMEM119. In recent years, the generation of single cell and single nuclei transcriptomic data from 502 
isolated human microglia helped to reveal multiple, small subclusters -microglia states- as 503 
characterized by the up-regulation of distinct marker genes compared to homeostatic microglia232,237. 504 
In neurotypical brains, the up-regulation of major histocompatibility class II (MHCII) genes such as CD74 505 
and HLA-DRA indicate that microglia participate in antigen presentation in the brain. Other microglia 506 
states include interferon-responsive microglia (e.g., IFITM3, IFIT1, IFIT3, ISG15), inflammatory microglia 507 
(e.g., CCL2, CCL3, CCL4), proliferative microglia (e.g., MKI67, PCNA), and a small subset reminiscent of 508 
mouse DAM (e.g., APOE, LPL)232. 509 

Data on gene expression profiles of human microglia states in AD, however, is still limited. Compared 510 
to mouse microglia, human microglia show a higher degree of variation, probably due to manifold 511 
environmental stimuli in AD pathology but also in terms of technology (e.g., differences in microglia 512 
isolation, sequencing technologies, single cell vs. single nuclei, postmortem interval, etc.). 513 
Nevertheless, isolation of microglia cells from AD brains and subsequent analysis of the transcriptome 514 
gave important insights into microglia states237,241. Reflecting the complex environmental changes in 515 
AD, signature genes for DAM were found across several microglia clusters while MHCII microglia 516 
number was diminished237. Comparison with mouse microglia isolated from an amyloid model showed 517 
a partial overlap between mouse and human DAM with the common denominator in genes associated 518 
with lipid metabolism and lysosomal function242. Regressing microglia gene expression against 519 
amyloid-beta and phosphorylated-Tau load revealed distinct microglia responses in gene expression 520 
to amyloid and tau pathology241. However, more studies are needed to dissect microglia states in terms 521 
of brain region, disease stage, and pathology. As mentioned above, the gene expression profile of 522 
mouse microglia substantially differs from human microglia already under homeostatic conditions. 523 
One strategy which allows the investigation of human microglia in response to different environmental 524 
stimuli is the transplantation of human iPSC-derived hematopoietic progenitors (HPCs) into the mouse 525 
brain of immunodeficient mice243 overexpressing the human colony-stimulating factor 1 for human 526 
microglia survival244,245. The presence of amyloid-beta resulted in the transition of iPSC-derived HPCs 527 
to DAM with a partial overlap in gene expression signature to mouse DAM 10. Chimeric mouse models 528 
allow the investigation of the response of human microglia to a microglia-autonomous genetic 529 
perturbation such as the deletion of TREM2. Deletion of TREM2 in human microglia resulted in the loss 530 
of the DAM response in amyloid mouse models and also changed microglia function as evidenced by 531 
impaired phagocytosis and chemotaxis246. Single cell RNA-seq of xenografted iPSC-derived HPCs with 532 
the TREM2 R47H loss-of-function variant identified a cluster that resembled atherosclerotic foam 533 
cells247. Collectively, these transplantation studies may help to provide more biological and mechanistic 534 
insights into different microglia cell states in the context of different environmental stimuli. However, 535 
limitations of the chimeric models include a mouse environment and immunocompromised 536 
background. 537 

Whereas we have gained substantial insights into various microglia cell states and their underlying 538 
gene expression profiles in recent years, the transcriptional mechanisms by which different 539 
environmental cues in Alzheimer’s disease drive these distinct phenotypes are largely unknown. 540 
Recent advances in sequencing technologies including ATAC-Seq, ChIP-Seq, and csRNA-Seq just to 541 
name a few may help us to infer key transcription factors responsible for context-dependent gene 542 
expression of microglia. Transfer of human microglia from the brain into a culture environment results 543 
in rapid chromatin remodeling with alterations in chromatin accessibility and active gene regulatory 544 
elements, mainly enhancers239. A multi-omics study assessing microglia chromatin accessibility and 545 
gene expression in AD brains identified SPI1, encoding the lineage-determining transcription PU.1 as a 546 
key regulator of microglia in AD75. Other transcription factor family candidates include the AP-1 and 547 
MI/TFE families, which were shown to be up-regulated in microglia isolated from AD brains241. 548 
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Clarification of the key transcriptional regulators of microglia states may lead to the development of 549 
novel strategies targeting microglia phenotypes. 550 
 551 

Microglial phagocytosis may be influenced by many of the genes associated with AD that are 552 
predominantly expressed by microglia, including TREM2, PLCG2, ABI3, CD33, PILRA, SIGLEC11, ABCA1, 553 
ABCA7, CR1, GRN, CLU and APOE248. APOE can opsonize Aβ plaques, synapses or neurons, and then 554 
consecutively activate TREM2, PLCg2 and ABI3 to induce microglial phagocytosis, and this pathway is 555 
potentially inhibited by CD33, PILRa and SIGLEC11248. Thus, most of the known genetic risk for AD is 556 
potentially linked to microglial phagocytosis, but it is unclear whether this is via phagocytosis of soluble 557 
Aβ, amyloid plaques, dead cells and debris, or live synapses and neurons. Plaque-associated microglia 558 
have increased expression of TREM2, which can bind Aβ, inducing phagocytosis of Aβ, causing 559 
compaction of Aβ plaques, and reducing Aβ seeding of new plaques229,234,249,250. Accordingly, antibodies 560 
that increased TREM2 expression and signaling reduced Aβ plaque burden in a mouse model of 561 
amyloidosis98. Activation of TREM2 can induce the DAM expression profile of microglia, including 562 
increased expression of the phagocytic receptors, Axl and Mer229, which also have increased expression 563 
in plaque-associated microglia251. Knockout of Axl and Mer in a mouse amyloid model lowered Aβ 564 
phagocytosis 10-fold, and lead to a surprising and selective reduction in the number of dense-core 565 
plaques, suggesting that microglial phagocytosis of Aβ via this class of receptors leads to the formation 566 
of dense-core plaques by microglia, which is arguably a protective confinement mechanism to prevent 567 
the release of toxic Aβ species251. Fc receptors have also been shown to mediate microglial 568 
phagocytosis of Aβ species bound to immune complexes252, which is presumed to be one of the 569 
mechanisms underlying the amyloid clearing effects of the recently FDA-approved anti-amyloid 570 
antibodies to treat AD, aducanumab and lecanemab. Although there are still considerable 571 
uncertainties associated with the use of these drugs, they clearly highlight and validate the potential 572 
of amyloid clearance by microglia as a promising therapeutic avenue. Nonetheless, in later stages of 573 
AD pathology, microglial phagocytosis may contribute to synapse loss (see synapse section below) and 574 
neuronal loss. TREM2 can mediate microglial phagocytosis of synapses in amyloid or tau models of 575 
AD253-255. Mer can mediate microglial phagocytosis of new-born neurons in amyloid mouse models, 576 
limiting neurogenesis and seizures256. Aggregated Aβ or tau can induce microglial phagocytosis of live 577 
neurons in culture or in vivo, and this neuronal loss can be prevented by blocking microglial 578 
phagocytosis, which also prevented memory loss in mice257-259. Thus, microglial phagocytosis of Aβ, 579 
synapses and neurons may affect AD onset and progression, and interventions need to focus on the 580 
specific receptors involved. 581 

Microglial barrier function Beyond these clearance function, microglia also function as a barrier around 582 
sites of degeneration and injury. In AD, microglia cluster around amyloid plaques, wrapping their 583 
processes tightly around the plaque surface. This encapsulation creates a physical barrier that limits 584 
plaque expansion and leads to a more compact amyloid conformation260,261. Surrounding each amyloid 585 
plaque are hundreds of axons with spheroid enlargements262 that disrupt electrical conduction and 586 
neural circuit function263. Microglia encapsulation of plaques plays a crucial role in protecting axons by 587 
limiting their exposure to toxic protofibrillar amyloid261. Microglia plaque sensing and encapsulation 588 
are disrupted in aging261 and with hypomorphic TREM2 human variants264 as well as by deletion of 589 
Trem2264,265 or downstream Dap12 and Syk signaling266,267 in mice. Additional receptors including 590 
MERTK and PIEZO1 may also mediate microglia plaque sensing and barrier formation. Disruption of 591 
these signals is associated with more diffuse plaques and greater axonal spheroid formation264,265 and 592 
neuritic tau hyperphosphorylation268. In contrast, overexpression of Trem2269 or treatment with 593 
activating TREM2 antibodies270 enhances microglia encapsulation and reduces plaque-associated 594 
axonal pathology. Astrocytes intermingle with microglia at the plaque interface, suggesting a 595 
coordinated interaction271 during barrier formation271, which may be mediated through Trem2 and 596 
ApoE signaling272. Overall, the evidence suggests that targeting glial cells in AD to enhance the 597 
formation of neuroprotective barriers could yield beneficial therapeutic effects. 598 
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Microglial proliferation Microglia numbers may not stay the same in response to any acute or chronic 599 
immune challenge. Microgliosis due to increased microglial proliferation represents another key 600 
feature of AD,  predicting the onset of cognitive decline273. An increase in the proliferation of microglia 601 
is observed in post-mortem samples from AD patients, in association with upregulation of its key 602 
mitogenic machinery, the CSF1R pathway274-276. CSF1R gene variants are also strongly associated to 603 
LOAD susceptibility277. These studies have been reinforced and expanded by studies in models of AD-604 
like pathology, helping to elucidate the timing and consequences of microglial proliferation. An 605 
accepted mechanistic model linking microglial proliferation to AD progression starts after an early and 606 
intimate crosstalk of microglia with nascent Aβ pathology, triggering microglial proliferation, observed 607 
using in vivo imaging261. Microglial proliferation increases progressively in proximity to Aβ plaques, in 608 
a CSF1R-dependent manner276. Prevention of microglial proliferation via inhibition of the tyrosine 609 
kinase activity of CSF1R impedes the degeneration of synapses, ameliorating cognition without 610 
modifying the levels of Aβ in the APP/PS1 model276, as well as the 3xTg278 and 5xFAD models279,280 of 611 
AD-like pathology. Microglial proliferation can be prevented by alternative agents such as minocycline, 612 
rendering similar beneficial effects over AD-like pathology281. The inhibition of CSF1R is also a disease-613 
modifying mechanism in a model of tauopathy, leading to reduced neurodegeneration and an 614 
improvement of behavioral performance. Functionally, prevention of microglial proliferation induces 615 
a repolarization of these cells to a homeostatic phenotype276,282. Interestingly, inhibition of microglial 616 
proliferation is linked to a prevention of the onset of replicative senescence in microglia, associated 617 
with the specification of the DAM phenotype283. Collectively, these studies provide solid evidence 618 
identifying microglial proliferation as a mechanism underpinning the contribution of the cells to the 619 
disease and identify CSF1R as a promising target for therapy. This body of evidence underpinned 620 
promising drug discovery programs284, and in coming years the field will collect valuable clinical 621 
information about their potential efficacy in AD. 622 

Microglial immune metabolism Although representing just 2% of our body mass, the brain is one of the 623 
most metabolically active organs and consumes the most energy, predominantly in the form of 624 
glucose. Glucose is broken down into pyruvate (known as glycolysis), where it can enter the Krebs cycle 625 
to be fully metabolized to CO2. This process also reduces NAD to NADH, which is subsequently used for 626 
oxidative phosphorylation (oxphos) and ATP generation. Recent advances in immunology have 627 
uncovered the sophisticated role that glycolytic signaling has on powering inflammatory activity in 628 
macrophages and peripheral immune cells, yet we are still uncovering the extent to which these 629 
processes are used by microglia in the brain. In primary microglia, Aβ can trigger glycolysis with a 630 
corresponding reduction in oxphos285. This switch to glycolysis activated the mTOR-HIF-1α pathway, 631 
that in turn directly regulated the production of inflammatory cytokines including IL-1β285. Similar 632 
effects have been found in murine models of AD, where microglia from APP/PS1 mice have increased 633 
glycolytic activity286. This was recently shown to be sex dependent as microglia from aged female 634 
APP/PS1 mice are more glycolytic and inflammatory than their male counterparts, with a 635 
corresponding reduction in phagocytic ability287. Interestingly, microglia are metabolically flexible and 636 
not solely reliant on glucose. Instead, they can also use amino acids such as glutamine, or fatty acid 637 
oxidation to fuel important surveillance and migratory activities288. Recent studies indicate that 638 
microglial and macrophage glycolysis and mitochondrial function decline significantly with aging, 639 
leading to an energy depleted state that disrupts homeostatic myeloid responses such as phagocytosis 640 
and inflammation resolution. Several mechanisms have been identified that contribute to this change.  641 
With age and immune stimulation, myeloid cells lose their capacity for de novo NAD+ biosynthesis 642 
because of a distal breakdown in tryptophan metabolism289. Moreover, with aging, glucose is shunted 643 
away from glycolysis and towards production of glycogen, an effect driven by increased signaling by 644 
the immune modulator Prostaglandin E2 (PGE2) via its EP2 recepto290. EP2 signaling also disrupts 645 
glutaminolysis in aging myeloid cells, an alternative source of energy that fuels the TCA and 646 
mitochondrial respiration via anapleurosis. Inhibition of EP2 signaling genetically and 647 
pharmacologically restores microglial and macrophage bioenergetics and homeostatic immune 648 
responses and reverses age-associated cognitive decline. Recent studies have also identified TREM1 649 
(Triggering Receptor Expressed in Myeloid cells-1), an amplifier of detrimental inflammatory 650 
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responses, as a disruptor of homeostatic myeloid glucose metabolism that contributes to cognitive 651 
decline in aging and models of amyloidosis (Wilson et al., Nat Neuroscience, in press). Thus myeloid 652 
metabolism directs immune responses in microglia and macrophages, which in turn regulate cognitive 653 
function in aging and models of neurodegeneration. 654 

Microglia senescence / fate Cellular senescence is a hallmark of ageing and age-associated diseases 655 
including AD. Senescent cells are characterized by an irreversible proliferation arrest and profound 656 
changes in their metabolism and behavior, preventing them from executing their physiological 657 
function. In addition, senescent cells frequently display a senescence-associated secretory phenotype 658 
(SASP) that is characterized by the release of various proinflammatory factors291. SASP factors were 659 
detected in the brain, cerebrospinal fluid and serum of patients suffering from AD292-295 and are 660 
associated with aged and potentially senescent microglia296. Interestingly, microglial-mediated 661 
inflammation especially via the common SASP factor interleukin (IL)-1β was shown to contribute to tau 662 
spreading and tau-mediated neurodegeneration70,158,297,298. In line with this, microglia have been 663 
identified as a putative senescent population in tauopathies including AD283,294,299,300. Senescent 664 
microglia developed before the onset of neurofibrillary tangle deposition in human P301S tau-665 
transgenic mice (PS19 mice). Using single cell RNAseq, these microglia were found to represent a 666 
subset of DAM301. Remarkably, removal of senescent cells, either genetically or with senescence-667 
targeting pharmacological means, alleviated tau pathology, tau-mediated neurodegeneration and 668 
cognitive deficits in this model299, suggesting that senescent microglia contribute to disease 669 
progression. Cellular senescence can be induced via multiple pathways. The sustained proliferation of 670 
microglia in Aβ-depositing APP/PS1 mice promoted replicative senescence, ultimately fueling Aβ 671 
accumulation and synaptic defects283. Furthermore, microglia internalizing tau aggregate-bearing 672 
neurons or monomeric tau from the extracellular space enter a senescent state and present with a 673 
SASP302,303, that might modulate AD pathology, neuronal function and neurodegeneration. 674 

Astrocytes provide vital physiological functions for normal development and maintenance of the CNS 675 
– particularly for neuron health and function304. The altered response of astrocytes during acute 676 
infection or brain injury and in chronic disease states is referred to as astrocyte ‘reactivity’ and any one 677 
particular reactive response may include several heterogeneous reactive ‘sub-states’ – each with 678 
distinct transcriptomic profiles and (likely) functional outcomes304,305. The response of astrocytes to 679 
neurodegenerative diseases like AD have been linked to inflammatory responses of microglia and 680 
peripheral immune cells, pathological proteins like amyloid and Tau, barrier leakage, and many other 681 
pathological indications. While there are many initiators of astrocyte reactive states in AD, the main 682 
historical hallmarks are hypertrophy of fine processes, upregulation of cytoskeletal proteins like GFAP 683 
and Vimentin, as well as increased expression of innate immune-related genes like Lipocalin 2 (Lcn2), 684 
the protease inhibitor  α1-antichymotrypsin (Serpina3n), and many components of the cholesterol 685 
synthesis pathway238. These transcriptomic and morphological changes often occur long before 686 
cognitive deficits. Reactive astrocytes are associated with senile plaques, and while there is 687 
restructuring of astrocyte gross morphology their domain architecture is preserved, indicative of 688 
isomorphic, non-proliferative astrogliosis306 and proliferation or scar formation is uncommon, except 689 
for around amyloid plaques later in disease progression. Other reported altered functional changes in 690 
reactive astrocytes include decreased phagocytosis, decreased glutamate uptake, loss of endfeet-691 
polarization and expression of AQP4 water channels, and secretion of neurotoxic compounds307. In 692 
particular, astrocytes in AD up-regulate expression of monoaminoxidase-B that translates to an 693 
increased synthesis of GABA (thus increasing tonic inhibition counteracting neuronal hyperexcitability 694 
but also casing cognitive impairments) and increased production of H2O2; similarly, H2O2 is produced 695 
by increased activity of urea cycle, implemented in detoxification of ammonium and utilization of β-696 
amyloid308,309. Oxidative stress is further augmented by age-dependent decline in astrocyte anti-697 
oxidative system306, thus precipitating direct neuronal injury. A substantial sub-population of 698 
astrocytes in AD demonstrate atrophy and loss of homeostatic support, further aggravating neuronal 699 
damage310. Given that astrocytes interact with up to 2 million synapses in the human brain311, changes 700 
in synapse forming functions likely have major contributing roles to cognitive decline. Synaptic 701 
uncoupling of neurons projecting between brain regions, particularly in the hippocampus likely 702 
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decrease memory function. The neurotoxic reactive astrocyte sub-state also likely plays an active role 703 
in the degeneration of neurons and synapses307, while other putatively protective reactive astrocytes 704 
seem more prevalent in the early stages of disease and may help maintain CNS integrity by limiting 705 
infiltration of peripheral immune cells305. How astrocytes also response directly to Aβ deposits, remains 706 
under investigation, but decreased astrocyte AQP4 levels could slow clearance of such pathogenic 707 
proteins through the glymphatic system (formed between the blood vessel endothelium and astrocyte 708 
end feet). Loss of cholesterol synthesis machinery is also important for understanding modulation of 709 
neuroinflammation in the context of AD. As almost sole producers of cholesterol in the CNS, astrocytes 710 
are integral for the biosynthesis of cell membranes in the brain and spinal cord. Cholesterol is also an 711 
important trophic molecule for microglia, and evidence suggests that astrocytes expressing the AD-712 
associated APOE4 allele are less competent at producing and secreting cholesterol. This could initiate 713 
a feedback loop between decreased cholesterol, driving microglial reactive states, which in turn 714 
feedback to drive reactivity in astrocytes312. Indeed, this astrocyte-microglia crosstalk is important for 715 
the maintenance of many physiological microglial functions including synapse pruning and debris 716 
clearance. 717 

Lymphocytes and the adaptive immune system Besides the innate immune system, presented in 718 
particular by microglia and macrophages, the adaptive immune system is increasingly recognized as 719 
being involved in the pathogenesis of AD. The disruption of the blood-brain-barrier in AD313 resembles 720 
an essential requirement for the possibility of  peripheral lymphocytes including B- and T-cells to enter 721 
the brain parenchyma. Indeed, pathology in transgenic AD mice is associated with infiltration of B cells 722 
into the brain parenchyma and with immunoglobulin deposition at Aβ plaques (PMID: 33846335). 723 
Furthermore, in the absence of B cells Aβ plaque burden was reduced suggesting that B-cells might 724 
contribute to AD pathogenesis. Importantly, the absence of B-cells reversed behavioral and memory 725 
deficits presenting B-cells as promising targets in AD therapy development. One of the most 726 
remarkable changes that accompany immune system aging relates to the function and maintenance 727 
of T cells (primarily T helper cells), which are key orchestrators of the immune system. Whereas the 728 
population of naïve T cells shrinks with age, central memory, effector memory, and exhausted T cells 729 
accumulate and often show dysregulated properties314-316. Low-grade chronic systemic inflammation, 730 
which accompanies and/or is caused by processes such as tissue senescence and altered 731 
metabolism317, acts as an additional component that contributes to the dysfunctional properties of 732 
age-related T-cell subsets. A compelling key question is whether the emergence of such dysregulated 733 
T-cell subsets could set the ground for the development of AD318. A support for this was evident in a 734 
recent study in humans, demonstrating increased frequencies of pro-inflammatory CD8+ CD45RA+ T 735 
effector memory (TEMRA) cells in peripheral blood of individuals with MCI and AD, as well as their 736 
clonal expansion in the CSF, suggestive of antigen-specific reactivation319. CD8 T cells were also 737 
observed within the meningeal tissues and the brain parenchyma of people with AD319, overall 738 
suggesting the neurotoxic capacity of dysregulated and/or antigen-experienced CD8 T cells in the 739 
pathophysiology of AD319. In accordance, recent reports in murine models of Tau pathology evidenced 740 
an instrumental role of T-cell infiltration in Tau-related neurodegeneration, neuroinflammation and 741 
cognitive deficits320,321, in association with clonal expansion of selected T cells, although their antigen 742 
specificity remains unknown320. These observations are also reminiscent of earlier reports showing 743 
increased frequencies of late-stage differentiated effector memory CD4+ TEMRA cells in the blood322 744 
and clonal expansion of CD4+ T cells in the CSF323 of AD patients compared to healthy controls, and 745 
enhanced circulating Aβ-specific CD4+ T cells in elderly individuals and people with AD324. However, 746 
their putative role in AD pathogenesis remains to be further defined. Nevertheless, their identity as 747 
tissue-resident memory T-cells has been confirmed through transcriptome analysis325. Moreover, the 748 
fact that the CD8 T cells within the brain parenchyma are in direct contact with microglia cells suggests 749 
a regulatory cross-talk between the two cell types326. The latter was elegantly illustrated in a recent 750 
study identifying the CXCL16–CXCR6 axis orchestrating and retaining CD8+ T cells in brains of mice with 751 
AD pathology327. Cxcr6 deficiency reduced accumulation and clonal expansion of CD8 T cells in the 752 
brains, and the ablation of CD8+ T cells ultimately increases proinflammatory cytokine production from 753 
microglia, together suggesting beneficial roles for brain CD8 T cells in AD pathogenesis. In contrast, the 754 



 16 

observed direct contact of the CD8 T cells with neurites argues for the possibility of a neurotoxic 755 
activity319, this, however, requires further experimental evidence. Nevertheless, antibody-mediated 756 
depletion of CD8 T cells in transgenic AD mice resulted in changes in the expression of neuronal genes 757 
in the brain. Moreover, the infiltration of CD8 T cells into a 3D culture system resembling an AD 758 
pathology led to an increase in neuroinflammation and neurodegeneration328. In summary, it is still 759 
unclear if CD8 T cells are friends or foes in term of AD pathology. Both have been described, and it 760 
might well depend for example on the stage of pathology. The topic certainly urges for further 761 
investigation, in particular since immune-therapeutics targeting CD8 T cells are established in other 762 
fields such as cancer are ready to repurposed for their use in neurodegenerative diseases such as AD. 763 
Besides, clinical studies further suggest an altered homeostasis and suppressive function of regulatory 764 
T cells (Tregs) — CD4+ T cells that suppress excessive immune responses — in patients with AD329,330. 765 
Of note, studies in mouse models of AD-like amyloid pathology deficient in adaptive immune cells have 766 
shown either decreased331 or worsened brain pathology332,333, supporting a complex role of T cells in 767 
disease progression, with both detrimental and beneficial effects. In this line, blockade of PD1—a 768 
checkpoint ligand and one of the key markers of exhausted T cells—was suggested to facilitate the 769 
recruitment of monocyte-derived macrophages into the brain along with ameliorating the disease 770 
process334, although PD1 deficiency worsened disease progression in another model of AD-like amyloid 771 
pathology335. Furthermore, Aβ-specific Th1 cells (secreting IFN-γ), injected into the ventricles of 5xFAD 772 
mice, not only migrate into the brain parenchyma, but also stimulate the expansion of MHCII+ 773 
microglial cells with improved capacity of Aβ uptake333. Genetic engineering of these T cells to 774 
overexpress BDNF facilitated neuronal repair336. In addition, Tregs were shown to critically control anti-775 
Aβ CD4+ T cell responses337 and Tregs selective amplification via low-dose IL-2 treatment modulates 776 
the activation of microglia and restores cognitive functions in a mouse model of AD-like amyloid 777 
pathology333,334,338. Recent reports further evidenced that Tregs also contribute to modulate and fine 778 
tune the balance of reactive astrocyte subtypes in AD-like pathology1. Altogether, these studies 779 
support an intricate interplay of T cell immunity with innate neuroinflammation in AD. It is thus 780 
intriguing to suggest that the evolvement of dysregulated T cells with aging facilitate neurotoxic 781 
inflammation and the progression of AD. Further characterizing immune senescence processes as well 782 
as antigen specificity of disease-associated dysregulated T cells, and their impact on neurotoxic 783 
inflammation, may thus pave the way toward therapeutic approaches that target peripheral adaptive 784 
immunity and immune senescence, for rebalancing a proper peripheral-central immune crosstalk 785 
essential to promote neural fitness or even repair in the AD brain. 786 

Oligodendroglia Independent lines of evidence suggest causal links between oligodendrocytes in the 787 
aging brain, secondary neuroinflammation and Alzheimer’s neuropathology. Oligodendrocytes make 788 
myelin for rapid impulse propagation and provide metabolic support to myelinated axons339, extending 789 
beyond white matter tracts. Notably, there is extensive intracortical myelination of projection neurons 790 
and interneurons340, persisting well into the second and third decade of human life. Importantly, with 791 
advancing age cortical myelin decreases in abundance, showing an inverse correlation with the onset 792 
of pathologies that become the hallmark of Alzheimer’s disease341. Specifically, the late and thinly 793 
myelinated regions of the human brain appear to be the first to develop Alzheimer pathology342. 794 
Underlying the myelin loss is a gradual deterioration of myelin integrity, initially documented by 795 
electron microscopy in aging primate brains343. This degeneration includes the cytoplasmic channels 796 
within myelin344 required for delivering metabolic support to the encapsulated axon345,346. Thus, 797 
advanced aging of the cortex is associated with axonal perturbation, myelin degeneration and 798 
secondary inflammation347, the latter triggered by axon loss and the ingestion of myelin debris by 799 
microglia leading to their proinflammatory activation348-350. Combining mouse models of AD with 800 
oligodendrocyte-specific defects that cause the prematurely white matter aging phenotype it was 801 
possible to demonstrate that myelin dysfunction drives amyloidosis and plaque formation351. 802 
Interestingly, increased brain amyloid is a consequence of both, more Aβ processing in affected nerve 803 
fibers and a distinct molecular phenotype of the disease-associated microglia. The latter become visibly 804 
distracted from plaques by dysfunctional myelin, leading to less efficient clearing of Aβ deposits. 805 
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Peripheral immune cells Circulating innate immunity cells such as neutrophils and monocytes migrate 806 
into the AD brain and may contribute to disease pathogenesis. Neutrophils accumulate in the AD brain 807 
and the peak of neutrophil infiltration in mice with AD-like disease coincides with the onset of memory 808 
loss352. Indeed, transient neutrophil depletion during early disease in AD models reduces cognitive 809 
deficit and neuropathology, suggesting these cells have a detrimental role352,353. Neutrophils adhere in 810 
brain vessels and migrate into the parenchyma but they also obstruct blood flow by plugging in brain 811 
capillaries, thus contributing to disease development through multiple vascular mechanisms352-354. 812 
Soluble oligomeric Aβ1-42 triggers the rapid activation of LFA-1 integrin, leading to neutrophil 813 
adhesion, whereas Aβ deposits promote neutrophil arrest and spreading in brain venules but also 814 
determine the intraparenchymal localization of these cells352. LFA-1 integrin plays a key role in 815 
neutrophil extravasation and intracapillary plugging and its blockade has therapeutic effects in mouse 816 
AD models352. Neutrophils are highly reactive cells that release multiple cytotoxic molecules during AD, 817 
including myeloperoxidase, elastase and IL-17352,355,356. They also deploy neutrophil extracellular traps 818 
in the vasculature and inside the parenchyma, thus contributing to BBB dysfunction and brain 819 
damage352. Notably, circulating neutrophils have a hyperactivated phenotype in AD patients compared 820 
to control subjects, and neutrophil abnormalities correlate with faster cognitive decline357-360. 821 
Neutrophil indicators could therefore be suitable as disease biomarkers. MONOCYTES: In AD mice, 822 
circulating monocytes migrate into the brain via the CCR2-CCL2 axis and contribute to the clearance of 823 
Aβ361,362, although this beneficial effect has recently been challenged in the context of AD363,364. A 824 
dysfunctional monocyte compartment characterized by changes in blood monocyte subsets and 825 
phenotypes has been reported in patients with dementia, further highlighting alterations of peripheral 826 
innate immunity cells as potential pathological drivers in AD358,365. Understanding the phenotype of 827 
neutrophils in AD may reveal new disease biomarkers and new therapeutic approaches targeting 828 
neutrophil-dependent detrimental mechanisms. 829 

Contribution of peripheral immunity and their crosstalk with microglia in AD Several Alzheimer’s 830 
disease (AD) risk factors are expressed in microglia and peripheral immunity including the immune 831 
checkpoints HAVCR2 (TIM3), INPP5D (SHIP1) and CD33 play a critical role in suppressing immune 832 
effector functions. The beneficial effect of targeting immune checkpoints to harness immunity was 833 
reported to mitigate AD pathology. CD33 was shown to inhibit monocyte366 and microglial uptake of 834 
amyloid-β , and its deletion reduced pathology in AD mice367. Deletion of Inpp5d in microglia was 835 
sufficient to protect against neuronal dystrophy in transgenic AD mice235,368 (*Yin, in press). 836 
Furthermore, recent studies identified that APOE4, the strongest genetic risk factor for late-onset AD, 837 
impairs microglial response by inducing TGFβ -mediated checkpoints (*Yin, **Liu, in press). 838 
Mechanistically, APOE4-mediated induction of TGFβ signaling impaired MGnD response via 839 
upregulation of microglial homeostatic checkpoints, including INPP5D in mice. In addition, APOE4 840 
genotyping prior to treatment considerations with recently approved AD therapies was recommended 841 
due to increased incidence of ARIA369-371 and reduced response to Lecanemab372. Therefore, a 842 
combinatorial strategy targeting amyloid-β and immune checkpoints to restore MGnD response to 843 
neurodegeneration (MGnD) may provide a promising therapeutic intervention for AD 844 

Vascular cells Alzheimer himself described an increase in endothelial proliferation and growth in the 845 
first case of AD reported2, suggesting that vascular cells become activated during the progression of 846 
the disease. Many reports have described vascular anomalies including i) the existence of a major brain 847 
microvascular pathology373,374 and insufficient angiogenesis375-378, ii) a deficient clearance of Aβ due to 848 
an altered blood-brain barrier (BBB)379, and iii) the accumulation of hypoxic markers in the brain of AD 849 
patients and models380-385. It has also been suggested that the vascular network associated to Aβ 850 
plaques is early altered both in AD patients386-389 and models390-392, where vascular holes surrounded 851 
by hyper-vascularized areas were found associated with Aβ deposits. A recent multifactorial data-852 
driven study have shown that vascular dysfunction is an early event in the AD pathology393 and a 853 
snRNA-seq analysis have suggested specific changes in AD associated with endothelial cells and 854 
pericytes394 and observed an enrichment in the expression in vascular cells of AD risk genes394. 855 
Mechanistically, vascular activation has been associated with i) accumulation of Aβ in the wall of brain 856 
vessels in the form of cerebral amyloid angiopathy (CAA)395; ii) brain pericytes contraction396; iii) 857 
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clotting of blood vessels by neutrophils352,353; iv) infiltration of peripheral immune cells in the brain 858 
parenchyma397 due to the concomitant neuroinflammation398,399; and v) reduction in the number of 859 
vessels through non-productive angiogenesis, which activate microglia to disassemble blood vessels 860 
around Aβ plaques380, suggesting and interesting cross-talk between microglia and blood vessels in AD. 861 
In addition, perivascular microglia, astrocytes and pericytes may also directly affect BBB patency in 862 
AD400,401. Importantly, the pathological leakage across the BBB induced by these cells may in turn also 863 
modulate innate immune cell function in the brain, indicating a vicious circle of vascular injury leading 864 
to perivascular inflammation and vice versa402. In addition to these cellular changes, major functional 865 
mechanisms of the cerebral vasculature, such as the local increase of blood flow in response to 866 
neuronal activity, i.e. neurovascular coupling, are also altered in AD models and patients403. In animal 867 
models, these detrimental effects are mediated by Aβ inducing the CD36-mediated generation of 868 
reactive oxygen species in perivascular macrophages404, as well as by phosphorylated tau disrupting 869 
the synthesis of the vasodilator nitric oxide evoked by synaptic activity405. These changes are 870 
exacerbated by additional vascular effects on the capillary level, such as pericyte-mediated 871 
vasoconstriction396. All of these structural and functional vascular changes likely act synergistically 872 
together with direct effects of Aβ to disrupt white matter integrity in AD406,407. 873 

Glymphatics The role of the blood-brain barrier (BBB) in the removal of amyloid beta (Aβ) from the 874 
brain is well established, largely driving the elimination of Aβ408. However, this is not the sole route of 875 
Aβ removal. Typically, tissue metabolites are cleared through the lymphatic network that pervades 876 
most body tissues. The central nervous system (CNS) parenchyma, however, lacks this comprehensive 877 
lymphatic vasculature, leading many to presume over the decades, or even centuries, that the brain, 878 
due to its "immune privilege" status, has no lymphatic connection to the peripheral immune system. 879 
This belief was disproved in 2015 when functional lymphatic vessels were identified just outside the 880 
parenchyma of the brain409 and spinal cord410, specifically in the outermost layer of their meningeal 881 
covering, the dura mater. While these vessels are outside the CNS parenchyma, they serve as a 882 
lymphatic conduit for the CNS, delivering brain and spinal cord-derived molecules to the draining 883 
lymph nodes409. To effectively drain CNS-derived molecules, including Aβ, these meningeal lymphatics 884 
must interact with the so-called glymphatic system, a conceptual model for understanding 885 
cerebrospinal fluid (CSF) flow through the brain411. Arterial pulsations drive CSF from peri-arterial to 886 
intra-parenchymal spaces, and this CSF is then reabsorbed at the peri-venule spaces with the aid of the 887 
glial Aqp4 molecule412,413. When the "dirty" CSF, containing brain metabolites such as Aβ, leaves the 888 
brain, it traverses the meningeal layers, a process observed in both mice414 and humans415. However, 889 
the exact path that the CSF takes remains elusive. Upon reaching the dura mater, brain-derived 890 
molecules are sampled by dural antigen-presenting cells, and the remaining molecules are removed by 891 
the meningeal lymphatics414,416. Impairment of these meningeal lymphatics, either through 892 
pharmacological or genetic manipulation or complete ligation at the entry of the draining lymph node, 893 
results in increased deposition of amyloid plaques in the brain parenchyma and their occurrence in 894 
previously plaque-free meninges417-421. Moreover, dysfunctional lymphatics hinder the effectiveness of 895 
anti-amyloid antibodies in plaque clearance and lead to side effects like a compromised BBB and 896 
abnormally activated microglia, mirroring the microglia phenotype seen in humans with AD422. Given 897 
that the functionality of meningeal lymphatics declines with age422, it's plausible that these lymphatics 898 
(or the "brain's sink") must be operational for patients to benefit from anti-amyloid therapy (and 899 
possibly other therapies). Future therapies should aim to combine plaque removal with strategies that 900 
enhance the function of the meningeal lymphatics. 901 

 902 

Immune mediators and immune receptors 903 

DAMPs and Pattern recognition receptors Damage-associated molecular patterns (DAMPs) are 904 
molecules released upon cellular stress, tissue injury or cell dead and are considered as endogenous 905 
danger signals423. DAMPs include a high and diverse class of molecules which activate innate immune 906 
system through multiple pattern recognition receptors (PRRs), which include TLRs, NLRs, AIM2-like 907 
receptors, RLRs and CDRs423. DAMPs accumulated in AD patients´ brains react with the immune system 908 
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and contribute non-trivially to several aspects of the pathology and accelerate the disease 909 
progression424. The most relevant is Aβ, which is able to activate microglia via multiple surface 910 
receptors. Microglia can phagocytize Aβ through CD36, inducing the formation of TLR2-TLR6 911 
heterodimer and NFKB activation425, and via CD14, a coreceptor of TLR4, TLR6, TLR9, α6β1 integrin and 912 
SCARAq424,426-428. Upon TLR activation, Aβ initiates NLRP3 inflammasome activation, promoting the 913 
release of inflammatory cytokines429. Furthermore, Aβ is able also to activate NLRP1 expressed in 914 
neurons and oligodendrocytes through different mechanisms, including TLR4 binding430. However, Aβ 915 
is not the only damp found in AD brains. It has shown that other significant DAMPs as HMGB1, 916 
Chromogranin A, S100 proteins, circulating DNA and mt-DNA, ceramides and P2X7R have a significant 917 
contribution in the activation of the immune system in AD423,430. 918 

Trem2/ApoE APOE is the primary transporter of lipids and cholesterol in the brain; it also has 919 
immunomodulatory functions that are entwined with the microglial receptor TREM2. APOE is an 920 
activating ligand of TREM2 and TREM2 signaling sustains microglial production of APOE in the brain. 921 
TREM2 directly binds numerous ligands including lipidated as well as recombinant non-lipidated 922 
APOE431-434. Upon binding APOE, TREM2 transmits intracellular signals that promote microglia 923 
activation. However, the TREM2 variant R47H, which is associated with increased risk of Alzheimer’s 924 
disease (AD), is unable to bind APOE431-433. Thus, direct APOE–TREM2 interactions may sustain 925 
microglia responses to AD pathology. Microglial transition from a homeostatic to an activation state in 926 
mouse models of Aβ accumulation is partially dependent on both TREM2 and APOE250,435. Interaction 927 
between TREM2 on microglia and APOE within Aβ plaques may be crucial for compaction: Aβ plaques 928 
in both APOE- and TREM2-deficient mice display filamentous morphology and are associated with 929 
axonal dystrophy272. Though TREM2 affinity for APOE isoforms may be similar431,432, APOE variants are 930 
recognized and engulfed by TREM2 at varying rates, suggesting that APOE4 may have a more marked 931 
impact than other isoforms246. During homeostasis, APOE is mainly secreted by astrocytes. However, 932 
microglia, particularly those wrapped around Aβ plaques, secrete large amounts of APOE in AD patients 933 
and mouse models of AD229,234,238,436. This is largely dependent on TREM2: very little APOE is produced 934 
by microglia either expressing the TREM2 R47H variant247,437 or lacking a functional Trem2 gene229,250. 935 
Thus, APOE-TREM2 interactions may constitute an autocrine circuit that sustains microglia responses 936 
to Aβ plaques. 937 

Complement factors The complement system is a key contributor and regulator of inflammation, both 938 
in the periphery and in the CNS. It has been known for over 4 decades that complement components 939 
C1q and C3 are associated with pathological hallmarks of AD (plaques and tangles)4,438,439, with multiple 940 
more recent studies using advanced technologies to demonstrate increased expression of complement 941 
proteins (reviewed in440) and generation of activation fragments in brain of AD and mouse models of 942 
AD441,442. If excessive, complement activation can lead to detrimental inflammation and neurotoxicity 943 
via the C5a and C3a fragments which signal through their receptors and synergize with other innate 944 
immune signaling pathways such as TLRs and RAGE443,444, and via the generation of terminal 945 
membranolytic complex (C5b-9), all of which are relevant to Alzheimer’s disease progression445-447. The 946 
role of C3 and the receptors for its diverse activation fragments in AD is clearly complex and regulated 947 
by time and location (448,449 and reviewed in450). C3 knockout mice show protection from 948 
neurodegeneration451, spine loss442, and excessive microglial-mediated synapse loss442, and C3aR is a 949 
modulator of microglial function441,452. C5ar1 expression is upregulated in AD brain453,454. In mouse 950 
models of AD, antibody to the proinflammatory complement activation fragment C5a, genetic ablation 951 
of C5aR1 or pharmacologic antagonism of C5aR1 resulted in less inflammatory microglia and 952 
astrocytes, preservation of neuronal complexity, reduction of cognitive loss and suppression of 953 
synapse engulfment by microglia454-457. In addition, classical complement activation (via C1, C2, C4 and 954 
C3) has a substantial role in synapse pruning during neural development and adult plasticity, but 955 
aberrant or unregulated activation leads to excessive synapse elimination in AD mouse models 956 
(253,458,459 and as reviewed in460). However, induction of C1q expression is an early response to injury, 957 
prior to upregulation of other complement components in brain, and protective roles of C1q have been 958 
well documented (enhancement of phagocytosis, suppression of microglial medicated inflammation, 959 
and neuroprotection) (reviewed in461). As a result, unintended immunocompromising consequences of 960 
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targeting this component must be considered. In contrast, novel approaches to modulate neuronal 961 
activators of the complement cascade may be selective and effective for different subtypes of AD462. 962 
Thus, while a powerful arm of the immune system, protecting from infection and enhancing removal 963 
of cell debris, activation of the complement cascade by pathological protein accumulation, signals of 964 
weak or dying cells/synapses and disease associated cellular debris contributes to the progression of 965 
AD.  Therapeutic approaches must selectively target detrimental consequences, while maintaining 966 
beneficial complement-mediated immune and cognitive functions. 967 

Cytokines During AD, cytokine production is initiated by DAMPs or Ab activating pattern recognition 968 
receptors and can be regulated at multiple steps, including cellular release. In the brain, cytokines are 969 
released by microglia, astrocytes, lymphocytes, pericytes and other cells, and act on neighboring cells, 970 
including the releasing cells, to drive neuroinflammation in different directions, depending on the 971 
cytokine. For example, in microglia, activation of the NLR family pyrin domain containing 3 (NLRP3) 972 
inflammasome generated interleukin-1β (IL-1β), which reduced microglial clearance of Aβ, the release 973 
of Aβ-degrading enzymes, such as insulin-degrading enzyme and neprylisin, and stimulated the 974 
production of nitric oxide and subsequent immune cascades429. Neurons exposed to microglia-derived 975 
IL-1β show spine loss and reduced hippocampal long-term potentiation (LTP)429,463. Reduced LTP has 976 
also been reported for interleukin 2, interleukin 6 (IL-6), tumor necrosis factor α (TNFα) and other 977 
cytokines464-467. IL-1β can cause neurofibrillary tangle formation and tau pathology through a IL-1 978 
receptor mediated, CamKII dependent mechanisms in rodent models of AD70. NLRP3 inflammasome 979 
activation can also result in microglial pyroptosis, release of ASC speckles and further seeding of Aβ 980 
deposition468. More recently generation of type I interferons and other cytokines through the cGAS-981 
STING pathway, activated by cytosolic DNA in microglia, neurons and other cells has become a focus 982 
of research469-471. Type I interferons are elevated in AD, and genetic deficiency for the type I interferon 983 
receptor (IFNAR1) can be protective in some mouse models of AD472. IL-1α (a type 1 interferon), IFN-γ, 984 
GM-CSF, IL-10 and IL-13 are elevated in AD brains in association with neurofibrillary tangles473. IFN-γ, 985 
from infiltrating T lymphocytes, can increase microglial activation and Ab deposition in amyloid mouse 986 
models, prevented by anti-IFN-γ antibodies474. IL-10 is generally anti-inflammatory, but knockout of 987 
the IL-10 gene in an amyloid mouse model, reduced amyloidosis, synaptic loss and cognitive deficits, 988 
while increasing microglial activation and phagocytosis475. IL-12 and IL-23 share a subunit and are 989 
elevated in AD, while depletion of the subunit by genetics or antibodies reduced amyloid load and 990 
cognitive deficits in an amyloid mouse model PMID: 23178247. Some cytokines may be protective, for 991 
example, IL-33 is depleted in AD brains, and IL-33 knockout resulted in tau pathology and 992 
neurodegeneration in mice476, whereas IL-33 injection reduced microglial activation, Aβ plaques, 993 
synaptic loss and cognitive deficits in an amyloid mouse model477. 994 

COXx/prostanoids As key mediators of inflammation, prostanoids were initially implicated in AD 995 
pathogenesis based on cross-sectional and longitudinal epidemiologic studies showing reduced risk for 996 
AD in individuals taking non-steroidal anti-inflammatory drugs (NSAIDS) which inhibit both 997 
cyclooxygenase (COX)-1 and -2478,479. Although clinical trials of NSAIDS and COX-2 selective inhibitors 998 
were abandoned due to lack of clear benefit and potential cardiovascular risks480, continued preclinical 999 
work highlights unique roles for these enzymes in the context of AD. For example, COX-1 is 1000 
constitutively expressed by microglia481, and its activity was associated with memory impairment in 1001 
inflammatory models482,483 and both amyloid and tau pathology in transgenic mice484. In addition, 1002 
cyclooxygenases have been implicated in communication across the blood-brain barrier188,485, and 1003 
therefore might play roles linking peripheral inflammation to dementia and AD progression486. Other 1004 
data demonstrate unique roles for specific prostanoids and their G protein-coupled receptors. For 1005 
instance, prostaglandin E2 acting on EP2 receptors reduced amyloid phagocytosis in several 1006 
models487,488 and worsened spatial memory performance in APP/PS1 and aging mice290,487, possibly by 1007 
driving age-associated changes in myeloid cell inflammatory and metabolic states290. Moreover, EP1 1008 
receptors facilitate excitotoxic injury in ischemic and AD models489,490. Such findings support 1009 
interventional targets that are more specific than general COX inhibitors. 1010 
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iNOS and nitric oxide Neuroinflammation and activation of microglial into the M1 phenotype are 1011 
associated with numerous neurodegenerative conditions including AD424. One major hallmark of 1012 
neuroinflammation is aberrant NO production by microglial-expressed inducible nitric oxide synthase 1013 
(iNOS or NOS2), a factor held responsible for aggravating pathology. iNOS generates high levels of NO 1014 
with stimulation of microglia by lipopolysaccharide446/interferon-g resulting in a rate of NO production 1015 
at ~140pmol/min/million cells491. In the presence of reactive oxygen species (ROS) following NADPH-1016 
oxidase activation, various reactive nitrogen species (RNS) are generated including the potent oxidant 1017 
peroxynitrite which  enhances nitrosative stress and causes oxidative damage, nitrotyrosination and S-1018 
nitrosylation of proteins, lipids and DNA. Evidence suggests that iNOS protein expression during the 1019 
pathology of AD and other neurodegenerative conditions is the major source for NO-mediated protein 1020 
post-translational modifications likely rendering many target proteins dysfunctional492-495. In AD, 3-1021 
nitrotyrosination of y-secretase, triose-phosphate isomerase, tau or Ab itself may aggravate the 1022 
pathology496-500. These modifications can induce a positive feedback loop by which chronic and 1023 
uncontrolled neuroinflammation causes further excessive microglial activation, resulting in release of 1024 
additional pro-inflammatory cytokines and chemokines and damage to the nervous system. In contrast 1025 
to iNOS-derived NO, Ca-dependent neuronal NOS (nNOS) activity leads to NMDA-dependent peak NO 1026 
production of ~2fmol/s (~120 pmol/min) in the entire hippocampus which increases in aged 3xTg-AD 1027 
mice due to higher nNOS protein expression501. This enhanced NO production was also seen in APP/PS1 1028 
mice due to increased interaction between carboxy-terminal PDZ-ligand (CAPON) and nNOS502, a 1029 
mechanism which when disrupted prevented memory defects and dendritic loss in this model. 1030 
Additional evidence suggests that tau nitrotyrosination is caused by the enhanced nNOS-CAPON 1031 
interactions in AppNL-G-F mice503. These data confirm a NMDAR-nNOS-dependent route contributing 1032 
to AD pathology, consistent with earlier studies and clinical trials, where application of the NMDA 1033 
receptor antagonist, memantine, an open-channel blocker, reduces excitotoxicity and ameliorates AD 1034 
pathology504. There are various hypotheses as to where excitotoxicity and the well-described 1035 
neuroinflammation originates. Classically, accumulation of Aβ aggregates and cell debris are involved 1036 
in a neuroinflammatory response and augmented NO production. Indeed both fibrillary and oligomeric 1037 
forms of Ab directly activate microglial cells including iNOS expression and NO production505-507. Recent 1038 
studies suggest a role for a gut microbiota dysbiosis in neuroinflammation. The gut microbiota have 1039 
been found differing from healthy controls in AD patients. Gram-negative bacteria can cross the blood–1040 
brain barrier (BBB), contribute to systemic neuroinflammation508-510 thereby generating and releasing 1041 
neuroinflammatory molecules such as LPS, capsular proteins, fimbrillins and flagellins which can 1042 
further enter the CNS via a compromised BBB511. In agreement with these findings, post-mortem AD 1043 
samples exhibit higher amounts of LPS, E coli K99 and other Bacteroidetes510,512 and conversely, 1044 
preventing a dysbiosis in a mouse model of AD can alleviate symptomatic cognitive decline513. To target 1045 
NO-mediated cytotoxicity in neurodegenerative conditions, one therapeutic approach is to suppress 1046 
overall NO production, either pharmacologically or genetically. This method showed promising 1047 
outcomes in a variety of model systems where NOS inhibition or iNOS deletion prevented or slowed 1048 
disease progression514,515. However, clinical trials have not yet achieved any beneficial effects, although 1049 
phase I and II trials (NCT02167256, NCT01864655) with Src family kinase inhibitors such as saracatinib 1050 
to suppress transcription factor NFκB516 necessary for iNOS expression, were performed517,518. Perhaps 1051 
due to the advanced stage of the disease there were no clinical benefits found reiterating the need for 1052 
identifying a critical window in which these agents could exert the most clinical efficacy519,520. 1053 

 1054 

Mutual interaction between Immune mechanisms and neurodegeneration 1055 

Inflammatory regulation of APP processing /Aβ Inflammation can have detrimental effects in AD by 1056 
exacerbating the generation of Aβ. It was proposed that pro-inflammatory cytokines could enhance 1057 
the transcription of the Amyloid Precursor Protein (APP), and/or affect Aβ aggregation and 1058 
generation521-523. BACE1 and APP expressions can become increased by incubation with pro-1059 
inflammatory mediators such as cytokines and ROS524-527 or by events leading to chronic gliosis, such 1060 
as traumatic brain injury and stroke528-531. Other reports have suggested that inflammatory cytokines 1061 
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can regulate γ-secretase activity by inducing the expression of interferon-induced transmembrane 1062 
protein 3 (IFITM3), which binds to γ-secretase, rising amyloid-β levels532. Interestingly, peripheral 1063 
infection, including oral administration of a periodontal pathogen can lead to an increase in APP and 1064 
BACE1 expression176. On the other hand, studies in animal models of amyloidosis have revealed that 1065 
low grade peripheral inflammation by injection of LPS exacerbates amyloid pathology, affecting Aβ 1066 
clearance mechanisms145,533,534 or Aβ generation535,536, while other reports have shown the opposite 1067 
effects, with a reduction in Aβ when LPS is injected intra-cranially537,538 or when mice are primed with 1068 
low doses of LPS before Aβ deposition146. The effect of inflammation on APP and BACE1 expressions 1069 
has been related to the presence of consensus binding sites for various transcription factors that are 1070 
known to be regulated by inflammation (such as SMAD, NFκB, PPARγ and STAT1) in the BACE1 and APP 1071 
promoters524,539-541. In addition, changes in inflammatory markers have been associated with 1072 
alterations in epigenetic reprogramming542, including the expression of miRNAs regulating the 1073 
expression of genes involved in Aβ generation and tau phosphorylation (such as BACE1 and GSK3)530. 1074 

Tau Evidence from the past years revealed that tau pathology can spread from cell-to-cell by a so far 1075 
unknown mechanism. Accordingly, tau can be found in the extracellular space and potentially enters 1076 
cells trans-synaptically, a phenomenon thought to be involved in disease progression543-545. In 1077 
experimental tau-transgenic mouse models, tau pathology and tau spread were shown to be driven by 1078 
activated microglia, potentially via release of the pro-inflammatory cytokine IL-1β158,297. In line with 1079 
this, microglia depletion led to reduced tau transfer between neurons546.  However, the presence of 1080 
extracellular tau can not only be a potential continuous thread for neurons directly, but also the 1081 
immune system in the brain. Recently, tau was identified as an activator of the NLRP3 inflammasome, 1082 
an important defense pathway in microglia. NLRP3 inflammasome activation was detected in brains 1083 
and CSF547 of tauopathy patients and loss of inflammasome function markedly reduced progression of 1084 
tau pathology as well as tau seeding downstream of Aβ70. In another study, hyperphosphorylated and 1085 
misfolded tau from tauopathy brains activated microglial NF-kB and NLRP3 inflammasomes containing 1086 
ASC547. Notably, myeloid-cell restricted deletion of myeloid differentiation primary response protein 1087 
88 (MyD88), a common adaptor protein for IL-1Receptor/TLR4, or ASC rescued tau pathology, and 1088 
improved cognitive function in hTau mouse model of tauopathy. Importantly, suppression of tau via 1089 
doxycycline or neutralizing pathological tau via Qb-virus like particle (VLP)-based vaccination 1090 
significantly reduced NLRP3 and ASC levels in rTg4510 mouse model of tauopathy547. Together, these 1091 
studies neuronally-derived tau can serve as DAMPs and trigger microglial innate immune responses. 1092 
Strategies to block tau alone and/or tau-microglia interaction could be potential therapeutic strategy 1093 
against tauopathies, including AD. 1094 

Synapses and Axons It is becoming increasingly clear that microglia play crucial roles at the neuronal 1095 
synapse (thus the term “quadripartite synapse”)234,548. Microglia constantly contact synapses and 1096 
contribute to synaptic homeostasis and function throughout lifespan548-550. Among the diverse 1097 
functions microglia perform100,550, one key microglia-mediated mechanism during development is to 1098 
coordinate developmental synaptic pruning via the classical complement cascade551,552. Interestingly, 1099 
this process becomes reactivated in a region-specific manner in various models of neurologic disease, 1100 
including those of AD553. In both amyloid-451,459 and tau-442,554 based mouse models. These studies have 1101 
shown that C1q, the initiating factor of the classical complement cascade, and/or C3, a downstream 1102 
factor in the cascade, are upregulated and localized to synapses. This subsequently leads to aberrant 1103 
elimination of the ‘tagged’ synapses by microglia459. Interestingly, this microglia-mediated synapse loss 1104 
has been implicated to mediate synapse loss and dysfunction not only in AD models but also models 1105 
of other neurologic diseases involving synaptopathy555-558 as well as in aging451,559 and cross-species560. 1106 
These results strongly suggest that microglia play crucial roles in determining synapse fate across aging 1107 
and disease553. Several immune and neuronal proteins have emerged as potential upstream regulators 1108 
of microglia-mediated phagocytosis and production of C1q in AD-relevant models (for e.g., 1109 
phosphatidyl serine (PtdSer), SPP1, TREM2, and neuronal pentraxin Nptx2)561-563. Still, further 1110 
investigations are necessary to determine how specific synapses are being targeted and eliminated 1111 
while others remain intact564. This could include molecules that negatively regulate complement 1112 
proteins, such as the newly identified complement inhibitor SRPX2, or molecules that negatively 1113 
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regulate microglial phagocytosis, such as CD47 and SIRPα. Another important consideration is that 1114 
microglia-mediated synapse elimination may not always be detrimental in neurodegeneration. For 1115 
example, it has recently been shown that microglia-mediated elimination of synapses can protect 1116 
circuits from hyperexcitability in AD-related neurodegeneration. It is possible that synapse elimination 1117 
early on in neurodegeneration is serving a beneficial function to protect neurons from excitotoxicity 1118 
and detrimental in a circuit if this biology propagates uncontrolled, leading to cognitive decline. Thus, 1119 
further elucidating the timing and circuit specificity of microglia and complement-mediated synapse 1120 
elimination during neurodegeneration will improve our ability to therapeutically target these 1121 
mechanisms in disease. 1122 

Therapeutic modulation of brain immunity in preclinical models Given the compelling evidence that 1123 
manipulation of the immune system could provide disease modifying therapies for AD, there have been 1124 
extensive studies to evaluate potential immune manipulation in preclinical models of AD relevant 1125 
pathologies. Though there are multiple mechanisms to explain efficacy of anti-Aβ immunotherapies, 1126 
data from both successful and failed human AD clinical trials support the concept that preferential 1127 
targeting of deposited Aβ and subsequent microglial activation underlies efficacy. Thus, these 1128 
interventions represent a major translational success for the field as the potential proof of concept and 1129 
this mechanism of action was first obtained in amyloid depositing mouse models. 1130 
Numerous additional immune therapies are now being evaluated both in preclinical studies with 1131 
several therapies in human clinical trials. There is however little consensus regarding how to best 1132 
evaluate these novel therapies in preclinical models and which models should be used. As the balance 1133 
of positive (e.g., amyloid and/or tau reduction, synaptic integrity) and negative effects (e.g., excessive 1134 
synaptic pruning, overt toxicities, impacts on peripheral immune status) of any manipulation may limit 1135 
therapeutic benefit, the field would be well-served to utilize a rigorous and systematic approach to 1136 
evaluate these therapies in models before human trials. Indeed, the examples of immune modulation 1137 
that have opposing effects on amyloid and tau pathologies in mice, illustrate why we should insist on 1138 
a more rigorous and systematic approach to testing these novel therapies before moving them into 1139 
human testing. Few in the field would be comfortable with advancing a therapy for AD that had 1140 
opposing effects on the classic core pathologies.  Yet, most immune interventions are advanced to the 1141 
clinic without rigorous testing in both models, and with only limited study of impacts on the peripheral 1142 
immune system.  To increase probability of translational success and reduce the potential for doing 1143 
harm we might consider using systems level omic studies both at a cellular and multiorgan level to 1144 
assess potential benefits and liabilities of novel immune therapies. Indeed, immune manipulation in 1145 
an elderly population with AD or at risk for AD, raises many safety concerns, and we should try to de-1146 
risk these interventions as much as possible. 1147 

Clinical trials and future therapeutic targets The modern-era study of neuroinflammation in AD began 1148 
in 1982 with the report from Eikelenboom and Stam of complement components decorating amyloid 1149 
plaques4,6 These results were fortified by additional studies coming from the McGeers9 and Joe 1150 
Rogers10 the later 1980s. Given that the implication of inflammation in AD pathogenesis predates 1151 
articulation of the amyloid hypothesis565, and given an assumption that such inflammation must harm 1152 
surrounding tissues, one may wonder why no agents have been approved for modification of AD 1153 
pathogenesis by modulation of  inflammation, and none in late-stage clinical trials. Clinical trials to date 1154 
have resulted in null, or in some instances negative (suggesting harm), findings (reviewed up to 2018 1155 
in566, section 6). These trials tested anti-inflammatory agents of different categories and, in some 1156 
instances, employed strategies to avoid exposure at later stages of the disease process, enrolling 1157 
relatively “young-elderly” cognitively normal individuals with a parental history of AD567. The most 1158 
concerning result emerged from a trial that tested the ability of the discontinued COX2-selective agent 1159 
rofecoxib to prevent “conversion” of MCI to AD dementia, producing a statistically significant hazard 1160 
ratio of 1.46 (p=0.011) in favor of incident dementia.  Such findings have likely discouraged more recent 1161 
trial efforts, as a search for ‘neuroinflammation Alzheimer’s disease’ under ‘controlled clinical trials’ 1162 
retrieved only 26 citations as of 6th November 2023. The more recent citations report approaches such 1163 
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as Boswellic acids568; organic acids purified from plant resins), caloric restriction569 and oral hygiene 1164 
intervention570. Investigators described phase 1 trials of Lomecel B mesenchymal stem cells in patients 1165 
with mild AD (MSCs571,572; rebranded “medicinal signaling cells” by one of their discoverers to diminish 1166 
the implied stemness of the cell product573). Recipients of Lomecel B showed no safety signals, and 1167 
measurements of plasma cytokines, hippocampal volume and MMSE produced variable results with 1168 
no clear dose-response or biomarker-clinical relationship. A senolytics cocktail of Dasatinib and 1169 
Quercetin has been trialed in a small number of early AD patients (NCT04063124; study design 1170 
reported in574, with results at clinicaltrials.gov. There were no deaths or severe adverse events (SAE); 1171 
CSF Dasatinib was detected at ~3% of the plasma Cmax and Quercetin was not detected; CSF total tau 1172 
decreased by an estimated 3% and Ab1-42 increased by about 10%. Effects on other putative 1173 
biomarkers or cognition measures were marginal. One high-profile initiative (NCT05450549) using a 1174 
brain-penetrant TREM2 antibody, DNL919, was discontinued following observation of moderate, 1175 
reversible hematologic toxicity in a single ascending dose (SAD) safety study in healthy volunteers 1176 
(n=80;https://investors.denalitherapeutics.com/news-releases/news-release-details/denali-1177 
therapeutics-reports-second-quarter-2023-financial). The judgment of those involved was that the 1178 
therapeutic window in AD patients would be too narrow to justify continued efforts to advance this 1179 
compound. A recent thoughtful Perspective piece575 asked the analogous question about amyloid-1180 
lowering agents: why did it take 30 years to gain the first approvals for this approach? Their answers 1181 
point to the fundamentals of drug development, and they highlight the overwhelming importance of 1182 
biomarkers of target pathologies: amyloid and tau positron emission tomography (PET), buttressed by 1183 
cerebrospinal fluid (CSF) biomarkers. From the present review and from examining the clinical trial 1184 
literature, it becomes apparent that we (the community of neuroinflammation / neurodegeneration 1185 
researchers and developers) lack a unifying hypothesis which would enable the generation of panels 1186 
of core-pathology biomarkers. Our field would be well-advised to consider ways to accelerate clinical 1187 
development, given underlying biological uncertainty. For example, basket trials performed within a 1188 
platform trial structure allow the establishment of a combined, enlarged placebo group and 1189 
standardized protocols, against which to evaluate multiple agents simultaneously. At the same time, 1190 
considering how to enhance diversity of trial populations promises to augment the potential for real-1191 
world success. 1192 

 1193 

Next generation models and open questions  1194 

This review has highlighted the multiplicity of roles that each of many cell types are exerting on the 1195 
brain parenchyma to contribute to “neuroinflammation” along the trajectory to Alzheimer’s disease 1196 
(AD). It is thus clear that the target in AD is not a given cell type of subtype but rather a community of 1197 
cells whose intercellular communication accelerates AD pathophysiology576. Disruption of these 1198 
communications is an important therapeutic target, and it will require more sophisticated human in 1199 
vitro induced pluripotent stem cell- (iPSC) derived model systems than are generally available today, 1200 
as it will require not only co-culturing multiple cell subtypes together but ensuring that each of them 1201 
is in its relevant cell state. Further, complexity will need to be balanced with reproducibility, which is 1202 
critical to reduce sources of variation in the assays that will be deployed to answer specific mechanistic 1203 
questions. These challenges are being addressed by many groups, and, while no one model system is 1204 
ideal today, some in vitro systems are showing promising results in capturing some features of disease 1205 
pathophysiology such as response to Aβ toxicity577 or enhanced reproducibility. Further, simpler model 1206 
systems of cellular monocultures derived from iPSC have already shown that certain in vitro measures 1207 
correlate with complex traits captured during life, such as cognitive decline7,578. An added challenge is 1208 
that iPSC-derived cell types, and even cell lines, display heterogeneity in cell states even in 1209 
monocultures579, next generation models will thus need a higher level of characterization to either 1210 
account for the diversity of cell states or, preferably, polarize the component cell types to the target 1211 
cell states needed for an experiment; work in microglia-like cells is showing the way forward using 1212 
small molecules580. The recent development of chimeric models where human microglia is 1213 
transplanted into the mouse brain opens new avenues to tackle some of the challenges listed above. 1214 

https://investors.denalitherapeutics.com/news-releases/news-release-details/denali-therapeutics-reports-second-quarter-2023-financial
https://investors.denalitherapeutics.com/news-releases/news-release-details/denali-therapeutics-reports-second-quarter-2023-financial
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They provide a complex platform in which human cells are placed into a living brain “bioreactor”, where 1215 
they can interact with other CNS and systemic components and be exposed to relevant disease 1216 
challenges282,581,582. Initial characterization of this model showed that transplanted human microglia 1217 
recapitulate several baseline transcriptomic, proteomic and functional aspects of human primary 1218 
cells244,581,583. The analysis of human microglia transplanted into the brain of AD mice revealed that they 1219 
display a wide heterogeneity of cell sates that mimic time-dependent phenotypes and transcriptional 1220 
features of AD246,582. An additional key advantage of chimeric models is the wide range of patient 1221 
derived iPSC lines that could shed light on the impact of single or poly-genetic risk associated to AD582, 1222 
as well as relatively straight forward genetic modifications that can be introduced at stem cell level and 1223 
can help translating from cell state to function. Although transplantation studies may provide relevant 1224 
biological and mechanistic insights into different AD genetics, microglia cell states and functions, they 1225 
come with limitations as the human cells are placed in a mouse immunodeficient host. 1226 

With enhanced multicellular in vitro and in vivo models, we will not reproduce the human brain, but 1227 
we will have a manipulable approximation of cellular communities with which to test mechanistic 1228 
questions and obtain reproducible results that can inform therapeutic pipelines. Key questions to 1229 
pursue include defining how different microglial cell states translate into function within the brain, 1230 
prioritizing node(s) in the intercellular communication network of a pathophysiologic cellular 1231 
community for perturbation such that the community is driven towards protective states. One does 1232 
not necessarily have to perturb all cells in a community equally; perhaps perturbing a key driver cell 1233 
subtype can then effect the desired changes in the other cell types of the community. In vitro models 1234 
with a pseudo-vascular component or refined chimeric systems with re-introduction of adaptive 1235 
immune cells via T-cell transfer are particularly interesting as leveraging the propagation of immune 1236 
responses from the periphery to the CNS would be ideal for a therapeutic, avoiding the many 1237 
challenges of blood:brain barrier penetration. 1238 
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