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A B S T R A C T

Mechanical bearings are common elements in a wide range of applications, such as wind turbines and 
manufacturing. Therefore, bearing prognostics are crucial to preventing catastrophic failures and machinery 
breakdowns. In this context, extracting the influential features is often the most challenging task in the prognosis 
process. This complexity arises because of the non-linear and non-stationary nature of the acquired vibration 
signals. Therefore, this paper offers an extensive examination of state-of-the-art feature-learning methods. 
Initially, the paper introduces a taxonomy of feature learning methods, encompassing both shallow and deep 
learning approaches. The paper also discusses methods of feature-learning under imbalanced data samples and 
different operational settings. Furthermore, the paper details the experimental setups of commonly used 
benchmark datasets to assist scholars and practitioners in understanding the subject area. Finally, the study 
discusses the challenges associated with calculating bearings’ RUL and suggests potential areas for further 
research.

1. Introduction

Bearings are among the most common components in rotating ma
chinery such as gearboxes, wind turbines, and vehicles [1]. A bearing is 
a mechanical component that supports the load and enables smooth 
movement between two parts, like the shaft and the housing, with 
minimal resistance [2]. Bearing degradation, which necessitates timely 
maintenance, is one of the most frequent causes of operational disrup
tions in rotating systems [3]. Statistical data shows that bearings ac
count for approximately 45–55 % of operational disruptions in rotating 
machinery, in contrast to 41 % for motor faults and 10 % for rotor faults 
[4]. As a result, bearings have been a focus of research in the machinery 
prognostics field compared to other components or systems [5–7].

Standards such as ISO (ISO 281, ISO 76), and ABMA Standard 9 all 
try to estimate the remaining useful life (RUL) of types of bearings such 
as rolling-element bearings (REB) and ball bearings (BEB). The RUL is 
defined as the time remaining before maintenance should be performed 
[8]. ISO 281 outlines a systematic approach for determining the 
remaining operational lifespan of bearings at a 10 % failure rate. Ac
cording to this standard, a bearing is considered defective if any part of 
it, such as the outer race, inner race, rollers, balls, or cage, exhibits signs 

of fatigue [9]. The standard determines the rating life of bearings by 
considering two types of loads: radial load and axial load, using equa
tions (1–3), where: 
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Where Lh10 stands for the rating life in hours, given e = 3 if the bearing is 
a ball bearing or e = 10

3 for roller bearings. The variable L10 represents 
the fundamental rating life, which denotes the number of revolutions a 
component is expected to last with a 10 % likelihood of failure, n is 
measured in millions as it stands for the number of revolutions. Finally, 
Ca
Pa 

is the case if the load is axial, whereas Cr
Pr 

if the load is radial.
From the given formulas, it is clear that the life rating is based on 

some stationary conditions. Meanwhile, in real-world industries, it is 
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common for systems to exhibit varying functioning conditions as a result 
of challenging operational situations. For instance, wind turbines can be 
installed in deserts, seas, or elevated areas, leading to variations in wind 
speed, humidity, and temperature across different sites. Additionally, 
factors such as lubrication, contamination, and temperature conditions, 
which are not accounted for, directly influence the RUL of the bearing 
and consequently impact the performance of the machinery. Therefore, 
it is essential to establish a dependable estimation of the RUL of bearings 
considering operational conditions.

Essentially, there are two main methods for bearing RUL predictions: 
a model-based method and a data-driven method. A model-based 
method attempts to mathematically describe the degradation pattern. 
Kalman filters [10], particle filters [11–13] and similar techniques are 
used to develop a mathematical representation of the degradation 
pattern [14,15]. As a result, these methods rely heavily on manual work 
and linear degradation patterns to establish dependable frameworks. 
Therefore, successful maintenance and accurate RUL calculations rely 
on expert experience and understanding of various failure modes. Yet, in 
complex and modern industries, achieving this, is difficult because the 
degradation pattern relies on various non-linear factors.

Conversely, data-driven approaches seek to estimate the optimal 
timing for bearing maintenance by considering its expected operational 
lifespan, while minimizing reliance on human intervention. Data-driven 
methods can be classified into two main categories: machine learning 
(ML) and deep learning (DL). ML techniques require more data prepa
ration stages before modelling, unlike DL techniques. This is because ML 
techniques may not be able to identify non-linear relationships or effi
ciently process raw non-stationary and non-linear signal characteristics 
associated with a target bearing. On the contrary, DL techniques aim to 
automatically extract the latent characteristics within the obtained sig
nals without manual involvement. However, recent research has 
demonstrated that fusion models, which integrate data processing stages 
with DL modelling, can accelerate the convergence of DL models and 
enhance the robustness of the regression model. Fig. 1 illustrates the 
different stages of model-based and data-driven methods, including ML 
approaches, DL approaches, and fusion approaches. Meanwhile, Fig. 2
names some of the common techniques of each of the model-based and 
data-driven methods, including ML and DL approaches.

The study of vibrations has demonstrated its effectiveness in accu
rately assessing the state of bearings [16–19]. Yet, the estimation of 
bearing lifespan is considered challenging and open area of research due 
to several reasons. First, the vibration signals from bearings exhibit a 

low signal-to-noise ratio (SNR) and non-constant behaviour [20]. In 
normal operations, a bearing is influenced by other components within 
the same system. This interference affects the target bearing and needs 
to be removed to effectively conduct predictive maintenance on the 
bearing. Therefore, it is crucial to recognise essential bearing features 
and eliminate any potential noise assumptions. Second is the lack of 
availability of different failure modes. This is because it is expensive and 
time-consuming to run industrial equipment until it fails to gather data. 
Additionally, safety risks may arise in this situation [21,22]. Third, the 
limited reliability of data-driven prediction methods in the state-of-the- 
art, which may be attributed to the variations in the distributions of 
training and testing data across different operational settings. Having 
consistent distributions of training and testing data suggests that each 
operational setting should have its own training model, which can be 
challenging to achieve.

Given that a prognostics and health management (PHM) approach 
has four stages: data acquisition, data preparation, feature extraction, 
and RUL calculation, the feature extraction stage is considered the most 
crucial. Robust techniques for feature learning can enhance the preci
sion of the prognostic approach while also resolving the aforementioned 
concerns. On the other hand, the poorer the representation, the lower 
the accuracy of the estimated life. Therefore, the purpose of this study is 
to review the feature learning methods introduced and examine the 
progress made in addressing each of the three prognostic difficulties 
identified. Several review studies have been conducted on bearing 
prognostics. The authors in [23] conducted a study on the applications 
of predictive maintenance in different fields, including bearings, air
crafts, and batteries. In [2], Jammu et al. focused on data acquisition 
methods for bearing prognostics, including vibration and acoustic 
emission [24]. However, Mbagaya et al. [25], briefly discussed some of 
the common statistical approaches for bearing prognostics. Authors in 
[26] summarised the theoretical background of the common data-driven 
techniques for PHM applications. Chen et al. [27] discussed the chal
lenges of cross-domain prognostics. Kordestani et al. [8] conducted a 
study to review the methods of failure prognosis, which is the process of 
predicting the fault state of a malfunctioning component.

In contrast to others, this study focuses on feature-learning methods 
for bearing prognostics. The study aims to review and summarise the 
state-of-the-art feature learning methods. The paper provides a review of 
the common traditional feature learning methods, as well as the 
methods that leverage the capabilities of deep neural networks (NN) to 
learn non-linear and non-stationary trends of bearing signals. 

Fig. 1. Bearing prognostics frameworks; (a) physical methods, (b) ML methods, (c) DL methods, and (d) fusion methods.
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Furthermore, the study reviews and discusses feature learning methods 
designed to address the scarcity of fault-bearing samples, particularly 
those with an imbalanced data sample ratio. Additionally, the authors 
categorize and provide a comprehensive analysis of feature learning 
approaches under different data distributions between the training and 
testing data, which result from different operational settings. Further
more, the authors discuss fusion models for RUL predictions, as they 
have proven sufficient in recent years. Afterwards, the study discusses 
the physical setups and data acquisition methods of the common 
experimental approaches in the state-of-the-art. Finally, the paper out
lines current gaps and proposes potential future directions to benefit 
practitioners and emerging researchers in the field.

The contribution of this study can be listed as follows: 

1. The research presents a novel scheme of classification for feature 
learning techniques in bearing prognostics. This taxonomy includes 
both shallow machine learning methods and deep learning methods 
that are based on temporal learning, spatial representation, and 
spatiotemporal representation.

2. The authors further analysed and presented feature learning methods 
that address data imbalance challenges by categorizing them into 
oversampling methods and downsampling methods.

3. The authors discussed recent advancements in overcoming chal
lenges related to feature-invariant learning in different operational 
scenarios, which involve inconsistent data distributions during 
training and testing.

4. The paper also explores different methods for predicting the RUL of 
bearings, categorized as either shallow or advanced approaches 
depending on the feature learning phase.

5. The paper presents and discusses the experimental setups of the 
common bearing datasets in the literature.

6. The paper addresses current challenges in the state-of-the-art and 
highlights future directions.

The rest of the paper is organised as follows: Section 2 discusses the 
taxonomy of feature learning methods, including those that address the 
challenges of data imbalances and cross-domain learning. Section 3 re
views different studies developed for bearing RUL prediction. Section 4
presents the common publicly available bearing datasets. Lastly, Section 
5 provides future directions for the coming years in the subject field. 
Finally, section 6 concludes the study.

2. Feature learning methods

This section provides a taxonomy of common existing feature 
learning methods in the state-of-the-art. At first, shallow feature- 
learning methods are classified into signal decomposition approaches 
and traditional feature extraction approaches. Signal decomposition 
techniques consist of empirical mode decomposition (EMD), variational 
mode decomposition (VMD), and wavelet transform (WT). While Fast 
Fourier transforms (FFT), short-time Fourier transforms (STFT), statis
tical analysis, linear discriminant analysis (LDA), and envelope analysis 
(EA) are among the traditional feature extraction methods that have 
been discussed. In the second subsection, feature learning methods 
based on DL techniques are presented and categorised based on the type 
of learned features, such as temporal learning, spatial representation, 
and spatiotemporal learning.

The third subsection analyses feature learning methods for imbal
anced data samples. They are named downsampling and oversampling 
methods. Random downsampling, enhanced downsampling, and a one- 
category learning strategy are all examples of downsampling. Tech
niques for oversampling encompass geometric and adversarial 
approaches.

Fig. 2. Common model-based and data-driven techniques.
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Lastly, the fourth subsection reviews feature learning methods for 
cross-domain learning. It includes studies on transfer learning, ap
proaches for metric discrepancy, adversarial methods, and few-shot 
learning methods.

2.1. Shallow feature learning methods

This subsection discusses shallow feature learning methods, such as 
signal decomposition and traditional feature extraction techniques. 
Although such methods rely on human intervention and domain 
knowledge, researchers have recently been using them as an introduc
tory stage in hybrid prognostic approaches, aiming to eliminate noise 
and improve learning speed.

2.1.1. Empirical mode decomposition
Due to the harsh operating environments, the SNR of the acquired 

signal is significantly low [1]. The EMD [28] is a method that uses 
mathematical techniques to break down a signal into intrinsic mode 
functions (IMFs). The monotonicity of the final extracted IMF de
termines the stopping criterion for this decomposition process. Subse
quently, by selecting the related IMFs from the original signal and 
discarding the irrelevant ones, the noise depicted in the signal can be 
considered to have been removed. In contrast to other techniques, EMD 
maintains non-stationary and non-linear relationships in the data. Chen 
et al. [29] applied EMD to eliminate noise from the collected accelera
tion data of a motor bearing. They decompose the original signal into 
fourteen IMFs before training a deep neural network for regression. Liu 
et al. [30] also adopt a similar approach, using EMD to enhance the 
backpropagation weight adjustments of a deep neural network that 
processes signals from multiple sensors. Additionally, another employ
ability of EMD is to reduce fluctuation and extract signal content, as in 
[31].

The selection criteria for IMFs can be conducted using mathematical 
expressions like correlation coefficient, covariance [32], or cosine sim
ilarity [33]. In [32], the correlation criterion was used to select 
decomposed signals. Guo et al. [33] introduce a novel selection criterion 
based on cosine similarity. Although EMD can achieve good results, it 
may sometimes lead to the loss of hidden information at the edge of a 
signal during the decomposition process. Therefore, summing up all 
IMFs may not retain typical input signals [34]. In order to address the 
limitations of mode mixing in EMD, researchers introduced a noise as
sistant variant known as ensemble EMD (EEMD) [35]. EEMD is applied 
in [36] to decompose the vibration signal of a bearing; afterwards, 
statistical analysis is applied to the selected IMFs to form high- 
dimensional feature vectors for deep learning network modelling. Guo 
et al. [37] introduced a bearing prognostic approach based on relevance 
vector machines (RVM). However, they employ EEMD for feature 
extraction and noise elimination to reduce the uncertainty of RVM in 
long-term prognostics. In [38], the decomposed IMFs of EEMD are also 
utilised for a bearing prognostic study.

However, the added white noise in EEMD greatly affects the 
computation time. Fortunately, fast EEMD (FEEMD) [39] has been 
introduced to address this issue. The method has proven efficient in the 
literature, as in [40,41]. Moreover, Jiang et al. [42] proved the effi
ciency of FEEMD in extracting fault samples of a REB, while a hybrid 
denoising autoencoder and contractive autoencoder are then configured 
to select the higher-order features.

2.1.2. Variational mode decomposition
VMD is a non-recursive signal decomposition technique widely 

employed in the literature to address the challenges of mode aliasing 
and noise sensitivity inherent in EMD. VMD seeks to identify a group of 
modes and their corresponding centre frequencies that can accurately 
replicate the input signal. After being processed into a baseband signal, 
every mode in VMD should appear smooth. VMD is considered an 
extension of the traditional Wiener filter that operates across several 

adaptable frequency ranges [43]. In [44], in order to detect a fault in its 
early stages, an approximate entropy VMD approach is developed. At 
first, the signal is decomposed into IMFs by VMD, and then approximate 
entropy is calculated for each IMF. An eigenvector is then created that 
contains fault information. Song et al. [45] used VMD to conduct a fault 
prognostic study to monitor the development of an element bearing’s 
future degradation trend based on its long-range dependence charac
teristics. VMD is employed in [46] to detect the initial flaws in the 
captured vibration signal. VMD splits the original vibration signal into 
multiple IMFs. Dispersion entropy is computed for each mode, and 
principal component analysis (PCA) is performed on the two modes with 
significant variance. The initial step in the PCA learning process is then 
regarded as the beginning of a degradation output. In, [47], Liu et al., 
utilised VMD to extract relevant features and eliminate noise from the 
original signal of a rotating bearing. The extracted modes then undergo a 
hybrid feature selection methodology based on monotonicity and cor
relation, which feeds a neural network for lifespan calculation. Han et al. 
[48] developed an approach based on VMD to extract robust informa
tion about an element bearing. VMD has proven to preserve non- 
Gaussian and non-stationary characteristics during the feature extrac
tion process.

2.1.3. Wavelets transform
Another common signal decomposition technique that has been 

commonly utilized in the literature is the wavelets transform (WT). The 
fundamental premise of the wavelet transform involves hierarchically 
dividing a signal into a series of frequency channels that possess iden
tical bandwidths on a logarithmic scale [49]. The wavelet transform 
effectively captures both temporal and frequency information in a signal 
and adeptly addresses signal denoising issues [50,51]. It can be classi
fied into continuous wavelet transform (CWT) and discrete wavelet 
transform (DWT). The latter is a mathematical method that uses 
displacement and translation values to create a set of wavelets that are 
all different from each other [52]. The initial signal, denoted as x(t), 
undergoes filtration through two distinct filters, specifically a low-pass 
filter (LPF) and a high-pass filter (HPF). The signal is converted into 
two distinct components: low-frequency approximations (CA) and high- 
frequency detail components. For instance, Rathore et al. [52] employed 
DWT to remove noise from the collected signal before inputting it into a 
1D neural network model for higher-order feature-learning. While [53], 
employed the DWT to differentiate between features in good condition 
and those in a degraded state.

The literature frequently uses the CWT type to transform a 1-dimen
sional (1D) signal into two or three dimensions for training neural 
network algorithms such as convolutional networks [54]. Yoo et al. [55]
utilized CWT to extract spatial features and transform the bearing 1D 
signal array into 2-D dimensions for health index creation using con
volutional networks. Similarly, [56,57] employ CWT to transform the 
acceleration signal into a 2D array, enabling simultaneous diagnostics 
and prognostics. Furthermore, wavelets can be employed to differentiate 
features with distinct characteristics, such as identifying spalls on 
bearing components [58]. Additional studies will be presented within 
the ensemble methods part, as the employability of WT has recently 
been introduced as a preliminary stage for training DL rather than being 
solely applied for regression.

2.1.4. Fast Fourier transform
The FFT is typically utilized in bearing prognostics to get the fre

quency spectrum of the vibration signal. Specific harmonic component 
fluctuations in the frequency spectrum can identify a specific problem 
and serve as a fault signature for bearing durability [59]. Extracted 
features using FFT can then be input into either a simple prediction 
model [60] or a deep neural network (NN) model [61]. Ding et al. [62]
developed a prognostic approach based on FFT. At first, FFT is applied to 
map the original signal to a frequency spectrum, and then root mean 
square (RMS) is applied as a degradation index. Finally, deep 
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convolutional NN (DCNN) is used to estimate the RUL. In [63], a fusion 
feature-learning approach based on FFT and CWT is introduced. At first, 
FFT is employed for domain translation, followed by CWT, to transform 
a 1D signal into 2D vectors for grayscale convolutional neural networks 
(CNN) modelling. A similar approach based on FFT employability is 
conducted in [64]. However, a different CNN structure named Le-Net 5 
[65] is used, along with a dropout layer designed to prevent overfitting.

Zhou et al. [66] used FFT to understand the variance in learned 
features from multimode operations affected by load and environment 
changes. In [67], using FFT before a deep belief network (DBN) 
improved the performance of the PHM model. This demonstrates the 
efficiency of learning the frequency distribution of the monitored signal, 
especially when the ML model struggles to independently learn temporal 
information. In [68], FFT is used to differentiate the frequency bands of 
a non-stationary signal that overlap. In [69], FFT is used to obtain 
Fourier coefficients, which are subsequently inputted into a convolu
tional network. Finally, in [70], FFT is used to extract useful information 
before inputting it into unsupervised modelling, reducing the need for 
manual intervention in extracting relevant features from the vibration 
signal. Further studies employing FFT will be explored in various sec
tions of this paper, highlighting FFT’s crucial role in enabling reliable 
prognostic processes.

2.1.5. Short-time Fourier transform
STFT is a common technique used for analysing nonstationary sig

nals [19]. The main idea of STFT is to split a bearing’s nonstationary 
vibration signal into small intervals, then apply a Fourier transform to 
each interval to observe the evolution of a fault early on for a reliable 
prognostic approach. This method can avoid the loss of fault information 
over time, such as in FFT [70]. Additionally, once the signal is mapped to 
the time–frequency domain, further analysis can be performed.

STFT is set up in [71] to create an image representation showing 
signal frequencies over time before applying CNN for condition moni
toring. Zhou et al. [72] applied STFT to the bearing signal so that CNN 
could learn the progression of fault information and calculate the RUL 
accordingly. In [73], STFT is used before a stacked sparse autoencoder to 
enhance the understanding of signal patterns in a condition monitoring 
approach. Additionally, [74] introduces the use of STFT for tracking 
specific parts of signals. The study aims to use STFT to understand 
temporal relationships, while CNN is used to identify degradation in the 
vibration signal. Similarly, Li et al. [75] used STFT to identify the fault 
information of an operational bearing early on and estimate its lifespan. 
Finally, [60] introduces an ensemble feature learning model based on 
STFT and PCA. The selected features are then fed to a linear regression 
model for lifespan estimation.

2.1.6. Statistical analysis
Statistical features are the process by which the online signal sta

tistics are monitored using the extracted features. If the observed char
acteristics deviate significantly from their expected values, the 
monitored machine would be considered faulty, and an estimate of its 
lifespan could be made. This technique is commonly used to monitor 
operating conditions based on extracted features. However, it is 
considered a manual approach because it relies on human intervention 
to determine significant features based on the monitored target’s char
acteristics. This is further compounded by the requirement to manually 
establish a threshold for identifying faults. The analysis can be per
formed in three domains: time, frequency, or time–frequency. To anal
yse the frequency domain, the original signal must be transformed into a 
frequency-based representation. Techniques like the FFT and the STFT 
can be used to convert the signal into the frequency domain [59,72,76], 
as discussed in the previous subsection.

Examples of time-domain features include mean, standard deviation, 
variance, and kurtosis. On the other hand, examples of frequency- 
domain features are the maximum power spectrum, skewness of the 
power spectrum, and relative spectral peak per band. To provide a 

clearer explanation, Table 1 explains the mathematical representation of 
commonly used features in the literature.

For k = 1,2, .., n, x(k) represents the time domain signal series, and n 
represents the number of samples. Similarly, s(i) is the frequency domain 
series for i = 1,2, .., n, and Ih and If are features of the same nature in 
which h and f are features computed from the healthy and faulty states, 
respectively. μ is a vector representing the centroid of the acquired 
signal in the n-dimensional space. While dv db, dp, and Nb are the ball 
diameter, pitch ball diameter, and number of balls, respectively. fr is the 
rotational frequency. b and a are two positive integers, where a < b. β is 
the ball contact angle with the races. Finally, C is the covariance matrix.

As shown in Fig. 1.b, analysing statistical features is an initial step in 
shallow learning models before modelling [26,77]. On the other hand, in 
DL methods, the use of statistical feature extraction aims to reduce the 
computational requirements and remove interference [75,78–80]. For 
instance, in [78], Wang et al. applied statistical analysis to the 1D vi
bration signal before applying CWT to convert the 1D array signal into 
3D images so that the spatial characteristics of the image could be rep
resented. Similarly, after configuring STFT to translate the time domain 
signal into the frequency domain, [75] applied frequency domain 
analysis. Degradation thresholds are then set for a condition monitoring 
approach. In [79], feature analysis is applied, but a feature ranking 
criteria is followed using monotonicity and correlation to help a recur
rent neural network (RNN) extract the temporal features and achieve 
better results. Lastly, in [80], time–frequency features were extracted 
before being represented on a graph for further graph knowledge 
learning.

In real industries where data sizes are huge, statistical representation 
can be extensively extracted and then followed by feature selection to 
simplify the computational cost. Traditional feature selection ap
proaches can be classified into two categories: filter-based methods and 
wrapper-based methods [47,48]. Lately, neural network algorithms 
such as autoencoders (AE) can be adopted for the same approach 
without human intervention. Leveraging the capacity of ML, Patil et al. 
[81] employed a decision tree (DT) framework to select the most 
influential time domain features. In [82], PCA is used. However, the PCA 
approach achieved slightly higher results compared to the feature se
lection approach done using DTs. The authors in [83] and [84] applied 
the same methods for predicting bearing RUL. The framework involves 
applying wavelet decomposition, followed by time–frequency repre
sentation, and training support vector machines (SVM). In contrast, 
Benkedjouh et al. [84] used isometric feature mapping reduction (IFMR) 
to reduce dimensions and speed up computation. In [85], the authors 
extracted a set of statistical features and compared the efficiency of SVM 
and DT under similar conditions, showing that DT can yield better 
results.

It is worth mentioning that for statistical analysis to be effective, 
segmenting the signal into uniform windows of a predetermined dura
tion to enable the extraction of distinct values is deemed essential, often 
called the “windowing” technique. There is always a trade-off between 
the quality of the extracted features and the window length, as a fixed 
window size may lead to the loss of non-stationarity characteristics. One 
possible solution to this issue is to reduce the window length; however, 
this approach requires a considerable amount of computation [26].

2.1.7. Linear discriminant analysis (LDA)
Different from the previous feature learning methods that directly 

extract an observed characteristic, LDA aims to construct a feature map 
of a target signal. The algorithm can then identify unnecessary features 
and classify samples to distinguish between faulty and normal ones, 
enhancing the accuracy of regression models afterwards. In their study, 
Harmouche et al. [86] used LDA to distinguish the severity of faults on 
different parts of a ball-bearing: the outer-race, inner-race, and balls. In 
the same study, LDA, PCA, and SVM for feature learning were evaluated, 
and the researchers concluded that LDA outperformed the other 
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techniques. M. Zhao et al. [87] demonstrated that LDA can eliminate 
noise while maintaining the important local structure of bearing sam
ples, which is essential for PHM. Furthermore, authors in [88,89] uti
lised LDA as a denoising method for non-stationary vibration signals 
from bearings. Compared to PCA and marginal Fisher analysis, LDA 
demonstrated superior performance [89]. Ciabattoni et al. [90] pre
sented a variant of LDA called delta-LDA, which addresses certain issues 
by utilising covariance matrices. This variant utilises covariance 
matrices to resolve the problem of a between-class scatter matrix trace 
approaching zero. This method produced outstanding results and was 
validated using electrical motor bearings.

2.1.8. Envelope analysis
Envelope analysis (EA) is an example of a shallow feature learning 

technique commonly used in bearing diagnostics and prognostics. In 
PHM applications, EA primarily extracts the wide variation of acquired 
signal amplitudes, such as vibration signals. The technique demodulates 
the accelerometer signal through band-pass filtering. According to 
Antoni et al. [91], EA methods can effectively find and boost fault- 
related high-frequency components. This can help in the early detec
tion of bearing faults like cracking and spalling. Swalhi et al. [92]
further enhanced the performance of EA for bearing early fault detection 
by integrating spectral kurtosis. Another approach was proposed in 
[93], which suggests the integration of wavelet packet transform. The 
authors demonstrated the study’s effectiveness compared to a tradi
tional STFT kurtogram. Qin et al. [94] proposed a novel SVD approach in 
order to facilitate the process of selecting the appropriate scale for the 
wavelet transform integrated with EA. The study has proven reliable in 
detecting a weak signature of mechanical impulses. In order to identify 
the influential sub-band signal in EA, Kang et al. [95] proposed a 
Gaussian mixture model-based residual component-to-defect compo
nent ratio, which serves as an effective metric for assessing the severity 
of defects. While to distinguish between healthy and faulty features, 
[96,97] feed the extracted features from EA to SVM. In a similar vein, 
Wein et al. [98] proposed a 2D feature vector based on EA as an input to 
K-nearest neighbour (KNN) for rolling bearing condition monitoring. It 
can be concluded that EA enhances the effectiveness of extracting fault- 
related features, thereby improving the early prognostics process.

Table 2 presents an overview of the techniques discussed, along with 
a compilation of studies that have implemented these methodologies.

2.2. Deep feature learning methods

Feature learning methods using deep learning algorithms, are 
capable of capturing important features of an operational bearing 
automatically and without manual intervention. This is because DL 
networks have the capacity to learn complex relationships among pat
terns extracted from the raw signal using non-linear functions like hy
perbolic functions, rectified linear units, the sigmoid function, and 
SoftMax [99]. In the context of bearing prognostics, methods can be 
classified as temporal feature learning, spatial feature learning, and 
spatiotemporal feature learning.

Table 1 
Formulas of common statistical features in the literature.

Domain Feature Formula

Time-domain Mean value (Imv) Imv =
∑n

k=1
ki

n
Max (Imax) Imax = max (xk=1,2,..,n(k))
Min (Imin) Imin = min (xk=1,2,..,n(k))
Root mean square (Irms)

Irms =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

k=1
xk

2

N

√

Variance (Ivr)
Ivr =

∑n
k=1(xk − Imv)

2

n − 1
Standard Deviation (Isd) Isd =

̅̅̅̅̅
Ivr

√

peak-to-peak (Ip2p) Ip2p = Imax-Imin)

Absolute mean
Iamean =

∑n
k=1

|xk|

n
Wave Factor (Iwf ) Iwf = n. Irms/

∑n
k=1

xk

Root mean squared error 
(Irmse) Irmse =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

k=1
(xk − Imv)

2

n

√

Peak value Ip = 1/2[Imax − Imin ]

Peak to RMS Ip2rms = |Imax|/Irms

Impulse factor Iimpulse = Ip/Iamean

Skewness factor (Isf )
Isf =

∑n
k=1(xk − Imv)

3

n.Isd3

Kurtosis factor (Ikf )
Ikf =

∑n
k=1(xk − Imv)

4

n.Isd4 − 3

Crest factor (Icf ) Icf = Imax/ Irms

Absolute max (I|max|) I|max| = max |xk=1,2,..,n(k)|
Median (Imedian) Imedian = median (xk=1,2,..,n(k))
Mode (Imod) Imod = mode (xk=1,2,..,n(k))
Mean absolute deviation 
(Imad)

Imad = mad (xk=1,2,..,n(k))

Harmonic mean (Ihmean) Ihmean = n/
∑n

k=1
1
xk

Percentiles (Iperc) Iperc = perc (xk=1,2,..,n(k))
Interquartile range (IIQR) IIQR = IQR (xk=1,2,..,n(k))
Energy quantification related 
(Iσ2 )

Iσ2 =
1
n
∑n

k=1
(x(k) − Imv)

2

Variance coefficient (Ivc) Ivc = Imv/Iσ
Skewness coefficient (Isc)

Isc =

1
n
∑n

k=1(x(k))
3

(Iσ)
3

Kurtosis coefficient (Ikc)

Ikc =

1
n
∑n

k=1(x(k))
4

(Iσ)
4

Fisher criterion (IF)
IF =

(Imv − Imv h )
2

(Isd)2
+(Isd h )

2

Euclidian distance (IED) IED =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n
k=1

(Ih(k) − If (k))2
√

Sum square error distance 
(Issed)

Issed = ‖Ih(k) − If (k)‖2

Mahalanobis distance (IMD) IMD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(xk − μ)T C− 1(k − μ)
√

Manhattan distance (IManD) IManD =
∑n

k=1
|Ih(k) − If (k)|

Median error distance (IMe) IMe =

argmin
∑n

k=1
‖Ih(k) − If (k)‖ 2

Frequency- 
domain

Outer-race fault (ORF) 
frequency (Iorf )

Iorf =
Nb

2
fr(1− (dbcosβ/dp)

Inner-race fault (IRF) 
frequency (Iirf )

Iirf =
Nb

2
fr(1+ (dbcosβ/dp)

Roller (ball) fault (BBF) 
frequency (Ibbf )

Ibbf =
dp

db
fr(1− (dbcosβ/dp)

2

RMS frequency of the 1st 
harmonic (Irms− 1sth) Irms− 1sth =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

b1 − a1

∑b1

k=a1
fk2

√

RMS frequency of the 2nd 
harmonic (Irms− 2ndh) Irms− 2ndh =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

b2 − a2

∑b2

k=a2
fk2

√

RMS frequency of the 3rd 
harmonic (Irms− 3rdh) Irms− 3rdh =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

b3 − a3

∑b3

k=a3
fk2

√

Mean power of spectrum (Fmv) Fmv =
∑n

i=1
si

n
Maximum of power spectrum 
(Fmax)

Fmax = max (si)

Root mean square of power 
spectrum (Frms) Frms =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
si

2

n

√

Variance of power spectrum 
(Fvr) Fvr =

∑n
i=1(si − Fmv)

2

n − 1

Table 1 (continued )

Domain Feature Formula

Standard deviation of power 
spectrum (Fsd)

Fsd =
̅̅̅̅̅̅
Fvr

√

Skewness of power spectrum 
(Fsf ) Fsf =

∑n
i=1(si − Fmv)

3

n.Fsd
3/2

Kurtosis of power spectrum 
(Fkf ) Fkf =

∑n
i=1(si − Fmv)

3

n.Fsd
2

Relative spectral peak per 
band (Frs)

Frs =
Fmax

Fmv
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2.2.1. Temporal learning
Temporal learning uses DL algorithms to detect variations in signal 

patterns over time, eliminating the need for manually established 
thresholds that are typically used in conventional statistical techniques. 
Additionally, it models the relationships among sequential input fea
tures to automatically calculate the bearing RUL at each time step [100]. 
Several deep learning techniques have been developed to learn the de
pendencies of features over time. RNN, long-short-term memory 

(LSTM), and gated recurrent units (GRU) are examples of these 
techniques.

RNN is widely recognized for its success in learning time sequences, 
making it a prominent model in this context. However, because of the 
long backpropagation training that is required to learn a whole sequence 
of bearing life cycles, training an RNN can lead to vanishing or exploding 
gradients [101]. Other variants of RNN, such as LSTM and GRU, have 
avoided the vanishing gradient problem by introducing a gating mech
anism in which the input gate and forget gate in LSTM can only consider 
important temporal information while discarding unimportant features 
[101]. Meanwhile, the number of gates in GRU is minimised to reduce 
complexity and, at the same time, preserve long-sequence learning 
[102]. Fig. 3 illustrates the internal structure of RNN, LSTM, and GRU. 
Bi-directional LSTM (Bi-LSTM) and bi-directional GRU (Bi-GRU) are 
variations of LSTM and GRU, incorporating bidirectional learning. It 
aims to learn the sequence of features in the forward and backward 
directions in order to provide more precise learning [103–105]. Table 3
summarises the state-of-the-art variants of common temporal networks.

To the best of the authors’ knowledge, RNN was first introduced for 
bearing prognostics in [106]. The novel approach aims to predict the 
RUL using RNN and extended KF (EKF). The RNN is employed to extract 
the hidden temporal features, while the EKF is used to map the extracted 
features to the remaining life values. Guo et al. [79] employed RNN to 
automatically detect the failure threshold and, hence, estimate the RUL 
based on the severity of the failure. Mao et al. [107] used LSTM to 
extract temporal information for bearing RUL estimation. At first, the 
Hilbert-Huang transform is applied to the raw data, and then LSTM is 
employed for both feature learning and RUL calculation. Chen et al. [29]
conducted a comparison between extracting the relevant features using 
LSTM and SVM after applying signal decomposition using EMD. It is 
stated that LSTM performed with a higher prediction accuracy of 36 %. 

Table 2 
Summary of discussed feature learning techniques.

Technique Advantages Disadvantages Studies

EMD offers adaptive and 
data-driven 
decomposition of 
nonlinear and 
nonstationary signals

Sensitivity to signal 
noise and mode 
mixing.

[28–42]

VMD Provides a robust and 
non-recursive method 
for signal 
decomposition which 
would overcome the 
mode mixing

Dependence on 
predefined 
parameters such as 
number of modes 
which limits its 
adaptability

[43–48]

WT Capturing time and 
frequency 
information 
simultaneously, 
making it effective for 
examining non- 
stationary signals.

Sensitivity to the 
choice of mother 
wavelet which can 
limit the adaptability 
in different 
operational 
environments

[49–58]

FFT Enabling rapid 
conversion of time- 
domain signals into 
the frequency domain

Cannot effectively 
analyse non- 
stationary signals

[59–70]

STFT Effective in analysing 
non-stationary signals 
by capturing 
frequency content in 
localized time 
windows

Fixed time–frequency 
resolution which can 
limits its adaptability 
to signal with varying 
features

[19,71–75]

Statistical 
analysis

Effective in detecting 
variation of signal 
trends

Depends on pre- 
defined thresholds 
and may cause the 
fading of non- 
stationary 
characteristics of the 
captured signals

[26,59,72,75–80]

LDA Ability to maximize 
the class separability 
of the normal and 
fault data features

Sensitivity to outliers [86–90]

EA Enhance the 
understanding of 
complex non- 
stationary signals

May lead to the 
masking of important 
high frequency 
characteristics 
leading to the loss of 
critical features

[91–98]

Fig. 3. Shallow rnn structure.

Table 3 
Variant of recurrent neural networks.

Variant Description

RNN • Can make use of the sequential data
• Capable of remembering short-term information

LSTM • Resolve the gradient vanishing and exploding problem due to the 
gating mechanism.

• Capable of retaining both short- and long-term knowledge

GRU • Similar to LSTM, however, it is considered a faster learner as it 
depends on only two gates.

• Capable of capturing the intrinsic relationship for long-term 
forecasting.

Bi-LSTM, Bi- 
GRU

• The learning process should be in both forward and reverse 
directions.

• Suitable for moderate forecasting
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Zhan et al. [32] applied the same model configuration without applying 
EMD and did a comparison between RNN, LSTM, and Bi-LSTM on the 
same bearing dataset. LSTM has demonstrated markedly better perfor
mance than RNN, while only marginally surpassing Bi-LSTM, high
lighting the effectiveness of bidirectional approaches. However, when 
the signal is decomposed using EMD and a set of statistical features is 
extracted, Bi-LSTM improves prediction accuracy by nearly 50 %. A 
fusion-temporal learning approach is conducted in [108]. At first, sta
tistical features are represented to reduce computational costs and 
eliminate interference. Subsequently, GRU is used for temporal learning 
to improve prediction accuracy. However, in [109], a bi-GRU network is 
configured to rely on the CNN network instead of statistical represen
tation. Another GRU-based approach is introduced in [110]. An atten
tion mechanism is applied to GRU so that the features selected can then 
be utilised for life calculations with less computational complexity. 
Finally, in an industrial bearing prognostics approach, Zhou et al. [111]
used features extracted by GRU to measure differences in probability 
distributions across various operational conditions.

2.2.2. Spatial features learning methods
In addition to temporal methods, spatial representation has 

demonstrated significant efficiency in bearing prognostics. Within the 
framework of spatial learning, the prognostic process typically trans
forms the input vibration signal into the spatial domain to capture the 
key spatial characteristics at each time step. [112]. Deep convolutional 
networks are widely used for this purpose. CNNs have had tremendous 
success in computer vision applications [113,114]. It extracts repre
sentative features from grid structures using convolutional, pooling, and 
fully connected layers. Fig. 4 explains the structure of CNN.

In addition to CNNs, a recent method for bearing prognostics is based 
on graph representations [80]. The method represents features in a 
graph structure and learns by using deep neural networks on graphs. 
This neural network type is known as a graph neural network (GNN) and 
has recently been introduced for bearing prognostics. One significant 
advantage of GNN over traditional spatial networks is its capability to 
handle high-dimensional data without needing to calculate the 
Euclidean distance between features in the feature space, which has 
significantly improved machinery prognostic results. This subsection 
provides an illustration of both methods.

2.2.2.1. Spatial learning via CNN approaches. The main goal of the 
convolution layer is to create feature maps by applying convolutional 
operations to the input with filters. The main aim of the pooling layer is 
to reduce the input size, which helps compress data through down
sampling. The fully connected layer, also known as a fully connected 
forward network, serves the primary purpose of extracting deeper 

characteristics from the data. Typically, it is linked to the implementa
tion of multiple convolutional and pooling layers. Fig. 4 is a shallow 
explanation of a native CNN structure. Various CNN network topologies 
have been developed in the last decade. Some of them aim for better 
learning performance in terms of computational complexity and speed, 
while others are mainly focused on feature manipulation [114–117]. 
Table 4 states some of the common variants of typical CNN networks 
that are widely used for bearing prognostics.

In [118], a pioneering study introduces CNN for PHM. The authors 
demonstrated that they could use CNN for spatial feature extraction to 
estimate the RUL of bearings. The authors proved that extracting spatial 
features using CNN can be employed for estimating the RUL of bearings. 
Ding et al. [62] employed CNN but removed the pooling layer. A typical 
topology of a CNN algorithm in this study consists of three convolutional 
layers followed by two fully connected layers. Zhou et al. [72] applied 
STFT instead to ensure effective learning of the fault characteristics. The 
authors represented the time–frequency features after applying STFT, so 
the extracted features are then fed to the CNN network, facilitating the 
learning process of CNN. Meanwhile, Wang et al. [64] conducted 
another approach. The authors employed CWT to convert the 1D vi
bration signal into 2D images. Then the LeNet-5 convolutional network 
topology, which is introduced in [65], is applied to bearing RUL 
prediction.

To diagnose and predict a bearing’s RUL, [119] introduced a new 
CNN architecture that shares learning weights in fully connected layers 
for both tasks. The methodology has markedly enhanced the error 

Fig. 4. CNN structure.

Table 4 
Common variants of CNN for bearing prognostics.

Variant Description

Traditional CNN • It consists of convolutional, pooling, and dense layers.
• Effective in catching the most prominent signal patterns

Multi-layered CNN • Multiple CNN architectures are layered one upon another.
• The output of one CNN becomes the input of subsequent 

CNNs.
• Effective at dealing with raw signals, as instead of reliance 

on feature extractors

Multi-scale CNN 
(MSCNN)

• It contains two primary sequential stages: local and full 
convolutions.

• In local convolution, features are retrieved at each layer
• In the entire convolution layer, all retrieved features are 

concatenated to produce the final result.
• Effective preservation of the prediction’s numerous layers 

of abstraction
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compared to utilizing the CNN approach for each task separately. 
MSCNN, initially introduced in [120], leverages both global and local 
information within a CNN network. MSCNN is also considered in [75]; 
however, STFT is applied to extract time–frequency representations. The 
hamming window function of 20-ms window length is configured for the 
statistical feature extraction process with 50 % window overlap between 
each of the two consecutive windows. However, [121] suggests an 
alternate implementation of MSCNN. Instead of extracting the features 
from local and global convolutional layers with fixed-size kernels, 
different kernel sizes are applied to extract the hidden patterns from 
different receptive fields. The results obtained in this study show a 
relatively higher performance compared to the original architecture 
introduced in [120]. Finally, and benefiting from the residual networks 
(ResNet) approach, which is mainly dependent on forming bypass links 
between different convolutional layers to ensure effective learning of 
features in deeper layers [115], Wang et al. [122] used separable CNN 
with residual connections between layers to prevent the loss of impor
tant features that could lead to inaccurate predictions.

2.2.2.2. Spatial learning via GNN approaches. PHM applications have 
recently incorporated GNN. In PHM applications, graph learning aims to 
achieve spatial feature learning and causal learning of manufacturing 
systems. Once the acquired signal is represented on a graph, spatial 
learning can be achieved by applying convolutions to graph structures 
[123]. One benefit of using convolutions on graph structures is that the 
method is not reliant on the distances between extracted features in the 
hidden space. CNNs are primarily created for grid-like structures like 
images and are commonly used in computer vision applications. That is 
why it may lead to model uncertainty when applied for applications such 
as bearing prognostics, as in that case, the high-level feature represen
tation does not need to be attained. In addition, the number of papers 
that have adopted this approach is still limited. Using GNN in PHM 
applications involves representing the obtained sequence of signals on a 
graph [124]. A typical graph structure consists of three main elements: 
vertex, edge, and feature set. So, it can be denoted as G = (V, E, X) [125].

To the best of the author’s knowledge, a pioneering study of applying 
graph learning to calculate the RUL of an element bearing was first 
introduced in [80]. The researchers studied how spatial learning affects 
the accuracy of predicting the RUL of bearings without considering 
Euclidean distance. The results are significantly higher than those ob
tained using traditional CNNs. Manipulating the design of a GNN is 
straightforward. For example, we can represent each sensor in the sys
tem as a graph node, each containing a feature set of its signal values. 
Also, each degradation stage can be considered a node in the graph, with 
the characteristics of each node serving as the feature set. The formu
lation of the graph edge can be done through similarity metrics based on 
cosine similarity, correlation, or any mathematical formula according to 
the prognostic task that can ensure the relationship between a feature set 
and another.

In [126], a multi-scale convolutional architecture is applied to graph 
representation to better incorporate spatial learning in the regression 
process. At first, the spectral energies of the entire collected signal are 
extracted through a sliding window mechanism. Second, PCA is applied 
so that the variance between the first extracted feature and the rest of 
the features over time can be calculated and the fault occurrence can be 
determined. Finally, the graph is structured in such a way that each 
feature extracted is considered a graph node, and PCA latent space is 
used to build the relationship between the nodes. When two nodes make 
significant contributions to PCA, the edges that depict the relationship 
between these nodes exhibit a considerable relationship. The structure 
of the graph is considered changeable through time; thus, when 
convolution is applied to each of the constructed graphs, it is considered 
spatiotemporal learning. Further studies focusing on analysing spatio
temporal features through graph learning will be explored in the 
following subsection.

2.2.3. Spatiotemporal Learning
Despite the continuous development of spatial learning techniques, 

ignoring temporal features can result in inaccurate condition monitoring 
(CdM) and unreliable predictions of bearing lifespans [127,128]. Zhao 
et al. [129] aimed to study the impact of extracting both temporal and 
spatial features on bearing prognostics. The authors introduced a 1D- 
CNN network named temporal convolutional network (TCN), where 
the processing is done on a 1D network instead of 2D or 3D networks, 
focusing on the time array for spatial learning through convolution. 
Notably, the certainty of the achieved results increased. The TCN 
approach is compared to traditional CNN models, and the results ach
ieved by TCN are 10–20 % higher compared to conventional CNN 
structures. Cao et al. [130] applied TCN for the same purpose, but a self- 
attention mechanism was adopted to obtain the contribution degree of 
each of the extracted features. The study results outperformed the native 
TCN approach significantly compared to TCN without feature selection.

Moreover, authors in [56] studied the impact of converting the 1D 
signal to a 2D image, thus applying 2D CNN instead of 1D TCN. The 
transformation methodology in the state-of-the-art for such conversion 
commonly depends on wavelet transform structures such as Morlet 
wavelets. The study found that combining spatial features extracted 
with 2D-CNN with temporal features performs better than extracting 
spatiotemporal features simultaneously with 1D-CNN methods. 
Following the same approach, Wang et al. [78] mapped the 1D accel
eration signal into 3D images using the Morlet wavelet transform and 
applied an overlapped windowing strategy. The spatiotemporal features 
are then extracted using 3D CNN, and Gaussian process regression (GPR) 
is employed for calculating the bearing lifespan. Interestingly, this 
approach achieved even better results compared to other spatiotemporal 
approaches. Wang et al. used a similar approach in another study [112], 
focusing on the computational performance of spatiotemporal learning. 
To address this challenge, the author used a technique called non- 
negative matrix factorization (NMF) for reducing the dimensions of 
latent space.

Jiang et al. [131] separated the raw bearing signal into various 
channels. Each channel underwent CNN processing independently 
before combining the spatial features with the temporal ones extracted 
using attention-LSTM. This approach aims to link the spatial features of 
each channel in the sequence with the extracted temporal features to 
enhance the understanding of spatiotemporal representation. Aside 
from the multiple channels concept applied in [131,132] applied 
recurrent convolutional networks for remaining life calculations. How
ever, variational inference is used to measure the uncertainty of the 
model. In the same study [132], the authors departed from the usual 
method of connecting CNN sequentially to a temporal algorithm. 
Instead, they applied a convolutional operation separately to the input- 
to-state and state-to-state parts of an LSTM.

Moreover, GNN has been recently employed for spatiotemporal 
learning [133,134]. In [135], spatial features via graph learning are 
adopted, and then temporal convolutional regression (TCR) based on 
LSTM and graph convolutional network (GCN) is implemented for RUL 
prediction. While in [136], a Bi-LSTM is adopted to extract important 
features, followed by employing GCN to calculate the bearing RUL. Wei 
et al. [137] developed a self-attention spectral graph network for 
bearing PHM. The goal is to help the regression model learn from graphs 
independently during training, leading to significant improvements in 
prediction accuracy and reliability. Liang et al. [138] developed a graph 
network based on transformers. The primary goal is to understand how 
different sensors are related in space using the graph structure and to 
learn about time dependencies using the transformer network. While, in 
[134], an attention layer is added to fuse the learned spatial and time 
dependency information of the extracted data. Wang et al. [139] pro
posed a strategy to select the relevant sensor data to form neighbouring 
nodes of a graph-structured network for spatiotemporal learning. That 
strategy is based on the Pearson correlation coefficient calculated be
tween different sensory readings, and the higher the correlated data, the 
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more adjacent these sensors—graph nodes—are. On the other hand, to 
overcome the problem of graphically representing a univariate vibration 
signal on a graph, a ChebGCN-BiLSTM network is developed in 
[140,141]. The path graph at the node level is created to depict the 
connections between time-discrete signals. Edges indicate the ordered 
sequence, while nodes represent the signals themselves. It’s important to 
note that Bi-LSTM is used to understand temporal dependencies in 
addition to the spatial ones, which are captured by the GCN network.

Cao et al. [142] introduced a graph convolutional structure known as 
a complex picture in a picture (PIP) to offer various levels of fault 
severity analysis. This approach differs from connecting graph nodes 
based on clustering or similarity methods like cosine similarity. The PIP 
approach uses the path graph as a node within a larger graph and sys
tematically constructs a new embedded graph. Researchers in [143]
explored the correlation between extracted features at various time 
points. To get that correlation at different stages of a rolling bearing’s 
degradation, an LSTM-based Siamese network is created to classify the 
different stages of degradation. Next, a GCN based on attention mech
anisms is put in place to make the prediction more reliable by using the 
correlation of information gathered at different time points. In a similar 
approach, a one-dimensional GCN is built to establish a connection be
tween the reference data and the current working conditions and to 
accurately predict the RUL [144]. Considering the spatial dependencies 
of the acquired raw signal and temporal correlation, the short-time 
Fourier transform is utilised to extract node attributes, while dynamic 
edge connections are formed based on node importance weights in 
[145]. This is achieved by utilising the GCN to identify spatial re
lationships within the input graphs and employing a Bi-LSTM network to 
record overall temporal connections. Finally, a graph readout layer 
based on autoencoders is created to capture and transmit the key graph 
features. The authors [146] came up with a way to avoid the problems 
that come with combining graph structures, which can make it hard to 
see how the observed signal changes over time and create features that 
aren’t very useful. They suggested using a residual graph connection and 
a self-attention GCN to pick out the most important features.

The deep GNN model also has a problem called “over-smoothing,” 
which makes it hard to represent the difference between nodes in the 
network [147]. Consequently, the classification and prediction of nodes 
in the network will be inaccurate and ineffective. To overcome this, the 
authors proposed a multi-scale graph convolution network. First, they 
configure a sliding window to identify the fault occurrence time, after 
which the spatiotemporal graph network learns the dependencies and 
estimates the RUL [126]. In [143], an LSTM network is serially con
nected to a GCN for spatiotemporal learning. However, on the graph 
structure, a self-attention mechanism is implemented to select the most 
influential features and overcome the smoothing challenge in RUL 
prediction. In [141], dilation convolution is used to combine spatial and 
temporal data, preventing long sensor signals from over smoothing. 
While a GRU-GCN is introduced in [148], a skipping connection to 
extract the temporal features and overcome the challenge of signal over- 
smoothing is proposed.

Finally, Mylonas et al. [135] did a comparison study of a spatio
temporal network based on LSTM with a temporal convolutional head 
and a graph network based on convolutional structure. The results 
showed that the graph network structure did better than the non-graph 
network structure because it could learn features of times that were not 
equally distant.

2.3. Feature learning under imbalanced data samples

The difficulty of acquiring fault data samples imposes a challenge for 
a reliable training process and, hence, accurate estimation results. In 
real-world industrial settings, mechanical systems typically operate 
under normal conditions for the majority of their operational lifespan, 
with occurrences of fault states being relatively rare. When the system 
enters a short-duration defective state, gathering degradation 

indications is expensive and difficult. Hence, imbalanced datasets are 
common [149].

An imbalanced dataset is a set of samples with a disproportionate 
number of representative samples from one class. This proportion de
fines the “imbalance ratio,” which is crucial and might be a challenge in 
a regression problem. Due to an imbalanced dataset, training a DL model 
to estimate RUL is difficult. Hence, the imbalanced dataset problem 
limits RUL estimation methodologies. In order to mitigate this limita
tion, numerous sampling methodologies have been extensively docu
mented in scholarly literature to artificially equate the ratio between 
different classes of training samples, including under-sampling and over- 
sampling techniques.

2.3.1. Downsampling methods
Under-sampling is an approach that reduces the number of instances 

belonging to the majority class in order to align the imbalance ratio with 
the smaller number of samples in the minority class. There are three 
main techniques of downsampling in the PHM literature, which can be 
summarised as: 

1- Random downsampling: random downsampling is the simplest 
downsampling technique that implies discarding random samples 
from the majority class to alleviate the features of the imbalanced 
class. However, discarding important samples during random 
downsampling can directly affect the predicted RUL [150].

2- Enhanced downsampling: opposite to random downsampling, 
enhanced downsampling aims to select the discarded or retained 
samples to achieve a balanced class of data. This can be accom
plished through three methods: clustering methods, sample density 
methods, or dynamic methods. In clustering methods, distances 
calculated between samples, such as the Euclidean distance, play a 
significant role. Samples that are closer to the class centre are 
considered more important in clustering methods. Accordingly, 
latent features that are distorted or on the edges of clusters are dis
carded [151]. Similarly, in terms of sample density, samples in less 
dense regions of latent space are removed while those in denser re
gions are kept [152]. While the dynamic process selects the samples 
for retention based on their influence on RUL calculations. So, the 
probability of losing an important, sparse feature is reduced [153].

3- One-category learning strategy: This method aims to select the 
relative samples based on similarity [153]. This can be achieved by 
applying statistical formulas to majority-class samples or through 
similarity-based ML approaches such as SVM. Moreover, utilising 
autoencoders (AE), variational autoencoders (VAE), and generative 
adversarial networks (GAN) can help identify important samples 
based on their data distribution while disregarding others [154].

Despite improvements in downsampling techniques to refine feature 
selection, downsampling can lead to the omission of crucial features, 
affecting the accuracy of RUL predictions and reducing robustness. In 
particular, bearing defects can take various forms and may not 
conform to a specific pattern of similarity for selection, particularly 
in challenging working conditions.

2.3.2. Oversampling methods

Oversampling methods involve randomly adding samples from the 
minority class to balance the dataset. Oversampling methods can be 
classified into classical and adversarial methods. Random over
sampling, windowing overlapping, Synthetic minority oversampling 
technique (SMOTE), and adaptive synthetic sampling approach for 
imbalanced learning (ADASYN) are all methods used to address 
imbalanced features of a given dataset.

2.3.2.1. Geometric oversampling methods 
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In random oversampling, latent features and clustering centres are 
randomly added to the classified minority class samples [155]. 
Windowing overlap oversampling involves overlapping signal 
lengths between consecutive windows for data augmentation [156]. 
This can be achieved by varying the lengths of windows of fault 
samples relative to the lengths of normal samples. Yang et al. [157]
introduced a variable-scale windowing approach based on AEs. 
Leveraging the advantages of sparse autoencoders (SAE) and 
denoising autoencoders (DAE), extracted features using signal win
dows overlapping can then be employed to solve the skewness of 
data. Such an approach can be effective, although in large machinery 
datasets, it may require extensive computational complexity and 
storage and may also lead to discarding the non-stationary charac
teristics of the acquired bearing signal [26].
On the other hand, SMOTE [158] is an oversampling approach that 
generates synthetic samples to oversample the minority class. Each 
new synthetic sample in SMOTE is created along the line connecting 
a chosen minority class sample and its nearest neighbour. SMOTE is 
extensively used in PHM research [159–162]. The steps of generating 
samples using SMOTE can be simplified as follows:

– Select KNN samples of the sample xi from the same class.

– Randomly select n samples from the KNN samples.

– For each chosen neighbour, a new sample is constructed according 
to:

xnew = xi + rand(0,1)*xi − xn 

SMOTE is usually applied after a signal denoising stage to ensure the 
quality of the newly generated feature. For instance, Ruifeng et al. [163]
applied SMOTE to address the challenge of data imbalance, following a 
noise elimination approach based on extended learning machine (ELM). 
In [164], a similar approach is conducted, where the relevance vector 
machine is used for feature denoising instead. Additionally, the authors 
in [154] introduced an ensemble learning approach based on Naive 
Bayes SVM and KNN to classify data samples before applying SMOTE. 
Interestingly, Yang et al. [165] conducted a comparison study between 
SMOTE and random oversampling, showing that the quality of features 
generated using SMOTE outperformed random oversampling-generated 
features.

A drawback of traditional SMOTE is that if noisy data and its 
neighbour are chosen as a cluster, oversampling may occur within the 
wrong class region. That’s why different approaches are introduced in 
this context. For instance, Zhang et al. [166] proposed a learning 
strategy based on Euclidean distance calculations between minority 
class samples to avoid oversampling noisy features. Fan et al. [167]
relied on the calculation of Euclidean distances between minority-class 
samples and the centre of the cluster. In a different approach, Zhu et al. 
[168] proposed the Mahalanobis distance as a metric of qualification. 
This approach showed superior performance in preserving the data 
distribution because the Mahalanobis distance is less influenced by data 
magnitude, unlike the Euclidean metric. Another approach is to divide 
the minority samples into different subspaces, and then oversampling 
can be performed for each subspace accordingly. K-means clustering 
[166], hierarchal clustering [169], density-based clustering, and fuzzy 
c-means [167] can all be adequate in such cases.

ADASYN [170] is another effective strategy for handling imbalanced 
data and has proven superior for bearing PHM [171]. The authors in this 
study demonstrated that ADASYN can better avoid the risk of synthe
sising noisy features compared to SMOTE. The experiment is done on 
bearings under different operational conditions. It uses a weighted 

distribution for minority classes. It is worth mentioning that most 
complex systems operate under diverse conditions, leading to multiple 
fault modes. Thus, ADASYN requires fine configurations to capture the 
complexity of numerous failure situations and avoid contributing to 
undesired noise [172]. So, despite the effectiveness of oversampling 
methods compared to under sampling methods, they may lead to the 
generation of noisy synthetic samples with disregard for the data 
distribution.

2.3.2.2. Adversarial oversampling methods. On the other hand, adver
sarial oversampling methods aim to preserve the feature distribution 
during the sample generation process. In this context, commonly, two 
techniques are used for data generation: VAE [173] and GAN [174].

GAN [174] is composed of a composite network structure of gener
ative and discriminative networks. The model trains alternatingly until 
it reaches Nash equilibrium, at which point the discriminator is unable 
to distinguish between real data and generated samples. Lee et al. [175]
developed a GAN model based on multi-layer perceptron (MLP). 
Initially, EMD is applied to denoise the vibration signal and then the 
selected IMFs are fed to the generative-discriminative MLP network for 
oversampling. Another generative-discriminative approach based on 
CNN was developed in [176]. The newly generated features proved to 
mimic actual faults, such as roller faults and inner race faults of an 
element bearing. In [177], researchers introduce a generative approach 
based on TCN to retain spatiotemporal features. Another approach based 
on statistical analysis of the extracted features is conducted in [178]. 
The time-domain statistical features are extracted then fed to the 
discriminator network to improve the quality of the features that GAN 
generates. However, instead of time–frequency representation, Yang 
et al. [179] implemented a feature mapping approach based on stacked 
AE to enhance the quality of the newly generated samples. Moreover, 
[180] configured an autoencoder network to measure the similarity 
between artificially generated samples by the generator and the original 
samples for further improvements.

Despite preserving the distribution, the basic GAN had poor sample 
quality, mode collapse, and unstable training. Numerous GAN variants, 
like the Wasserstein GAN (WGAN), have been introduced to improve 
training stability by comparing real and generated sample distributions 
using Wasserstein distance instead of KL-divergence in the traditional 
GANs. But to keep the Wasserstein distance reasonable, the WGAN has 
to cut the weights in the discriminative network to a certain range [− c, 
c] after backpropagation. Phan et al. [181] developed a WGAN using a 
2D representation of signals obtained from bearing acoustic emissions to 
retain spatial features in the generation process. In [182], Cabrera et al. 
proposed a novel WGAN approach based on similarity and sparsity 
centroids. The aim is to efficiently identify the relative-generated sam
ples of the minority class before feature generation. A spatiotemporal 
WGAN, designed for retrieving both spatial and temporal features, is 
introduced in [183], aiming to generate samples of minority classes 
while preserving the spatiotemporal characteristics.

Despite the superiority of WGAN compared to GAN in terms of 
learning convergence, gradient vanishing or explosion is common, 
specifically in the backpropagation process. The authors of [184] sug
gested a gradient penalty to control the discriminative network’s 
gradient. Pu et al. [185] developed a gradient penalty WGAN (WGAN- 
GP) to overcome the deficiencies of the WGAN model. The authors also 
looked at the differences in how accurate minor samples generated using 
GAN were compared to those generated with traditional oversampling 
methods like SMOTE and random down sampling. In this context, 
WGAN-GP demonstrated a slightly higher accuracy performance. 
Another approach is introduced by Behera et al. [186] as a conditional 
GAN (CGAN). It is designed to learn specific classes instead of any mi
nority class to avoid capturing irrelevant features. This helps eliminate 
the probability of generating samples of the majority class [187]. For a 
similar approach, frequency-domain features and features of the 
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normalisation spectrum are fed to CGAN for minor fault mode feature 
generation. Generated samples are then sent to stacked autoencoders for 
denoising before being fed to a discriminator network [188].

VAE consists of three main parts: the encoding network, the sampling 
component, and the decoding network. The encoding network converts 
the samples into a latent variable z, characterised by a mean vector µ and 
a standard deviation vector σ. The decoding network duplicates the 
input by utilising the latent variable. During training, the VAE ensures 
the latent variable aligns with a normal distribution. After obtaining a 
novel latent variable z∧ from the normal distribution, decoding is used to 
create a new sample. The Conditional Variational Autoencoder (CVAE) 
is an extended version of the VAE that incorporates label information 
[189]. By influencing the mean vector, one can generate corresponding 
categories while generating samples. Although VAE and CVAE have 
been effective in image recognition, their application in imbalanced 
learning for bearing prognosis is still limited [190]. Zhao et al. [191] and 
Karamti et al. [192] used a VAE to create artificial features that 
enhanced the accuracy of life prediction with imbalanced data. Xie et al. 
[193] used PCA to reduce feature space dimensions before using CVAE 
to generate artificial features representing different failure modes. This 
method was chosen to speed up the convergence process. Finally, Yang 
et al. [194] presented a novel technique that merges VAE and GAN to 
generate a variety of samples. They used a conditional VAE as the 
generator network in their ensemble approach. Table 5 lists the common 
techniques utilized for imbalanced data problems.

2.4. Feature learning under varying working conditions

Another challenge of data-driven approaches for bearing prognostics 
is their requirement for (1) sufficient labelled data, namely, historical 
data; and (2) training and testing data following a similar distribution, 
which are hard to fulfil in bearing prognostics. That is because industrial 
rolling bearings operate under complex, frequent, and inconsistent 
working conditions, making it difficult to preserve a common data dis
tribution from one environment to another. In this context, several 
methods have been conducted and validated in the literature to address 
this gap. The methods include transfer learning (TL), distribution met
rics analysis, adversarial learning, and few-shot learning. All these 
methods are discussed in this subsection.

2.4.1. Transfer learning
TL is a technique that transfers knowledge from one domain to 

another and has been widely adopted in fields such as text classification 
[195], computer vision [196], and natural language processing [197]. 
TL’s role in RUL prediction is to extract domain-invariant feature rep
resentations and transfer degradation knowledge acquired under 
different working conditions. It relies on transferring the learned pa
rameters from one domain to another. This method is based on the 
underlying assumption that the model architectures of both the source 
and target domains should have specific shared parameters [198]. In 
this context, the tuning strategy involves transferring the learned model 
parameters, such as weights, from the source domain to the target 
domain [199]. The process consists of two separate stages: (1) the initial 

training of a deep neural network in the source domain, where the 
optimal model parameters are saved, and (2) the preservation and 
transfer of the model parameters from the hidden layers in the source 
domain, which can be utilised as the initialization parameters for the 
model in the target domain. Moreover, the target data can randomly 
initialise the parameters of the final layer in the target domain, enabling 
further refinement of the model parameters [200].

In a study by Zhang et al. [201], a TL framework was developed 
using Bi-LSTM. The purpose of using Bi-LSTM in this case is to capture 
the hidden temporal patterns in the target domain data in one direction. 
Meanwhile, the reverse direction of the LSTM architecture was designed 
specifically for predicting RUL. In their study, Sun et al. [202] present an 
alternative approach that utilises SAE. The study uses SAE to map the 
weights and features of the encoder layer from the source to the target 
domain. Furthermore, Zhang et al. [200] used a TL methodology to 
transfer spatial characteristics to the target domain by converting the 
vibration data of rolling bearings into RGB images. Simultaneously, the 
LSTM network is employed to learn the temporal patterns and estimate 
the RUL respectively. Huang et al. [203] approach utilises depth-wise 
separable convolution and Bi-LSTM. After training, the model parame
ters of the networks in the source domain are shared, and a dense layer is 
added to allow for separate weight updates.

2.4.2. Metric discrepancy evaluation
Distribution metric evaluation methods aim to minimise feature 

distribution differences between the source and target domains. This can 
be determined and minimised through the utilisation of various 
discrepancy metrics such as maximum mean discrepancy (MMD) [204], 
Jensen–Shannon (JS) divergence [205], multi-kernel MMD (MK-MMD), 
Euclidean distance [206], and Kullback-Leibler (KL) divergence [207]. 
Afterwards, reliable life prediction values are obtained by leveraging the 
shared feature spaces.

Chang et al. [208] developed a MK-MMD approach to predict the 
RUL of bearings under different data distributions between the source 
and target domains. Initially, TCN was used to extract hidden spatio
temporal features. Hence, the MK-MMD method is utilised to minimise 
the distribution discrepancy of the spatiotemporal features between the 
source and target domains. Rathore et al. [209] introduced another MK- 
MMD approach based on Bi-LSTM algorithm. However, Zhang et al. 
[210] incorporated spatiotemporal characteristics into the learning 
procedures by first employing TCN with self-attention, followed by MK- 
MMD. Another cross-domain adaptation method based on deep trans
ferable metric learning is proposed in [211] for predicting RULs, using 
TCN to extract domain-invariant representations and enhance trans
formation invariance. Mao et al. [212] proposed another metric 
discrepancy approach based on transfer component analysis (TCA). 
Initially, the vibration signal of the bearing is subjected to trans
formation using the Hilbert-Huang method. The utilisation of Pearson’s 
correlation coefficient is employed to determine the relevant degrada
tion state features. Then, TCA is employed to map the extracted features 
from the two domains. This mapping is then incorporated into the least- 
squares SVM (LSSVM) algorithm to predict the lifespan. Instead, a MMD 
approach is introduced in [213]. At first, SAE is utilised for the purpose 
of signal denoising. The MMD method is then employed to quantify the 
variation in distributions and obtain invariant features. Finally, a Bi- 
LSTM network is configured for the task of regression. Replacing the 
Bi-LSTM, the configuration of Bi-GRU is introduced in [214], with the 
same incorporation of MMD. In [215], the authors introduced a novel 
metric-learning strategy that incorporates a clustering mechanism and a 
temporal learning network to measure similarity between two domains.

One of the primary benefits of employing such methodologies is their 
capacity to be applied without the need for supervised (labelled) data. In 
addition, it can also be of use in different working conditions, but not in 
complex and harsh working environments where negative learning 
might occur. Accordingly, adversarial learning approaches can be 
beneficial for that purpose.

Table 5 
Summary of the imbalanced data techniques.

Method Technique Studies

Downsampling Random downsampling [150]
Enhanced downsampling [151,152]
One-category learning strategy [153,154]

Oversampling Random oversampling [155–157]
SMOTE [158–167]
ADASYN [170–172]
Adversarial techniques [174–194]
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2.4.3. Deep adversarial learning
Domain-adversarial training of neural networks, introduced in 

[216], has been widely used in various fields. However, unlike methods 
like GAN and VAE that create new feature samples to address data im
balances, in this case, adversarial approaches focus on learning invari
ance between two distributions.

The authors of [217] propose a GAN-based adversarial model for 
cross-domain PHM learning. At first, the authors developed a CNN 
network to extract the representative spatial features. Subsequently, 
they introduced a GAN architecture consisting of three distinct dis
criminators. The main task of the discriminator is to extract invariant 
features, carry out online monitoring and predict RUL. The authors of 
[218] propose an adversarial method focusing on invariant spatial 
feature learning. Initially, the CWT is used to transform the raw signal 
into 3D images. Subsequently, a CNN with self-attention is employed to 
facilitate the extraction of the influential features. Zou et al. [219]
developed an adversarial approach based on CNN and autoencoders. 
Afterwards, the KL divergence is incorporated to quantitatively measure 
and minimise the discrepancy between the source and target domains. 
Finally, the extracted features are then employed for lifespan calculation 
using Bi-LSTM to encounter temporal dependencies.

The authors in [220] present a novel integration between metric 
evaluation and adversarial approaches. The research proposed the uti
lisation of Mk-MMD and adversarial learning in a parallel structure for a 
prognostic task. The Mk-MMD method is employed to evaluate the 
disparity between distributions, while adversarial learning is utilised to 
acquire invariant features. In the same way, the authors in [221] and 
[222] employed a methodology that combined adversarial techniques 
and discrepancy metrics, utilising a CNN for the purpose of bearing 
prognostics. This method was used to address the difficulties arising 
from different working conditions and incomplete run-to-failure (RTF) 
target data. A cross-operating condition degradation knowledge 
learning method is proposed in [223], constructing a shared latent 
feature space across different operating conditions. This method effec
tively extracts bearing degradation features and weakens cross-domain 
feature differences. To get domain-invariant features, the method uses 
time–frequency representation samples and joint dictionary matrix 
factorization. Another multi-source adversarial online regression 
(MAOR) method is proposed in [224] to address the limitation of the 
health prognosis of target data under unknown conditions. It uses 
pseudo-domain extension, domain-level adaptation, and feature-level 
adaptation to build robust domain-invariant features. An offline-online 
prediction framework is developed to predict online target data 
streams and update the online model. Finally, Adversarial methods are 
capable of learning dynamically without the need for manual settings. 
However, combining them with another feature learning method may 
result in a more robust approach.

2.4.4. Advanced approaches
Few-shot learning is another approach that aims to overcome the 

challenge of poor learning for limited samples in a given task. It aims to 
address the challenge of prognosis with rare and sparse training data in 
the target domain and under different working conditions and different 
fault modes in the source and target domains. The proposed approach 
can improve estimation results in the source domain while conducting 
generalisations to ensure a reliable prognosis. Cheng et al. [225] propose 
a PHM approach based on a multimodal few-shot learning method 
(MMFSL). The multimodal method uses time-series data for temporal 
representation and images for spatial learning. Leveraging the scarce 
fault modes of the multimodal representation, the few-shot strategy 
proved to efficiently provide a reliable PHM. Another few-shot PHM 
learning method is introduced in [226]. It incorporates spatial features 
derived from 2D images to provide cross-domain CdM. Another 
approach is introduced in [227], which suggests a feature disentangle
ment and restoration (FDR) few-shot method for initial fault observa
tion, aiming to deal with the target of early prognosis. The method 

processes vibration signals, pulls out general features that are relevant to 
the task, puts together task-specific features, and sorts nonlinear re
lationships between features for a PHM task. Jang et al. [228] introduce 
a novel health representation learning method based on a Siamese 
network that prevents overfitting by incorporating a multitask learning 
scheme. The method uses the learned embedding space, enabling robust 
RUL prediction.

Meta-learning is another approach that has recently been studied in 
PHM. Meta-learning aims to use knowledge from previous tasks to help 
with new tasks. Dividing a large dataset into small-sample tasks allows 
the model to adapt rapidly to the current tasks. The authors of [229]
propose a meta-network framework for RUL prediction, addressing dis
tribution discrepancies in transient working conditions. An iterative 
meta-network pruning algorithm is introduced that calculates the meta- 
gradients of convolutional kernels, deleting unimportant connections. 
Yang et al. [230] present a novel MetaDESK model for RUL prediction 
with limited data, based on meta-learning and a deep sparse kernel 
network. The model uses a Gaussian process, variational inference, and 
KL-divergence of sparse approximation to estimate latent variables and 
reduce overfitting. It also combines common knowledge and task- 
specific information to improve decision-making. Sun et al. [231] pro
posed a lightweight Bi-LSTM based on automated model pruning for 
bearing RUL prediction. The method uses a learning technique that re
wards correct actions to find and remove unnecessary elements, elimi
nating the need for manual search and choosing the best pruning 
structures. The lightweight Bi-LSTM accurately forecasts bearing wear 
patterns using an RMS value as a health indicator. It achieves a 36 % 
reduction in model size and a 3 % enhancement in prediction accuracy 
over the initial Bi-LSTM. In the same context, [232] introduced meta- 
learning for prognostics with limited data and variable working condi
tions. It extracts degradation indicators that remain consistent across 
different domains from time-frequency images and time-series data. For 
this, two adaptation networks are configured, named meta-CNN and 
meta GRU, for handling spatial and temporal features, respectively. A 
meta-learning algorithm, which is not dependent on specific models, is 
used in [233] to adjust model parameters swiftly based on test samples. 
It also recommends artificial task sets resembling meta-RUL tasks, 
enhancing the method’s applicability across various scenarios. In 
essence, the issue of bearing prognosis in a dynamic working environ
ment remains a research question and is deemed essential for real-world 
industries.

3. Prediction task using hybrid approaches

After reviewing recent advancements and methods of effective 
feature learning for bearing prognosis, this section aims to provide a 
comprehensive review of end-to-end prognostic methods, including 
ensemble approaches, rather than focusing solely on the feature learning 
stage. A prediction task is always subsequent to the feature-learning 
stage, which involves modelling the learned features and mapping 
each of the extracted features to a corresponding lifespan estimation 
value. Prognostic approaches can be categorized into shallow and neural 
network methods, similar to feature-learning methods, based on the 
method used for feature learning and regression tasks. This subsection 
aims to provide an end-to-end examination of bearing prognostic studies 
instead of focusing on feature learning.

For shallow methods, support vector regression (SVR) [83], decision 
trees (DTs) [85], random forests (RF) [82], XG-boost [234], and ELM are 
considered common shallow bearing regression techniques in the state- 
of-the-art. The SVR tries to figure out how an input sample affects the 
output, which in this case is the predicted RUL value. It accomplishes 
this by assuming that the joint distribution between the input vibration 
sample and the predicted lifespan is unknown. SVR draws an insensitive 
tube [235], so the penalty on samples inside this region of the insensitive 
tube does not apply. Otherwise, a penalty function applies to samples far 
away from real values. The support vectors are then employed to 
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measure the degradation severity of an input sample and calculate the 
corresponding estimate of remaining life [236].

The authors in [82–85,237–239] applied SVR to bearing RUL pre
diction. In [83] and [84], SVR is applied subsequent to wavelet 
decomposition and time–frequency representation. However, Benked
jouh et al. [84] utilised isometric feature mapping reduction (IFMR) for 
dimensionality reduction and faster computation. In [237,239], signal 
decomposition using EMD is applied prior to SVR modelling. The aim is 
to eliminate noise samples and extract relevant features before training 
SVR for better regression results. However, Cao et al. [239] calculated 
RMS and kurtosis for more reliable supporting vector construction. 
Additionally, Saidi et al. [238] calculated spectral kurtosis for a wind 
turbine high-speed shaft bearing. Afterwards, time domain features are 
calculated and then selected using monotonicity and trend ability before 
training SVR. At last, SVR is of great use in PHM and is memory efficient, 
so it can be adopted for online modelling [236].

DT is a supervised tree-life model that aims to perform regression or 
class classification through its hierarchical structure. A typical DT model 
consists of a root node, branches, and leaf nodes representing a response 
to a regression task. The path from the root node to the leaf nodes 
through interval nodes identifies the machinery state according to the 
objective task. RF is a variant developed from DT and is widely adopted 
for bearing prognostics. Instead of having one tree that represents the 
whole vibration dataset, RF aims to build several trees and then provide 
the mean prediction of independent trees [240]. This can be effective for 
noise elimination that may be encountered using traditional DT. Ren 
et al. [241] applied DT as an approach to avoid overfitting in bearing 
prognostics. Singh et al. [240] conducted a comparative study to vali
date the performance of RF and ordinary DT in bearing RUL prediction 
as a result of wear phenomena. At first, time domain features are 
extracted, and then the Pearson correlation methodology is applied to 
select the relevant features. In the regression task, the authors demon
strated that RF outperformed DT in terms of root mean square error 
quantification. In [242], the authors conducted an approach to study the 
impact of temporal feature extraction on the bearing RUL prediction 
task. In this context, RF has proven to be an effective modelling 
approach that can incorporate the influential temporal features in the 
regression task with noise elimination. In [82], an SVR-RF approach is 
studied. At first, statistical features are extracted, followed by PCA for 
feature ranking. Afterwards, the performance of SVR and RF is studied 
solely. The pattern learned by each of them is then fed to the Weibull 
Hazard Function for calculating the corresponding RUL. Notably, the RF 
outperformed the SVR.

ELM is a shallow learning algorithm that aims to speed up the process 
of traditional feed-forward neural networks. Unlike neural networks, 
ELM does not depend on gradient descent, which requires extensive 
learning iterations for weights and parameters and may cause overfitting 
or fall into local extrema values [243,244]. Thus, it can be deployed for 
online monitoring. ELM consists of a single hidden NN layer in which the 
number of hidden nodes in this layer is chosen randomly, and a linear or 
nonlinear input–output relation can be drawn based on the selected 
activation function. In bearing prognostics, ELM is commonly employed 
as a regression mechanism subsequent to a feature learning stage. For 
instance, the authors in [245] extracted the standardized RMS [246] for 
fitting a bearing health index, and then a moving average filter for 
pattern smoothing was developed. Subsequently, ELM is employed for 
RUL prediction. Similarly, [246,247] adopted an ELM prognostic 
approach based on relative RMS (RRMS) [248]. RRMS is able to record 
degradation at an early stage due to its sensitivity compared to RMS. 
Thus, once degradation is observed, the ELM can estimate the corre
sponding RUL. However, in [247], Pearson-correlation coefficient 
combined entropy weight methods are developed to assure degradation 
and eliminate anomaly readings before training ELM. A variant of ELM, 
called kernel ELM, is adopted in [249]. Inspired by the kernel SVM 
strategy, a kernel ELM is proposed in [244], which has demonstrated 
superiority compared to ELM [249]. Table 6 presents the techniques and 

shallow regression models adopted in some of the discussed frameworks.
On the other hand, CNN, RNN, Neuro-fuzzy systems, and their var

iants are considered common neural network prognostic techniques. 
Initially, the RBM was employed for feature extraction in [251]. The loss 
function was modified by incorporating a slope component, which 
serves to incentivise the features to acquire knowledge about the trend 
inherent in the degradation pattern. Subsequently, the acquired features 
were inputted into a self-organizing map in order to predict the RUL. 
CWT was employed in [55] to convert unprocessed vibration inputs into 
time–frequency image characteristics. The construction of Le-Net-5 CNN 
network, aimed to extract spatial information from images and subse
quently map them to the bearing’s health score. The initial extraction of 
tri-domain characteristics from the raw vibration signal was conducted 
in [79]. The degradation-sensitive characteristics were further selected 
using a feature selection method that relied on correlation and mono
tonicity. Subsequently, an LSTM model was developed to associate the 
chosen characteristics with the bearing’s health score.

Wang et al. [64] utilised the LeNET-5 architecture to forecast RUL by 
extracting spatial features. In that study, the FFT was utilized to extract 
the relative features, and subsequently, the CWT was employed to 
convert the 1D signal into 2D pictures. Another prognostic strategy 
utilizing CNN is presented in reference [120]. However, this approach 
incorporates features retrieved from various levels of the convolutional 
network for RUL prediction rather than solely relying on the final dense 
layer. An alternative CNN methodology is employed in [118]. The 
usefulness of a unique feature learning method that relies on the spec
trum main energy vector utilising FFT has been demonstrated. In [75], 
spatial features were used to calculate RUL. However, the initial step 
involved applying feature denoising using STFT. Ren et al. [252] utilised 
a deep neural network to estimate health index and longevity by 
inputting a fusion matrix consisting of time-domain information and 
frequency-domain features. In [253], another deep NN was set up. 
However, the features were first chosen using autoencoders. An esti
mation of temporal life prediction is performed in reference [241]. 
Initially, RBM was employed to compress vast time–frequency infor
mation, enabling GRU to eliminate duplicate features during the 
regression phase. In reference [212], a spatiotemporal prediction model 
is shown. The utilization of CNN was employed to extract spatial char
acteristics subsequent to their selection by SVD. These extracted features 
were subsequently inputted into an LSTM network for the purpose of 
predicting RUL.

Additionally, the investigation of deep structure networks and fuzzy 
inference systems is also a significant area of focus in the field of prog
nostic studies. The concept of fuzzy sets was initially introduced by L. A. 
Zadeh in 1965 in [254], with regards to the utilisation of FIS and PNN. 
Mamdani (1975) and Sugeno (1985) introduced two distinct categories 

Table 6 
Comparative analysis of different ml approaches.

Study Feature extraction ML method

[83] WT + time–frequency analysis SVM
[84] wavelets + Statistical analysis on the time-domain +

IFMR
SVM

[60] time–frequency analysis + PCA + Linear Discriminant 
Analysis

Linear 
Regression

[237] EMD SVM
[250] Spectral Kurtosis SVM
[239] EMD + extraction of RMS and Kurtosis on the time- 

domain
SVM

[85] Hamiltonian harmonic oscillation SVM 
KNN 
DT

[81] Statistical analysis on the time-domain + feature 
ranking using DT

RF 
Gradient 
Boosting

[82] Statistical analysis on the time-domain + PCA SVM 
RF
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of fuzzy inference systems (FIS). The ANFIS combines the principles of 
artificial neural networks (ANNs) and fuzzy logic, enabling the utiliza
tion of the advantages of both in a unified approach [255]. In [256], 
ANFIS is utilised to combine and extract the relative characteristics of a 
compact latent space for data arrays from multiple sensors. The authors 
in [257] employed a CdM methodology utilizing ANFIS. The ANFIS 
method is utilized to execute IF-THEN rules on extracted features 
through the EEMD algorithm, which is subsequently regarded as a re
gressor algorithm for RUL prediction. The authors of [258] have 
developed a unique ANFIS that incorporates a particle swarm structure 
for power coefficient prediction. Ultimately, the integration of ANFIS 
and RNN is employed to forecast the forthcoming value associated with 
the health index [259]. Table 7 summarises some of the frameworks that 
utilised DL regression models.

4. Benchmark bearing datasets

To help researchers validate their studies, several labs introduced 
RTF datasets for research purposes. This section presents five common 
experiments in the literature and the main characteristics of each 
dataset.

4.1. FEMTO dataset

This dataset was submitted at the IEEE International Conference on 
PHM 2012 for the prognostic challenge and was provided by the Fran
che-Comté Electronics Mechanics Thermal Science and Optics–Sciences 
and Technologies institute [265]. FEMTO dataset comprises RTF anal
ysis for 17 rolling element bearings. To accelerate the degradation of the 
bearings within hours, bearings were exposed to a radial force that 
surpassed their maximum dynamic load. The experimental setup is 
shown in Fig. 5. Throughout testing, the bearing’s speed remained 
constant. Bearing temperatures and vibrations were recorded using two 
accelerometers and a thermocouple for accurate data collection. When 
the vibration signal surpasses 20 g, it indicates that the bearing has 
reached the end of its useful life. The experiment captures data at a rate 
of 25,600 samples per second to ensure detailed measurements. Each 
sample has a period of 0.1 s; therefore, each sample has a total of 2560 
points. The data is recorded in intervals of 10 s to capture specific 

information during the experiment. The test is stopped to prevent 
damage when the signal’s amplitude surpasses a predefined threshold. 
The dataset consists of 17 RTF datasets that represent bearings in three 
different operating scenarios, as outlined in Table 8. The dataset has 
commonly been adopted in the literature for prognosis studies as in 
[61,75,266,267].

4.2. XJTU-SY dataset

The XJTU-SY rolling dataset is another experiment that has been 
used for bearing prognostic studies [268]. Fifteen different bearing 
datasets from a testing platform were recorded using vibration sensors 
under various operating conditions. Similar to the previous experiment, 
radial force and motor speed are the main factors for simulating 
different operating conditions. Two PCB 352C33 accelerometers are 
utilized to capture vibration signals at a sampling rate of 25.6 kHz in the 
horizontal and vertical directions, respectively, to monitor the vibra
tions. Each sample consists of 32,768 data points collected at a 1-minute 
sampling interval. Table 9 details the specific working conditions of the 
tested bearings. Fig. 6 illustrates the experimental setup of the dataset. 
The XJTU-SY dataset has mainly been used for bearing prognostics 
studies [61,120,267,269].

4.3. IMS dataset

The IMS bearing dataset [94] is the third benchmark dataset that has 
been widely used in research. This dataset comprises three experimental 
datasets that are obtained from a test rig. On a shaft, four bearings were 
placed for each experiment. The rotational speed was maintained at 
2,000 r/min with the aid of an AC motor attached to the shaft. A force 
mechanism applied a 6,000-pound radial load to the shaft and bearings. 
A sample of 20,480 vibration data points was acquired every 10 min. 
The data was collected at a sample rate equal to 20 KHz. The test ended 
when debris stuck to the magnetic plug reached a specific amount, 
causing an electrical switch to activate. Fig. 7 displays the setup of the 
experiment.

For the first experiment, two accelerometer sensors were placed on 
each bearing. This made eight data channels. For the other two experi
ments, only one accelerometer was mounted on each bearing. At the end 
of the first experiment, bearing 3 had damage to the inner race, and 
bearing 4 had issues with the roller elements. At the end of the second 
and third experiments, the outer races of bearing 1 and bearing 3 
experienced structural damage, respectively. The dataset has been used 
for condition monitoring and PHM studies such as in [62,270–273].

4.4. CRWU dataset

Data acquired from Case Western Reserve University (CRWU) has 
considered standard in the PHM community [274]. It comprises a 2- 
horsepower reliance electric motor that drives a shaft, on which a tor
que transducer and encoder are affixed. Torque is applied to the shaft 
using a dynamometer and an electronic control system. Fig. 8 illustrates 
the experimental setup of the test rig, depicting the arrangement of the 
equipment used in the experiment.

Electro discharge machining was employed to introduce defects to 
the drive and fan-end bearings of the motor, specifically the SKF deep- 
groove ball bearings: 6205-2RS JEM and 6203-2RS JEM, with di
ameters ranging from 0.007 to 0.028 in.. The defects were intentionally 
introduced on the rotating components and on the inner and outer rings. 
Subsequently, each defective bearing was replaced individually on the 
experimental setup, which was then run at a constant speed with motor 
loads varying from 0 to 3 horsepower (equivalent to motor speeds 
around 1797 to 1720 rpm). Table 10 displays the pertinent information 
on bearing specifications and rates of faults. Acceleration was recorded 
vertically on the housing of the drive-end bearing throughout each test. 
In some tests, acceleration was also measured vertically on the fan-end 

Table 7 
Summary of some DL approaches.

Study FE Model

[29] EMD SVM Vs LSTM
[260] Time and frequency domain features Multi-Layer Perceptron 

(MLP)
[51] WPT + statistical features: mean, variance, 

kurtosis, RMS, crest factor
MLP

[79] Time and frequency domain features RNN
[253] Time and frequency domain features + AEs MLP
[261] EEMD CNN 

[262] CNN Bi-LSTM 

[122] ResNET FC layer 

[263] Hilbert-Huang Transform CNN 

[128] CNN LSTM
[55] CWT CNN
[264] Self-organizing maps backpropagation
[112] CWT 3DNN
[78] Time and frequency domain features +

wavelets + CNN
GPR

[75] Time and frequency domain features MSCNN
[72] STFT CNN
[120] Time and frequency domain features MSCNN
[124] GCN GRU
[80] Time and frequency domain features GCN
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bearing housing and, on the motor, − supporting base plate. The tests 
were conducted using sampling rates of 12 kHz and 48 kHz. The dataset 
has been extensively employed in studies on bearing diagnostics 
[21,275,276].

BPFI and BPFO are the ball pass frequencies of the inner and outer 
races, respectively. FTF represents the fundamental train frequency 
(cage speed) and BSF is the ball spin frequency.

4.5. Paderborn university dataset

The Paderborn University dataset is a publicly accessible repository 
for bearing data [277]. The data collection setup includes a test motor, 
measuring shaft, bearing module, and load motor, shown in Fig. 9. The 
collection includes both synchronous vibration and motor current 
measurements. The device uses one accelerometer, two current sensors, 
and one thermocouple. The vibration signals are captured at a sample 
frequency of 64 kHz. A total of 32 bearings were used in the experi
ments, including 6 fully functional bearings and 26 damaged bearings. 
Out of the damaged bearings, 12 were intentionally damaged, while the 
others were naturally damaged due to accelerated tests. This dataset has 
been used in bearing diagnostics research [278–280].

Finally, Table 11 aims to summarize the reviewed datasets based on 
the adopted sensor type and sample frequency of each dataset.

5. Challenges and future directions

Despite the great advancements that have been achieved in bearing 
prognostics, there are some challenges and future trends that can lead to 
better results and applicability in real industries. These can be sorted as: 

1- Multi-modal learning: Experimental setups in the literature for 
bearing prognostics are based solely on vibration signals. However, 
an accelerometer sensor, which detects vibration signals, may not 
capture all factors contributing to bearing wear, such as temperature 
and lubrication [19,281]. Furthermore, the sensor is unable to 
accurately detect the initial and early-stage defects that may develop 
in bearing components during operation [9]. Given this challenge, 
thermal imaging methods have been evaluated and shown to be 
effective in diagnostic procedures. Specifically, thermal imaging was 
used to categorize bearing failures by recording temperature read
ings. Choudhry et al. [282] correctly classified six different faults 
based on thermal imaging using Le-Net CNN [18]. The authors in 
[283] demonstrated a successful diagnostic-bearing approach using 
RF. However, a study in [284] proved that SVM can perform better 
compared to RF on the same dataset. A novel method in [285]

Fig. 5. Laboratory setup of FEMTO Dataset.

Table 8 
Characteristics of the FEMTO dataset.

Characteristics 1 2 3

Load (N) 4000 4200 5000
Speed (rpm) 1800 1650 1500
Training B-1.1 

B-1.2
B-2.1 
B-2.2

B-3.1 
B-3.2

Validation/ Testing B-1.3 
B-1.4 
B-1.5 
B-1.6 
B-1.7

B-2.3 
B-2.4 
B-2.5 
B-2.6 
B-2.7

B-3.3

Table 9 
XJTU-SY bearing sets summary and working conditions.

Characteristics First working 
conditions

Second working 
conditions

Third working 
conditions

Load (N) 12 K 11 k 10 k
Speed (rpm) 2100 2250 2400

Bearing sets B-1.1 
B-1.2 
B-1.3 
B-1.4 
B-1.5

B-2.1 
B-2.2 
B-2.3 
B-2.4 
B-2.5

B-3.1 
B-3.2 
B-3.3 
B-3.4 
B-3.5

A. Ayman et al.                                                                                                                                                                                                                                 Measurement 245 (2025) 116589 

16 



introduced a novel approach that combines vibration signals with 
thermal images. This method was 100 % accurate at finding the fault 
point of a bearing that was starting to wear out early on. So, the 
ability to add more instruments, either using imaging or traditional 
sensors, to measure more meaningful characteristics of bearings 
while they are running is an area that needs to be looked into for a 
predictive approach.

2- Management of time complexity: Now that data-driven methods 
are being used in the field of predictive maintenance (PdM), the 
proposed algorithms are getting more complicated. Accordingly, the 
encounter with time and computational complexity is becoming 
important and should be considered. Real-world applications often 
involve massive amounts of data, emphasising the significance of 
considering time and computational aspects in the learning process. 
However, there may be a trade-off between the performance of 
complex algorithms and the training time required. Therefore, the 
interest in compressed models for real-time monitoring is crucial due 
to the importance of available computing resources in industry.

3- System prognostics rather than component prognostics: Most 
prognostic methods in the literature are conducted for specific 
components such as bearings [135], gearboxes [286], and turbofans 
[103]. This is because there aren’t any benchmark datasets available 
for research on real systems. This may lead to the inapplicability of 

such approaches in real and complex industries. Thus, availing data 
from real manufacturing systems for research and considering the 
possibility of developing models that consider the condition moni
toring of several components at a time with condition reasoning is a 
potential aspect of research to mimic real-world industries.

4- Measurement of uncertainty: Many methods primarily concentrate 
on forecasting the average values of RUL, yet it is crucial to consider 
model accuracy for making informed decisions in practical scenarios. 
In this context, precision is important in order to make better- 
informed decisions. So, it would be a point of interest to conduct 
more studies to measure uncertainty and study the progression of 
inferences such as those conducted using Bayesian models 
[108,287,288].

6. Conclusion

This paper provides a thorough review of recent advancements in 
feature learning methods for a successful bearing prognostic approach. 
The authors classified the methods into shallow and deep learning ap
proaches. Further, the paper provides a new taxonomy for feature 
learning methods based on temporal learning, spatial learning, and 
spatiotemporal learning. The paper then addressed feature-learning 
challenges under an imbalanced ratio of data samples and classified 

Fig. 6. Laboratory setup of xjtu-sy datset.

Fig. 7. Laboratory setup of ims dataset.
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the literature methods into downsampling and oversampling methods, 
including the merits and drawbacks of each technique. Additionally, the 
paper explained the challenges and methods used for feature represen
tation under different operational conditions. Moreover, the paper 
presents recent ensemble regression techniques for reliable bearing 
prognostics. It can be concluded that recent research has demonstrated 
that feature learning is the most crucial phase in bearing prognostics. 
Additionally, each of the common data-driven techniques has an effect 
on the type of learned characteristic in the latent space. The paper then 
outlined the benchmark datasets frequently used in studies on bearing 
prognostics. Finally, this paper provided insights into the challenges and 
future directions in this field, aiming to assist new researchers and 
practitioners in identifying opportunities for future research. Overall, 
this research provides insights into the study of bearing prognostic 
challenges from a data-driven methods perspective and lays the 

groundwork for future investigations.
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Fig. 8. Laboratory setup of crwu dataset.

Table 10 
Bearings specifications of CRWU dataset.

Position on rig Model no. Fault frequencies (multiple of shaft speed)

BPFI BPFO FTF BSF

Drive end SKF-6205-2RS JEM 5.415 3.585 0.3983 2.357
Fan end 4.947 3.053 0.3816 1.994

Fig. 9. Laboratory setup of Paderborn dataset.

Table 11 
Summary of the discussed datasets.

Dataset Sensors Sample Frequency

FEMTO Accelerometer and thermocouple 25.6KHz
XJTU-SY Accelerometer 25.6KHz
IMS Accelerometer 20KHz
CWRU Accelerometer 12 and 48KHz
Paderborn Accelerometer and thermocouple 64KHz
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