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Mechanical bearings are common elements in a wide range of applications, such as wind turbines and
manufacturing. Therefore, bearing prognostics are crucial to preventing catastrophic failures and machinery
breakdowns. In this context, extracting the influential features is often the most challenging task in the prognosis
process. This complexity arises because of the non-linear and non-stationary nature of the acquired vibration
signals. Therefore, this paper offers an extensive examination of state-of-the-art feature-learning methods.
Initially, the paper introduces a taxonomy of feature learning methods, encompassing both shallow and deep
learning approaches. The paper also discusses methods of feature-learning under imbalanced data samples and
different operational settings. Furthermore, the paper details the experimental setups of commonly used
benchmark datasets to assist scholars and practitioners in understanding the subject area. Finally, the study
discusses the challenges associated with calculating bearings” RUL and suggests potential areas for further
research.

1. Introduction of fatigue [9]. The standard determines the rating life of bearings by
considering two types of loads: radial load and axial load, using equa-

tions (1-3), where:

C\*
Ly = (IT) (@)

Bearings are among the most common components in rotating ma-
chinery such as gearboxes, wind turbines, and vehicles [1]. A bearing is
a mechanical component that supports the load and enables smooth
movement between two parts, like the shaft and the housing, with
minimal resistance [2]. Bearing degradation, which necessitates timely

e
maintenance, is one of the most frequent causes of operational disrup- Lip = (&> (2)
tions in rotating systems [3]. Statistical data shows that bearings ac- Pa
count for approximately 45-55 % of operational disruptions in rotating o
machinery, in contrast to 41 % for motor faults and 10 % for rotor faults Lo = (%) *L1o 3)

[4]. As a result, bearings have been a focus of research in the machinery
prognostics field compared to other components or systems [5-7].
Standards such as ISO (ISO 281, ISO 76), and ABMA Standard 9 all
try to estimate the remaining useful life (RUL) of types of bearings such
as rolling-element bearings (REB) and ball bearings (BEB). The RUL is
defined as the time remaining before maintenance should be performed
[8]. ISO 281 outlines a systematic approach for determining the
remaining operational lifespan of bearings at a 10 % failure rate. Ac-
cording to this standard, a bearing is considered defective if any part of
it, such as the outer race, inner race, rollers, balls, or cage, exhibits signs
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Where Ly stands for the rating life in hours, given e = 3 if the bearing is
a ball bearing or e = 12 for roller bearings. The variable L1, represents
the fundamental rating life, which denotes the number of revolutions a
component is expected to last with a 10 % likelihood of failure, n is
measured in millions as it stands for the number of revolutions. Finally,
IC,—Z is the case if the load is axial, whereas %’ if the load is radial.

From the given formulas, it is clear that the life rating is based on
some stationary conditions. Meanwhile, in real-world industries, it is
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common for systems to exhibit varying functioning conditions as a result
of challenging operational situations. For instance, wind turbines can be
installed in deserts, seas, or elevated areas, leading to variations in wind
speed, humidity, and temperature across different sites. Additionally,
factors such as lubrication, contamination, and temperature conditions,
which are not accounted for, directly influence the RUL of the bearing
and consequently impact the performance of the machinery. Therefore,
it is essential to establish a dependable estimation of the RUL of bearings
considering operational conditions.

Essentially, there are two main methods for bearing RUL predictions:
a model-based method and a data-driven method. A model-based
method attempts to mathematically describe the degradation pattern.
Kalman filters [10], particle filters [11-13] and similar techniques are
used to develop a mathematical representation of the degradation
pattern [14,15]. As a result, these methods rely heavily on manual work
and linear degradation patterns to establish dependable frameworks.
Therefore, successful maintenance and accurate RUL calculations rely
on expert experience and understanding of various failure modes. Yet, in
complex and modern industries, achieving this, is difficult because the
degradation pattern relies on various non-linear factors.

Conversely, data-driven approaches seek to estimate the optimal
timing for bearing maintenance by considering its expected operational
lifespan, while minimizing reliance on human intervention. Data-driven
methods can be classified into two main categories: machine learning
(ML) and deep learning (DL). ML techniques require more data prepa-
ration stages before modelling, unlike DL techniques. This is because ML
techniques may not be able to identify non-linear relationships or effi-
ciently process raw non-stationary and non-linear signal characteristics
associated with a target bearing. On the contrary, DL techniques aim to
automatically extract the latent characteristics within the obtained sig-
nals without manual involvement. However, recent research has
demonstrated that fusion models, which integrate data processing stages
with DL modelling, can accelerate the convergence of DL models and
enhance the robustness of the regression model. Fig. 1 illustrates the
different stages of model-based and data-driven methods, including ML
approaches, DL approaches, and fusion approaches. Meanwhile, Fig. 2
names some of the common techniques of each of the model-based and
data-driven methods, including ML and DL approaches.

The study of vibrations has demonstrated its effectiveness in accu-
rately assessing the state of bearings [16-19]. Yet, the estimation of
bearing lifespan is considered challenging and open area of research due
to several reasons. First, the vibration signals from bearings exhibit a
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low signal-to-noise ratio (SNR) and non-constant behaviour [20]. In
normal operations, a bearing is influenced by other components within
the same system. This interference affects the target bearing and needs
to be removed to effectively conduct predictive maintenance on the
bearing. Therefore, it is crucial to recognise essential bearing features
and eliminate any potential noise assumptions. Second is the lack of
availability of different failure modes. This is because it is expensive and
time-consuming to run industrial equipment until it fails to gather data.
Additionally, safety risks may arise in this situation [21,22]. Third, the
limited reliability of data-driven prediction methods in the state-of-the-
art, which may be attributed to the variations in the distributions of
training and testing data across different operational settings. Having
consistent distributions of training and testing data suggests that each
operational setting should have its own training model, which can be
challenging to achieve.

Given that a prognostics and health management (PHM) approach
has four stages: data acquisition, data preparation, feature extraction,
and RUL calculation, the feature extraction stage is considered the most
crucial. Robust techniques for feature learning can enhance the preci-
sion of the prognostic approach while also resolving the aforementioned
concerns. On the other hand, the poorer the representation, the lower
the accuracy of the estimated life. Therefore, the purpose of this study is
to review the feature learning methods introduced and examine the
progress made in addressing each of the three prognostic difficulties
identified. Several review studies have been conducted on bearing
prognostics. The authors in [23] conducted a study on the applications
of predictive maintenance in different fields, including bearings, air-
crafts, and batteries. In [2], Jammu et al. focused on data acquisition
methods for bearing prognostics, including vibration and acoustic
emission [24]. However, Mbagaya et al. [25], briefly discussed some of
the common statistical approaches for bearing prognostics. Authors in
[26] summarised the theoretical background of the common data-driven
techniques for PHM applications. Chen et al. [27] discussed the chal-
lenges of cross-domain prognostics. Kordestani et al. [8] conducted a
study to review the methods of failure prognosis, which is the process of
predicting the fault state of a malfunctioning component.

In contrast to others, this study focuses on feature-learning methods
for bearing prognostics. The study aims to review and summarise the
state-of-the-art feature learning methods. The paper provides a review of
the common traditional feature learning methods, as well as the
methods that leverage the capabilities of deep neural networks (NN) to
learn non-linear and non-stationary trends of bearing signals.
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Fig. 1. Bearing prognostics frameworks; (a) physical methods, (b) ML methods, (c¢) DL methods, and (d) fusion methods.
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Fig. 2. Common model-based and data-driven techniques.

Furthermore, the study reviews and discusses feature learning methods
designed to address the scarcity of fault-bearing samples, particularly
those with an imbalanced data sample ratio. Additionally, the authors
categorize and provide a comprehensive analysis of feature learning
approaches under different data distributions between the training and
testing data, which result from different operational settings. Further-
more, the authors discuss fusion models for RUL predictions, as they
have proven sufficient in recent years. Afterwards, the study discusses
the physical setups and data acquisition methods of the common
experimental approaches in the state-of-the-art. Finally, the paper out-
lines current gaps and proposes potential future directions to benefit
practitioners and emerging researchers in the field.
The contribution of this study can be listed as follows:

1. The research presents a novel scheme of classification for feature
learning techniques in bearing prognostics. This taxonomy includes
both shallow machine learning methods and deep learning methods
that are based on temporal learning, spatial representation, and
spatiotemporal representation.

2. The authors further analysed and presented feature learning methods
that address data imbalance challenges by categorizing them into
oversampling methods and downsampling methods.

3. The authors discussed recent advancements in overcoming chal-
lenges related to feature-invariant learning in different operational
scenarios, which involve inconsistent data distributions during
training and testing.

4. The paper also explores different methods for predicting the RUL of
bearings, categorized as either shallow or advanced approaches
depending on the feature learning phase.

5. The paper presents and discusses the experimental setups of the
common bearing datasets in the literature.

6. The paper addresses current challenges in the state-of-the-art and
highlights future directions.

The rest of the paper is organised as follows: Section 2 discusses the
taxonomy of feature learning methods, including those that address the
challenges of data imbalances and cross-domain learning. Section 3 re-
views different studies developed for bearing RUL prediction. Section 4
presents the common publicly available bearing datasets. Lastly, Section
5 provides future directions for the coming years in the subject field.
Finally, section 6 concludes the study.

2. Feature learning methods

This section provides a taxonomy of common existing feature
learning methods in the state-of-the-art. At first, shallow feature-
learning methods are classified into signal decomposition approaches
and traditional feature extraction approaches. Signal decomposition
techniques consist of empirical mode decomposition (EMD), variational
mode decomposition (VMD), and wavelet transform (WT). While Fast
Fourier transforms (FFT), short-time Fourier transforms (STFT), statis-
tical analysis, linear discriminant analysis (LDA), and envelope analysis
(EA) are among the traditional feature extraction methods that have
been discussed. In the second subsection, feature learning methods
based on DL techniques are presented and categorised based on the type
of learned features, such as temporal learning, spatial representation,
and spatiotemporal learning.

The third subsection analyses feature learning methods for imbal-
anced data samples. They are named downsampling and oversampling
methods. Random downsampling, enhanced downsampling, and a one-
category learning strategy are all examples of downsampling. Tech-
niques for oversampling encompass geometric and adversarial
approaches.
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Lastly, the fourth subsection reviews feature learning methods for
cross-domain learning. It includes studies on transfer learning, ap-
proaches for metric discrepancy, adversarial methods, and few-shot
learning methods.

2.1. Shallow feature learning methods

This subsection discusses shallow feature learning methods, such as
signal decomposition and traditional feature extraction techniques.
Although such methods rely on human intervention and domain
knowledge, researchers have recently been using them as an introduc-
tory stage in hybrid prognostic approaches, aiming to eliminate noise
and improve learning speed.

2.1.1. Empirical mode decomposition

Due to the harsh operating environments, the SNR of the acquired
signal is significantly low [1]. The EMD [28] is a method that uses
mathematical techniques to break down a signal into intrinsic mode
functions (IMFs). The monotonicity of the final extracted IMF de-
termines the stopping criterion for this decomposition process. Subse-
quently, by selecting the related IMFs from the original signal and
discarding the irrelevant ones, the noise depicted in the signal can be
considered to have been removed. In contrast to other techniques, EMD
maintains non-stationary and non-linear relationships in the data. Chen
et al. [29] applied EMD to eliminate noise from the collected accelera-
tion data of a motor bearing. They decompose the original signal into
fourteen IMFs before training a deep neural network for regression. Liu
et al. [30] also adopt a similar approach, using EMD to enhance the
backpropagation weight adjustments of a deep neural network that
processes signals from multiple sensors. Additionally, another employ-
ability of EMD is to reduce fluctuation and extract signal content, as in
[31].

The selection criteria for IMFs can be conducted using mathematical
expressions like correlation coefficient, covariance [32], or cosine sim-
ilarity [33]. In [32], the correlation criterion was used to select
decomposed signals. Guo et al. [33] introduce a novel selection criterion
based on cosine similarity. Although EMD can achieve good results, it
may sometimes lead to the loss of hidden information at the edge of a
signal during the decomposition process. Therefore, summing up all
IMFs may not retain typical input signals [34]. In order to address the
limitations of mode mixing in EMD, researchers introduced a noise as-
sistant variant known as ensemble EMD (EEMD) [35]. EEMD is applied
in [36] to decompose the vibration signal of a bearing; afterwards,
statistical analysis is applied to the selected IMFs to form high-
dimensional feature vectors for deep learning network modelling. Guo
et al. [37] introduced a bearing prognostic approach based on relevance
vector machines (RVM). However, they employ EEMD for feature
extraction and noise elimination to reduce the uncertainty of RVM in
long-term prognostics. In [38], the decomposed IMFs of EEMD are also
utilised for a bearing prognostic study.

However, the added white noise in EEMD greatly affects the
computation time. Fortunately, fast EEMD (FEEMD) [39] has been
introduced to address this issue. The method has proven efficient in the
literature, as in [40,41]. Moreover, Jiang et al. [42] proved the effi-
ciency of FEEMD in extracting fault samples of a REB, while a hybrid
denoising autoencoder and contractive autoencoder are then configured
to select the higher-order features.

2.1.2. Variational mode decomposition

VMD is a non-recursive signal decomposition technique widely
employed in the literature to address the challenges of mode aliasing
and noise sensitivity inherent in EMD. VMD seeks to identify a group of
modes and their corresponding centre frequencies that can accurately
replicate the input signal. After being processed into a baseband signal,
every mode in VMD should appear smooth. VMD is considered an
extension of the traditional Wiener filter that operates across several
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adaptable frequency ranges [43]. In [44], in order to detect a fault in its
early stages, an approximate entropy VMD approach is developed. At
first, the signal is decomposed into IMFs by VMD, and then approximate
entropy is calculated for each IMF. An eigenvector is then created that
contains fault information. Song et al. [45] used VMD to conduct a fault
prognostic study to monitor the development of an element bearing’s
future degradation trend based on its long-range dependence charac-
teristics. VMD is employed in [46] to detect the initial flaws in the
captured vibration signal. VMD splits the original vibration signal into
multiple IMFs. Dispersion entropy is computed for each mode, and
principal component analysis (PCA) is performed on the two modes with
significant variance. The initial step in the PCA learning process is then
regarded as the beginning of a degradation output. In, [47], Liu et al.,
utilised VMD to extract relevant features and eliminate noise from the
original signal of a rotating bearing. The extracted modes then undergo a
hybrid feature selection methodology based on monotonicity and cor-
relation, which feeds a neural network for lifespan calculation. Han et al.
[48] developed an approach based on VMD to extract robust informa-
tion about an element bearing. VMD has proven to preserve non-
Gaussian and non-stationary characteristics during the feature extrac-
tion process.

2.1.3. Wavelets transform

Another common signal decomposition technique that has been
commonly utilized in the literature is the wavelets transform (WT). The
fundamental premise of the wavelet transform involves hierarchically
dividing a signal into a series of frequency channels that possess iden-
tical bandwidths on a logarithmic scale [49]. The wavelet transform
effectively captures both temporal and frequency information in a signal
and adeptly addresses signal denoising issues [50,51]. It can be classi-
fied into continuous wavelet transform (CWT) and discrete wavelet
transform (DWT). The latter is a mathematical method that uses
displacement and translation values to create a set of wavelets that are
all different from each other [52]. The initial signal, denoted as x(t),
undergoes filtration through two distinct filters, specifically a low-pass
filter (LPF) and a high-pass filter (HPF). The signal is converted into
two distinct components: low-frequency approximations (CA) and high-
frequency detail components. For instance, Rathore et al. [52] employed
DWT to remove noise from the collected signal before inputting it into a
1D neural network model for higher-order feature-learning. While [53],
employed the DWT to differentiate between features in good condition
and those in a degraded state.

The literature frequently uses the CWT type to transform a 1-dimen-
sional (1D) signal into two or three dimensions for training neural
network algorithms such as convolutional networks [54]. Yoo et al. [55]
utilized CWT to extract spatial features and transform the bearing 1D
signal array into 2-D dimensions for health index creation using con-
volutional networks. Similarly, [56,57] employ CWT to transform the
acceleration signal into a 2D array, enabling simultaneous diagnostics
and prognostics. Furthermore, wavelets can be employed to differentiate
features with distinct characteristics, such as identifying spalls on
bearing components [58]. Additional studies will be presented within
the ensemble methods part, as the employability of WT has recently
been introduced as a preliminary stage for training DL rather than being
solely applied for regression.

2.1.4. Fast Fourier transform

The FFT is typically utilized in bearing prognostics to get the fre-
quency spectrum of the vibration signal. Specific harmonic component
fluctuations in the frequency spectrum can identify a specific problem
and serve as a fault signature for bearing durability [59]. Extracted
features using FFT can then be input into either a simple prediction
model [60] or a deep neural network (NN) model [61]. Ding et al. [62]
developed a prognostic approach based on FFT. At first, FFT is applied to
map the original signal to a frequency spectrum, and then root mean
square (RMS) is applied as a degradation index. Finally, deep
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convolutional NN (DCNN) is used to estimate the RUL. In [63], a fusion
feature-learning approach based on FFT and CWT is introduced. At first,
FFT is employed for domain translation, followed by CWT, to transform
a 1D signal into 2D vectors for grayscale convolutional neural networks
(CNN) modelling. A similar approach based on FFT employability is
conducted in [64]. However, a different CNN structure named Le-Net 5
[65] is used, along with a dropout layer designed to prevent overfitting.

Zhou et al. [66] used FFT to understand the variance in learned
features from multimode operations affected by load and environment
changes. In [67], using FFT before a deep belief network (DBN)
improved the performance of the PHM model. This demonstrates the
efficiency of learning the frequency distribution of the monitored signal,
especially when the ML model struggles to independently learn temporal
information. In [68], FFT is used to differentiate the frequency bands of
a non-stationary signal that overlap. In [69], FFT is used to obtain
Fourier coefficients, which are subsequently inputted into a convolu-
tional network. Finally, in [70], FFT is used to extract useful information
before inputting it into unsupervised modelling, reducing the need for
manual intervention in extracting relevant features from the vibration
signal. Further studies employing FFT will be explored in various sec-
tions of this paper, highlighting FFT’s crucial role in enabling reliable
prognostic processes.

2.1.5. Short-time Fourier transform

STFT is a common technique used for analysing nonstationary sig-
nals [19]. The main idea of STFT is to split a bearing’s nonstationary
vibration signal into small intervals, then apply a Fourier transform to
each interval to observe the evolution of a fault early on for a reliable
prognostic approach. This method can avoid the loss of fault information
over time, such as in FFT [70]. Additionally, once the signal is mapped to
the time—frequency domain, further analysis can be performed.

STFT is set up in [71] to create an image representation showing
signal frequencies over time before applying CNN for condition moni-
toring. Zhou et al. [72] applied STFT to the bearing signal so that CNN
could learn the progression of fault information and calculate the RUL
accordingly. In [73], STFT is used before a stacked sparse autoencoder to
enhance the understanding of signal patterns in a condition monitoring
approach. Additionally, [74] introduces the use of STFT for tracking
specific parts of signals. The study aims to use STFT to understand
temporal relationships, while CNN is used to identify degradation in the
vibration signal. Similarly, Li et al. [75] used STFT to identify the fault
information of an operational bearing early on and estimate its lifespan.
Finally, [60] introduces an ensemble feature learning model based on
STFT and PCA. The selected features are then fed to a linear regression
model for lifespan estimation.

2.1.6. Statistical analysis

Statistical features are the process by which the online signal sta-
tistics are monitored using the extracted features. If the observed char-
acteristics deviate significantly from their expected values, the
monitored machine would be considered faulty, and an estimate of its
lifespan could be made. This technique is commonly used to monitor
operating conditions based on extracted features. However, it is
considered a manual approach because it relies on human intervention
to determine significant features based on the monitored target’s char-
acteristics. This is further compounded by the requirement to manually
establish a threshold for identifying faults. The analysis can be per-
formed in three domains: time, frequency, or time-frequency. To anal-
yse the frequency domain, the original signal must be transformed into a
frequency-based representation. Techniques like the FFT and the STFT
can be used to convert the signal into the frequency domain [59,72,76],
as discussed in the previous subsection.

Examples of time-domain features include mean, standard deviation,
variance, and kurtosis. On the other hand, examples of frequency-
domain features are the maximum power spectrum, skewness of the
power spectrum, and relative spectral peak per band. To provide a
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clearer explanation, Table 1 explains the mathematical representation of
commonly used features in the literature.

Fork =1,2, .., n, x(k) represents the time domain signal series, and n
represents the number of samples. Similarly, s(i) is the frequency domain
series fori = 1,2, .., n, and I, and I are features of the same nature in
which h and f are features computed from the healthy and faulty states,
respectively. u is a vector representing the centroid of the acquired
signal in the n-dimensional space. While dv dj, d,, and N, are the ball
diameter, pitch ball diameter, and number of balls, respectively. f; is the
rotational frequency. b and a are two positive integers, where a < b. f§ is
the ball contact angle with the races. Finally, C is the covariance matrix.

As shown in Fig. 1.b, analysing statistical features is an initial step in
shallow learning models before modelling [26,77]. On the other hand, in
DL methods, the use of statistical feature extraction aims to reduce the
computational requirements and remove interference [75,78-80]. For
instance, in [78], Wang et al. applied statistical analysis to the 1D vi-
bration signal before applying CWT to convert the 1D array signal into
3D images so that the spatial characteristics of the image could be rep-
resented. Similarly, after configuring STFT to translate the time domain
signal into the frequency domain, [75] applied frequency domain
analysis. Degradation thresholds are then set for a condition monitoring
approach. In [79], feature analysis is applied, but a feature ranking
criteria is followed using monotonicity and correlation to help a recur-
rent neural network (RNN) extract the temporal features and achieve
better results. Lastly, in [80], time-frequency features were extracted
before being represented on a graph for further graph knowledge
learning.

In real industries where data sizes are huge, statistical representation
can be extensively extracted and then followed by feature selection to
simplify the computational cost. Traditional feature selection ap-
proaches can be classified into two categories: filter-based methods and
wrapper-based methods [47,48]. Lately, neural network algorithms
such as autoencoders (AE) can be adopted for the same approach
without human intervention. Leveraging the capacity of ML, Patil et al.
[81] employed a decision tree (DT) framework to select the most
influential time domain features. In [82], PCA is used. However, the PCA
approach achieved slightly higher results compared to the feature se-
lection approach done using DTs. The authors in [83] and [84] applied
the same methods for predicting bearing RUL. The framework involves
applying wavelet decomposition, followed by time-frequency repre-
sentation, and training support vector machines (SVM). In contrast,
Benkedjouh et al. [84] used isometric feature mapping reduction (IFMR)
to reduce dimensions and speed up computation. In [85], the authors
extracted a set of statistical features and compared the efficiency of SVM
and DT under similar conditions, showing that DT can yield better
results.

It is worth mentioning that for statistical analysis to be effective,
segmenting the signal into uniform windows of a predetermined dura-
tion to enable the extraction of distinct values is deemed essential, often
called the “windowing” technique. There is always a trade-off between
the quality of the extracted features and the window length, as a fixed
window size may lead to the loss of non-stationarity characteristics. One
possible solution to this issue is to reduce the window length; however,
this approach requires a considerable amount of computation [26].

2.1.7. Linear discriminant analysis (LDA)

Different from the previous feature learning methods that directly
extract an observed characteristic, LDA aims to construct a feature map
of a target signal. The algorithm can then identify unnecessary features
and classify samples to distinguish between faulty and normal ones,
enhancing the accuracy of regression models afterwards. In their study,
Harmouche et al. [86] used LDA to distinguish the severity of faults on
different parts of a ball-bearing: the outer-race, inner-race, and balls. In
the same study, LDA, PCA, and SVM for feature learning were evaluated,
and the researchers concluded that LDA outperformed the other
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Table 1
Formulas of common statistical features in the literature.
Domain Feature Formula
Time-domain Mean value (I;y) n ki
Iy = k:lH

Frequency-
domain

Max (Imax)
Min (Inin)
Root mean square (Ims)

Variance ()

Standard Deviation (Iy4)
peak-to-peak (Iap)
Absolute mean

Wave Factor (I,,s)

Root mean squared error
Urmse)

Peak value

Peak to RMS
Impulse factor
Skewness factor (Iy)

Kurtosis factor (Ixr)

Crest factor (I )
Absolute max (Imax|)
Median (Inedian)

Mode (Imod)

Mean absolute deviation
(Imad)

Harmonic mean (Iymnean)

Percentiles (Iperc)
Interquartile range (Iigr)

Energy quantification related

Uz2)
Variance coefficient ()
Skewness coefficient (I;)

Kurtosis coefficient (Ix)

Fisher criterion (Ir)

Euclidian distance (Igp)

Sum square error distance

(ssea)
Mahalanobis distance (Iyp)

Manhattan distance (Iyanp)

Median error distance (In)

Outer-race fault (ORF)
frequency (o)
Inner-race fault (IRF)
frequency (Iyf)

Roller (ball) fault (BBF)
frequency (Iyys)

RMS frequency of the 1st
harmonic (Zms_1stn)

RMS frequency of the 2nd
harmonic (Iyns_andn)

RMS frequency of the 3rd
harmonic (Iyms_3ran)

Mean power of spectrum (Fp,y)

Maximum of power spectrum

(Fmax)

Root mean square of power

spectrum (Frps)

Variance of power spectrum

(Fr)

Imax = max (xkfl.Z,v.,n(k»
Imin = min (Xe=1,2,..n(k))

Lo n o X2
ms. k=1 N

L — ngl(xkflmv)z
v — - _— 4

n—-1
Ig = \/E
Ip2p = Imax'Imin)
X
Lamean = Ll%

n
Ly = NI/ Zkflxk

n (xk*Imv>2
Trmse = \ Zk:l n

Ip = 1/2[Ima.x - Imin]
Ipzrms = ‘Imaxl/Inns
Iimpulse = Ip/Iﬂmean

I — ELl(Xk*Imv)s
L A S—

n,Isf
n X — I, 4
by = Tl —m)®
n.ly
Icf = Ima.x/Imus

Inag = mad (Xp=1,,.n(k))

n 1
Thmean = ﬂ/zkzlg
Iperc = perc (xk:1,2....n(k))
Iigr = IQR (Xk-12,.n(k))

=S k)~ h)?
Le = /I,
1 n 3
T (x(K)
1,)°
1w "
(k)
(1,)*

N
(a)*+(Ia, )

o

I =

I = /S0 Un(k) — I (K))?

Iea = 1In (k) = (k)|

Ivp =/ (xk — ﬂ)T Cl(k—p)
P

Ine =

argmin . _ [[In(k) — I (K)]| 2

Ny

Tug = ~2(1~(dscosp/dp)

liy =21+ (dycosp/dy)

e!
Iy = dfzfr(lf(dbcos/i/dp) 2

1 by 5
Tms-1am =\ [p— o Sk
I _ 1 by
rmsandh = \[p ) g,

1 b3
Trms—3rdn

Measurement 245 (2025) 116589

Table 1 (continued)

Domain Feature Formula
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Standard deviation of power
spectrum (Fyq)
Skewness of power spectrum
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(Fiy) f n.Fog?
Relative spectral peak per F. — Fnax

band (Fy) L

techniques. M. Zhao et al. [87] demonstrated that LDA can eliminate
noise while maintaining the important local structure of bearing sam-
ples, which is essential for PHM. Furthermore, authors in [88,89] uti-
lised LDA as a denoising method for non-stationary vibration signals
from bearings. Compared to PCA and marginal Fisher analysis, LDA
demonstrated superior performance [89]. Ciabattoni et al. [90] pre-
sented a variant of LDA called delta-LDA, which addresses certain issues
by utilising covariance matrices. This variant utilises covariance
matrices to resolve the problem of a between-class scatter matrix trace
approaching zero. This method produced outstanding results and was
validated using electrical motor bearings.

2.1.8. Envelope analysis

Envelope analysis (EA) is an example of a shallow feature learning
technique commonly used in bearing diagnostics and prognostics. In
PHM applications, EA primarily extracts the wide variation of acquired
signal amplitudes, such as vibration signals. The technique demodulates
the accelerometer signal through band-pass filtering. According to
Antoni et al. [91], EA methods can effectively find and boost fault-
related high-frequency components. This can help in the early detec-
tion of bearing faults like cracking and spalling. Swalhi et al. [92]
further enhanced the performance of EA for bearing early fault detection
by integrating spectral kurtosis. Another approach was proposed in
[93], which suggests the integration of wavelet packet transform. The
authors demonstrated the study’s effectiveness compared to a tradi-
tional STFT kurtogram. Qin et al. [94] proposed a novel SVD approach in
order to facilitate the process of selecting the appropriate scale for the
wavelet transform integrated with EA. The study has proven reliable in
detecting a weak signature of mechanical impulses. In order to identify
the influential sub-band signal in EA, Kang et al. [95] proposed a
Gaussian mixture model-based residual component-to-defect compo-
nent ratio, which serves as an effective metric for assessing the severity
of defects. While to distinguish between healthy and faulty features,
[96,97] feed the extracted features from EA to SVM. In a similar vein,
Wein et al. [98] proposed a 2D feature vector based on EA as an input to
K-nearest neighbour (KNN) for rolling bearing condition monitoring. It
can be concluded that EA enhances the effectiveness of extracting fault-
related features, thereby improving the early prognostics process.

Table 2 presents an overview of the techniques discussed, along with
a compilation of studies that have implemented these methodologies.

2.2. Deep feature learning methods

Feature learning methods using deep learning algorithms, are
capable of capturing important features of an operational bearing
automatically and without manual intervention. This is because DL
networks have the capacity to learn complex relationships among pat-
terns extracted from the raw signal using non-linear functions like hy-
perbolic functions, rectified linear units, the sigmoid function, and
SoftMax [99]. In the context of bearing prognostics, methods can be
classified as temporal feature learning, spatial feature learning, and
spatiotemporal feature learning.
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Table 2
Summary of discussed feature learning techniques.
Technique Advantages Disadvantages Studies
EMD offers adaptive and Sensitivity to signal [28-42]
data-driven noise and mode
decomposition of mixing.
nonlinear and
nonstationary signals
VMD Provides a robust and Dependence on [43-48]
non-recursive method predefined
for signal parameters such as
decomposition which number of modes
would overcome the which limits its
mode mixing adaptability
WT Capturing time and Sensitivity to the [49-58]
frequency choice of mother
information wavelet which can
simultaneously, limit the adaptability
making it effective for  in different
examining non- operational
stationary signals. environments
FFT Enabling rapid Cannot effectively [59-70]
conversion of time- analyse non-
domain signals into stationary signals
the frequency domain
STFT Effective in analysing Fixed time-frequency [19,71-75]
non-stationary signals  resolution which can
by capturing limits its adaptability
frequency content in to signal with varying
localized time features
windows
Statistical Effective in detecting Depends on pre- [26,59,72,75-80]
analysis variation of signal defined thresholds
trends and may cause the
fading of non-
stationary
characteristics of the
captured signals
LDA Ability to maximize Sensitivity to outliers [86-90]
the class separability
of the normal and
fault data features
EA Enhance the May lead to the [91-98]

understanding of
complex non-
stationary signals

masking of important
high frequency
characteristics
leading to the loss of
critical features

2.2.1. Temporal learning

Temporal learning uses DL algorithms to detect variations in signal
patterns over time, eliminating the need for manually established
thresholds that are typically used in conventional statistical techniques.
Additionally, it models the relationships among sequential input fea-
tures to automatically calculate the bearing RUL at each time step [100].
Several deep learning techniques have been developed to learn the de-
pendencies of features over time. RNN, long-short-term memory
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(LSTM), and gated recurrent units (GRU) are examples of these
techniques.

RNN is widely recognized for its success in learning time sequences,
making it a prominent model in this context. However, because of the
long backpropagation training that is required to learn a whole sequence
of bearing life cycles, training an RNN can lead to vanishing or exploding
gradients [101]. Other variants of RNN, such as LSTM and GRU, have
avoided the vanishing gradient problem by introducing a gating mech-
anism in which the input gate and forget gate in LSTM can only consider
important temporal information while discarding unimportant features
[101]. Meanwhile, the number of gates in GRU is minimised to reduce
complexity and, at the same time, preserve long-sequence learning
[102]. Fig. 3 illustrates the internal structure of RNN, LSTM, and GRU.
Bi-directional LSTM (Bi-LSTM) and bi-directional GRU (Bi-GRU) are
variations of LSTM and GRU, incorporating bidirectional learning. It
aims to learn the sequence of features in the forward and backward
directions in order to provide more precise learning [103-105]. Table 3
summarises the state-of-the-art variants of common temporal networks.

To the best of the authors’ knowledge, RNN was first introduced for
bearing prognostics in [106]. The novel approach aims to predict the
RUL using RNN and extended KF (EKF). The RNN is employed to extract
the hidden temporal features, while the EKF is used to map the extracted
features to the remaining life values. Guo et al. [79] employed RNN to
automatically detect the failure threshold and, hence, estimate the RUL
based on the severity of the failure. Mao et al. [107] used LSTM to
extract temporal information for bearing RUL estimation. At first, the
Hilbert-Huang transform is applied to the raw data, and then LSTM is
employed for both feature learning and RUL calculation. Chen et al. [29]
conducted a comparison between extracting the relevant features using
LSTM and SVM after applying signal decomposition using EMD. It is
stated that LSTM performed with a higher prediction accuracy of 36 %.

Table 3
Variant of recurrent neural networks.
Variant Description
RNN e Can make use of the sequential data
e Capable of remembering short-term information
LSTM e Resolve the gradient vanishing and exploding problem due to the
gating mechanism.
e Capable of retaining both short- and long-term knowledge
GRU e Similar to LSTM, however, it is considered a faster learner as it
depends on only two gates.
e Capable of capturing the intrinsic relationship for long-term
forecasting.
Bi-LSTM, Bi- o The learning process should be in both forward and reverse
GRU directions.

Suitable for moderate forecasting

T
X LSTM

Fig. 3. Shallow rnn structure.
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Zhan et al. [32] applied the same model configuration without applying
EMD and did a comparison between RNN, LSTM, and Bi-LSTM on the
same bearing dataset. LSTM has demonstrated markedly better perfor-
mance than RNN, while only marginally surpassing Bi-LSTM, high-
lighting the effectiveness of bidirectional approaches. However, when
the signal is decomposed using EMD and a set of statistical features is
extracted, Bi-LSTM improves prediction accuracy by nearly 50 %. A
fusion-temporal learning approach is conducted in [108]. At first, sta-
tistical features are represented to reduce computational costs and
eliminate interference. Subsequently, GRU is used for temporal learning
to improve prediction accuracy. However, in [109], a bi-GRU network is
configured to rely on the CNN network instead of statistical represen-
tation. Another GRU-based approach is introduced in [110]. An atten-
tion mechanism is applied to GRU so that the features selected can then
be utilised for life calculations with less computational complexity.
Finally, in an industrial bearing prognostics approach, Zhou et al. [111]
used features extracted by GRU to measure differences in probability
distributions across various operational conditions.

2.2.2. Spatial features learning methods

In addition to temporal methods, spatial representation has
demonstrated significant efficiency in bearing prognostics. Within the
framework of spatial learning, the prognostic process typically trans-
forms the input vibration signal into the spatial domain to capture the
key spatial characteristics at each time step. [112]. Deep convolutional
networks are widely used for this purpose. CNNs have had tremendous
success in computer vision applications [113,114]. It extracts repre-
sentative features from grid structures using convolutional, pooling, and
fully connected layers. Fig. 4 explains the structure of CNN.

In addition to CNNs, a recent method for bearing prognostics is based
on graph representations [80]. The method represents features in a
graph structure and learns by using deep neural networks on graphs.
This neural network type is known as a graph neural network (GNN) and
has recently been introduced for bearing prognostics. One significant
advantage of GNN over traditional spatial networks is its capability to
handle high-dimensional data without needing to calculate the
Euclidean distance between features in the feature space, which has
significantly improved machinery prognostic results. This subsection
provides an illustration of both methods.

2.2.2.1. Spatial learning via CNN approaches. The main goal of the
convolution layer is to create feature maps by applying convolutional
operations to the input with filters. The main aim of the pooling layer is
to reduce the input size, which helps compress data through down-
sampling. The fully connected layer, also known as a fully connected
forward network, serves the primary purpose of extracting deeper
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characteristics from the data. Typically, it is linked to the implementa-
tion of multiple convolutional and pooling layers. Fig. 4 is a shallow
explanation of a native CNN structure. Various CNN network topologies
have been developed in the last decade. Some of them aim for better
learning performance in terms of computational complexity and speed,
while others are mainly focused on feature manipulation [114-117].
Table 4 states some of the common variants of typical CNN networks
that are widely used for bearing prognostics.

In [118], a pioneering study introduces CNN for PHM. The authors
demonstrated that they could use CNN for spatial feature extraction to
estimate the RUL of bearings. The authors proved that extracting spatial
features using CNN can be employed for estimating the RUL of bearings.
Ding et al. [62] employed CNN but removed the pooling layer. A typical
topology of a CNN algorithm in this study consists of three convolutional
layers followed by two fully connected layers. Zhou et al. [72] applied
STFT instead to ensure effective learning of the fault characteristics. The
authors represented the time-frequency features after applying STFT, so
the extracted features are then fed to the CNN network, facilitating the
learning process of CNN. Meanwhile, Wang et al. [64] conducted
another approach. The authors employed CWT to convert the 1D vi-
bration signal into 2D images. Then the LeNet-5 convolutional network
topology, which is introduced in [65], is applied to bearing RUL
prediction.

To diagnose and predict a bearing’s RUL, [119] introduced a new
CNN architecture that shares learning weights in fully connected layers
for both tasks. The methodology has markedly enhanced the error

Table 4
Common variants of CNN for bearing prognostics.

Variant Description

Traditional CNN o It consists of convolutional, pooling, and dense layers.

e Effective in catching the most prominent signal patterns

Multi-layered CNN

Multiple CNN architectures are layered one upon another.
The output of one CNN becomes the input of subsequent
CNNs.

Effective at dealing with raw signals, as instead of reliance
on feature extractors

Multi-scale CNN o It contains two primary sequential stages: local and full
(MSCNN) convolutions.

In local convolution, features are retrieved at each layer

In the entire convolution layer, all retrieved features are

concatenated to produce the final result.

Effective preservation of the prediction’s numerous layers

of abstraction

I Flattenin, >

Fig. 4. CNN structure.
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compared to utilizing the CNN approach for each task separately.
MSCNN, initially introduced in [120], leverages both global and local
information within a CNN network. MSCNN is also considered in [75];
however, STFT is applied to extract time—frequency representations. The
hamming window function of 20-ms window length is configured for the
statistical feature extraction process with 50 % window overlap between
each of the two consecutive windows. However, [121] suggests an
alternate implementation of MSCNN. Instead of extracting the features
from local and global convolutional layers with fixed-size kernels,
different kernel sizes are applied to extract the hidden patterns from
different receptive fields. The results obtained in this study show a
relatively higher performance compared to the original architecture
introduced in [120]. Finally, and benefiting from the residual networks
(ResNet) approach, which is mainly dependent on forming bypass links
between different convolutional layers to ensure effective learning of
features in deeper layers [115], Wang et al. [122] used separable CNN
with residual connections between layers to prevent the loss of impor-
tant features that could lead to inaccurate predictions.

2.2.2.2. Spatial learning via GNN approaches. PHM applications have
recently incorporated GNN. In PHM applications, graph learning aims to
achieve spatial feature learning and causal learning of manufacturing
systems. Once the acquired signal is represented on a graph, spatial
learning can be achieved by applying convolutions to graph structures
[123]. One benefit of using convolutions on graph structures is that the
method is not reliant on the distances between extracted features in the
hidden space. CNNs are primarily created for grid-like structures like
images and are commonly used in computer vision applications. That is
why it may lead to model uncertainty when applied for applications such
as bearing prognostics, as in that case, the high-level feature represen-
tation does not need to be attained. In addition, the number of papers
that have adopted this approach is still limited. Using GNN in PHM
applications involves representing the obtained sequence of signals on a
graph [124]. A typical graph structure consists of three main elements:
vertex, edge, and feature set. So, it can be denoted as G = (V, E, X) [125].

To the best of the author’s knowledge, a pioneering study of applying
graph learning to calculate the RUL of an element bearing was first
introduced in [80]. The researchers studied how spatial learning affects
the accuracy of predicting the RUL of bearings without considering
Euclidean distance. The results are significantly higher than those ob-
tained using traditional CNNs. Manipulating the design of a GNN is
straightforward. For example, we can represent each sensor in the sys-
tem as a graph node, each containing a feature set of its signal values.
Also, each degradation stage can be considered a node in the graph, with
the characteristics of each node serving as the feature set. The formu-
lation of the graph edge can be done through similarity metrics based on
cosine similarity, correlation, or any mathematical formula according to
the prognostic task that can ensure the relationship between a feature set
and another.

In [126], a multi-scale convolutional architecture is applied to graph
representation to better incorporate spatial learning in the regression
process. At first, the spectral energies of the entire collected signal are
extracted through a sliding window mechanism. Second, PCA is applied
so that the variance between the first extracted feature and the rest of
the features over time can be calculated and the fault occurrence can be
determined. Finally, the graph is structured in such a way that each
feature extracted is considered a graph node, and PCA latent space is
used to build the relationship between the nodes. When two nodes make
significant contributions to PCA, the edges that depict the relationship
between these nodes exhibit a considerable relationship. The structure
of the graph is considered changeable through time; thus, when
convolution is applied to each of the constructed graphs, it is considered
spatiotemporal learning. Further studies focusing on analysing spatio-
temporal features through graph learning will be explored in the
following subsection.
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2.2.3. Spatiotemporal Learning

Despite the continuous development of spatial learning techniques,
ignoring temporal features can result in inaccurate condition monitoring
(CdM) and unreliable predictions of bearing lifespans [127,128]. Zhao
et al. [129] aimed to study the impact of extracting both temporal and
spatial features on bearing prognostics. The authors introduced a 1D-
CNN network named temporal convolutional network (TCN), where
the processing is done on a 1D network instead of 2D or 3D networks,
focusing on the time array for spatial learning through convolution.
Notably, the certainty of the achieved results increased. The TCN
approach is compared to traditional CNN models, and the results ach-
ieved by TCN are 10-20 % higher compared to conventional CNN
structures. Cao et al. [130] applied TCN for the same purpose, but a self-
attention mechanism was adopted to obtain the contribution degree of
each of the extracted features. The study results outperformed the native
TCN approach significantly compared to TCN without feature selection.

Moreover, authors in [56] studied the impact of converting the 1D
signal to a 2D image, thus applying 2D CNN instead of 1D TCN. The
transformation methodology in the state-of-the-art for such conversion
commonly depends on wavelet transform structures such as Morlet
wavelets. The study found that combining spatial features extracted
with 2D-CNN with temporal features performs better than extracting
spatiotemporal features simultaneously with 1D-CNN methods.
Following the same approach, Wang et al. [78] mapped the 1D accel-
eration signal into 3D images using the Morlet wavelet transform and
applied an overlapped windowing strategy. The spatiotemporal features
are then extracted using 3D CNN, and Gaussian process regression (GPR)
is employed for calculating the bearing lifespan. Interestingly, this
approach achieved even better results compared to other spatiotemporal
approaches. Wang et al. used a similar approach in another study [112],
focusing on the computational performance of spatiotemporal learning.
To address this challenge, the author used a technique called non-
negative matrix factorization (NMF) for reducing the dimensions of
latent space.

Jiang et al. [131] separated the raw bearing signal into various
channels. Each channel underwent CNN processing independently
before combining the spatial features with the temporal ones extracted
using attention-LSTM. This approach aims to link the spatial features of
each channel in the sequence with the extracted temporal features to
enhance the understanding of spatiotemporal representation. Aside
from the multiple channels concept applied in [131,132] applied
recurrent convolutional networks for remaining life calculations. How-
ever, variational inference is used to measure the uncertainty of the
model. In the same study [132], the authors departed from the usual
method of connecting CNN sequentially to a temporal algorithm.
Instead, they applied a convolutional operation separately to the input-
to-state and state-to-state parts of an LSTM.

Moreover, GNN has been recently employed for spatiotemporal
learning [133,134]. In [135], spatial features via graph learning are
adopted, and then temporal convolutional regression (TCR) based on
LSTM and graph convolutional network (GCN) is implemented for RUL
prediction. While in [136], a Bi-LSTM is adopted to extract important
features, followed by employing GCN to calculate the bearing RUL. Wei
et al. [137] developed a self-attention spectral graph network for
bearing PHM. The goal is to help the regression model learn from graphs
independently during training, leading to significant improvements in
prediction accuracy and reliability. Liang et al. [138] developed a graph
network based on transformers. The primary goal is to understand how
different sensors are related in space using the graph structure and to
learn about time dependencies using the transformer network. While, in
[134], an attention layer is added to fuse the learned spatial and time
dependency information of the extracted data. Wang et al. [139] pro-
posed a strategy to select the relevant sensor data to form neighbouring
nodes of a graph-structured network for spatiotemporal learning. That
strategy is based on the Pearson correlation coefficient calculated be-
tween different sensory readings, and the higher the correlated data, the
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more adjacent these sensors—graph nodes—are. On the other hand, to
overcome the problem of graphically representing a univariate vibration
signal on a graph, a ChebGCN-BiLSTM network is developed in
[140,141]. The path graph at the node level is created to depict the
connections between time-discrete signals. Edges indicate the ordered
sequence, while nodes represent the signals themselves. It’s important to
note that Bi-LSTM is used to understand temporal dependencies in
addition to the spatial ones, which are captured by the GCN network.

Cao et al. [142] introduced a graph convolutional structure known as
a complex picture in a picture (PIP) to offer various levels of fault
severity analysis. This approach differs from connecting graph nodes
based on clustering or similarity methods like cosine similarity. The PIP
approach uses the path graph as a node within a larger graph and sys-
tematically constructs a new embedded graph. Researchers in [143]
explored the correlation between extracted features at various time
points. To get that correlation at different stages of a rolling bearing’s
degradation, an LSTM-based Siamese network is created to classify the
different stages of degradation. Next, a GCN based on attention mech-
anisms is put in place to make the prediction more reliable by using the
correlation of information gathered at different time points. In a similar
approach, a one-dimensional GCN is built to establish a connection be-
tween the reference data and the current working conditions and to
accurately predict the RUL [144]. Considering the spatial dependencies
of the acquired raw signal and temporal correlation, the short-time
Fourier transform is utilised to extract node attributes, while dynamic
edge connections are formed based on node importance weights in
[145]. This is achieved by utilising the GCN to identify spatial re-
lationships within the input graphs and employing a Bi-LSTM network to
record overall temporal connections. Finally, a graph readout layer
based on autoencoders is created to capture and transmit the key graph
features. The authors [146] came up with a way to avoid the problems
that come with combining graph structures, which can make it hard to
see how the observed signal changes over time and create features that
aren’t very useful. They suggested using a residual graph connection and
a self-attention GCN to pick out the most important features.

The deep GNN model also has a problem called “over-smoothing,”
which makes it hard to represent the difference between nodes in the
network [147]. Consequently, the classification and prediction of nodes
in the network will be inaccurate and ineffective. To overcome this, the
authors proposed a multi-scale graph convolution network. First, they
configure a sliding window to identify the fault occurrence time, after
which the spatiotemporal graph network learns the dependencies and
estimates the RUL [126]. In [143], an LSTM network is serially con-
nected to a GCN for spatiotemporal learning. However, on the graph
structure, a self-attention mechanism is implemented to select the most
influential features and overcome the smoothing challenge in RUL
prediction. In [141], dilation convolution is used to combine spatial and
temporal data, preventing long sensor signals from over smoothing.
While a GRU-GCN is introduced in [148], a skipping connection to
extract the temporal features and overcome the challenge of signal over-
smoothing is proposed.

Finally, Mylonas et al. [135] did a comparison study of a spatio-
temporal network based on LSTM with a temporal convolutional head
and a graph network based on convolutional structure. The results
showed that the graph network structure did better than the non-graph
network structure because it could learn features of times that were not
equally distant.

2.3. Feature learning under imbalanced data samples

The difficulty of acquiring fault data samples imposes a challenge for
a reliable training process and, hence, accurate estimation results. In
real-world industrial settings, mechanical systems typically operate
under normal conditions for the majority of their operational lifespan,
with occurrences of fault states being relatively rare. When the system
enters a short-duration defective state, gathering degradation

Measurement 245 (2025) 116589

indications is expensive and difficult. Hence, imbalanced datasets are
common [149].

An imbalanced dataset is a set of samples with a disproportionate
number of representative samples from one class. This proportion de-
fines the “imbalance ratio,” which is crucial and might be a challenge in
aregression problem. Due to an imbalanced dataset, training a DL model
to estimate RUL is difficult. Hence, the imbalanced dataset problem
limits RUL estimation methodologies. In order to mitigate this limita-
tion, numerous sampling methodologies have been extensively docu-
mented in scholarly literature to artificially equate the ratio between
different classes of training samples, including under-sampling and over-
sampling techniques.

2.3.1. Downsampling methods

Under-sampling is an approach that reduces the number of instances
belonging to the majority class in order to align the imbalance ratio with
the smaller number of samples in the minority class. There are three
main techniques of downsampling in the PHM literature, which can be
summarised as:

1- Random downsampling: random downsampling is the simplest
downsampling technique that implies discarding random samples
from the majority class to alleviate the features of the imbalanced
class. However, discarding important samples during random
downsampling can directly affect the predicted RUL [150].
Enhanced downsampling: opposite to random downsampling,
enhanced downsampling aims to select the discarded or retained
samples to achieve a balanced class of data. This can be accom-
plished through three methods: clustering methods, sample density
methods, or dynamic methods. In clustering methods, distances
calculated between samples, such as the Euclidean distance, play a
significant role. Samples that are closer to the class centre are
considered more important in clustering methods. Accordingly,
latent features that are distorted or on the edges of clusters are dis-
carded [151]. Similarly, in terms of sample density, samples in less
dense regions of latent space are removed while those in denser re-
gions are kept [152]. While the dynamic process selects the samples
for retention based on their influence on RUL calculations. So, the
probability of losing an important, sparse feature is reduced [153].
One-category learning strategy: This method aims to select the
relative samples based on similarity [153]. This can be achieved by
applying statistical formulas to majority-class samples or through
similarity-based ML approaches such as SVM. Moreover, utilising
autoencoders (AE), variational autoencoders (VAE), and generative
adversarial networks (GAN) can help identify important samples
based on their data distribution while disregarding others [154].

N
)
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Despite improvements in downsampling techniques to refine feature
selection, downsampling can lead to the omission of crucial features,
affecting the accuracy of RUL predictions and reducing robustness. In
particular, bearing defects can take various forms and may not
conform to a specific pattern of similarity for selection, particularly
in challenging working conditions.

2.3.2. Oversampling methods

Oversampling methods involve randomly adding samples from the
minority class to balance the dataset. Oversampling methods can be
classified into classical and adversarial methods. Random over-
sampling, windowing overlapping, Synthetic minority oversampling
technique (SMOTE), and adaptive synthetic sampling approach for
imbalanced learning (ADASYN) are all methods used to address
imbalanced features of a given dataset.

2.3.2.1. Geometric oversampling methods
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In random oversampling, latent features and clustering centres are
randomly added to the classified minority class samples [155].
Windowing overlap oversampling involves overlapping signal
lengths between consecutive windows for data augmentation [156].
This can be achieved by varying the lengths of windows of fault
samples relative to the lengths of normal samples. Yang et al. [157]
introduced a variable-scale windowing approach based on AEs.
Leveraging the advantages of sparse autoencoders (SAE) and
denoising autoencoders (DAE), extracted features using signal win-
dows overlapping can then be employed to solve the skewness of
data. Such an approach can be effective, although in large machinery
datasets, it may require extensive computational complexity and
storage and may also lead to discarding the non-stationary charac-
teristics of the acquired bearing signal [26].

On the other hand, SMOTE [158] is an oversampling approach that
generates synthetic samples to oversample the minority class. Each
new synthetic sample in SMOTE is created along the line connecting
a chosen minority class sample and its nearest neighbour. SMOTE is
extensively used in PHM research [159-162]. The steps of generating
samples using SMOTE can be simplified as follows:

— Select KNN samples of the sample x; from the same class.
— Randomly select n samples from the KNN samples.

— For each chosen neighbour, a new sample is constructed according
to:

Xnew = X; +rand(0, 1)*x; — x,

SMOTE is usually applied after a signal denoising stage to ensure the
quality of the newly generated feature. For instance, Ruifeng et al. [163]
applied SMOTE to address the challenge of data imbalance, following a
noise elimination approach based on extended learning machine (ELM).
In [164], a similar approach is conducted, where the relevance vector
machine is used for feature denoising instead. Additionally, the authors
in [154] introduced an ensemble learning approach based on Naive
Bayes SVM and KNN to classify data samples before applying SMOTE.
Interestingly, Yang et al. [165] conducted a comparison study between
SMOTE and random oversampling, showing that the quality of features
generated using SMOTE outperformed random oversampling-generated
features.

A drawback of traditional SMOTE is that if noisy data and its
neighbour are chosen as a cluster, oversampling may occur within the
wrong class region. That’s why different approaches are introduced in
this context. For instance, Zhang et al. [166] proposed a learning
strategy based on Euclidean distance calculations between minority
class samples to avoid oversampling noisy features. Fan et al. [167]
relied on the calculation of Euclidean distances between minority-class
samples and the centre of the cluster. In a different approach, Zhu et al.
[168] proposed the Mahalanobis distance as a metric of qualification.
This approach showed superior performance in preserving the data
distribution because the Mahalanobis distance is less influenced by data
magnitude, unlike the Euclidean metric. Another approach is to divide
the minority samples into different subspaces, and then oversampling
can be performed for each subspace accordingly. K-means clustering
[166], hierarchal clustering [169], density-based clustering, and fuzzy
c-means [167] can all be adequate in such cases.

ADASYN [170] is another effective strategy for handling imbalanced
data and has proven superior for bearing PHM [171]. The authors in this
study demonstrated that ADASYN can better avoid the risk of synthe-
sising noisy features compared to SMOTE. The experiment is done on
bearings under different operational conditions. It uses a weighted
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distribution for minority classes. It is worth mentioning that most
complex systems operate under diverse conditions, leading to multiple
fault modes. Thus, ADASYN requires fine configurations to capture the
complexity of numerous failure situations and avoid contributing to
undesired noise [172]. So, despite the effectiveness of oversampling
methods compared to under sampling methods, they may lead to the
generation of noisy synthetic samples with disregard for the data
distribution.

2.3.2.2. Adversarial oversampling methods. On the other hand, adver-
sarial oversampling methods aim to preserve the feature distribution
during the sample generation process. In this context, commonly, two
techniques are used for data generation: VAE [173] and GAN [174].

GAN [174] is composed of a composite network structure of gener-
ative and discriminative networks. The model trains alternatingly until
it reaches Nash equilibrium, at which point the discriminator is unable
to distinguish between real data and generated samples. Lee et al. [175]
developed a GAN model based on multi-layer perceptron (MLP).
Initially, EMD is applied to denoise the vibration signal and then the
selected IMFs are fed to the generative-discriminative MLP network for
oversampling. Another generative-discriminative approach based on
CNN was developed in [176]. The newly generated features proved to
mimic actual faults, such as roller faults and inner race faults of an
element bearing. In [177], researchers introduce a generative approach
based on TCN to retain spatiotemporal features. Another approach based
on statistical analysis of the extracted features is conducted in [178].
The time-domain statistical features are extracted then fed to the
discriminator network to improve the quality of the features that GAN
generates. However, instead of time-frequency representation, Yang
et al. [179] implemented a feature mapping approach based on stacked
AE to enhance the quality of the newly generated samples. Moreover,
[180] configured an autoencoder network to measure the similarity
between artificially generated samples by the generator and the original
samples for further improvements.

Despite preserving the distribution, the basic GAN had poor sample
quality, mode collapse, and unstable training. Numerous GAN variants,
like the Wasserstein GAN (WGAN), have been introduced to improve
training stability by comparing real and generated sample distributions
using Wasserstein distance instead of KL-divergence in the traditional
GANSs. But to keep the Wasserstein distance reasonable, the WGAN has
to cut the weights in the discriminative network to a certain range [—c,
c] after backpropagation. Phan et al. [181] developed a WGAN using a
2D representation of signals obtained from bearing acoustic emissions to
retain spatial features in the generation process. In [182], Cabrera et al.
proposed a novel WGAN approach based on similarity and sparsity
centroids. The aim is to efficiently identify the relative-generated sam-
ples of the minority class before feature generation. A spatiotemporal
WGAN, designed for retrieving both spatial and temporal features, is
introduced in [183], aiming to generate samples of minority classes
while preserving the spatiotemporal characteristics.

Despite the superiority of WGAN compared to GAN in terms of
learning convergence, gradient vanishing or explosion is common,
specifically in the backpropagation process. The authors of [184] sug-
gested a gradient penalty to control the discriminative network’s
gradient. Pu et al. [185] developed a gradient penalty WGAN (WGAN-
GP) to overcome the deficiencies of the WGAN model. The authors also
looked at the differences in how accurate minor samples generated using
GAN were compared to those generated with traditional oversampling
methods like SMOTE and random down sampling. In this context,
WGAN-GP demonstrated a slightly higher accuracy performance.
Another approach is introduced by Behera et al. [186] as a conditional
GAN (CGAN). It is designed to learn specific classes instead of any mi-
nority class to avoid capturing irrelevant features. This helps eliminate
the probability of generating samples of the majority class [187]. For a
similar approach, frequency-domain features and features of the
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normalisation spectrum are fed to CGAN for minor fault mode feature
generation. Generated samples are then sent to stacked autoencoders for
denoising before being fed to a discriminator network [188].

VAE consists of three main parts: the encoding network, the sampling
component, and the decoding network. The encoding network converts
the samples into a latent variable z, characterised by a mean vector p and
a standard deviation vector 6. The decoding network duplicates the
input by utilising the latent variable. During training, the VAE ensures
the latent variable aligns with a normal distribution. After obtaining a
novel latent variable " from the normal distribution, decoding is used to
create a new sample. The Conditional Variational Autoencoder (CVAE)
is an extended version of the VAE that incorporates label information
[189]. By influencing the mean vector, one can generate corresponding
categories while generating samples. Although VAE and CVAE have
been effective in image recognition, their application in imbalanced
learning for bearing prognosis is still limited [190]. Zhao etal. [191] and
Karamti et al. [192] used a VAE to create artificial features that
enhanced the accuracy of life prediction with imbalanced data. Xie et al.
[193] used PCA to reduce feature space dimensions before using CVAE
to generate artificial features representing different failure modes. This
method was chosen to speed up the convergence process. Finally, Yang
et al. [194] presented a novel technique that merges VAE and GAN to
generate a variety of samples. They used a conditional VAE as the
generator network in their ensemble approach. Table 5 lists the common
techniques utilized for imbalanced data problems.

2.4. Feature learning under varying working conditions

Another challenge of data-driven approaches for bearing prognostics
is their requirement for (1) sufficient labelled data, namely, historical
data; and (2) training and testing data following a similar distribution,
which are hard to fulfil in bearing prognostics. That is because industrial
rolling bearings operate under complex, frequent, and inconsistent
working conditions, making it difficult to preserve a common data dis-
tribution from one environment to another. In this context, several
methods have been conducted and validated in the literature to address
this gap. The methods include transfer learning (TL), distribution met-
rics analysis, adversarial learning, and few-shot learning. All these
methods are discussed in this subsection.

2.4.1. Transfer learning

TL is a technique that transfers knowledge from one domain to
another and has been widely adopted in fields such as text classification
[195], computer vision [196], and natural language processing [197].
TL’s role in RUL prediction is to extract domain-invariant feature rep-
resentations and transfer degradation knowledge acquired under
different working conditions. It relies on transferring the learned pa-
rameters from one domain to another. This method is based on the
underlying assumption that the model architectures of both the source
and target domains should have specific shared parameters [198]. In
this context, the tuning strategy involves transferring the learned model
parameters, such as weights, from the source domain to the target
domain [199]. The process consists of two separate stages: (1) the initial

Table 5
Summary of the imbalanced data techniques.
Method Technique Studies
Downsampling Random downsampling [150]
Enhanced downsampling [151,152]
One-category learning strategy [153,154]
Oversampling Random oversampling [155-157]
SMOTE [158-167]
ADASYN [170-172]
Adversarial techniques [174-194]
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training of a deep neural network in the source domain, where the
optimal model parameters are saved, and (2) the preservation and
transfer of the model parameters from the hidden layers in the source
domain, which can be utilised as the initialization parameters for the
model in the target domain. Moreover, the target data can randomly
initialise the parameters of the final layer in the target domain, enabling
further refinement of the model parameters [200].

In a study by Zhang et al. [201], a TL framework was developed
using Bi-LSTM. The purpose of using Bi-LSTM in this case is to capture
the hidden temporal patterns in the target domain data in one direction.
Meanwhile, the reverse direction of the LSTM architecture was designed
specifically for predicting RUL. In their study, Sun et al. [202] present an
alternative approach that utilises SAE. The study uses SAE to map the
weights and features of the encoder layer from the source to the target
domain. Furthermore, Zhang et al. [200] used a TL methodology to
transfer spatial characteristics to the target domain by converting the
vibration data of rolling bearings into RGB images. Simultaneously, the
LSTM network is employed to learn the temporal patterns and estimate
the RUL respectively. Huang et al. [203] approach utilises depth-wise
separable convolution and Bi-LSTM. After training, the model parame-
ters of the networks in the source domain are shared, and a dense layer is
added to allow for separate weight updates.

2.4.2. Metric discrepancy evaluation

Distribution metric evaluation methods aim to minimise feature
distribution differences between the source and target domains. This can
be determined and minimised through the utilisation of various
discrepancy metrics such as maximum mean discrepancy (MMD) [204],
Jensen-Shannon (JS) divergence [205], multi-kernel MMD (MK-MMD),
Euclidean distance [206], and Kullback-Leibler (KL) divergence [207].
Afterwards, reliable life prediction values are obtained by leveraging the
shared feature spaces.

Chang et al. [208] developed a MK-MMD approach to predict the
RUL of bearings under different data distributions between the source
and target domains. Initially, TCN was used to extract hidden spatio-
temporal features. Hence, the MK-MMD method is utilised to minimise
the distribution discrepancy of the spatiotemporal features between the
source and target domains. Rathore et al. [209] introduced another MK-
MMD approach based on Bi-LSTM algorithm. However, Zhang et al.
[210] incorporated spatiotemporal characteristics into the learning
procedures by first employing TCN with self-attention, followed by MK-
MMD. Another cross-domain adaptation method based on deep trans-
ferable metric learning is proposed in [211] for predicting RULSs, using
TCN to extract domain-invariant representations and enhance trans-
formation invariance. Mao et al. [212] proposed another metric
discrepancy approach based on transfer component analysis (TCA).
Initially, the vibration signal of the bearing is subjected to trans-
formation using the Hilbert-Huang method. The utilisation of Pearson’s
correlation coefficient is employed to determine the relevant degrada-
tion state features. Then, TCA is employed to map the extracted features
from the two domains. This mapping is then incorporated into the least-
squares SVM (LSSVM) algorithm to predict the lifespan. Instead, a MMD
approach is introduced in [213]. At first, SAE is utilised for the purpose
of signal denoising. The MMD method is then employed to quantify the
variation in distributions and obtain invariant features. Finally, a Bi-
LSTM network is configured for the task of regression. Replacing the
Bi-LSTM, the configuration of Bi-GRU is introduced in [214], with the
same incorporation of MMD. In [215], the authors introduced a novel
metric-learning strategy that incorporates a clustering mechanism and a
temporal learning network to measure similarity between two domains.

One of the primary benefits of employing such methodologies is their
capacity to be applied without the need for supervised (labelled) data. In
addition, it can also be of use in different working conditions, but not in
complex and harsh working environments where negative learning
might occur. Accordingly, adversarial learning approaches can be
beneficial for that purpose.
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2.4.3. Deep adversarial learning

Domain-adversarial training of neural networks, introduced in
[216], has been widely used in various fields. However, unlike methods
like GAN and VAE that create new feature samples to address data im-
balances, in this case, adversarial approaches focus on learning invari-
ance between two distributions.

The authors of [217] propose a GAN-based adversarial model for
cross-domain PHM learning. At first, the authors developed a CNN
network to extract the representative spatial features. Subsequently,
they introduced a GAN architecture consisting of three distinct dis-
criminators. The main task of the discriminator is to extract invariant
features, carry out online monitoring and predict RUL. The authors of
[218] propose an adversarial method focusing on invariant spatial
feature learning. Initially, the CWT is used to transform the raw signal
into 3D images. Subsequently, a CNN with self-attention is employed to
facilitate the extraction of the influential features. Zou et al. [219]
developed an adversarial approach based on CNN and autoencoders.
Afterwards, the KL divergence is incorporated to quantitatively measure
and minimise the discrepancy between the source and target domains.
Finally, the extracted features are then employed for lifespan calculation
using Bi-LSTM to encounter temporal dependencies.

The authors in [220] present a novel integration between metric
evaluation and adversarial approaches. The research proposed the uti-
lisation of Mk-MMD and adversarial learning in a parallel structure for a
prognostic task. The Mk-MMD method is employed to evaluate the
disparity between distributions, while adversarial learning is utilised to
acquire invariant features. In the same way, the authors in [221] and
[222] employed a methodology that combined adversarial techniques
and discrepancy metrics, utilising a CNN for the purpose of bearing
prognostics. This method was used to address the difficulties arising
from different working conditions and incomplete run-to-failure (RTF)
target data. A cross-operating condition degradation knowledge
learning method is proposed in [223], constructing a shared latent
feature space across different operating conditions. This method effec-
tively extracts bearing degradation features and weakens cross-domain
feature differences. To get domain-invariant features, the method uses
time—frequency representation samples and joint dictionary matrix
factorization. Another multi-source adversarial online regression
(MAOR) method is proposed in [224] to address the limitation of the
health prognosis of target data under unknown conditions. It uses
pseudo-domain extension, domain-level adaptation, and feature-level
adaptation to build robust domain-invariant features. An offline-online
prediction framework is developed to predict online target data
streams and update the online model. Finally, Adversarial methods are
capable of learning dynamically without the need for manual settings.
However, combining them with another feature learning method may
result in a more robust approach.

2.4.4. Advanced approaches

Few-shot learning is another approach that aims to overcome the
challenge of poor learning for limited samples in a given task. It aims to
address the challenge of prognosis with rare and sparse training data in
the target domain and under different working conditions and different
fault modes in the source and target domains. The proposed approach
can improve estimation results in the source domain while conducting
generalisations to ensure a reliable prognosis. Cheng et al. [225] propose
a PHM approach based on a multimodal few-shot learning method
(MMFSL). The multimodal method uses time-series data for temporal
representation and images for spatial learning. Leveraging the scarce
fault modes of the multimodal representation, the few-shot strategy
proved to efficiently provide a reliable PHM. Another few-shot PHM
learning method is introduced in [226]. It incorporates spatial features
derived from 2D images to provide cross-domain CdM. Another
approach is introduced in [227], which suggests a feature disentangle-
ment and restoration (FDR) few-shot method for initial fault observa-
tion, aiming to deal with the target of early prognosis. The method

13

Measurement 245 (2025) 116589

processes vibration signals, pulls out general features that are relevant to
the task, puts together task-specific features, and sorts nonlinear re-
lationships between features for a PHM task. Jang et al. [228] introduce
a novel health representation learning method based on a Siamese
network that prevents overfitting by incorporating a multitask learning
scheme. The method uses the learned embedding space, enabling robust
RUL prediction.

Meta-learning is another approach that has recently been studied in
PHM. Meta-learning aims to use knowledge from previous tasks to help
with new tasks. Dividing a large dataset into small-sample tasks allows
the model to adapt rapidly to the current tasks. The authors of [229]
propose a meta-network framework for RUL prediction, addressing dis-
tribution discrepancies in transient working conditions. An iterative
meta-network pruning algorithm is introduced that calculates the meta-
gradients of convolutional kernels, deleting unimportant connections.
Yang et al. [230] present a novel MetaDESK model for RUL prediction
with limited data, based on meta-learning and a deep sparse kernel
network. The model uses a Gaussian process, variational inference, and
KL-divergence of sparse approximation to estimate latent variables and
reduce overfitting. It also combines common knowledge and task-
specific information to improve decision-making. Sun et al. [231] pro-
posed a lightweight Bi-LSTM based on automated model pruning for
bearing RUL prediction. The method uses a learning technique that re-
wards correct actions to find and remove unnecessary elements, elimi-
nating the need for manual search and choosing the best pruning
structures. The lightweight Bi-LSTM accurately forecasts bearing wear
patterns using an RMS value as a health indicator. It achieves a 36 %
reduction in model size and a 3 % enhancement in prediction accuracy
over the initial Bi-LSTM. In the same context, [232] introduced meta-
learning for prognostics with limited data and variable working condi-
tions. It extracts degradation indicators that remain consistent across
different domains from time-frequency images and time-series data. For
this, two adaptation networks are configured, named meta-CNN and
meta GRU, for handling spatial and temporal features, respectively. A
meta-learning algorithm, which is not dependent on specific models, is
used in [233] to adjust model parameters swiftly based on test samples.
It also recommends artificial task sets resembling meta-RUL tasks,
enhancing the method’s applicability across various scenarios. In
essence, the issue of bearing prognosis in a dynamic working environ-
ment remains a research question and is deemed essential for real-world
industries.

3. Prediction task using hybrid approaches

After reviewing recent advancements and methods of effective
feature learning for bearing prognosis, this section aims to provide a
comprehensive review of end-to-end prognostic methods, including
ensemble approaches, rather than focusing solely on the feature learning
stage. A prediction task is always subsequent to the feature-learning
stage, which involves modelling the learned features and mapping
each of the extracted features to a corresponding lifespan estimation
value. Prognostic approaches can be categorized into shallow and neural
network methods, similar to feature-learning methods, based on the
method used for feature learning and regression tasks. This subsection
aims to provide an end-to-end examination of bearing prognostic studies
instead of focusing on feature learning.

For shallow methods, support vector regression (SVR) [83], decision
trees (DTs) [85], random forests (RF) [82], XG-boost [234], and ELM are
considered common shallow bearing regression techniques in the state-
of-the-art. The SVR tries to figure out how an input sample affects the
output, which in this case is the predicted RUL value. It accomplishes
this by assuming that the joint distribution between the input vibration
sample and the predicted lifespan is unknown. SVR draws an insensitive
tube [235], so the penalty on samples inside this region of the insensitive
tube does not apply. Otherwise, a penalty function applies to samples far
away from real values. The support vectors are then employed to
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measure the degradation severity of an input sample and calculate the
corresponding estimate of remaining life [236].

The authors in [82-85,237-239] applied SVR to bearing RUL pre-
diction. In [83] and [84], SVR is applied subsequent to wavelet
decomposition and time-frequency representation. However, Benked-
jouh et al. [84] utilised isometric feature mapping reduction (IFMR) for
dimensionality reduction and faster computation. In [237,239], signal
decomposition using EMD is applied prior to SVR modelling. The aim is
to eliminate noise samples and extract relevant features before training
SVR for better regression results. However, Cao et al. [239] calculated
RMS and kurtosis for more reliable supporting vector construction.
Additionally, Saidi et al. [238] calculated spectral kurtosis for a wind
turbine high-speed shaft bearing. Afterwards, time domain features are
calculated and then selected using monotonicity and trend ability before
training SVR. At last, SVR is of great use in PHM and is memory efficient,
so it can be adopted for online modelling [236].

DT is a supervised tree-life model that aims to perform regression or
class classification through its hierarchical structure. A typical DT model
consists of a root node, branches, and leaf nodes representing a response
to a regression task. The path from the root node to the leaf nodes
through interval nodes identifies the machinery state according to the
objective task. RF is a variant developed from DT and is widely adopted
for bearing prognostics. Instead of having one tree that represents the
whole vibration dataset, RF aims to build several trees and then provide
the mean prediction of independent trees [240]. This can be effective for
noise elimination that may be encountered using traditional DT. Ren
et al. [241] applied DT as an approach to avoid overfitting in bearing
prognostics. Singh et al. [240] conducted a comparative study to vali-
date the performance of RF and ordinary DT in bearing RUL prediction
as a result of wear phenomena. At first, time domain features are
extracted, and then the Pearson correlation methodology is applied to
select the relevant features. In the regression task, the authors demon-
strated that RF outperformed DT in terms of root mean square error
quantification. In [242], the authors conducted an approach to study the
impact of temporal feature extraction on the bearing RUL prediction
task. In this context, RF has proven to be an effective modelling
approach that can incorporate the influential temporal features in the
regression task with noise elimination. In [82], an SVR-RF approach is
studied. At first, statistical features are extracted, followed by PCA for
feature ranking. Afterwards, the performance of SVR and RF is studied
solely. The pattern learned by each of them is then fed to the Weibull
Hazard Function for calculating the corresponding RUL. Notably, the RF
outperformed the SVR.

ELM is a shallow learning algorithm that aims to speed up the process
of traditional feed-forward neural networks. Unlike neural networks,
ELM does not depend on gradient descent, which requires extensive
learning iterations for weights and parameters and may cause overfitting
or fall into local extrema values [243,244]. Thus, it can be deployed for
online monitoring. ELM consists of a single hidden NN layer in which the
number of hidden nodes in this layer is chosen randomly, and a linear or
nonlinear input-output relation can be drawn based on the selected
activation function. In bearing prognostics, ELM is commonly employed
as a regression mechanism subsequent to a feature learning stage. For
instance, the authors in [245] extracted the standardized RMS [246] for
fitting a bearing health index, and then a moving average filter for
pattern smoothing was developed. Subsequently, ELM is employed for
RUL prediction. Similarly, [246,247] adopted an ELM prognostic
approach based on relative RMS (RRMS) [248]. RRMS is able to record
degradation at an early stage due to its sensitivity compared to RMS.
Thus, once degradation is observed, the ELM can estimate the corre-
sponding RUL. However, in [247], Pearson-correlation coefficient
combined entropy weight methods are developed to assure degradation
and eliminate anomaly readings before training ELM. A variant of ELM,
called kernel ELM, is adopted in [249]. Inspired by the kernel SVM
strategy, a kernel ELM is proposed in [244], which has demonstrated
superiority compared to ELM [249]. Table 6 presents the techniques and
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Table 6
Comparative analysis of different ml approaches.
Study  Feature extraction ML method
[83] WT -+ time-frequency analysis SVM
[84] wavelets + Statistical analysis on the time-domain + SVM
IFMR
[60] time—frequency analysis + PCA + Linear Discriminant ~ Linear
Analysis Regression
[237] EMD SVM
[250] Spectral Kurtosis SVM
[239] EMD -+ extraction of RMS and Kurtosis on the time- SVM
domain
[85] Hamiltonian harmonic oscillation SVM
KNN
DT
[81] Statistical analysis on the time-domain + feature RF
ranking using DT Gradient
Boosting
[82] Statistical analysis on the time-domain + PCA SVM
RF

shallow regression models adopted in some of the discussed frameworks.

On the other hand, CNN, RNN, Neuro-fuzzy systems, and their var-
iants are considered common neural network prognostic techniques.
Initially, the RBM was employed for feature extraction in [251]. The loss
function was modified by incorporating a slope component, which
serves to incentivise the features to acquire knowledge about the trend
inherent in the degradation pattern. Subsequently, the acquired features
were inputted into a self-organizing map in order to predict the RUL.
CWT was employed in [55] to convert unprocessed vibration inputs into
time-frequency image characteristics. The construction of Le-Net-5 CNN
network, aimed to extract spatial information from images and subse-
quently map them to the bearing’s health score. The initial extraction of
tri-domain characteristics from the raw vibration signal was conducted
in [79]. The degradation-sensitive characteristics were further selected
using a feature selection method that relied on correlation and mono-
tonicity. Subsequently, an LSTM model was developed to associate the
chosen characteristics with the bearing’s health score.

Wang et al. [64] utilised the LeNET-5 architecture to forecast RUL by
extracting spatial features. In that study, the FFT was utilized to extract
the relative features, and subsequently, the CWT was employed to
convert the 1D signal into 2D pictures. Another prognostic strategy
utilizing CNN is presented in reference [120]. However, this approach
incorporates features retrieved from various levels of the convolutional
network for RUL prediction rather than solely relying on the final dense
layer. An alternative CNN methodology is employed in [118]. The
usefulness of a unique feature learning method that relies on the spec-
trum main energy vector utilising FFT has been demonstrated. In [75],
spatial features were used to calculate RUL. However, the initial step
involved applying feature denoising using STFT. Ren et al. [252] utilised
a deep neural network to estimate health index and longevity by
inputting a fusion matrix consisting of time-domain information and
frequency-domain features. In [253], another deep NN was set up.
However, the features were first chosen using autoencoders. An esti-
mation of temporal life prediction is performed in reference [241].
Initially, RBM was employed to compress vast time-frequency infor-
mation, enabling GRU to eliminate duplicate features during the
regression phase. In reference [212], a spatiotemporal prediction model
is shown. The utilization of CNN was employed to extract spatial char-
acteristics subsequent to their selection by SVD. These extracted features
were subsequently inputted into an LSTM network for the purpose of
predicting RUL.

Additionally, the investigation of deep structure networks and fuzzy
inference systems is also a significant area of focus in the field of prog-
nostic studies. The concept of fuzzy sets was initially introduced by L. A.
Zadeh in 1965 in [254], with regards to the utilisation of FIS and PNN.
Mamdani (1975) and Sugeno (1985) introduced two distinct categories
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of fuzzy inference systems (FIS). The ANFIS combines the principles of
artificial neural networks (ANNs) and fuzzy logic, enabling the utiliza-
tion of the advantages of both in a unified approach [255]. In [256],
ANFIS is utilised to combine and extract the relative characteristics of a
compact latent space for data arrays from multiple sensors. The authors
in [257] employed a CdM methodology utilizing ANFIS. The ANFIS
method is utilized to execute IF-THEN rules on extracted features
through the EEMD algorithm, which is subsequently regarded as a re-
gressor algorithm for RUL prediction. The authors of [258] have
developed a unique ANFIS that incorporates a particle swarm structure
for power coefficient prediction. Ultimately, the integration of ANFIS
and RNN is employed to forecast the forthcoming value associated with
the health index [259]. Table 7 summarises some of the frameworks that
utilised DL regression models.

4. Benchmark bearing datasets

To help researchers validate their studies, several labs introduced
RTF datasets for research purposes. This section presents five common
experiments in the literature and the main characteristics of each
dataset.

4.1. FEMTO dataset

This dataset was submitted at the IEEE International Conference on
PHM 2012 for the prognostic challenge and was provided by the Fran-
che-Comté Electronics Mechanics Thermal Science and Optics-Sciences
and Technologies institute [265]. FEMTO dataset comprises RTF anal-
ysis for 17 rolling element bearings. To accelerate the degradation of the
bearings within hours, bearings were exposed to a radial force that
surpassed their maximum dynamic load. The experimental setup is
shown in Fig. 5. Throughout testing, the bearing’s speed remained
constant. Bearing temperatures and vibrations were recorded using two
accelerometers and a thermocouple for accurate data collection. When
the vibration signal surpasses 20 g, it indicates that the bearing has
reached the end of its useful life. The experiment captures data at a rate
of 25,600 samples per second to ensure detailed measurements. Each
sample has a period of 0.1 s; therefore, each sample has a total of 2560
points. The data is recorded in intervals of 10 s to capture specific

Table 7
Summary of some DL approaches.

Study FE Model

[29] EMD SVM Vs LSTM

[260] Time and frequency domain features Multi-Layer Perceptron
(MLP)

[51] WPT -+ statistical features: mean, variance, MLP

kurtosis, RMS, crest factor

[79] Time and frequency domain features RNN

[253] Time and frequency domain features + AEs MLP

[261]  EEMD CNN

[262] CNN Bi-LSTM

[122] ResNET FC layer

[263]  Hilbert-Huang Transform CNN

[128] CNN LSTM

[55] CWT CNN

[264]  Self-organizing maps backpropagation

[112] CWT 3DNN

[78] Time and frequency domain features + GPR

wavelets + CNN

[75] Time and frequency domain features MSCNN

[72] STFT CNN

[120]  Time and frequency domain features MSCNN

[124]  GCN GRU

[80] Time and frequency domain features GCN
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information during the experiment. The test is stopped to prevent
damage when the signal’s amplitude surpasses a predefined threshold.
The dataset consists of 17 RTF datasets that represent bearings in three
different operating scenarios, as outlined in Table 8. The dataset has
commonly been adopted in the literature for prognosis studies as in
[61,75,266,267].

4.2. XJTU-SY dataset

The XJTU-SY rolling dataset is another experiment that has been
used for bearing prognostic studies [268]. Fifteen different bearing
datasets from a testing platform were recorded using vibration sensors
under various operating conditions. Similar to the previous experiment,
radial force and motor speed are the main factors for simulating
different operating conditions. Two PCB 352C33 accelerometers are
utilized to capture vibration signals at a sampling rate of 25.6 kHz in the
horizontal and vertical directions, respectively, to monitor the vibra-
tions. Each sample consists of 32,768 data points collected at a 1-minute
sampling interval. Table 9 details the specific working conditions of the
tested bearings. Fig. 6 illustrates the experimental setup of the dataset.
The XJTU-SY dataset has mainly been used for bearing prognostics
studies [61,120,267,269].

4.3. IMS dataset

The IMS bearing dataset [94] is the third benchmark dataset that has
been widely used in research. This dataset comprises three experimental
datasets that are obtained from a test rig. On a shaft, four bearings were
placed for each experiment. The rotational speed was maintained at
2,000 r/min with the aid of an AC motor attached to the shaft. A force
mechanism applied a 6,000-pound radial load to the shaft and bearings.
A sample of 20,480 vibration data points was acquired every 10 min.
The data was collected at a sample rate equal to 20 KHz. The test ended
when debris stuck to the magnetic plug reached a specific amount,
causing an electrical switch to activate. Fig. 7 displays the setup of the
experiment.

For the first experiment, two accelerometer sensors were placed on
each bearing. This made eight data channels. For the other two experi-
ments, only one accelerometer was mounted on each bearing. At the end
of the first experiment, bearing 3 had damage to the inner race, and
bearing 4 had issues with the roller elements. At the end of the second
and third experiments, the outer races of bearing 1 and bearing 3
experienced structural damage, respectively. The dataset has been used
for condition monitoring and PHM studies such as in [62,270-273].

4.4. CRWU dataset

Data acquired from Case Western Reserve University (CRWU) has
considered standard in the PHM community [274]. It comprises a 2-
horsepower reliance electric motor that drives a shaft, on which a tor-
que transducer and encoder are affixed. Torque is applied to the shaft
using a dynamometer and an electronic control system. Fig. 8 illustrates
the experimental setup of the test rig, depicting the arrangement of the
equipment used in the experiment.

Electro discharge machining was employed to introduce defects to
the drive and fan-end bearings of the motor, specifically the SKF deep-
groove ball bearings: 6205-2RS JEM and 6203-2RS JEM, with di-
ameters ranging from 0.007 to 0.028 in.. The defects were intentionally
introduced on the rotating components and on the inner and outer rings.
Subsequently, each defective bearing was replaced individually on the
experimental setup, which was then run at a constant speed with motor
loads varying from O to 3 horsepower (equivalent to motor speeds
around 1797 to 1720 rpm). Table 10 displays the pertinent information
on bearing specifications and rates of faults. Acceleration was recorded
vertically on the housing of the drive-end bearing throughout each test.
In some tests, acceleration was also measured vertically on the fan-end
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Fig. 5. Laboratory setup of FEMTO Dataset.

Table 8
Characteristics of the FEMTO dataset.
Characteristics 1 2 3
Load (N) 4000 4200 5000
Speed (rpm) 1800 1650 1500
Training B-1.1 B-2.1 B-3.1
B-1.2 B-2.2 B-3.2
Validation/ Testing B-1.3 B-2.3 B-3.3
B-1.4 B-2.4
B-1.5 B-2.5
B-1.6 B-2.6
B-1.7 B-2.7
Table 9
XJTU-SY bearing sets summary and working conditions.
Characteristics ~ First working Second working Third working
conditions conditions conditions
Load (N) 12K 11k 10k
Speed (rpm) 2100 2250 2400
Bearing sets B-1.1 B-2.1 B-3.1
B-1.2 B-2.2 B-3.2
B-1.3 B-2.3 B-3.3
B-1.4 B-2.4 B-3.4
B-1.5 B-2.5 B-3.5

bearing housing and, on the motor, —supporting base plate. The tests
were conducted using sampling rates of 12 kHz and 48 kHz. The dataset
has been extensively employed in studies on bearing diagnostics
[21,275,276].

BPFI and BPFO are the ball pass frequencies of the inner and outer
races, respectively. FTF represents the fundamental train frequency
(cage speed) and BSF is the ball spin frequency.
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4.5. Paderborn university dataset

The Paderborn University dataset is a publicly accessible repository
for bearing data [277]. The data collection setup includes a test motor,
measuring shaft, bearing module, and load motor, shown in Fig. 9. The
collection includes both synchronous vibration and motor current
measurements. The device uses one accelerometer, two current sensors,
and one thermocouple. The vibration signals are captured at a sample
frequency of 64 kHz. A total of 32 bearings were used in the experi-
ments, including 6 fully functional bearings and 26 damaged bearings.
Out of the damaged bearings, 12 were intentionally damaged, while the
others were naturally damaged due to accelerated tests. This dataset has
been used in bearing diagnostics research [278-280].

Finally, Table 11 aims to summarize the reviewed datasets based on
the adopted sensor type and sample frequency of each dataset.

5. Challenges and future directions

Despite the great advancements that have been achieved in bearing
prognostics, there are some challenges and future trends that can lead to
better results and applicability in real industries. These can be sorted as:

1- Multi-modal learning: Experimental setups in the literature for
bearing prognostics are based solely on vibration signals. However,
an accelerometer sensor, which detects vibration signals, may not
capture all factors contributing to bearing wear, such as temperature
and lubrication [19,281]. Furthermore, the sensor is unable to
accurately detect the initial and early-stage defects that may develop
in bearing components during operation [9]. Given this challenge,
thermal imaging methods have been evaluated and shown to be
effective in diagnostic procedures. Specifically, thermal imaging was
used to categorize bearing failures by recording temperature read-
ings. Choudhry et al. [282] correctly classified six different faults
based on thermal imaging using Le-Net CNN [18]. The authors in
[283] demonstrated a successful diagnostic-bearing approach using
RF. However, a study in [284] proved that SVM can perform better
compared to RF on the same dataset. A novel method in [285]
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Fig. 6. Laboratory setup of xjtu-sy datset.
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Fig. 7. Laboratory setup of ims dataset.

introduced a novel approach that combines vibration signals with
thermal images. This method was 100 % accurate at finding the fault
point of a bearing that was starting to wear out early on. So, the
ability to add more instruments, either using imaging or traditional
sensors, to measure more meaningful characteristics of bearings
while they are running is an area that needs to be looked into for a
predictive approach.

Management of time complexity: Now that data-driven methods
are being used in the field of predictive maintenance (PdM), the
proposed algorithms are getting more complicated. Accordingly, the
encounter with time and computational complexity is becoming
important and should be considered. Real-world applications often
involve massive amounts of data, emphasising the significance of
considering time and computational aspects in the learning process.
However, there may be a trade-off between the performance of
complex algorithms and the training time required. Therefore, the
interest in compressed models for real-time monitoring is crucial due
to the importance of available computing resources in industry.
System prognostics rather than component prognostics: Most
prognostic methods in the literature are conducted for specific
components such as bearings [135], gearboxes [286], and turbofans
[103]. This is because there aren’t any benchmark datasets available
for research on real systems. This may lead to the inapplicability of
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such approaches in real and complex industries. Thus, availing data
from real manufacturing systems for research and considering the
possibility of developing models that consider the condition moni-
toring of several components at a time with condition reasoning is a
potential aspect of research to mimic real-world industries.
Measurement of uncertainty: Many methods primarily concentrate
on forecasting the average values of RUL, yet it is crucial to consider
model accuracy for making informed decisions in practical scenarios.
In this context, precision is important in order to make better-
informed decisions. So, it would be a point of interest to conduct
more studies to measure uncertainty and study the progression of
inferences such as those conducted using Bayesian models
[108,287,288].

. Conclusion

This paper provides a thorough review of recent advancements in

feature learning methods for a successful bearing prognostic approach.
The authors classified the methods into shallow and deep learning ap-
proaches. Further, the paper provides a new taxonomy for feature
learning methods based on temporal learning, spatial learning, and
spatiotemporal learning. The paper then addressed feature-learning
challenges under an imbalanced ratio of data samples and classified
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Table 10
Bearings specifications of CRWU dataset.

Position on rig ~ Model no. Fault frequencies (multiple of shaft speed)
BPFI BPFO FTF BSF

Drive end SKF-6205-2RS JEM  5.415 3.585 0.3983  2.357

Fan end 4947 3.053 0.3816  1.994

the literature methods into downsampling and oversampling methods,
including the merits and drawbacks of each technique. Additionally, the
paper explained the challenges and methods used for feature represen-
tation under different operational conditions. Moreover, the paper
presents recent ensemble regression techniques for reliable bearing
prognostics. It can be concluded that recent research has demonstrated
that feature learning is the most crucial phase in bearing prognostics.
Additionally, each of the common data-driven techniques has an effect
on the type of learned characteristic in the latent space. The paper then
outlined the benchmark datasets frequently used in studies on bearing
prognostics. Finally, this paper provided insights into the challenges and
future directions in this field, aiming to assist new researchers and
practitioners in identifying opportunities for future research. Overall,
this research provides insights into the study of bearing prognostic
challenges from a data-driven methods perspective and lays the

groundwork for future investigations.
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Table 11
Summary of the discussed datasets.

Dataset Sensors Sample Frequency
FEMTO Accelerometer and thermocouple 25.6KHz

XJTU-SY Accelerometer 25.6KHz

IMS Accelerometer 20KHz

CWRU Accelerometer 12 and 48KHz
Paderborn Accelerometer and thermocouple 64KHz

Fig. 9. Laboratory setup of Paderborn dataset.
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