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Abstract

The gradient and curvature of the Parker spiral interplanetary magnetic field give rise to curvature and gradient
guiding-center drifts on cosmic rays (CRs). The plasma turbulence present in interplanetary space is thought to
suppress the drifts; however, the extent to which they are reduced is not clear. We investigate the reduction of the
drifts using a new analytic model of heliospheric turbulence where the dominant 2D component has both a
wavevector and magnetic field vector normal to the Parker spiral, thus fulfilling the main criterion of 2D
turbulence. We use full-orbit test-particle simulations of energetic protons in the modeled interplanetary
turbulence, and analyze the mean drift velocity of the particles in heliolatitude. We release energetic proton
populations of 10, 100, and 1000MeV close to the Sun and introduce a new method to assess their drift. We
compare the drift in the turbulent heliosphere to drift in a configuration without turbulence, and to theoretical
estimates of drift reduction. We find that drifts are reduced by a factor 0.2–0.9 of that expected for the heliospheric
configuration without turbulence. This corresponds to a much less efficient suppression than what is predicted by
theoretical estimates, particularly at low proton energies. We conclude that guiding-center drifts are a significant
factor for the evolution of CR intensities in the heliosphere, including the propagation of solar energetic particles in
the inner heliosphere.

Unified Astronomy Thesaurus concepts: Solar energetic particles (1491); Heliosphere (711); Interplanetary
magnetic fields (824); Interplanetary turbulence (830)

1. Introduction

The heliosphere is traversed by different populations of
energetic charged particles, generally termed cosmic rays
(CRs), with sources varying from the Sun and interplanetary
space to outside the heliosphere in Galactic and extragalactic
sources. The propagation of these particles is guided by the
interplanetary magnetic field (IMF), which has the macroscopic
shape of an Archimedean spiral, the Parker spiral, due to the
magnetic field, originating from the rotating Sun, being frozen
in the solar wind plasma (E. N. Parker 1958).

In the simplest approximation, the CRs propagate parallel to
the Parker spiral magnetic field. However, the magnetic field is
curved, and its magnitude depends on the heliocentric distance,
thus the CRs are subject to gradient and curvature guiding-
center drifts (e.g., J. A. Burns & G. Halpern 1968). The large-
scale drifts influence the modulation of the intensities of
galactic cosmic rays (GCRs) that propagate through the outer
heliosphere to be observed at Earth (e.g., J. R. Jokipii et al.
1977). They also cause solar energetic particles (SEPs) to drift
in latitude and longitude, and lose energy (e.g., S. Dalla et al.
2013, 2015; M. S. Marsh et al. 2013).

The large-scale IMF is superposed by a fluctuating
component, which is due to the solar wind turbulence. This
turbulent component causes field-line random walk (FLRW),
resulting in CRs spreading stochastically across the large-scale
average field. Further, the velocity vector of the CRs is affected
by the turbulence, which results in scattering of the CRs along

the random-walking field lines (E. N. Parker 1965;
J. R. Jokipii 1966).
The interplay between the effects of turbulence and the drift

motion due to large-scale gradients and curvature has gained
significant attention; however, the details of this interaction are
not clear. For GCRs, large-scale drifts need to be suppressed
within modulation models in order for the models to be able to
reproduce observations (e.g., M. S. Potgieter et al. 1989).
Several theoretical works have suggested that turbulence reduces
large-scale drifts (e.g., L. J. Gleeson 1969; M. A. Forman et al.
1974; J. W. Bieber & W. H. Matthaeus 1997; J. Giacalone 1999;
N. E. Engelbrecht et al. 2017; J. P. van den Berg et al. 2021),
and reduction of drifts has found some support from full-orbit
test-particle simulations of charged particles in synthetic
turbulent magnetic fields (e.g., J. Giacalone 1999; J. Candia &
E. Roulet 2004; J. Minnie et al. 2007; R. C. Tautz & A. Shalchi
2012). However, these theoretical works and simulation studies
have used either a constant or gradient-only background
magnetic field configuration; thus, possible suppression of CR
drifts in a realistic heliospheric context has not been probed.
In this work, we investigate the effect of turbulence on

guiding-center drifts of SEPs by means of 3D test-particle
simulations including turbulence superposed on a Parker spiral
IMF. We make use of our newly developed analytical model of
composite plasma turbulence in the Parker spiral heliospheric
configuration (T. Laitinen et al. 2023a). We compare the
latitudinal drift of SEPs in a turbulent heliosphere to that in an
IMF without turbulence (S. Dalla et al. 2013; M. S. Marsh et al.
2013). We compare the simulation results with the predictions
of drift reduction models (J. W. Bieber & W. H. Matthaeus
1997; N. E. Engelbrecht et al. 2017), and discuss the
implications of our results on theoretical models of drift
reduction.
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2. Methods

2.1. Theoretical Calculations of Drift Reduction

Stochastic transport models of CRs typically include the
macroscopic drift of the charged particles in the diffusion
tensor that is used to describe the diffusive propagation of CRs
due to plasma turbulence. Within the assumption of an
isotropic particle velocity distribution, the large-scale drift
velocity vd of a charged particle due to the gradient and
curvature of the magnetic field B can be written in the form of

( )v
Bpv

q B3
, 1d 2

=  ´

where p, v, and q are the moment, speed, and charge of the
particle, respectively (e.g., B. Rossi & S. Olbert 1970). This
can be written as
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where rL = p/(qB) is the particle's Larmor radius, êB is the unit
vector along the magnetic field B, and rA

v
L3

k = is the so-called
antisymmetric diffusion tensor. If we consider this form in
conjunction with the diffusive flux term in transport equations,
∇ · (κ · ∇ f ) = ∂iκij∂jf, where κ is the diffusion tensor defined
in a coordinate system where the z-axis is aligned along the
magnetic field, ˆ ˆe ez B, the curl in Equation (2) is equivalent to
including antisymmetric off-axis diffusion tensor elements
κxy = −κyx = κA.

In order to calculate the effect of turbulence on drifts,
J. W. Bieber & W. H. Matthaeus (1997) considered the Taylor-
Green–Kubo (TGK) formalism (G. I. Taylor 1922; M. S. Green
1951; R. Kubo 1957), where the diffusion tensor is given as

( ) ( ) ( ) ( )dt v t v t t dtR t , 3ij j i ij
0

0 0
0ò òk = á + ñ =

¥ ¥

where áñ represents an ensemble average, and

( ) ( ) ( ) ( )R t v t v t t 4ij j i0 0= á + ñ

is a correlation function that is statistically independent of t0.
For a (positively) charged particle in a uniform magnetic field,
the velocity components are ( )v v tcosx 0f= W +^ , vy =

( )v tsin 0f- W +^ , and vz = constant, which results in the
correlation functions

( ) ( )R R v t
1

2
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2= = W^

( ) ( )R R v t
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2
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where Ω = v/rL is the gyrofrequency of the particle.
J. W. Bieber & W. H. Matthaeus (1997) assumed that because
the turbulence disturbs the gyration of the charged particles, the
correlation between the velocity components should include a
decay term as follows:

( ) ( )/R R v t
1

2
sin e , 7yx xy

t2= - = W t
^

-

where τ is the decorrelation timescale of the gyration. Using
this expression for the correlation functions, by integration they

obtained the diffusion coefficients:
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where an average over the pitch angle has been carried out.
Comparing this form to the definition of κA in Equation (2), we
see that the decorrelation of the particle velocity at timescale τ
reduces the drift coefficient by a factor

( )f
1

, 10s

2 2

2 2

t
t

=
W
+ W

termed the drift reduction factor.
The question, then, is what is the correct timescale for the

decorrelation of the particle gyromotion to be used to evaluate
fs? J. W. Bieber & W. H. Matthaeus (1997) approached the
question by assuming that the gyromotion decorrelates when
the particles, following diffusing field lines, have drifted the
distance of their gyroradius from their original position across
the mean field direction. Following this argument, they arrived
at an expression:

( )
( )r

D

2

3
, 11LtW =

^

where D⊥ is the magnetic field-line diffusion coefficient. Thus,
the drift reduction coefficient depends on the turbulence
amplitude, its associated length scales (e.g., W. H. Matthaeus
et al. 1999), as well as the particle energy and mass-to-charge
ratio.
Using a similar approach, N. E. Engelbrecht et al. (2017) and

J. P. van den Berg et al. (2021) considered that the relevant
cross-field scale for the decorrelation should be the perpend-
icular mean free path of the particles, λ⊥. They further assumed
that the particle cross-field velocity is determined by random
walk of the field lines, arriving at

( )r B

dB
, 12L 0t

l
W =

^

where dB2 is the variance of the turbulence.
It should be noted that the derivation of Equation (9) does

not involve large-scale gradients; it is conducted with the
assumption of a uniform magnetic field. Thus, it does not
describe the large-scale drifts or their reduction; rather, it
describes the asymmetric flux of particles due to their disturbed
gyration.
It should also be noted that in the limit τ → ∞, κA cannot be

defined by this approach, as the integral in Equation (3) is not
defined.

2.2. Test-particle Simulations

Drift reduction due to turbulence has been studied by several
researchers by means of full-orbit test-particle simulations (e.g.,
J. Giacalone 1999; J. Candia & E. Roulet 2004; J. Minnie et al.
2007; R. C. Tautz & A. Shalchi 2012). These works typically
superpose homogeneous turbulence on a constant-background
magnetic field, a configuration that is similar to that used in the
theoretical models presented in Section 2.1. In such a
configuration, measuring the macroscopic drift of a particle
population cannot be used to analyze drift or its reduction, as
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the macroscopic drift requires a gradient or curvature in the
macroscopic field. Instead, these studies use the approach
suggested by J. Giacalone (1999), where v rij i jk = á D ñ, with vi
and Δrj the i and j components, respectively, of velocity and
spatial displacement normal to the background magnetic field.
Only J. Minnie et al. (2007) used simulations where the
background magnetic field has a gradient and macroscopic
drifts are present. We shall return to these simulations in
Section 4.

For this work, we analyze IMF guiding-center drift by
integrating the full equation of motion for charged particles in
the heliosphere via the simulation framework developed by
S. Dalla & P. K. Browning (2005) and M. S. Marsh et al.
(2013). The IMF is formed of a Parker spiral magnetic field
superposed with turbulent fluctuations, as presented in T. Lait-
inen et al. (2023a). It should be noted that, in the present work,
the model is monopolar, in the form of

ˆ ˆ ( )B e eA B
r

r

r

a
, 13r0

0
2

2
= - f⎡

⎣
⎤
⎦

where A is the sign of the magnetic field, ( )/a v sinsw q= W ,
with vsw and Ωe the solar wind speed and solar rotation rate,
respectively, B0 ≈ B(r0) when r0 = a, with r0 a reference
location close to the Sun, and θ the colatitude. Thus, our
present work does not include the effects of the heliospheric
current sheet (M. Battarbee et al. 2017, 2018). We denote the
polarity of the IMF with “B+” for an IMF pointing away from
the Sun, with A= 1, and “B–” for an IMF pointing toward the
Sun, with A = −1. From the equation for magnetic drift
(Equation (1)), it is clear that the drift velocity changes its
direction with different IMF polarities. We note that the model
used in the present work also does not include the convectional
or turbulent electric field, thus the corotation drift and
deceleration of CRs are not present in the simulations.

For the turbulence in our model, we use the heliospheric
analytic 2D-slab composite turbulence model model described
in T. Laitinen et al. (2023a). The model consists of a 2D
turbulence component which is transverse with respect to the
Parker spiral, and has a fluctuating magnetic field δB normal to
the Parker spiral everywhere. The 2D component is comple-
mented with a weaker slab-like component, which is dominated
by radial slab modes close to the Sun, and is azimuthal at larger
distances. The turbulence is realized as a sum of Fourier modes
following the approach of J. Giacalone & J. R. Jokipii (1999),
with 128 each of slab and 2D-mode waves, which are used to
calculate the magnetic field at the particle location. Note that
this approach differs from approaches where the turbulent
magnetic field is precalculated on a 3D grid using a Fourier
transform; in such cases, the simulation domain is limited by
the largest scales included in the turbulence spectra. We refer to
simulations performed with this model as the “turbulence”
model throughout the rest of the manuscript.

We compare results from the turbulence model to helio-
spheric particle simulations without superposed turbulence. To
do so, we run simulations using the approach presented in
M. S. Marsh et al. (2013), where the particles are traced with
full 3D test-particle simulations in Parker spiral geometry, with
B given by Equation (13) without turbulent field-line mean-
dering. In these simulations, the effect of the turbulence on the
particles is modeled as scattering events where the particle's
velocity vector is scattered at random times, parameterized by a

constant parallel scattering mean free path, λ∥ (M. S. Marsh
et al. 2013). We refer to these simulations as the “scatter”
model. Note that cross-field scattering is not explicitly
implemented in the scatter model: The only cross-field motion
is caused by large-scale drifts and the random walk of the
particle gyrocentre as the velocity vector is randomized. For the
scatter and turbulence approaches to be comparable, we have
used a parallel mean free path according to standard quasi-
linear theory (SQLT; e.g., J. R. Jokipii 1966) derived from the
turbulence model parameters used in the turbulence runs. As
the obtained SQLT mean free path varies with radial distance
from the Sun, we average its value over distances from 2re
to 1 au.
In this work, we simulate energetic protons at different

proton energies and interplanetary space conditions. For each
parameter set, we simulate 1000 particles in 100 different
turbulence realizations, with the turbulence mode phases and
polarizations differing in each realization, thus giving a total of
100,000 particles for each simulation set. The particles are
injected at 2re heliocentric distance at the solar equator, with
an isotropic velocity distribution, and their propagation in the
heliosphere is traced for 48 hr. The parameters of the eight
simulation sets are given in Table 1, with each set including
both a turbulence and a scatter simulation run (column (5)). We
simulate energetic protons from nonrelativistic to relativistic
energies, at 10, 100, and 1000MeV (column (2) in Table 1), for
the two polarities of the monopolar IMF (column (3)). The
relative turbulence amplitude at 1 au used in the turbulence
simulations is given in column (7) of Table 1, with the
corresponding scattering mean free path used in the scattering
simulations given in column (6). Other turbulence parameters
are as in T. Laitinen et al. (2023b), briefly described in
Appendix A.

2.3. Determining the Latitudinal Drift Velocity

Previous studies have derived drift coefficients in a uniform
background magnetic field with homogeneous turbulence. In
this type of configuration, the coefficients do not depend on the
particle location, thus the analysis methods can average particle
statistics over the entire simulation volume. In our heliospheric
configuration, however, use of such methods is not possible:
Turbulence characteristics, and thus also the particle transport
parameters, depend significantly on heliospheric location (e.g.,
R. Chhiber et al. 2017). Drift velocities also vary significantly
with particle location (e.g., S. Dalla et al. 2013). Thus, the
coefficients obtained by averaging over the simulation volume
(by tracing particles through the entire heliosphere) would not
represent the coefficients at any given location, but an average
value over the whole heliosphere. To alleviate this issue, and
produce coefficients for our turbulence and scatter particle
simulations that can be compared with each other, we have
developed a new methodology to analyze the drift experienced
by the particles.
Our method is based on the fundamental difference between

the effects of the two distinct physical processes (turbulence
and drift) on the particle distribution. We initialize our particles
around the solar equator, at θ = π/2. Our turbulence model is
symmetric in latitude, thus any asymmetry in the distribution in
latitude with respect to the solar equator cannot be caused by
the stochastic turbulence; without drift, the mean of the particle
distribution in colatitude would remain at θ = π/2. On the
other hand, in a unipolar field, drift in heliolatitude causes
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particles to propagate systematically either northwards or
southwards depending on the magnetic field polarity (A in
Equation (13); S. Dalla et al. 2013). Thus, we consider the
broadening of the particle distribution to be caused by
turbulence, and any changes in the mean latitude of the particle
distribution to be caused by large-scale drifts.

To analyze the latitudinal propagation of a particle, we
consider its first and last crossing of the 1 au sphere, taking
place at times tf and tl, respectively. The change in colatitude
between the two crossings is

( )14l fq q qD = -

and the time interval between the crossings is

( )t t t . 15l fD = -

The latitudinal velocity of the particle averaged between the
first and last 1 au sphere crossing, vdθ, can be then defined as

( )v r
t

, 16d e
q

=
D
D

q

where re = 1 au. It should be noted that vdθ does not represent
the 1 au value of the latitudinal velocity; rather, it is the average
latitudinal velocity of the particle over its entire trajectory in the
heliosphere between tf and tl.

We use the interval between the first and the last crossing
instead of intervals between consecutive crossings in our
definitions to avoid giving larger statistical weight to individual
particles that cross the 1 au sphere multiple times. Our method
also ignores the initial propagation of the particles in the near-
Sun region where the stochastic spreading of the particle
population is strong; as discussed in T. Laitinen et al. (2023a),
the field-line meandering in such an environment can cause
large local deviations. We further exclude particles for which
Δt < 100 s, large compared to Ω = 0.49 s−1 at 1 au (for
nonrelativistic particles), to avoid effects of the Larmor radius
of the particles on Δθ.

Figure 1(a) shows the distribution of Δθ values for 100MeV
protons (filled contours). Here, the entire population of 100,000
protons over the 100 turbulence realizations is used. The
particles with small Δt have returned to 1 au soon after their
initial crossing, and have subsequently escaped to further
distances without returning. Particles with larger Δt display a
wider distribution in Δθ. This is due to the particles decoupling
from their original meandering field line to different field lines
at later times. This stochastic process can result in a particle's
final crossing of the 1 au sphere to be up to 90° from their
initial crossing colatitude.
To investigate the temporal evolution of Δθ, we divide the

Δt axis into bins and calculate median values of Δθ over the
particle population in each bin, indicated as ( )tqD D . We show
qD as a function of Δt in Figure 1(b) with red crosses. As can

be seen, qD increases systematically, demonstrating a macro-
scopic, systematic drift of the particle population in time.
We compare the drift in Figure 1(b) to the theoretical drift.

The theoretical drift velocity (Equation (B3)) is given in
column (4) of Table 1, following the derivation presented in
Appendix B. The dashed black curve in Figure 1 shows the
change in colatitude of a particle obeying the theoretical drift as

( )v t. 17dtheor theorqD = Dq

As can be seen, the qD follows the trend of the theoretical
prediction well, however at slightly lower values.
To further analyze the drift in velocity units, we calculate the

median drift speed ( )v td Dq and present it in units of vdθ theor in
Figure 1(c). As can be seen, ( )v td Dq is of the same order as
vdθ theor, but lower in magnitude, reaching its maximum value
of 0.85 vdθ theor at Δt ≈ 10,000 s.
It should be emphasized that the wide, temporally widening

extent of the Δθ distribution seen in Figure 1(a) cannot be
considered as an uncertainty of qD . The extent of the
distribution arises from the decoupling of the particles from
the stochastically meandering field lines: It is a measurable
quantity that describes the turbulence-induced stochastic
particle propagation. The wide extent is a result of a physical

Table 1
Parameters of the Simulation Runs

Set Ek Pol vdθ,theor Sim. λ∥ dB2/B2 ¯vd rá ñq σ

(MeV) (km s−1) (au) (km s−1) (km s−1)

1 10 B+ 17. Scat. 0.37 L 14. 0.38
Turb. L 0.60 3.5 19.

2 10 B- 17. Scat. 0.37 L −14. 0.39
Turb. L 0.60 −4.7 17.

3 100 B+ 160. Scat. 1.6 L 110. 2.2
Turb. L 0.20 110. 81.

4 100 B+ 160. Scat. 0.55 L 120. 2.3
Turb. L 0.60 82. 64.

5 100 B+ 160. Scat. 0.17 L 130. 3.3
Turb. L 2.00 40. 58.

6 100 B- 160. Scat. 0.55 L −120. 2.6
Turb. L 0.60 −82. 53.

7 1000 B+ 1300. Scat. 0.87 L 840. 18.
Turb. L 0.60 780. 300.

8 1000 B- 1300. Scat. 0.87 L −840. 18.
Turb. L 0.60 −800. 300.

Note. Column (1): the set identifier for the runs, with the rows for the scatter and turbulence simulation runs within the sets indicated in column (5). Column (2): the
proton energy. Column (3): the magnetic field polarity. Column (4): the theoretical vdθ theor, as calculated in Appendix B. Columns (6) and (7): the parallel scattering
mean free path and turbulence variance at 1 au heliocentric distance, used for the scatter and turbulence simulations, respectively. Columns (8) and (9): the vd rá ñq and
the uncertainty σ, obtained from the distributions shown in Figure 3.
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process that is distinct from the large-scale systematic drifts
which are caused by large-scale gradients and curvature of the
Parker spiral.

In the next section, we use our new methodology to
investigate the dependence of the drift velocity on the particle
energy and turbulence amplitude, as well as its temporal
evolution and variation across different turbulence realizations.
For the latter, it is useful to consider the distribution of the
median drift velocities over the 100 realizations. The median
drift velocity over realization r, and over all Δt values, is
indicated as vd rá ñq .

3. Results

3.1. Drifts from Test-particle Simulations

We first investigate the temporal evolution of ( )v td Dq in
Figure 2 for simulation sets 4 and 6 in panels (a) and (b),
respectively, in units of the theoretical drift velocity. In the
figure, the cyan and magenta symbols depict ( )v td Dq for the
turbulence simulations, and the solid cyan curve the same for
the scatter simulation sets 4 and 6. Note that the binning in Δt

is linear, unlike in Figure 1(c) where we used logarithmic
binning.
As can be seen, both the turbulence and scatter simulations

attain ( )v td Dq values with the same sign as the polarity used in
the simulation set. The drift from the scatter simulations is
initially of the same order as vdθ,theor (i.e., values 1 and −1 in
Figures 2(a) and (b), respectively), however it decreases for
larger Δt. This is caused by the particle propagation not being
limited to the vicinity of 1 au where the theoretical drift
velocity is calculated. As the particles propagate and spread
into the inner and outer heliosphere before returning to 1 au,
they sample heliocentric distances where the angular drift
velocity is smaller than at 1 au (see Figure 7(b)). As a result,
their integrated drift velocities between the first and last
crossing are smaller than the 1 au values. This effect is evident
in that for the particles with larger Δt, the deviation of the drift
speed from the theoretical value at 1 au is progressively larger.
For further details, see Appendix B.
The ( )v td Dq from turbulent simulations is smaller in

magnitude than the one from scatter simulations, and likewise
is smaller for larger Δt. Thus, it appears that some reduction of
drift is present in the turbulence simulations as compared to the
scatter simulations. There is considerable statistical fluctuation,
due to the different travel histories of the particles within the
simulations.
In order to evaluate the effect of different turbulence

realizations on the drift velocity obtained from our simulations,
we show the distributions of vd rá ñq in Figure 3 for the three
proton energies used in this study for the moderate-turbulence
case of dB2/B2 = 0.6 at 1 au, with the positive (B+) and
negative (B−) magnetic polarity simulations shown by cyan
and magenta symbols and lines, respectively. The crosses and
horizontal error bars show the ensemble median vd rá ñq and the
standard deviation σ over the distribution of 100 vd rá ñq values
for the turbulence realizations. The values are given in Table 1
in the last two columns on lines denoted “Turb.”
For comparison, we show in Figure 3 the vd rá ñq for the scatter

simulations with filled circle symbols. The standard deviations of
the scatter simulations are smaller than the symbol size. The value
of vdθ,scat and the corresponding standard deviation are shown in
the last two columns of Table 1 on lines denoted “Scat.”
As we can see in Figure 3, the distributions of median drifts

for the B+ and B− polarities have different signs, and for the
higher energies the vdθ,turb distributions for the different
polarities are clearly distinct. For the 10MeV protons, the
distributions do overlap significantly, however the median
values of the distributions differ and are of different sign, as
expected. In addition, we performed a Kolmogorov–Smirnoff
test, which confirmed that the B+ and B− distributions are
statistically different even for the 10MeV protons. In all the
cases depicted in Figure 3 and in Table 1, the drift obtained
with the scatter simulations is larger than vd rá ñq .
The theoretical drift velocity, shown in column (4) of Table 1,

is of similar order as the scatter simulation drift; however, there
are some differences. This is due to the fact that the theoretical
value is valid only for particles at 1 au, whereas the simulated
particles propagate in the IMF where the drift rate varies with
heliocentric distance (see Figure 7(b)) and colatitude.

3.2. Drift Reduction Factor

To evaluate the effect of the turbulence on drifts, we
compare the ( )v td Dq obtained with turbulence simulations with

Figure 1. Panel (a): the distribution of the latitudinal displacements Δθ
between the first and last 1 au crossing of 100 MeV protons (simulation set 4)
as a function of the time Δt between the first and last crossing, ensemble-
averaged over all turbulence realizations (note that the interval of Δθ ä [−1, 1]
on the vertical axis is linear). Panel (b): the red crosses in the top panel show
qD , and the dashed line the theoretical Δθ due to guiding-center drifts (see

Appendix B). Panel (c): the drift velocity vdq in units of the theoretical velocity.
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the drift expected without turbulence. As discussed above,
vdθ,theor calculated in Appendix B is limited to a specific
heliospheric location. For this reason, we choose the drift from
the scatter simulations as the reference drift without turbulence.
This assumption can be justified by considering the form of
Equation (10) which approaches unity for Ωτ ? 1. For the
scatter model, we can consider the decorrelation timescale τ
to be equal to the parallel scattering time tscat = λ∥/v
(M. S. Marsh et al. 2013), which for all of our parameters
are much larger than 1/Ω.

Under this assumption, we obtain the drift reduction
coefficient by fitting the time-dependent vdθ,turb, as shown in
Figure 2 as

( )v f v , 18d s d,turb ,scat=q q

where fs is the drift reduction factor. We note that the number
of crossings also depends on Δt, thus we fit Equation (18)
weighting the turbulence simulation points with the number of
particles. We perform the fit using the curve_fit function of
the Python SciPy package (P. Virtanen et al. 2020). We show
an example fit in Figure 4, where panel (a) shows the
turbulence and scattering simulation ( )v td Dq with cyan circles
and line for 100MeV protons (simulation set 4), respectively,
and the fit to Equation (18) with a black dashed curve. In panel
(b), the blue curve shows the number of particles used as
weights for the fitting. As can be seen in panel (b), the number
of 100MeV protons used in the fitting decays as a function of
Δt, thus, due to weighting, the low-Δt ( )v td Dq affects the fit
more strongly than the high-Δt ( )v td Dq .

The drift reduction factors and their standard deviations
obtained from the fitting procedure are shown in the fifth and
sixth columns of Table 2. We demonstrate the dependence of fs
on the relative amplitude of turbulence and proton energy in
Figures 5 and 6, respectively, for the B+ polarity.

For comparison, we have also calculated the theoretical
reduction factors from the models by J. W. Bieber &
W. H. Matthaeus (1997) and N. E. Engelbrecht et al. (2017)
using Equations (10)–(12). The field-line diffusion coefficient
and particle cross-field diffusion coefficient required for these

were calculated using the random ballistic decorrelation (RBD)
approach by M. C. Ghilea et al. (2011) and D. Ruffolo et al.
(2012), respectively.1 These values are shown in columns (7)
and (8) of Table 2. A comparison of these drift reduction
factors is also shown in Figures 5 and 6. As can be seen, our
reduction factor is considerably larger than that predicted by
the theoretical approach, except for high energies and low
turbulence amplitudes.
We note that care should be taken in comparing simulations

with the TGK approach, as the simulation timescales should be
much larger than the decorrelation timescale τ for TGK to be
applicable. We can estimate the validity of the TGK approach
by using the theoretical fs values presented in Table 2, where all
fs values are at or below 0.90. Using Equation (10), fs < 0.90
corresponds to τΩ > 3, which, with the (nonrelativistic)
gyrofrequency at 1 au being Ω = 0.49 s−1 for our simulations,
corresponds to τ ≈ 6 s. As we exclude particles with Δt
< 100 s from our analysis, we can conclude that for all our
simulations Δt ? τ, and the TGK approach is valid.
We also show the drift reduction coefficients obtained from

full-orbit particle simulations by J. Minnie et al. (2007) and
R. C. Tautz & A. Shalchi (2012), who give the energy of
particles in terms of rL/lb∥, where lb∥ is the largest scale of the
inertial scale of the slab spectrum, which for our turbulence
model is lb∥ = 0.27 au at r= 1 au (T. Laitinen et al. 2023a).
J. Minnie et al. (2007) used values rL/lb∥ = 0.1 and 1, which
correspond to proton energies of 227 and 6040MeV, whereas
R. C. Tautz & A. Shalchi (2012) only used rL/lb∥ = 0.1. We
give the rL/lb∥ for our simulations in column (3) of Table 2. As
can be seen in Figure 5, the dependence of our drift reduction
factor on the turbulence amplitude is similar to that obtained by
J. Minnie et al. (2007) and R. C. Tautz & A. Shalchi (2012).
The dependence of our drift on energy differs more
significantly, particularly from the R. C. Tautz & A. Shalchi
(2012) result (Figure 6), however this can be explained by the
fact that the relative turbulence variance dB2/B2 is 1 in their

Figure 2. The drift velocity vdθ (in units of the theoretical drift velocity; Equation (B3)) of 100 MeV protons in moderate turbulence for (a) B+ polarity (simulation set
4) and (b) B− polarity (simulation set 6) protons as a function of time interval Δt between the first and last 1 au crossing.

1 Note that the reduction factor of N. E. Engelbrecht et al. (2017) depends
strongly on the choice of the theory used to calculate the perpendicular
diffusion coefficient; see J. P. van den Berg et al. (2021).
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work, whereas our simulations in Figure 6 have dB2/B2 = 0.6
at 1 au. By estimating the effect of the turbulence amplitude on
fs in Figure 5, it is clear that reducing the turbulence amplitude
in the J. Minnie et al. (2007) and R. C. Tautz & A. Shalchi
(2012) simulations would increase fs considerably.

Thus, we can conclude that our simulations are well in line
with the previous simulation work. It should be noted, though,
that the simulations of J. Minnie et al. (2007), R. C. Tautz &
A. Shalchi (2012), and ours in the present paper are not directly
comparable, as the particle and turbulence parameters in the
studies are different, and we use heliospheric magnetic field
whereas the J. Minnie et al. (2007) and R. C. Tautz &
A. Shalchi (2012) use constant-background magnetic field. We
discuss these issues further in Section 4.

4. Discussion

In this work, we have investigated the effect of turbulence on
large-scale guiding-center drifts of SEPs by using full-orbit
test-particle simulations. We presented a methodology to
evaluate the drift in latitude in turbulent heliospheric

simulations, and compared it with simulations not including
turbulence. We derived the reduction factor of large-scale drifts
in heliospheric magnetic field by comparing two sets of
simulations: turbulence simulations, where the Parker spiral
magnetic field was overlaid by a composite turbulent magnetic
field as described by T. Laitinen et al. (2023a), and scatter
simulations where the particles propagate in the Parker spiral
and experience ad hoc scattering (M. S. Marsh et al. 2013). Our
results indicate that turbulence does reduce the large-scale
drifts of CRs in the inner heliosphere, particularly at lower
energies. The 10MeV proton drift was reduced to 21% of the
nonturbulent drifts ( fs = 0.21) for moderate interplanetary
turbulence conditions (B+ polarity), whereas for higher
energies of 100 and 1000MeV, the drift reduction coefficients
are 0.66 and 0.92, respectively. The drift reduction also
depended strongly on the relative amplitude of turbulence: with
an increase of turbulence from the level of dB2/B2 = 0.2–2 (as
defined at 1 au heliocentric distance), the reduction factor fs for
100MeV protons decreased from 0.91 to 0.23.
We also compared our results to earlier work on drift

reduction. Before delving into details of the comparison, it
should be noted that our work differs from previous work in
two important aspects. First, our magnetic field is not constant,
but varies in colatitude and in radial distance. Thus, the
theoretical drift velocity of the particles varies depending on
the location of the particles. Second, the turbulence model
parameters, such as the spectral shape, amplitude, and the
turbulence geometry, differ between our and previous work.
Let us first consider the spatial variation of the magnetic

field. Most previous modeling work has concentrated on
investigating the drift reduction using full-orbit simulations of
particles in homogeneous, constant-background magnetic field
(e.g., J. Giacalone 1999; J. Candia & E. Roulet 2004;
R. C. Tautz & A. Shalchi 2012). In this configuration, there
are no macroscopic drifts as there are no macroscopic gradients
and curvatures in the magnetic field. Rather than analyzing a
macroscopic drift of particles across the mean field, these
works have investigated the quantity v ri já D ñ, where vj and Δri
are velocity and spatial deviation components i and j normal to
the background magnetic field, respectively, which equals the
diffusion tensor element κij, as given by J. Giacalone (1999). It
is not clear to the authors of this paper how applicable a drift
reduction coefficient calculated from a theoretical starting point
without macroscopic drifts is when macroscopic drifts are
present.
The only work known to us that does investigate drifts using

full-orbit simulations in nonhomogeneous magnetic field is
J. Minnie et al. (2007), who introduce a gradient normal to the
mean magnetic field. With such a configuration, they were able
to quantify the drift velocity and its dependence on turbulence
amplitude and particle energy. Unfortunately, they only
investigate two particle energies, parameterized by the ratio
of the particle Larmor radius and the slab breakpoint scale,
rL/λb∥. For those values, at dB2/B2 = 1, their drift reduction
coefficients as defined from the drift velocity in their
simulations are 0.33 and 0.85 for rL/λb∥ = 0.1 and 1,
respectively. It is interesting to note that inclusion of the
gradient in J. Minnie et al. (2007) does not seem to affect the
drift coefficient calculated with v ri já D ñ, as shown in their
Figures 4 and 5.
The second issue to note is the differences in turbulence

spectra used by the various simulation studies. As discussed

Figure 3. Probability density of vd rá ñq , the medians of the vdθ of the 100
different turbulence realizations, for dB2/B2 = 0.6 at 1 au for (a) 10 MeV, (b)
100 MeV, and (d) 1000 MeV protons, in units of vdθ,theor. The cyan and
magenta curves show the vd rá ñq distributions for the B+ and B− polarities,
respectively. The crosses and horizontal error bars show the median and
uncertainty for the turbulence simulations, and the filled circles show the
median for the scatter simulations.
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above, the ratio between the parallel and perpendicular scales,
as well as spectral shapes, differ between our study and the
study of J. Minnie et al. (2007). Drift reduction simulation
studies have used a variety of turbulence parameters and
models: J. Giacalone (1999) and J. Candia & E. Roulet (2004)
consider isotropic turbulence, whereas R. C. Tautz & A. Shal-
chi (2012) investigates the drift reduction for slab, 2D,
composite, and isotropic turbulence, although for lsl = l2D
and a different slab-to-2D energy ratio for their composite
model than J. Minnie et al. (2007) and our study. Further, they
only sample different energies for the isotropic case. The lack
of full sampling of the parameter space is a common
shortcoming of all these studies, most likely due to the
simulations being very time-consuming. In particular, the
energy dependence of the drift reduction has not been well
covered by simulation studies for the case of composite
turbulence, as can be seen in Figure 6.

Thus, it is very difficult to draw conclusions from earlier
studies of drift reduction, particularly when it comes to the
energy dependence of the drift reduction. R. A. Burger &
D. J. Visser (2010) derive a parameterized form of the drift
reduction coefficient to be used in GCR modulation models
using the results of J. Minnie et al. (2007), however they are
limited by the two energies included in that study. The
theoretical model by N. E. Engelbrecht et al. (2017) shows an
improved fit to the J. Minnie et al. (2007) results, as compared
to J. W. Bieber & W. H. Matthaeus (1997); however, as shown
by J. P. van den Berg et al. (2021), the drift coefficient depends
very strongly on which theory is used to derive the

Figure 4. (a) vdθ, in units of vdθ,theor, of 100 MeV protons (simulation set 4) as a function ofΔt, with symbols showing the turbulence simulations and the cyan line the
scatter simulations. The dashed black line shows the result of fitting Equation (18). (b) The number of particles corresponding to vdθ,scat in (a), used as weights for
fitting Equation (18).

Table 2
Drift Reduction Factors

Set rL/lb∥ fs σfs fs (Bie1997) fs (Eng2017)

1 0.0199 0.21 0.13 0.010 0.045
2 0.0199 0.26 0.13 0.010 0.045
3 0.0643 0.91 0.048 0.25 0.90
4 0.0643 0.66 0.052 0.099 0.29
5 0.0643 0.23 0.042 0.032 0.015
6 0.0643 0.71 0.03 0.099 0.29
7 0.245 0.92 0.019 0.61 0.83
8 0.245 0.92 0.021 0.61 0.83

Note. Column (1): the simulation set. Column (2): the ratio of the particle's
Larmor radius and the breakpoint scale of the slab component of the
turbulence, rL/lb∥. Columns (3) and (4): the drift reduction factor and its
standard deviation obtained from the simulations. Columns (5) and (6): drift
reduction factors calculated with the turbulence and particle parameters using
the J. W. Bieber & W. H. Matthaeus (1997, Bie1997)) and N. E. Engelbrecht
et al. (2017, Eng2017)) models, respectively. All quantities are calculated at
1 au heliocentric distance.

Figure 5. Drift reduction factor for 100 MeV protons as a function of relative
turbulence variance, from our simulations (black diamonds) and for the models
by J. W. Bieber & W. H. Matthaeus (1997, dashed curves) and N. E. Engelbr-
echt et al. (2017, dotted curves). The red circles and blue squares are from the
J. Minnie et al. (2007) and R. C. Tautz & A. Shalchi (2012) simulations,
respectively, with rL/λb∥ = 0.1, corresponding to a proton energy of 227 MeV.
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perpendicular diffusion coefficient utilized in the N. E. Engelb-
recht et al. (2017) approach.

A recent study by N. E. Engelbrecht et al. (2022) showed
that the RBD model used in this paper results in larger particle
perpendicular mean free paths in the heliosphere than the
FLRW (J. R. Jokipii 1966) and nonlinear guiding center
(NLGC; W. H. Matthaeus et al. 2003) theories. Thus, our
choice to use RBD for the drift reduction coefficient with the
N. E. Engelbrecht et al. (2017) approach (Equation (12)) would
result in smaller fs. However, comparison of the relative
magnitudes of the RBD, FLRW, and NLGC perpendicular
mean free paths is not trivial: In W. H. Matthaeus et al. (2003),
the FLRW mean free path was larger than the NLGC one, and
D. Ruffolo et al. (2012) found the NLGC mean free path to be
larger than the RBD one, both unlike similar comparisons in
N. E. Engelbrecht et al. (2022). We believe this may be related
to other parameters used in the abovementioned studies, in
particular the spectral shape of the turbulence components. For
example, the approach of N. E. Engelbrecht et al. (2017) that
uses the NLGC theory can be shown to have a

( )/ /l lsl D2
2 3tW µ dependence; thus, the different values of

this parameter, e.g., lsl/l2D = 10 for N. E. Engelbrecht et al.
(2017), 2 in our study, and 1 in D. Ruffolo et al. (2012), may
result in significant differences in the drift reduction factor.
Further investigation on the sensitivity of the different
perpendicular particle diffusion theories on different parameters
is beyond the scope of this paper.

Our results demonstrate a sharp contrast to the predictions of
the J. W. Bieber & W. H. Matthaeus (1997) and N. E. Engelb-
recht et al. (2017) results. At high energies these predictions are
similar to our results, however the energy dependence of our
drift reduction factor is significantly weaker than that predicted
by theoretical models based on field-line or particle cross-field
diffusion coefficients. It is quite possible that the issue is related
to how the particle Larmor radius relates to the perpendicular
and parallel turbulence scales, as discussed above. We will
investigate this further in a forthcoming paper. An upcoming

development is also to include the convective electric field
E = −vsw × B, where vsw is the solar wind velocity, in our
model. This will enable us to address drifts in longitude, for
which the E × B drift is significant (e.g., J. A. Burns &
G. Halpern 1968; S. Dalla et al. 2013).

5. Conclusions

We have investigated the effect of magnetic field turbulence
on the large-scale drifts present in the heliospheric magnetic
field. As discussed in previous work, turbulence tends to reduce
the amount of drift, and this has been characterized via a drift
reduction coefficient fs, which depends on particle properties
such as energy and mass-to-charge ratio, and turbulence
characteristics. Using test-particle full-orbit simulations, we
have for the first time analyzed the drift reduction due to
turbulence in a heliospheric context, using our analytic
heliospheric turbulence model (T. Laitinen et al. 2023a). We
found the following:

1. The drift reduction coefficient of protons is energy
dependent, with fs = 0.2 for 10MeV protons in moderate
turbulence with dB2/B2 = 0.6 at 1 au heliocentric distance.
At higher energies of 100MeV and 1000MeV, the
reduction is fs = 0.7 and 0.9, respectively.

2. Stronger turbulence, with dB2/B2 = 2, gives rise to
stronger drift reduction, with fs = 0.2 for 100MeV
protons, whereas for weaker turbulence, dB2/B2 = 0.2,
the reduction is small, with fs = 0.9.

3. Our values of the drift reduction coefficient are similar to
those obtained by simulations in constant magnetic field
by J. Minnie et al. (2007) and R. C. Tautz & A. Shalchi
(2012). However, care should be taken with the
comparison as the turbulence and background models
differ significantly.

4. According to our simulations, the drift reduction is
significantly weaker than that proposed by theoretical
models by J. W. Bieber & W. H. Matthaeus (1997) and
N. E. Engelbrecht et al. (2017), particularly at lower
energies.

Thus, we find that while the turbulence does reduce the
macroscopic drift in the IMF, the strong reduction predicted by
theoretical approaches (J. W. Bieber & W. H. Matthaeus 1997;
N. E. Engelbrecht et al. 2017; J. P. van den Berg et al. 2021),
particularly at lower energies, is not supported by our
simulations. Thus, we expect that the effects of drifts on SEPs
remain significant at large ion energies (e.g., >100MeV
protons), particularly for heavier elements which have larger
Larmor radii.
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curves) and N. E. Engelbrecht et al. (2017, dotted curves). The red circles and
blue squares are from the J. Minnie et al. (2007) and R. C. Tautz & A. Shalchi
(2012) simulations, respectively, with dB2/B2 = 1.
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Data Availability

The simulation data used in this study are available as CSV
files via Zenodo at doi: 10.5281/zenodo.14284455. Electronic
versions of Tables 1 and 2 are also provided in CSV format.

Appendix A
Turbulence Parameters

Our simulations use the same turbulence parameters as
T. Laitinen et al. (2023a), aside from the turbulence amplitude,
which is varied, as given in column (7) of Table 1. The other
parameters are briefly presented here for the reader's
convenience.

The turbulence generation is based on a superposition of
Fourier modes logarithmically equispaced in wavenumber k,
using the approach by J. Giacalone & J. R. Jokipii (1999). We
use a 2D-slab composite model with separate spectra for the 2D
(k⊥) and slab (k∥) components, with the power in the two
components divided as 80%:20%. The power spectra consists
of a large-scale k p component, with p= 0, at wavenumbers
below the breakpoint scales lc⊥ and lc∥, respectively (note that
we use lc here instead of λc as used by T. Laitinen et al. 2023a
in order to avoid confusion with the parallel scattering mean
free path λ∥). At higher wavenumbers, we use a Kolmogorov
spectrum with power-law index 8/3 and 5/3 for the 2D and
slab components, respectively. The breakpoint scales are
defined as ( ) /l r r r0.04c

0.8=^ , where r is the heliocentric
distance and re is the solar radius, and lc∥ = 2lc⊥. Finally, the
total amplitude of the turbulence, δB, varies with location as
δB2 ∝ r−3.3, with δB2/B2 = 0.03 at re, where B is the
background magnetic field given by Equation (13).

For further information about the parameters, their sources,
and how they are used in the model, we refer the reader to the
full description of the model in T. Laitinen et al. (2023a).

Appendix B
Theoretical Drift Velocity at 1 au

The pitch-angle-dependent drift velocity in colatitude due to
magnetic field gradient and curvature in the Parker spiral is
given by S. Dalla et al. (2013) as

( ) ( )v A
m

q
v v f r

1

2
, , B1d ,theor

2 2g
q= +q ^⎛

⎝
⎞
⎠

where

( ) ( )
( )

( )f r
a

B r

x x

x
,

2

1
, B2

0 0
2

2 2

2 2
q =

+
+

with x = r/a(θ) and ( ) ( )/a v sinswq q= W , and where A is the
sign of the Parker spiral magnetic field, as in Equation (13).
Note that S. Dalla et al. (2013) show the drift rate in latitude
rather than colatitude, hence their sign of vdθ is opposite to
ours. Our model is also unipolar unlike S. Dalla et al. (2013),
who used a bipolar magnetic field, hence we do not incorporate
the change of the sign of the drift velocity at the equator,

( )sgn
2

q-p in Equation (B1).

To evaluate the representative value of the drift velocity, we
average Equation (B1) over the particle velocity distribution,
assuming an isotropic pitch-angle distribution. The isotropy
assumption is justified by the fact that, for our simulation cases,
the scattering timescale at 1 au has values between ~500 and
2000 s, which are short compared to the timescales relevant to
the determination of the drift velocity. Following the pitch-
angle averaging, the terms in the parentheses in Equation (B1)
become

v v v
1

2

2

3
.2 2 2+ =^

In our simulations, we characterize the Parker spiral with solar
wind speed vsw = 400 km s−1. Further, our region of interest is
at the solar equator, with θ = 90°, for which the factor

( )
( )
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r a
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where aeq = a(θ = 90°) ≈ 0.93 au, and the drift velocity

( )
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2
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where rL0 is the particle Larmor radius at magnetic field B0.
This can also be written in terms of the Larmor radius of the
particle at 1 au as

( )
( )

/
v A r v

r a

r a

2

3

2
, B4d L,theor

2
eq
2

2
eq
2 3 2

=
+

+
q

Using this vdθ,theor, the deviation in colatitude in the time
interval Δt at distance r would be expected to be

( )v t

r
. B5dqD =

Dq

We demonstrate this in Figure 7, where panel (a) shows the
theoretical drift velocity in kilometers per second, and panel (b)
in angular units, for the parameters shown in this study.
It is important to note that in our simulations the particle's

location will have deviated from r= 1 au between its first and
last crossing of the 1 au sphere. As discussed in S. Dalla et al.
(2013) and shown in Figure 7(a), the theoretical drift velocity
due to the curvature and gradient tends toward a constant value
at large distances, r ? a. Thus, as a consequence r in the
denominator of Equation (B5), the deviation in colatitude, for a
given Δt, decreases at small and large heliocentric distances, as
shown in Figure 7(b). Therefore, a particle that propagates at a
wide range of heliocentric distances between its first and last
crossing of the 1 au sphere will have drifted with smaller
(angular) drift velocity on average than a particle that would
have remained at 1 au.
For this reason, the drift velocity defined in Equation (16)

can be expected to be smaller than vdθ,theor for a particle that has
propagated to small or large heliospheric distances before
returning to 1 au.
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