N
P University of

Central Lancashire
UCLan

Central Lancashire Online Knowledge (CLoK)

Title Directed acyclic graphs as conceptual and analytical tools in applied and
theoretical epidemiology: advances, setbacks and future possibilities

Type Article

URL https://clok.uclan.ac.uk/id/eprint/54193/

DOI https://doi.org/10.3934/mbe.2025048

Date 2025

Citation | Ellison, George and Rhoma, Hanan (2025) Directed acyclic graphs as
conceptual and analytical tools in applied and theoretical epidemiology:
advances, setbacks and future possibilities. Mathematical Biosciences and
Engineering (MBE), 22 (6). pp. 1280-1306. ISSN 1547-1063

Creators | Ellison, George and Rhoma, Hanan

It is advisable to refer to the publisher’s version if you intend to cite from the work.
https://doi.org/10.3934/mbe.2025048

For information about Research at UCLan please go to http://www.uclan.ac.uk/research/

All outputs in CLoK are protected by Intellectual Property Rights law, including Copyright law.
Copyright, IPR and Moral Rights for the works on this site are retained by the individual authors
and/or other copyright owners. Terms and conditions for use of this material are defined in the
http://clok.uclan.ac.uk/policies/



http://www.uclan.ac.uk/research/
http://clok.uclan.ac.uk/policies/

E% MBE, 22(6): 1280-1306.
AT™MS DOI: 10.3934/mbe.2025048
%g Received: 30 August 2024

Revised: 22 February 2025
Accepted: 28 February 2025
Published: 22 April 2025

https://www.aimspress.com/journal/ MBE

Review

Directed acyclic graphs as conceptual and analytical tools in applied and
theoretical epidemiology: advances, setbacks and future possibilities

George TH Ellison"** and Hanan Rhoma?3

1" Centre for Data Innovation, JB Firth, University of Central Lancashire, Preston PR1 2HE, UK
2 Leeds Institute for Data Analytics and University of Leeds Medical School, Leeds LS2 9JT, UK
3 Department of Statistics, Faculty of Sciences, University of Tripoli, Tripoly, Libya

* Correspondence: Email: gthellison@uclan.ac.uk.

Abstract: In this review, we explore the advances, setbacks, and future possibilities of directed acyclic
graphs (DAGs) as conceptual and analytical tools in applied and theoretical epidemiology. DAGs are
literal, theoretical or speculative, and diagrammatic representations of known, uncertain, or unknown
data generating mechanisms (and dataset generating processes) in which the causal relationships
between variables are determined on the basis of two over-riding principles—“directionality” and
“acyclicity”. Among the many strengths of DAGs are their transparency, simplicity, flexibility,
methodological utility, and epistemological credibility. All these strengths can help applied
epidemiological studies better mitigate (and acknowledge) the impact of avoidable (and unavoidable)
biases in causal inference analyses based on observational/non-experimental data. They can also
strengthen the credibility and utility of theoretical studies that use DAGs to identify and explore
hitherto hidden sources of analytical and inferential bias. Nonetheless, and despite their apparent
simplicity, the application of DAGs has suffered a number of setbacks due to weaknesses in
understanding, practice, and reporting. These include a failure to include all possible (conceivable and
inconceivable) unmeasured covariates when developing and specifying DAGs; and weaknesses in the
reporting of DAGs containing more than a handful of variables and paths, and where the intended
application(s) and rationale(s) involved is necessary for appreciating, evaluating, and exploiting any
causal insights they might offer. We proposed two additional principles to address these weaknesses
and identify a number of opportunities where DAGs might lead to further advancements: The critical
appraisal and synthesis of observational studies; the external validity and portability of causality-
informed prediction; the identification of novel sources of bias; and the application of DAG-dataset
consistency assessment to resolve pervasive uncertainty in the temporal positioning of time-variant
and time-invariant exposures, outcomes, and covariates.
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1. Introduction

The origins of directed acyclic graphs (DAGs) date back to the emergence of “graph theory” in
the early 1700s [1]. DAGs are literal, theoretical, or speculative diagrammatic representations of causal
paths between variables that are constructed, as their name suggests, on the basis of two over-riding
principles—*“directionality” and “acyclicity”—which require that:

Principle 1: “All causal paths are ‘“directed””—such that for any pair of (asynchronous)
variables (e.g., x and y) between which a causal relationship is known, theorized, or speculated to exist,
only one (either x or y) can represent the cause; and only the other (either y or x) can be its consequence
(hence either: x — y or y — x; but neither x — y nor x <> y).

Principle 2: “No direct cyclical paths or indirect cyclical pathways (comprising sequences of
multiple consecutive paths) are permitted” — such that no consequence can be its own direct or indirect
cause (hence “acyclic” [2]—a property that is a definitive feature of DAGs and reflects what is known
as the “topological ordering” or “topological sorting” of unidirectional paths [3,4]).

DAG:s reflect the theoretical knowledge and/or speculation of the analyst(s) concerned regarding
the causal relationships known, theorized, or speculated to exist between each of the variables they
have included in their DAGs. These variables are termed “nodes” or “vertices” and, as illustrated in
Figures 1 and 2, are commonly represented as regular/irregular rectangular shapes (for measured
variables) and as spheroids (for unmeasured variables).? Causal paths between variables are also
known as directed “arcs” or “edges” and are often represented as unidirectional arrows. Importantly,
while each path indicates both the presence and direction of a known, theorized, or speculative causal
relationship between the two variables concerned, drawing a path does not require the sign, magnitude,
precision, or function of the relationship to be known or declared [5]. For this reason, DAGs provide
a disarmingly simple, accessible, and entirely nonparametric approach for postulating causal
relationships among any variables of interest—even when these variables or relationships are
themselves unknown, uncertain, or speculative [6]. Nonetheless, as a result of the parametric
constraints imposed by the presence or absence of “permissible” paths? within any given DAG, these
diagrams also support a number of more sophisticated statistical applications. These applications make
it possible to use DAGs to inform the design of multivariable statistical models that can accommodate
or exploit their postulated causal structures without the need to understand the mathematical properties
on which these structures depend [7].

Such features make DAGs attractive cognitive and analytical tools for strengthening the empirical,
theoretical and epistemological basis of causal inference—particularly among analysts who lack
specialist mathematical training. Unsurprisingly, there has been a rapid proliferation in the use of
DAGs across a range of applied scientific disciplines (including the biosciences [8], health and social
care [9-12], and engineering [13]), and an upsurge in associated training [14].

EEINNT3

Unmeasured variables are often termed “unknown”, “unobserved” or “latent” variables; while measured variables are
RT3

occasionally termed “known”, “observed” or “manifest” variables.
2“Permissible paths” are those paths that are consistent with directionality and acyclicity.

Mathematical Biosciences and Engineering Volume 22, Issue 6, 1280-1306.
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Figure 1. A partial DAG [6] summarizing only the measured variables! that envelop the
“focal relationship” [15] between the specified “exposure” (or “cause of interest””) and the
specified “outcome” (or “consequence of interest” [16]). With the exception of the
(specified) exposure and (specified) outcome variables, all other measured variables
(commonly known as “covariates”) are represented here as “sets of variables” (hence the
double line surrounding these “super-nodes” [5]) to indicate that more than one measured
covariate can co-occur during the period before the exposure (where these covariates
operate as “confounders”), after the outcome (where the covariates concerned might best
be described as “consequences of the outcome™), and the period in between (where the
covariates involved are commonly known as “mediators”).

To temper this enthusiasm—for what are ostensibly simple but somewhat simplistic
representations of potentially complex and complicated causal processes—we explore the advances
and strengths, setbacks and weaknesses, and future possibilities of DAGs as conceptual and analytical
tools within applied and theoretical epidemiology. We conclude that using DAGs requires a clear
understanding of both their non-parametric nature and their parametric implications; and that the
substantial weaknesses of DAGs seem likely to reflect both:

(1) The challenges inherent in the modelling of “data generating mechanisms”, and “dataset
generating processes”, whenever either of these are incompletely understood or poorly theorized; and

(2) The troublesome cognitive tendencies that accompany the application of all analytical tools,
in which their ease of use and practical utility seems to obviate the discipline required to identify,
evaluate and acknowledge all prevailing uncertainties and assumptions—particularly those that might
prove irreducible.

Mathematical Biosciences and Engineering Volume 22, Issue 6, 1280-1306.
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Figure 2. A comprehensive or “universal” DAG [6] summarizing all the conceivable
variables (both measured and unmeasured)1 that envelop the “focal relationship™ [15]
between the specified “exposure” (or “cause of interest”) and the specified “outcome” (or
“consequence of interest” [16]). With the exception of the (specified) exposure and
(specified) outcome variables, all other variables (commonly known as “covariates™) are
represented here as “sets” of variables (hence the double line surrounding these “super-
nodes” [5]) to indicate that more than one such covariate is likely to co-occur during the
period before the exposure (where these covariates operate as “confounders”), after the
outcome (where the covariates concerned might best be described as “consequences of the
outcome”), and the period in between (where the covariates involved are commonly known
as “mediators”). Because some of the covariates within each set of measured covariates
(indicated as rectangular shapes) and unmeasured covariates (indicated as spheroid shapes)
might occur before or after one or more of those in another set of covariates, a comprehensive
DAG of this nature includes some ostensibly “bi-directional” causal paths that appear to
operate in both directions, albeit between different variables within each set of (measured

2% ¢

and unmeasured) “confounders”, “mediators” and “consequences of the outcome”.
2. The strengths of directed acyclic graphs in applied and theoretical epidemiology

As Figure 2 demonstrates, a comprehensive DAG offers a “principled” representation of all causal
pathways that are known (or can be theorized or speculated) to exist within any specified context.
These variables include: Those for which measurements have been made and are available; those for
which measurements have been made but for some reason or other are unavailable; and any for which
measurements have not been, or cannot be, made (which include: both conceivable but
unmeasured/unmeasurable variables; and the hitherto inconceivable and therefore unmeasured and
unmeasurable variables [16]). In this way, a comprehensive DAG not only reflects the premise upon

Mathematical Biosciences and Engineering Volume 22, Issue 6, 1280-1306.
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which a causal model has been constructed, but also reveals many of the model’s associated
uncertainties and assumptions (whether explicit or implicit)—including the likely presence of
“unknow-able” numbers of unmeasured and unmeasurable variables situated at each and every stage
of the causal mechanisms involved.

Such features imbue even non-comprehensive DAGs (such as Figure 1) with a number of invaluable
properties that make them useful tools to assist in the conceptualization and analysis of known, theorized
and speculative causal processes—and particularly in non-experimental (i.e., observational) contexts
where the causal pathways involved can be incompletely understood, somewhat uncertain, or completely
unknown. Indeed, in the absence of the advances in causal inference that DAGs have been able to provide,
definitive evidence of cause and effect has had to rely upon experimentation involving the deliberate
manipulation of “exposures” to evaluate their effect on subsequent “outcomes”. However, experimental
studies are often resource intensive; have limited utility for complex, real-world interventions/exposures;
and often face substantial ethical constraints [17]. This is why causal inference is where we have seen
the most widespread application of DAGs with the greatest potential for impact—not least since robust
understanding of causal mechanisms is critical for identifying, selecting, and refining interventions
capable of preventing, pre-empting, attenuating, or reversing undesirable processes; and enhancing
those processes most likely to do good. Furthermore, causal inference is also critical to the external
validity, generalizability, and associated “portability” of prediction models and the application of their
algorithmic outputs beyond the contexts, time periods, and datasets in which (and on which) these have
been developed [18-21].% For these reasons, it is worth examining, in some detail, what the potential
and achievable strengths of DAGs might be within analyses of observational datasets, focusing in
particular on the contributions DAGs might make to causal inference—but also, thereby, to the external
validity, generalizability and portability of causality-informed prediction.

2.1. Transparency

As we have seen, a key strength of DAGs is their ability to reveal conceptual and analytical
uncertainties and assumptions that might otherwise remain unspecified, unclear, and/or uncertain to
both:

(1) The analysts concerned—who might have been unaware of these uncertainties; not intended
to make such assumptions; or overlooked their implications; and

(2) Third parties and others, including peers, reviewers, and end-users who are then able to
examine, comprehend, and evaluate the implications of these uncertainties and assumptions for the
design and outputs of associated causal inference analyses.

While transparency is, in and of itself, a tangible benefit of using DAGs—and not least in terms
of enhancing the reproducibility and replicability of scientific research [22]—it has direct
methodological utility in the design and conduct of primary studies seeking causal inference (or
causality-informed prediction) from analyses of observational data (see Sections 2.4.1-2.4.5) and
secondary studies seeking to critically appraise the methods of, and synthesize the findings generated
by, these primary studies (see Section 2.4.6 [23]).

3Although the aims of causal inference and prediction are very different—the former being concerned with mechanistic
processes, the latter with classification/estimation—the temporal and contextual stability of many causal mechanisms
makes understanding of these very useful for designing, developing and utilizing predictive algorithms in contexts/at times
where the data-set generating processes might vary [18-21].

Mathematical Biosciences and Engineering Volume 22, Issue 6, 1280-1306.
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2.2. Simplicity

The ability of DAGs to improve the transparency of conceptual uncertainties and analytical
assumptions benefits from substantial consensus regarding the principles that govern both: What
DAGs can (and cannot) represent, and how these features are represented. As predominantly
theoretical, and exclusively non-parametric representations of causal processes, DAGs neither reflect
nor dictate the parametric features of any of the causal paths involved (i.e., the sign, magnitude,
precision, or function of their parametric relationships [5]). Indeed, the only exception in this regard
is where the omission of a causal path represents (and imposes) a very specific parametric value for
the relationship between the variables concerned; namely that the associated path coefficient is, and
can only be, “absolute” zero (i.e., 0.000). Moreover, while DAGs need not necessarily be
operationalized as graphical diagrams [24-26], all DAGs — as we have seen—only contain directed
and acyclic causal paths. Ostensibly, these two simple principles appear easy to understand and apply,
making DAG construction a task that is accessible even to those with little technical expertise or
experience (albeit somewhat imperfectly [6,27]).

2.3. Flexibility

While the twin principles of directionality and acyclicity impose strict constraints on the forms
that DAGs can take, the rationale applied in deciding precisely which of the “permissible” (i.e.,
directionality- and acyclicity-compliant)? causal paths exist can:

(1) Involve a number of very different (and potentially contested and contradictory)
considerations; and

(2) Be used in both hypothetical and more practical applications.

In applications where DAGs are used to represent hypothetical causal relationships among the
variables involved, the selection of (permissible) causal paths that are included/excluded can be
determined on a speculative or deliberatively experimental basis. However, in applications where
DAG:s are intended to represent the real-world processes involved in generating the observational data
to hand (i.e., the underlying data generating mechanism(s) and dataset generating processes involved),
contextually and functionally consistent knowledge is required to determine where permissible causal
paths might be known or likely to exist (and where they are not). Moreover, even in applications where
any such knowledge is contested, equivocal, uncertain, elusive, or unknown, temporal considerations
alone can often be used to determine where causal paths might plausibly or probabilistically exist (and,
likewise, where these might be implausible or impossible). Temporal considerations achieve this
simply because a cause must precede any subsequent consequence(s) or effect(s)—such that any
preceding variable might, therefore, be considered a plausible, probabilistic cause of all subsequent
variables; and any subsequent variable might be considered a plausible, probabilistic consequence of
all preceding variables.

In this way, decisions as to where causal paths are situated in any given DAG can be informed by
theoretical knowledge, speculation, or temporal/probabilistic considerations—or any combination of
these three. For this reason, DAGs are inherently flexible tools that are suitable for a wide range of
applications involving the modeling of known, hypothetical, and a-theoretical (and ostensibly
objective) conceptualizations of the underlying data generating mechanism(s) and dataset generating
process(es) involved. However, as will become clear in subsequent sections of our review, it is this

Mathematical Biosciences and Engineering Volume 22, Issue 6, 1280-1306.
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flexibility that lies at the heart of the potential ambiguity and uncertainty of DAGs when it comes to
assessing their internal consistency and practical utility—ambiguity and uncertainty that warrants
improvements in the level of detail that analysts are encouraged or required to provide when
developing, specifying, operationalizing and reporting their DAGs.

2.4. Methodological utility

By improving the transparency of any residual (and irreducible) uncertainties that analysts
routinely face—and of the explicit and implicit decisions and assumptions that analysts must make to
overcome these—DAGs can help improve the choices analysts make at every stage in the research
process, be that during: Problem identification and hypothesis generation; study design; dataset
selection (or the sampling, measurement, coding, and transformation of novel data); analysis and
interpretation; and, in the critical appraisal, synthesis and meta-analysis of primary studies. It is
therefore worth exploring each of these methodological choices in turn, to explicate how DAGs might
strengthen the judgements and decisions these require.

24.1. Hypothesizing

Wherever hypotheses involve, or depend on, the presence or absence of specific causal pathways,
DAGs can be of substantial utility in exploring and evaluating the potential implications and
consequences of the causal assumptions involved, and thereby the likely plausibility of the hypotheses
concerned. In this way—and even in the absence of data (or any analysis thereon)—DAGs are
powerful tools that can improve the critical, initial, and conceptual phase of the research process, in
which the insights offered by DAGs can stretch beyond the modeling of real-world observational data
to the design of speculative, exploratory, and experimental “studies” [28,29].

2.4.2. Sampling

Wherever research studies involve choosing among a range of alternative secondary datasets or
planning the prospective collection of data de novo, prior specification of a DAG can help identify the
potential risk of collider bias [30] that might otherwise be incurred when selecting unrepresentative
datasets or when generating novel datasets likely to be vulnerable to or affected by unrepresentative
recruitment, selection, inclusion, and exclusion procedures.

2.4.3. Data availability/collection

A DAG can also be invaluable for ensuring that sufficient, accurately measured data are available
(within the dataset selected) or can be measured (when collecting data de novo) for a suitably wide
variety of those variables likely to contribute confounding bias—these comprising both the measured
and the conceivable (and potentially measurable) variables that are likely to have occurred or crystallized
before the specified exposure(s). In this way, prior specification of a DAG helps identify the covariates
that might need to be available or measured for inclusion within the covariate adjustment set(s) required
by multivariable statistical models where the intended estimand is either: The “total causal effect” [31]
or the naive “direct causal effect” between a specified exposure and outcome [32,33]. Here, adjustments

Mathematical Biosciences and Engineering Volume 22, Issue 6, 1280-1306.
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for covariates acting as potential confounders alone or confounders and mediators are required,
respectively [34].

2.4.4, Data analysis

DAGs have particular utility in helping analysts identify measured and unmeasured covariates
acting as potential: Colliders (including mediators and consequences of the outcome [35]) or
confounders [36] (see Figures 1 and 2). The risk of bias due to conditioning on any potential colliders
or from failing to condition on any potential confounders can then be mitigated through dataset
selection-, sampling- and stratification-related decisions, or by the exclusion of any colliders (and the
inclusion of all measured confounders) in the covariate adjustment sets used in the study’s
multivariable statistical analyses [37]. Wherever the theoretical, speculative, and temporal rationale(s)
applied when constructing DAGs involves the omission of one or more permissible causal paths,? a
number of alternative yet equivalent adjustment sets may exist, each containing a different selection
of covariates [38]. Under such circumstances, a DAG will also make it possible to optimize the
adjustment set selected so that this contains covariates offering the most detailed, most accurate, and
most varied (and thereby “informative”) statistical information available for potential confounding;
i.e., by choosing from amongst these alternative adjustment sets the one whose covariates:

(1) Are, together, likely to capture the most variance in confounding; and

(2) Have been measured with the greatest accuracy and precision (so as to reduce the risk of
residual confounding — this being the proportion of confounder bias remaining, even after
conditioning/adjustment, that is contributed by measurement error [2]).

2.45. Interpretation

DAG:s also have substantial utility for interpreting findings generated by multivariable statistical
analyses of observational datasets, either:

(1) Where one or more potential confounders have not been, or cannot be, measured; or

(2) Where conditioning on one or more colliders is unavoidable, unintended or deemed necessary
or desirable.

Unadjusted/unmeasured confounder bias may be unavoidable whenever unmeasured confounders
exist that cannot be conditioned upon (through sampling, stratification, or inclusion in the covariate
adjustment sets of the study’s multivariable statistical analyses). Endogenous selection bias may
likewise make conditioning on colliders unavoidable in the absence of robust sampling weights (to
address systematic sampling error) and suitably precise imputation for cases with missing data (so as
to ensure these cases can be included in the [weighted] dataset available for analysis). This is simply
because it is very likely, in such instances, that the sample of data available/generated for analysis will
otherwise prove to be unrepresentative of the population to which the analyses” findings are intended
to apply [39].

Unintended collider bias will likewise occur whenever potential mediators or consequences of
the outcome are mistakenly classified as confounders and included in the covariate adjustment sets
of a study’s multivariable statistical analyses. In contrast, “necessary or desirable” collider bias
occurs whenever the intentional adjustment for mediators is considered necessary to generate naive
estimates of any direct effects between the specified exposure and outcome (e.g., [40]); or when

Mathematical Biosciences and Engineering Volume 22, Issue 6, 1280-1306.
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covariates taken to represent competing exposures are included in covariate adjustment sets to
improve the precision of the estimated path coefficient for the “focal relationship”[15] between the
specified “exposure” (or “cause of interest”) and the specified “outcome” (or “consequence of
interest” [16] (see also Sections 2.5 and 3.4.1; and Figure 1 in [5]), a practice that can even undermine
the validity of experimental studies [41].

Indeed, in many multivariable analyses of observational data, unacknowledged and undeclared
naivety extends beyond the deliberate application of simplistic mediator-adjustment procedures to
estimate direct causal effects to the deliberate conditioning on covariates (mis)interpreted as competing
exposures (so as to increase the precision of the estimated path coefficient for the focal relationship)
and a failure to acknowledge unmeasured and residual confounding. All such analyses are arguably
naive since it is implausible that:

(1) Any non-comprehensive sampling procedures will be capable of generating absolutely
representative samples that do not (unintentionally) condition on potential colliders;

(2) Any covariate adjustment set will include all potential confounders (given a comprehensive
list of confounders will include many that are: conceivable yet unmeasured or unmeasurable variables;
and hitherto inconceivable and therefore unmeasured or unmeasurable variables);

(3) All (measured) confounders that have been subjected to conditioning (through sampling,
stratification or inclusion in the multivariate models” covariate adjustment sets) will have been
measured with absolute precision (“residual confounding”, as we have seen, being that proportion of
confounder bias remaining—despite conditioning/adjustment—that is contributed by measurement
error); and

(4) All covariates will be accurately classified as potential confounders, mediators or
consequences of the outcome so that conditioning on those classified as potential confounders includes
only those that genuinely are.

2.4.6. Critical appraisal and synthesis

Though as yet unrealized [23,42-46], DAGs have substantial potential utility for strengthening the
critical appraisal and synthesis of findings generated by primary studies involving causal analyses of
observational data—even if only by facilitating assessments of the risk of bias therein. Indeed, even
where the original studies concerned have not used DAGs to inform their analytical designs (or have not
described/reported the DAGs used in any, or sufficient, detail [5]), critical appraisal can be applied to
discrete focal relationships within carefully defined contexts based on theoretical knowledge, speculation,
and/or temporal/probabilistic considerations concerning the underlying data generating mechanism(s)
involved. In such instances, DAGs can be developed de novo to inform critical appraisal and synthesis
simply on the basis of the covariates available to each of the primary studies concerned [23]. These
DAGs can then be augmented by careful consideration of any likely or potential unmeasured
covariates—particularly those positioned before the specified exposure that might thereby act as sources
of unadjusted/unmeasured confounder bias in the coefficient estimates reported for each of the focal
relationship(s) examined. Such DAGs can subsequently be applied across multiple studies to assess the
risk of bias in their multivariable statistical models — bias that that might arise from:

(1) Endogenous selection bias/unrepresentative sampling (collider bias);

(2) Under-adjustment for potential confounders (confounder bias—and particularly when these
involve confounders measured by, or available to, at least some of the studies examined); or

Mathematical Biosciences and Engineering Volume 22, Issue 6, 1280-1306.
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(3) Over-adjustment for consequences of the outcome mistaken as competing exposures (whether
unintentionally or intentionally to enhance precision) or mediators (whether unintentionally or
intentionally to generate naive estimates of direct causal effects), or indeed, when either consequences
of the outcome or mediators are mistaken for bona fide confounders, and vice versa [43,44]).

2.5. Consistency evaluation

In those (applied) studies where DAGs are intended to inform multivariable statistical analyses
capable of supporting causal inference (or causality-informed prediction) that are based on real-world
observational datasets and accurately reflect the underlying data generating mechanism(s) involved, it
may also be possible to use these DAGs as a basis for evaluating “DAG-analysis” and “DAG-dataset”
consistency.

DAG-analysis consistency can be assessed for any DAGs, regardless of their structure or the
rationale(s) involved and application(s) considered when constructing these. Such evaluations involve
examining both:

(1) The conditioning decisions made, such as the study’s sampling and stratification procedures,
and the covariate adjustment sets used in each of the study’s multivariable statistical analyses (all of
which should be consistent with the risks of collider bias and confounding evident in the DAG); and

(2) The conditional or contingent nature of any inferences drawn on the basis of these decisions
and analyses, such as acknowledging the possibility or likelihood of: unadjusted/unmeasured and
residual confounding; and both intentional and unintentional/irreducible collider bias.

Ideally, analysts should aim to condition on/adjust for a sufficient number and variety of
accurately measured confounders to mitigate the risk of confounding bias (and residual confounding)
in the estimated path coefficient of their focal relationship(s). They should also—ideally—avoid
conditioning on any potential (conceivable) colliders whenever the datasets available to, or collected,
by them can be comprehensive or representative samples of the populations concerned (with/without
post-sampling imputation and weighting); and it is possible to differentiate between confounders,
mediators and consequences of the outcome (so as to only condition on bona fide confounders).
Moreover, whenever it is deemed necessary or desirable to condition on one or more likely/possible
colliders, including mediators (where the estimands concerned comprise naive estimates of direct
causal effects) and competing exposures (wherever the precision of the causal estimates generated is
considered sufficiently important to warrant the associated risk of collider bias), then analysts should
ideally acknowledge and, wherever possible, evaluate (using sensitivity analyses) the risks of bias that
these impose on their estimated total and/or direct causal effects (see Sections 2.4.5 and 3.4.1).

In contrast, DAG-dataset consistency evaluations are possible only for DAGs in which the
speculative, theoretical, and temporal/probabilistic rationale(s) on which these are developed and
specified support the omission of one or more causal paths that might otherwise be permissible (i.e.,
without breaching the principles of directionality and acyclicity). In these instances, the non-
parametric features of the DAGs concerned impose testable parametric constraints on the data these
DAGs are intended to represent [24,45]. It is therefore possible to establish whether such constraints
apply within these datasets (and therefore whether these DAGs are consistent with the datasets they
are intended to represent) and identify a comprehensive set of any and all alternative DAGs (each of
which are consistent with the datasets concerned)—albeit regardless of whether (m)any of these DAGs
reflect (m)any of the features of the DAGs that might otherwise have been developed and specified by

Mathematical Biosciences and Engineering Volume 22, Issue 6, 1280-1306.
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the analysts concerned (such as datasets that are consistent with multiple DAGs in which a covariate
acts as a confounder in some, a mediator in others, or a consequence of the outcome in the remainder,
and there is strong or definitive evidence that the covariate concerned occurred/crystalized prior to the
specified exposure, after the specified outcome, or some time in between).

Although these assessments do not represent a formal “test” of whether or not any given DAG
correctly reflects the data generating mechanism(s) of the dataset concerned, they can help:

(1) Evaluate whether the DAGs that analysts have developed and specified on theoretical,
speculative and temporal/probabilistic grounds might actually, and in any way, reflect the real-world
data they are intended to represent — assuming, of course, that the analysts’ DAGs were intended to
accurately represent the data generating mechanism(s) and dataset generating process(es) involved
(which may not be the case if the DAGs were intentionally hypothetical or experimental [21]; see
Sections 3.4 and 3.6); and

(2) Identify the full range of DAGs that might be parametrically plausible for the dataset(s) at
hand—thereby prompting subsequent consideration of the basis on which one (or more) of these DAGs
might actually—and optimally—reflect the underlying data generating mechanism(s) and dataset
generating process(es) involved.

2.6. Epistemological credibility

For those researchers engaged in generating causal hypotheses, analyses, and inferences from
observational data, DAGs have benefits that extend beyond their impact on the coherence and
consistency of sampling, stratification and multivariable statistical modelling. Indeed, the cognitive
and conceptual impact of DAGs on collective understanding of data generating mechanisms and
dataset generating processes—and on how these might be modeled using statistical techniques to
generate insight and facilitate foresight—may prove to be just as important for identifying and
elucidating entirely hypothetical and hitherto poorly understood, under-acknowledged, or completely
hidden sources of bias (and analytical opportunities). These benefits are evident in the recent
identification of “M-bias” and “butterfly-bias”, which are two forms of bias whose nomenclature stems
from the shapes they take when elucidated within topologically arrayed DAGs [46]; and the role that
the concept of “a collider” has played in understanding the bias imposed on causal inference by
unrepresentative sampling, and by inappropriate stratification and adjustment procedures [47].
Ongoing applications of DAGs within causally-informed prediction models [18-21] are likewise
capitalizing on the cognitive and conceptual understanding that these bring to bear on the data
generating mechanisms and dataset generating processes on which interpolative and extrapolative
predictive modeling rely, and the portability and generalizability of their algorithms depend.

3. The weaknesses of directed acyclic graphs in applied and theoretical epidemiology

There is little doubt that DAGs offer substantive advances in transparency, reproducibility, and
analytical integrity—particularly for applied and theoretical studies seeking to strengthen the
credibility of causal inference (and causality-informed prediction) derived from observational data.
Moreover, variation in the uptake and application of DAGs [5] suggests that: Challenges remain in
both their conceptualization and operationalization; and the widespread adoption of these tools may
face a number of setbacks.
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In this regard, it is important to point out that the mis-application of DAGs not only reduces their
self-evident utility—which depends on the internal and external validity of DAG-enhanced findings and
inferences—but also undermines the sustained improvements in analytical practice that DAGs might
otherwise support. The contemporary use of DAGs in causal inference research offers only limited
reassurance that these studies have been any more competently or robustly designed, conducted, and
interpreted than more traditional, established practices (in which numerous biases and errors remain
commonplace [6,27,30,48,49], are widely accepted and routinely overlooked [S0-53]). As such, there is
a tangible risk that DAGs simply become another device for “virtue signaling” in science [54]—a
practice that bears little relation to the integrity, humility, reflection, and rigor necessary to avoid and
mitigate any possible biases and associated uncertainties (and to acknowledge any residual biases and
irreducible uncertainties). Wherever reviewers and end-users naively interpret the referencing, use or
inclusion of DAGs in published research as evidence of sophisticated, advanced and robust analytical
practice, DAGs will simply detract from the many improvements in analytical technique that are long
overdue and seem likely to require sustained and relentless vigilance.

These concerns affect the utility of any novel tools that depend on the knowledge, understanding,
skill and competence—as well as the diligence, determination and integrity—of those who use them.
Since the use of causal path diagrams (and particularly DAGs) constitutes a substantial departure from
established analytical practice, the potential for misunderstanding, misuse and mis-application will
inevitably pose weaknesses and setbacks across all of the potential strengths and advances identified
earlier (see Section 2). It is therefore worth considering each of these putative strengths in turn to
identify: those where variation (in understanding and/or practice) might benefit from greater clarity,
consensus or standardization; and those where further developments in the tools themselves, or in their
application and practice, might be required.

3.1. Transparency

Exposing analytical uncertainties and assumptions that might otherwise remain hidden or
unrecognized is a key benefit of using DAGs to support applied and theoretical modeling of
observational data. This utility is nonetheless constrained not only by the knowledge and
understanding of the analysts concerned (and of their peers, reviewers and end-users), but also by the
size and complexity of the DAGs (which can be challenging to represent in diagrammatic form), and
the accessibility (readability and interrogability) of the formats in which these are reported and
presented. Physical constraints place limits on the number of variables and causal paths that can be
presented in any finite space, and there are similar constraints on the ability of the human eye to
interpret cluttered and fine-grained images of complex diagrams. Indeed, in a recent review of 144
published DAGs [5]—all of which had been reported and presented as static, two-dimensional
images—the co-authors involved made more errors recording the numbers of variables and paths in
DAGs with larger numbers of variables and paths; and such errors occurred in well over a third (39%)
of the DAGs examined. Furthermore, data extraction errors were lower among DAGs drawn using
specialist DAG-specification software (www.daggity.net [55,56]) and among those that were
topologically arrayed [3]—though only when their causal paths had been aligned vertically (i.e., from
top <—to— bottom) or horizontally (i.e., from left «<-to— right), and not when arranged diagonally
across the page.

It is tempting to conclude from these findings that the benefits of DAGs in supporting greater
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transparency will be limited to leaner, simpler DAGs or to DAGs amenable to dedicated DAG-
specification software. However, the authors of [5] did not include DAGs presented in alternative,
non-graphical formats (such as the innovative, list-wise approach developed by Stacey et al. [57];
see Figure S1 therein) or DAGs summarized using specialist technical notation (some forms of which
have the added benefit of being machine-readable, thereby enhancing their interoperability with
specialist analytical software, such as the R package “daggity” [24,46]). These innovations may
address the inherent space constraints of academic publications, and the cluttered (and often
indecipherable) diagrams required to summarize larger and more complex DAGs. However, until
they do, DAGs presented in traditional two-dimensional formats (as in Figures 1 and 2) will struggle
to accommodate more than a handful of variables and paths without compromising their
interrogability and analytical utility.

3.2. Simplicity

The apparent ease with which DAGs can be drawn using two ostensibly simple principles—
namely, that all of their paths must be directed and acyclic—masks the less straightforward conceptual
and cognitive challenges this often entails [27]. Regardless of the format used (and notwithstanding
the alternative and flexible applications of DAGs; see Sections 2.3 and 3.3), the use of DAGs to support
the modelling of observational data requires a firm understanding of what these diagrams aim to
represent, namely the underlying “data generating mechanism(s)” and/or “dataset generating
process(es)” responsible for the relationships observed between all conceivable (and any hitherto
inconceivable) variables.

The conceivable variables include not only those for which measurements are available, and those
for which measurements should/could be available, but also those for which measurements are not
available simply because the analysts concerned lack the means to measure or ascertain these. As for
the inconceivable variables, until the analysts concerned are aware of their (possible) existence they
will not know that these variables warrant measurement. Since all four sets of variables (measured-;
unmeasured-; and unmeasurable-but-conceivable variables; and inconceivable variables) are required
to comprehensively characterize the underlying data generating mechanism(s) involved in (m)any (and
perhaps all) DAGs that aim to reflect “real-world” causal processes, an additional (third)—and hitherto
undeclared—yprinciple of DAGs seems necessary to invoke, which might be summarized as follows:
Principle 3: “DAGs that seek to represent real-world causal processes should include all of the
variables required to characterize and specify the data generating mechanism(s) (and/or dataset
generating processes) involved”—with a particular emphasis on “all”.

In applying this principle, analysts require a substantial degree of humility, given our limited and
incomplete understanding of the causal mechanisms involved in most real-world systems, except
perhaps those where the systems concerned are: The artefacts of deliberate, accidental, or incidental
human design; or based on established physical properties and so-called “laws” [58]. Analysts will
also need to grasp the critical role that the analytical context can play, and how contexts themselves
can vary over time and space.

These considerations arguably detract from the much-vaunted simplicity of DAGs. This is
because the comprehensive DAGs these considerations require (e.g., Figure 2) demand far greater
thoughtfulness (and humility) than that required simply to draw directed and acyclic causal path
diagrams. Such thoughtfulness is nonetheless critical if DAGs are to be able to: Faithfully represent
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the (theoretical, speculative, and/or temporal/probabilistic) rationale(s) involved; accommodate all
conceivable (and hitherto inconceivable) variables; and carefully accommodate context-related
variation as to which variables and pathways are present and relevant, and which are absent and
therefore irrelevant. Nonetheless, wherever the pursuit of causal inference involves a finite number of
causal paths (“focal relationships™) between a finite number of variables (the specified “exposures”
and “outcomes” concerned), then it is usually unnecessary to generate comprehensive DAGs detailing
all possible pathways amongst all possible variables (whether confounders, mediators, or
consequences of the outcome). This is because all that may be necessary to mitigate the most important
biases (the “tigers” as opposed to the “mice”, as the statistician George Box once described these [59])
when estimating the sign and magnitude of each focal relationship will be to focus intently on the key
sets of variables that precede these relationships; i.e., those operating as potential confounders [16].Q
That said, the risk of substantial collider bias incurred as a result of unacknowledged and unintended
conditioning on mediators or consequences of the outcome, whether through sampling, stratification,
or inappropriate adjustment, means that an analyst will need to be vigilant (and thoughtful) in
mitigating and acknowledging the likelihood of these biases even when the analyst’s principal focus
will remain on identifying, enumerating, and eliminating the impact of confounders.

3.3. Flexibility

The explicit and implicit conceptual considerations that underpin the apparent simplicity and
transparency of DAGs also extend to their flexibility, since:

(i) DAGs can be developed on the basis of theoretical knowledge, speculation, temporal/
probabilistic considerations, or a combination of all three; and

(i) The rationales involved in DAG development and specification impose constraints on their
intended—and likely—application(s)—and their associated internal validity and external generalizability.

These considerations aside, it is important to stress that wherever DAGs are constructed on the basis
of speculative causal relationships between each of the variables included therein, and these DAGs can
be conceptually valid even when they bear little relation to any real-world contexts and their associated
observational datasets. Likewise, where DAGs are constructed on the basis of theoretical knowledge—
whether experientially or empirically informed—of the causal relationships theorized to be present (or
absent) among each of the variables involved, then these DAGs can also offer valid representations of
the theoretical causal structures concerned even when these are somewhat at odds with the real-world
observational data available. Indeed, even those analysts who rely exclusively on temporal/probabilistic
considerations when developing and specifying their DAGs [6,53,60] to generate ostensibly a-theoretical,
and thereby more “objective” DAGs (in the hope that these better reflect all of the possible, probabilistic
causal processes involved) may nonetheless find that their DAGs deviate from the data they were
intended to represent. This might occur, for example, where: any of the constituent probabilistic causal
paths are so trivial that it is plausible these might not actually exist or there is substantial epistemological
uncertainty as to precisely when each of the variables actually occurred relative to one another (see
Figure 3). In each instance then, assessing whether the analysts concerned have generated DAGs that fit
their intended (theoretical, speculative, or temporal/probabilistic) rationale(s) and application(s) requires
that these intentions are clearly reported/declared. This is because any given DAG—regardless of how
this is represented (whether as a static, two-dimensional diagram; an innovative list; or in machine-
readable notation)—does not, in and of itself, reflect or reveal the rationale involved and its intended
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applications when deciding what variables to include (see Section 3.2) and which causal paths do/do not
exist between and among the included variables.
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UK1: UnKnown and unmeasured variable set 1 SEX: Sex

DoB: Date of birth-determined age at intervention DM: Pre-intervention diagnosis of diabetes mellitus
CRF: Pre-intervention diagnosis of chronic renal failure HCTo:  Baseline/post-intervention haematocrit values
CRTo: Baseline creatinine values IP: Indication for the procedure (venous/arterial)
UK2: UnKnown and unmeasured variable set 2 INT: Intervention (PPT vs. CDT)

SURG: Post-intervention open surgical procedures HCTy:  Post-intervention haematocrit values

CRT;: Post-intervention creatinine values AKI: Acute kidney injury

UK3: UnKnown and unmeasured variable set 3

Figure 3. A DAG redrawn from a published observational study exploring the possible
causal relation between two alternative clinical procedures (thrombolysis vs.
thrombectomy) and acute kidney injury [61] in which the potential, alternative temporal
positions of six time-variant, and time-invariant covariates (DM; CRF; CRTo; HCTy;
SURG; and HCTy) have been highlighted using green boxes spanning the periods over
which these covariates (as and when measured) might have plausibly occurred or
crystallized. Note that, were SURG and/or the value of HCT; to have occurred or
crystallised after the value of CRT: (as and when each of these values were measured),
additional causal paths might then be required to reflect the plausible, probabilistic causal
effects of CRT1/AKI and UK3 on SURG and/or HCT; (as indicated by the two dashed
arrows in green font [6]).

As a result, knowing the analysts” rationale for formulating their DAGs and their intended
application(s) is critical for assessing not only DAG-theory consistency, but also the likely utility, value,
insight, and inference that might then be drawn from the modelling of real-world observational data
based thereon. For this reason, encouraging analysts to declare the rationale(s) used and the intended
application(s) of their DAG(s) when they subsequently report these warrants a further (fourth)
principle, which might be summarized as follows:

Principle 4: “analysts using DAGs that seek to represent theoretical, speculative and/or real-world
causal processes should report the application(s) for which these were designed, and the rationale(s)
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involved in their development and specification”.

Like each of the three earlier principles, greater transparency in terms of a DAG’s intended
application(s), and the rationale(s) involved in DAG development and specification, would not only:

(1) Help others (peers, reviewers and end-users) assess the consistency of a DAG’s design-related
decisions with its intended application(s), and with the rationale(s) on which the DAG was developed
and specified; but might also

(2) Prompt analysts to more carefully reflect on: the intended application(s) of their DAGs (to
ensure these are “fit for purpose”); and any (explicit and implicit) uncertainties, assumptions and
potential inconsistencies incurred by the rationale(s) used to develop and specify these.

The latter may prove an invaluable improvement in DAG-development and DAG-reporting
practice, given that theoretical knowledge, speculation, and temporal/probabilistic considerations all
rely on cognitive processes that involve and invoke conscious and unconscious heuristics—all of
which are prone to error and bias [62,63]. These will even affect those DAGs developed and specified
on the (arguably more a-theoretical and “objective”) basis of temporality alone—not least when there
is uncertainty as to the precise point in time at which a variable occurred, or its value (as and when
measured) crystallized relative to the specified exposure and outcome variable(s) (see Figure 3). Such
uncertainty is likely to be particularly prevalent when the variables involved are time-variant features
of any of the constituent entities or processes involved (as opposed to those variables that are discrete,
time-invariant characteristics, or phenomena that might more easily be conceptualized and
operationalized as “time-stamped” events—albeit events that can occur over variable periods of time,
and in this sense might appear somewhat time-variant).

3.4. Methodological utility

It bears repeating that the methodological utility of any analytical tools, including DAGs, will
substantively depend on the competence, thoughtfulness, diligence, and critical open-mindedness of
the analysts concerned. Together, these attributes and practices will determine an analyst’s ability to
develop and specify DAGs as principled representations of data generating mechanisms (and dataset
generating processes) that faithfully reflect both the intended applications, and the rationale(s)
involved (be this theoretical, speculative and/or temporal/probabilistic). Beyond the analyst-specific
limitations and constraints that these considerations place on the transparency, simplicity and
flexibility of DAGs (and the improvements in DAG specification and reporting practices
recommended in Principles 3 and 4 that might be required to secure and enhance each of their related
benefits; see Sections 3.1-3.3), the methodological utility of DAGs extends beyond:

(1) Their internal validity (i.e., whether, as specified, these accurately reflect the uncertainties and
assumptions involved, the rationale[s] on which they were derived, and the application[s] they were
intended to support); to

(2) Their external validity (i.e., whether, as applied, these DAGs support meaningful analyses,
findings, and insights).

Following George Box’s adage that “all models are wrong, but some are useful” [59], the potential
methodological limitations of DAGs principally stem from the challenges involved in developing,
specifying and analyzing DAGs as “imperfect” but nonetheless “useful” representations of often
unknown, uncertain, or substantively speculative data generating mechanism(s). Indeed, assessing
whether any such models are “useful” needs to involve evaluating whether these are actually capable
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of supporting improvements in causal inference (and causality-informed prediction). Put simply,
incorrectly specified DAGs that do not closely (or, at the very least, usefully) represent the underlying
data generating mechanism(s) involved are unlikely to provide a sound basis on which multivariable
statistical models can be designed to generate useful causal inference or causality-informed prediction.
However, unlike the considerations brought to bear on transparency, simplicity and flexibility (see
Sections 3.1-3.3), methodological concerns are primarily relevant only to those applications where
DAGs are intended to strengthen the statistical estimation of focal relationships through analyses of
real-world observational data (i.e., to generate causal inference or causality-informed prediction). Such
concerns tend to be far less critical—or relevant—to more theoretical, experimental (and potentially
spurious) applications of DAGs that do not necessarily depend on real-world data (such as those
necessary to explore the implications of M-bias and “butterfly-bias”, which assume these sources of
bias might actually exist [46]). As such, the methodological utility or usefulness of DAGs (in applied
settings) primarily depends on the careful application of plausible and pragmatic assumptions when
developing and specifying these tools to minimize the likelihood that any subsequent analytical
modelling based thereon might be wrong and maximize the extent to which the modeling’s imperfect
findings might nonetheless prove to be useful [59].

In most contexts, pragmatic theoretical understanding, plausible speculation and
temporal/probabilistic considerations may all make appropriate and useful contributions to the
development and specification of DAGs; and not least because—despite the apparent merits and
potential objectivity of a temporal/probabilistic rationale—operationalizing time-variant and time-
invariant variables as discrete phenomena/events requires substantial theoretical understanding and
speculation to decide precisely when and where (with respect to all other variables) each of these
variables most likely/plausibly occurred or crystallized. Indeed, drawing or relying upon a
temporal/probabilistic rationale when developing and specifying DAGs—whether exclusively or in
combination with less pragmatic theoretical and speculative considerations—can impose two
substantive consequences on the subsequent methodological utility of such DAGs:

(1) First, it requires that all DAGs intended to represent uncertain, real-world data generating
mechanisms are “saturated” (i.e., contain all of the permissible paths that directionality and acyclicity
allow) such that each variable is assumed to cause all subsequent variables [64], except in those rare
instances where there is unequivocal evidence that supports the omission of one or more paths.

(2) Second, it eliminates the possibility that any variables might operate independently of (all)
preceding variables, except for those variables at the very beginning of the causal pathways examined,
where any preceding cause(s) are unlikely to have been measured/measurable.

Although neither of these consequences (and the constraints they impose) might necessarily reflect
the data generating mechanisms and dataset generating processes at play, most of their impacts on
multivariable statistical models designed to support causal inference and causality-informed prediction
should prove to be trivial, though they do mean that few of these DAGs may be amenable to DAG-
dataset consistency evaluation (see Sections 2.5 and 3.5 [24,45]).

3.4.1. Causal inference modeling
The principal benefit of using DAGs to generate causal inference from observational data stems

from the way their theoretical representations of data generating mechanisms facilitate the
identification of covariates acting as potential confounders (see Section 2.4.4). Facilitating the
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identification of potential confounders ensures that conditioning on those that have been (or can be)
measured (and are therefore available) can be applied through sampling, stratification, or adjustment
to mitigate the contribution of confounding bias in the estimation of the total causal effect of any
specified exposure on any specified outcome. In this regard, the a priori assumption of a
temporal/probabilistic rationale—that all preceding variables should be viewed as possible (if not
likely) probabilistic causes of all subsequent variables (at least in the absence of unequivocal evidence
to the contrary) is unlikely to compromise the ability of such DAGs to identify potential confounders.
Indeed, it may actually, substantively improve the mitigation of (measured) confounder bias and the
acknowledgement of unadjusted/unmeasured confounding. This is because all variables interpreted as
having occurred/crystallized before the specified exposure will thereby be viewed as potential
confounders, these being likely probabilistic causes of both the exposure and any subsequent outcome.

Moreover, adjustments for covariates acting as “competing exposures” [5], which have a causal
effect on the specified outcome but no direct/indirect causal relationship with the specified exposure,
has, as already discussed, been popular among analysts who condition on these covariates
(predominantly by including them within the adjustment sets of multivariable statistical models) on
the basis that they should not affect the sign or magnitude of the estimated focal relationship, but can
help to improve its precision. Setting aside the inappropriate conflation of estimation and hypothesis
testing that such practices reveal [65], these also risk overlooking two important possibilities:

(1) First, that many competing exposures will be the probabilistic consequences of any measured
and unmeasured variables that occur before these variables (including any preceding mediators, the
specified exposure and, thereafter, all potential confounders).

(2) Second, that some variables considered competing exposures might actually occur/crystallize
after the outcome and might therefore prove to be probabilistic consequences of the outcome.

In either case, any improvement in precision from conditioning on variables mistakenly
considered (or misclassified as) bona fide competing exposures would come at an increased (and some
might argue, unnecessary) risk of collider bias. Instead, if one is content to assume that all preceding
variables might be or should be considered probabilistic causes of all subsequent variables, this should
militate against the risk of bias associated with conditioning on putative “competing exposures”
(whether through sampling, stratification or their inclusion within the covariate adjustment sets of
multivariable statistical models). This is because no bona fide competing exposures can exist within
DAGs drawn using a primarily or exclusively temporal/probabilistic rationale, except in the highly
unlikely and improbable scenario in which there is definitive and unequivocal evidence that variables
considered competing exposures had no (direct or indirect) causal relationship with any (measured or
unmeasured) preceding variables.

Nonetheless—and beyond the benefit of discouraging unnecessary and risky adjustment for
putative competing exposures—might not the presumption that all possible (directed and acyclic)
causal paths between preceding and subsequent variables exist risk introducing additional/alternative
(and ostensibly unnecessary) sources of bias? For example, adjustment for covariates known as
“mediator-outcome confounders” (MOCs; see Figure 1 in [5])—covariates that have no direct causal
relationship with the specified exposure, but have an indirect causal relationship with the outcome
through a mediator (a variable that is, itself, a consequence of the exposure)—would introduce the risk
of biases associated with mediator adjustment (i.e., the reversal paradox and collider bias [66—68]).
Whether such risks are common or have substantive impact on the estimated path coefficient between
exposure and outcome will depend not only on the sign and magnitude of each of the constituent causal
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paths involved, but also on whether the apparent MOC actually occurred/crystallized: prior to the
exposure—in which case it would represent a misclassified confounder; or after the exposure—in
which case it would represent a misclassified mediator.

@
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Figure 4. Four simplifications of the 240+ alternative versions of the DAG presented in
Figure 3 (and based on the same empirical study [6,63]) that are required to accommodate
residual uncertainty in the temporal positioning of two key covariates (SURG; and HCT})
in which each of the measured (in grey font), unmeasured (in red font), and
unacknowledged (in black font) covariates have been included in one of three discrete sets
of variables, enclosed within separate boxes and located either before the specified
exposure variable (INT), after the specified outcome variable (AKI/CRT}), or in-between
the two. This approach to simplifying DAGs reduces the very large number of alternative
DAGs required to accommodate uncertainty in the temporal positioning of covariates
therein, while retaining their utility for identifying those covariates that present a potential
risk of analytical and inferential bias when estimating the sign, magnitude, precision or
function of the specified focal relationship (in this instance between INT and CRT/AKI).
For key, see Figure 3.
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Under these somewhat hypothetical scenarios, the issue that might prove most critical for balancing
the risks and benefits of adopting a temporal/probabilistic rationale when developing and specifying a
DAG and, thereby, assuming that all preceding variables should be assumed to act as probabilistic causes
of all subsequent variables, will be to accurately identify when each of these variables occur or crystallize
relative to all other variables in the DAG. In most (but not all) applications of DAGs within causal
inference modeling, this issue relies less on temporality/probabilistic considerations than on theoretical
knowledge and speculation. Developing procedures (and associated principles) for exploring how the
misspecification of “when” and “where” each variable sits within a DAG’s temporally dependent
pathways might thereby affect the risk of bias (whether from unadjusted confounding or conditioning on
a collider) remains a task worthy of much further exploration (beyond the advances offered by the R
program “daggity” [24,45]); any such risks should be amenable to sensitivity analyses simply by
comparing the impact of DAG-consistent analyses when estimating the focal relationship(s) of interest
in plausible, alternative DAGs (see Figure 4).

3.4.2. Prediction modelling

In prediction modeling of observational data, the principal utility of DAGs lies in the
identification of covariates likely to contribute substantial statistical information of value to the
accurate prediction (i.e., estimation or classification) of a specified “target variable” as a result of their
direct and/or indirect causal relationship(s) with this variable. While covariates with strong
direct/indirect causal links to a target variable often warrant serious consideration as ‘“candidate
predictors”, they can end up being excluded during the development of predictive algorithms wherever
their net contribution comes at the cost of parsimony, accuracy, or precision [69]. However, wherever
optimizing the accuracy of predictive algorithms over time and place is considered more important
than optimizing their accuracy at any single point in time and within any specific context, DAGs can
offer substantial support to the modeling of prediction in terms of prioritizing/ensuring the inclusion
of information from candidate predictors whose contribution to the model stems from the direct and
indirect causal role(s) they play within the underlying data generating mechanism(s) [18-21]. Indeed,
since prediction modeling ordinarily involves examining multiple combinations of alternative
sets/combinations of predictors, even were one to mistakenly preference covariates for inclusion in
these models on the (erroneous) basis of their (indirect/direct, probabilistic) causal effects on the target
variable, such errors are unlikely to dramatically affect the performance of the optimal model(s)
available or selected. It might nonetheless complicate or extend the process required to identify and
preference “causally-relevant candidate predictors”; this issue warrants further investigation, not least
within prediction techniques reliant on supervised machine learning, where there is scope to introduce
causal insight into model development, specification, and supervision on the basis of any associated
theoretical knowledge, speculation, and/or temporal/probabilistic considerations.

3.5. Consistency evaluation
As mentioned (see Section 3.3), a further consequence of the assumption that preceding variables
be considered probabilistic causes of all subsequent variables is that the saturated DAGs this

assumption generates are not amenable to DAG-dataset consistency assessment using the R package
“dagitty” [24,45]. For these reasons, the rationale(s) used when generating DAGs (be this on the basis
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of theoretical knowledge, speculation, or temporal/probabilistic considerations) determine not only
DAG-theory consistency evaluation, but also whether DAG-analysis and DAG-dataset consistency
assessment is possible. Greater clarity and precision regarding the intended application for which (and
the rationale[s] on which) analysts have generated their DAG(s)—as proposed by Principle 4—will
ensure this can inform DAG-theory and DAG-analysis consistency assessment. However, DAG-
dataset assessment will not be possible for any DAGs in which temporal/probabilistic considerations
constitute the only (or pre-eminent) rationale involved in their development and specification. This is
because—as discussed—temporal/probabilistic considerations ordinarily impose saturation on all such
DAGs. Indeed, DAG-dataset consistency assessment of these DAGs will be possible only when
analysts are:

(1) Prepared to speculate (or at least consider the possibility) that one or more of the permissible
causal paths—i.e., those that directionality and acyclicity allow—are missing; or

(2) Confident that definitive and unequivocal (empirical, experiential, or theoretical) knowledge
exists to support such a possibility.

Furthermore, whether the evaluation of DAG-dataset consistency might hold the key to addressing
any uncertainty regarding precisely when each of the included covariates occurred/crystallized—
relative to one another, and to the specified exposure and outcome — is another question worthy of
further examination.

3.6. Epistemological credibility

Finally, while it is true that using DAGs has helped analysts to identify potential sources of bias
that had proved challenging to conceptualize and operationalize—particularly those relevant to
colliders [47] (as mentioned earlier under Section 2.4)—it is also possible that DAGs might lead to
levels of epistemic abstraction that, though theoretically and methodologically insightful, bear little
relation to the forms that “real-world” observational datasets most plausible or commonly taken. In
this regard, it seems likely that many of the possible roles that variables might play within DAGs, such
as competing exposures and mediator-outcome confounders (MOCs [5]), might turn out to be
implausible, illusory, or spurious considerations that only very rarely exist (if at all) in real-world
contexts and datasets (except, perhaps, when imposed by the dataset generating procedures involved).
Certainly, from a temporal/probabilistic perspective, neither competing exposures nor MOCs could
exist within the saturated DAGs developed and specified using a temporal/probabilistic rationale.
Provided this rationale is not itself an abstraction of reality, which would be ironic given it makes
assumptions that are generally intended/considered to be plausible, objective, and likely, then it seems
sensible to conclude that such roles might ordinarily constitute unlikely, implausible, spurious,
unnecessary, and potentially unhelpful distraction to any DAGs that intend to reflect the underlying,
real-world data generating mechanism(s) involved.

Further research is nonetheless warranted to:

(1) Map all the potential additional roles that covariates might play within an otherwise simplistic
and unsaturated DAG—i.e., one that simply includes a specified exposure and a specified outcome,
and one or more confounders, mediators, and consequences of the outcome, and evaluating both.

(2) The potential risk of bias that each of these additional roles might pose when estimating the
focal relationship between a specified exposure and specified outcome.

(3) The likely occurrence of these additional roles in real-world contexts—based on
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understanding informed by theoretical knowledge, speculation and temporality/probabilistic
considerations.

4. Conclusions

DAGs, like all analytical tools, benefit from humility, doubt, circumspection, and careful
deliberation to ensure their thoughtful application helps harness the opportunities they can provide for
“discovery”, alongside the self-evident contribution their careful implementation can make to
“translation” (through greater consistency, competency, and transparency). Although many analysts
may be drawn to DAGs as accessible tools for conceptualizing and operationalizing “data generating
mechanisms” and “dataset generating processes”, the two ostensibly simple principles involved (of
directionality and acyclicity) require thoughtful and careful application. This is the case when DAGs
are used for very different purposes and are specified on the basis of very different rationales; i.e., on
the basis of theoretical knowledge, speculation, and/or temporal/probabilistic considerations.

For this reason, and to ensure the use of DAGs optimizes the strengths they offer, in terms of
transparency, simplicity, flexibility, methodological utility, and epistemological credibility, we
recommend that all analysts should provide greater detail of the rationale(s) used when developing and
specifying their DAGs and the application(s) for which their DAGs have been designed (Principle 4).
Where these applications involve the need to represent real-world (rather than predominantly, or
entirely, speculative) causal processes, we recommend that, regardless of the role that theoretical
knowledge, plausible speculation, and/or probabilistic/temporal considerations might have played
therein, the DAGs concerned should include all possible, conceivable (and hitherto inconceivable)
variables necessary to mitigate the risk of bias (and acknowledge the presence of residual and
irreducible bias) in the modeling and estimation of causal relationships (or when optimizing the
portability of causality-informed prediction models; Principle 3). Including all such variables in DAGs
developed to inform robust causal analysis of real-world datasets will not only help analysts to mitigate
the risk of bias in the estimation of focal relationships; but will also help them acknowledge the
inherent and persistent uncertainties that bedevil (mis)understanding of most real-world data
generating mechanismy(s). It should also encourage the analysts concerned to more fully acknowledge
any residual biases that these uncertainties might otherwise impose. These improvements in DAG
specification aside, further work is warranted to comprehensively explicate the analytical challenges
and algorithmic complexity involved when DAGs are used to inform multivariable statistical modeling,
and the opportunities therein for alternative approaches (including those involving a priori information
generated using Bayesian techniques [70,71]).
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