N
P University of

Central Lancashire
UCLan

Central Lancashire Online Knowledge (CLoK)

Title Motor Speed Control of Four-wheel Differential Drive Robots Using a New
Hybrid Moth-flame Particle Swarm Optimization (MFPSQ) Algorithm

Type Article

URL https://clok.uclan.ac.uk/id/eprint/54325/

DOI https://doi.org/10.1007/s10846-025-02228-1

Date 2025

Citation | Reda, Mohamed, Onsy, Ahmed, Haikal, Amira Y. and Ghanbari, Ali (2025)
Motor Speed Control of Four-wheel Differential Drive Robots Using a New
Hybrid Moth-flame Particle Swarm Optimization (MFPSO) Algorithm. Journal
of Intelligent & Robotic Systems, 111. ISSN 0921-0296

Creators | Reda, Mohamed, Onsy, Ahmed, Haikal, Amira Y. and Ghanbari, Ali

It is advisable to refer to the publisher’s version if you intend to cite from the work.
https://doi.org/10.1007/s10846-025-02228-1

For information about Research at UCLan please go to http://www.uclan.ac.uk/research/

All outputs in CLoK are protected by Intellectual Property Rights law, including Copyright law.
Copyright, IPR and Moral Rights for the works on this site are retained by the individual authors
and/or other copyright owners. Terms and conditions for use of this material are defined in the
http://clok.uclan.ac.uk/policies/

http://www.uclan.ac.uk/research/
http://clok.uclan.ac.uk/policies/

Journal of Intelligent & Robotic Systems
https://doi.org/10.1007/510846-025-02228-1

(2025) 111:31

REGULAR PAPER l')

Check for
updates

Motor Speed Control of Four-wheel Differential Drive Robots
Using a New Hybrid Moth-flame Particle Swarm Optimization (MFPSO)
Algorithm

Mohamed Reda'2® - Ahmed Onsy' . Amira Y. Haikal? - Ali Ghanbari'

Received: 14 May 2024 / Accepted: 23 January 2025
© The Author(s) 2025

Abstract

Speed control of DC motors is essential for automated vehicles and four-wheel differential drive (4WD) cars, which are
distinct by their high level of maneuverability. The PID controller is one of the most popular techniques for controlling
speed, but tuning its parameters is challenging. This paper presents a novel hybrid algorithm, the Moth-Flame Particle Swarm
Optimization (MFPSO), which combines moth-flame optimization (MFO) and particle swarm optimization (PSO) to address
the slow convergence of MFO and the premature convergence of PSO. The MFPSO is deployed for real-time interactive tuning
of the PID controller to control the speed of DC motors in a 4WD car. Additionally, a novel practical procedure is proposed
to build a robust four-wheel differential drive and maintain the synchronization of the four DC motors. Simulation results
and statistical analysis demonstrate the superior performance of the MFPSO compared with the PSO, MFO, and other hybrid
variants (HMFPSO and HyMFPSO), with MFPSO ranking first in the Friedman test on CEC2020/2021 and engineering
optimization benchmark problems. Practical results and the transient response analysis of the speed control revealed that
MFPSO significantly outperformed the traditional Ziegler-Nichols (ZN) method, MFO, PSO, HMFPSO, and HyMFPSO
algorithms. Specifically, the MFPSO algorithm reduced settling time by 34.83%, 21.20%, 20.75%, 22.97%, and 31.59%, and
overshoot by 86.11%, 64.99%, 71.02%, 74.37%, and 60.58% compared to the ZN, MFO, PSO, HMFPSO, and HyMFPSO
algorithms, respectively. The source code of the proposed algorithm is available at https://github.com/MohamedRedaMu/
MFPSO-Algorithm.

Keywords Four-wheel differential drive (4WD) - DC motor Speed control - Moth-flame Optimization (MFO) - Particle
Swarm Optimization (PSO) - CEC2020 benchmark; transient response

1 Introduction
1.1 Four-wheel Differential Drive and DC Motors

Unmanned vehicles require key control tasks for autonomous
driving, including risk assessment [1], lane-keeping [2],
steering control [3], trajectory control [4], and path planning
[5]. Among these, motor speed control is critical, partic-
ularly in 4WD systems widely used in mobile robotics

B<I Mohamed Reda
mohamed.reda.mu@gmail.com; mramohamed @uclan.ac.uk;
mohamed.reda@mans.edu.eg

School of Engineering, University of Central Lancashire,
Preston PR1 2HE, UK

Computers and Control Systems Engineering Department,
Faculty of Engineering, Mansoura University, Mansoura
35516, Egypt

Published online: 19 February 2025

for maneuverability [6]. DC motors, central to 4WD sys-
tems, offer high torque at low speeds and precise control
[7]. Each wheel’s motor in a 4WD robot is independently
controlled, enabling complex maneuvers [8]. Synchronizing
these motors is vital, requiring consistent PWM frequencies
via motor drivers and accurate alignment of encoders for
speed measurement [9].

Accurate vehicle positioning and steering rely heavily on
precise motor speed control, achieved by minimizing errors
between desired and actual speeds using PID controllers [10].
PID controllers are widely applied in 95% of control sys-
tems due to their effectiveness, but they are challenging to
tune [11]. The Ziegler-Nichols method is a traditional yet
straightforward approach for PID tuning [12].

Meta-heuristic algorithms like Particle Swarm Optimiza-
tion (PSO) and Moth-Flame Optimization (MFO) have
shown better performance in tuning PID controllers for speed
control [13]. However, PSO can suffer from limited diversity

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10846-025-02228-1&domain=pdf
http://orcid.org/0000-0002-6865-1315
https://github.com/MohamedRedaMu/MFPSO-Algorithm
https://github.com/MohamedRedaMu/MFPSO-Algorithm

31 Page2of37

Journal of Intelligent & Robotic Systems (2025) 111:31

and premature convergence, while MFO excels in exploration
but converges slower [14, 15]. A hybrid approach combin-
ing the strengths of PSO and MFO is proposed to enhance
performance and overcome their limitations.

1.2 Contributions

The contributions of this research are as follows:

— Proposes a new hybrid algorithm, Moth-Flame Particle
Swarm Optimization (MFPSO), addressing limitations
of standard PSO and MFO algorithms.

— Introduces a practical procedure with four experiments to
synchronize the motors of a four-wheel differential drive
vehicle.

— Designs and implements a real-time PID-MFPSO con-
troller for precise DC motor speed control, tuned by the
MFPSO algorithm.

— Validates the MFPSO algorithm using CEC2020/2021
benchmarks and 13 engineering problems, outperform-
ing state-of-the-art algorithms.

— Experimentally validates the PID-MFPSO controller’s
transient response on a DC motor, achieving signifi-
cant improvements. Specifically, the MFPSO algorithm
reduced overshoot by 86.11%, 64.99%, 71.02%, 74.37%,
and 60.58%, and settling time by 34.83%, 21.20%,
20.75%,22.97%, and 31.59% compared to the ZN, MFO,
PSO, HMFPSO, and HyMFPSO algorithms, respec-
tively.

1.3 Paper Organization

The rest of the research is organized as follows: Section 2
reviews state-of-the-art methods and hardware, including
the Elegoo smart robotic car, PID tuning methods, and the
standard MFO and PSO algorithms. Section 3 details the
proposed MFPSO algorithm. Section 4 analyzes the MFPSO
parameters and provides recommendations. Section 5 dis-
cusses benchmark simulation results, while Section 6 vali-
dates the algorithm on engineering optimization problems.
Section 7 describes the design and assembly of the 4WD
prototype. Section 8 presents troubleshooting experiments
for motor synchronization. Section 9 demonstrates MFPSO-
based PID tuning for DC motor speed control. Section 10
compares the transient response of MFPSO with other algo-
rithms. Finally, Section 11 summarizes the findings and
outlines future work.

2 Review of Related Work and Algorithmic
Foundations

The literature review is divided into two parts. The first
explores related work, including PID tuning algorithms for

@ Springer

motor speed control and the characteristics of the Elegoo V4
smart robotic car as a 4WD. The second discusses standard
PSO and MFO algorithms, along with hybrid variants.

2.1 Literature Review

Various algorithms have been developed for PID tuning in
motor speed control. Ziegler-Nichols (ZN) remains a widely
used method due to its simplicity [12]. Particle swarm opti-
mization (PSO) and moth-flame optimization (MFO) are
frequently applied to improve performance. Qi et al. and
Xie et al. used PSO to tune PID controllers for CAN-based
and brushless DC motors, respectively [16, 17]. Garba et al.
found PSO achieved a 5.81% better settling time than ABC
in DC motor speed control [18]. Yazgan et al. showed PSO
outperformed GA in motor speed control [19], while Ramya
et al. demonstrated PSO’s superiority over ZN and GA for
brushless DC motor speed [20].

MFO-based PID controllers have also shown effective-
ness. Acharyulu et al. applied MFO in an AGC system [21],
and Bennaoui et al. reported MFO’s superiority over PSO in
DC-DC boost converter control [22]. Mustafa et al. and Sul-
tan et al. demonstrated PSO’s efficiency in improving settling
and rise times for DC motors [23, 24]. Similarly, Valluru et
al. showed that MFO outperformed GA and SA for steering
autonomous underwater vehicles [25].

Recent work includes PSO-PID and MFO-PID applica-
tions in diverse systems. Safarzadeh et al. used PSO for
reactor power regulation [26], while Vishnoi et al. and
Yusubov et al. applied MFO-PID for temperature control and
photovoltaic systems, respectively [27, 28]. Naik et al. used
MFO-PID for electronic throttle control in hybrid electric
vehicles, outperforming ZN [29]. Sharma et al. and Shary et
al. applied PSO-PID to enhance DC motors’ speed control
[30, 31]. These studies highlight PSO and MFO’s effective-
ness in various tuning and control scenarios.

The Elegoo V4 car is an educational platform widely used
in autonomous vehicle research. It features four geared DC
motors with a TB6612 dual motor driver, but its design has
limitations [32]. Febbo et al. validated self-driving systems
using the Elegoo V2 car [33], while Latoui et al. utilized the
V3 model for Q-learning in remote path planning [34]. Singh
et al. developed a digital twin toolbox for the car’s Li-ion
batteries [35], and Farrugia used the V4 car for path plan-
ning and obstacle avoidance [36]. Other applications include
active haptic guidance [37], object following [38], and SLAM
algorithm validation [39].

Despite its popularity, the Elegoo V4 has significant
drawbacks as a 4WD vehicle. It lacks motor encoders, hin-
dering speed monitoring and localization. The car’s four
motors are controlled by two TB6612 drivers, reducing it to
two-wheel drive and causing kinematic conflicts. Addition-
ally, the Arduino UNO’s limited IO pins restrict hardware

Journal of Intelligent & Robotic Systems (2025) 111:31

Page3of37 31

expansion. Therefore, multiple hardware modifications are
required to convert the car into a standard four-wheel differ-
ential drive car.

2.2 Algorithmic Foundations of the Standard PSO
and MFO Algorithms

PSO, introduced by Kennedy and Eberhart in 1995 [40],
mimics the collective movement of birds searching for food.
Candidate solutions are represented as particles, updating
their velocities based on personal best pbest and global best
gbest positions. The velocity v/ and position x; of the i-th
particle in the t-th iteration are updated by Egs. 1 and 2, where
w is inertia weight, (c1, ¢z) are acceleration coefficients, and
(randy, randy) are random numbers in [0,1].

vf—H = w v + ¢y - rand] - (pbest! — x})
+c3 - rands - (gbest' — x|) (D
it = xf ! ()

MFO [41] is inspired by moths’ navigation using moon-
light, disrupted by artificial light sources. The population (M)
consists of n moths (agents), while flames (F') are the sorted
M, representing the best positions. The number of flames
(Fpo) decreases over iterations to balance exploration and
exploitation using Eq. 3.

The position of the i-th moth in the t-th iteration Ml.’ is
updated using a logarithmic spiral equation Eq. 4, in which
the i-th moth flies around the corresponding i-th flames F/,
where b is a constant for defining the shape of the logarith-
mic spiral and r is a random number in [-1,1]. This approach
maintains diversity by ensuring flames are not fixed to spe-
cific moths across iterations.

—1
Fop = round(n — t % ————) 3)
maxlIter

M |F! — M!| % " x cos2mr)+ F} ift <Fyo
i |F! — M!| % e"*" % cos 2mr)+ F}’m otherwise

“4)

Bingi et al. developed the hybrid HyMFPSO algorithm,
combining PSO and MFO, which outperforms both on eight
benchmark functions (2-10 dimensions) [42]. In HyMFPSO,
PSO velocity (vf“) is added to the MFO position update,
as in Eq. 5. Shaikh et al. proposed HMFPSO, an improved
version of Hy-PSO-MFO by Yang et al. [43], validated
on benchmark functions and power transmission applica-
tions [14]. HMFPSO introduces a PSO-based local attractor
(Q!) obtained using Eq. 6 for moth position updates. The
pBest! and gbest' represent the local and global best flames,

respectively, and ¢ is a random number in [0, 1] [43].

it | L= M{ ke s cosQmr) + Fl+o/™h ifr< By,
i |Fit—Mit|*eb*" * cos(2mr)+ Ff,no +vf+] otherwise

(5)
Q! = ¢ x pBest] + (1 — ¢) x gbest (6)
Ml.’Jrl = |F! — M!| x " % cos2nt) + Q! @)

3 The Proposed Moth Flame Particle Swarm
Optimization (MFPSO) Algorithm

The standard PSO algorithm has a premature convergence
problem, where they may get trapped in a local minimum
[14]. The particle velocities are updated based on the local
and global bests. The position of the particles is updated
based only on the particle velocities, which increases the
possibility of premature convergence.

3.1 The Concept of the Proposed MFPSO Algorithm
and its Equations

The proposed Moth Flame Particle Swarm Optimization
(MFPSO) algorithm aims to improve the performance of the
original PSO by integrating elements from both the Particle
Swarm Optimization (PSO) and Moth Flame Optimization
(MFO) algorithms. The MFO algorithm, inspired by the nat-
ural navigation behavior of moths, excels in exploration due
to its flame update mechanism [41]. By combining the strong
exploration capabilities of MFO with the intense exploitation
strengths of PSO, the MFPSO algorithm seeks to avoid pre-
mature convergence in the standard PSO and achieve a better
balance between exploration and exploitation.

In the MFPSO algorithm, the concept of particle velocities
from PSO is incorporated into the moths in the MFO algo-
rithm. The population in MFPSO consists of a set of moths,
each defined by a velocity vl.(t; and a position xlgtc)l, where i
represents the i-th moth, d denotes the d-th dimeﬁsion, and ¢
is the iteration number. The position of each moth represents
a candidate solution, corresponding to the PID parameters
in the speed control application. The flames population F
consists of the sorted moths based on their fitness values,
with fl(2 indicating the position of i-th flame in the d-th
dimension at iteration .

The moth’s velocity vl.(f[)l is updated based on the differen-
tial step among the current moth’s position x,.(t;, the global
best moth’s position in the whole population’ gbesty, and
the personal best moth’s position found by the i-th moth
pbest; 4.Equation 8 shows the moth’s velocity update, where

@ Springer

31 Page4of37

Journal of Intelligent & Robotic Systems (2025) 111:31

w is the inertia weight, 71 and r, are random numbers in the
range [0,1], and ¢; and ¢ are the acceleration coefficients
that influence the impact of personal and global best posi-
tions. This mechanism mirrors the velocity update in the PSO
algorithm.

vi(f;l) =w- vi(ft)i +cy-r1 - (pbesti g — x,-(f;)

+ey 1y - (ghesty — x{) ®)

The primary idea of the MFPSO algorithm is to com-
bine the explorative strengths of MFO with the exploitative
abilities of PSO during the moth’s position update, thereby
enhancing performance and preventing premature conver-
gence. The moth population is divided into two groups. In the
first group, the position xffjl) is updated based on the newly

calculated velocity vi(tjl). In the second group, the position is

updated based on a logarithmic spiral movement around the
corresponding target flame position Pl.(l;. The hybrid posi-
tion update equation is given by Eq. 9, where b is a constant
defining the shape of the spiral (setto 1), and /; 4 is a random
number in the range [-1,1] for the d-th dimension of the i-th
moth.

(1) (r+1)

(t+1) Xigtvig s if rand < 0.5
xA = y °
id Pl.(”;-i- |xl.(f()1— fl(’;| - eblia . cos(2 -li.q4), otherwise
)

The number of target flames, F;,,, decreases with each
iteration, starting from the population size, as shown in Eq. 3.
The d-th dimension of the i-th target flame position Pi(2 is

determined by Eq. 10, where ¢ is the iteration number, fi(g
represents the d-th dimension of the i-th flame’s positioh,
and f }2’ 4 represents the d-th dimension of the moth located
at the Fn’(, index in the population.

)
p® _ | fia:
i,d — (1)
Fn();d’

ift < F,
nh= e (10)
otherwise

3.2 Step-by-step Description of the MFPSO
Algorithm

Algorithm 1 illustrates the steps of the MFPSO algorithm,
and Fig. 1 shows the flowchart of the MFPSO sequence.
First, the MFPSO parameters, including the inertial weight
and the acceleration coefficients, are initialized. The second
step of the MFPSO algorithm initializes a random popula-
tion of moths M that contains all candidate solutions, where
nPop is the population size. Each moth has two attributes:
the position x;, which represents the solution itself (e.g., the
PID parameters), and the velocity v;, which is an inherited
feature from the PSO algorithm used for the position.

@ Springer

Algorithm 1 The Proposed MFPSO Algorithm.

1: Initialize the MFPSO parameters.

2: Initialize a random population of moths M with positions and veloc-
ities (size n Pop).

3: Evaluate the fitness of each moth using the fitness function

4: while Termination Condition do > Main loop of the algorithm

5: Sort the population M to obtain the flames F.

6: Update velocities of all moths using equation Eq. 8.

7: for eachmothi = 1tonPop do

8: Get the next moth’s position x; from the population M.

9: Generate random number r from O to 1.

10: if » < 0.5 then > Group 1: PSO-based update
(Exploitation)

11: Get the moth’s velocity v; for the moth x;.

12: Update the moth’s position x; based on its velocity v; (1st
branch of Eq. 9).

13: else > Group 2: MFO-based update (Exploration)

14: Update the flame numbers F,, using Eq. 3.

15: Obtain the target flame P; using Eq. 10.

16: Update moth’s position x; based on target flame P; (2nd
branch of Eq. 9).

17: end if

18: Evaluate the fitness of the new moth’s position.

19: end for

20: Update the global best solution gbest in the entire population
based on their fitness.

21: end while

22: Return the global best gbest as the best-obtained solution.

In the third step of the initialization process, the fitness
of each moth in the population is evaluated using the fitness
function that indicates the quality of the moth. The fitness
function depends on the problem and will be defined in the
following sections for the PID tuning problem. Then, the loop
of the MFPSO algorithm starts.

The first step inside the loop is inherited from the MFO
algorithm, in which the moth population M is sorted based
on the fitness values to generate a population of flames F.
For each flame position x; in the population M, there is a
corresponding flame f; from the population F.

The second step in the loop is inherited from the PSO
algorithm, in which the velocity for each moth v; is updated
using Eq. 8. This update equation represents the exploitation
power and the local search in the MFPSO algorithm, where
the new moth’s velocity vf s generated by moving the
current moth’s position x! towards the local best moth pbes;
and the global best moth of the whole population gbest.
The new moth’s velocity vf“ represents a differential step
that makes the algorithm converge to the best solution and
emphasizes exploitation.

The third step inside the loop divides the moths’ and
flames’ populations into two equal groups. The division pro-
cess is implemented by looping each moth and flame in the
population and generating a random number r for each moth-
flame pair. If r is less than or equal to 0.5, then the moth lies
in group 1. Otherwise, it lies in group 2.

Journal of Intelligent & Robotic Systems (2025) 111:31

Page50f37 31

| Initialize MFPSO parameters |
[

[Initialize a random population of moths M|

| Evaluate the fitness of the population M |
T1

Yes
Print the Result

[]

e >

4

Termination
condition?

‘ Sort the population M to get the flames
lation F

Update Moths’ velocities using PSO velocity
update Equation
T

b
‘ Get the next moth’s position x; from the l
o ——

| Generate a random number r between 0 and 1 I
T [

Group 1 PSO-based
(Exploitation)

Group 2 MFO-based
(Exploration)

| Update the flame number F,, ‘

{} ‘ Obtain the moth's velcoity v;
| Obtain the target flame P; ‘ 4T
S 9 Update moth’s position via v; and

the PSO update rule.

Update moth’s position via P; and
the logarithmic spiral movement.

| Evaluate the fitness new moth’s position

Any moth es
leftin M?

No

’ Update global best ‘

Fig. 1 Flowchart of the proposed MFPSO algorithm

Group 1 updates the moth’s position based on the PSO
methodology in which the new moth position moves towards
the best solution, emphasizing the exploitation in the MFPSO
algorithm. First, the moth’s velocity v; is obtained. Then, the
new moth’s position xi’ +lis generated based on the moth’s
velocity v; using the first branch in Eq. 9.

Group 2 updates the moth’s position based on the loga-
rithmic spiral movement of the MFO algorithm, in which the
new moth moves away from its current position in a spiral
movement, emphasizing the exploration in the MFPSO algo-
rithm. First, the flame number F,,, is updated using Eq. 3, and
the target flame P; is obtained from Eq. 10. Then, the new
moth’s position xf“ is updated based on the target flame
using the second branch in Eq. 9.

The new moth’s position is evaluated using the fitness
function for both groups. The final step in the main loop is
to update the global best moth gbest, representing the moth
with the best fitness value in the entire population. The ter-
mination condition is checked, and the algorithm terminates
once met. Otherwise, the algorithm repeats the steps of the
main loop. When the algorithm terminates, the algorithm

returns the global best moth gbest as the final best-obtained
result of the optimization process.

The proposed grouping technique in the MFPSO algo-
rithm ensures the diversity of the entire population, main-
taining the balance between exploration and exploitation.
By employing the original update equations from both PSO
and MFO, the algorithm preserves these methods’ strengths,
enhancing the solutions’ quality. In Group 1, the solu-
tions are updated using the PSO-based approach, leveraging
the exploitation strength of PSO to fine-tune solutions and
improve convergence speed. Meanwhile, in Group 2, the
positions are updated using the MFO-based approach, cap-
italizing on the exploration strength of MFO to prevent
premature convergence and maintain diversity within the
population. This balanced approach allows the MFPSO algo-
rithm to combine the advantages of both methods, resulting
in a more robust and effective optimization process that over-
comes the limitations of traditional algorithms.

4 Sensitivity Analysis of the MFPSO
Algorithm

This section discusses an in-depth sensitivity analysis of the
parameters of the MFPSO algorithm. This analysis aims to
understand how variations in the MFPSO parameters affect
the algorithm’s performance.

4.1 The MFPSO Parameters and Experiment Setup

The MFPSO algorithm incorporates both MFO-based and
PSO-based parameters. The spiral constant (b) is an MFO
parameter that defines the spiral shape and is fixed at 1. The
convergence constant (a) is an adaptive MFO parameter that
linearly increases from —2 to —1 over iterations [41]. The
PSO parameters-inertia weight (w) and acceleration coef-
ficients (ci, cp)-critically influence MFPSO performance.
The cognitive component (c1) reflects personal experience,
driving moths toward their personal best, while the social
component (¢) encourages movement toward the global best
[44].

The inertia weight (w) balances exploration and exploita-
tion, making it the most crucial parameter for tuning, while
c1 and ¢ have lesser significance [45]. Harrison et al. rec-
ommended ranges for PSO parameters: w € [0.4,0.8],
c1 € [0.5,1.0], and ¢y € [2.5,3.0] [46]. Isiet and Gadala
further suggested that c; = 2.5, ¢ = 1.0, and the sum of ¢
and c; should not exceed 4, with w typically ranging from
0.1 to 1 [47].

This study explores the sensitivity of w, c¢j, and ¢; on
MFPSO performance. The parameter values tested include
w = 03,04,0.5,0.6,0.7,0.8, c; = 0.5,1,1.5,2,25,3,
and ¢ =0.5, 1, 1.5, 2, 2.5, 6, resulting in 216 configurations,

@ Springer

31 Page6of 37

Journal of Intelligent & Robotic Systems (2025) 111:31

which are evaluated on the ten benchmark functions from
CEC2020/2021 [48]. Each configuration runs five indepen-
dent times per function, with termination conditions of 50000
function evaluations for 10D and 100000 for 20D cases. The
Friedman test analyzes mean error results, and mean ranks
are used for ranking. Results are visualized using heatmaps
and bar charts, where lighter heatmap colors and shorter bars
indicate better performance.

4.2 Recommendations and Results Discussion

In the 10D case, Fig. 2 visualizes the mean ranks for c;
and ¢y across fixed w values. Additional projections and
visualizations are provided in the Supplementary Materials
(Section S1) for a more comprehensive analysis. At lower
w (0.3-0.4), optimal performance is observed for ¢; ~ 1.5
and ¢y € [0.5, 1.0], achieving mean ranks between 31.5 and
51.8. For moderate w (0.5-0.6), the optimal c; decreases to
[0.5, 1.0], while ¢, remains effective around 0.5. Higher w
(0.7-0.8) results in degraded performance, though ¢; = 0.5
and c; = 0.5 still perform relatively better.

MFPSO: ¢1 vs ¢2 (w = 0.30) (10D - mean)

MFPSO: c1 vs ¢2 (w = 0.30) (10D - mean)

05(844 | 858 | 843 | 916 | 729

1| 542 | 739 | 512 | 531 | 708

15| 315 | 502 | 674 | 616 | 845 120

Mean Rank

2| 437 | 55 | 642 | 757 0

25(623 | 681 | 591 | o1

3| 89

05 1 15 2 25 3

(a) c1 vs. c2 at (w = 0.3).

€1 vs c2 (w=0.50) (10D - mean)

MFPSO: c1 vs c2 (w = 0.50) (10D - mean)

05| 739 | 548 | 529 | 599 | 625 | 743

1| 35 |61 | so1 | 745 | 887

15| 844 513 | 648 | 751 120 fg.
2| 85 | 527 | 638 | 804 8 0o $
.
25 804
.
3 40
05 1 15 2 25 3 05 1 15 2 25 3
2 c2
(c) c1 vs. c2 at (w = 0.5).

MFPSO: c1 vs c2 (w = 0.70) (10D - mean) MFPSO: c1 vs c2 (w=0.70) (10D - mean)

Mean Rank

147.3

1525 160.2

147.9 1537

(e) c1 vs. c2 at (w = 0.7).

The best configuration for 10D is ¢; = 1.5, ¢» = 0.5, and
w = 0.3, achieving a minimum mean rank of 31.5. Across all
values of w in the 10D case, increasing ¢ initially improves
MFPSO performance, peaking around ¢; = 1.5, before
declining. Thus, a moderate ¢ prevents over-reliance on per-
sonal best and premature convergence, while ¢; € [0.5, 1.0]
ensures sufficient attraction to the global best solution.

Figure 3 shows similar trends in the 20D case. Low w (0.3-
0.4) yields better performance, with c; = 1.5 and ¢ = 0.5
achieving the best mean rank of 23.9. As ¢; increases, perfor-
mance generally degrades, especially at medium w (0.5-0.6),
where lower c¢; and ¢, values (= 0.5-1.0) are more effective.
High w (> 0.7) significantly reduces performance regardless
of ¢; or ¢y, emphasizing the negative impact of excessive
inertia.

Keeping w € [0.3, 0.4] is critical for optimal performance
for both dimensionalities. Within this range, c¢; should be
[1.0, 1.5], avoiding over-reliance on individual experiences
to prevent premature convergence. Similarly, ¢, € [0.5, 1.0]
ensures sufficient attraction to the global best without exces-
sive rigidity. High w values (> 0.6) should be avoided due
to consistent performance degradation. The configuration

MFPSO: ¢1 vs c2 (w = 0.40) (10D - mean)

MFPSO: c1 vs ¢2 (w = 0.40) (10D - mean)

05| 797 | 821 | 876 | 593 | 535 | 748

1| 439 | 428 | 593 | 585 | 67.6 | 926

15| 378 | 518 | 517 | 701 | 943 120

Mean Rank
8

2| 496 | 415 | s6 | 823 00

25| 565 | 704

3| 75

05 1 15 2 25 3

(b) c1 vs. c2 at (w = 0.4).

MFPSO: ¢1 v c2 (w = 0.60) (10D - mean) MFPSO: c1 vs c2 (w=0.60) (10D - mean)

05] 44 ul 778 | 677 | 779

1] 657 | 469 | 535 | 79

15| 698 | 805 120

1
Mean Rank

(d) c1 vs. c2 at (w = 0.6).

MFPSO: 1 vs c2 (w=0.80) (10D - mean)

MFPSO: c1 vs c2 (w = 0.80) (10D - mean)

156.8

168.4

155.9

at (w = 0.8).

Fig.2 Heatmaps and bar charts for 10D functions for ¢ vs ¢; at fixed values of w

@ Springer

Journal of Intelligent & Robotic Systems (2025) 111:31

Page70f37 31

MFPSO: ¢1 vs ¢2 (w = 0.30) (20D - mean)

MFPSO: c1 vs ¢2 (w = 0.30) (20D - mean)

05| 681 766 | 77.7 | 445

1| 50 | 805 | 495 | 467 | 658 | 765

15| 349 | 324 | 313 | s61 | 645 | 843 120

2| 354 | 574 | 417 | 875

25| 644 | 622 | 5741 H .

3| 754 “

1
Mean Rank

05 1 15 2 25 3

cg at (w = 0.3).

MFPSO: c1 vs c2 (w = 0.50) (20D - mean)

(a) c1 vs.

MFPSO: c1 vs c2 (w = 0.50) (20D - mean)

05| 796 | 656 | 632 | 556 | 645 b

1| a1 | 527 | 449 | 51 | 886

2
8

15| 612 | 776 | 543 | 805 120

c1
Mean Rank

2

3

2| 601 51 847

25 765

co at (w = 0.5).

MFPSO: c1 vs c2 (w=0.70) (20D - mean)

(c) c1 vs.

MFPSO: c1 vs c2 (w = 0.70) (20D - mean)

05| 691 | 473 | 825

1| 684 | 756

Mean Rank
2 8

(e) c1 vs. ¢ at (w = 0.7).

MFPSO: c1 vs ¢2 (w = 0.40) (20D - mean)

MFPSO: ¢1 vs c2 (w = 0.40) (20D - mean)

05| 637 | 669 | 714 | 527 | 61 | 836

1| 36 | 471 | 611 | 442 | 767 | 777

15| 239 | 418 | 491 | 495 | 826 120

2| 519 | 348 | 634

25| 539 | 573 | 79

(b) 1 vs. c2 at (w = 0.4).

MFPSO: c1vs c2 (w = 0.60) (20D - mean) MFPSO: c1 vs c2 (w=0.60) (20D - mean)

180

os| 611 | 275 | 347 | 678 10

1| 504 | 543 | 622 | 841

15| 604 | 57 | 883 120

(d) c1 vs. c2 at (w = 0.6).

MFPSO: c1 vs c2 (w = 0.80) (20D - mean)

MFPSO: 1 vs c2 (w = 0.80) (20D - mean)

167.6 156.9 87 6 120

169.8 179.8

96 1861 171.9

1713 1688

(f) e1 vs. c2 at (w = 0.8).

Fig.3 Heatmaps and bar charts for 20D functions for ¢ vs ¢; at fixed values of w

c1 =1.5,¢=0.5,and w € [0.3,0.4] emerges as the most
robust and generalizable setup for the MFPSO algorithm.

5 Benchmark Testing on CEC2020/2021
5.1 Parameter Settings and Results Collection

The proposed MFPSO algorithm is compared with PSO,
MFO, and two recent hybrid algorithms, HyMFPSO [42]
and HMFPSO [14, 43], using 10D and 20D CEC2020/2021
benchmark functions [48, 49]. Parameter settings for all
five algorithms are summarized in Table 1. The termination

condition is set to a maximum of 200000 function evaluations
(MaxFES) for 10D and 500000 for 20D. The fitness function
for each benchmark is the error, E; (x), calculated as the dif-
ference between the global best solution fitness F;(X) and
the known optimal fitness F;(X*). Algorithms terminate if
the error is less than or equal to 1.0 x 1078, All algorithms
are run 30 times per function, with dimensions ranging from
[—100, 100] [48].

Error results across all 10D and 20D functions are visual-
ized using violin plots, with Fig. 4a showing 10D results and
Fig. 4b showing 20D results. MFPSO demonstrates the most
reliable and repeatable distributions, with compact plots indi-
cating high consistency. It achieves the lowest errors and the

Table 1 Parameter Settings for

all the Algorithms Algorithm

Parameter Values

All

MFO [41]

PSO [50]
HyMFPSO [42]
HMFPSO [14, 43]
MFPSO

population size = 30

b =1, anex = —1, amin = —2

cir=1lLc=1w=03

c1=2,¢0 =2, Wnax = 0.9, wyin =0.2,b =1, ayax = 1, apin = —1
b=1,anux =1, apin = —1

c1=150=05w=04b=1,au, =—1, apin = -2

@ Springer

31 Page8of37

Journal of Intelligent & Robotic Systems (2025) 111:31

10 10 .
—Mean 000 200, ——Mean f —Mean | 25 | —Mean
= = Median = = Median = = Median il = = Median

15 | 2500 15 | i
| I
A 2000 150 il ‘
210 P\ @) A © | |
2 [£ 1500 3 ¢ EL U
g |] s | | g \/
% 7 1000 | 3| K] I
8 \ = 8 I /| 8 | A 8s A
- A ~ () ol \ /) U/ \/ A \ £\ £\ 2\
o -I- &> =) — o A\) L) O
ol V/ / ~= A <& o v/ \/ —
| | V2R 4 oH T N,V
s 500 Y = Y (
! ol Y | | !
MFO PSO HMFPSO HMFPSO MFPSO MFO SO HMFPSO HMFPSO MFPSO MFO PSO HMFPSO HMFPSO MFPSO MFO PSO H/MFPSO HMFPSO MFPSO MO PSO HMFPSO HMFPSO MFPSO
F1.D10 F2 D10 F3.D10 F4._D10 F5 D10
10°
© T 0
——Mean —Mean 3000 —Mean | —Mean
A) 2500 I
2) A
200 i 0 / 0 [
210 o | o o) o)
]] i] 3 \/
3 3 [3) 32 \
3, § w0 ‘1 Saw0| 4 < U S 600 I
] | g N/ = 3 {
S 81000 | 8300 4 T 8) —
/_\\ —Mean | s0| J\ £ Ny
500 - p — <)
B ' /- Median o & 2) —
- ! J P A Q) — w0 | w Y Y ¥V T
2 t J { Y
) Y 100 V |
[I — 00 ! !
MFO PSO H/MFPSO HMFPSO MFPSO MFO PSO HMFPSO HMFPSO MFPSO MFO PSO HMFPSO HMFPSO MFPSO MFO SO H/MFPSO HMFPSO MFPSO MFO PSO HyMFPSO HMFPSO MFPSO
F6_D10 F7_D10 F8_D10 F9_D10 F10_D10
10" 10 10 A
6/ —Mean | 600 —Mean ! 6| —Mean | —Mean]
= = Median = Median = = Median 3| = = Median
00 5
1 25
ot g% ‘ ' |
] |] 3
L) k] | 3
£ \ 2. || | £ i
82 g | J\ it &
82 8 | I 4
| wo| | \ \ £ A A
Y \/ A A & s \ (0]
A 2\ N {
J) 10| € \'4 y 05 L
— A, 4 |
of <= — | —Mean 7 S \ & 4 i & &
g | / D o= gl s g A 2 @ 2L 4
-1 L
wFo WFPSO MFO PSO HMFPSO HMFPSO MFPSO MFO PSO HMFPSO HMFPSO MFPSO MFO PSO H/MFPSO HMFPSO MFPSO MFO PSO MMFPSO HMFPSO MFPSO
0 0 20 F5_D20
10"
25 —
p—— Wil N p—— woo] o |
2000 -~ Medan S\) o0 | G- 1200 | = Medan | - = Median |
[A4 f [000
[——Mean soo| \‘, 1100 A y \ \‘
A 4 = — Median 4000 |/ A \ |

o A = - . goo AN g |

s | \ / s g S ow A4 7 = 3 /

Fioo0| | [3 2 % 800 | \s % 2000

3 — \ & 3 | 8 v 0 3 .

v | (700 \ /
\ /] — (A \
\ | o / Y | I \ 100 & —_

g \/ | 05 / 600 o \ >~ J—

N V A 1000 | N <> N

o [I & \ e ol | = '
I | &~ L | edian . o
MFO PSO HMFPSO HMFPSO MFPSO MFO SO H/MFPSO HMFPSO MEPSO MFO PSO HMFPSO HMFPSO MFPSO MFO SO HyMFPSO HMFPSO MFPSO MFO SO HyMFPSO HMFPSO MFPSO
F6_D20 F7.020 F9_D20 F10_D20

(b) 20 Dim.

Fig.4 Violin plots for all the algorithms CEC2020/2021 functions

smallest spread compared to other algorithms. Comprehen-
sive error metrics, including best, worst, mean, median, and
standard deviation, as well as detailed box plots, are provided
in the Supplementary Materials (Section S3.1).

5.2 Statistical Analysis of the Results

The statistical analysis, summarized in Table 2, evaluates the
significance of the MFPSO algorithm’s performance com-
pared to other algorithms. The Friedman test was conducted
to determine overall rankings across all metrics and functions
for 10D and 20D cases. The MFPSO algorithm consistently
ranked first across all metrics and dimensions with the low-
est mean rank and a p-value < 0.05, confirming its superior
performance. The MFO algorithm ranked second overall but
fell to third or fourth in some cases, such as the 20D worst
(third) and 20D SD metrics (fourth). HyMFPSO ranked third
in the mean and median metrics for both dimensions.
Paired comparisons using the sign test and Wilcoxon test
confirmed the dominance of the MFPSO algorithm. It out-
performed all other algorithms in all metrics and dimensions,
with p-values < 0.05 in 49 out of 50 comparisons. The only
exception was the best metric for the 20D case against MFO

@ Springer

(p=0.084). For mean and median metrics, MFPSO achieved
better results in at least 9 or 10 functions compared to MFO,
PSO, HyMFPSO, and HMFPSO. These results demonstrate
the MFPSO algorithm’s significant and consistent superiority
across all metrics and functions.

5.3 Confidence Interval (Cl) Analysis and Confidence
Curves

The confidence interval (CI) analysis evaluates the per-
formance of the MFPSO algorithm against MFO, PSO,
HyMFPSO, and HMFPSO. Using MFPSO as the reference,
unpaired comparisons were conducted across 30 indepen-
dent runs for each CEC2020 benchmark function, following
anon-parametric ranking approach. All mathematical details
and equations are provided in the Supplementary Materials
(Section S2.1) and in [51]. Table 3 presents the CI results
for 10D and 20D functions, where UB and LB represent
the upper and lower bounds. If the CI includes zero, the
difference is not statistically significant (pCI = FALSE); oth-
erwise, itis significant (pCI = TRUE). A positive Cl indicates
MFPSO performs better, while a negative CI indicates the
other algorithm is superior.

Journal of Intelligent & Robotic Systems

(2025) 111:31

Page90of37 31

Table 2 Statistical analysis for 10D and 20D functions across all algorithms

Dim Metric Alg. Friedman Test Sign Test Wilcoxon Test
SumRank MeanRank Rank p-value +/=/- R+ R- p-value H
10D Best MFO 22 22 2 2.03E-05 +9/=0/-1 54 1 0.003906250 TRUE
PSO 35 35 3 +10/=0/-0 55 0 0.001953125 TRUE
HyMFPSO 45 4.5 5 +10/=0/-0 55 0 0.001953125 TRUE
HMFPSO 36 3.6 4 +9/=0/-1 54 1 0.00390625 TRUE
MFPSO 12 1.2 1 NA NA NA NA NA
Worst MFO 29 29 2 2.53E-05 +10/=0/-0 55 0 0.001953125 TRUE
PSO 36 3.6 4 +10/=0/-0 55 0 0.001953125 TRUE
HyMFPSO 30 3 3 +10/=0/-0 55 0 0.001953125 TRUE
HMFPSO 45 4.5 5 +10/=0/-0 55 0 0.001953125 TRUE
MFPSO 10 1 1 NA NA NA NA NA
Median ~ MFO 23 2.3 2 3.54E-05 +10/=0/-0 55 0 0.001953125 TRUE
PSO 41 4.1 5 +10/=0/-0 55 0 0.001953125 TRUE
HyMFPSO 37 3.7 3 +10/=0/-0 55 0 0.001953125 TRUE
HMFPSO 38 3.8 4 +9/=0/-1 54 1 0.00390625 TRUE
MFPSO 11 1.1 1 NA NA NA NA NA
Mean MFO 23 23 2 6.61E-06 +10/=0/-0 55 0 0.001953125 TRUE
PSO 38 3.8 4 +10/=0/-0 55 0 0.001953125 TRUE
HyMFPSO 35 35 3 +10/=0/-0 55 0 0.001953125 TRUE
HMFPSO 44 44 5 +10/=0/-0 55 0 0.001953125 TRUE
MFPSO 10 1 1 NA NA NA NA NA
SD MFO 26 2.6 2. 1.07E-04 +8/=0/-2 46 9 0.064453125 TRUE
PSO 40 4 4 +10/=0/-0 55 0 0.001953125 TRUE
HyMFPSO 26 2.6 2. +8/=0/-2 48 0.037109375 TRUE
HMFPSO 44 44 5 +10/=0/-0 55 0.001953125 TRUE
MFPSO 14 1.4 1 NA NA NA NA NA
20D Best MFO 20 2 2 1.40E-05 +9/=0/-1 45 10 0.083984375 TRUE
PSO 41 4.1 5 +10/=0/-0 55 0 0.001953125 TRUE
HyMFPSO 40 4 4 +10/=0/-0 55 0 0.001953125 TRUE
HMFPSO 37 3.7 3 +9/=0/-1 53 2 0.005859375 TRUE
MFPSO 12 1.2 1 NA NA NA NA NA
Worst MFO 29 29 3 1.17E-06 ~ +10/=0/-0 55 0 0.001953125 TRUE
PSO 34 34 4 +10/=0/-0 55 0 0.001953125 TRUE
HyMFPSO 27 2.7 2 +10/=0/-0 55 0 0.001953125 TRUE
HMFPSO 50 5 5 +10/=0/-0 55 0 0.001953125 TRUE
MFPSO 10 1 1 NA NA NA NA NA
Median ~ MFO 24 2.4 2 8.27E-06 +10/=0/-0 55 0 0.001953125 TRUE
PSO 39 39 4 +10/=0/-0 55 0 0.001953125 TRUE
HyMFPSO 33 33 3 +10/=0/-0 55 0 0.001953125 TRUE
HMFPSO 44 44 5 +10/=0/-0 55 0 0.001953125 TRUE
MFPSO 10 1 1 NA NA NA NA NA

@ Springer

31 Page 100f37

Journal of Intelligent & Robotic Systems (2025) 111:31

Table2 continued

Dim Metric Alg. Friedman Test Sign Test Wilcoxon Test
SumRank MeanRank Rank p-value +/=/- R+ R- p-value H

Mean MFO 26 2.6 2 3.36E-06 +10/=0/-0 55 0 0.001953125 TRUE
PSO 38 3.8 4 +10/=0/-0 55 0 0.001953125 TRUE
HyMFPSO 29 29 3 +10/=0/-0 55 0 0.001953125 TRUE
HMFPSO 47 4.7 5 +10/=0/-0 55 0 0.001953125 TRUE
MFPSO 10 1 1 NA NA NA NA NA

SD MFO 35 35 4 8.35E-07 +10/=0/-0 55 0 0.001953125 TRUE
PSO 34 34 3 +10/=0/-0 55 0 0.001953125 TRUE
HyMFPSO 21 2.1 2 +9/=0/-1 53 2 0.005859375 TRUE
HMFPSO 49 4.9 5 +10/=0/-0 55 0 0.001953125 TRUE
MFPSO 11 1.1 1 NA NA NA NA NA

MFPSO serves as the reference for paired comparisons. For the Sign Test, ‘+’ indicates the number of functions where MFPSO performs better,
and ‘=’ indicates a draw. In the Wilcoxon Test, R+ > R— indicates MFPSQO’s superiority. The Friedman Test ranks algorithms, with the lowest
mean rank indicating the best performance. Results are significant for p-values < 0.05

Figure 5 illustrates the confidence curves for 10D and
20D functions (F3 and F10), with results for other functions
in the Supplementary Materials (Section S3.2). Confidence
curves lying entirely on the positive x-axis confirm MFPSO’s
superior performance, while those on the negative x-axis

indicate the other algorithm performs better. MFPSO out-
performed MFO, PSO, and HyMFPSO across all 10D and
20D functions with significant positive CIs. MFPSO also out-
performed HMFPSO in nine 10D and all 20D functions. For
F3-10D, the zero line within the curve indicates no significant

Table 3 Confidence interval (CI) results for 10D and 20D CEC2020/2021 benchmark functions

Dim Fn. MFO PSO

HyMFPSO HMFPSO

LB UB pCl LB UB

pCI LB UB pCl LB UB pCI

10 F1 4.40E+03 1.13E+04 TRUE 2.09E+08 6.13E+08
F2 5.46E+02 8.83E+02 TRUE 6.04E+02 9.63E+02
F3 3.90E+00 1.48E+01 TRUE 1.82E+01 3.11E+01
F4 9.42E-01 2.62E+00 TRUE 2.40E+02 1.29E+03
F5 238E+03 8.88E+03 TRUE 2.67E+05 5.09E+05
F6 1.94E+02 2.73E+02 TRUE 2.52E+02 4.16E+02
F7 1.63E+03 3.30E+03 TRUE 7.14E+03 5.06E+04
F8 4.46E-01 3.28E+00 TRUE 2.17E+01 6.37E+01
F9 259E+01 3.33E+01 TRUE 1.12E+02 1.33E+02
F10 8.08E+00 4.98E+01 TRUE 2.27E+01 6.05E+01

20 F1 8.74E+08 2.43E+09 TRUE 5.54E+09 7.72E+09
F2 9.82E+02 1.57E+03 TRUE 1.39E+03 1.88E+03
F3 4.09E+01 6.42E+01 TRUE 1.02E+02 1.40E+02
F4 3.69E+02 2.94E+03 TRUE 4.99E+03 1.23E+04
F5 2.88E+04 3.75E+05 TRUE 1.68E+06 3.14E+06
F6 4.11E+02 5.53E+02 TRUE 7.06E+02 1.02E+03
F7 234E+04 241E+05 TRUE 4.53E+05 8.44E+05
F8 8.36E+02 2.82E+03 TRUE 9.11E+02 2.93E+03
FO 545E+01 7.29E+01 TRUE 4.67E+02 5.28E+02
F10 7.53E+00 9.63E+01 TRUE 2.55E+02 3.85E+02

TRUE 2.33E+08 3.37E+08 TRUE 1.60E+09 7.21E+09 TRUE
TRUE 1.02E+03 1.20E+03 TRUE 8.66E+02 1.27E+03 TRUE
TRUE 4.03E+01 4.95E+01 TRUE -9.60E+00 2.42E-01 FALSE
TRUE 1.79E+03 2.06E+04 TRUE 4.84E+03 4.91E+04 TRUE
TRUE 2.30E+04 3.21E+04 TRUE 7.43E+03 8.53E+03 TRUE
TRUE 7.00E+01 2.11E+02 TRUE 3.69E+02 4.98E+02 TRUE
TRUE 3.51E+03 5.47E+03 TRUE 1.61E+03 1.87E+03 TRUE
TRUE 1.93E+01 4.77E+01 TRUE 6.82E+01 4.59E+02 TRUE
TRUE 3.99E+01 1.06E+02 TRUE 6.44E+01 1.37E+02 TRUE
TRUE 1.83E+01 4.61E+01 TRUE 5.46E+01 1.20E+02 TRUE

TRUE 1.76E+09 2.03E+09 TRUE 1.24E+10 1.79E+10 TRUE
TRUE 2.70E+03 3.06E+03 TRUE 3.50E+03 4.03E+03 TRUE
TRUE 1.62E+02 1.79E+02 TRUE 2.87E+00 9.07E+01 TRUE
TRUE 3.65E+01 4.68E+02 TRUE 6.16E+05 7.68E+05 TRUE
TRUE 8.26E+05 1.21E+06 TRUE 4.67E+04 5.24E+05 TRUE
TRUE 4.31E+02 5.01E+02 TRUE 1.38E+03 1.67E+03 TRUE
TRUE 2.17E+05 2.72E+05 TRUE 1.34E+06 1.40E+06 TRUE
TRUE 3.80E+03 4.21E+03 TRUE 5.47E+03 6.04E+03 TRUE
TRUE 1.03E+02 1.62E+02 TRUE 4.70E+02 5.54E+02 TRUE
TRUE 3.04E+01 9.07E+01 TRUE 247E+02 1.04E+03 TRUE

MFPSO is the reference for unpaired comparisons across 30 runs. LB and UB represent the lower and upper bounds of the CI. pCl is true if the CI
excludes zero, indicating a significant difference. Positive CI favors MFPSO, while negative CI favors the other algorithm

@ Springer

Journal of Intelligent & Robotic Systems

(2025) 111:31

Page 110f37 31

F3_D10 MFO vs. MFPSO

F3_D10 PSO vs. MFPSO

F3_D10 HyMFPSO vs. MFPSO

F3_D10 HMFPSO vs. MFPSO

i ' . . '
1 ' 1] |[——Ccont. Curve| 1 ' 1 Conf. Curve '
i a=00500 1 i = 00500 '
' - - - Ref.Lino ' i Lino '
08 ' 08 |- - - Med.CI ' 08 ' 08 '
! ® LBoc ! ! ! !
' o i ' ' ' '
206 . 206 . | 206 . 206 ! |
EH E] E E]
g i 2 1 i H i H i i
doa I S04} &oa i 404 ! '
i ' i i i '
02 ! 02 | ! 02 ' 02 ! |
! ' 18.1668 24 04733111220 ' P U
J 1 0 1 ' 0 ' 0 1 1
i : ' ' . i . '
L L L L L I L L
0 5 10 15 20 0 10 20 30 40 0 10 20 30 40 50 60 -10 5 [
True difference in performance True difference in performance True difference in performance True difference in performance
F10_D10 MFO vs. MFPSO F10_D10 PSO vs. MFPSO F10_D10 HyMFPSO vs. MFPSO F10_D10 HMFPSO vs. MFPSO
i i I i P i I i
! . L . ' . ' ‘
1 . Cont. Curve 1 Cont. Curve 1 ' Cont. Curve 1 ' Cont.Curve
. 200500 a=00500 ' a=00500 ' =00500
' - - - Rot.Line Rof.Line 1 ' '
08 ! - Med. CI 08 Mod. CI ! 08 ' ' 08 '
! ® soci LBolCI ' ! ! !
' o usucH o usuci ' ' ' ! '
906 H 206 | | 906 H | 206 H |
H ' 2 H ' H I] s ' '
z i I ' i Z ' ' : ' '
204 i S04 ' : So4f] S04 ' '
. ' i '] ' '
! ' ! '] ' ‘
02 ! 02 ! ! 02 ! ! 02 ! !
1807 1256276 497519 ' 22,6653 151 04804835 ' 183468 1530003 ' 54,647, '
of 71 | of 1 | of 71 : of 1 i
L L L H . L L . . ' L .
0 10 20 30 40 50 60 0 20 40 80 0 10 20 30 40 50 60 0 50 150
True difference in performance True difference in performance True difference in performance True difference in performance
F3_D20 MFO vs. MFPSO F3_D20 PSO vs. MFPSO F3_D20 HyMFPSO vs. MFPSO F3_D20 HMFPSO vs. MFPSO
i j i i i i i
. ' . . [
1 ' | —— Conf. Curve 17 ' 1 ' —— Conf. Curve 1 ' | —— Conf. Curve
. 00500 ' ' =0.0500 ' 00500
i - - - Rot.Lino ' i - - ~Rol. Lino ' - - - Ret.Lino
08 ' - = Med. CI osf 08 ! - - ~Mod.CI 08 vl - - = Med.CI
! e tsoci ! ! ® tsoci vl ® soci
' ® usocl H | ® usoiCl I vl ® usocl
206 i 206 | 206 . I 206 vl
E H E E
: ‘ e | : | | : .
doat . S04 ' doaf S04 I
i i ' i i [
02 ! ! 02 | 02 ! ! 02 v
' w0110/ 1y Nea2225 ' i 161.7388] 1 14794995 28698] |
of 71 1 of 71 of 71 i 0 .
I I ' I ! "o
L R - L " L . P E— - . .
0 40 60 80 0 5 100 150 0 100 150 200 0 50 100 150
True difference in performance True difference in performance True difference in performance True difference in performance
F10_D20 MFO vs. MFPSO F10_D20 PSO vs. MFPSO F10_D20 HyMFPSO vs. MFPSO F10_D20 HMFPSO vs. MFPSO
' ' i i | I I i
1 i j Gont.Curve [I Gon,Gurve it) Gonl, Curvo o i GonlCurve
' 200500 ' =00500 ' =00500 '
' - - - Rol.Line ' - - - Ret.Line ' - - - Ret.Line '
08 ! - = Mod. CI 08 ! - - - Mod.CI 08 ! - - - Mod.CI 08 !
! ® soc ! ® Borci ! ® BorCi !
! o Usuci ! | e sac ' o usuc !
206 | 206 | 206 | 206 |
i i H : : 2 : 2 :
204 ' S04 ' : S04 ' S04 '
' ' : I I
' ' ' '
02t H 0.2 H | 02 H 0.2 H
3 ' i 6408 ' 20,6600 '
p ' ' '
1 ' h ' '
L L H L L
0 0 0 0

100 200 300 400 500
True difference in performance

50 100 150
True difference in performance

. - . " .
200 400 600 800 1000 1200
True difference in performance.

20 40 60 80 100 120
True difference in performance

(b) 20 Dim.

Fig.5 Confidence curves for F3 and F10 CEC2020/2021 benchmark functions across the 30 runs for all possible significant levels, where MFPSO

is compared with the MFO, PSO, HyMFPSO, and HMFPSO algorithms

difference between MFPSO and HMFPSO. Across all other
functions, MFPSO demonstrated significant superiority, with
confidence curves consistently on the positive x-axis.

5.4 Convergence Analysis

The convergence of the MFPSO algorithm is compared with
other algorithms using median error monitored at equidistant
cut points across 30 runs for each function and dimension.
Figure 6 shows the convergence plots for all algorithms on
10D and 20D benchmark functions. MFPSO demonstrates
faster convergence, starting with a higher median error but
consistently terminating with the lowest error compared to
other algorithms. Statistical analysis confirms that MFPSO
outperforms MFO, PSO, and hybrid variants.

Page’s test, a non-parametric statistical test, is used to
compare convergence trends as detailed in [51]. In this test,
N = 19 represents cut points across runs, and k = 10
denotes the benchmark functions. Median error differences
between algorithms A and B are analyzed: a p-value < 0.05
with an increasing trend indicates B converges faster, while
a decreasing trend indicates A converges faster. Full details
are available in the Supplementary Materials (Section S2.2,
S3.3) and in [51].

The trends visualized in Fig. 7 provide a comprehen-
sive analysis of the convergence patterns between MFPSO
and other algorithms through Page’s test. Notably, the
HyMFPSO-MFPSO comparison (Fig. 7c) and the HMFPSO-
MFPSO comparison (Fig. 7d) reveal significant increasing
trends in both the 10D and 20D cases, indicating that MFPSO

@ Springer

31 Page120f37 Journal of Intelligent & Robotic Systems (2025) 111:31

wf o F R 2z - 2 Toueesol . ’ Touseso
. P = = ity P a Sos WEPSO.
T 2 — B2 ey 3 3 s
2 2 g 2. R
z wro 2 72 H w0 3
S 4 - Sas €2 Q3 PO, H
H i tereo H § §°[oo § s
3 ity Taal Bisr 3 protsy 3
2 s] . e s
s 22 wo | Fe
g g 3 g & g, g -
i 2 erse I as}
ey
s I 12 . . o, .) .
3 as . i 5 3 B i ; 5 3 3 . i s 5 3 as . i s 5 3 2 I 0
Log Functon Evaluatons) Logi Functon Evakutions) Log Function Evaluations) Log(Function Evaluations) Logi Funcion Evakations)
10 210D) (F310D) (F410D) 510D)
) 7 o bl RO, o wFo L wFo
Pso N T PSO SO £SO
3 ok Ioerso a2 Toepsol 28 Toprepsol 33 Topuepsol
= = e n B & 54 B ey = B ey
. 3 e r o ¥l freses 302 Jretss
4 Sor < K =i
] i Bas Bar ¥
S Sy < H 5
5.5 § § 20 5205 §
2 3 - 3 § g2
' wo T ™ Fiad Baop
s HFPS0. 2 22| 258 !
o e 1 2] 28 26/
B 3 ‘ i s B B i 5 b . is s 3 3 ‘ i 5 3 . i s
Log(Function Evaluatons) Logi Function Evakiations Log(Functon Evaluatons) Logl Funclion Evaluatons) Logi Function Evaluations)
(F6 10D) (F710D) 101
. o >
A 3 RSO 6 L HMEPSO
- —3 = e z = e
T z 32 ity 3 375 sy
2 &35 2 3" =
e o z 28| z z 7
] 3 B g B]
S, oo S - S S s
g s 5 H $ 3
ritey 2
2 2 f22 3 3o
= = 3 % <
5 7 wo 3. wo o
g g, 3 g g 3 g
Toureso ' Toureso
4 20/ SO e HMFPSO ¥
ey
) 2 n o 4
Log Funcion Evaluaions) Logi Function Evakitions) Log Function Evalaions) Logt Funclion Evalaions) Logi Funciin Evaktions)
200) 2200) 320D) 4 200)
bl b Fo N a2 [= o
. 78 %0 38 o - - rso a " PR o
) Towmsol " Woiepso Yourosol
= = 5 e — 34 ~ o = P
3, 3 fretss 3 3 e T fretss
3% 3 g K] k]
K Ses K L =4
g2 s Lo g =
g 8 g, 8. .
815 §ss H § §
3 3 g2 i 30
: Zs £ 2o E
g’ =3 Bas g 3 g g3
g vao S48 S o 2 3
08! AP0, HFPs0! 27 B—o—c- il
HMFPSO. N 22| & HMFPSO
o] . 38 2] e 26 28!
. 3 . 3 . 3 . 3 .

h s s . s s s s ‘ s s 4 s s
Log(Function Evaluations) Logi Functon Evaluations) Log(Function Evaluations) Logl Function Evaluations) Log(Function Evaluations)
20D) 20D) 20D) 20D) 20D)

(b) 20 dimensions.

Fig.6 Convergence graphs for the proposed MFPSO and MFO algorithms for the median error across 30 runs for all CEC2020/2021 functions

MFO vs MFPSO (10D) MFO vs MFPSO (20D) PSO vs MFPSO (10D) PSO vs MFPSO (20D)
o | —@— MFO-MFPSO (p-val = 1.000)| 160 | =@ MFO-MFPSO (p-val = 1.000) | —@— PSO-MFPSO (p-val = 1.000) | —@— PSO-MFPSO (p-val = 1.000)|
e e Eerin e
g] E &
o
.
HyMFPSO vs MFPSO (10D) HyMFPSO vs MFPSO (20D) HMFPSO vs MFPSO (10D) HMFPSO vs MFPSO (20D)
200 ‘—o—nmwso MFPSO (p-val = 0.000)| 200 ‘—o—nw!r?so MFPSO (p-val = 0.000)| | —@— HMFPSO-MFPSO (p-val = 0.000)| 200 —6— HMFPSO-MFPSO (pval = 0.000)
B et e oo o oo
£ 12 £ 120 £ £ 1o}
4 4 4 2
E &0 E a0 & € sor

(c) HyMFPSO vs MFPSO (10D and 20D). (d) HMFPSO vs MFPSO (10D and 20D).

Fig.7 Convergence trends between the algorithms using the Page’s test

@ Springer

Journal of Intelligent & Robotic Systems (2025) 111:31

Page130f37 31

consistently achieves faster convergence than HyMFPSO and
HMFPSO.

Conversely, the MFPSO-PSO comparison (Fig. 7b) shows
a significant increasing trend in favor of PSO. Meanwhile,
the MFPSO-MFO comparison (Fig. 7a) exhibits a mixed
significant trend: MFPSO demonstrates faster convergence
during the initial optimization phases, but this trend reverses
in later iterations, with MFO showing faster convergence.
These results confirm MFPSQO’s capability to effectively
balance convergence speed and accuracy, excelling against
hybrid variants while demonstrating competitive trade-offs
with simpler algorithms like PSO and MFO.

5.5 Computational Complexity

The space complexity of all the compared algorithms, includ-
ing the MFPSO, is O (npop x D), where np,y is the population
size and D is the problem dimensionality. It arises from
the storage of solution parameters such as position, veloc-
ity, and fitness values. While PSO, HyMFPSO, HMFPSO,
and MFPSO require additional storage for velocity and per-
sonal bests, and MFO uses a simpler structure, all algorithms
share the same overall complexity, ensuring consistent mem-
ory requirements for fair comparison.

Computation time is a critical measure of an algorithm’s
complexity, particularly for real-time applications. Complex
algorithms consume more time and computational resources,
representing crucial factors for real-time applications. Four-
time metrics, Ty, T1, T», and T3, as introduced in [48], are
used to compare the algorithms. Detailed explanations are
provided in the Supplementary Materials (Section S2.3).

Table 4 summarizes the time complexity results for all
algorithms on the ten CEC2020/2021 benchmark functions
for 10D and 20D, evaluated on an Intel Core-i7-6500U CPU
(2.60GHz and 2.50GHz), 8GB RAM, Windows 1123H2, and
Matlab R2024a. Ty is 0.002290, while T} equals 0.085644
and 0.170504 for 10D and 20D, respectively.

The PSO algorithm is the fastest with 73 values of
65.622610 (10D) and 48.749548 (20D). MFPSO ranks sec-
ond with 73 values of 69.617994 (10D) and 57.214002
(20D), followed by MFO (third) and HMFPSO (fourth),
while HyMFPSO is the slowest. Despite the PSO being
the fastest, MFPSO provides a balanced trade-off between
computational efficiency and performance accuracy with a
competitive time complexity, outperforming more complex
algorithms like MFO, HMFPSO, and HyMFPSO, making it
suitable for real-time applications requiring both speed and
accuracy.

6 Application on Engineering Optimization
Benchmark Problems

The MFPSO algorithm is validated against MFO, PSO,
HyMFPSO, and HMFPSO using thirteen benchmark engi-
neering optimization problems spanning various real-world
applications. Table 5 presents the problem dimensions, global
minima, and variable bounds, with detailed problem formu-
lations provided in the Supplementary Materials (Section S4)
[52]. All algorithms were tested over 30 independent runs per
problem, with a maximum of 150,000 function evaluations
(FEs) to ensure consistency and fair comparison.

6.1 Results Tables

The comparative study results across 13 benchmark engi-
neering optimization problems over 30 runs are summarized
in Table 6, detailing cost metrics (median, mean, SD), the
best solution, and corresponding cost for each algorithm. The
success rate (SR), indicating the percentage of runs achiev-
ing the global best solution, highlights MFPSQO’s superiority.
MFPSO achieved a 100% SR on seven problems (F1, F8,
F10, F12, F13), outperforming all competitors. For F2, F5,
F7, and F11, where no algorithm reached the global best,

Table4 Time complexity for all

the algorithms for all the 10 Dim Algorithm 10 m 12 13 Rank
‘;gfll)c)hmafk functions (10D and 10 MFO 0.002290 0.085644 0.256041 74.419029 3
PSO 0.002290 0.085644 0.235900 65.622610 1
HyMFEPSO 0.002290 0.085644 0315132 100.226335 5
HMFPSO 0.002290 0.085644 0.310424 98.170079 4
MFPSO 0.002290 0.085644 0.245048 69.617994 2
20 MFO 0.002290 0.170504 0.312785 62.139656 3
PSO 0.002290 0.170504 0.282126 48.749548 1
HyMFPSO 0.002290 0.170504 0.440347 117.850941 5
HMEPSO 0.002290 0.170504 0.327062 68.374739 4
MFPSO 0.002290 0.170504 0301507 57.214002 2

Maximum function evaluations are 10000

@ Springer

31

Page 14 of 37

Journal of Intelligent & Robotic Systems

(2025) 111:31

Table 5 Benchmark problems used for validation, along with their details [52, 53]

FNo. Problem Name Dim Bounds Global Best
Fl1 Speed Reducer Design 7 LB:[2.6,0.7,17,7.3,7.3,2.9, 5] 2994.4245
UB: [3.6,0.8, 28, 8.3, 8.3, 3.9, 5.5]

F2 Tension/Compression 3 LB: [0.05, 0.25, 2.0] 0.0127
Spring Design UB: [2.0, 1.3, 15.0]

F3 Pressure Vessel 4 LB: [0.51,0.51, 10, 10] 6059.7143
Design UB: [99.49, 99.49, 200, 200]

F4 Three-Bar 2 LB: [0, 0] 263.8958
Truss Design UB: [1, 1]

F5 Gear Train 4 LB: [12, 12, 12, 12] 2.701 x 10712
Design UB: [60, 60, 60, 60]

Fo6 Cantilever Beam 5 LB: [0.01, 0.01, 0.01, 0.01, 0.01] 1.3400
Design UB: [100, 100, 100, 100, 100]

F7 Minimize I-Beam 4 LB: [10, 10, 0.9, 0.9] 0.0131
Deflection UB: [80, 50, 5.0, 5.0]

F8 Tubular Column 2 LB:[2,0.2] 26.4864
Design UB: [14, 0.8]

F9 Piston Lever 4 LB: [0.05, 0.05, 0.05, 0.05] 8.4127
Design UB: [500, 500, 500, 120]

F10 Corrugated Bulkhead 4 LB: [0, 0, 0, 0] 6.8430
Design UB: [100, 100, 100, 5]

F11 Car Side 11 LB:[0.5,0.5,0.5,0.5,0.5,0.5, 0.5, 0, 0, -30, -30] 22.8430
Impact Design UB:[1.5,1.5,1.5,1.5,1.5,1.5,1.5,1, 1,30, 30]

F12 Welded Beam 4 LB:[0.1,0.1,0.1,0.1] 1.7249
Design UB: [2, 10, 10, 2]

F13 Reinforced Concrete 3 LB: [0, 0, 5] 359.2080
Beam Design UB: [1, 1, 10]

MFPSO obtained the lowest median and mean cost values,
showcasing its consistency. Additionally, MFPSO was the
only algorithm to achieve a non-zero SR on F3, F4, F6, and
F9, demonstrating its robustness on challenging problems.
Figure 8 visualizes the solution distributions, further empha-
sizing MFPSQO’s superior performance. Additional box plots
and metric tables are available in the Supplementary Mate-
rials (Section S5.1).

6.2 Statistical Analysis of the Results

The statistical analysis in Table 7 comprehensively eval-
uates the performance of all algorithms across multiple
metrics. MFPSO consistently achieves the lowest mean
rank for all metrics in the Friedman test, with signifi-
cant p-values, reflecting its robust performance compared to
MFO, PSO, HyMFPSO, and HMFPSO. Moreover, MFPSO
dominates the performance, outperforming its competitors
across all metrics, as indicated by the Sign and Wilcoxon

@ Springer

tests. The Wilcoxon test further corroborates these findings,
with MFPSO demonstrating significantly better performance
(dominated by positive ranks) for all metrics with consis-
tently significant p-values (<0.05), confirming the statistical
significance of MFPSO’s improvements.

The confidence interval (CI) of the mean results differ-
ence for the unpaired comparison across the 30 runs, as
presented in Table 8, highlights the significant performance
of MFPSO in function-by-function evaluations. The results
reveal entirely positive CIs (pCI=TRUE) in 37 out of 52
comparisons, indicating statistically significant performance
differences favoring MFPSO. Importantly, no entirely neg-
ative Cls were observed across the benchmark functions,
underscoring that MFPSO did not experience any defini-
tive defeats against its competitors. The consistent presence
of positive and statistically significant CIs favoring MFPSO
across most problems underscores its robustness, precision,
and reliability in solving challenging engineering optimiza-
tion tasks. Figure 9 visually demonstrates the confidence

31

Page 15 of 37

(2025) 111:31

Journal of Intelligent & Robotic Systems

T€T06°0 ‘00°0S 0008 ¥ CO-AETLOE T 000 L0-H80°C 20-H6TLOE'T 20-A9TL0E T OSdANAH
‘8T°€ '06°0 *L9°SE 0008 ¥ 20-H9619¢€'T 000 70-9¢S'T 20-d910610°C 20-H081¥LY'1 0sd
T€T06°0 ‘00°0S ‘0008 ¥ C0-ACIYLOE T 000 S0-H0T' ¥ 20-AI6+80€'T T0-ACIYLOE T OdN LA
‘ST'T0S°E ‘0SY “1€°S ‘109 S 00+d8S66€€'1 L9'9 90-a¥E’1 00+d6566€€'1 00+d8566€€' OSdAN
9I'T*SSE ‘6 1€°6°96'S S 00+36800%¢'1 000 $0-9SS°L 00+HLEYOVE' T 00+H10£0¥E" 1 OSdANH
P1'T00°C ‘T0°01 “LOY ‘61°L S 00+H9SSTLLT 000 10-4L0°T 00+3S082L0C 00+3LOYTLOT OSdANAH
‘IP'T°6SL0EY SO0 ‘vt S 00+36018LS’1 000 10-9d€L'8 00+H8TSSETE 00+361669S°¢ 0sd
91'T ‘TSE ‘61 '9€°S “096°S S 00+3L600¥€"1 000 ¥0-49C°C 00+30£€0PE’ 00+3€620VE’ 1 OdAN 9d
7981 “S9°GT “SS'81 ‘86°Th ¥ CI-ALS800L'T 000 01-999°¢ 0T-dZTITOL'T T1-9LS800L'CT OSdAN
‘TTEY L1661 “6€°91 ‘88'8¥ ¥ CI-ALS800L'T 000 80-AST'T 60-H89896C'8 01-908S1T6'6 OSdINH
‘SL8Y ‘P61 “6S°ST ‘SETEY ¥ CI-ALS800L'CT 000 01-d8%'¥ 0T-d¥L69¥8'€ OT-H911991°1 OSdANAH
‘SYEV ‘8T 1T 1S°TI ‘€€ ¥ 0T-dSH0SHS'T 000 90-dLT'8 90-A80STIET 80-AI6TLIT'T 0Ssd
‘0S°8% “TE'LT “SO'TT ‘O ¥S ¥ 0T-d911991°1 000 60-98S°S 60-A781559°¢€ 0T-d%19.88'8 OdN Sd
‘0 ‘6L°0 4 70+d8568€9°C €e'e 80-HL6'E 20+a8S68€9°C 70+d8568€9°C OSdAN
‘P00 ‘6L°0 4 70+d8568€9°C 000 S0-A80'T 20+d6568€9°C 70+d8568€9°C OSdINH
‘0 ‘6L°0 4 70+d9968€9°C 000 €0-30%'€ 20+d8006£9°C 20+d6006£9°C OSdANAH
‘0 ‘6L°0 4 20+d8568€9°C L99 ¥0-906'L 20+d£968€9°C 70+d£968€9°C 0sd
‘TF0 ‘6L°0 4 20+d6568€9°C 000 ¥0-969°¢ 20+d1968€9°C 20+d6568€9°C OdN v
POOLT ‘01'CH “9E'L “€9°C1 ¥ €0+d¥1L6S09 00°0S 10+aP1'1 €0+d696890°9 €0+d¥1L6S09 OSdAN
‘€9°9LT ‘01'Ch ‘6¥'L ‘8T 14 €0+d6£L6S09 000 0+d81°L €0+dTrL0ES9 €0+dL85690'9 OSdANH
‘9T6LT ‘YO'TY ‘9’9 ‘0L'CI ¥ €0+d095€21°9 000 0+AvTT €0+dE09YLY9 €0+d80S19t'9 OSdANAH
‘68°6ST “1S°¢Y “89'0 “18°CI ¥ €0+300%2TT9 000 €0+ar1C €0+HC70STS'8 €0+AT600LT°6 0sd
‘00°00T ‘TE'0F ‘8%'9 ‘1T°CI ¥ €0+HL85690°9 000 0+dasTT €O+ATLIT8T'9 €0+HL85690°9 OdN €1
‘06°01 “9€°0 ‘SO0 € 20-H60899C'1 000 SO-ASY'T 20-d¥7969C'1 20-H07969C'1 OSdAN
‘€0¥1 “TE0 SO0 € C0-AS061LT T 000 €0-9¢S°C CO-H0LOVLY T 20-H9061LT'T OSdANH
‘90°¥1 “T€0 ‘SO0 € CO-HELEELT'T 000 YO-AIT'T CO-ASL6SLT'T 70-996€SLT'T OSdJANAH
‘IT°0T "8€°0 ‘S0°0 € C0-HES6L9T'T 000 €0-915°C 20-H9£80279'1 C0-H109819°1 0Ssd
PE0L “LEO SO0 € C0-AIvPLIT | 000 Y0-HLT9 0-dTyTeee’l C0-HS9EIIE | OdIN o
‘6C°S SE'E TL'L0E'L “00°LT ‘0L°0 ‘0S°€E L €O+AVTIT66'T 00001 CT-d€9'¥ €O+AYTIT66'T €O+AVTIY66'C OSdAN
‘6C°S SE'E TL'L0E'8 “00°LT ‘0L°0 ‘0S°€E L €0+H09LE00°E 000 00+dES’S €0+HLLTOTO'E €0+H06£L00°E OSdINH
‘6C°S 'SE'E ‘€6'L 0L “00°LT ‘0L°0 ‘0S°E L €0+HL09000°€ 000 10+d89°S €0+HAET0820°E €0+HESTTO0'E OSdANAH
‘6C°S 'SE'E 08'L “TL'L “00°LT ‘0L'0 ‘0S°€ L €0+HSTE000°E 000 10+999'T €0+HA187800°¢ €0+HS$8+900°€ 0Ssd
‘6C°S 'SE'E TL'LOE'L “00°LT ‘0L'0 ‘0S°€E L €O+AYTIT66'T 00001 €I-d€9'¥ €O+AYTIT66'T €O+AVTIY66'T OdN a4
dx 01 ' x woj uonisoq a 150D as as BN URIPIN
uonnjos 1sog suny O¢ PAQ 150D 31V ‘ONH

swapqoxd yrewryouaq uonezrundo SurresurSus ay) [[e 10J sunI (¢ Ul SWYILIOS[e Ay [[E JO SHNSAI YL 9 d|qe]

pringer

As

(2025) 111:31

Journal of Intelligent & Robotic Systems

Page 16 of 37

31

‘058 “€5°0 V0 € T0+H080T6S € 00001 P1-A8L'S T0+H080T6S "€ T0+H080T65 € OSd:AN
‘0S°8 “L¥"0 ‘TT0 € T0+H080T6S € €€°€8 00+dST' TO+HOSTL6S S T0+H080T65 € OSd:INH
‘0S°8 “€5°0 ‘TT0 € T0+H080T6S € €e'e8 €0-ab8'1 T0+AS80T6S € T0+H080T6S € OSdANAH
‘0S'8 L0 61°0 € T0+H080T6S '€ 000 00+dL6'T T0+A8ETYIOE T0+H00STT9'€ 0Sd
‘0S'8 “L¥'0 °ST0 ¢ T0+H080T6S '€ €€°€6 10-9CL'L T0+a80116S'S T0+H080T6S € 04N €14
‘170 ¥0°6 “LY'E “1T°0 v 00+dTS8YTLT 00001 91-48L'9 00+HTS8YTL T 00+dTS8YTL T OSd:AN
‘170 €0°6 ‘OF°E 120 v 00+d9198TL'T 000 10-90€°1 00+H886v91°C 00+656£0T°T OSd:INH
‘1270 °59°6 “90'F “L1°0 v 00+dETS698'T 000 10-92C'1 00+arE66Y6'1 00+d019916'T OSd:INAH
‘TT0“18'8 “86'F 91°0 v 00+dSE9ISYT 000 10-95T°S 00+HESTOST'T 00+ALIT6VET 0Sd
‘170 90°6 “LY'E ‘10 v 00+dTS8YTLT €€'e 04dIL'L 00+H60999L 1 00+096vTL 1 OdN T
‘000~ T8'61- 790 “6L°0 ‘050 ‘0T ‘050 “0€'T ‘050 “T1°T ‘00 1 10+d80£¥87'C 000 109651 10+9$85H6T°T 10+9€9€H8T°T OSdAN
‘000~ 00°0€- ‘00T “00°T ‘050 ‘05T ‘00 ‘00 ‘00 “90°T ‘050 1 10+d97961€°C 000 20-9TL'T 10+419802€°C 10+992961€°C OSd:INH
“€T°0 “€0°0T- “00°T “00°T “0S°0 ‘0S'T 0S°0 ‘T€'T 0S°0 ‘TI'T ‘050 1 10+9L0T88T'T 000 109LL'T 10+951060£°T 10+965+S62°T OSd:ANAH
“6L°81 “0S"8T “1L°0 09°0 “0S°0 “SL°0 “0S°0 “01°T “0§°0 ST'T 89°0 1 10+1966LE°C 000 00+d1T'T 10+9698109°C 10+9960%29°C 0Sd
‘000~ ‘8¥°0T- “00°T “00°'T “0S°0 ‘0T ‘050 “TE€'T “0S°0 “T1°T ‘00 11 10+9CSPP8TT 000 10-9€L°T 10+9LSTS0ET 10+9SSHS1ET OdN 11d
‘SO'T “69°LS STHE ‘69°LS v 00+d8S6TPS'9 00001 SI-9eSh 00+H8S6778°9 00+d8S6T78'9 OSdAN
‘S§°€00°0 20°0 00°0 v 00+d8S6TP89 0008 YO-AVS ¥ 00+ISLOEYS'9 00+d8S6T78'9 OSd:ANH
29°T°00°0 60°0 00°0 v 00+d8S6TP8'9 €e'€8 10-90T°€ 00+H9LTS€6'9 00+d8S6T78'9 OSdANAH
‘SO'T “69°LS ‘STHE ‘69°LS v 00+d8S6TP8'9 000 20-926'€ 00+H8€LTL89 00+dS89YS8'9 0Sd
‘SO'T “69°LS ‘STHE “69°LS v 00+d8S6TP8'9 00001 SI-ATSh 00+H8S6T78°9 00+d8S6T78'9 O 01d
‘00021 “80°F “¥0°T S0°0 v 00+d869TI1'8 0009 10+HE6°L 10+d1L9€0TL 00+d869211'8 OSd:AN
‘00021 “80°F “¥0°T S0°0) v 00+d869TI1'8 000 10+920°8 10+AY8LYSS6 TO+ASTLYLY'] OSdANH
“00°0T1 01 “LET *S0°0 v 00+APP0918'6 000 00+arT'E 10+H10VSLE T 10+H0T866€ 1 OSd:ANAH
‘0009 “€L°T ‘8E°OVE “65°81% v 20+H60889°C 000 T0+A01°T T0+AT6TE6S'E T0+APSILT6'E 0Sd
‘00021 “80°F “¥0°T S0°0 v 00+d869TI11'8 L9y 10+HL0°8 10+HTLYYTE 6 TO+ALTLYLY'T OAN 6d
‘670 ‘St'S z 10+39£9879°C 00001 SI-AETL 10+99€98+9°C 10+99€98+9°C OSdAN
‘670 ‘St'S z 10+d9€9879°C 00001 SI-AETL 10+99€98%9°C 10+99€98+9°C OSd:INH
‘6270 ‘St'S z 10+379€6+9°C 000 T0-9TLT 10+9009%59°C 10+9S6£759°T OSd:ANAH
‘600 ‘St'S z 10+39€9879°C L9°9€¢ 10-921°¢ 10+9505089°C 10+9L02989°C 0Sd
‘670 ‘St'S z 10+39€9879°C 00001 SI-AETL 10+99€£98%9°C 10+49€9879°C OdN 8d
“T€T 060 “00°0S ‘00°08 ¥ 20-ATIPLOE T 000 81-978'8 T0-ATIYLOE'T T0-ATIPLOE T OSd:AN
“TET 060 “00°0S ‘00°08 v T0-ATIPLOE T 000 81-9¢8'8 T0-ATIPLOE'T T0-ATIPLOE T OSd:INH
dx o) | x woij uonisod a 150D S as uesy UBIPON
uonn[os 1sog suny (g 19AQ 150D Sy RUNE|

penunuod 9o|qe]

pringer

Qs

Journal of Intelligent & Robotic Systems

(2025) 111:31

Page 17 of 37

31

3160
3140
3120

o 3100

3080

Cost Valu

3040

3020

3000

MFO

——Mean 0.024

= = Median 0.022
0.02
30018
K
o016
Z
Sooms
0012
001

2

PSO HyMFPSO HMFPSO MFPSO
F1

0.008

——Mean
= = Median

1

PSO HyMFPSO HMFPSO MFPSO
F2

Cost Value

263915

26391

263.905

2639

=

263.895

——Mean
= = Median

3 ——Mean
= = Median

Cost Value

Cost Value

MFO

PSO HyMFPSO HMFPSO MFPSO
F4

PSO HyMFPSO HMFPSO MFPSO
F5

MFO

——Mean
- = Median

-i-

PSO HyMFPSO HMFPSO
F6

MFPSO

Cost Value

——Mean
= = Median

3

Cost Value

@ o v » o

——Mean
= = Median

Cost Value

o g

——Mean
- = Median

Lo

——Mean
4 = = Median

Cost Value
Cost Value

| £ € T

——Mean
= — Median

PSO HYMFPSO HMFPSO MFPSO
F8

PSO HyMFPSO HMFPSO MFPSO

Fig.8 Violin plots for the Engineering Optimization Problems

curves for a sample of comparisons (F3 and F7), while the
complete set of 52 confidence curves is available in the Sup-

plementary Material (Section S5.2).

The median convergence trends across all the engineer-
ing optimization problems have been validated using the

MFO

PSO HyMFPSO HMFPSO MFPSO

PSO HyMFPSO HMFPSO MFPSO

MFO

PSO HyMFPSO HMFPSO MFPSO

Page test. As shown in Fig. 10, the convergence trends
align closely with those observed in the CEC2020/2021

benchmark functions (7), where MFPSO consistently excels

against hybrid variants while maintaining competitive trade-
offs with simpler algorithms like PSO. Detailed Page’s test

Table7 Statistical Analysis for Engineering Optimization Problems for all the algorithms, where MFPSO is the reference in all paired comparisons

Metric Alg. Friedman Test Sign Test Wilcoxon Test
SumRank MeanRank Rank p-value +/=/- R+ R- p-value H
Best MFO 325 2.5000 2 6.75E-05 +6/=7/-0 21 0 0.031250 TRUE
PSO 52 4.0000 5 +10/=3/-0 55 0 0.001953 TRUE
HyMFPSO 50.5 3.8846 4 +10/=3/-0 55 0 0.001953 TRUE
HMFPSO 38 2.9231 3 +8/=5/-0 36 0 0.007813 TRUE
MFPSO 22 1.6923 1 NA NA NA NA NA
Worst MFO 34 2.6154 2 6.94E-07 +10/=3/-0 55 0 0.001953 TRUE
PSO 62 4.7692 5 +13/=0/-0 91 0 0.000244 TRUE
HyMFPSO 42 3.2308 4 +12/=0/-1 80 11 0.013428 TRUE
HMFPSO 40.5 3.1154 3 +11/=2/-0 66 0 0.000977 TRUE
MFPSO 16.5 1.2692 1 NA NA NA NA NA
Median MFO 33 2.5385 2 2.82E-07 +8/=5/-0 36 0 0.007813 TRUE
PSO 63 4.8462 5 +13/=0/-0 91 0 0.000244 TRUE
HyMFPSO 41 3.1538 4 +11/=2/-0 66 0 0.000977 TRUE
HMFPSO 39.5 3.0385 3 +9/=4/-0 45 0 0.003906 TRUE
MFPSO 18.5 1.4231 1 NA NA NA NA NA
Mean MFO 32 2.4615 2 8.24E-07 +10/=3/-0 55 0 0.001953 TRUE
PSO 61 4.6923 5 +13/=0/-0 91 0 0.000244 TRUE
HyMFPSO 42 3.2308 3 +12/=0/-1 79 12 0.017090 TRUE
HMFPSO 43.5 3.3462 4 +11/=2/-0 66 0 0.000977 TRUE
MFPSO 16.5 1.2692 1 NA NA NA NA NA
SD MFO 34 2.6154 2 2.75E-06 +10/=3/-0 55 0 0.001953 TRUE
PSO 61 4.6923 5 +13/=0/-0 91 0 0.000244 TRUE
HyMFPSO 43 3.3077 4 +12/=0/-1 79 12 0.017090 TRUE
HMFPSO 39.5 3.0385 3 +10/=2/-1 59 7 0.018555 TRUE
MFPSO 17.5 1.3462 1 NA NA NA NA NA

@ Springer

31 Page 18 of 37

Journal of Intelligent & Robotic Systems

(2025) 111:31

Table 8 The confidence interval (CI) of the mean results difference for all the engineering optimization problems with MFPSO as a reference in

the unpaired comparisons

Fn. MFO PSO HyMFPSO HMFPSO
LB UB pCI LB UB pCI LB UB pCI LB UB pCI
F1 0.00E+00 0.00E+00 FALSE 7.50E+00 1.45E+01 TRUE 7.83E+00 1.13E+01 TRUE 1.30E+01 2.23E+01 TRUE
F2 533E-05 1.01E-03 TRUE 2.02E-03 5.19E-03 TRUE 5.34E-05 7.38E-05 TRUE 2.55E-05 5.06E-03 TRUE
F3 987E+00 3.07E+01 TRUE 6.85E+02 3.41E+03 TRUE 3.24E+02 4.02E+02 TRUE 9.87E+00 9.87E+00 TRUE
F4 881E-05 8.88E-05 TRUE 146E-05 4.52E-04 TRUE 3.83E-03 5.06E-03 TRUE 296E-06 1.58E-05 TRUE
F5 8.86E-10 1.36E-09 TRUE 1.26E-09 7.13E-08 TRUE 1.76E-11 1.14E-10 TRUE 9.69E-10 1.34E-09 TRUE
F6 2.12E-04 3.83E-04 TRUE 2.05E+00 246E+00 TRUE 7.32E-01 7.35E-01 TRUE 1.98E-04 4.61E-04 TRUE
F7 0.00E+00 1.92E-06 FALSE 1.08E-03 3.19E-03 TRUE 3.89E-08 1.78E-07 TRUE 0.00E+00 0.00E+00 FALSE
F8 0.00E+00 0.00E+00 FALSE 0.00E+00 3.76E-01 FALSE 5.70E-02 6.78E-02 TRUE 0.00E+00 0.00E+00 FALSE
F9 0.00E+00 3.69E-13 FALSE 2.56E+02 3.84E+02 TRUE -1.51E+02 249E+00 FALSE 5.51E-05 5.00E-03 TRUE
F10 0.00E+00 0.00E+00 FALSE 4.15E-03 3.22E-02 TRUE 0.00E+00 0.00E+00 FALSE 0.00E+00 0.00E+00 FALSE
F11 143E-03 341E-01 TRUE 2.76E+00 3.40E+00 TRUE 4.80E-02 1.11E-01 TRUE 3.53E-01 3.53E-01 TRUE
F12 3.58E-07 4.95E-04 TRUE 555E-01 6.73E-01 TRUE 1.81E-01 2.04E-01 TRUE 4.79E-01 4.79E-01 TRUE
F13 0.00E+00 0.00E+00 FALSE 0.00E+00 3.43E+00 FALSE 0.00E+00 0.00E+00 FALSE 0.00E+00 0.00E+00 FALSE
. F3 MFO vs. MFPSO . F3 PSO vs. MFPSO . F3HyMFPSO vs. MFPSO . F3 HMFPSO vs. MFPSO
0.8 E 0.8 E cl 08 E 0.8 E
! ! o o : ! o leuc
g 0.6 : % 0.6 : % 06 : % 0.6 :
z 04 E Z 04 E Z. 0.4 E g' 04 E
0.2 E 0.2 E 0.2 E 0.2 E
! ! 6a4.844 4063327 ! ! 9.87309,8730)
0 ' 0 ' 0 i 0 ' i
5 1‘0 20 30 40 fIJ 1000 2000 300‘0 4000 é 100 200 300 ‘400 500 600 l'I) 2 4 6 8 1'0
True difference in performance True difference in performance True difference in performance True difference in performance
F7 MFO vs. MFPSO F7 PSO vs. MFPSO F7 HyMFPSO vs. MFPSO F7 HMFPSO vs. MFPSO
oo —oror 0o I —am 1 :
08 By 08 E 08 E e 08
® LBofCl ' H ® (BofCl
® usofcl ' ® usofcl | ® usofcl
3 0.6 g 0.6 : % 0.6 : % 06
30.4 30.4 E 30.4 E Z104
0.2 0.2 E 0.2 E | 0.2
0000 ! ! 10,0000, 0.04999,0900
0 H 0 ' 0 ' ' 0 |
ll) 0.5 1 15 2 l‘] 1 ' 2 3 4 ll) 0.5 1 15 2 25 -1 -0.5 5 0.5 1
True difference in performance %10 True difference in performance %107 True difference in performance %107 True difference in performance

Fig.9 Confidence curves for the engineering optimization problems (F3 and F7) across the 30 runs, where MFPSO is compared with all algorithms

MFO vs MFPSO

—6— NFONFPSO (pval = 1.000)

—8— MFPSO-WFO (pval = 0.000)

Sum of Ranks
8

Sum of Ranks

0 s 10 15
Gut Points

PSO vs MFPSO

—0— PSOAFPSO (o-val = 1.000)
—8— MFPSO-PSO (o-val = 0.000)

o 5 10 15
Cut Points.

Fig. 10 Convergence trends between the algorithms using the Page’s test

@ Springer

HyMFPSO vs MFPSO

—8— HYMFPSO-MFPSO (o-val = 0.000)

—8— MFPSO-H/FPSO (o-val = 1.000)

: 2

Sum of Ranks
8

Sum of Ranks

g

HMFPSO vs MFPSO

—6— HNFPSGMFPSO (pval = 0000)

| —8— MFPSO-HMFPSO (pval = 1.000)

Journal of Intelligent & Robotic Systems (2025) 111:31

Page190f37 31

34778 83 wFo | 38
P50, Mrpso
a4
_ . 3805
8 34774 3 3
K Sass 3
2 sum B 2
%106 Z
S samm S S 3798
H 8.8 g
3 aa7ee H 3
H H < o)
= s 3 5
34764 189 3780
sare2 19 a78
32 a4 36 38 4 4z 48 3 4 I B 55 3 as 4
Log(Function Evaluations) Log(Function Evaluations) Log(Funcii
(F1)
1875 w5 raz2 5 24
Mrpso Mpso)
ae) 142 24t

142318}
142316}

a2

14281

142308

Log(Median Cost Value)
Log(Median Cost Value)

142306 -

Log(Median Cost Value)

1884 e o 142302

Log(Median Cost Value)

s B 4 45 4 s 5 55
jon Evaluations) Log(Function Evaluations) Log(Function Evaluations)

(F3) (F5) (F6)

029

lue)

MMMMM

|
3
|
Cost Value)

1364

Log(Median Cost Value
Log(Median Cost Val

0 s a4 26 38
Log(Function Evaluations) Log(Function Evaluations)

Log(Function Evaluations)

0 s
Log(Function Evaluations)

(F12)

‘ a5
Log(Function Evaluations)

(F11)

Fig. 11 Convergence graphs for the proposed MFPSO and MFO algorithms for the median error across 30 runs for Engineering Optimization

Problems

table is available in the Supplementary Material (Section
S$5.3).

Figure 11 highlights the convergence comparison between
the top two algorithms, MFO and MFPSO. The MFPSO
algorithm demonstrates faster convergence during the initial
iterations, while both algorithms achieve similar perfor-
mance toward the end, with no significant progress observed
in later stages. These results underscore MFPSO’s capability
to reach global optima across diverse and complex problem
landscapes consistently. It solidifies its role as a robust and
efficient solution for engineering optimization tasks while
outperforming state-of-the-art alternatives.

7 Hardware Design and Assembly
of the 4WD Car

7.1 Overall View of the Modified Elegoo Car

This section presents the overall hardware block diagram
of the proposed 4WD ADS, as shown in Fig. 12. The sys-
tem includes three main hardware categories: sensors (four

Fig. 12 The block diagram of
the overall hardware view of the

Encoder Date

rotary encoders), controllers (Arduino Mega and Raspberry
Pi), and actuators (four DC motors with motor drivers). The
Raspberry Pi is the primary controller, running ROS to imple-
ment the proposed real-time PID tuning algorithm. It receives
speed data from the Arduino and sends PID parameters to
maintain the desired motor speed [54]. The Arduino acts
as a secondary controller, driving the motors and providing
electric isolation. It applies PID control, receives encoder
feedback, and sends speed data to the Raspberry Pi, ensuring
a closed-loop system.

7.2 Modification 1: Adding Four Rotary Encoder

The car’s original design lacked encoders, preventing speed
monitoring and position estimation. Rotary encoders are
added to each motor to measure current speed and enable
closed-loop control. Each encoder comprises a 20-slot disc,
an LED light source, and a photodetector, which generates
pulses as the disc rotates [55, 56]. After mounting, friction
was observed between the rotary disc and the sensor body
due to the motor’s proximity to the base. This problem was
resolved by lifting the motor slightly using a 3mm nut on the

proposed system

<
< UART >

Raspberry Pi 4B

Updated PID gains

Arduino Mega

Motor Driver(s)

@ Springer

31 Page20of37

Journal of Intelligent & Robotic Systems (2025) 111:31

Fig. 13 Mounting and aligning
the four encoders

(a) Lifting the motor by 3mm nut.

vertical screw, allowing the disc to rotate freely (Fig. 13a).
Figure 13b shows the final encoder setup secured with 3M
double-sided adhesive tape.

7.3 Modification 2: Adding the Four Motor Drivers

The Elegoo car initially used two TB6612 motor drivers, each
controlling two motors, limiting the car to a two-wheel drive
setup and causing kinematic conflicts [32]. This limitation
was resolved by replacing the two TB6612 drivers with four
L298N drivers, one for each motor (14). The L298N drivers,
with a higher voltage range of 4.5V to 46V, were better suited
to handle the increased power demands of heavier compo-
nents like the Raspberry Pi and additional batteries [57, 58]
(Fig. 14).

7.4 Modification 3: Changing Arduino UNO to MEGA
2560

The Arduino UNO included with the Elegoo car lacks suf-
ficient 1O pins for the additional hardware: four encoders
(requiring four interrupt pins) and four L298N drivers (need-
ing four PWM and eight digital pins). With only 14 digital
pins (six PWM-capable) and two interrupt pins, the UNO
is unsuitable for the proposed system [59]. It is replaced by
the Arduino Mega 2560, which provides 54 digital pins (15

(a) Testing the L298N motor driver.

Fig. 14 Mounting motor drivers

@ Springer

(b) The encoders alignment top view.

PWM-capable) and six interrupt pins, meeting all hardware
requirements [60].

7.5 Modification 4: Adding Raspberry Pi on a New
Third Layer

A custom third layer is designed using Nano CAD soft-
ware and laser-cut from an acrylic sheet to accommodate
the Raspberry Pi and its batteries. The layer is mounted atop
the second layer using 3mm threaded bars and male-female
spacers as foundation piles (Fig. 15a). The Raspberry Pi
4B is secured on the new layer and powered by an X728
V2.3 smart UPS with two rechargeable 18650 lithium-ion
batteries, ensuring stable voltage and surge protection [61].
Additionally, an ultra-thin ice tower with a PWM-controlled
fan is installed to maintain the Raspberry Pi’s temperature
within a safe range (Fig. 15b).

8 Troubleshooting Speed and PWM
Synchronization

This section discusses the challenges encountered during
the implementation process and the steps taken to debug,
test, and resolve them. The 4WD architecture demands pre-
cise synchronization of all four motors, as even minor speed

(b) Wires after using Terminal Block.

Journal of Intelligent & Robotic Systems (2025) 111:31

Page210f37 31

Fig. 15 The third layer

BRI
assembly for the Raspberry Pi ANRAAREE

=2

(a) Mounting the third layer.

discrepancies can lead to trajectory deviations. The follow-
ing subsections detail four experiments conducted to identify
and address these issues.

8.1 Experiment 1: Arduino PWM Output
Synchronization

Motor speed is controlled via PWM, where the duty cycle (0-
100%) regulates the average voltage delivered to the motors.
Synchronization across all four PWM signals is essential,
as frequency mismatches can cause speed inconsistencies,
mechanical resonance, and instability [62, 63]. To verify syn-
chronization, the PWM frequencies of Arduino pins (7, 6, 5,
4) were monitored using a logic analyzer and a Tektronix
oscilloscope (Fig. 16). Pins 7, 6, and 5 produced consistent
frequencies (490.196 Hz), while pin 4 operated at 980.392
Hz (Fig. 17), revealing a synchronization issue.

The discrepancy was traced to Timer(, which controls pin
4 and defaults to Fast PWM mode at 976.5625 Hz. Syn-
chronization was achieved by adjusting Timer(Q’s prescaler
and TOP values using Eq. 11. Setting the prescaler to 256
and TOP to 127 resulted in a PWM frequency of 490.169

Laptop

]
| = 3
[Using CoolingFan > R

(b) Raspberry Pi before and after the cooling fan.

Hz. The modifications involved updating the CROA regis-
ter to 127 (TOP value) and configuring the TCCROB bits
(CS02, CS01, CS00) to (1, 0, 0). After these adjustments, all
PWM signals synchronized at 490.169 Hz with consistent
duty cycles (Fig. 18).

fcpu
- 11
fowm = g ler (1 + TOP) (in

8.2 Experiment 2: Motor Driver PWM Output Test

This experiment validates that the PWM signal output from
the motor driver matches the duty cycle and frequency of
the signal received from the Arduino. As shown in Fig. 19,
the Arduino is connected to a motor driver powered by a
7.4V input. The motor driver’s output is monitored using a
signal analyzer (CH1), with results visualized on a laptop.
The PWM signal at Arduino Pin 7 is set to a 50% duty cycle
and 490.196 Hz frequency for the test. Figure 20 confirms that
the motor driver’s output signal matches these specifications,
verifying the proper functionality of the L298N H-bridge IC.
Any deviation would indicate a fault in the motor driver.

ARDUINO

asv / USB Port N\
1 I

=)

USB Cable

Logic Analyzer

/ UsB Port

(a) Schematic diagram.

Fig. 16 The PWM Synchronization test circuit setup

L Logic Analyzer IDE)

\

(b) Hardware implementation.

@ Springer

31 Page22of37

Journal of Intelligent & Robotic Systems (2025) 111:31

Fig. 17 The results of the PWM
Synchronization test

(d) Channel 4 for the PWM Pin Number 4.

8.3 Experiment 3: Threshold Test of the Input
Voltage of the Motor Driver

This experiment evaluates the minimum input voltage requi-
red for the L298N motor drivers to operate effectively. The
L298N driver, powered by a 7.4V lithium battery, modulates
the motor voltage via PWM signals applied to its ENA/ENB

Fig. 18 The PWM signal for
pin 4 after the modifications

@ Springer

pins [58]. While the motor operates optimally between 6-
8V and draws a maximum current of 200mA, voltage drops
during battery discharge may impact performance. The test
involved varying the input voltage from 1.91V to 7.7V while
monitoring the PWM output signal (Fig. 19), with results
displayed in Fig. 21.

Journal of Intelligent & Robotic Systems

Page 23 of 37

31

ARDUINO

v/ usB P?n N\

Logic Analyzer
USB Port

Logic Analyzer IDE

T TR
k USB Port J

I—

DC Power Supply

——
—y I Input voltage
[v
+ TG varies from 2V
- T - to 8V

INT (1
(19) L298N Driver

(a) Schematic diagram.

Fig. 19 Schematic diagram of motor drivers signal test setup

At input voltages below 3.58V, no signal was produced,
indicating a “dead zone” (Fig. 21a and b). Between 3.58V
and 4.57V, the output signal displayed a near 100% duty
cycle, bypassing PWM control and applying maximum volt-
age to the motor (Fig. 21c and d). From 4.57V to 5.68V, the
output exhibited instability, with oscillations and irregular
pulses caused by brownout conditions (Fig. 21e to f) [64].
Stable operation with accurate PWM output was achieved
only above 5.7V, as shown in Fig. 21g and h. Therefore,
maintaining an input voltage of at least 5.7V is essential for
reliable motor driver performance, ensuring stable and pre-
dictable motor operation.

8.4 Experiment 4: Encoder Disc Alignment

Proper alignment of the encoder disc ensures that all 20 slots
on the rotary disc pass the light beam between the sender and
receiver, generating 20 pulses per revolution. The test setup
(Fig. 22) involves sending a PWM signal (30% duty cycle)

Fig.20 The output PWM signal
of a motor driver under 50%
duty cycle

(b) Hardware setup.

from the Arduino (Pin 7) to the motor driver, with the encoder
output connected to the Arduino’s interrupt pin (INT19).
Encoder readings are displayed on the Arduino IDE’s serial
monitor via UART communication.

A reference mark is placed on the wheel and car body as
the starting position. The motor rotates clockwise until the
encoder registers 20 pulses. If the reference marks realign
after one revolution, the encoder is correctly aligned, while
misalignment indicates the need for adjustment. This process
is repeated for all four wheels to ensure accurate encoder
readings.

9 PID Tuning Application for Speed Control
of DC Motor

This section details the application of MFPSO for tuning the
PID controller, which regulates the speed of the 4WD car’s
DC motors. Accurate speed control is essential in this system,

@ Springer

31 Page24of37

Journal of Intelligent & Robotic Systems (2025) 111:31

Fig.21 The results of threshold
input voltage test of the motor
driver

(e) Input 4.93v.

as steering is achieved by adjusting wheel speeds rather than
using a traditional steering mechanism.

9.1 PID Controller Structure

The PID controller minimizes the difference between the
desired and actual motor speeds. The closed-loop system,
shown in Fig. 23, consists of the motor as the plant, the motor
driver as the actuator, and the encoder providing feedback.
The encoder measures the actual motor speed, which is com-
pared to the desired speed to generate an error signal, e(t), as
described in Eq. 12. The PID controller processes this error
and generates a control signal, u(t), using proportional, inte-
gral, and derivative terms, as defined in Eq. 13. These terms
work together to ensure accurate and stable speed control by
minimizing errors and improving response time. The con-
troller outputs the PWM signal to the motor driver, which
adjusts the motor speed to match the desired value.

e(t) = Desired Speed — Actual Speed (12)
de(t)
dt

t
ut) =K, -et) +K; / e(t)dt + Ky - (13)
0

@ Springer

(f) Input 5.68v.

(g) Input 5.73v. (h) Input 7.68v.

9.2 Interactive PID Tuning Using the Proposed
MFPSO Algorithm

The MFPSO is implemented for real-time PID tuning in the
4WD vehicle’s speed control system. During the tuning pro-
cess, the MFPSO algorithm interacts dynamically with the
motors, using live feedback from the Arduino to continuously
refine the PID parameters (K, K;, and K). This real-time
approach ensures adaptive adjustments to account for any
discrepancies in motor performance.

In the MFPSO algorithm, the position of each moth rep-
resents a candidate solution for the PID parameters. The
algorithm evaluates these solutions using a fitness function,
defined as the sum of squared errors (SSE) over a given time
period T (Eq. 14). This fitness function quantifies the devia-
tion between the desired and actual motor speeds, penalizing
larger errors more heavily to prioritize accurate speed con-
trol.

T

SSE =) e(1)’ (14)

t=1

Figure 24 illustrates the system setup. The MFPSO runs
as a ROS node on the Raspberry Pi, which receives encoder-

Journal of Intelligent & Robotic Systems (2025) 111:31 Page250f37 31

USB Cable

Laptop f \
USB Port e o

ARDUINO

b / USB Port \

o=

K Serial Monitor & Arduino IDEJ

L298N Driver

\ 7.4V

22 ONINOYY

Wl Pw (7) - j
‘i IN1 gy 3
DIO (30) N2 RIAAIR

Ef GND Reference marker on

= the wheel and the disc

k INT (19) Z N

coder
VvCC
out * e
GND

Fig.22 Encoder Alignment test circuit

DC Motor

Controller

|

1
P =kp-e(t)]—
Desired

Speed /-\ e(t) r — L. +
(= (1=1k;[e(®)dt]—»Cz

/ Error Signal
y +

Motor Driver DC Motor

+

u(t) = PWM
Control Signal

-

Actual D=k de(t)
ctua = .
Speed ud dt

Actuator Plant

Encoder

Fig.23 Block diagram of the PID speed control for 4WD car

@ Springer

31 Page 26 of 37

Journal of Intelligent & Robotic Systems (2025) 111:31

[PID Control]

USB Cable
ARDUINO I 1-Adruino receives PID
/ = Parameters.
i 7.4v ort \ 2-Apply PID to generate the
[PID Tuning] 7 N PWM signal.
Laptop vce @
‘ 3- Apply PWM to motor.
1-Raspberry Pi Receives (USB Port 3-Send the current motor
the motor speed from & Motor Speed speed to the Raspberry Pi.
Arduino.
2- Calculate the SSE error. UART L298N Driver

2-Run MFPSO for PID

tuning to minimize SSE.
3-Send the updated PID
parameters to the

Arduino. 2_‘

PID Parameters
(Kp, Ki, Kd)

\)
:#:ROS

DC Motor

Fig.24 Schematic diagram of PID tuning using the proposed MFPSO algorithm

based speed data from the Arduino. The SSE is calculated
using Eq. 14 to update the fitness value and guide the algo-
rithm’s iterations, ultimately generating optimal PID gains
that minimize the error. These gains are sent back to the
Arduino, which updates the PWM duty cycle controlling the
DC motor. The encoder readings are then transmitted to the
Raspberry Pi, completing the feedback loop. This process
continues until stable PID parameters are achieved. The final
optimized PID gains obtained using the MFPSO algorithm
are K, = 2.6897, K; = 1.7789, and K; = 0.3910, ensuring
precise speed control.

9.3 Testing Four Motors of the 4WD Using
MFPSO-PID

The PID controller, tuned using the MFPSO algorithm, is
tested on all four motors of the 4WD vehicle to evaluate
synchronization and transient responses across various duty
cycles. During these tests, all motors are set to the same
PWM duty cycle, ranging from 40% to 100% in 5% incre-
ments, to assess performance during straight-line movement.
Key performance metrics-rise time (¢,), peak time (¢,), max-
imum overshoot (M), settling time (f;), and steady-state
error (ess)-are collected for each duty cycle [65].

The primary metrics, M, and ess, are critical for ensuring
accuracy and safety. The steady-state error (ess) is partic-
ularly important to maintain accurate positioning, crucial
for path planning, while minimizing M, is essential to

@ Springer

avoid excessive speeds or overshooting, which could disrupt
navigation or compromise safety. Although response speed
metrics like ¢ and ¢, are considered, maintaining accuracy
and safety are prioritized.

The experiment was conducted over approximately two
hours and 13 minutes (8034 seconds) to ensure reliable long-
term performance while monitoring transient and steady-
state responses. Throughout this period, the ess remained
consistently below 10~ for all motors, effectively treated
as zero, underscoring the system’s precision and stability.
Table 9 summarizes the results for ¢, t,, t;, and M, across
various duty cycles, while Fig. 25a highlights the uniformity
in steady-state performance.

At a 100% duty cycle, Fig. 25b illustrates the transient
responses of the four motors, revealing negligible differ-
ences in performance metrics. The low standard deviation
(SD) across all metrics, consistently below 0.05, further
demonstrates high synchronization and uniform performance
among the motors, validating the MFPSO-PID controller’s
effectiveness in maintaining consistent and synchronized
operation.

10 Transient Response Benchmark Testing
for all the PID Controllers

The section compares the transient response of the MFPSO
controller with other controllers to evaluate its performance

Journal of Intelligent & Robotic Systems (2025) 111:31

Page270f37 31

Table9 Performance metrics of the four DC motors in the 4WD using
MFPSO

SP Wheel RiseTime PeakTime SettlingTime M, (%)
40 RL 0.179231 0.414442 0.482988 2.285791
FR 0.179305 0.415099 0.485327 2.305023
RL 0.179487 0.410707 0.490883 2.354356
RR 0.179559 0.411358 0.492999 2.374227
Mean 0.179395 0.412902 0.488049 2.329849
SD 0.000153 0.002191 0.004675 0.041341
45 RL 0.160903 0.375486 0.457542 2453315
FR 0.160989 0.370608 0.459405 2.473344
RL 0.161202 0.372222 0.463892 2.524726
RR 0.161286 0.372869 0.465633 2.545182
Mean 0.161095 0.372796 0.461618 2.499142
SD 0.000179 0.002030 0.003777 0.042973
50 RL 0.146073 0.341456 0.432245 2.583205
FR 0.146171 0.342108 0.433881 2.603732
RL 0.146415 0.338609 0.437853 2.654932
RR 0.146512 0.339253 0.439401 2.676118
Mean 0.146293 0.340356 0.435845 2.629497
SD 0.000205 0.001688 0.003341 0.043310
55 RL 0.133909 0.316104 0.408732 2.683747
FR 0.134007 0.316766 0.410232 2.704251
RL 0.134249 0.313670 0.413893 2.757256
RR 0.134345 0.314324 0.415324 2.778410
Mean 0.134128 0.315216 0.412045 2.730916
SD 0.000203 0.001458 0.003079 0.044292
60 RL 0.123681 0.293270 0.387255 2.763480
FR 0.123779 0.293948 0.388664 2.784055
RL 0.124020 0.291229 0.392114 2.837210
RR 0.124116 0.291897 0.393465 2.858425
Mean 0.123899 0.292586 0.390374 2.810793
SD 0.000203 0.001243 0.002900 0.044423
65 RL 0.114978 0.274198 0.367710 2.827112
FR 0.115071 0.272309 0.369054 2.848654
RL 0.115315 0.270770 0.372353 2.900483
RR 0.115411 0.271459 0.373647 2.921878
Mean 0.115194 0.272184 0.370691 2.874532
SD 0.000203 0.001483 0.002773 0.044096
70 RL 0.107449 0.255629 0.349906 2.880085
FR 0.107544 0.255142 0.351202 2.900833
RL 0.107792 0.256413 0.354384 2.952669
RR 0.107894 0.255940 0.355636 2.973707

significance. The comparison includes the traditional Ziegler-
Nichols (ZN) method, PSO, MFO, hybrid HMFPSO, and
hybrid HyMFPSO algorithms, where each algorithm’s PID
parameters are computed.

Table 9 continued

SP Wheel RiseTime PeakTime SettlingTime M, (%)
Mean 0.107670 0.255781 0.352782 2.926824
SD 0.000208 0.000534 0.002676 0.043689
75 RL 0.100925 0.240329 0.333648 2.923950
FR 0.101020 0.239736 0.334904 2.944378
RL 0.101258 0.240827 0.337993 2.995729
RR 0.101362 0.240259 0.339209 3.016360
Mean 0.101141 0.240288 0.336438 2.970104
SD 0.000203 0.000447 0.002597 0.043160
80 RL 0.095193 0.225914 0.318746 2.961607
FR 0.095284 0.227787 0.319970 2.981460
RL 0.095527 0.225905 0.322982 3.031920
RR 0.095628 0.227801 0.324170 3.052478
Mean 0.095408 0.226852 0.321467 3.006866
SD 0.000204 0.001088 0.002533 0.042434
85 RL 0.090120 0.214089 0.305045 2.995076
FR 0.090210 0.215655 0.306240 3.014423
RL 0.090449 0.215549 0.309184 3.064128
RR 0.090547 0.214475 0.310347 3.083946
Mean 0.090331 0.214942 0.307704 3.039393
SD 0.000200 0.000779 0.002476 0.041570
90 RL 0.085580 0.202634 0.292401 3.025417
FR 0.085673 0.204386 0.293570 3.044576
RL 0.085903 0.204023 0.296455 3.093004
RR 0.085994 0.204921 0.297595 3.112290
Mean 0.085788 0.203991 0.295005 3.068822
SD 0.000193 0.000977 0.002425 0.040604
95 RL 0.081518 0.192925 0.280701 3.054134
FR 0.081609 0.193026 0.281845 3.072727
RL 0.081837 0.194894 0.284675 3.119562
RR 0.081929 0.195001 0.285794 3.138473
Mean 0.081723 0.193962 0.283254 3.096224
SD 0.000192 0.001140 0.002379 0.039384
100 RL 0.077848 0.183589 0.269843 3.081558
FR 0.077938 0.185260 0.270963 3.099622
RL 0.078164 0.185488 0.273740 3.145142
RR 0.078255 0.185581 0.274839 3.163438
Mean 0.078051 0.184980 0.272346 3.122440
SD 0.000190 0.000937 0.002333 0.038246

FL, FR, RL, and RR are the front left, front right, rear left, and rear right
motors. The SD tolerance level is 0.05. If SD < 0.05, this means there
is no significant difference, and the synchronization is achieved. SP is
the setpoint (duty cycle)

10.1 PID Parameter Setting

In the Ziegler-Nichols (ZN) method, the initial step involves
setting the gains K; = 0 and K; = 0, and then gradually

@ Springer

31 Page28of37

Journal of Intelligent & Robotic Systems (2025) 111:31

Duty Cycle 100%

Front Left Motor
1 1

ESS: 2.1345e-10

Front Right Motor

ESS: 1.8732e-09

0.5

Response
I
[4)]
Response

0
0 2000 4000 6000 8000 0 2000 4000 6000 8000
Time (s) Time (s)
Rear Left Motor Rear Right Motor

ESS: 2.0567e-09 ESS: 2.1984e-10

0.5

Response
o
(3]
Response

0
0 2000 4000 6000 8000 0 2000 4000 6000 8000
Time (s) Time (s)

(a) Steady-state response.

Duty Cycle 100 %

Front Left
IFanbate S L 17

Front Right

|
,' Mp: 3.081558% Mp: 3.099622%

I
I

sl
I

(0] (0]
g tr: 0.077848s g tr: 0.077938s
205 tp: 0.183589s 205 tp: 0.185260s
& ts: 0.269843s & ts: 0.270963s
0 0
0 05 1 15 2 0 05 1 15 2
Time (s) Time (s)
Rear Left Rear Right
1 === = = ===
1
3 Mp:3.145142% | @ |} Mp: 3.163438%
s tr: 0.078164s 5 tr: 0.078255s
205 tp: 0.185488s gosfl tp: 0.185581s
& ts: 0.273740s g | ts: 0.274839s
0 0
0 0.5 1 1.5 2 0 0.5 1 1.5 2
Time (s) Time (s)

(b) Transient response.

Fig.25 Transient and steady-state responses of four DC motors in the 4WD using MFPSO algorithm

increasing K, until the output speed begins to oscillate [66].
The gain value at this point is referred to as the ultimate gain,
K, which in this case equals 2.9, while the period of oscilla-
tion, P,,1is 1.4. These two values are then used to calculate the
PID parameters using Eq. 15 [67], resulting in K, = 1.75,
K; = 2.5, and K; = 0.3063. The PID parameters for the
MFO, PSO, HMFPSO, HyMFPSO, and MFPSO algorithms
are calculated as described in Section 9.2. Table 10 summa-
rizes the PID gains for all the algorithms.

:2XK[, depxPu (15)

Kp=06x K, Ki= ==, g

10.2 Transient Response Results

Different setpoints corresponding to duty cycles ranging
from 30% to 100% in 5% increments are applied to evaluate
the transient response performance. The starting point is set
at 30% because the motor driver cannot overcome inertia to
rotate the motor below this threshold. Table 11 presents the
performance metrics at different speeds for all algorithms,
while Fig. 26 illustrates the transient response curves for the

Table 10 PID parameters for each algorithm

Algorithm name K, K; Ky

Ziegler-Nichols 1.7500 2.5000 0.3063
MFO Algorithm 2.1495 2.0172 0.2970
PSO Algorithm 1.9831 1.9593 0.2198
HMFPSO Algorithm 1.9437 2.2411 0.3790
HyMFPSO Algorithm 2.6897 1.9143 0.5180
MFPSO Algorithm 2.6897 1.7789 0.3910

@ Springer

minimum and maximum duty cycles (additional figures are
provided in the Supplementary Materials (Section S6)). The
steady-state error remains zero across all algorithms due to
the integral action, which effectively eliminates this error
[65].

The M), in all algorithms is directly proportional to the
duty cycle; as the motor rotates at higher speeds, it is expected
to overshoot more. One of the standout features of the
MFPSO is its superior control over the M), for all duty cycles
compared to the other methods. The M, starts from 1.851%
at the lowest duty cycle to 3.160% at 100% duty cycle.
The MFPSO improves the overshoot by 86.11%, 64.99%,
71.02%, 74.37%, and 60.58% compared with the ZN, MFO,
PSO, HMFPSO, and HyMFPSO algorithms, respectively.
The algorithm’s ability to control and minimize the overshoot
makes it the best choice in the path planning application.

Regarding ¢,, all the controllers’ rise time is inversely pro-
portional to the duty cycle; they give a high response time at
small duty cycles and a low response time at higher speeds
and duty cycles. In all cases, the MFPSO algorithm has a bet-
ter 7, than HyMFPSO. MFPSO maintains competitive rise
times, slightly lagging between 30% and 60% duty cycles
compared to ZN, MFO, PSO, and HMFPSO. However, it
achieves the lowest rise time at 100%, demonstrating adap-
tive behavior that balances caution at lower speeds with rapid
response at higher speeds.

Regarding peak time, all the controllers’ peak time is
inversely proportional to the duty cycle. The MFPSO gives a
peak time higher than all the algorithms, especially at small
duty cycles; It is a trade-off for the significant overshoot per-
formance. The peak time of the MFPSO improves starting
from 50% duty cycle compared with HyMFPSO. The ZN-
tuned controller gives the lowest peak time compared with

Journal of Intelligent & Robotic Systems

(2025) 111:31

Page 29 of 37

31

Table 11 PID Tuning results and performance metrics

Table 11 continued

Sp
30%

35%

40%

45%

50%

55%

60%

65%

Alg.

ZN

MFO

PSO
HMFPSO
HyMFPSO
MFPSO

ZN
MFO

PSO
HMFPSO
HyMFPSO
MFPSO

ZN
MFO

PSO
HMFPSO
HyMFPSO
MFPSO

ZN
MFO

PSO
HMFPSO
HyMFPSO
MFPSO

ZN
MFO

PSO
HMFPSO
HyMFPSO
MFPSO

ZN
MFO

PSO
HMFPSO
HyMFPSO
MFPSO

ZN
MFO

PSO
HMFPSO
HyMFPSO
MFPSO

ZN
MFO
PSO

RiseTime
0.167
0.211
0.210
0.202
0.237
0.234

0.148
0.187
0.186
0.181
0.211
0.203

0.134
0.168
0.167
0.164
0.191
0.180

0.123
0.153
0.152
0.151
0.176
0.161

0.114
0.141
0.140
0.140
0.163
0.146

0.106
0.131
0.130
0.131
0.152
0.134

0.099
0.122
0.121
0.124
0.143
0.124

0.094
0.115
0.114

PeakTime

0.368
0.446
0.442
0.414
0.479
0.530

0.334
0.396
0.392
0.379
0.432
0.462

0.304
0.361
0.357
0.348
0.399
0.411

0.280
0.330
0.333
0.321
0.368
0.373

0.263
0.309
0.305
0.304
0.345
0.339

0.245
0.284
0.286
0.282
0.325
0.314

0.232
0.267
0.268
0.269
0.309
0.292

0.219
0.252
0.253

SettlingTime

0.816
0.698
0.707
0.682
0.749
0.543

0.783
0.639
0.646
0.625
0.689
0.515

0.737
0.592
0.598
0.580
0.642
0.493

0.694
0.554
0.558
0.544
0.603
0.465

0.655
0.521
0.524
0.513
0.571
0.439

0.621
0.493
0.495
0.488
0.543
0.415

0.590
0.469
0.471
0.465
0.519
0.393

0.562
0.448
0.449

M, (%)

15.670
6.814
7.648
10.713
7.027
1.851

16.887
7.435
8.386
11.439
7.601
2.147

17.853
7.889
8.949
11.944
7.991
2.371

18.638
8.224
9.377
12.294
8.252
2.542

19.291
8.470
9.715
12.520
8.415
2.672

19.845
8.651
9.978
12.674
8.509
2.775

20.322
8.786
10.185
12.758
8.549
2.855

20.739
8.882
10.351

SP
65%

70%

75%

80%

85%

90%

95%

100%

Wheel
HMFPSO
HyMFPSO
MFPSO

ZN
MFO

PSO
HMFPSO
HyMFPSO
MFPSO

ZN
MFO

PSO
HMFPSO
HyMFPSO
MFPSO

ZN
MFO

PSO
HMFPSO
HyMFPSO
MFPSO

ZN

MFO

PSO
HMFPSO
HyMFPSO
MFPSO

ZN
MFO

PSO
HMFPSO
HyMFPSO
MFPSO

ZN
MFO

PSO
HMFPSO
HyMFPSO
MFPSO

ZN
MFO

PSO
HMFPSO
HyMFPSO
MFPSO

RiseTime PeakTime SettlingTime M, (%)

0.117
0.135
0.115

0.089
0.108
0.107
0.111
0.128
0.108

0.085
0.102
0.102
0.106
0.122
0.101

0.081
0.097
0.097
0.101
0.116
0.096

0.077
0.093
0.092
0.097
0.111
0.091

0.074
0.089
0.088
0.093
0.107
0.086

0.071
0.085
0.085
0.089
0.102
0.082

0.069
0.082
0.081
0.086
0.099
0.078

0.257
0.294
0.271

0.207
0.240
0.240
0.246
0.282
0.256

0.198
0.228
0.229
0.236
0.270
0.240

0.191
0.219
0.217
0.227
0.260
0.228

0.182
0.210
0.208
0.219
0.252
0.215

0.175
0.200
0.200
0.211
0.244
0.204

0.170
0.193
0.191
0.204
0.236
0.195

0.162
0.186
0.184
0.197
0.230
0.186

0.446
0.498
0.373

0.537
0.429
0.430
0.429
0.480
0.355

0.514
0.412
0.412
0.414
0.463
0.339

0.492
0.397
0.397
0.400
0.449
0.324

0.473
0.383
0.383
0.387
0.435
0.310

0.455
0.371
0.370
0.376
0.423
0.297

0.438
0.360
0.358
0.366
0.412
0.286

0.422
0.349
0.347
0.357
0.402
0.275

12.791
8.550
2918

21.108
8.951
10.484
12.786
8.520
2.970

21.444
8.996
10.591
12.751
8.468
3.013

21.744
9.024
10.680
12.695
8.398
3.049

22.026
9.038
10.751
12.621
8.315
3.081

22.284
9.042
10.812
12.534
8.222
3.109

22.524
9.037
10.863
12.437
8.122
3.135

22.755
9.025
10.904
12.331
8.016
3.160

@ Springer

31 Page300f37

Journal of Intelligent & Robotic Systems (2025) 111:31

Duty Cycle = 30%

~ 3 ZN
MFO
=== PSO

0.35

Max Overshoot (%) Peak Time(s) |~~~ :M'\;Esgo
ZN: 15.670 ZN: 0.368 MyFPSO
MFO: 6.814 MFO: 0.446

o PSO: 7.648 PSO: 0.442

2 HMFPSO: 10.713 HMFPSO: 0.414

8 HyMFPSO: 7.027 HyMFPSO: 0.479

E‘? MFPSO: 1.851 MFPSO: 0.530

Rise Time (s)
ZN: 0.167

MFO: 0.211
PS0: 0.210
HMFPSO: 0.202
HyMFPSO: 0.237

Settling Time (s)
ZN:0.816

MFO: 0.698
PS0O: 0.707
HMFPSO: 0.682
HyMFPSQ: 0.749

MFPSO: 0.234 MFPSO: 0.543
0.5 1 1.5 2
Time (s)

(a) 30% duty cycle.

Fig.26 Transient response of the speed control using PID controller

the other algorithms. Still, the MFPSO gives a competitive
peak time, especially at high-duty cycles, considering the
outstanding performance in the other metrics.

Concerning the settling time, all the controllers’ set-
tling time is inversely proportional to the duty cycle. The
MFPSO gives the best settling time in all duty cycles com-
pared with the other algorithms, showing fast stability and
convergence towards the setpoint. At the maximum rating,
the MFPSO reduced the settling time by 34.83%, 21.20%,
20.75%, 22.97%, and 31.59% compared with the ZN, MFO,
PSO, HMFPSO, and HyMFPSO algorithms, respectively.
This advantage and the MPFSO’s best overshoot prove the
MFPSO algorithm’s superiority.

10.3 Statistical Analysis of the Results

Table 12 shows the statistical analysis of the transient
response results. Regarding the rise time ¢,, the p-value of
the Friedman test is significant and equals 3.49E — 11. The
ZN method has the best rise time with a minimum mean rank
of 1, while the MFPSO algorithm comes third after the PSO
algorithm with a mean rank of 3.6. The ZN outperforms the
MFPSO in the paired comparison in the rise time metric with
a significant p-value of 0.00065496. On the other hand, the
HMFPSO outperforms the HyMFPSO with a significant p-
value of 0.00065496. However, when comparing the MFPSO
with the MFO, PSO, and HMFPSO algorithms, the rise time
is insignificant, with p-values greater than 0.5, suggesting
that the MFPSO algorithm performs similarly to these other
algorithms in terms of rise time.

Figure 27a presents the confidence curves for the 7. met-
ric. The zero-reference line falls within the confidence curves
for the comparisons with the MFO, PSO, and HMFPSO
algorithms, showing insignificant results consistentwith the

@ Springer

Duty Cycle = 100%

ZN
; MFO
tep 7 PSO
PR - - - - HMFPSO
HyMFPSO
1 = MFPSO [~
Max Overshoot (%) Peak Time (s)
© ZN: 22.755 ZN: 0.162
2 08 MFO: 9.025 MFO: 0.186
1 PSO: 10.904 PSO: 0.184
8 HMFPSO: 12.331 HMFPSO: 0.197
o 06 HyMFPSO: 8.016 HyMFPSO: 0.230
MFPSO: 3.160 MFPSO: 0.186
04 Rise Time (s) Settling Time (s)
ZN: 0.069 ZN:0.422
MFO: 0.082 MFO: 0.349
§ PSO: 0.081 PSO: 0.347
02 HMFPS0:0.086 HMFPSO: 0.357
HyMFPSO: 0.099 HyMFPSO: 0.402
0 MFFSO: 0.078 ‘MFPSO: 0.275 | |
0 0.5 1 1.5 2
Time (s)

(b) 100% duty cycle.

Wilcoxon test results. For the ZN algorithm, the confidence
curve lies on the negative side, indicating a significantly
faster rise time for ZN compared to HMFPSO, with a con-
fidence interval ranging from 0.016686 to 0.038023s across
all duty cycles. Conversely, for the HyMFPSO algorithm, the
confidence curve lies on the positive side, demonstrating a
significantly faster rise time for MFPSO compared to HyMF-
PSO, with a confidence interval of [0.014173s to 0.020149s]
across all duty cycles.

Regarding the peak time ?,, the ZN method comes first in
the Friedman test with a significant p-value of 1.18E — 11,
while PSO comes second and the MFPSO comes fifth. The
paired comparisons show that the peak time of the ZN, MFO,
PSO, and HMFPSO algorithms outperforms the MFPSO
with significant p-values. The peak time is insignificant
when comparing the MFPSO and the HyMFPSO algorithms.
Figure 27b presents the confidence curves for the 7, metric.
The zero-reference line falls within the confidence curves
for the HyMFPSO comparison, showing insignificant peak
time. The confidence curves for ZN, MFO, PSO, and HMF-
PSO algorithms lie on the negative side, showing better peak
time than the MFPSO algorithm, consistent with Wilcoxon
test results.

Concerning the settling time 7;, the MFPSO algorithm
emerges as the clear winner in the Friedman test, with a sig-
nificant p-value of 4.47E — 13. The HMFPSO and MFO
algorithms follow the MFPSO closely in second and third
places. In contrast, the ZN algorithm exhibits the longest
settling time among all the algorithms. In the paired compar-
isons, the MFPSO consistently outperforms the ZN, MFO,
PSO, HMFPSO, and HyMFPSO algorithms in all 15 trials of
different duty cycles, as evidenced by significant p-values in
the Wilcoxon test. Figure 27c presents the confidence curves
for the #; metric. All confidence curves lie on the positive side,

Journal of Intelligent & Robotic Systems (2025) 111:31

Page310f37 31

Table 12 Statistical Analysis for all the algorithms

Metric Alg. Friedman Test Sign Test ~ Wilcoxon Test Confidence Interval
SumRank MeanRank p-value +/=/- R+ R- p-value H LB UB pCl
1y ZN 15 1.000 349E-11 +0/=0/-15 0 120 0.00065496 TRUE —0.038023 —0.016686 TRUE
MFO 57 3.800 +7/=0/-8 38 82 0.21147639 FALSE —0.008275 0.001028 FALSE
PSO 40 2.667 +6/=0/-9 31 89 0.09953969 FALSE —0.009245 0.000368 FALSE
HMFPSO 59 3.933 +8/=0/-7 54 66 0.73327139 FALSE —0.010077 0.004271 FALSE
HyMFPSO 90 6.000 +15/=0/-0 120 0 0.00065496 TRUE 0.014173 0.020149 TRUE
MFPSO 54 3.600 NA NA NA NA NA NA NA NA
tp ZN 15 1.000 1.18E-11 +0/=0/-15 0 120 0.00065496 TRUE —0.090626 —0.041163 TRUE
MFO 47 3.133 +1/=0/-14 119 0.00080528 TRUE —0.041191 —-0.011507 TRUE
PSO 41 2.733 +0/=0/-15 0 120 0.00065496 TRUE —0.043299 —0.011585 TRUE
HMFPSO 52 3.467 +4/=0/-11 18 102 0.01705872 TRUE —0.049090 —0.003996 TRUE
HyMFPSO 86 5.733 +11/=0/-4 91 29 0.07829229 FALSE —0.003237 0.031060 FALSE
MFPSO 74 4.933 NA NA NA NA NA NA NA NA
t ZN 90 6.000 447E-13 +15/=0/-0 120 O 0.00065496 TRUE 0.172012 0.220250 TRUE
MFO 44 2.933 +15/=0/-0 120 O 0.00065496 TRUE 0.073872 0.099061 TRUE
PSO 49 3.267 +15/=0/-0 120 0 0.00065496 TRUE 0.073500 0.101892 TRUE
HMFPSO 42 2.800 +15/=0/-0 120 O 0.00065496 TRUE 0.074711 0.091367 TRUE
HyMFPSO 75 5.000 +15/=0/-0 120 O 0.00065496 TRUE 0.125578 0.149625 TRUE
MFPSO 15 1.000 NA NA NA NA NA NA NA NA
M, ZN 90 6.000 2.08E-14 +15/=0/-0 120 O 0.00065496 TRUE 16.439093 18.530644 TRUE
MFO 41 2.733 +15/=0/-0 120 0 0.00065496 TRUE 5.610579 5.941262 TRUE
PSO 60 4.000 +15/=0/-0 120 O 0.00065496 TRUE 6.836199 7.578400 TRUE
HMFPSO 75 5.000 +15/=0/-0 120 0 0.00065496 TRUE 9.382883 9.772483 TRUE
HyMFPSO 34 2.267 +15/=0/-0 120 0 0.00065496 TRUE 5.262601 5.598712 TRUE
MFPSO 15 1.000 NA NA NA NA NA NA NA NA

MFPSO is the reference in all paired comparisons. For the Sign Test: ‘+’ means the number of functions in which the MFPSO is better, and ‘=’
means draw. For the Wilcoxon: R+ > R- means the MFPSO is better. For the Friedman test, the best algorithm is the one with the minimum mean
rank. The significance level @ equals 0.05. The results are significant if p-value < «

showing a significantly faster setting time for the MFPSO
than ZN, MFO, PSO, HMFPSO, and HyMFPSO algorithms
with positive confidence intervals.

Similarly, the MFPSO outperforms the ZN, MFO, PSO,
HMFPSO, and HyMFPSO algorithms in the maximum over-
shoot criteria. It comes first in the Friedman test with a
significant p-value of 2.08 E — 14. The HyMFPSO and MFO
algorithms come in second and third places, while ZN comes
last with the largest maximum overshoot. The MFPSO con-
sistently delivers the best results in all 15 trials in the paired
comparison test, as indicated by significant p-values in the
Wilcoxon test. Figure 27d presents the confidence curves
for the M, (maximum overshoot) metric. The confidence
curves for all algorithms (ZN, MFO, PSO, HMFPSO, and
HyMFPSO) consistently lie on the positive side, indicating
a significantly higher overshoot than the MFPSO algorithm
across all duty cycles. Specifically, the difference in over-
shoot (as a percentage) ranges from 16.44% to 18.53% for
ZN, 5.61% to 5.94% for MFO, 6.84% to 7.58% for PSO,

9.38% to 9.77% for HMFPSO, and 5.26% to 5.60% for
HyMFPSO. On average, MFPSO improves overshoot by
86.11% over ZN, 64.99% over MFO, 71.02% over PSO,
74.37% over HMFPSO, and 60.58% over HyMFPSO. This
substantial reduction in overshoot highlights MFPSO’s supe-
rior ability to control and minimize overshoot.

The MFPSO achieved the minimum overshoot with the
fastest settling response and an acceptable rise time. The
results show a multi-objective optimization problem and rep-
resent a trade-off between speed, accuracy, and safety. The
balanced performance between accuracy and speed of the
MFPSO algorithm suggests that MFPSO is the best choice
for applications whose primary goal is maintaining system
stability, safety, and precision. Its ability to provide the best
overshoot control while maintaining competitive response
times and adaptive response with high speed underlines its
effective performance as a PID tuning algorithm and a ver-
satile choice for speed control.

@ Springer

31 Page32of37

Journal of Intelligent & Robotic Systems (2025) 111:31

2N vs. MFPSO (tr) MFO vs. MFPSO (tr)

005 004 003 002 001 0
True difference in performance

PSO vs. MFPSO (tr)

10 5 0
True difference in performance <109

HMFPSO vs. MFPSO (tr)

HyMFPSO vs. MFPSO (tr)

0015 001 -0005 0 0005 001 0 0005 001 0015 002 0025
True difference in performance True difference in performance

(a) Rise time ().

2N vs. MFPSO (tp) MFO vs. MFPSO (tp)

PSO vs. MFPSO (tp)

HMFPSO vs. MFPSO (tp) HyMFPSO vs. MFPSO (tp)

012 01 008 006 004 002 O 005 004 003 002 001 0 006 005 -0.04

True difference in performance ‘True difference in performance.

003 002 001 0 006
True difference in performance

002 002 001 0 001 002 003 004

004 o
True difference in performance True difference in performance

(b) Peak time (tp).

2ZN vs. MFPSO (ts) MFO vs. MFPSO (ts)

it —cor.

® e

PSO vs. MFPSO (ts)

HMFPSO vs. MFPSO (ts) HyMFPSO vs. MFPSO (ts)

uBocH

025 0 00z 004 006 008 01 012

True difference in performance ‘True difference in performance

0 002 004 006 008 01 012 0 002 004 006 008 01 012 o
True difference in performance

02

0.0
True difference in performance True difference in performance

(c) Settling time (ts).

2N vs. MFPSO (Mp) MFO vs. MFPSO (Mp)

o ——Gont G 1t
4-00500

' R Lne

08 ! - - —med.ci 08
| ® woc

® st

2

5 0 15 12 3 a4 s
True difference in performance True difference in performance

PSO vs. MFPSO (Mp)

2 4 6
True difference in performance

HMFPSO vs. MFPSO (Mp) HyMFPSO vs. MFPSO (Mp)

[Gort cune 1t
0500

® woc
® s

sasea) lpmne | saeslaras ' a6z

10

2 4 6 8 12 3 a4 s
True difference in performance True difference in performance

(d) Maximum Overshoot (Mp).

Fig.27 Confidence curves for all the paired comparisons between MFPSO and all the other algorithms for all metrics

10.4 MFPSO Relationship Deductions
of the Performance Metrics

Supervised learning is applied to determine the relationship
between performance metrics and the duty cycle for the
MFPSO algorithm using ordinary least squares (OLS) regres-
sion. The OLS method minimizes the squared error between
observed and predicted values, fitting linear, quadratic, and
cubic models [68]. The general polynomial form is repre-
sented in Eq. 16, where x is the independent variable (duty
cycle), y is the dependent variable (performance metric), and
(Bo, B1, B2, B3) are model coefficients.

y = Bo+ Bix + fox* + p3x® (16)

The analysis shows that quadratic models generally offer
the best balance between accuracy and complexity for most
metrics, avoiding underfitting seen in linear models and
overfitting in cubic models (Fig. 28). Table 13 provides

@ Springer

detailed coefficients, R? values, p-values, and RMSE for
each model. For maximum overshoot (M), the quadratic
model parameters (g = 0.474149, 1 = 0.059425, and
B2 = —3.3258 E —04) explain 98.28 % of the variance in M),
with an RMSE of 0.0497. The positive slope of 81 confirms
that M, increases with the duty cycle, while the negative B>
accounts for curvature.

The rise time (#,) relationship is best described by the
quadratic model with (89 = 0.381766, 81 = —0.006237,
and B, = 3.2589E — 05), achieving an RMSE of 0.0043
and an R? of 99.09%. The negative slope of B indicates f,
decreases as the duty cycle increases. For peak time (7)),
the quadratic model parameters (Bp = 0.846839, 81 =
—0.013348, B, = 6.86 x 10_5) explain 99.08% of the vari-
ance in ¢, and yield an RMSE of 0.0096. The relationship
shows ¢, decreases with increasing duty cycle.

Settling time (#;) is best described by a linear model,
with parameters (89 =0.638315, 81 = —0.003848) explain-
ing 97.94% of the variance with an RMSE of 0.0121. The

Journal of Intelligent & Robotic Systems (2025) 111:31 Page330f37 31

Model 1 Model 2 Model 3

3.2 3.2

3 3

S s28 S8
K] i) i)

& & 26 & 26
3 k] k]
8 2. 8 8
%]]

2 224 224
g 3 3
O “ (e} (e}
8 % %

= 822 S22

2

o
N
a

o
N

oS
o

2 2
1.8 1.8 1.8
30 40 50 60 70 80 90 100 30 40 50 60 70 80 920 100 30 40 50 60 70 80 920 100
Duty Cycle (%) Duty Cycle (%) Duty Cycle (%)
(a) Maximum Overshoot vs Duty Cycle for the three models.
Model 1 Model 2 Model 3
0.55 T T T T T 0.55 T T T T 0.55 T T T T T
0.5 05
0.45 0.45
0.4
z @ 3 04
2 0.35 o)
;g E E 0.35
s 03 % x
& & & o3
0.25
0.2

o
o
o

=3

o

@
3

40 50 60 70 80 920 100 30 40 50 60 70 80 90 100 " 30 40 50 60 70 80 90 100
Duty Cycle (%) Duty Cycle (%) Duty Cycle (%)
(b) Rise time vs Duty Cycle for the three models.
Model 1 Model 2 Model 3
0.24 0.24 0.24
0.22 0.22 0.22
0.2 0.2
0.18 0.18
= =
© 0.16 © 0.16
£ £
e i
2 0.14 20.14
4 4
0.12 0.12
0.1 0.1
0.08 0.08
0.04 0.06 0.06
30 40 50 60 70 80 90 100 30 40 50 60 70 80 90 100 30 40 50 60 70 80 90 100
Duty Cycle (%) Duty Cycle (%) Duty Cycle (%)
(c) Peak time vs Duty Cycle for the three models.
Model 1 Model 2 Model 3
0.55 0.55 0.55
0.5 0.5 0.5
045 045 045
L IO IO
o o o
E £ £
F 04 F 04 F 04
g 2 2
E = E=1
& & &
0.35 0.35 0.35
0.3 0.3 0.3
0.25 0.25 0.25
30 40 50 60 70 80 90 100 30 40 50 60 70 80 90 100 30 40 50 60 70 80 90 100
Duty Cycle (%) Duty Cycle (%) Duty Cycle (%)

(d) Settling time vs Duty Cycle for the three models.

Fig. 28 Regression results of the MFPSO performance metrics results

@ Springer

31 Page34of37

Journal of Intelligent & Robotic Systems

(2025) 111:31

Table 13 OLS Regression Results for MFPSO Performance Metrics vs Duty Cycle

Metric Model Bo Bi B B3 R_squared p — val RMSE
M, 1 1.724113 0.016189 0.0000E+00 0.0000E+00 0.8506 9.9958E—07 0.1466
2 0.474149 0.059425 —3.3258E—04 0.0000E+00 0.9828 2.5538E—11 0.0497
3 —0.898670 0.133191 —1.5475E—-03 6.2302E—06 0.9989 1.1868E—16 0.0123
1y 1 0.259285 —0.002000 0.0000E+00 0.0000E+00 0.9027 6.0197E—08 0.0142
2 0.381766 —0.006237 3.2589E—05 0.0000E+00 0.9909 5.5213E—13 0.0043
3 0.499478 —0.012562 1.3676E—04 —5.3420E—07 0.9992 3.0602E—17 0.0013
tp 1 0.589003 —0.004429 0.0000E+00 0.0000E+00 0.9103 3.5228E—08 0.0300
2 0.846839 —0.013348 6.8604E—05 0.0000E+00 0.9908 6.2205E—13 0.0096
3 1.106813 —0.027317 2.9867E—-04 —1.1798E—06 0.9990 7.9783E—17 0.0031
ts 1 0.638315 —0.003848 0.0000E+00 0.0000E+00 0.9794 2.4350E—12 0.0121
2 0.746958 —0.007606 2.8907E—05 0.0000E+00 0.9997 5.3320E—22 0.0014
3 0.739352 —0.007197 2.2177E—05 3.4514E-08 0.9997 7.3135E—-20 0.0014

negative slope demonstrates that 7, decreases as the duty
cycle increases. All p-values are significant (< 0.05), show-
ing a strong relationship between the performance metrics
and the motor’s speed, represented in a continuous numeri-
cal relationship of the performance over time. These results
establish strong relationships between the duty cycle and per-
formance metrics, with quadratic models generally providing
the best representation. For f, a linear model suffices. This
analysis captures the continuous variation of performance
with motor speed, offering an accurate model for system
behavior across operating ranges.

11 Conclusion

This paper proposed a novel PID controller optimized by
the MFPSO algorithm to control the speed of DC motors
in a four-wheel differential drive (4WD) car, known for its
high maneuverability. The assembly and hardware design of
a modified Elegoo Smart Car V4 were discussed, including
multiple modifications such as adding encoders for feedback,
a Raspberry Pi controller for the ROS system, and upgraded
motor drivers to make the four motors independent. A practi-
cal procedure, structured as four experiments, was proposed
to ensure the alignment of the encoders and the synchroniza-
tion of the four motors.

The MFPSO algorithm, a novel hybrid that combines
the strengths of the PSO and MFO algorithms, is intro-
duced to address the PSO’s premature convergence and the
MFO’s slow convergence. The MFPSO outperformed the tra-
ditional MFO, PSO, and two other recent hybrid variants
on CEC2020/2021 and engineering optimization benchmark
functions, ranking first in the Friedman test with significant
p-values and confidence intervals, while the MFO ranked
second.

@ Springer

The proposed MFPSO algorithm was deployed as an inter-
active PID controller for the speed control of the 4WD car’s
DC motors. The PID-MFPSO controller demonstrated supe-
rior performance compared to the traditional Ziegler-Nichols
(ZN) method, MFO, PSO, and other hybrid algorithms,
achieving the minimum overshoot and settling time across
different duty cycles. The MFPSO algorithm achieved sig-
nificant improvements, reducing settling time by 34.83%,
21.20%, 20.75%, 22.97%, and 31.59%, and decreasing over-
shoot by 86.11%, 64.99%, 71.02%, 74.37%, and 60.58%
when compared to the ZN, MFO, PSO, HMFPSO, and
HyMFPSO algorithms, respectively.

The MFPSO algorithm shows excellent potential for
future applications in various PID control scenarios, such
as steering control, and in solving other engineering opti-
mization problems. Future work could further enhance the
performance of the MFPSO by introducing adaptive param-
eters or by integrating it with other optimization methods.

Supplementary Materials

The following supporting information can be downloaded at:
Supplementary Materials or at https://github.com/Mohamed
RedaMu/MFPSO-Algorithm. The supplementary materials
include Section S1: sensitivity analysis heatmaps and bar
charts for the MFPSO parameters (cy, ¢, and w) on the
10D and 20D CEC2020/2021 benchmark functions. Section
S2 covers statistical analysis background and preliminaries,
including confidence interval and confidence curves (Section
S2.1), convergence trends using Page Test (Section S2.2),
and computational time complexity analysis (Section S2.3).
Section S3 provides additional CEC2020/2021 benchmark
results, including detailed results and violin plots (Section

https://github.com/MohamedRedaMu/MFPSO-Algorithm
https://github.com/MohamedRedaMu/MFPSO-Algorithm

Journal of Intelligent & Robotic Systems (2025) 111:31

Page350f37 31

S3.1), full sets of confidence curves (Section S3.2), and a
detailed Page Test table (Section S3.3). Section S4 outlines
engineering optimization benchmark problem definitions.
Section S5 contains additional engineering optimization
benchmark results, such as detailed results and box plots
(Section S5.1), full sets of confidence curves (Section S5.2),
and a detailed Page Test table (Section S5.3). Section S6
includes additional transient response curves for PID speed
control testing at different duty cycles (30%-100%).

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s10846-025-02228-
1.

Author Contributions Conceptualization, M.R.; taxonomy, M.R.; met-
hodology, M.R.; software, M.R.; hardware, M.R.; visualization, M.R;
formal analysis, M.R.; validation, M.R.; data curation, M.R.; investiga-
tion, M.R.; resources, A.O.; writing—original draft preparation, M.R;
writing—review and editing, M.R., A.O, A.G., and A.Y.H.; supervi-
sion, A.O, A.G., and A.Y.H.; project administration, A.O, A.G., and
A.Y.H.; funding acquisition, A.O., All authors have read and agreed to
the published version of the manuscript.

Funding Not applicable.
Data Availability No datasets were used during the current study.

Code Availability The MATLAB source code and the result files for the
proposed algorithm are now available at the following GitHub reposi-
tory: https://github.com/MohamedRedaMu/MFPSO- Algorithm.

Declarations

Ethical Approval Not applicable.
Consent to Participate Not applicable.
Consent for Publication Not applicable.

Conflict of Interest There is no conflict of interest between the authors
to publish this manuscript.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

10.

1.

12.

13.

14.

15.

16.

17.

18.

19.

. Gao, H., Zhu, J., Zhang, T., Xie, G., Kan, Z., Hao, Z., Liu, K.:

Situational assessment for intelligent vehicles based on stochastic
model and gaussian distributions in typical traffic scenarios. IEEE
Trans. Syst. Man Cybern. Syst. 52(3), 1426 (2020)

. Wei, S., Pfeffer, PE., Edelmann, J.: State of the art: Ongoing

research in assessment methods for lane keeping assistance sys-
tems. IEEE Trans. Intell. Veh. (2023)

. Reda, M., Onsy, A., Haikal, A.Y., Ghanbari, A.: Optimizing the

steering of driverless personal mobility pods with a novel differ-
ential Harris hawks optimization algorithm (dhho) and encoder
modeling. Sensors (Basel, Switzerland) 24(14) (2024)

. Gao, H., Kan, Z., Li, K.: Robust lateral trajectory following

control of unmanned vehicle based on model predictive control.
IEEE/ASME Trans. Mechatron. 27(3), 1278 (2021)

. Reda, M., Onsy, A., Haikal, A.Y., Ghanbari, A.: Path planning

algorithms in the autonomous driving system: A comprehensive
review. Robot. Auton. Syst. 174, 104630 (2024)

. Hang, P, Chen, X.: In: Actuators, vol. 10-8. MDPI, p. 184 (2021)
. Toliyat, H.A., Kliman, G.B.: Handbook of Electric Motors, vol.

120. CRC press (2018)

. Tian, J., Tong, J., Luo, S.: Differential steering control of four-

wheel independent-drive electric vehicles. Energies 11(11), 2892
(2018)

. Galasso, F., Rizzini, D.L., Oleari, F., Caselli, S.: Efficient calibra-

tion of four wheel industrial agvs. Robot. Comput. Integr. Manuf.
57,116 (2019)

Borase, R.P., Maghade, D., Sondkar, S., Pawar, S.: A review of pid
control, tuning methods and applications. Int. J. Dyn. Control 9,
818 (2021)

Purnama, H.S., Sutikno, T., Alavandar, S., Subrata, A.C.: In: 2019
IEEE Conference on Energy Conversion (CENCON). IEEE, pp.
24-30 (2019)

Sridhar, H., Hemanth, P., Soumya, H., Joshi, B.G., et al.: In: 2020
International Conference on Smart Electronics and Communica-
tion (ICOSEC). IEEE, pp. 1162-1168 (2020)

Rahayu, E.S., Ma’arif, A., Cakan, A.: Particle swarm optimization
(pso) tuning of pid control on dc motor. Int. J. Robot. Control Syst.
(2022)

Shaikh, M.S., Raj, S., Babu, R., Kumar, S., Sagrolikar, K.: A hybrid
moth-flame algorithm with particle swarm optimization with appli-
cation in power transmission and distribution. Decis. Anal. J. 6,
100182 (2023)

Sahoo, S.K., Saha, A.K.: A hybrid moth flame optimization algo-
rithm for global optimization. J. Bionic Eng. 19(5), 1522 (2022)
Qi, Z., Shi, Q., Zhang, H.: Tuning of digital pid controllers using
particle swarm optimization algorithm for a can-based dc motor
subject to stochastic delays. IEEE Trans. Ind. Electron. 67(7), 5637
(2019)

Xie, W., Wang, J.S., Wang, H.B., et al.: Pi controller of speed regu-
lation of brushless dc motor based on particle swarm optimization
algorithm with improved inertia weights. Math. Probl. Eng. 2019
(2019)

Garba, S., Ntuen, E., Salawudeen, A., Zubairu, A., Abubakar,
A., Adebiyi, B.: Design of an optimized controller for dc motor
speed control using abc and pso: A comparative study. Bayero J.
Eng. Technol. (2019)

Yazgan, H., Yener, F,, Soysal, S., Ahmet, G.: Comparison perfor-
mances of pso and ga to tuning pid controller for the dc motor.
Sakarya Univ. J. Sci. 23(2), 162 (2019)

@ Springer

https://doi.org/10.1007/s10846-025-02228-1
https://doi.org/10.1007/s10846-025-02228-1
https://github.com/MohamedRedaMu/MFPSO-Algorithm
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

31

Page 36 of 37

Journal of Intelligent & Robotic Systems

(2025) 111:31

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Ramya, M., Jadhav, S.P., Pawar, S.N.: In: 2020 International Con-
ference for Emerging Technology (INCET). IEEE, pp. 1-6 (2020)
Acharyulu, B., Mohanty, B., Hota, P.: In: Applications of Artifi-
cial Intelligence Techniques in Engineering: SIGMA 2018, vol. 1.
Springer, pp. 509-518 (2019)

Bennaoui, A., Saadi, S., Ameur, A.: In: 2020 International Confer-
ence on Electrical Engineering (ICEE). IEEE, pp. 1-5 (2020)
Mustafa, N., Hashim, F.H.: Design of a predictive pid controller
using particle swarm optimization. Int. J. Electron. Telecommun.
66(4), 737 (2020)

Sultan, G.A., Sheet, A.F., Ibrahim, S.M., Farej, Z.K.: Speed control
of dc motor using fractional order pid controller based on particle
swarm optimization. Indones. J. Electr. Eng. Comput. Sci. 22(3),
1345 (2021)

Valluru, S.K., Sehgal, K., Thareja, H.: In: 2021 IEEE International
10T, Electronics and Mechatronics Conference (IEMTRONICS).
IEEE, pp. 1-6 (2021)

Safarzadeh, O., Noori-kalkhoran, O.: A fractional pid controller
based on fractional point kinetic model and particle swarm opti-
mization for power regulation of smart reactor. Nucl. Eng. Des.
377, 111137 (2021)

Vishnoi, V., Tiwari, S., Singla, R.: Performance analysis of moth
flame optimization-based split-range pid controller. Mapan 36, 67
(2021)

Yusubov, E., Bekirova, L.: A moth-flame optimized robust pid con-
troller for a sepic in photovoltaic applications. IFAC-PapersOnLine
55(11), 120 (2022)

Naik, K.P., Pradhan, R., Majhi, S.K.: In: International Confer-
ence on Communications and Cyber Physical Engineering 2018.
Springer, pp. 847-859 (2023)

Sharma, A., Sharma, V., Rahi, O.: In: Control and Measurement
Applications for Smart Grid: Select Proceedings of SGESC 2021.
Springer, pp. 79-89 (2022)

Shary, D.K.,Nekad, H.J., Alawan, M. A.: Speed control of brushless
dc motors using (conventional, heuristic, and intelligent) methods-
based pid controllers. Indones. J. Electr. Eng. Comput. Sci. 30(3),
1359 (2023)

ELEGOO Inc.: Smart robot car V4.0 with camera assembly
tutorial. https://www.elegoo.com/en-gb/blogs/arduino-projects/
elegoo-smart-robot-car-kit-v4-0-tutorial (2021). Available from
ELEGOO Inc. Website

Febbo, R., Flood, B., Halloy, J., Lau, P, Wong, K., Ayala, A.: In:
Practice and Experience in Advanced Research Computing. ACM,
pp. 333-338 (2020)

Latoui, A., Daachi, M.E.H.: In: 2021 International Conference on
Electrical, Computer and Energy Technologies (ICECET). IEEE,
pp. 1-5 (2021)

Singh, S., Weeber, M., Birke, K.P.: Advancing digital twin imple-
mentation: A toolbox for modelling and simulation. Procedia CIRP
99, 567 (2021)

Farrugia, S.: Autonomous Robot Path Planning and Obstacle
Avoidance in a Dynamic Environment. B.S. thesis, University of
Malta (2022)

Williams, N.L., Rewkowski, N., Li, J., Lin, M.C.: In: 2023 IEEE
International Conference on Robotics and Automation (ICRA).
IEEE, pp. 12478-12485 (2023)

Huynh, T., Walter, J., Aveta, F.: In: 2023 IEEE 14th Annual
Ubiquitous Computing, Electronics & Mobile Communication
Conference (UEMCON). IEEE, pp. 584-589 (2023)

Borg, G., Montebello, M.: In: 2023 14th International Conference
on Intelligent Systems: Theories and Applications (SITA). IEEE,
pp- 1-7 (2023)

Kennedy, J., Eberhart, R.: In: Proceedings of ICNN’95-
international Conference on Neural Networks. IEEE, vol. 4, pp.
1942-1948 (1995)

@ Springer

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

Mirjalili, S.: Moth-flame optimization algorithm: A novel nature-
inspired heuristic paradigm. Knowl.-based Syst. 89, 228 (2015)
Bingi, K., Kulkarni, R.R., Mantri, R.: In: 2021 IEEE Madras Sec-
tion Conference (MASCON). IEEE, pp. 1-6 (2021)

Yang, Z., Shi, K., Wu, A., Qiu, M., Hu, Y.: In: 2019 11th Inter-
national Conference on Intelligent Human-Machine Systems and
Cybernetics (IHMSC). IEEE, vol. 2, pp. 207-210 (2019)

Jain, M., Saihjpal, V., Singh, N., Singh, S.B.: An overview of vari-
ants and advancements of pso algorithm. Appl. Sci. 12(17), 8392
(2022)

Harrison, K.R., Ombuki-Berman, B.M., Engelbrecht, A.P.: In:
International Conference on Swarm Intelligence. Springer, pp. 93—
105 (2019)

Harrison, K.R., Engelbrecht, A.P., Ombuki-Berman, B.M.: Opti-
mal parameter regions and the time-dependence of control param-
eter values for the particle swarm optimization algorithm. Swarm
Evol. Comput. 41, 20 (2018)

Isiet, M., Gadala, M.: Sensitivity analysis of control parameters in
particle swarm optimization. J. Comput. Sci. 41, 101086 (2020)
Yue, C.T., Price, K.V., Suganthan, P.N., Liang, J.J., Ali, M.Z., Qu,
B.Y., Awad, N.H., Biswas, P.P.: Problem Definitions and Evalua-
tion Criteria for the CEC 2020 Special Session and Competition
on Single Objective Bound Constrained Numerical Optimiza-
tion. Technical Report, Nanyang Technological University. Sin-
gapore (2019). https://github.com/P-N-Suganthan/2020-Bound-
Constrained-Opt-Benchmark

Mohamed, A.W., Hadi, A.A., Mohamed, A.K., Agrawal, P., Kumar,
A., Suganthan, P.N.: Problem Definitions and Evaluation Crite-
ria for the CEC 2021 Special Session and Competition on Single
Objective Bound Constrained Numerical Optimization. Technical
Report. Nanyang Technological University (2020). https://github.
com/P-N-Suganthan/2021-SO-BCO

Heidari, A.A., Mirjalili, S., Faris, H., Aljarah, 1., Mafarja, M., Chen,
H.: Harris hawks optimization: Algorithm and applications. Future
Gener. Comput. Syst. 97, 849 (2019)

Carrasco, J., Garcia, S., Rueda, M., Das, S., Herrera, F.: Recent
trends in the use of statistical tests for comparing swarm and evo-
lutionary computing algorithms: Practical guidelines and a critical
review. Swarm Evol. Comput. 54, 100665 (2020)

Bayzidi, H.: Social network search for solving engineering
problems (2024). Available: https://www.mathworks.com/
matlabcentral/fileexchange/97577-social-network-search-for-
solving-engineering-problems. Last Accessed 18 Nov 2024
Bayzidi, H., Talatahari, S., Saraece, M., Lamarche, C.P.: Social
network search for solving engineering optimization problems.
Comput. Intell. Neurosci. 2021(1), 8548639 (2021)

Raspberry Pi Foundation: Raspberry Pi 4 Model B specifi-
cations. (n.d.). Available: https://www.raspberrypi.com/products/
raspberry-pi-4-model-b/specifications/. Last Accessed 14 Dec
2023

JOY-IT: KY-040 Rotary Encoder Datasheet. (n.d.). https://www.
alldatasheet.com/datasheet-pdf/pdf/1648739/JOY-1T/KY-040.
html. Accessed 14 Dec 2023

Ellin, A., Dolsak, G.: The design and application of rotary encoders.
Sensor Rev. 28(2), 150 (2008)

Al Williams: Fet based motor driver is better than 1298n.
(2019). Available online: https://hackaday.com/2019/12/29/fet-
based-motor-driver-is-better-than-1298n/

STMicroelectronics: L298N Dual Full-Bridge Driver. (n.d.).
https://www.alldatasheet.com/datasheet-pdf/pdf/22440/
STMICROELECTRONICS/L298N.html. Accessed
2023

Arduino: Arduino UNO R3. (n.d.). https://www.arduino.cc/en/
Main/ArduinoBoardUno. Accessed 14 Dec 2023

14 Dec

https://www.elegoo.com/en-gb/blogs/arduino-projects/elegoo-smart-robot-car-kit-v4-0-tutorial
https://www.elegoo.com/en-gb/blogs/arduino-projects/elegoo-smart-robot-car-kit-v4-0-tutorial
https://github.com/P-N-Suganthan/2020-Bound-Constrained-Opt-Benchmark
https://github.com/P-N-Suganthan/2020-Bound-Constrained-Opt-Benchmark
https://github.com/P-N-Suganthan/2021-SO-BCO
https://github.com/P-N-Suganthan/2021-SO-BCO
https://www.mathworks.com/matlabcentral/fileexchange/97577-social-network-search-for-solving-engineering-problems
https://www.mathworks.com/matlabcentral/fileexchange/97577-social-network-search-for-solving-engineering-problems
https://www.mathworks.com/matlabcentral/fileexchange/97577-social-network-search-for-solving-engineering-problems
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/specifications/
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/specifications/
https://www.alldatasheet.com/datasheet-pdf/pdf/1648739/JOY-IT/KY-040.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1648739/JOY-IT/KY-040.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1648739/JOY-IT/KY-040.html
https://hackaday.com/2019/12/29/fet-based-motor-driver-is-better-than-l298n/
https://hackaday.com/2019/12/29/fet-based-motor-driver-is-better-than-l298n/
https://www.alldatasheet.com/datasheet-pdf/pdf/22440/STMICROELECTRONICS/L298N.html
https://www.alldatasheet.com/datasheet-pdf/pdf/22440/STMICROELECTRONICS/L298N.html
https://www.arduino.cc/en/Main/ArduinoBoardUno
https://www.arduino.cc/en/Main/ArduinoBoardUno

Journal of Intelligent & Robotic Systems (2025) 111:31

Page370f37 31

60. Arduino: Arduino Mega 2560 Datasheet. (n.d.). Available: https://
docs.arduino.cc/hardware/mega-2560/. Last Accessed 14 Dec
2023

61. GEEKWORM: X728 V2.3 Raspberry Pi UPS Manual. (2022).
https://wiki.geekworm.com/X728#X728_V2.3. Accessed 23 Dec
2023

62. Tatenda Katsambe, C., Luckose, V., Shahabuddin, N.S.: Effect
of pulse width modulation on dc motor speed. Int. J.
Stud. Res. Technol. Manag. 5(2), 42 (2017). https://doi.
org/10.18510/ijsrtm.2017.522. https://mgesjournals.com/ijsrtm/
article/view/ijsrtm.2017.522

63. Raza, K.M., Mohd, K., Kumar, P.: Speed control of dc motor by
using pwm. Int. J. Adv. Res. Comput. Commun. Eng. 5(4) (2016)

64. Yung, C.: How to save your motors during a brownout, EC&M
(2005). https://www.ecmweb.com/content/article/20894433/how-
to-save-your-motors-during-a-brownout. Accessed 19 Dec 2023

65. Ogata, K.: Modern Control Engineering Fifth Edition. Prentice Hall
PTR. (2010)

66. Kumar, V., Patra, A.: Application of ziegler-nichols method for
tuning of pid controller. Int. J. Electr. Electron. Eng. 8(2), 559
(2016)

67. Patel, V.V.: Ziegler-nichols tuning method: Understanding the pid
controller. Resonance 25(10), 1385 (2020)

68. Boyko, A., Kukartsev, V., Tynchenko, V., Korpacheva, L., Dzhio-
eva, N., Rozhkova, A., Aponasenko, S.: In: Journal of Physics:
Conference Series, vol. 1582. IOP Publishing, vol. 1582, p. 012016
(2020)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Mohamed Reda received his B.Sc. and M.Sc. degrees in Computers
and Control Systems Engineering from the Faculty of Engineering at
Mansoura University, Egypt. He is currently pursuing his Ph.D. at the
School of Engineering, University of Central Lancashire (UCLan) in
the UK. Since 2016, he has been an Assistant Lecturer at the Fac-
ulty of Engineering, Mansoura University, and an Associate Lecturer
at UCLan’s School of Engineering since 2022. His primary research
areas include artificial intelligence, meta-heuristic optimization tech-
niques, evolutionary computation, and control engineering. Addition-
ally, Mohamed has a strong interest in the application of Al and deep
learning to embedded systems, biomedical systems, and robotics, with
a particular focus on automated vehicles.

Ahmed Onsy awarded his Ph.D. from the School of Mechanical and
Systems Engineering, Design Unit and Mechatronics Group, Newcas-
tle University, UK. His main research interests are intelligent diagnos-
tics and health management systems, intelligent maintenance systems,
advanced mechatronics, and embedded systems, which can be directly
applied to Intelligent Diagnostic and Health Management (DHM) and
Predictive Health Monitoring (PHM) systems for oil well, wind tur-
bine, aerospace (SHM & HUM), marine and automotive applications.
He is a member of the Jost Institute for Tribotechnology. Ahmed has
taken different roles at the University of Central Lancashire School of
Engineering since 2014: Lecturer, Senior Lecturer, Principal Lecturer,
and Academic Lead for the Mechanical and Maintenance Engineering
area. Ahmed is currently the Associate Dean School of Engineering
and Computing for Business Development and Partnerships, driving
the School of Engineering UK and International Partnerships. Ahmed
is a member of the University Research and Innovation Committee. He
successfully placed the Mechanical Engineering Programmes in the
top 15 universities in the UK in 2020 NSS results in overall student
satisfaction.

Amira Y. Haikal received the B.Sc., M.Sc., and Ph.D. degrees from the
Computers and Control Systems Engineering Department, Mansoura
University, Egypt. She is the vice dean of environmental and com-
munity affairs and the head of the Computers and Control Systems
Engineering Department, Faculty of Engineering, Mansoura Univer-
sity. Her major research interests include artificial intelligence fields:
meta-heuristic optimization techniques, machine learning, deep learn-
ing and smart systems engineering.

Ali Ghanbari received his Ph.D. in Mechanical Engineering from
Amirkabir University of Technology in 2011. His research focuses
on control of microrobots for biomedical applications. Dr Ghanbari is
interested in how to make and model intelligent devices at small scale.
He was a researcher in Robotics Engineering Department at Daegu
Gyeongbuk Institute of Science and Technology (DGIST) and Uni-
versity of Leeds working on micro-/nanorobots and soft robotics. Dr
Ghanbari was also a guest researcher at Multi-Scale Robotics Lab in
ETH Zurich. Currently, he is a lecturer in the School of Engineering
and Computing at the University of Central Lancashire.

@ Springer

https://docs.arduino.cc/hardware/mega-2560/
https://docs.arduino.cc/hardware/mega-2560/
https://wiki.geekworm.com/X728#X728_V2.3
https://doi.org/10.18510/ijsrtm.2017.522
https://doi.org/10.18510/ijsrtm.2017.522
https://mgesjournals.com/ijsrtm/article/view/ijsrtm.2017.522
https://mgesjournals.com/ijsrtm/article/view/ijsrtm.2017.522
https://www.ecmweb.com/content/article/20894433/how-to-save-your-motors-during-a-brownout
https://www.ecmweb.com/content/article/20894433/how-to-save-your-motors-during-a-brownout

	Motor Speed Control of Four-wheel Differential Drive Robots Using a New Hybrid Moth-flame Particle Swarm Optimization (MFPSO) Algorithm
	Abstract
	1 Introduction
	1.1 Four-wheel Differential Drive and DC Motors
	1.2 Contributions*-2.5pt
	1.3 Paper Organization*-2.5pt

	2 Review of Related Work and Algorithmic Foundations
	2.1 Literature Review
	2.2 Algorithmic Foundations of the Standard PSO and MFO Algorithms

	3 The Proposed Moth Flame Particle Swarm Optimization (MFPSO) Algorithm
	3.1 The Concept of the Proposed MFPSO Algorithm and its Equations
	3.2 Step-by-step Description of the MFPSO Algorithm

	4 Sensitivity Analysis of the MFPSO Algorithm
	4.1 The MFPSO Parameters and Experiment Setup
	4.2 Recommendations and Results Discussion

	5 Benchmark Testing on CEC2020/2021
	5.1 Parameter Settings and Results Collection
	5.2 Statistical Analysis of the Results
	5.3 Confidence Interval (CI) Analysis and Confidence Curves
	5.4 Convergence Analysis
	5.5 Computational Complexity

	6 Application on Engineering Optimization Benchmark Problems
	6.1 Results Tables
	6.2 Statistical Analysis of the Results

	7 Hardware Design and Assembly of the 4WD Car
	7.1 Overall View of the Modified Elegoo Car
	7.2 Modification 1: Adding Four Rotary Encoder
	7.3 Modification 2: Adding the Four Motor Drivers
	7.4 Modification 3: Changing Arduino UNO to MEGA 2560
	7.5 Modification 4: Adding Raspberry Pi on a New Third Layer

	8 Troubleshooting Speed and PWM Synchronization
	8.1 Experiment 1: Arduino PWM Output Synchronization
	8.2 Experiment 2: Motor Driver PWM Output Test
	8.3 Experiment 3: Threshold Test of the Input Voltage of the Motor Driver
	8.4 Experiment 4: Encoder Disc Alignment

	9 PID Tuning Application for Speed Control of DC Motor
	9.1 PID Controller Structure
	9.2 Interactive PID Tuning Using the Proposed MFPSO Algorithm
	9.3 Testing Four Motors of the 4WD Using MFPSO-PID

	10 Transient Response Benchmark Testing for all the PID Controllers
	10.1 PID Parameter Setting
	10.2 Transient Response Results
	10.3 Statistical Analysis of the Results
	10.4 MFPSO Relationship Deductions of the Performance Metrics

	11 Conclusion*-2.5pt
	Supplementary Materials
	References

