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Abstract. Modelling of composites requires the consideration of various components that work
together and interact in a linear and nonlinear way. Linear and nonlinear modelling in view of
demanding needs, like representative volume element calculations within numerical
homogenization and the advent of new tools, like physics informed neural networks, are
reviewed in this article. In particular, a concept is proposed towards the implementation of a
unilateral contact mechanics law within physics-informed neural networks. The theoretical
framework and related applications are presented. Results indicate that the proposed deep
learning approach can further be applied towards solving contact mechanics problems,
considering the mechanical interactions between the constituents of composites.

1 INTRODUCTION

Interaction between adjacent constituents within a composite at every scale can be described by
nonlinear laws, including unilateral contact and friction that lead to nonsmooth mechanics
problems. Numerical evaluation is based on specialized algorithms adopting complementarity
formulations, nonsmooth optimization, variational and hemivariational inequalities which have
shown their ability to capture highly nonlinear effects [1,2]. Alternatively, if one wants to use
classical Newton-type algorithms, appropriate penalty functions can be adopted to enforce
inequality and complementarity restrictions [3,4]. Beyond classical numerical approaches,
usage of neural networks for calculation of an approximate solution becomes popular,
especially within a framework of multi-scale computational homogenization [5-7]. In the latter
case the effect of the microstructural response for various loadings, including possible nonlinear
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interactions, is transferred to the homogenized medium through the Representative Volume
Element (RVE) technique. The solution at the RVE level along the iteration steps may involve
some errors, especially if data-driven constitutive laws are adopted [4]. Usage of physics-
informed neural networks, combined with complementarity or penalty formulations is proposed
here to solve the unilateral contact problem between a two-dimensional structure and a rigid
obstacle. This can be considered as a first step towards the numerical solution of the problem
of numerical homogenization that includes nonlinear interactions at the RVE level. In this
context, PINN training [8,9] can be incorporated at the RVE level in order to provide an
approximate solution of the mechanical problem and, subsequently, be integrated within the
multi-scale computational homogenization, or FE? method. Performance comparisons of
various alternatives and discussion for further work in the data-driven framework are included
in this article.

2 MODELLING CLASSICAL AND UNILATERAL INTERACTIONS IN
COMPOSITES

Different constituent materials must work together within a composite structure. Classical
interaction leads to continuity conditions in terms of equalities for displacements and stresses
at neighbouring points, see Figure 1. Nonlinear interaction can be modeled with appropriate
springs in normal and tangential to the interface directions. Unilateral interaction, including
contact and stick-slip friction, can be modelled with a set of inequalities and complementarity
conditions, following the techniques of nonsmooth mechanics, see Figure 2.

Part A
alb
A Uy F
%
g
A uy
| >
Uz
Part B
A _ il
Hj = 'f.\!-f ty = —ty
A E A 48
Uy, = Uy fy=-1

Figure 1: Classical interaction between adjacent parts in a composite
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Figure 2: Unilateral interaction between adjacent parts in a composite

Classical solution techniques are described in the literature. Most promising among them are
iterative solvers connected with domain decomposition tools that are appropriate for application
on parallel computers. In view of data-driven techniques, the Large Time Increment method
(LATIN) of macro-iterations should be mentioned.

3 PHYSICS-INFORMED NEURAL NETWORKS

Recently, artificial neural networks have been applied for the solution of partial differential
equations. Initial attempts for the solution of elastoplastic and contact problems in mechanics
by using the minimization of energy, using Hopfield and Tank neural networks have been
proposed by Kortesis and Panagiotopoulos [10] and Avdelas et al. [11]. Feed-forward NNs
trained by the backpropagation algorithm, have been used for the approximation of several
direct and inverse problems in mechanics based on examples (supervised learning), see among
others [12-15].

Based on differentiation of the neural network metamodel, which is available through
automatic differentiation within modern packages, an interesting extension of classical data-
driven technique rises. Namely, usage of governing differential equations and boundary or
interface relations for training of the neural network without the need of having input-output
data can be considered. The seminal work, due to Lagaris and his co-workers [16] and recent
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developments due to Raisi and Karniadakis led to the method of Physics Informed Neural
Networks (PINNS), [17].

The PINNs combine a collocation approach for fitting the governing differential equations
and boundary conditions at certain points in the domain and it’s boundary and share advantages
with more classical collocation and meshless computational mechanics techniques. Previous
results of the authors for the solution of beam and rod academic problems [18], and plates in
bending including contact [19] demonstrate the usage of this technique.

For complicated problems, including interaction of different domains, PINNs may have
convergence difficulties. Ensembles of neural networks or different networks for each domain
have been proposed for the effective treatment of such problems. In theory each involved
quantity may be approximated by a different neural network and each linear or nonlinear
interaction between them can be used for training the resulting PINN. In Figure 3 a schematic
Tonti’s diagram is presented, showing interaction in a problem of solid mechanics. In Figure 4,
a diagram outlining the proposed PINN is provided. In [20] first relevant results in linear plane
elastostatics are found and in [21] a recent contribution related to unilateral contact problems is
presented.
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Figure 3: Tonti’s diagram indicating all involved quantities and relations. Example of linear elasticity and
unilateral contact
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Figure 4: Schematic representation of a PINN approach.

4 PROPOSED APPLICATIONS

The flexibility of PINNSs for the solution of complex interaction problems has been outlined. In
addition to classical and unilateral contact relations, periodic boundary conditions as required
by numerical homogenization schemes are also easily introduced in the loss function of PINNs.
On the other hand, complexity of the problem may lead to difficulties in neural network training
due to ill-posedness, which manifests itself as a vanishing gradient, appearance of local minima,
that lead to premature stop in the iterative process, and similar numerical difficulties.

In this section numerical results of solving the complementarity problem with the Fischer-
Burmeister function with the use of PINN for the elasticity equations are presented. The
smoothed Fischer—Burmeister function 1: R? — R proposed in [3], [19], [21] for solving the
linear complementarity problems is written as ¥(a, b) = a + b — Va? + b2.

It is known that y¥(a,b) =0 < a=>0,b=>0,ab=0. It is considered a rectangular
structure, 0 < x <1[;,0 <y < [,, where l;, L, are the lengths of the sides. It is supposed that
[, =1, =1 and the Lamé parameters take the values 1 = 1,u = 0.5. For the elasticity
equations the following boundary conditions have been taken, oy, (x,[,) = 0, g,,, = P, where
P is the external loading forces, which is applied on the top of the structure. The forces take
the value P = —0.3. Furthermore, u,(0,y) = u,(0,y) = 0, the fixed edge of the considered
rectangular domain, oy, (l1,y) = 0, 0y (l3,y) =0 and g,,(x,0) = 0, gy, (x,0) = 0.
Inourcase a = —u, — g, b = —0,,, and instead of the condition g,,,,(x, 0) = 0 we include the
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equation uy,(x,0) + g + gy, (x,0) + ,/(u, (x,0) + g)? + 0,,(x,0) = 0 in the loss function.
The equation is trained at the corresponding collocation points. The structure under investigated

Is shown in Figure 5.
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Figure 5: The structure under investigation.

The constructed PINN consists of 4 hidden layers with [15,30,30,15] neurons. For training
40x40 collocation points (samples) and 30x30 test points have been taken. The 26x26 prediction
points have been considered. The structure with the rigid obstacle is illustrated on Figure 5. The
numerical results are shown on Figures 6-9. The loss error is less than 10~* after 10000 training

iterations (epochs) of the multi-PINN.

Figure 6: The structure before and after the unilateral contact with g=0.0002 after using the ensemble PINN with
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Figure 7: The predictions of u,, u, at the points (x;, 0) with the gap, g = 0.0001 between the elastic structure
and the obstacle after using the ensemble PINN with different epochs.
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Figure 8: The predictions of u,, u,, at the points (x;, 0) with the gap, g =,0.0002 between the elastic structure
and the obstacle after using the ensemble PINN with different epochs.
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Figure 9. The displacements u,, u, of the structure after using the PINN with epochs=4000 and g=0.0002.
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4 CONCLUSIONS

A deep learning approach is proposed in this article, aiming to integrate a Physics-informed
neural network architecture for an academic plane elasticity problem with unilateral contact
conditions. An ensemble approach is adopted to simulate the elastic material properties and the
unilateral contact between a two-dimensional structure and a rigid obstacle. Results show a
satisfactory performance in terms of the arising error. The work can be extended to simulate
the interaction between the constituents of more general heterogeneous materials. This will be
the first step towards applications in multi-scale computational homogenization.
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