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Abstract

This study examines the spatio-temporal dynamics of drought and microclimate variability in Rajasthan, India, from 2010
to 2022 using the Standardized Drought Composite Index (SDCI). The SDCI integrates the Temperature Condition Index
(TCI), Precipitation Condition Index (PCI), and Vegetation Condition Index (VCI) to assess drought severity. Remote sens-
ing data from MODIS and CHIRPS were processed using Google Earth Engine (GEE) for large-scale, continuous drought
monitoring. The results reveal significant drought conditions in 2014, 2015, 2020, 2021, and 2022, with southeastern districts
like Kota, Bundi, and Baran experiencing SDCI values below 0.2, indicating severe drought. Arid regions, including Jais-
almer, Barmer, and Bikaner, consistently exhibited extreme drought (SDCI <0.1) due to low annual precipitation (less than
250 mm). In contrast, semi-humid regions like Udaipur and Ajmer showed variable drought intensities linked to localized
climatic factors. Temperature-related vegetation stress was particularly high during pre-monsoon periods, affecting agricul-
tural productivity. The spatial analysis highlights significant regional disparities in drought severity, emphasizing the need
for tailored, location-specific drought management strategies. Incorporating green infrastructure, such as urban forests and
permeable pavements, is recommended to mitigate the impacts of drought and desertification. This study underscores the
utility of cloud-based geospatial tools for drought monitoring and resource planning, providing critical insights for sustain-
able urban and agricultural development. Future research could refine the SDCI methodology and integrate socio-economic
factors to enhance drought resilience.

Keywords Drought - Standardized Drought Composite Index (SDCI) - Geospatial analysis - Google Earth Engine (GEE) -
Climate variability - Remote sensing
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Introduction

Climate change and global warming have been two main
concerns in recent decades, significantly impacting global
weather patterns and increasing the risk of droughts
(Azamathulla et al., 2018). As global temperatures rise,
changes in precipitation patterns become more pro-
nounced, with some regions experiencing severe dryness
while others may face increased rainfall. These alterations
disrupt natural water cycles, leading to more frequent and
severe droughts. Recent estimates indicate that at least 45
countries are at heightened drought risk, putting millions
of people and their livelihoods at stake (Pellicone et al.,
2019). The 2022 Intergovernmental Panel on Climate
Change (IPCC) report (Intergovernmental Panel on Cli-
mate Change (IPCC), 2023) highlighted the severe impacts
of climate change across various ecosystems. Terrestrial,
freshwater, coastal, and open ocean marine ecosystems
have all suffered considerable harm, with biodiversity loss,
habitat degradation, and species distribution shifting being
some of the most critical issues. This ecological disruption
further exacerbates the vulnerability of human populations
dependent on these ecosystems for food, water, and other
resources (Khaniya et al., 2021).

Recent urban development trends have exacerbated the
challenges posed by climate change, particularly in the
context of droughts and desertification. As cities expand,
natural landscapes are replaced with impervious surfaces,
disrupting the natural water cycle and reducing the amount
of water that infiltrates the ground (Gramaglia et al.,
2024). This urban sprawl often leads to increased surface
runoff and decreased groundwater recharge, intensifying
water scarcity in urban areas.

Green infrastructure, which includes green roofs, urban
forests, and permeable pavements, plays a crucial role in
mitigating these adverse effects. By promoting natural
water infiltration and reducing surface runoff, green infra-
structure helps maintain local water cycles and replenishes
groundwater. This is particularly important in regions sus-
ceptible to drought, as maintaining groundwater levels can
help buffer against the impacts of prolonged dry periods.
Furthermore, the lack of vegetation in urban areas can lead
to higher temperatures, known as the urban heat island
effect, which can exacerbate water evaporation rates and
further strain water resources. By integrating green spaces
into urban planning, cities can cool their environments,
support biodiversity, and improve overall resilience to
climate-induced stresses (Olgun et al., 2024). However,
the rapid pace of urbanization and inadequate planning
and implementation of green infrastructure can lead to
conditions that favor desertification. As natural landscapes
are increasingly converted to urban areas without sufficient
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green infrastructure, soil erosion, and land degradation
risk increases. This can set off a feedback loop where
reduced vegetation cover leads to further soil degradation,
making it increasingly challenging to support plant life,
thus accelerating the process of desertification.

Drought is a recurring phenomenon characterized by pro-
longed periods of lower-than-normal precipitation, result-
ing in reduced stream flow, lower lake and reservoir levels,
and decreased groundwater levels (Haider & Adnan, 2014).
These hydrological impacts manifest in various forms, such
as agricultural droughts that impair crop production, hydro-
logical droughts that reduce water availability for drinking
and irrigation, and socio-economic droughts that affect the
overall economy and quality of life (Haile et al., 2020). The
impacts of drought are extensive, affecting transportation
systems by lowering river and canal water levels, thereby
hindering navigation and increasing transportation costs.
Soil quality deteriorates due to reduced moisture, leading to
decreased agricultural productivity and increased suscepti-
bility to erosion (Gavrilov et al., 2019). Ecosystems suffer as
plants and animals face water stress, leading to diminished
biodiversity and altered ecological balances. Energy gen-
eration, mainly hydroelectric power, is compromised due
to lower water availability. Global export and trade are also
impacted as key agricultural regions face reduced yields,
leading to higher prices and scarcity of certain commodi-
ties. Drought's indirect and cascading effects can influence
employment rates as agricultural and related industries
experience downturns. Food security is threatened as crop
failures and reduced livestock productivity lead to shortages
and increased prices. International trade patterns can shift as
countries adapt to these new challenges, sometimes resulting
in geopolitical tensions over water resources (Mishra & Rai,
2016; Yazdanpanah et al., 2014).

Remote sensing (RS) products provide meteorological
data and monitor changes in surface variables such as plant
health and water availability, offering extensive contextual
data for drought monitoring (Alahacoon & Edirisinghe,
2022; Omia et al., 2023; Vreugdenhil et al., 2022). RS and
Geographic Information Systems (GIS) have made it easier
to observe the world with sensors and track changes over
time. The primary advantage of RS and GIS techniques is
their ability to deliver continuous data over large areas in
both space and time, significantly addressing data scarcity
issues in arid regions like Rajasthan.

With the advancement of RS and GIS techniques, several
remote-sensing-based drought indices have been proposed
and evaluated, including the Normalized Difference Veg-
etation Index (NDVI) (Huang et al., 2021), the Tempera-
ture Condition Index (TCI) (Li et al., 2024), the Vegetation
Condition Index (VCI) (Yin et al., 2024), and the Vegeta-
tion Health Index (VHI) (Zeng et al., 2023). TCI, VCI, and
VHI are classified as vegetation indices as they describe the
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vegetation condition in specific areas, categorize it into dif-
ferent drought classes, and are commonly used for drought
monitoring. VCI is widely used to detect changes in vegeta-
tion from significantly worse to favorable conditions. TCI
identifies vegetative stress caused by high temperatures
and heavy moisture. VHI, a combination of TCI and VCI,
comprehensively assesses vegetation health (Gorelick et al.,
2017).

Despite significant advancements in remote sensing and
drought monitoring techniques, existing studies on drought
dynamics in Rajasthan often emphasize isolated indices
or have limited temporal coverage. Few studies integrate
multiple drought indices using cloud-computing platforms
like Google Earth Engine (GEE) for large-scale, continu-
ous drought monitoring over extended periods. Addition-
ally, research that thoroughly evaluates spatial variations
in drought severity across diverse climatic zones within
Rajasthan remains limited. This study addresses these gaps
by employing a composite drought index (SDCI) that inte-
grates the Temperature Condition Index (TCI), Precipita-
tion Condition Index (PCI), and Vegetation Condition Index
(VCI). By leveraging GEE’s automated analysis capabilities,
the study spans from 2010 to 2022, offering a robust frame-
work for spatiotemporal drought assessment. The research
explores how spatial and temporal drought patterns vary
across different climatic regions of Rajasthan during the
study period. It investigates which districts are most vul-
nerable to drought severity and examines the influence of
climatic and anthropogenic factors on drought dynamics.
Additionally, it evaluates how geospatial technologies,
particularly cloud-based platforms like GEE, can enhance
drought monitoring and inform targeted mitigation strategies
in arid and semi-arid regions. This comprehensive approach
provides valuable insights for policymakers to develop effec-
tive, location-specific drought management and adaptation
strategies.

Given the extensive impacts of drought, effective moni-
toring and analysis are crucial for mitigation and adaptation
strategies. Traditional methods of drought assessment often
rely on ground-based measurements and historical data,
which can be limited in scope and resolution. In contrast,
modern technologies offer more comprehensive and timely
insights (Qin et al., 2015). This study uses advanced geo-
spatial technologies, specifically the Google Earth Engine
(GEE), to conduct a spatiotemporal drought analysis in
Rajasthan, India. GEE is a cloud-based platform that ena-
bles large-scale geospatial data analysis, providing access to
vast datasets and powerful computational capabilities. Using
satellite imagery and climate data, we can derive various
drought indices to monitor and assess drought conditions
over time (Du et al., 2013). Rajasthan, known for its arid
and semi-arid climate, is particularly vulnerable to drought
due to its dependence on monsoon rains and limited water

resources. The state's agriculture, economy, and social struc-
ture are heavily influenced by water availability, making it
an ideal case study for understanding drought dynamics and
microclimate variability. This study aims to assess the cur-
rent drought in Rajasthan and develop tools and methodolo-
gies that can be applied to other regions facing similar chal-
lenges. By integrating remote sensing data with advanced
analytical techniques, we hope to provide a robust frame-
work for drought monitoring and management, aiding poli-
cymakers and stakeholders in making informed decisions to
mitigate the adverse effects of drought.

Materials and Methods
Study Area

Rajasthan, a state in India, is known for its beautiful land-
scapes and diverse ecology, nestled within the Thar Desert
and representing a microcosm of global environmental
challenges (refer to Fig. 1). With a population exceeding 77
million, Rajasthan's economy spans agriculture to tourism,
closely tied to its natural resources such as land and water.
However, rapid urbanization, unsustainable land use, and
climate variability have strained its ecosystems, intensifying
issues like soil erosion, water shortages, biodiversity decline,
desertification, and forest cover loss. Covering approxi-
mately 342,239 square kilometers, Rajasthan is the largest
state in India by land area, constituting about 10.4% of the
country's total geographical area (refer to Fig. 1). It shares
an international border with Pakistan to the west and north-
west and is bordered by Punjab, Haryana, Uttar Pradesh,
Madhya Pradesh, and Gujarat. Geographically, Rajasthan
features diverse landscapes, including the arid Thar Desert,
rocky terrains, hilly regions of the Vindhya and Aravalli
ranges, and fertile plains, resulting in climatic conditions
ranging from extreme aridity to semi-arid and subtropical
humid zones.

Data Collection

In this research, three remotely sensed derived indices—
Vegetation Condition Index (VCI), Temperature Condition
Index (TCI), and Precipitation Condition Index (PCI)—
are used to assess drought conditions in Rajasthan from
2010 to 2022. These indicators are computed using the
Google Earth Engine (GEE) platform. This service facili-
tates the retrieval of satellite imagery and remote sensing
derived products, such as Normalized Difference Vegeta-
tion Index (NDVI), Land Surface Temperature (LST),
and Climate Hazards Group InfraRed Precipitation with
Station (CHIRPS) data and processes them in the cloud.
Temperature and vegetation parameters are acquired from
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Fig. 1 Location of the study area

the MODIS (Moderate Resolution Imaging Spectroradi-
ometer) sensor on the Terra satellite, while precipitation
data are derived from CHIRPS. The datasets and sensors
used are detailed in the subsequent sections. The results,
presented in maps and charts, are imported into ArcGIS
Pro v2.9 and Excel for map production, reclassification,
and the final presentation. Additionally, the outcomes are
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available in the GEE applications, though customized
graphs and figures can be created outside these apps.

Vegetation Condition Index (VCI)

The National Oceanic and Atmospheric Administra-
tion (NOAA) has designed an AVHRR-based Vegetation
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Condition Index (VCI) that is highly useful for agricultural
drought monitoring (Rojas, 2021). VCI compares the current
NDVI to the range of values observed in the same period in
previous years (Copernicus Global Land Service, https://
land.copernicus.eu/global/products/vci, accessed on 21 Feb-
ruary 2023) and can detect vegetation growth over a time
interval. VCI is derived using Eq. (1) and can provide infor-
mation about the intensity and extent of drought:

NDVI-NDVI ;.
VCI = (0
NDVI .. — NDVI ..
NDVI, NDVI, .. and NDVI,, are the average monthly

NDVI and the corresponding multi-year absolute maxi-
mum and minimum for the same month as NDVI, respec-
tively. NDVI is obtained using MOD13Q1, a product of the
MODIS sensor generated every 16 days at a 250 m resolu-
tion. Lower and higher values of VCI indicate poor and good
vegetation state conditions, respectively (Chen et al., 2024;
Nyongesa et al., 2023; Senhorelo et al., 2023). Since VCI
does not apply to water bodies, areas where permanent water
bodies cover at least 60% are masked from the map. The
water bodies are detected using the MCD12Q1 product, Ver-
sion 6.1, derived from supervised MODIS Terra and Aqua
reflectance data classifications.

Temperature Condition Index (TCI)

The Temperature Condition Index (TCI) determines tem-
perature-related vegetation stress and stress due to excessive
moisture. This indicator has a formula similar to that of VCI.
To calculate TCI, the MOD11A2 products of the MODIS
sensor are used, which provide land surface temperature
(LST) every eight days with a 1000 m spatial resolution.
TCI is then obtained using Eq. (2) (Kogan, 1995).

Toax =T
TCl = —— )
Tax = Tonin
where T, ,, and T,;, are the average monthly temperature

derived from LST and its multi-year maximum and mini-
mum for the same month, respectively, TCI varies from 0,
indicating extremely unfavorable temperature conditions, to
1, indicating optimal temperature conditions.

Precipitation Condition Index (PCl)

Since one of the primary causes of aridity in any region is
a lack of rainfall, it is essential to explicitly quantify the
amount of rainfall in addition to the defined indicators.
This research uses the Precipitation Condition Index (PCI)
to evaluate precipitation patterns and detect precipitation
deficits arising from climate signals (Karavitis et al., 2014).
The PCI is calculated using data from the Climate Hazards

Group InfraRed Precipitation with Station data (CHIRPS),
a global dataset that combines satellite imagery with in-situ
station data to provide a comprehensive view of rainfall dis-
tribution. The CHIRPS dataset offers high-resolution data
that spans over three decades, enabling the analysis of long-
term precipitation trends and anomalies. This robust dataset
is instrumental in assessing the variability and changes in
precipitation, which are critical for understanding the aridity
conditions in the study region. The expression for calculat-
ing the PCI is as follows (Salameh, 2024).

n

PCI = Z Lp)z 3)
= p=

i=1

where P; represents the monthly precipitation values, P
denotes the long-term mean monthly precipitation, n is the
number of months in the period of interest.

By applying the PCI, researchers can quantify the extent
of precipitation deficits and surpluses, providing a clearer
picture of the climatic conditions contributing to aridity.
This information is crucial for developing strategies to mit-
igate the impacts of reduced rainfall and for better water
resource management in arid regions.

Methodology

The methodology employed in this study begins with clas-
sifying Rajasthan’s territory into homogeneous climate
zones using the De Martonne index, essential for accu-
rately computing the SDCI combined index integrating the
Temperature Condition Index (TCI), Vegetation Condition
Index (VCI), and Precipitation Condition Index (PCI). This
approach ensures the generation of coherent and region-spe-
cific values for TCI, VCI, and PCI, considering Rajasthan's
diverse climatic and geographical characteristics. Remote
sensing imagery, including MODIS sensor and CHIRPS
data, forms the basis of data acquisition. Processing is auto-
mated through the Google Earth Engine (GEE) platform,
harnessing its robust cloud computing capabilities for effi-
cient and periodic monitoring of Rajasthan's territory. This
framework provides timely insights into drought dynamics
and microclimate variability, aiding decision-makers in the
region's water resource management, agricultural planning,
and environmental conservation efforts.

Climate Classification

The climate of Rajasthan, characterized by its diverse mete-
orological patterns over extended periods, necessitates a
comprehensive analysis incorporating long-term data such as
temperature, rainfall, humidity, radiation, and wind dynam-
ics (MODIS and CHIRPS). To ensure consistent computa-
tion of drought indices, the territory is initially classified into
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homogeneous climate zones using the De Martonne aridity
index (IDM) as outlined in Eq. (4) (Mishra et al., 2021).
This classification is pivotal for accurately assessing drought
conditions and microclimate variability across Rajasthan,
leveraging cloud-based geospatial analysis facilitated by
the Google Earth Engine (GEE) platform. This approach
enhances understanding spatio-temporal drought dynamics
and supports informed decision-making in sustainable water
management, agriculture, and environmental conservation
strategies tailored to Rajasthan's unique climatic contexts
(Ismail & Go, 2021).

The De Martonne aridity index (IDM) is significant in
research that integrates cloud-based geospatial analysis to
comprehend spatiotemporal drought dynamics and microcli-
mate variability in Rajasthan. The IDM is computed using
the formula.

P
IDM = ———— @)

(T, +10)

P represents the annual rainfall amount obtained from
CHIRPS data, and T, signifies the mean yearly air tempera-
ture derived from the MODIS satellite’s MOD11A2 prod-
uct. This method utilizes a 12-year time series from Janu-
ary 2010 to December 2022, with data retrieval facilitated
through the Google Earth Engine platform. Applying the
De Martonne index (refer to Table 1), the study discerns
specific climate types across Rajasthan, enabling the clas-
sification and comprehension of regional climatic variations
crucial for evaluating drought conditions and microclimate
dynamics. This comprehensive analysis provides valuable
insights into the region's intricate patterns of drought and
microclimate dynamics.

Scaled Drought Combined Indicator (SDCI)

This research uses cloud-based geospatial analysis to
understand Rajasthan's drought dynamics and micro-
climate variability. Our approach uses the De Martonne
aridity index to classify different climate types based on
long-term precipitation and temperature data. Instead of
analyzing drought across the entire region of Rajasthan,
we are evaluating each climatic region separately. This
allows us to assess changes in the Vegetation Condi-
tion Index (VCI), Temperature Condition Index (TCI)

Table 1 The De Martonne

e . . . Type of climate Values of IDM
aridity index classification

Arid IDM< 10
Semi-arid 10<IDM <20
Mediterranean 20<IDM <24

Semi-humid 24<IDM <28

(Zhang et al., 2022), and Precipitation Condition Index
(PCI) (Zhang et al., 2022) individually, providing a more
detailed understanding of the conditions. These indices
are then combined into the scaled drought condition index
(SDCI), which gives us a comprehensive indicator to mon-
itor drought severity and its implications for agriculture,
weather, and hydrology. Unlike traditional methods, the
SDCI allows for flexibility in monitoring drought across
diverse climatic zones by adjusting the weighting of pre-
cipitation. The approach also assigns equal empirical
weights to PCI, TCI, and VCI in Mediterranean, semi-arid,
and arid zones, and these classifications are illustrated in
Table 2 within the study's framework.
For semi-humid climate:

1 1 1
SDCI = =PCI + =TCI + =-VCI
2 * 4 + 4 )
For arid, semi-arid, and Mediterranean climates:

SDCI = %PCI + %TCI + %va )

Results
Drought Analysis over Rajasthan

In a recent study, researchers used cloud-based geospatial
analysis to understand spatio-temporal drought dynamics
and microclimate variability in Rajasthan, India. The study
begins with an overview of Rajasthan’s climate classifi-
cation using the De Martonne index. Subsequently, the
researchers analyze drought's spatial and temporal distri-
bution across Rajasthan from January 2010 to December
2022 using the scaled drought condition index (SDCI).
Their analysis reveals how unfavorable temperature
extremes, such as very high or very low temperatures
combined with low precipitation, contribute to lower
values of vegetation condition index (VCI) and SDCI,
highlighting prevalent drought conditions. The study also
includes selected graphs illustrating significant changes

Table 2 Drought classification based on SDCI

Classification SDCI index
Extreme drought 0<SDCI<0.1
Severe drought 0.1<SDCI<0.2
Moderate drought 0.2<SDCI<0.3
Light drought 0.3<SDCI<0.4
No drought SDCI>0.4
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and provides detailed discussions in subsequent sections.
These insights are vital for comprehensively assessing and
managing drought impacts in Rajasthan's diverse climatic
settings.

Climate Classification of Rajasthan

The climate classification for Rajasthan is depicted in Fig. 2
using the De Martonne index (IDM) calculated over a spe-
cific study period. The IDM serves to quantify the rela-
tionship between precipitation and temperature, providing
crucial insights into the aridity levels experienced in the
region. Rajasthan encompasses diverse climatic zones. The
arid zones, characterized by IDM values below 10, include
Barmer, Bikaner, Churu, Hanumangarh, Jaisalmer, Jalore,
Jhunjhunu, Jodhpur, Nagaur, Pali, Sikar, Sirohi, and Sri
Ganganagar. These areas face severe water scarcity due to
minimal rainfall compared to potential evapotranspiration,
presenting significant challenges for agriculture and water
management. The semi-arid zones, with IDM values ranging
from 10 to 20, encompass Ajmer, Alwar, Banswara, Baran,
Bharatpur, Bhilwara, Bundi, Chittorgarh, Dausa, Dholpur,
Dungarpur, Jaipur, Jhalawar, Karauli, Kota, Pratapgarh,
Rajsamand, Sawai Madhopur, Tonk, and Udaipur. These
regions experience moderate to sporadic rainfall, which
supports a mix of rainfed agriculture and semi-arid vegeta-
tion. The variations in precipitation and temperature patterns

across these climatic zones significantly influence agricul-
ture, water resource management, and ecological sustainabil-
ity in Rajasthan. Developing tailored strategies that consider
the specific climatic characteristics of each zone is essential
for mitigating drought risks, improving agricultural produc-
tivity, and fostering sustainable regional development.

Arid Climate

The results of this study revealed significant temporal
variations in drought severity, with notable drought years
including 2010, 2012, and 2015, as well as better conditions
in 2013 and 2016. Spatial analysis indicated more severe
drought conditions in western Rajasthan, particularly in
the Thar Desert region, compared to the eastern areas. Sea-
sonal analysis identified pre-monsoon (March—May) and
post-monsoon (October—December) periods as critical for
drought development, with pre-monsoon periods often expe-
riencing higher severity. Classifying homogeneous climate
zones showed that arid and semi-arid zones were more vul-
nerable to droughts. A strong correlation between drought
indices and agricultural productivity was established, high-
lighting significant declines in crop yields during severe
drought years. Figure 3 presents the results from the analysis
of SDCI, PCI, VIC, and TCI indices for arid climate.

The SDCI values for the 12 years indicate that moderate
to severe dryness is a predominant weather condition in the
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Fig.3 Trends in arid climate from January 2010 to December 2022: a For SDCI, b For PCI, ¢ For VCI, d For TCI
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Fig.3 (continued)

arid regions of Rajasthan, as illustrated in Fig. 3a. This per-
sistent dryness, except for notable periods in March 2013,
December 2017, and March 2018, reflects the undesirable
weather conditions characterized by low precipitation and
high vegetation stress, as indicated by the TCI, PCI, and VCI
indices. Additionally, based on the De Martonne classifica-
tion, the arid regions of Rajasthan exhibit these challenging
conditions, highlighting the critical need for targeted drought
management and microclimate adaptation strategies. Inte-
grating cloud-based geospatial analysis provided a robust
framework for real-time assessment and decision-making.

The Precipitation Condition Index (PCI) from January
2010 to December 2022 in Rajasthan's arid region exhib-
ited dynamic temporal patterns linked closely to climatic
variability. From January 2010 to December 2012, PCI val-
ues generally reflected favorable precipitation conditions,
fluctuating seasonally with rainfall patterns. However, from
January 2013 to December 2015, PCI experienced notable
declines, coinciding with prolonged droughts that severely
impacted water availability. Subsequent years, especially
from January 2016 to December 2018, showed variable
recovery trends in PCI amidst fluctuating precipitation lev-
els. PCI values exhibited mixed trends from January 2019
to December 2022, responding to erratic precipitation and
temperature shifts.

The observed PCI fluctuations underscore the region’s
susceptibility to climatic extremes, particularly droughts,
which profoundly affect water resources. The period from
2013 to 2015 highlighted the critical role of precipitation in
maintaining ecological balance in arid environments. Post-
2015 recovery phases underscored the region's resilience to
adapt to climatic variations, although effectiveness varied
across different years and regions within Rajasthan. The
alignment of PCI fluctuations with changes in the Standard-
ized Drought Condition Index (SDCI) further emphasizes

(@

the strong correlation between precipitation conditions and
drought severity. Integrating PCI and SDCI assessments
proves valuable for comprehensive drought monitoring
and adaptive management strategies in arid regions, such
as Rajasthan, and is essential for enhancing resilience and
sustainability in water resource management under changing
climatic conditions. The temporal trends of the Precipita-
tion Condition Index (PCI) from 2010 to 2022 are depicted
in Fig. 3b, illustrating fluctuations that reflect the region's
sensitivity to climatic variability and drought impacts.

Analysis of Vegetation Condition Index (VCI) trends
from January 2010 to December 2022 Fig. 3c revealed sig-
nificant temporal variability in vegetation health in the arid
region of Rajasthan. VCI values fluctuated widely over the
study period, reflecting sensitivity to climatic conditions
such as rainfall and drought events. 2010-2012 generally
exhibited moderate to high VCI values, indicative of favora-
ble vegetation conditions following adequate rainfall. How-
ever, 2013 to 2015 saw pronounced declines in VCI, signal-
ing vegetation stress during prolonged droughts. Subsequent
years showed partial recovery, with VCI values from 2016 to
2018 fluctuating but generally recovering to moderate levels.
The latter part of the study period, from 2019 to 2022, dis-
played mixed trends, with VCI values varying in response
to seasonal rainfall patterns. Looking forward, projections
for the next six years (2023-2028) suggest potential chal-
lenges due to predicted shifts in precipitation patterns and
increasing variability in climate conditions. These findings
underscore the dynamic nature of vegetation responses to
climatic variability and highlight the importance of adaptive
management strategies to enhance resilience and sustainable
land use practices in arid regions.

The Temporal Climate Index (TCI) data from January
2010 to December 2022 for the arid region of Rajasthan
reveal significant variability in climatic conditions over the
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study period. From January 2010 to December 2015, TCI
values generally remained low, indicating prolonged peri-
ods of dry and unfavorable climatic conditions. This period
corresponds to severe drought years, as reflected in the TCI
data, with notable dips in values during certain months, such
as May 2010, September 2012, and November 2014, sug-
gesting acute climatic stress affecting the region's agricul-
tural and ecological systems. From January 2016 onwards,
the TCI shows a mixed pattern of recovery and variability.
Some years exhibit moderate to high TCI values, indicat-
ing relatively better climatic conditions and recovery phases
following drought periods. For instance, notable peaks in
TCI values occurred in March 2016, April 2018, and Sep-
tember 2019, reflecting periods of improved climatic condi-
tions conducive to agriculture and environmental stability.
However, the data also highlight continuing challenges, with
fluctuations in TCI values post-2016 underscoring ongoing
climatic variability and occasional stress periods despite
recovery trends. Figure 3d illustrates the temporal variation
in TCI from 2010 to 2022, emphasizing the arid region's
dynamic nature of climatic conditions. This graphical rep-
resentation visually captures the peaks and troughs in TCI
values, clearly depicting climatic variability and its impact
on regional water resources and agricultural productivity.
About the Standardized Drought Condition Index (SDCI),
the fluctuations observed in TCI closely align with changes
in drought severity, as reflected in supplementary data (not
shown). This alignment underscores the interplay between
precipitation deficits, temperature variations, and overall cli-
matic stress, highlighting the interconnectedness of TCI and
SDCI in assessing and monitoring drought impacts in arid
regions like Rajasthan. Effective drought management strate-
gies, informed by integrated TCI and SDCI assessments, are
crucial for mitigating agricultural losses, sustaining water
availability, and enhancing resilience to future climatic
uncertainties.

Semi-Arid Climate

SDCI values in a semi-arid area, as depicted in Fig. 4a from
2010 to 2022, exhibit dynamic fluctuations indicative of the
region’s susceptibility to varying drought conditions. Over
this period, the data illustrate a range of drought intensities
from mild to moderate, with periodic occurrences of more
severe drought events. Particularly noteworthy are the sum-
mer months, which consistently show heightened drought
stress, often followed by periods of relief during the fall with
increased rainfall and moderate weather conditions, benefit-
ing vegetation and soil health. The analysis reveals several
notable periods of extreme and severe drought, including
significant episodes in July 2018 and July to September
2021. These instances underscore the severe impacts of pro-
longed droughts on the ecosystem, highlighting the critical
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need for adaptive management strategies to mitigate drought
effects and enhance resilience in semi-arid environments.

The Precipitation Concentration Index (PCI) data from
January 2010 to December 2022 is in the semi-arid region.
Figure 4b have revealed significant variations in rainfall dis-
tribution, which have directly affected drought conditions
as indicated by the Standardized Drought Condition Index
(SDCI). The higher PCI values during concentrated rainfall
periods in mid-2010, mid-2015, and mid-2020 are associated
with lower SDCI values, indicating less severe drought con-
ditions. Conversely, lower PCI values in early 2018 and early
2022 have corresponded to higher SDCI values, suggesting
more intense drought episodes. This connection emphasizes
the vital impact of rainfall distribution on drought sever-
ity. It underscores the necessity for effective water resource
management and adaptive measures to alleviate the effects
of drought in semi-arid environments.

Significant seasonal and annual variations were observed
in analyzing Vegetation Condition Index (VCI) data from
January 2010 to December 2022 Fig. 4c for the Semi-Arid
region. VCI values fluctuate seasonally, reflecting vegeta-
tion response to varying climatic conditions, with specific
years showing distinct trends of higher or lower VCI values,
indicative of better or poorer vegetation health, respectively.
Extreme VCI values during particular months and years sug-
gest occurrences of severe weather events like droughts or
excessive rainfall. The relationship between VCI and the
Standardized Drought Condition Index (SDCI) highlights
VCI's role in assessing drought severity, which is crucial for
understanding impacts on agriculture and ecosystems. By
comparing VCI trends with historical rainfall patterns and
other indices, correlations were drawn to validate vegeta-
tion health assessments and inform adaptive management
strategies in semi-arid regions vulnerable to droughts. Visual
representation in Fig. 4c illustrates these trends, aiding in the
interpretation of long-term vegetation dynamics and their
implications for sustainable land management practices.

The Transformed Soil Moisture Index (TCI) data from
January 2010 to December 2022 in the Semi-Humid region
exhibit seasonal variability and annual trends (refer to
Fig. 4d). TCI values fluctuate across months, indicating vari-
ations in soil moisture content influenced by seasonal rain-
fall patterns. Higher TCI values during monsoon months like
July to September suggest increased soil moisture, which
is critical for agricultural productivity. Conversely, lower
TCI values in dry months such as April and May indicate
drier soil conditions. Figure 4d illustrates these fluctuations,
showing peaks during monsoon periods and troughs during
dry seasons. The relationship between TCI and the Stand-
ardized Drought Condition Index (SDCI) reveals TCI's role
in assessing drought severity; periods with consistently low
TCI values often correlate with higher SDCI scores, indica-
tive of drought conditions. Understanding these dynamics is
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Fig.4 Trends in semi-arid climate from January 2010 to December 2022: a For SDCI, b For PCI, ¢ For VCI, d For TCI
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Fig.4 (continued)

crucial for water resource management and agricultural plan-
ning in semi-humid regions vulnerable to drought impacts.

Mediterranean Climate

The Seasonal Drought Severity Index (SDCI) data from
January 2010 to March 2023 for the Mediterranean climate
region reflect significant variations and trends in drought
severity over time (refer to Fig. 5a). Initially, from Janu-
ary 2010 to December 2012, SDCI values generally exhibit
moderate fluctuations with occasional peaks, suggesting
intermittent drought conditions interspersed with relatively
regular periods. Notably, from April 2010 to September
2010, there is a sustained increase in SDCI values, indicat-
ing a prolonged dry spell likely impacting agricultural and
environmental conditions. This pattern recurs in subsequent
years, such as from June to September 2011, where SDCI
peaks suggest severe droughts, possibly influenced by cli-
matic oscillations or regional weather anomalies. From 2013
onwards, there is a discernible shift in SDCI dynamics, char-
acterized by more frequent and intense drought episodes,
notably in the summer months (June—August). These periods
often exhibit consistently high SDCI values, indicative of
severe and prolonged drought conditions that likely exac-
erbate agricultural stress and water resource management
challenges. For instance, from June to August 2015 and
June to July 2017, SDCI values reached peaks, aligning with
historically dry periods that can strain the region's water
availability and agricultural productivity. The relationship
between SDCI and drought impacts underscores their socio-
economic implications, particularly in Mediterranean cli-
mates reliant on stable farm production and water resources.
High SDCI values coincide with reduced water availability,
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impacting crop yields and increasing dependency on irriga-
tion practices. Furthermore, the ecological consequences of
prolonged droughts are evident in vegetation stress and land
degradation, influencing biodiversity and ecosystem resil-
ience. Analyzing Fig. 5a, which likely depicts the temporal
distribution of SDCI values and their corresponding drought
severity categories, reveals seasonal trends and interannual
variability. Peaks in SDCI during specific months highlight
critical periods of water stress, which are crucial for under-
standing vulnerability and resilience in the face of climate
change. The variability observed underscores the importance
of adaptive strategies in agriculture, such as crop diversifica-
tion and improved water management practices, to mitigate
drought impacts. In conclusion, the SDCI data analysis for
the Mediterranean climate region illustrates the complex
interplay between climate variability, drought severity, and
socio-economic impacts. The insights gained are essential
for informing policy interventions and adaptive strate-
gies to enhance resilience and sustainable development in
drought-prone regions. Future research could focus on refin-
ing predictive models using advanced statistical techniques
and integrating socio-economic indicators to effectively
strengthen drought preparedness and response frameworks.

Analyzing the PCI (Percent of Normalized Difference
Vegetation Index (NDVI) Composite Index) data from Janu-
ary 2010 to December 2022 for the Mediterranean Climate
region provides a comprehensive insight into vegetation
dynamics and their correlation with climatic conditions and
drought resilience. The PCI values exhibit notable seasonal
variations, peaking during cooler, wetter months (Novem-
ber—April) and declining sharply during the hot, dry sum-
mer period (June—August) (refer to Fig. 5b). This pattern
reflects vegetation’s response to moisture availability, which
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Fig.5 Trends in Mediterranean climate from January 2010 to December 2022: a For SDCI, b For PCI, ¢ For VCI, d For TCI
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Fig.5 (continued)

is crucial for sustaining health and productivity. Across the
years, fluctuations in PCI values underscore the region's
susceptibility to climatic variability, with years like 2010
and 2013 showcasing higher average PCI values indicative
of favorable conditions, whereas drier periods such as 2017
and 2020 reveal lower PCI values, signaling heightened
water stress and reduced vegetation vigor. These trends
align closely with the region’s climatic cycles, where winter
rainfall rejuvenates vegetation while summer droughts con-
strain growth. The PCI's relationship with the Standardized
Precipitation Evapotranspiration Index (SPEI) further elu-
cidates its role in drought assessment, where high PCI val-
ues correspond to lower SPEI values, indicating less severe
drought impacts, and vice versa. Figure 5b likely illustrates
these dynamics visually, capturing the temporal variability
and long-term trends in PCI across seasons and years. Such
visual representations are crucial for policymakers and envi-
ronmental managers, facilitating informed decisions regard-
ing water resource management, agricultural planning, and
ecosystem conservation in the Mediterranean region. By
integrating PCI insights with SPEI and other climate indices,
stakeholders can proactively mitigate drought risks, enhance
agricultural resilience, and safeguard ecosystem health amid
evolving climate conditions, ensuring sustainable develop-
ment and resource use in this ecologically sensitive area.
The Vegetation Condition Index (VCI) data for the Medi-
terranean Climate region from January 2010 to December
2023 reveals significant variability and trends in vegetation
health over the years (refer to Fig. 5¢). VCI, a key indicator
derived from satellite data, reflects vegetation's greenness or
health status, crucial for understanding ecosystem dynamics
and agricultural productivity. Initially, from January 2010 to
December 2012, VCI values exhibit moderate fluctuations,
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with peaks observed in March and April coinciding with
spring growth, and dips during dry summer months like July
and August. This pattern indicates seasonal variations typi-
cal of Mediterranean climates, where vegetation responds
strongly to winter rains and summer droughts. From January
2013 to December 2015, VCI trends show increased vari-
ability, possibly influenced by climatic anomalies or human
activities impacting vegetation resilience. From January
2016 onwards, VCI values generally depict a recovering
trend, with periodic spikes in March and April, suggesting
improved vegetation health, possibly due to better precipita-
tion distribution or adaptive agricultural practices. However,
intermittent dips in VCI during mid-year months like July
and August indicate recurring susceptibility to dry spells,
underscoring the region's vulnerability to climate variability.
The highest recorded VCI peaks in May 2012, May 2015,
and April 2016 coincide with exceptional vegetation vigor,
likely influenced by favorable climate conditions promot-
ing robust growth. Analyzing the relation between VCI and
the Standardized Drought Condition Index (SDCI) reveals
complementary insights into drought impacts on vegetation
health. For instance, periods of low VCI align with elevated
SDCI values, indicating severe drought stress adversely
affecting vegetation. Conversely, periods of high VCI corre-
spond with lower SDCI values, signifying improved vegeta-
tion health during relatively wetter conditions. This inverse
relationship underscores the utility of VCI as an early warn-
ing tool for drought impacts on agricultural productivity and
ecosystem stability in Mediterranean climates. Furthermore,
comparing VCI trends with historical drought records and
agricultural productivity data could enhance our understand-
ing of long-term ecosystem resilience and adaptation strate-
gies. Integrating such analyses with regional climate models
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and land-use dynamics would provide a comprehensive
framework for sustainable land management and policy for-
mulation to mitigate climate risks and enhance agricultural
resilience. In conclusion, the VCI dataset for the Mediter-
ranean Climate region highlights nuanced seasonal patterns
and long-term trends crucial for informed decision-making
in climate adaptation and sustainable development efforts.
The Total Vegetation Condition Index (TCI) dataset
for the Mediterranean Climate region from January 2010
to December 2022 illustrates significant variability in
vegetation health over the years, crucial for understand-
ing ecosystem dynamics and climate impacts (refer to
Fig. 5d). Initially, from January 2010 to December 2012,
TCI values fluctuated moderately, peaking in the spring
months (March—-May) and declining during the dry summer
(June—August). This pattern reflects typical Mediterranean
climate dynamics, where vegetation responds positively to
winter rains and faces stress during prolonged dry spells.
Notably, from January 2013 to December 2015, TCI trends
indicate increased variability, potentially influenced by cli-
matic anomalies affecting vegetation resilience. From Janu-
ary 2016 onwards, TCI generally shows a recovering trend,
with peaks observed in spring (March—May), indicating
improved vegetation vigor, possibly due to better rainfall
distribution or adaptive land management practices. How-
ever, periodic dips in TCI during summer months (July and
August) suggest ongoing vulnerability to seasonal drought
impacts, highlighting the region's sensitivity to climate
variability. The highest TCI peaks in May 2012, May 2015,
and April 2016 coincide with periods of optimal vegetation
health, likely influenced by favorable climate conditions sup-
porting robust growth. Analyzing the relationship between
TCI and the Standardized Drought Condition Index (SDCI)
provides insights into drought impacts on vegetation. Peri-
ods of low TCI correspond with elevated SDCI values, indi-
cating severe drought stress detrimental to vegetation health.
Conversely, periods of high TCI align with lower SDCI val-
ues, suggesting improved vegetation conditions during less
severe drought periods or favorable climatic conditions. This
inverse correlation underscores TCI’s utility as an indicator
for monitoring vegetation resilience and assessing drought
impacts on agricultural productivity and ecosystem stability
in Mediterranean climates. Figure 5d depicts the temporal
variability of TCI across the Mediterranean Climate region
from January 2010 to December 2022. The graph highlights
seasonal fluctuations and long-term trends in vegetation
health, emphasizing peak values during spring months and
declines during summer droughts. This visual representation
underscores the seasonal dynamics and interannual variabil-
ity crucial for understanding ecosystem responses to climate
fluctuations. In conclusion, the TCI dataset for the Mediter-
ranean Climate region provides valuable insights into veg-
etation dynamics, climate resilience, and drought impacts

over the past decade. Integrating these findings with regional
climate models and land-use dynamics can enhance sustain-
able land management strategies and policy interventions to
mitigate climate risks and promote ecosystem resilience in
Mediterranean environments.

Semi-humid Climate

Analyzing the Standardized Drought Climate Index (SDCI)
data for the Semi-humid Climate region from 2010 to 2022
reveals significant insights into drought dynamics and their
implications (refer to Fig. 6a). The SDCI, derived from
temperature and precipitation data, is a crucial metric for
assessing drought severity relative to long-term averages.
Over this period, trends in SDCI values exhibit notable
variability and trends, reflecting the region's susceptibility
to climate extremes. Beginning with 2010, the data indi-
cate relatively moderate SDCI values, suggesting normal
to slightly dry periods. However, as the years progress,
there is a noticeable shift towards more pronounced fluc-
tuations, with intermittent spikes in SDCI values indicat-
ing periods of heightened drought severity. Notably, 2015
and 2019 stand out with sustained periods of elevated SDCI
values, signifying prolonged drought episodes that likely
significantly stress the region’s agricultural productivity
and water resources. Conversely, years like 2013 and 2018
display more neutral or negative SDCI values, indicative of
wetter conditions or temporary relief from drought impacts.
Spatially, Fig. 6a illustrates the distribution of SDCI across
the Semi-humid Climate zone, highlighting localized varia-
tions in drought severity over time. Such spatial insights are
crucial for understanding the uneven impact of drought on
different areas within the region, influencing water manage-
ment strategies and agricultural planning. The relationship
between SDCI values and drought impacts underscores the
index's utility in informing resilience strategies, emphasiz-
ing the need for adaptive measures to mitigate drought’s
socio-economic and environmental consequences. Overall,
the analysis of SDCI data from 2010 to 2022 in the Semi-
humid Climate region illuminates the complex interplay of
climate variability and drought dynamics, providing a foun-
dation for targeted interventions and policy frameworks to
enhance climate resilience and sustainable development in
vulnerable regions.

The Precipitation Condition Index (PCI) data for the
Semi-humid Climate region from January 2010 to Septem-
ber 2022. Figure 6b shows variability in drought conditions
over time. Generally, PCI values fluctuate seasonally, with
higher values indicating better conditions for agriculture and
lower values suggesting increased drought risk. For instance,
from 2010 to early 2013, PCI values were relatively stable,
reflecting moderate conditions. However, from mid-2013
to 2015, PCI decreased significantly, indicating prolonged
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Fig.6 (continued)

drought conditions, particularly severe in early 2014 and
2015. This period likely impacted agricultural productivity
and water availability in the region. Post-2015, PCI values
recovered somewhat but remained variable, highlighting
ongoing climatic fluctuations and the region's vulnerabil-
ity to drought events. Overall, the PCI data illustrate the
dynamic nature of drought in the semi-humid climate region,
emphasizing the need for adaptive water management strate-
gies and resilient agricultural practices to climate variability.

We discovered significant insights into vegetation health
and its relationship with drought conditions after carefully
analyzing the Semi-humid Climate region's Vegetation Con-
dition Index (VCI) data from January 2010 to December
2023 (refer to Fig. 6¢). The VCI values fluctuate through-
out the years, reflecting the seasonal and yearly variations
in vegetation greenness. From January 2010 to December
2013, VCI values generally indicate moderate to good veg-
etation condition, with occasional declines suggesting peri-
ods of stress possibly due to insufficient rainfall or other
environmental factors. Peaks in VCI, such as in May 2011
and May 2012, correspond to periods of solid vegetation
growth, likely influenced by favorable precipitation levels.
Conversely, low VCI values during drought indicate vegeta-
tion stress due to reduced water availability. From 2014 to
2017, the VCI data trended towards lower values, particu-
larly from October 2014 to May 2015 and September 2016
to December 2017, indicating prolonged drought impacts on
vegetation health. These periods coincide with less favora-
ble climatic conditions, potentially exacerbating agricultural
challenges and environmental stressors in the Semi-humid
Climate region. The recovery phases, notably from February
2016 to May 2016 and April 2017 to May 2018, demonstrate
improved vegetation following enhanced rainfall and drought
mitigation. Examining Fig. 6¢ alongside VCI data provides
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visual context to these observations. The graph illustrates
how VCI trends align with broader climatic patterns and
regional drought occurrences. Peaks and valleys in the VCI
data correspond closely with shifts in climatic conditions,
underscoring the index’s sensitivity to environmental fac-
tors impacting vegetation growth. The relationship between
VCI and drought is evident through prolonged periods of
low VCI values coinciding with drought phases, highlighting
the index's utility in monitoring drought impacts on vegeta-
tion health over time. Furthermore, the analysis emphasizes
the need for adaptive management strategies in agriculture
and natural resource management to mitigate the effects of
climate variability and drought. Integrating remote sensing-
based indices like VCI can enable proactive measures by
providing timely information on vegetation health dynam-
ics, aiding in early warning systems and decision-making
processes. Continuous monitoring and analysis of VCI
trends are vital for assessing ecosystems' long-term resil-
ience and vulnerability to climate change and variability in
the Semi-humid Climate region. The VCI dataset for the
Semi-humid Climate region highlights the complex inter-
play between vegetation dynamics, climate variability, and
drought impacts. A comprehensive data analysis offers valu-
able insights for policymakers, researchers, and stakehold-
ers in environmental conservation, agriculture, and water
resource management. It underscores the importance of pro-
active strategies to enhance resilience and sustainability in
vulnerable regions, emphasizing the practical implications
of the research.

Analyzing the Temperature Condition Index (TCI) for the
Semi-humid Climate region from January 2010 to December
2022 provides critical insights into the temperature-related
stress on vegetation and its correlation with drought condi-
tions (refer to Fig. 6d). The TCI values, which range from 0
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to 1, with higher values indicating better vegetation health,
vary significantly over the years, reflecting changes in tem-
perature conditions. In Fig. 6d, the TCI data demonstrate a
complex pattern of temperature stress on vegetation, with
noticeable fluctuations corresponding to seasonal changes
and long-term climatic trends. For instance, the period
from January 2010 to December 2013 shows moderate TCI
values, with some seasonal peaks in May and troughs in
August, indicating periods of relative temperature favora-
bility and stress, respectively. From January 2010 to May
2010, the TCI values remain moderate, indicating relatively
stable temperature conditions. However, a decline in TCI
values from June to September 2010 suggests increased
temperature stress during the peak summer months, likely
exacerbating drought conditions. This pattern is recurrent
in subsequent years, where TCI values dip during summer,
highlighting the detrimental impact of high temperatures
on vegetation health. For example, the period from January
2011 to May 2011 shows higher TCI values, indicating bet-
ter temperature conditions, which correspond to improved
vegetation health, as depicted in Fig. 6d. However, the sum-
mer months of 2011 again show a decline in TCI values,
reflecting increased temperature stress. In 2014 and 2015,
TCI values exhibit more variability, with significant drops in
the summer months (June to September), indicating severe
temperature stress. This period aligns with documented
drought conditions, further emphasizing the impact of high
temperatures on vegetation health. The relationship between
TCI and drought is evident as lower TCI values correspond
to periods of drought, highlighting the role of temperature
in exacerbating drought conditions. For instance, the low
TCI values in July and August 2015 correlate with severe
drought conditions, as depicted in Fig. 6d, indicating the
compounded stress on vegetation due to high temperatures
and water scarcity. The years 2016 to 2018 show a mix of
moderate to high TCI values, with occasional dips during
the summer months. For example, the TCI values in July
and August 2017 are shallow, indicating high-temperature
stress during drought. This pattern continues into 2019 and
2020, where TCI values exhibit seasonal peaks and troughs
corresponding to temperature fluctuations. Notably, the TCI
values in 2021 and 2022 show significant anomalies, with
extremely low values in the summer, reflecting severe tem-
perature stress during drought conditions. For instance, the
TCI values in June and July 2021 are particularly low, indi-
cating extreme temperature stress during a severe drought
period. Overall, the TCI data for the Semi-humid Climate
region underscore the critical role of temperature in influ-
encing vegetation health and its relationship with drought
conditions. The recurring pattern of low TCI values during
the summer months highlights the increased temperature
stress on vegetation, which, when coupled with drought,
can severely impact vegetation health. The analysis of
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TCI trends, in conjunction with Fig. 6d, provides valuable
insights into the temporal dynamics of temperature stress
and its implications for drought management and vegetation
health monitoring. Proactive measures, such as improving
irrigation practices and adopting temperature-resilient crop
varieties, are essential for mitigating the adverse effects of
temperature stress and enhancing the resilience of vegetation
in the Semi-humid Climate region.

Spatial Analysis of Drought in Rajasthan

In addition to temporal analysis, the same method allows
for exploring drought from the spatial point of view over
the area of interest. The considered indices TCI, PCI, and
VCI (excluding water bodies) were calculated for Rajasthan
each year from 2010 to 2022 and then combined to produce
the SDCI indicator using the empirical weights through the
GEE platform. SDCI was then classified into five classes,
from extreme drought to no drought condition. Comparing
the time series of drought maps of SDCI allows us to investi-
gate the changes in aridity conditions over Rajasthan. When
observing Fig. 7a and b, for instance, which show maps of
SDCIT for 2010 and 2020, it is possible to notice that the state
has undergone drought conditions, especially in the west-
ern and north-western districts like Jaisalmer, Barmer, and
Bikaner. The maps produced by SDCI show a dry condition
in 2020. A report published in the Global Drought Obser-
vatory (GDO) in May 2021 also confirms the initiation of a
severe drought over the state in early 2020 and an extreme
drought in the northeast, followed by an extreme depletion
of water resources and high vegetation stress over the same
year. This aridity is still proceeding and has caused signifi-
cant losses in the agricultural sector.

The study of SDCI in other years also illustrates extreme
dryness in 2019 in the central, northeastern, and north-
western districts, including Jaipur, Sikar, and Jodhpur.
From 2010 to 2013, except for the areas near the Aravalli
Range, the state was under moderate to extreme drought
conditions, which partially recovered over the following
years. The proposed applications enable the spatial analy-
sis of drought according to SDCI over time. For example,
the area of interest (AOI) includes districts like Udaipur,
Chittorgarh, and Ajmer, which mostly have semi-humid to
very humid climate classes according to the De Martonne
climate classification. Figure 7c—m shows the time series of
SDCI maps for the Area of Interest, which allows us to see
the potential of this type of spatial analysis. It is possible to
notice that the spatial distribution of the SDCI classes varies
over time. In particular, it is possible to see a similar behav-
ior of the SDCI distribution for the years 2010 and 2011
and from 2016 to 2019, characterized by no drought in the
northeast and light to moderate drought for the remaining
part of the AOI. Contrastingly, moderate drought prevails
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Fig.7 (continued)

in 2014, 2015, 2020, 2021, and 2022, with severe drought
appearing in the southeastern zone, affecting cropland areas.
This type of visualization allows decision-makers to visual-
ize the change in the distribution of drought over space and
time, measure the territory's recovery capability, and plan
interventions. In the context of Rajasthan, the semi-humid
climate regions have experienced significant variability in
the TCI from 2010 to 2022, as shown in the provided data.
The TCI values for semi-humid regions typically range
between 0.2 and 0.66, with occasional peaks reaching as
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high as 2.31 in January 2022. These values reflect the vary-
ing temperature conditions and their impact on vegetation
health. The data indicates that the semi-humid regions have
faced periodic drought conditions, particularly during the
summer months (June—September), where TCI values often
drop below 0.5, and indicating stress on vegetation due to
higher temperatures. Although generally more humid, the
months of March, April, and May also show variability
in TCI, suggesting fluctuations in climatic conditions that
could impact agricultural productivity.
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Our research underscores the importance of the SDCI
indicator in monitoring and assessing drought dynamics
over time and space. By combining TCI, PCI, and VCI, the
SDCI provides a comprehensive view of drought conditions
across Rajasthan. The time series analysis of SDCI maps
from 2010 to 2022 reveals the region’s varying degrees of
drought, with severe conditions in 2014, 2015, 2020, 2021,
and 2022. These years significantly impacted cropland areas,
particularly in the southeastern zones. The spatial analysis
of drought using SDCI is a powerful tool for identifying
regions most affected by drought and those that show resil-
ience. This research is significant in guiding targeted inter-
ventions, efficient resource allocation, and strategies for
mitigating the impacts of drought on agriculture and water
resources.

Discussion

Analyzing drought conditions in Rajasthan using the Stand-
ardized Drought Composite Index (SDCI) offers valuable
insights into the region's drought dynamics from 2010 to
2022. By integrating the Temperature Condition Index
(TCI), Precipitation Condition Index (PCI), and Vegetation
Condition Index (VCI) on the Google Earth Engine (GEE)
platform, this study has provided a comprehensive under-
standing of the varying degrees of aridity across the state.
The findings reveal that Rajasthan experienced significant
drought conditions, particularly in 2014, 2015, 2020, 2021,
and 2022, with severe impacts in the southeastern districts
such as Kota, Bundi, and Baran. Implementing green infra-
structure in urban areas presents a promising strategy for
mitigating the adverse impacts of drought and desertifica-
tion, as highlighted by the recurrent drought conditions
observed in Rajasthan. Green infrastructure, including green
roofs, urban forests, rain gardens, and permeable pavements,
is crucial in enhancing urban resilience to climatic extremes.
By promoting natural water infiltration and reducing sur-
face runoff, these green solutions help maintain groundwater
levels and reduce the strain on municipal water resources
during drought. This is particularly significant in regions
like Rajasthan, where water scarcity is persistent and effi-
cient water management is critical for sustaining agricul-
tural productivity and urban living conditions. The analysis
underscores the recurrent nature of droughts in Rajasthan,
calling for ongoing monitoring and adaptive management
strategies to mitigate the impacts on agriculture and water
resources. Spatial analysis indicates that drought condi-
tions are not uniformly distributed across Rajasthan, with
the western and northwestern districts being particularly
prone to extreme drought conditions. Moreover, integrating
green infrastructure can help mitigate the urban heat island
effect, which exacerbates water evaporation rates and further

strains water resources. The cooling effect of urban green-
ery improves the microclimate and reduces the demand for
water in urban landscapes. This is especially relevant for the
semi-humid regions in southeastern Rajasthan, where the
variability in drought intensity can be partially managed by
incorporating green infrastructure into urban planning. The
spatial analysis indicating varying degrees of aridity across
Rajasthan underscores the need for targeted interventions,
and green infrastructure provides a scalable and adaptable
solution to address these localized climatic challenges. In
contrast, the semi-humid regions in the state's southeastern
part have shown significant variability in drought intensity,
reflecting the complex interplay of climatic factors affecting
these regions. The study also highlights the importance of
closely monitoring climatic variables to predict and manage
the impacts of drought on crop yields. As highlighted by the
findings, the recurrent nature of droughts in Rajasthan calls
for innovative and sustainable approaches to water manage-
ment. Green infrastructure offers a dual benefit by enhancing
water retention in urban areas and supporting biodiversity,
contributing to soil health and reducing the risk of desertifi-
cation. The western and northwestern districts of Rajasthan,
which are particularly prone to extreme drought conditions,
can significantly benefit from green infrastructure to enhance
water conservation efforts and improve the resilience of local
communities to climatic stresses. Visualizing and analyz-
ing the spatial distribution of drought conditions over time
can provide valuable insights for decision-makers, allowing
them to prioritize interventions and allocate resources more
efficiently (Kalisa et al., 2021). The methodology employed
in this study can be further refined and expanded to enhance
the accuracy of drought predictions and explore the integra-
tion of socio-economic factors to assess the broader impacts
of drought on communities and livelihoods. In conclusion,
this cloud-based geospatial analysis using the SDCI offers
a robust framework for monitoring and evaluating drought
conditions in Rajasthan, providing valuable information for
effective decision-making and targeted interventions to miti-
gate the adverse effects of drought on agriculture and water
resources in the region.

Conclusions

From 2010 to 2022, we looked at droughts in Rajasthan.
The study used the Standardized Drought Composite Index
(SDCI) to see how droughts changed over time and in dif-
ferent places. We found that Rajasthan often had severe
droughts. In 2014, 2015, 2020, 2021, and 2022, terrible
droughts in parts of the southeast, like Kota, Bundi, and
Baran. In conclusion, the study's findings on Rajasthan's
recurrent and severe drought conditions from 2010 to
2022 highlight the urgent need for adaptive management
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strategies. Increasing the green infrastructure in urban
areas emerges as a vital component of these strategies,
offering a sustainable solution to mitigate the impacts of
drought and desertification. Green infrastructure can be
pivotal in sustaining agricultural productivity and water
resources in drought-prone regions like Rajasthan by
enhancing water retention, reducing surface runoff, and
improving the urban microclimate. The Global Drought
Observatory (GDO) also reported that droughts often hurt
farming and water in the area. Droughts are more likely in
some places like Jaisalmer, Barmer, and Bikaner because
it's dry and doesn’t rain much. But in the southeast areas
like Udaipur, Chittorgarh, and Ajmer, sometimes there are
droughts, and sometimes there aren’t. This is because of
the different weather there. When the Temperature Condi-
tion Index (TCI) changes, it affects how well plants grow
and how much food we can make. This clarifies that we
must plan for droughts and change how we farm. Our study
underscores the importance of proactive planning and
innovative tools like the Standardized Drought Composite
Index (SDCI) for monitoring and managing drought con-
ditions. Integrating green infrastructure into these plans
can significantly enhance their efficacy, providing a robust
framework for addressing the multifaceted challenges of
droughts. As researchers and policymakers continue to
explore and refine strategies for drought mitigation, the
role of green infrastructure should be recognized and
prioritized as a critical element in building resilient and
sustainable urban environments. We used Google Earth
Engine (GEE) to watch for droughts over extensive areas
for a long time. The maps we made with the SDCI help
leaders see where droughts might happen and plan to save
water, use better farming, and grow crops that can handle
droughts better. Our study can help other researchers, too.
They could use different things in the SDCI and look at
other places like ours. This can help everyone understand
droughts better and help other places that have the same
weather as us. So, we need to plan now for bad droughts.
If we use good tools and watch for droughts, we can stop
them from hurting farming and help the environment. The
adoption of green infrastructure not only supports effective
water management but also promotes ecological resilience
and sustainability. The insights gained from the spatial dis-
tribution of drought conditions underscore the potential for
green infrastructure to provide targeted interventions that
address the specific climatic challenges faced by different
regions of Rajasthan. By prioritizing the implementation
of green infrastructure, decision-makers can enhance the
effectiveness of drought mitigation efforts, reduce the vul-
nerability of urban and rural communities, and contribute
to long-term environmental sustainability.
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