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Abstract

This study systematically optimizes the coarse recycled aggregate (RA) content in concrete using a customized Single-
Factor Response Surface Methodology (CSFRSM). It focuses exclusively on coarse recycled aggregate content as the sole
variable to comprehensively evaluate its effects on compressive strength, flexural strength, splitting tensile strength, and
workability. A Python-based correlation analysis was integrated to reveal interdependencies among concrete properties
and enhance the optimization process. The results demonstrate that increasing RA content from 0 to 50% reduces com-
pressive strength (41.35-28.41 MPa), flexural strength (5.26-4.10 MPa), and splitting tensile strength (3.58-3.36 MPa). The
optimal mix was achieved at 27.5% RA replacement, yielding a slump value of 26.90 mm, flexural strength of 4.73 MPa,
splitting tensile strength of 3.51 MPa, and compressive strengths of 25.85 MPa at 7 days and 35.10 MPa at 28 days. The
findings highlight that CSFRSM provides a robust framework for optimizing concrete properties, supporting the advance-
ment of sustainable construction practices.

Keywords Customized RSM - Single-factor optimization - Python-based correlation analysis - Construction wastes -
Demolition wastes

1 Introduction

The construction industry is one of the largest consumers of natural resources, with aggregate demand estimated at
2.7 billion tons annually in the EU, 900 million tons in the USA, and 700 million tons in Brazil [1, 2]. Construction and
demolition waste (CDW), a by-product of this demand, accounts for approximately 36% of global waste production [3].
Improper management and disposal of CDW poses significant environmental challenges, including landscape degra-
dation, environmental contamination, and associated health risks [4, 5]. Recycling CDW into recycled aggregates (RA)
offers a sustainable alternative that simultaneously addresses waste management and resource scarcity challenges [6].
However, several limitations hinder its widespread adoption in concrete applications, particularly in structural settings.
These include the variability in RA properties, its porous nature, and the presence of adhered mortar [7, 8].

Concrete made with RA, referred to as recycled aggregate concrete (RAC), typically exhibits lower mechanical perfor-
mance compared to natural aggregate concrete (NAC). Studies have reported compressive strength reductions of up
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to 20% at full RA replacement levels, accompanied by decreased tensile strength, modulus of elasticity, and workability
[3,9, 10]. These reductions are primarily attributed to the weaker interfacial transition zones (ITZs) in RA, which result in
higher water absorption and poor bonding properties [7, 11]. Furthermore, the variability in RA properties due to dif-
ferences in source material and processing methods exacerbates these challenges, leading to inconsistent mechanical
behavior [12, 13]. Consequently, many global standards restrict RA replacement levels to approximately 30% in structural
concrete applications [3].

To overcome these limitations, researchers have explored various optimization methods to improve performance of
RAC. Traditional trial-and-error approaches, though common, are often time-consuming, resource-intensive, and incon-
sistent, making them impractical for systematic optimization [10, 14]. Advanced computational methods such as artificial
neural networks (ANNs) and convolutional neural networks (CNNs), have demonstrated notable predictive accuracy for
RAC properties. For example, Joseph, Pachiappan [15] and Chiranjeevi, Kumar [16] employed machine learning (ML) mod-
els to predict compressive strength and durability metrics with high precision. However, these methods require extensive
datasets, substantial computational resources, and specialized expertise, limiting their practical scalability [17, 18].

An alternative and widely used approach is Response Surface Methodology (RSM), which provides a statistically robust
framework for optimizing the properties and performance of concrete. RSM enables the modeling of both individual
and interactive effects of variables while minimizing the number of experimental runs. For example, Aldahdooh et al.
[19-24] employed RSM to optimize binder content in ultra-high-performance fiber-reinforced cementitious composite
(UHPFRCC), demonstrating its adaptability for retrofitting damaged structures. Similarly, Aldahdooh, Jamrah [25] optti-
mized the impact of two types of plastic waste on the properties of normal concrete using RSM.

Notable applications of RSM in optimizing RAC properties include studies by Habibi, Ramezanianpour [26] and Rezaei,
Memarzadeh [27], which focused on nano-silica content in RAC, yielding improvements in compressive strength and
durability. Studies such as Zamir Hashmi, Khan [28] and Agrawal, Waghe [29] utilized RSM to evaluate hybrid concrete
mixes with steel fibers, nylon granules, and RA, achieving significant improvements in resistance to aggressive environ-
ments. Additionally, Habibi, Ramezanianpour [26] and Gopalakrishna and Dinakar [30] combined silica fume (SF) and
ground granulated blast furnace slag (GGBFS) with RA, enhancing both mechanical strength and chloride resistance in
RAC. While these studies underscore RSM’s versatility in multi-factor optimization, they often obscure the direct effects
of RA content as a single variable. This gap, as highlighted in the summarized literature review (Table 1), necessitates a
more focused investigation into RA’s isolated effects on concrete properties.

Despite these advancements, a significant gap exists in the optimization of RA content in RAC as a single-factor vari-
able. Most existing studies prioritize multi-factor combinations, such as RA with supplementary cementitious materials
(SCMs) or fibers, leaving the specific influence of RA content underexplored [3, 26, 29]. Furthermore, while machine
learning techniques offer superior predictive capabilities, their practical implementation is often constrained by high
resource demands and computational complexity [17, 18]. Additionally, few studies have integrated RSM with advanced
analytical tools, such as Python-based correlation analysis, to provide deeper insights into the interactions between RA
levels and concrete properties [13, 31], as summarized in Table 1.

This study employs a customized single-factor Response Surface Methodology (CSFRSM) to optimize coarse recycled
aggregate (RA) replacement levels in recycled aggregate concrete (RACQ). It evaluates the effects of RA on compressive
strength, tensile strength, flexural strength, and workability. A Python-based correlation analysis uncovers relationships
between RA levels and concrete properties, enhancing optimization. The study develops predictive models, analyzes
property interdependencies, and proposes a framework for designing sustainable RAC.

2 Research significances

This study is pivotal in promoting sustainable construction practices by addressing the challenges of incorporating RA
into concrete. It provides a systematic methodology using a CSRSM to optimize RA content while evaluating its effects
on key properties such as mechanical strengths and workability. The integration of Python-based correlation analysis
provides enhanced insights into property interdependencies, facilitating the development of sustainable RAC. By improv-
ing the practical utilization of CDW, this research contributes to mitigating environmental impacts, conserving natural
resources, and fostering the global adoption of sustainable concrete solutions.
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3 Materials and methods
3.1 Materials

The materials used in this study included Ordinary Portland Cement (OPC) and three types of aggregates: fine aggre-
gates (FA), normal crushed coarse aggregates (NCA), and coarse RA. OPC-52.5N, Type | with a specific gravity of 3.15 and
a fineness of 328 mz/kg, conforming to BS EN 197-1:11 [37] and ASTM C 150/150 M [38] standards, was utilized in this
study. he physical and chemical properties of OPC are provided in Table 2. FA had a maximum particle size of 4.75 mm,
a specific gravity of 2.61, and 13.2% material passing through the 75-micron sieve, determined as per BS 812-103.1:85
[39]. Both NCA and RA had a maximum particle size of 20 mm, with specific gravities of 2.74 and 2.61, respectively. The
physical and chemical properties of these aggregates are summarized in Table 3.

RA used in this study were produced from CDW collected from the Al-Masnaah and Barka, Oman. The production
process involved crushing CDW into smaller fragments, sieving to achieve the desired particle size, and washing to
remove impurities and lightweight materials, ensuring clean and well-graded aggregates suitable for concrete produc-
tion (Fig. 1). (Fig. 1). To address RA's higher water absorption capacity, pre-saturation was performed, ensuring consistent
water-to-cement (w/c) ratios during mixing.

The Los Angeles abrasion value of RA was 30%, compared to 15% for NCA, as per ASTM C131/C131M [40]. RA’s water
absorption was 4.9%, significantly higher than 0.3% for NCA, tested in accordance with ASTM C127-24: 15 [41].

Key aggregate properties, such as elongation and flakiness indices, were measured as 21% and 11% for RA, and 19%
and 3% for NCA, respectively, tested according to BS 812-105.2:90 [42] and BS EN 933-3:12 [43]. The presence of clay
lumps and friable particles was recorded at 0.08% for RA and 0.06% for NCA, in compliance with [44]. The percentage
of material passing the 75-micron sieve was 1.1% for RA and 0.1% for NCA, tested per ASTM C117-17 [45], while FA was
evaluated following BS 812-103.1:85 [39].

The particle size distribution of RA, NCA, and FA was determined through sieve analysis, with the grading curves
presented in Fig. 2. All aggregates complied with the limits specified in BS 882, confirming their suitability for concrete

Table 2 Physical and Chemical

Properties of OPC Category Property Test Result

Physical Test Specific Surface (m?/kg) 334
Setting Time (Initial, Minutes) 195
Setting Time (Final, Minutes) 195
Soundness (Le Chatelier Expansion, mm) 1.0
Compressive Strength (2 Days, N/mm?) 26.4
Compressive Strength (7 Days, N/mm?) 455
Compressive Strength (28 Days, N/mm?) 57.5

Chemical Test Silica (SiO,) % 20.52
Insoluble Residue (IR) % 0.35
Alumina (Al,O3) % 4,53
Ferric Oxide (Fe,0s) % 3.86
Lime (Ca0) % 63.36
Magnesia (MgO) % 1.52
Sulphur Trioxide (SOs) % 2.28
Loss on Ignition (LOI) % 2.28
Chloride (CI") % 0.02
Alkalis (Na,O +0.658 K,0) % 0.60
Tricalcium Silicate (C5S) % 58.16
Dicalcium Silicate (C,S) % 14.95
Tricalcium Aluminate (C;A) % 5.57
Lime Saturation Factor (LSF) 93.93
Alumina Modulus (AM) 1.17
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Table 3 .Physical and Chemical Property RA NCA Standard Used
Properties of Aggregates
Specific Gravity 261 2.74 ASTM C142/C142M: 17 [44]
Maximum Particle Size (mm) 20 20 ASTM C142/C142M: 17 [44]
Clay Lumps & Friable Particles (%) 0.08 0.06 ASTM C142/C142M: 17 [44]
Material Passing 75 Micron Sieve (%) 1.1 0.1 ASTM C117-17 [45]
Elongation Index (%) 21 19 BS 812-105.2:90 [42]
Soundness (Weight Loss, % over 5 cycles) NA 2.0 (C88/C88M-18 [48]
Water Absorption (%) 49 0.3 ASTM C127-24:15 [41]
Flakiness Index (%) 11 3 BS 812-105.2:90 [42] (RA),
BS EN 933-3:12 [43]
(NCA)
Los Angeles Abrasion Value (%) 30 15 ASTM C131/C131M [40]
Voided Shell Content (%) Nil Nil BS 812-106:1985 [49]
Ten Percent Fines Value (kN) 140 NA BS 812-111:90 [50]
Chemical Analysis
Acid Soluble Chloride Content (CI") % <0.01 0.01 BSI—BS 812-117: 88 [46]
Acid Soluble Sulphate Content (SOs) % 0.05 0.07 BS 812-118:88 [47]
Gypsum Content % <0.02 <0.02 V.S.Bhatt [51]
Aggregate Crushing Value % 26 NA BS 812-110:1990 [52]
Aggregate Impact Value % 28 NA BS 812-112:90 [53]
Weighted Average Percent Loss (%) 8 NA (C88/C88M-18 [48]

Fig. 1 Stepsin the Prepara-
tion of Coarse RA

Step 2: Crushing and
Sieving

Step 1: Collection - \ | Step 3: Washing and
and Sorting Impurity Removal

production. RA also met chemical quality requirements, including acid-soluble chloride content (<0.01%) and acid-
soluble sulfate content (0.05%), tested per BSI—BS 812-117: 88 [46] and BS 812-118:88 [471].

Additional mechanical properties of RA include an aggregate crushing value (ACV) of 26% and an aggregate impact
value (AlV) of 28%, while NCA was not tested for these parameters. The soundness test showed a weight loss of 2% over
5 cycles for NCA, in accordance with C88/C88M-18 [48]. RA’s performance in these tests, along with compliance with
grading and chemical standards, highlights its suitability for sustainable concrete applications.

3.2 Mix design using RSM and correlation analysis
In this study, the control mixture, RAO (C35-grade), was designed using the DOE method in accordance with BS EN
206-1:2000 [54] standards, with a water-cement ratio (W/C) of 0.57 and a fine aggregate-cement ratio (FA/C) of 1.62.

To evaluate the effects of recycled aggregate (RA) on concrete properties, including compressive strength, flexural
strength, splitting tensile strength, and workability, a series of mixtures were developed by replacing natural coarse
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Fig.2 Grading Curves for RA, NCA and FA aggregates

aggregate (NCA) with RA at levels of 10%, 20%, 30%, 40%, and 50%. These mixtures were denoted as RA10, RA20,
RA30, RA40, and RA50, respectively, as outlined in Table 4.

To optimize the performance of these mixtures, a CSFRSM, with a Central Composite Design (CCD), was employed.
This approach allowed for an efficient analysis of the effects of the single factor ((NCA-RA]%) on multiple responses:
splitting tensile strength (Y,), compressive strength at 7 days (Y,), compressive strength at 28 days (Y;), workability
(Y,), and flexural strength (Y;). Using the CSFRSM feature of Design-Expert® 6.0.7 software, 18 experimental runs were
generated to evaluate the responses systematically. The quadratic model used for analysis is expressed as:

k k k k
Y= B,4 D BX+ D BXE+ D D AKX+ (1)
i=1 i=1 j

li<j

Equation 3 represents the matrix notation of the model:

Y=Xf+e (2)
Table 4 ‘Concrete Mi?( Run Mixture [NCA-RA] % W/C C Coarse aggregate
Proportions and Design
FA: C NCA:C RA:C
1-3 RAO 0 0.57 1 1.62 3.05 0.00
4-6 RA10 10 0.57 1 1.62 2.74 0.30
7-9 RA20 20 0.57 1 1.62 244 0.61
10-12 RA30 30 0.57 1 1.62 213 0.91
13-15 RA40 40 0.57 1 1.62 1.83 1.22
15-18 RA50 50 0.57 1 1.62 1.52 1.52

[RAO] refers to the control mixture of normal concrete, [NCA-RA]% refers to the replacement level of NCA
with RA; [W/C] refers to the water: cement ratio; [FA:C] refers to the fine aggregates: cement ratio; [NCA:C]
refers to the normal crushed coarse aggregate: cement ratio; [RA:C] refers to the recycled aggregates:
cement ratio
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where, Yis a matrix of predicted responses ([Y;, Y,]), X is the matrix of coded values (INCA-RA]%), 8 is the matrix of regres-
sion coefficients, and ¢ is the matrix of random errors. This model enabled the identification of optimal RA replacement
levels while minimizing the number of experimental runs required.

3.2.1 Analysis and optimization process

ANOVA was employed to analyze the interactions between factors and responses. Statistical significances were assessed
using R?, P-value, and t-tests. Diagnostic plots to evaluate model adequacy. This research aims to maximize the RA con-
tent in concrete while maintaining optimal workability and mechanical properties. Therefore, optimization constraints,
including specific target ranges for factors and responses, were set as detailed in Table 5. Furthermore, a ramp function
graph was utilized in this study to identify the ideal region for all responses, contributing to improvements in concrete
properties.

3.2.2 Correlation analysis

In this study, Python was employed to determine the Pearson and Spearman correlation coefficients to assess the rela-
tionships among the following factors: [NCA-RA]%, compressive strength after 7 days, compressive strength after 28
days, workability, and flexural strength after 28 days. Using the pandas and numpy libraries, a correlation matrix was
constructed, and seaborn was utilized to create a heatmap to visualize these connections. This technique provided a
thorough understanding of how [NCA-RA]% influences the concrete characteristics.

3.3 Specimen preparations and experimental testing procedures
3.3.1 Specimen preparations

Specimens were prepared in accordance with ASTM C192/C192M-19a [55] to ensure consistency and reliability. OPC,
FA, NCA, RA, and water were accurately measured based on the mix proportions provided in Table 4. Prior to mixing,
the recycled aggregates (RAs) were pre-saturated to accommodate their higher water absorption capacity. This step
ensured the mix water content and water-to-cement (w/c) ratio remained consistent across all mixtures. All dry materi-
als, including aggregates and binders, were mixed for 1.5 min to achieve uniform distribution. Water was then gradually
added while mixing continued for an additional 2.5 min. A final mixing interval of 1 min was performed, resulting in a
total mixing time of 5 min. The workability of the fresh concrete was evaluated using the slump test in accordance with
ASTM: C143/C143M [56]. The concrete was then poured into molds in two layers, compacted using a vibration table as
per BS EN 998-2:16 [57], and demolded after 24 h. The specimens were then cured in water at 27°C + 2°C following BS
EN 12390-2:19 [58] and ASTM C511-19 [59] until the designated testing times.

3.3.2 Experimental testing

This study examines the impact of using RA as a replacement for NCA on the properties of normal concrete, including
workability, compressive strength, splitting tensile strength, and flexural strengths. The slump test was conducted to
evaluate the effect of varying RA replacement levels (RA10, RA20, RA30, RA40, and RA50)) on the workability of con-
crete mixtures, according to BS EN 12390-3:19 [60]. To assess the mechanical properties, three cubic samples (each 100
mm x 100 mm x 100 mm) from each mixture (refer to Table 4) underwent testing with a loading rate of 0.30 MPa/s, to

Table 5 Constraints of

N Name Goal Lower Limit Upper Limit
Optimization for RA Concrete
x: [NCA-RA]% isin range 25.00 50.00
Splitting Tensile isin range 334 3.58
Compressive Strength @ 7 days isin range 22.49 30.51
Compressive Strength @ 28 days isin range 35.00 41.74
Workability isin range 24.10 29.30
Flexural Strength isin range 4.08 5.29
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examine the effect of RA on the concrete’s compressive strength at age of 7 and 28 days, according to BS EN 12390-3:19
[60].

For flexural strength evaluation, three beam specimens (150 mm x 150 mm x 600 mm) per mixture were subjected to
testing under a loading rate of 0.06 N/(mm?s) (or 450 N/s) at 28 days, in compliance with BS 1881-118:83 [61]. Flexural
strength values were calculated using Eq. (3). For the splitting tensile strength, three cylindrical specimens (150 mm in
diameter and 300 mm in height) were subjected to testing at 28 days under a steady loading rate of 0.015 MPa/s until
failure, in accordance with BS EN 12390-6:09 [62]. The splitting tensile strength values were calculated using Eq. (4).

Pxl

Fl ! h=——
exural Stregnt oh2

(3)
Where, P is the maximum load applied (N), / is the span length (mm), b is the width of specimen (mm), and h is the
depth of specimen (mm).

2%XP

Indirect Tensile St th (MPa) = ———
ndirect Tensile Strength (MPa) ~<HxD

(4)

Where, P is the maximum load applied (N); H is the specimen height (mm); D is the sample diameter (mm).

4 Results and discussions

This section interprets the findings of slump, compressive strength, flexural strength, and splitting tensile strength tests.
It is also discussing the results from correlation analysis, mathematical modeling, statistical analysis and the optimiza-
tion process.

4.1 Impact of RA on concrete properties

Figures 1 and 2 illustrate the impact of varying recycled aggregate (RA) replacement levels ((NCA-RA]%) on the properties
of concrete and their corresponding relative indices, while Fig. 4 explores the correlations between concrete properties
and these replacement levels. The results demonstrate a notable reduction in concrete properties as the [NCA-RA]%
levels increase.

At both 7 and 28 days, the compressive strength shows a consistent decline with increasing [NCA-RA]% levels, as
depicted in Fig. 3. At 28 days, compressive strength decreases from 41.35 MPa (100%) for the control mixture (RAO) to
28.41 MPa (68.70%) for R50, while at 7 days, it reduces from 30.25 MPa (100%) for RAO to 22.60 MPa (74.71%) for R50.
Moderate RA levels (e.g., R20) retain compressive strength more effectively, with values of 37.80 MPa at 28 days (91.40%)
and 27.98 MPa at 7 days (92.49%), as illustrated in Fig. 4. This trend is supported by Lovato, Possan [10], Zhao, Liu [17],
Habibi, Ramezanianpour [26], and Gopalakrishna and Dinakar [30], which attribute the reduction in compressive strength
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to weaker interfacial transition zones (ITZ) and the higher porosity of recycled aggregates. Agrawal, Waghe [29] observed
that moderate RA levels (20-30%) retained over 90% of the control compressive strength, consistent with the perfor-
mance of R20 in this study. The correlation analysis in Fig. 5 demonstrates a near-perfect negative correlation (r=-0.99)
between [NCA-RA]% and compressive strength, consistent with findings from previous studies Ji, Wang [18], Hammoudi,
Moussaceb [32] and Francioso, Moro [31], which highlight the weakening effects of RA on ITZ and overall matrix bonding.
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Additionally, Aghajanzadeh, Ramezanianpour [13] and Habibi, Ramezanianpour [26] emphasized that RA levels up to 30%
sustain sufficient compressive strength for practical applications, validating the balance achieved at moderate replace-
ment levels in this study. These results confirm that while higher RA levels significantly reduce compressive strength,
moderate RA levels (20-30%) maintain acceptable performance for structural applications.

The splitting tensile strength at 28 days exhibits a consistent decline with increasing RA levels, as shown in Fig. 3.
The strength decreases from 3.58 MPa (100%) for the control mixture (RAO) to 3.36 MPa (93.93%) for R50. Despite this
reduction, moderate RA levels (e.g., R20) retain tensile strength close to the control, with a value of 3.55 MPa (99.10%
relative strength), as shown in Fig. 4. This trend is supported by Lovato, Possan [10], Zhao, Liu [17], Habibi, Ramezani-
anpour [26], and Gopalakrishna and Dinakar [30], of which observed declines in tensile strength with increasing RA
content, attributing the reduction to weaker bonding at the interfacial transition zones (ITZ) and the higher porosity of
RA compared to natural aggregates. Furthermore, Study Agrawal, Waghe [29] found that moderate RA levels (20-30%)
retain splitting tensile strength close to the control, aligning with the observed 99.10% relative strength for R20 in this
study. The correlation analysis in Fig. 5 confirms a strong negative correlation (r=-0.96) between [NCA-RA]% and tensile
strength, emphasizing the sensitivity of this property to RA levels. These findings validate that while higher RA levels
reduce tensile strength, moderate replacement levels (20-30%) sustain performance close to the control, making them
a practical choice for structural applications.

The flexural strength decreases consistently with increasing [NCA-RA]% levels, as depicted in Fig. 3. At 28 days, the
flexural strength reduces from 5.26 MPa (100%) for RAQ to 4.10 MPa (77.86%) for R50. Moderate replacement levels, such
as R20, retain flexural strength reasonably well, achieving 4.96 MPa (94.18% relative strength), as shown in Fig. 4. This
trend aligns with the findings of Lovato, Possan [10] and Zhao, Liu [17], which reported similar reductions in flexural
strength due to the weaker mechanical properties and porous nature of RA. Agrawal, Waghe [29] further support these
findings, showing that moderate RA levels (20-30%) retain over 90% of flexural strength, consistent with the observed
performance of R20 in this study. The correlation analysis in Fig. 5 confirms a near-perfect negative correlation (r=-0.99)
between [NCA-RA]% and flexural strength, emphasizing the sensitivity of this property to RA content. The reduction
in flexural strength at higher RA levels is attributed to weaker bonding at the interfacial transition zones (ITZ) and the
structural limitations of RA, as observed in previous studies [13, 26, 31]. These findings confirm that while higher RA
levels significantly reduce flexural strength, moderate RA replacement levels (20-30%) provide sufficient performance
for structural applications.

The workability of the concrete mixtures, measured by slump, decreases significantly with increasing RA levels, as
shown in Fig. 3. The slump is reduced from 29.24 mm (100%) for RAO to 24.14 mm (82.56%) for R50. However, at moderate
replacement levels such as R20, workability remains relatively high at 27.81 mm (95.12% relative workability), as shown
in Fig. 4. This decline in workability is attributed to the properties of RA, including its higher water absorption (4.9%
vs. 0.3% for NCA), rougher surface texture, and greater angularity, as detailed in Table 3. These characteristics increase
the water demand of the mix, leading to reduced flowability, aligning with findings from Zhang, Feng [35]. Similarly,
Lovato, Possan [10] and Zhao, Liu [17] reported consistent declines in workability with increasing RA content, particu-
larly beyond 30% replacement. The correlation analysis in Fig. 5 confirms a near-perfect negative correlation (r=-0.99)
between [NCA-RA]% and workability, consistent with Francioso, Moro [31], which identified RA's porous structure and
angularity (e.g., elongation index of 21% vs. 19% for NCA and flakiness index of 11% vs. 3% for NCA) as key contributors
to reduced slump. Despite these reductions, moderate RA levels (20-30%) ensure acceptable workability, as indicated by
the 95.12% relative workability for R20 in this study, supported by Gopalakrishna and Dinakar [30] and Agrawal, Waghe
[29]. These results confirm that while higher RA levels reduce workability due to their physical and chemical properties,
moderate replacement levels maintain sufficient flowability for practical applications.

The analysis of Figs. (3-5) confirm that increasing RA levels ([NCA-RA]%) negatively impact concrete properties, with
strong negative correlations (e.g., r=-0.99 for compressive and flexural strengths, and workability; r=-0.96 for splitting
tensile strength). At 28 days, compressive strength declines from 41.35 MPa (100%) for RAO to 28.41 MPa (68.70%) for
R50, while R20 retains 37.80 MPa (91.40%). Splitting tensile and flexural strengths follow similar trends, with R20 main-
taining 99.10% and 94.18% relative strengths, respectively. Workability also decreases, with R20 retaining 95.12%, com-
pared to 82.56% for R50. These results align with Lovato, Possan [10], Zhao, Liu [17], Habibi, Ramezanianpour [26], and
Gopalakrishna and Dinakar [30], which attribute performance declines to weaker interfacial zones and higher porosity
in recycled aggregates. The strong interdependence among mechanical properties (r=0.94 to 1.00) observed in Fig. 5
supports studies by Zhang, Feng [35] and Agrawal, Waghe [29], emphasizing that changes in one property influence oth-
ers. While high RA levels significantly reduce performance, moderate replacements (20-30%) sustain sufficient strength
and workability, offering a practical balance for sustainable structural applications.
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Table 6 ANOVA Results and Model Validation

Responses Model Significance Significant Model Adjusted R? Predicted R? Adeq Precision

Terms

Splitting Tensile @ 28 days Significant X, X2 0.95 0.94 29.01
Compressive Strength @ 7 days Significant X X, X 0.97 0.97 32.20
Compressive Strength @ 28 days Significant XXX 0.99 0.99 89.55
Workability Significant x X2, X 0.99 0.99 197.40

Flexural Strength @ 28 days Significant X, X2 0.98 0.98 56.24

[Adeq Precision] refers to the signal-to-noise ratio; [Adjusted R?] adjusts the R? value for the number of predictors in a regression model;
[Predicted R?] estimates how well the model predicts new data; [x] refers to the replacement levels [NCA-RA]%

Table 7 Final Equation in

Terms of Actual Factors Response Fquation
Splitting Tensile Strength @ 28 days = 3.575 — 0.00027x — 8.16 X 107°x?
Compressive Strength @ 7 days =30.251 + 0.0766x — 0.0135x2 + 0.00018x>
Compressive Strength @ 28 days = 41.346 + 0.0213x — 0.0132x2 + 0.00015x3
Workability =29.232 — 0.0162x — 0.0035x2 + 3.56 X 10~5x3
Flexural Strength @ 28 days =5.300 — 0.0156x — 0.00019x2

[x] refers to the replacement level of NCA with RA [NCA-RA]%

4.2 Mathematical modeling and statistical analysis results

Models of compressive strength, flexural strength, splitting tensile strength, and workability were evaluated using key
statistical metrics, including predicted R?, adjusted R?, and Adeq Precision measures (see Table 6). For the splitting ten-
sile strength model, the predicted R? was 0.94, and the adjusted R? was 0.95, indicating strong predictive accuracy and
model fit. The compressive strength at 7 days demonstrated both a predicted R? and an adjusted R? of 0.97, reflecting
excellent consistency between observed and predicted values. Similarly, the models for compressive strength at 28
days and workability each exhibited both a predicted R? and adjusted R? of 0.99, emphasizing their exceptional predic-
tive reliability. Finally, the flexural strength model achieved a predicted R? and adjusted R? of 0.98, further validating its
robustness. These findings confirm the reliability and robustness of all evaluated models, establishing their suitability
as predictive tools for optimizing the recycled aggregate (RA) content in concrete mixtures.

The equations derived from the evaluated models are outlined in Table 7. These equations establish the relationship
between the factors (x) and the responses (concrete properties), providing a valuable tool for predictive analysis and
facilitating optimized mix design.

4.2.1 Analysis and numerical optimization results

The analysis demonstrates the predictive model’s accuracy and reliability in optimizing concrete mixtures. Figure 6 shows
a strong alignment between predicted and actual values, with a normal distribution of residuals confirming the model’s
robustness. Figures 7 and 8 identify the optimal [NCA-RA]% of 27.5%, achieving a splitting tensile strength of 3.51 MPa,
compressive strengths of 25.85 MPa (7 days) and 35.10 MPa (28 days), workability of 26.88 mm, and flexural strength of
4.73 MPa. The ramp function graph in Fig. 8 confirms this optimal point with a desirability score of 1.0, showing reduced
performance beyond this percentage. These results validate the model’s effectiveness in balancing mechanical proper-
ties and workability for optimized concrete designs.

Table 8 demonstrates the reliability of the RSM model, showcasing minimal residuals across all responses (ranging
from—0.06 to—0.84 MPa for mechanical properties and—0.09 mm for workability). The strong correlation between
predicted and experimental values further validates the model’s accuracy in optimizing recycled aggregate concrete.
Ongoing validation with independent mixes will be included in the revised manuscript to reinforce these findings.
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Fig.6 Model Analysis for:
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Fig. 7 One Factor Prediction Plot: a Splitting Tensile Strength (MPa) @ 28 days model, b Compressive Strength (MPa) @ 7 days model, c Com-
pressive Strength (MPa) @ 28 days model, d Workability (mm) model, and e Flexural Strength (MPa) @ 28 days model.

5 Conclusion

This study examined the impact of coarse recycled aggregate (RA) on concrete properties and developed predictive
models to optimize RA content for sustainable concrete. The key conclusions are summarized as follows:

e Increasing RA replacement levels significantly reduces concrete properties. For instance, at 50% RA (R50), the com-

pressive strength at 28 days decreased to 28.41 MPa (68.70% relative strength), flexural strength reduced to 4.10 MPa
(77.86% relative strength), and workability declined to 24.14 mm (82.56% relative workability).
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Fig. 8 Ramp Function Graph Analysis for Optimal [NCA-RA] %

Table 8 Comparison of

- . Response Predicted value Actual Value Residual

Predicted and Experimental

Results for the Optimal Splitting Tensile Strength @ 28 days (MPa) 3.56 344 -0.12

Concrete Mixture .
Compressive Strength @ 7 days (MPa) 25.85 25.01 -0.84
Compressive Strength @ 28 days (MPa) 35.10 34.50 -0.6
Workability (mm) 26.88 26.79 -0.09
Flexural Strength @ 28 days (MPa) 4.73 4.67 -0.06

e Concrete maintains performance comparable to the control mixture (RAO) at moderate RA levels (20%-30%). The R20
mixture achieved a compressive strength of 37.80 MPa (91.40% relative strength), splitting tensile strength of 3.55
MPa (99.10% relative strength), flexural strength of 4.96 MPa (94.18% relative strength), and workability of 27.81 mm
(95.12% relative workability) at 28 days.

e Strong negative correlations (r=-0.97 to -1.00) between [NCA-RA]% and concrete properties indicate that higher RA
content adversely affects performance. Conversely, positive correlations (r=0.96 to 1.00) among concrete properties
suggest that improvements in one property often enhance others.

e The predictive models developed for forecasting concrete properties demonstrated exceptional accuracy. Both Pre-
dicted R? and Adjusted R? values exceeded 0.97, confirming the reliability of these models.

e The optimal [NCA-RA]% was identified as 27.5%, achieving a perfect desirability score of 1.0. At this level, the concrete
properties included a compressive strength of 35.10 MPa at 28 days, splitting tensile strength of 3.51 MPa, flexural
strength of 4.73 MPa, and workability of 26.88 mm, striking an ideal balance for practical applications.

While this study provides significant insights into optimizing coarse recycled aggregate (RA) content using a custom-
ized single-factor response surface methodology (CSFRSM) model, some aspects could be further explored. The variability
in RA properties due to differences in source and processing methods may influence results under varying conditions.
Expanding future research to include a broader range of RA sources could enhance the applicability of these findings.
Additionally, while this research focuses on short-term mechanical properties to establish foundational insights, inves-
tigating long-term durability aspects, such as resistance to freeze—-thaw cycles and chloride penetration, would further
validate RA-concrete’s suitability for structural applications.
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