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Abstract: Forecasting commodities and especially oil prices have attracted significant research interest,
often concluding that oil prices are not easy to forecast and implying an efficient market. In this paper,
we revisit the efficient market hypothesis of the oil market, attempting to forecast the West Texas
Intermediate oil prices under a machine learning framework. In doing so, we compile a dataset of 38
potential explanatory variables that are often used in the relevant literature. Next, through a selection
process, we build forecasting models that use past oil prices, refined oil products and exchange rates
as independent variables. Our empirical findings suggest that the Support Vector Machines (SVM)
model coupled with the non-linear Radial Basis Function kernel outperforms the linear SVM and the
traditional logistic regression (LOGIT) models. Moreover, we provide evidence that points to the
rejection of even the weak form of efficiency in the oil market.

Keywords: oil prices; forecasting; machine learning; support vector machines

1. Introduction

How do oil prices respond to financial and macroeconomic shocks? Is there a link between
commodity prices, stock markets and monetary policy? Moreover, should this link exist? And which
are the driving factors of oil price determination? Or, in other words, which are the variables that
drive oil price evolution? Despite the vast research literature in the field, inferences on the relationship
between macroeconomic variables, financial variables and oil prices is still an active issue of debate in
the literature.

In one of the first attempts to describe the relationship between oil prices and macroeconomic
variables, Ref. [1] suggests the existence of a direct link between oil prices and the implemented
monetary policy, claiming that oil prices are determined by interest rates. Despite the critique of the
Nobel laureate Robert Solow on what is now known as the “Hotelling’s rule” [2], the detailed survey
of [3] on the impact of Hotelling’s work on the literature reveals that the relationship between oil
prices and interest rates is still subject to research debate. Another important milestone in the quest of
the driving factors of oil prices is the work of [4]. He detected a strong positive correlation between
fluctuations of the business cycle and oil prices, suggesting an active link between economic conditions
and oil prices. Nevertheless, his study included a period with a significant positive trend in economic
output, leaving the area of oil prices during periods of economic downturn uncharted.

Under a different perspective, Ref. [5] built a model that forecasts crude oil prices to pinpoint the
variables that actually foresee oil price shocks. The scope of their study was to provide an empirical
“rule of thumb” of what works and what does not, with direct policy implications for central bankers.
Based on monthly exchange rates for the euro, the Canadian dollar and the Norwegian krona with the
U.S. dollar and also economic activity and Brent oil prices, the authors built a Vector Autoregressive
(VAR) model that studied the period January 1974—December 2011. Nevertheless, their empirical
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findings suggest that their model cannot outperform the Random Walk model in out-of-sample
forecasting, supporting the efficiency of oil markets.

More recently, Ref. [6] reviewed oil price shocks from the 1973–1974 oil crisis to the 2008 global
financial crisis. Examining a variety of relations between oil prices and the economy, they conclude
that oil prices are hard to forecast and that most oil price surges should be attributed to supply and
demand shocks and not to a causal relationship with other variables. In an alternative approach
based on models that are used in measuring risk in financial markets, Ref. [7] studied the relationship
between monthly spot Brent oil prices and future contracts for the period January 1999—December
2006. He concludes that forecasts of typical Ordinary Least Squares (OLS) models that are based on
the future premium adhere more closely to spot oil prices than forecasts of the Random Walk (RW)
model. Thus, spot prices are determined by the expectations of future prices. Ref. [8] also studied the
informational content of future contracts in forecasting real spot oil prices. Based on a daily sample
of NYMEX futures and West Texas Intermediate (WTI) oil prices for the period 30 March1983 to 28
February 2007, they show that the variability of the future premium affects spot oil prices. Going a step
further, they show that the variability of the future premium stems from changes in the macroeconomic
environment, suggesting an indirect link between oil prices and the macroeconomy (The interested
reader is referred to the excellent review of [9] on the predictability of oil prices based on typical
econometric approaches.).

Apart from the typical econometric approaches, there exists a vast number of studies that
apply machine learning methodologies in forecasting oil prices. In a machine learning framework,
Ref. [10] show that Google trend searches can forecast monthly crude oil prices over the period January
2004—June 2016 based on “extreme learning machines”, while the application of linear regression
on the same sample yields a lower forecasting accuracy. Ref. [11] combine deep learning with signal
processing to forecast monthly WTI crude oil prices spanning the period January 1986 to May 2016,
exploiting a pool of 193 potential variables. The key idea of their approach is not to select the most
informative variables in terms of forecasting, however to assign a different weight to each variable in
order to improve the overall forecasting accuracy. Based on a sample of monthly observations spanning
the period January 1986 to May 2016, they show that machine learning applications outperform typical
econometric methodologies.

In a similar vein, Ref. [12] apply signal processing techniques as a pre-processing step to neural
network models in forecasting daily WTI and Brent oil prices. For the period 1 January 1986 to 30
September 2006, they found that their autoregressive forecasting scheme outperforms econometric
alternatives in out-of-sample forecasting of the last 968 observations. Their empirical findings also
held for an updated sample from 03 January 2011 to 17 July 2013 [13]. The authors found that
their hybrid forecasting setup that combines signal processing to machine learning reaches a 62.2%
directional accuracy in out-of-sample forecasting of WTI oil prices. Ref. [14] combine supervised
to unsupervised machine learning in forecasting WTI oil prices for the period January 1992 to June
2008. Their approach exploits the forecasting ability of the supervised learning methods and the
merit of unsupervised learning in modelling the structure of the data. Using the last 100 observations
for out-of-sample forecasting, they found that their autoregressive “semi-supervised” technique
outperforms the RW model. Overall, the review of the literature suggests that machine learning
methodologies produce a higher forecasting accuracy in comparison to the typical econometric ones
and they typically outperform the RW model, while econometric approaches often fail to do so.

In this paper, we attempt to uncover the possible relationship between oil prices (namely WTI
prices) and other economic variables by employing a machine learning framework on a monthly
basis. Unlike previous machine learning approaches in forecasting oil prices that select variables
atheoretically, we will compile a pool of 38 potential regressors based on economic theory and the
literature reported herein, and will select the variables that are most relevant to oil prices forecasting.
Based on a Support Vector Machines (SVM) model coupled with the linear kernel and the nonlinear
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Radial Basis Function (RBF) kernel, we examine the directional forecasting performance of our models
in comparison to the typical econometric logistic regression methodology.

The selection of the SVM methodology is motivated by the superior forecasting ability of the
methodology, which has been reported in the relevant literature, in forecasting economic and financial
variables (see among others [15,16]). Thus, the innovation of our paper stems from the application of a
state-of-the-art machine learning methodology and the empirical recognition of a causal relationship
between variables reported in the literature and oil prices. We also specifically test the relationship
between oil prices and interest rates as a possible empirical validation of Hotelling’s rule under a
machine learning framework. To the best of our knowledge, this is the first attempt to do so. In Section 2
of the paper, we will briefly describe the methodology and the data, Section 3 presents our empirical
findings, while Section 4 concludes the paper.

2. Methodology and Data

2.1. Support Vector Machines

Support Vector Machines is a supervised machine learning methodology that is used in data
classification. Proposed by [17], the basic concept of an SVM is to select a small number of data points
from a dataset, called Support Vectors (SV), defining a linear boundary that separates the data points
into two classes. The methodology can be generalized for cases including more classes. Nonetheless,
as in this study, we focus on directional forecasting, therefore the binary version of the model is
adequate. In what follows, we briefly describe the mathematical derivation of the SVM theory.

We consider a dataset (vectors) xi ∈ <2 (i = 1, 2, . . . , n) belonging to two classes yi ∈ {−1,+1}.
If the two classes are linearly separable, we define a boundary as:

f(xi) = wTxi − b = 0, yif(xi) > 0, ∀i (1)

where w is the weight vector and b is the bias (Figure 1).
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Figure 1. Hyperplane selection and support vectors. The two classes are represented with circles and
triangles. The SVs (Support Vectors) are indicated by the pronounced hollow (red) circles and triangles,
the margin lines are represented with the continuous lines and the hyperplane (linear classifier) is
represented with the dotted line.
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This optimal hyperplane is defined as the decision boundary that classifies the dataset into its
respective classes with the maximum accuracy and has the maximum distance from either class. This
distance is often called the “margin”. In Figure 1, the SVs are represented with a pronounced contour,
the margin lines (defining the distance of the hyperplane from each class) are represented by solid
lines and the hyperplane is represented by a dotted line.

In order to allow for a predefined level of error tolerance in the training procedure, Ref. [17]
introduced non-negative slack variables, ξi ≥ 0, ∀i, and a parameter, C, describing the desired tolerance
to classification errors. The solution to the problem of identifying the optimal hyperplane can be dealt
with through the Lagrange relaxation procedure of the following equation:

min
w,b,ξ

max
αn

{
1
2
‖w‖2 + C

N

∑
i=1

ξi −
N

∑
j=1

aj[yj(wTxj − b)− 1 + ξ j]−
N

∑
k=1

µkξk

}
(2)

where ξi measures the distance of vector xi from the hyperplane when classified erroneously, and
α1, α2, . . . , αn are the non-negative Lagrange multipliers.

The hyperplane is then defined as:

ŵ =
N

∑
i=1

aiyixi (3)

b̂ = ŵTxi − yi, i ∈ V (4)

where V =
{

i : 0 < yi < C
}

is the set of support vector indices.
When the two-class dataset cannot be separated by a linear separator, the SVM is paired with

the kernel projection trick. The concept is quite simple: the dataset is projected through a kernel
function into a richer space of higher dimensionality (called a feature space) where the dataset is
linearly separable. In Figure 2, we depict a dataset of two classes that are not linearly separable in
the initial dimensional space (left graph). After the projection onto a higher dimensional space (right
graph), the linear separation is feasible.
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The solution to the dual problem with the projection of Equation (2) now transforms to:

max
a

=
N

∑
i=1

ai −
1
2

N

∑
j=1

N

∑
k=1

ajakyjykK
(
xj, xk

)
(5)



Forecasting 2018, 1 161

under the constraints
N
∑

i=1
aiyi = 0 and 0 ≤ ai ≤ C, ∀ i, where K

(
xj, xk

)
is the kernel function.

In our models, we examine two kernels: the linear kernel and the radial basis function (RBF)
kernel (Our implementation of SVR models is based on LIBSVM [18]. The software is available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm/). The linear kernel detects the separating hyperplane in
the original dimensional space of the dataset, while the RBF projects the initial dataset onto a higher
dimensional space (Figure 3). The mathematical representation of each kernel is:

Linear K1(x1, x2) = xT
1 x2 (6)

RBF K2(x1, x2) = e−γ‖x1−x2‖2
(7)

where γ is a kernel parameter.
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Figure 3. An example of an SVM (Support Vector Machine) classification using the RBF (Radial Basis
Function) kernel. The two classes are separated with a linear separator on a higher dimensional space,
which when re-projected back into its original dimensions becomes a non-linear function. The circled
instances are the Support Vectors defining the decision boundary, and the instances with a diamond
rounding are misclassified instances.

In order to avoid over-fitting the dataset (fitting the model to the data and not to the phenomenon),
we use cross-validation in the training step. According to the cross-validation methodology, the training
sample is split into n parts. After selecting an initial configuration, the model is trained iteratively on
the n − 1 parts, keeping each time one part for testing purposes. The in-sample accuracy of the model
with the selected configuration is simply the mean value of the forecasts over all n segments. After
changing the configuration of the model’s parameters, the iterative training scheme is repeated until
the minimum forecasting error is achieved. This training scheme is called “n-fold cross validation”.
An overview of the n-fold cross validation is depicted in Figure 4.

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Figure 4. Overview of a 3-fold Cross Validation training scheme. It shows that each subset is used as a
testing sample, while the others are used for training the model for each parameters’ value combination.

The search for the optimal parameter setup during cross validation is performed in a coarse-to-fine
grid search evaluation scheme. In this type of grid search, the parameters are initially evaluated in a
large step search procedure. Then, improved results are achieved by using a denser grid focusing only
on the parts of the research area where the model achieves the highest accuracy. By narrowing the grid
search, the point where no further improvement is achieved can be found. In Figure 5, we provide a
graphical representation of a three-iteration coarse-to-fine grid search. Optimum results in terms of
forecasting performance are depicted with the color gray. As the area becomes darker, the grid step
becomes smaller and the search finer. Coarse-to-fine grid search is a lower complexity bypass of the
exhaustive search in the finer level.
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2.2. Logistic Regression

When it comes to directional forecasting, the dependent variable takes two states; 0 and 1
expressing negative and positive oil price returns, respectively. The drawback in estimating a binary
dependent variable based on the OLS regression methodology is that the nature of the dependent
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variable makes OLS regression results irrelevant, due to the heteroskedasticity of the estimated errors
and violations to the assumptions in the asymptotic efficiency of the estimated coefficients. Thus,
instead of directly attacking the problem, we estimate the probability Pi = E(yi = 1

∣∣xi) =
exi β

1+exi β that
the dependent variable is 1, given the values of the independent variables. Given the binary nature of
our dependent variable, the logarithmic ratio of the probability in being in state 1 to state 0 is given by

Li = ln
(

Pi
1− Pi

)
= xiβ

T (8)

which is called the “logit” where xi is the vector of the independent regressors and β is a vector of the
estimated coefficients. If the estimated Li is above 0.5, we classify it as belonging to class 1, while if it
is below 0.5, we classify it in class 0.

2.3. The Data

We compiled a dataset of monthly WTI crude oil prices and 38 relevant economic variables from
the Federal Reserve Bank of Saint Louis database spanning the period June 2006 to February 2018.

Specifically, we considered three stock indices (Panel A) to examine the potential link between the
financial and the oil market. Namely, these were the Mexico IPC Index, the NASDAQ Index and the
S&P500. Given that oil is traded in U.S. dollars and the fact that the EUR/USD exchange rate accounts
for 28% of the global daily exchange rate transaction volume, we also considered this exchange rate
and a trade-weighted index expressing the relative value of the U.S. dollar to a basket of currencies
(Panel B). We also compiled gold and silver prices given their significance as reserves for the global
economy (Panel C), while we also compiled the main interest rates that were used as benchmarks for
the U.S. and the European economy (Panel D). These interest rates were used to test the validity of the
Hotelling’s rule. Moreover, following the literature that attributes oil price fluctuations to supply and
demand shocks, we considered the spot prices of refined (final) oil products, natural gas and Brent oil
prices (Panel E). Finally, in Panel F we examined the ability of future premiums to forecast spot prices
through the evaluation of 16 future contracts as potential regressors.

With the exception of interest rates, all variables were transformed into their natural logarithms.
We did not test for stationarity and proceeded with the levels of all variables, given that the results of
the SVM methodology were robust in the existence of unit root processes in the data (for more details,
see [19]). The descriptive statistics for all of the variables in our sample are reported in Table 1.

Table 1. Descriptive Statistics.

No Name Mean Standard
Deviation Skewness Kurtosis

Panel A: Stock Indices

1 Mexico IPC Index 10.49 0.26 −0.82 2.85
2 NASDAQ Index 8.09 0.40 0.18 2.05
3 S&P500 7.34 0.30 −0.06 2.30

Panel B: Exchange Rates

4 EUR/USD exchange rate 0.25 0.10 −0.31 2.31
5 Trade weighted U.S. dollar index 4.43 0.09 0.48 2.13

Panel C: Commodities

6 Silver prices 2.93 0.34 0.69 2.87
7 Gold prices 7.04 0.28 −0.68 2.77

Panel D: Interest Rates

8 CBOE Interest Rate 10 Year 2.84 0.96 0.98 2.46

9 Effective Federal Funds Rate 1.03 1.71 1.78 4.58
10 Fed 5-Year Treasury Constant Maturity Rate 2.06 1.14 1.19 3.60
11 3-Month London Interbank Offered Rate (LIBOR) 1.37 1.73 1.56 3.91
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Table 1. Cont.

No Name Mean Standard
Deviation Skewness Kurtosis

Panel E: Oil product prices

12 Fuel oil, No. 2 NY gal 0.75 0.32 −0.26 6.74
13 Brent oil prices 4.33 0.36 −0.29 1.40
14 Conventional Gasoline Prices: New York Harbor 0.74 0.29 −0.32 2.30
15 Conventional Gasoline Prices: U.S. Gulf Coast 0.71 0.29 −0.34 2.23
16 Reformulated Gasoline RBOB 0.81 0.27 −0.37 2.26
17 No. 2 Heating Oil Prices: New York Harbor 0.75 0.32 −0.26 2.06
18 Ultra-Low-Sulfur No. 2 Diesel Prices: U.S. Gulf Coast 0.77 0.32 −0.30 2.10
19 Ultra-Low-Sulfur No. 2 Diesel Prices: New York Harbor 0.79 0.31 −0.29 2.09
20 Ultra-Low-Sulfur No. 2 Diesel Fuel Prices: Los Angeles 0.80 0.30 −0.31 2.17
21 Propane Prices: Mont Belvieu, Texas −0.08 0.40 −0.54 2.46
22 Henry Hub Natural Gas Spot Price 1.38 0.41 0.57 3.03

Panel F: Future contracts

23 Natural Gas Futures Contract 1 1.41 0.41 0.62 2.90
24 Natural Gas Futures Contract 2 1.43 0.41 0.41 2.76
25 Natural Gas Futures Contract 3 1.46 0.42 0.64 2.70
26 Natural Gas Futures Contract 4 1.48 0.42 0.66 2.68
27 Cushing OK Crude Oil Future Contract 1 4.28 0.32 −0.36 2.08
28 Cushing OK Crude Oil Future Contract 2 4.29 0.31 −0.33 2.05
29 Cushing OK Crude Oil Future Contract 3 4.30 0.31 −0.32 2.03
30 Cushing OK Crude Oil Future Contract 4 4.30 0.30 −0.31 2.03
31 New York Harbor RBOB Gasoline Future Contract 1 0.75 0.30 −0.30 2.12
32 New York Harbor RBOB Gasoline Future Contract 2 0.75 0.29 −0.22 1.97
33 New York Harbor RBOB Gasoline Future Contract 3 0.75 0.28 −0.18 1.91
34 New York Harbor RBOB Gasoline Future Contract 4 0.74 0.27 −0.15 1.84
35 New York Harbor No. 2 Heating Oil Future Contract 1 0.77 0.31 −0.21 1.98
36 New York Harbor No. 2 Heating Oil Future Contract 2 0.78 0.30 −0.21 1.99
37 New York Harbor No. 2 Heating Oil Future Contract 3 0.78 0.30 −0.20 2.00
38 New York Harbor No. 2 Heating Oil Future Contract 4 0.79 0.29 −0.19 2.01

3. Empirical Results

Given the scope of this paper, as reported in the introduction, we proceeded in three steps.
The first step was to test for the best autoregressive (AR) model in directional forecasting of oil prices
(rise and drop) based on the SVM and the logistic regression methodologies. A comparison of the
AR model with the naïve RW model that is used as a benchmark where the best guess about the next
period’s directional change is the current one, revealed whether we can reject the weak form efficiency
in the oil market. Proposed by [20], the Efficient Market Hypothesis (EMH) states that the evolution of
prices in an efficient market follows a random walk and thus, it is impossible to create a forecasting
model that achieves sustainable positive returns in the long-run. The EMH is usually presented in
three forms; the weak, the semi-strong and the strong form of efficiency. An efficient market of the
weak-form is observed when historic prices of the variable in question cannot forecast the future ones.
Thus, autoregressive models have no forecasting power and the best forecast about the next period’s
price is today’s price. Semi-strong efficiency imposes more strict assumptions in that all historic prices
and all publicly available information is already reflected in current asset prices and thus, they cannot
be used successfully in forecasting. Finally, the strong form of the EMH builds on the semi-strong
case adding all private information and, thus, rendering it impossible to consistently forecast the
future evolution of an asset’s price. Overall, outperforming the RW model is an indication of potential
economic gains for a trader that follows an alternative trading strategy.

As a second step, we examined whether we can build structural forecasting models that are more
accurate that the AR ones. These models were built on the best AR models by augmenting them with
various relevant variables as potential regressors. In doing so, we tested all possible combinations of
variables in order to detect the most accurate forecasting models. Both in the AR and the structural
models, we used quarterly dummy variables to account for seasonal fluctuations in oil demand (EIA,
2018).
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Finally, the third step was to focus explicitly on the interest rates and evaluate their ability to
forecast oil prices. By doing so, we empirically tested Hotelling’s rule.

We started our analysis with the AR versions of all models. We split our sample into two parts;
the sub-sample from June 2006 to September 2015 i.e., 112 months was used for training the models
and the sub-sample from October 2015 to February 2018 i.e., 29 months was used to evaluate the
out-of-sample forecasting accuracy on one-period-ahead forecasting.

In terms of the best AR models, our empirical findings suggest that the most accurate SVM
model coupled with the linear kernel is the one that includes 11 lags of the WTI price (SVM-linear-11).
The most accurate SVM model with the RBF kernel includes 5 lags of the WTI price (SVM-RBF-5) and
the most accurate logistic regression AR model has 12 lags (All detailed results are available from the
authors upon request).

After determining of the most accurate AR models, we augmented them with additional variables
through an exhaustive search of all possible combinations. We kept the same subsamples for training
and testing purposes. According to this scheme, the most accurate structural SVM-linear-11 model
includes the dependent variable “Fuel oil, No. 2 NY gal”. The most accurate structural SVM-RBF-5
model includes the “Trade weighted U.S. dollar index” variable, while the most accurate structural
Logit-12 model includes the variables “Fuel oil, No. 2 NY gal” and “Trade weighted U.S. dollar index”.
The variable “Fuel oil, No. 2 NY gal” reports refined oil spot prices that were sold in the New York
area, while the “Trade weighted U.S. dollar index” is a trade-weighted index of the U.S. dollar to a
basket of foreign currencies that is based on the trading volumes of the U.S. economy with its trade
partners. The directional accuracy of each model is reported in Table 2.

Table 2. Directional Forecasting Accuracy.

Model Kernel AR (autoregressive)
Lags

In-Sample
Accuracy

Out-Of-Sample
Accuracy

RW (Random Walk) - 0 42.86 48.28
AR SVM model Linear 11 60.71 62.38

Structural SVM model Linear 11 67.33 64.29
AR SVM model RBF 5 64.29 54.96

Structural SVM model RBF 5 69.37 67.86
AR Logistic Regression model - 12 52.00 37.93

Structural Logistic Regression model - 12 59.46 64.29

Note: All accuracy values are percentages.

As we observe from Table 2, our best overall model both in in-sample and out-of-sample
forecasting accuracy is the structural SVM coupled with the non-linear RBF kernel. The second
most accurate model is the structural SVM model with the linear kernel, followed by the structural
logistic regression model. Thus, our results corroborate with the relevant literature with respect to
the forecasting superiority of the machine learning methodologies when compared to equivalent
econometric methods. Moreover, we detect that certain variables are useful in forecasting oil prices as
in [11], however unlike their approach, we are able to specifically identify these variables. Another
finding is that all AR models are less accurate than their respective structural versions.

Interestingly, all AR or structural SVM models outperformed the RW model in terms of
out-of-sample forecasting accuracy. This finding suggests that the conclusion of [6] that no model
outperforms a RW may be attributed to the low forecasting ability of the econometric methodology
that was applied in their study. In our dataset, the machine learning approach that we employed in
this study clearly outperforms the RW model, rejecting their conclusion. Moreover, given that the
AR SVM models outperform the RW model, this provides evidence against the EMH for the WTI
oil market, even in its weak form. The reported directional forecasting accuracies are not common
in the typical econometric literature and can be attributed to the superior forecasting ability of the
machine learning approach in comparison to the probit/logit model that was used in forecasting
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(see [9] for more details). On several occasions, the out-of-sample forecasting accuracy was higher than
the in-sample one, however this was sample dependent since the “unknown” data that was used for
the out-of-sample forecasting was not used during the training phase of the models.

Our atheoretical approach has not highlighted, however, the existence of a potential causal
relationship (lead-lag relationship) between interest rates and WTI oil prices, given that they were not
selected through the exhaustive search step as informative variables. In order to test for the hypothesis
suggested by the Hotelling’s rule that interest rates determine oil prices, we built SVM and logistic
regression models using the four interest rate variables in our sample as well as the spread between the
10-year and 5-year interest rates for the U.S. with the effective federal funds rate. The use of the term
spread between long and short-term rates was motivated by the need to include the expectations about
future economic conditions, which are captured by the term spread. To keep things tractable, we used
the same sub-samples for training and testing the forecasting accuracy and we also used the seasonal
dummy variables. Unlike our atheoretical approach, we did not include lags of the dependent variable
in this empirical analysis. We tested alternative lag orders of interest rates, however the models with
the highest forecasting accuracy are the ones that forecast next period’s (month) oil prices based on
this period’s interest rates (We also tested models that included lags of the dependent variable as
regressors, which are not reported given that they exhibit lower forecasting accuracy to the models
reported in Table 3. The results are available from the authors upon request.). In Table 3, we report the
out-of-sample forecasting accuracy of the interest rate models.

Table 3. Out-of-sample Directional Forecasting Accuracy of the interest rate models.

Input Variables Logistic Regression SVM- Linear Kernel SVM- RBF Kernel

CBOE Interest Rate 10 Year 35.71 50 35.71
Effective Federal Funds Rate 54.05 57.15 64.29
Fed 5-Year Treasury Constant Maturity Rate 35.71 50 60.71
3-Month London Interbank Offered Rate (LIBOR) 54.05 50 60.71
CBOE Interest Rate 10 Year minus Effective Federal
Funds Rate 53.57 50 64.29

Fed 5-Year Treasury Constant Maturity Rate minus
Effective Federal Funds Rate 54.05 53.57 57.14

Note: All values are percentages.

As we observe from Table 3, all models outperform the out-of-sample accuracy of the RW
model reported in Table 2 (48.28%). No model outperforms the structural RBF-SVM model of our
atheoretical approach that is reported in Table 2 (67.86%), however in two cases, the forecasting
accuracy reaches 64%. More specifically, the most accurate models are the SVM-RBF based on the
“Effective Federal Funds Rate” and the “CBOE Interest Rate 10 Year minus Effective Federal Funds
Rate”. Thus, the short-term federal funds rate seems to drive WTI oil prices and this effect is best
captured by the non-linear RBF kernel, suggesting that oil market participants follow short-term
interest rates closer than long-term ones.

Unlike the bulk of literature that rejects Hoteling’s rule [3], our empirical findings provide
evidence in favor of interest rates driving oil prices. Although the interest rates models do not achieve
the highest forecasting accuracy (and thus, they are not selected during the atheoretical step), they
outperform the RW model, suggesting that they are able to forecast oil prices’ evolution. In contrast,
older studies fail to do so. This discrepancy with the existing literature should be attributed to the
forecasting ability of the machine learning approach, while older studies are based on OLS regressions
and logistic regressions. The use of our SVM methodology with the higher forecasting accuracy in
comparison to typical econometric methodologies is able to unveil the relationship between interest
rates and oil prices. We leave the issue open for further research.
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4. Conclusions

In this paper, we revisited the efficient market hypothesis for the oil market under a machine
learning framework. In doing so, we built AR and structural forecasting models based on the Support
Vector Machines methodology, spanning the period June 2006 to February 2018. Our empirical findings
suggest that the AR SVM model outperforms the RW, rejecting even the weak form of efficiency in the
oil market. Through an exhaustive search among a pool of 38 potential regressors, we found that when
we couple the AR SVM model with the trade-weighted index of U.S. dollars to a basket of foreign
currencies, we manage to increase the out-of-sample forecasting accuracy to 67.8%. Moreover, when
we focus explicitly on the relationship between oil prices and interest rates, our machine learning
approach is able to unveil the existence of a causal relationship, unlike previous studies that use typical
econometric methods. This finding is an indication in support of Hotelling’s rule, however we leave
this issue for future research.
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