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Enhancing Public Safety with Digital Twins for
Indoor Air Quality Monitoring by Non-Experts

Louis Nisiotis
School of Sciences
University of Central Lancashire,
Cyprus
LNisiotis @uclan.ac.uk

Abstract—Digital Twin technology has been used in many
different domains to integrate disparate and complex data
sources into a single, comprehensible system. A less explored
field is monitoring indoor air quality and building efficiency
by providing real-time visualization and spatially contextualized
data in commercial buildings. Managers of commercial buildings
often have little or no training in indoor air quality, heating
ventilation and air conditioning systems (HVAC), or building
efficiency. This makes it difficult for them to evaluate environ-
mental and efficiency data, if such data are available. This study
evaluates the effectiveness of Digital Twins in 2D Desktop and 3D
Virtual Reality to support non-expert user engagement, data in-
terpretation, and spatial understanding for indoor air quality and
building efficiency analysis. Sensors were installed in a mixed-
use office/light industrial space, with a system infrastructure that
collects and stores historical data readings. A comparative study
was conducted between i) a traditional web-based dashboard
(the control condition), ii) a 2D, and iii) a Virtual Reality
Digital Twin using a within-subject research design involving
non-expert participants, to determine the efficacy levels of user
engagement with the data presentation mechanisms of each
system, their spatial understanding, and their ability to conduct
data interpretation. The findings demonstrate that VR Digital
Twin supports increased spatial awareness and understanding,
immersion, and data discovery, and the 2D Digital Twin system
provides clarity and accessibility for trend analysis. The study
contributes by i) validating the role of Digital Twins for Indoor
Air Quality; ii) exploring user perceptions on different Digital
Twin mediums in terms of user engagement; and iii) highlighting
the potential of Digital Twins for public safety, particularly in
indoor environments.

Index Terms—Digital Twins, eXtended Reality, Data visualiza-
tion, Public Safety, Immersive Analytics

I. INTRODUCTION

The COVID-19 pandemic clearly demonstrated the impor-
tance of Indoor Air Quality (IAQ), good ventilation and the de-
pendence on heating, ventilation and cooling systems (HVAC)
in buildings [1]. Unfortunately, IAQ is a complex topic that
has typically been the domain of technical experts, such as
industrial hygienists. While airflow within a building can be
described with fluid dynamics, the underlying mathematics is
complex, difficult to apply to real-world systems, and well
beyond the abilities of most people. In addition, building
HVAC systems vary significantly, based on building age,
usage, variation between installations, local climate conditions,
regional standards, and many other factors [2]. As a result,
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data analysis related to IAQ, and the efficiency of the related
systems, is challenging. This problem is compounded by the
fact that most building operators and facility managers have
little formal training in HVAC and related systems. There is
a clear need for granular, actionable, real-time data that helps
building operators and building occupants meaningfully assess
the performance of HVAC systems and a building’s IAQ.

The concept of “Visual Analytics” has shown considerable
promise in making data actionable. This refers to a method
introduced two decades ago as the science of analytical
reasoning facilitated by interactive visual interfaces [3]. While
this definition does not specify the types of interface devices
used in visual analysis systems, it has been noted that the
capabilities of display and input devices significantly impact
the user experience in such systems [4]. Visual analytics
has broad applicability across multiple domains, including
monitoring IAQ.

Recent advancements in eXtended Reality (XR - encom-
passing Virtual, Augmented and Mixed Reality hardware and
software) have significantly enhanced data analytics tasks, of-
fering modes for experiencing more immersive and interactive
environments that enable users to engage with complex data
in intuitive ways [5]. The use of XR and other interactive
technologies has contributed toward the development of “Im-
mersive Analytics”, a growing research area focused on the use
of advanced display and interaction technologies for analysing
and interacting with data in immersive ways.

In recent years, Digital Twin (DT) technology has also
become increasingly pervasive, and one application area with
the potential to make a significant impact on public safety and
public health is environmental quality management. A DT is a
virtual replica that shadows a physical entities/system. A DT
enables continuous monitoring, simulation, and optimization
through a combination of real-time data, advanced visualiza-
tions, and analytics [6]. Although DTs have been successfully
implemented in various sectors such as manufacturing, engi-
neering, and healthcare, their application to IAQ management
is still in its early stages. As with other application areas,
DTs for IAQ can deliver analysis, simulation, and system
optimization resulting in tangible gains in efficiency and public
safety.

This paper investigates the potential of DT technology in



supporting IAQ management. We examine whether DT and
immersive environments presented in 2D and 3D VR formats
can more effectively enable a layperson to make informed
decisions when compared to more traditional approaches to
data visualization. The aim is to explore the efficacy of differ-
ent visualization modalities, testing how and if an immersive
DT can contribute toward enhancing spatial awareness, user
engagement, and overall comprehension of TAQ and building
health. The goal is to explore whether DT technology can
effectively support non-technical stakeholders in monitoring
and identifying TAQ issues.

II. BACKGROUND AND CONTEXT

ITII. DIGITAL TWINS FOR INDOOR AIR MANAGEMENT

IAQ is a subset of Indoor Environment Quality (IEQ). IEQ
has emerged as a critical factor affecting the health, comfort,
and productivity of occupants in residential, commercial, and
industrial buildings [7]. IEQ refers to the collection of factors,
including thermal conditions, lighting, acoustics, and TAQ,
that determine the environmental quality, healthiness, and
overall well-being of a closed indoor space [8]. We spend
more than 90% of our lives indoors, breathing the air within
buildings [9]. According to the World Health Organization
(WHO) [10], exposure to indoor pollutants is linked to a
range of adverse health effects, including respiratory illnesses,
cardiovascular diseases, and impaired cognitive function. The
WHO publishes the “‘WHO Guidelines for Indoor Air Quality:
Selected Pollutants’ offering guidance to reduce health risks
from common indoor pollutants, and there are also several
initiatives that publish guidelines regarding IAQ problems
[11].

Gaining a comprehensive understanding of IAQ in buildings
requires significant effort due to the complexity of the factors
affecting IAQ. Indoor air pollution arises from a variety of
sources, both indoor and outdoor, including common building
materials, cleaning supplies, smoking, cooking, nearby traf-
fic emissions and even the building occupants themselves.
Sources and their impact also vary by season and can be
affected by local weather conditions. There is also significant
variation between buildings and conditions that fluctuate over
time, making the identification process extremely complex
[12]. A common way to support IAQ management practices is
with Internet of Things (IoT) technology, specifically, sensors
designed for environmental monitoring. Recent developments
in IoT devices and their components have enabled increasing
accuracy at lower cost. Commercial IAQ sensors can en-
able accurate and efficient daily monitoring of IAQ, thereby
capturing the data needed to improve the energy efficiency,
flexibility, and resilience of ventilation systems [12].

As noted previously, DTs show promise as a technology
that can support efforts to manage IEQ, helping to drive the
transition to smarter buildings with improved energy efficiency
and healthier indoor environments [8]. “A digital twin is a
virtual representation of an object or system that spans its
lifecycle, is updated from real-time data, and uses simulation,
machine learning and reasoning to help decision-making”

[13]. In DT technology, data is gathered from real-world
sensors (IoT), processed using a variety of algorithms, and
presented through a virtual model that serves as a digital
replica, or twin, of a physical system or entity. The sensor
data is directly mapped to the DT, mirroring the system’s
operation so that anyone viewing the DT can access near-
real-time information about the physical system’s state and
performance, potentially providing more valuable data than
directly observing the physical system itself [6]. DTs are used
across various industries to monitor, simulate, and optimize
operations. In multiple industries, DT technology is used to
predict future performance, identify inefficiencies, and enable
decision-makers to take actions to address or predict issues.
DTs are particularly effective in complex systems as they pro-
vide ways to integrate disparate sources of information within
a single visualization framework. This ability to visualize
entities and real-time data, creating a digital representation of
complex physical environments/elements/systems/processes, is
a key function of a DT.

To date, DT technology has not been broadly applied to
IEQ and there are still considerable knowledge gaps in ap-
proaches that holistically address IEQ, particularly in relation
to thermal comfort and IAQ [8]. Several companies offer
DT solutions for IEQ and building management. Examples
include the eDigiT2Life project from Integrated Environmental
Solutions [14], DT solutions from Johnson Controls [15], and
the TwinView platform from Space Group [16]. Some DT
solutions are also available for general facilities management
from companies such as Bosch [17], Sensegreen [18] and
Siemens [19]. However, these solutions generally target large,
new smart buildings rather than the existing built environment.

A. Immersive Analytics and VR

The real-time visualization capability of DTs provides in-
teractive and data-rich experiences. An increasingly common
approach is to combine DTs with VR for immersive visuali-
sation and analytics. Research in immersive analytics involves
developing and evaluating novel interfaces and devices, and
utilising metaphors and visualizations to support data under-
standing and decision-making. It is a highly multidisciplinary
field, bringing together researchers from the fields of human-
computer interaction, visual analytics, immersive technologies,
computer graphics, and information visualization [4]. To sup-
port data visualization, multiple tools exist to support data
exploration, interpretation and decision making. These tools
are capable of maintaining and digitally representing data,
allowing users to interact and manipulate information through
human-computer interfaces to explore, analyse and interpret
data and hypothesis on their own [20].

Immersive analytics go beyond traditional visual analytics
methods, as detailed in the comprehensive survey by Mar-
riott et al. [21], providing many opportunities for enhancing
interaction and engagement in analytics, enabling more intu-
itive, collaborative, and multi-sensory experiences that support
data interpretation and more effective decision-making. Such
methods provide opportunities for Situated Analytics that link



data analytics to physical objects, like products or tools, with
practical uses in the workplace and everyday life, enabling
personalised analytics based on physical context [22]. They
support Embodied Data Exploration through touch, gestures,
voice, and tangible interactions instead of traditional mouse
and keyboard inputs, aiming to make data exploration more
intuitive and engaging, in modes where the computer fades
into the background, while still supporting analytics [23], [24].
Immersive analytics support in-person and remote Collabora-
tion, both synchronously and/or asynchronously, facilitating
collaboration in socially engaging and effective ways [25].
Furthermore, they allow the user to move beyond the desk-
top/tablet/screen experience, offering opportunities for Spatial
Immersion that allows users to work within 3D spaces and
interact with 2D, 2.5D, and 3D data visualizations in immer-
sive and spatially oriented workspaces [26].Moreover, while
traditional visual analytics focus on visual data, immersive
analytics support Multi-Sensory Presentation modes that incor-
porate other senses, like audio, spatial exploration and touch,
to provide additional or alternative information to enhance
data interpretation, especially when visual information alone
is insufficient [27]. Lastly, such methods provide opportunities
for immersive narrative visualizations to support Increased
Engagement through data-driven decision-making [28]

Some of the technologies commonly used for immersive
analytics are touch surfaces, sensors, and immersive VR and
AR among other emerging digital tools and natural user
interfaces [4]. In VR and 3D data visualization in particular,
user interface researchers and developers often concentrate
on core challenges such as improved rendering techniques,
achieving reliable gesture recognition, head-tracking, and other
low-level technical areas [4]. One of the key affordances of VR
is the users’ feeling of ‘presence’ and ‘immersion’. Immersion
is defined as “the degree which the range of sensory channel
is engaged by the virtual simulation” [29], referring to the
user’s engagement with the system that leads to a flow state
mostly driven by sensory immersion. Presence is defined as
“the subjective experience of being in an environment when
physically situated in another” [30](p. 255). This enables
users to develop the psychological perception of ‘being in’
the virtual environment rather than the physical one [31],
[32]. Although terms like digitally mediated ‘presence’ and
‘immersion’ are frequently used interchangeably [33], they
are different [34], [35]. Presence refers to the subjective
experience, whereas immersion pertains to the technological
effect of replacing real sensory stimuli with synthetic ones;
in simple words, the greater the replacement, the higher the
level of immersion [36], [37]. Immersion thus relates to the
technical elements of a virtual environment that support the
user’s sense of presence. Presence is influenced by immersion
but ultimately depends on how the user perceives and responds
to the virtual experience.

An additional key benefit of VR is the ability to provide
realistic (or unrealistic), immersive experiences that enhance
spatial understanding. VR offers depth cues, such as stereo
images and head tracking, allowing users to leverage their

natural ability to perceive stereopsis and motion parallax. VR
can also reduce destruction and information clutter, which is
common in computer desktops filled with icons and notifi-
cations, enabling the virtual environments to become easier
to understand. This offers increased peripheral awareness and
greater information bandwidth, further improving the user
experience [38]. Through these affordances, VR can help
to develop engaging interactive visualization experiences that
would support users’ needs for understanding and engaging
with data. User engagement is a complex concept that is
not directly observable but can be assessed through various
indicators, combining emotional, cognitive, and behavioural
components. This construct has been explored in various
disciplines such as education, games, and human-computer
interaction, each offering different perspectives on what consti-
tutes engagement. Key characteristics include intention (users
should have an initial commitment to interact), autonomy
(interaction should be voluntary), purpose (engagement should
be driven by personal interest), time (users should spend a
meaningful amount of time interacting), and outcome gained
from interacting with visualization (users should gain more
than just superficial information) [39]. Considering that when
coupled with DT technology, VR has the potentials to to
offer an ideal combination of immersion and presence while
supporting interactive, spacially aware analytics, such ap-
proach makes it potentially valuable in making complex data
accessible to non-expert audiences.

IV. RESEARCH METHODOLOGY

A. Problem Statement

As noted previously, IAQ is a complex and multifaceted
problem space. Historically, interpreting data and determining
appropriate remedial actions for a given building has relied
on a combination of intensive data gathering and significant
technical expertise. The advent of lower cost IoT devices for
environmental sensing has made data collection significantly
easier, but the issues of analysis and interpretation remain.
The opportunity presented by VR and immersive analytics
is to make analysis and interpretation more accessible to the
layperson. In particular, leveraging the affordances of DTs and
VR for immersive data analytics has the potential to make
the collected data understandable and actionable for someone
responsible for building operation who has not received deep
technical training, and does not possess a detailed understand-
ing of airflow, industrial hygiene, HVAC systems and other
related topics.

This paper aims to explore the efficacy of DTs for monitor-
ing TAQ, through a comparative investigation of a web-based
visualization dashboard using traditional charts, a web-based
2D visualization (a simplified DT), and a 3D DT experienced
in VR. To explore this, a comparative experimental study was
conducted assessing the users’ ability to interpret data and
understand the spatial environment of an existing building
within the context of environmental conditions and TAQ, by
experiencing the three different modalities previously outlined.



B. Research Questions

The research questions driving this study focus on exploring
effectiveness in terms of user engagement with data visualiza-
tion, efficient data interpretation, and spatial understanding for
three different modalities: i) a traditional web-based visualiza-
tion dashboard, ii) a simplified DT in 2D (2D DT), and iii) an
immersive 3D DT experienced in VR (VR DT).

RQI: How does user engagement differ between the web-
based dashboard, the 2D DT, and the VR DT in data visu-
alization tasks? This question investigates users’ perceptions
towards the data visualisation mechanisms in terms of Aesthet-
ics, Captivation, Challenge, Control, Discovery, Exploration,
Creativity, Attention, Interest, Novelty, and Autotelism; which
are factors relevant to user engagement with visual data. The
goal is to determine which modality offers the most engaging
user experience during data visualization exploration tasks.

RQ2: To what extent do the three modalities support users’
ability to interpret data efficiently? This question compares
users’ ease of understanding environmental data and its
perceived usefulness between the three conditions, assess-
ing whether spatial and immersive interfaces improve data
interpretation compared to the traditional data visualization
dashboard.

RQ3: How do the three modalities differ in their impact
on users’ spatial understanding of environmental conditions
within the building?; exploring how effectively each approach
supports users in visualizing data spatially, understanding the
building layout, and identifying the locations of areas with
poor environmental quality.

To address these research questions, a comparative study
employing a within-subject design was conducted. Study par-
ticipants interacted with the three distinct conditions for data
visualization and interpretation of the environment, performing
a series of predefined data analysis tasks.

C. Experimental Design

1) System Design and Architecture: The development of
the DT systems began with the deployment of Nosy sensors
[40] in a two floor light industrial mixed office space building
located in New England, USA. Sensors were installed in the
corridors throughout the building, with each sensor collecting
data every five minutes. The collected data includes temper-
ature, relative humidity and total volatile organic chemicals
(tVOC) as a measure of indoor air quality. The sensors are
battery powered, using a Bluetooth mesh network to transmit
their data to a local time-series database for storage. The
data is also replicated to the cloud for additional processing
and analysis. Traditional chart-based data visualizations are
created using Grafana, an open source analytics and interactive
visualization web-based dashboard system (See Fig. 1).

Using the time-series data server, the research team at the
University of Central Lancashire, Cyprus (UCLan Cyprus)
have developed a simplified 2D DT web based platform
that displays data within a geographical information system
(GIS). Using a combination of color-coding and time-based
visualization, the platform displays the sensor locations with

Fig. 1. The Grafana Web-Based Visualization Dashboard

data collected by the sensors overlaid on the 2D layout of the
building (see Fig 2). This tool allows users to monitor and
interpret the environmental conditions in near real-time and
review historical data for any given time period. The platform
also produces summary reports for each calendar month (See
Fig. 3.). These reports use data from all the sensors within
a building to assess multiple factors, such as temperature,
relative humidity, IAQ and C'Os levels.
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Fig. 2. The 2-Dimensional Digital Twin
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Fig. 3. IAQ Report Generated in the 2D DT System

In parallel, a VR DT was developed using Unity3D, fea-
turing a digital representation of the actual building. The 3D



model for the DT was captured with a Matterport camera,
which generated a detailed 3D scan of the building interior.
The 3D model was simplified and imported into Unity, where
the building’s virtual model was created. To enable real-time
data updates in the VR environment, data is retrieved via a
REST API and imported into Unity, where it is visualized
through different techniques such as graphs, color-coding,
heatmaps, and overlays. The VR environment allows users
visualize the environment through an isometric camera (Fig.
4), and by navigating through the building and interacting with
the data via a user interface panel (Fig. 5).

Fig. 5. Example View from the Environment in the VR DT

The DT system architecture is divided into multiple layers,
each performing a specific function: data ingestion; data
processing; 3D model and visualization; and user interaction
(Fig. 6). The data ingestion layer fetches the environmental
data from the time-series database via REST API calls, and
the data processing layer validates and associates the sensor
data with specific locations in the 3D model. The 3D model
and visualization layer manages the real-time updates in Unity,
rendering the 3D building and displaying data interactively.
The user interface facilitates user interaction with the VR
environment, allowing to engage with the presented data and
explore the building in VR.

2) Data Collection Instruments: To examine the effect
of each modality on user engagement, data interpretation,
and spatial understanding, we evaluated a number of factors
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Fig. 6. Overview of DT System Architecture

relevant to interaction with complex spatial data to support
informed decisions related to TAQ. To measure and compare
the levels of user engagement with the three modalities, we
employed the ‘VisEngage’ questionnaire developed by Hung
and Parsons [20]. VisEngage allows to measure how users
emotionally and cognitively connect with visualizations, pro-
viding insights into the effectiveness of visualizations beyond
just usability and performance. VisEngage is measured on a
7-point Likert scale and assesses 11 engagement characteris-
tics (Aesthetics, Captivation, Challenge, Control, Discovery,
Exploration, Creativity, Attention, Interest, Novelty, and Au-
totelism). For each characteristic, VisEngage authors designed
two specific items, totalling 22 items, providing insights into
one of the 11 engagement categories for a thorough evaluation
of distinct user engagement dimensions. The highest aggre-
gated score that can be achieved is 154.

To assess users’ data interpretation and spatial understand-
ing in the context of environmental conditions within the build-
ing, we formulated a questionnaire that captures their overall
experience. The questionnaire includes questions related to the
identification of areas with poor air quality, spatial layout, and
data distribution understanding using the questions presented
in Table III. Both questionnaires were rated in a 7-point Likert
scale ranging from Strongly Disagree (1) to Strongly Agree
(7). Data on participants’ demographics was also collected
using a pre-experiment questionnaire, to capture their gender,
age, field of work, and previous experience with computers
and VR, TAQ monitoring systems, data analytics tools, and
interpretation of environmental data.

3) Experimental Procedures: To conduct this comparative
investigation, a general call for participation was announced at
UCLan Cyprus. Prior to the participants interaction with any
of the study materials, they were briefed of the purpose of
this study, and their informed consent was sought. Participants
were requested to complete the pre-experiment questionnaire,



and were given a scenario requiring them to assume the role
of a building manager responsible for monitoring the indoor
environment across various areas of a building. Their goal was
to analyze real-time and historical data to identify areas with
problematic environmental conditions, such as temperature,
humidity, and IAQ, in order to report these issues to the senior
management. Participants were first exposed to the traditional
charts used by the web-dashboard tool, followed by the 2D DT,
and lastly in the 3D VR DT. In each system, they were offered
an initial orientation tutorial to understand the feature of each
system. They were then assigned a simple task (identifying
the current temperature of the main lobby area) to familiarise
them with the system. Once this orientation was completed,
participants were asked to perform a series of tasks designed
to evaluate their ability to interpret environmental data and
understand spatial relationships within the three systems. The
same tasks were completed across all three systems, in the
following order: 1) web-based Dashboard, 2) 2D DT, and 3)
VR DT. We chose this sequence to minimise any potential
>wow effect’” that VR technology may had on users. The first
task required to analyze real-time data to identify areas with
the highest current temperature and lowest IAQ. The second
task required to review data for the previous 8 hours to find
the areas with the highest recorded temperature and humidity.
The final task required to review data for the previous 24
hours to find the area with the lowest air quality, and humidity
levels above 65%. In each task, areas of the building with
outlier measurements making the task trivial were excluded,
for instance we excluded the corridors where temperature,
humidity and TAQ measurements were constantly poor.

The experimental session for each participant lasted between
30-45 minutes with short 5 minute breaks provided between
the different systems to prevent fatigue. During the sessions,
a researcher supported participants when needed. Additional
guidance was provided if their answers were incorrect. After
completing their tasks in each system, participants completed
the VisEngage questionnaire, and rated their perceptions about
their system experience. At the end of the study, participants
also completed the post-experiment experience questionnaire.
The same measurements dataset was used across all systems.
For the web dashboard and the 2D DT, participants used
Google Chrome web browser on a medium to high end PC. For
the VR DT, participants used the Meta Quest 2 head mounted
display in tethered mode on a medium to high end PC equiped
with an Intel Core 17-10700K CPU, 2.9 GHz, NVidia 3060
RTX GPU, and 32GB of DDR4 RAM.

4) Participants: The study participants were drawn from
the IT community, including university students and profes-
sionals, none of whom were experts in IAQ management
or related building systems. This was an intentional choice
to evaluate the efficacy of the visualization systems being
tested for non-experts. The use of non-experts ensured that the
systems were assessed on the basis of the participants’ ability
to effectively understand the environmental data and spatial
relationships using the systems provided, rather than relying
on existing technical knowledge. For the sake of clarity, in

real world usage, non-experts could include facility managers,
business managers, policymakers, educators, and even building
occupants. In practice, buildings are typically managed by
individuals that are not experts in IAQ or HVAC systems.
These individuals often need to interpret data and make
informed decisions, but as discussed previously, they do not
have advanced technical expertise in IAQ and HVAC systems,
or prior experience with complex data visualization platforms.
Experts, from HVAC contractors to industrial hygienists, are
only brought in to a building when issues have become severe
and obvious, such as the clear presence of health hazards
(smells, mould, obvious damp patches), or system failure.

Our evaluation study included 23 participants (18 Male, 5
Female) between 18 and 54 years old (60% between 18-24,
18% between 25-34, 9% between 35-44, and 13% between
45-54). Most participants were very experienced with the
use of computers (Mean=4.39, SD=84; where 5=very expe-
rienced). Participants reported varying levels of familiarity
with VR, where 17.4% indicated they had no previous ex-
perience, 21.7% reported limited experience, 21.7% described
themselves as somewhat experienced, 26.1%, indicated good
experience with VR, and 13.0% rated themselves as very
experienced. Regarding domain-specific expertise, participants
reported low familiarity with TAQ management (Mean=1.83,
SD=1.15) and interpreting environmental data (Mean=2.65,
SD=1.46). Additionally, their frequency of using dashboards or
data visualization tools was moderate (Mean=3.83, SD=1.67;
where 7=very frequent use).

V. RESULTS

Prior to conducting any data analyses, the degree of normal-
ity of the data distribution was tested using the Shapiro-Wilk
test. The test revealed that the data distribution for several
of the factors was not normally distributed, therefore, non-
parametric statistical analysis methods have been employed.
To conduct descriptive statistics we have reported Medians
(Mdn) and Interquartile Range (IQR). To determine statisti-
cally significant differences between the users’ engagement
perceptions across the three systems, we have employed the
Friedman test which is commonly used for within-subject
design for data with three (or more) repeated outcomes where
their distribution is not normal. The null hypothesis of the
Friedman test is that the distribution is the same across
the repeated measures (the three systems) [41]. For statisti-
cally significant differences between the measures, separate
Wilcoxon signed-rank tests was conducted using Bonferroni
adjustment, dividing the p value by the 3 tests, resulting to a
new significance level (p) of 0.05/3=0.017.

The results of the individual factors of engagement were
explored first, and are summarized in Table I and depicted
in Fig. 7 for the web-based Dashboard system (Dashboard),
the 2D DT (2DDT) and the VR DT (VRDT). The VRDT
was particularly engaging in terms of Aesthetics (Mdn=6,
IQR=2.5), Captivation (Mdn=5.5, IQR=2), and Challenge
(Mdn=6, IQR=2.5), reflecting the ability of VR to deliver
visually immersive and appealing graphics that absorb users



and encourage reflection during data visualization tasks.
The 2DDT also performed well in these areas, with high
scores in Aesthetics (Mdn=5.5, IQR=1), Captivation (Mdn=5,
IQR=1.5), and Challenge (Mdn=5, IQR=1). The Dashboard
received the lowest scores for these factors, with Aesthetics
(Mdn=4.5, IQR=1.5), Captivation (Mdn=3.5, IQR=2), and
Challenge (Mdn=5, IQR=2), suggesting that the traditional
dashboards are less engaging and cognitively stimulating than
the DT approaches. However, Control was rated highest for the
Dashboard (Mdn=6, IQR=1.5), likely due to users’ familiarity
with dashboard-based visualization systems and their ease of
use. The 2DDT scored lower (Mdn=5.5, IQR=1.5), while the
VRDT had the lowest score (Mdn=5, IQR=1), likely due to
the complexity of navigating a virtual environment. Discovery
(Mdn=5.5, IQR=2.5) and Exploration (Mdn=5.5, IQR=1) were
rated high for the VRDT, and similarly for the 2DDT (Dis-
covery: Mdn=5.5, IQR=1.5, Exploration: Mdn=5, IQR=1.5),
suggesting that both systems supported spatial understand-
ing and interactive exploration effectively. The Dashboard
scored the lowest ratings for these factors (Discovery: Mdn=5,
IQR=2; Exploration: Mdn=5, IQR=1.5). Creativity, Attention,
and Interest were rated highest for the VRDT (Creativ-
ity: Mdn=4.5, IQR=3; Attention: Mdn=6, IQR=0.5; Interest:
Mdn=5.5, IQR=2). The 2DDT was also perceived positively
(Creativity: Mdn=4.5, IQR=3; Attention: Mdn=5.5, IQR=1;
Interest: Mdn=5, IQR=2.5). The Dashboard received the low-
est scores in these areas, with Creativity (Mdn=3.5, IQR=2),
Attention (Mdn=5, IQR=1.5), and Interest (Mdn=5, IQR=2.5),
indicating it was less engaging in these domains. Lastly,
the VRTD received the highest scores in Novelty (Mdn=5,
IQR=2.5) and Autotelism (Mdn=5.5, IQR=3.5), highlighting
innovative and enjoyable user experiences. The 2DDT was
also rated positively (Novelty: Mdn=5, IQR=2; Autotelism:
Mdn=5, IQR=1), while the Dashboard was perceived as less
engaging (Novelty: Mdn=4.5, IQR=3; Autotelism: Mdn=4,
IQR=3), suggesting that this is due to the lack of innovative
interactive features and enjoyment of the DT platforms.

The Overall Engagement score for the three conditions
was then explored and the results are summarized in Table
IT and depicted in Fig. 8. Even though we are considering
Median values due to the non-normal data distribution of our
sample, we have also included the Mean results for a more
clear understanding of the data. The VRDT mode received the
highest engagement score out of the maximum 154 (Mdn=121,
IQR=48), followed by the 2DDT (Mdn=113, IQR=23) and
then the Dashboard (Mdn=98, IQR=24).

The Overall Engagement results were then further explored
using the Friedman test of related samples to determine
statistically significant differences between the users’ percep-
tions of the three systems. The test revealed that the Overall
Engagement scores (Table II) were not statistically signif-
icant (x%(2)=3.2, p=0.202), even though the VRDT scored
quite higher (Mdn=121, IQR=48) than the Dashboard system
in particular (Mdn=98, IQR=24), and also than the 2DDT
(Mdn=113, IQR=23). The differences across systems for the
individual engagement factors were also explored. There was

TABLE I
DESCRIPTIVE STATISTICS FOR THE DIFFERENT FACTORS AND SYSTEMS
Factor System Median | Min | Max | IQR
Aesthetics Dashboard 5.5 1.5 7 1.5
2D DT 5.5 3 7 1
VR DT 6 2.5 7 2.5
Captivation | Dashboard 3.5 1 7 2
2D DT 5 1 6 1.5
VR DT 5.5 2 7 2
Challenge Dashboard 5 3 7 2
2D DT 5 1.5 7 1
VR DT 6 2 7 2.5
Control Dashboard 6 4 7 1.5
2D DT 5.5 2 7 1.5
VR DT 5 3 7 1
Discovery Dashboard 5 1.5 7 2
2D DT 5.5 35 7 1.5
VR DT 5.5 3 7 2.5
Exploration | Dashboard 5 2.5 6 1.5
2D DT 5 2 6.5 1.5
VR DT 5.5 3 7 1
Creativity Dashboard 3.5 1 5.5 2
2D DT 4.5 1 6 3
VR DT 4.5 2.5 7 3
Attention Dashboard 5 3.5 6.5 1.5
2D DT 5.5 35 7 1
VR DT 6 35 7 0.5
Interest Dashboard 5 2 7 2.5
2D DT 5 2.5 7 2.5
VR DT 5.5 2 7 2
Novelty Dashboard 4.5 2.5 6.5 3
2D DT 5 2 6.5 2
VR DT 5 2.5 7 2.5
Autotelism Dashboard 4 2 6 3
2D DT 5 1 7 1
VR DT 5.5 1 7 35
TABLE II
DESCRIPTIVE STATISTICS FOR OVERALL ENGAGEMENT
System Median | IQR | Mean SD Min | Max
Dashboard 98 24 101.57 | 17.64 | 68.00 136
2D DT 113 23 107.30 | 20.04 | 60.00 138
VR DT 121 48 114.83 | 23.05 | 76.00 143

a statistically significant difference in Captivation between the
three systems, (x2(2)=12.756, p=0.002) Post hoc analysis with
Wilcoxon signed-rank tests was conducted with a Bonferroni
correction with a significance level set at p < 0.017, revealed
statistically significant differences between the VRDT and the
Dashboard (Z=-3.099, p= 0.002), and also with the 2DDT (Z=-
3.002, p=0.003). Furthermore, there was also a statistically
significant difference in Creativity between the three systems
(x?(2)=15.537, p=<.001). Post hoc analysis (p < 0.017)
revealed a statistically significant difference for the VRDT
with the Dashboard (Z=-3.276, p= 0.001), as well as between
the 2DDT and the Dashboard (Z=-2.616, p= 0.009).

The results regarding the user experience were explored
next and are presented in Table IIIl. The VRDT was partic-
ularly positively rated for making users feel present in the
environment (Mdn=7, IQR=2), for understanding the spatial
layout of the environment (Mdn=6, IQR=2), the physical space
(Mdn=7, IQR=3) and perceive distances effectively (Mdn=6,
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Fig. 8. Box-plots for Overall Engagement score for the three modalities.

IQR=2). However, the complexity in the use of the VRDT
revealed challenges for some users, as reflected in lower
scores for Task Completion (Mdn=5, IQR=3). The 2DDT
was consistently perceived positively, particularly in spatial
layout understanding (Mdn=6, IQR=2), the ability to observe
changes in measurements and of conditions in the environ-
ment, demonstrating a good balance of graphical clarity and
usability. The Dashboard was perceived highest in ease of task
completion (Mdn=7, IQR=1), but was rated low on presence
(Mdn=3, IQR=3) and spatial understanding (Mdn=3, IQR=5),
revealing its limitations in immersive and interactive tasks. The
overall data exploration experience was positively rated for all
three systems, but in particular the 2DDT received the most
consistent perceptions (Mdn=6, IQR=0)

At the end of the experience, the researchers conducted
brief interviews to gather participants’ impressions of the
three systems. Many participants found the need to navigate
and explore the environment in the VRDT to obtain specific
measurements to be time-consuming, especially when access-
ing detailed information. However, the 3D representation in
VR was positively rated for providing a strong sense of
immersion and spatial understanding, especially because users
were unfamiliar with the real environment. Several users noted
that they preferred starting with the isometric view in VR, as it
allowed them to quickly review data and select the area they
wanted to explore. In contrast, the 2DDT was described as
more structured, but it was less effective in conveying real-
world spatial relationships. Some participants appreciated the
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TABLE III
DESCRIPTIVE STATISTICS FOR USER EXPERIENCE QUESTIONS
Question System Mdn | Min | Max | IQR
. Dashboard 3 1 7 3
bt - N IS N
VR DT 7 2 7 2
I could understand the Dashboard 3 1 7 5
spatial layout of the 2D DT 6 4 7 2
environment. VR DT 6 2 7 2
I could perceive distances | Dashboard 2 1 7 3
between sensor locations 2D DT 6 4 7 2
within the environment. VR DT 6 4 7 2
I gained a clear Dashboard 2 1 7 6
understanding of the 2D DT 6 3 7 1
physical space. VR DT 7 1 7 1
It was easy to understand | Dashboard 6 3 7 3
condition changes over 2D DT 7 4 7 1
time across areas. VR DT 6 3 7 2
It was easy to complete Dashboard 7 3 7 !
the assigned tasks? 2D DT 6 3 7 2
VR DT 5 2 7 3
Rate your overall data Dashboard 6 2 7 2
exploration experience 2D DT 6 4 7 0
with this system VR DT 6 2 7 3

2DDT interface for its ability to clearly display changes in
measured variables over time, which were facilitated by color-
coded variations on the timeline. The Dashboard system on the
other hand was perceived as the most efficient for completing
tasks, with users highlighting their familiarity with such tools.
While the dashboard and 2DDT were generally regarded as
more intuitive and efficient for task completion, VR’s isometric
view improved ease of use; however, deeper exploration in VR
was often seen as more time-consuming.

VI. DISCUSSION

The results of this study highlight the capabilities and
potentials of DT systems in monitoring and interpreting IAQ.
The findings demonstrate that DT technology both in 2D and
VR are effective tools for real-time environmental data engage-
ment, allowing users to analyze complex indoor conditions to
make informed decisions; for example improving air quality
that can mitigate health risks, reduce costs, and better manage
resources.

In terms of the RQI, the results demonstrate that user
engagement varied between the three modalities. The VR DT
was found to offer the highest levels of immersion, aesthet-
ics, captivation, and interaction, offering novel and enjoyable



experiences, suggesting that its immersive capabilities support
increased engagement by allowing users to explore IAQ data
in more interactive and intuitive ways. The 2D DT was also
perceived very engaging, with participants appreciating its
graphical clarity and structured interface supporting active data
engagement. The Dashboard was found practical and familiar
to users but was the least engaging. Even though users found
it easy to complete the assigned tasks and effective for data
retrieval, it lacked the immersive and exploratory features that
made the DT systems more engaging.

To explore the extent to which the three modalities support
users’ ability to interpret environmental data efficiently and ad-
dress RQ2, the results indicate that each system offers distinct
advantages for data interpretation depending on the complexity
of the task. The VRDT enabled users to discover patterns
and trends interactively, supporting engagement and creative
thinking, but with lower task completion efficiency. However,
the need to navigate and explore the environment to obtain
specific measurements was perceived as time consuming by
some users. The 2DDT proved to be the most effective in
supporting structured data analysis, particularly for identifying
environmental trends over time, offering clear visual repre-
sentations allowing users to quickly compare temperature,
humidity, and air quality changes. In contrast, the Dashboard
was the easiest to use but lacked the depth of exploration
offered by the other two modalities.

In terms of the users’ ability to develop spatial understand-
ing of environmental conditions within the building (RQ3), this
was mostly supported by the VRDT, which allowed users to
navigate the environment freely and visualize IAQ variations
in spatially contextualized ways through the technology’s
capability to provide an embodied sense of space. The 2DDT
also supported strong spatial understanding but lacked immer-
sion and free spatial movement, and was found less capable
of conveying real-world spatial relationships than VR. The
Web Dashboard scored the lowest in spatial understanding,
with users reporting difficulty perceiving sensor distances and
understanding the overall spatial layout, highlighting a fun-
damental limitation of traditional dashboards in representing
spatial data intuitively.

Considering the results of this study, it can be argued
that the ability of DTs to enable users immerse, visualise,
understand the building and its spatial layout, track data
patterns and analyze historical data, makes them as powerful
tool for IAQ diagnostics and management. The study findings
highlight the role of DTs as capable and effective decision-
support systems for IAQ monitoring, supporting users to detect
environmental risks, analyze trends, and develop their indoor
air management strategies to optimize building performance,
and promote healthier indoor environments.

VII. CONCLUSIONS, LIMITATIONS AND FUTURE WORK

DTs can play a key role in public safety, particularly in
hazardous indoor environments such as hospitals, schools,
offices, and industrial facilities. The ability to provide real-time
environmental insights through immersive interactive ways,

can support ventilation management, detect pollutants, and
assess air circulation effectiveness, helping to mitigate health
risks associated with poor IAQ, airborne contaminants, and
respiratory illnesses. The results of this study demonstrate
the potential of DTs to support public safety and real-
time environmental visualization and analysis, highlighting
how their immersive and interactive affordances can support
data understanding, detection, and management. The results
also supports the notion that spatially contextualized data
visualization through DT systems improves user engagement
and data understanding, enabling better risk assessment and
decision-making. This study also demonstrate the importance
of intuitive system design and the affordances of each modality
while validating the ability of DT technology to “bridge the
gap” between expert and non-expert practitioners. Supporting
decision-making without requiring extensive training or prior
knowledge enable non-experts to provide critical insights
into complex systems. Given that non-experts far outnumber
experts, this could have a significant and positive impact on the
daily management of buildings. The results of this study also
align with the growing emphasis on creating user-friendly and
accessible tools in the fields of human-computer interaction
and user experience design.

However, this study has some limitations affecting the
widespread generalisability of results. One limitation of the
within-subject design is the potential for order effects, where
participants may perform differently during each conditions
due to increased familiarity with the task or reduced attention
over time. To address this, we have issued tasks in random or-
der and the systems were introduced sequentially, starting with
the Dashboard, followed by the 2D, and then the VRDT, to
minimize the “wow effect” of VR impacting earlier conditions.
However, carryover effects related to exposure to an earlier
system influences responses to subsequent systems remain
a potential limitation. In order to mitigate this factor, we
implemented a washout period between conditions, allowing
participants to rest after each system use. The small sample
size and the limited domain expertise of participants may
also constrain the generalizability of findings. The sample has
strong computer knowledge experience but relatively limited
familiarity with VR and environmental data interpretation,
reflecting a typical group of non-expert users and aligning
with the study’s aim to assess system engagement for general
users. However, users with less computer experience may
have different results. Lastly, the tasks performed during the
experiments may differ from how users engage with systems
in practice, and were designed to assess engagement based on
real usage needs, but may not fully reflect the complexity of
real world scenarios.

Future work will focus on conducting technical evaluation
studies to assess the performance and scalability of the DT
systems, and further expand their functionalities by incorpo-
rating additional sensors, readings, visualization methods and
introduce new functionalities and interaction techniques. The
research team also plans to integrate Al chatbot agent inter-
actions, leveraging advancements in Large Language Models



(LLMs) to support user interaction and provide real-time data
analysis and assistance to support decision-making. Addition-
ally, future research will evaluate user motivation to adopt such
technology, exploring perceptions of technology acceptance
and usability.
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