N
P University of

Central Lancashire
UCLan

Central Lancashire Online Knowledge (CLoK)

Title Optimization of resource-aware parallel and distributed computing: a review
Type Article

URL https://clok.uclan.ac.uk/id/eprint/55478/

DOI https://doi.org/10.1007/s11227-025-07295-7

Date 2025

Citation | Czarnul, Pawet, Antal, Marcel, Baniata, Hamza, Griebler, Dalvan, Kertesz,
Attila, Kessler, Christoph W., Kouloumpris, Andreas, Kovaci¢, Salko, Markus,
Andras et al (2025) Optimization of resource-aware parallel and distributed
computing: a review. Journal of Supercomputing, 81 (7). ISSN 0920-8542
Creators | Czarnul, Pawet, Antal, Marcel, Baniata, Hamza, Griebler, Dalvan, Kertesz,
Attila, Kessler, Christoph W., Kouloumpris, Andreas, Kovaci¢, Salko, Markus,
Andras, Michael, Maria K., Nikolaou, Panagiota, Oz, Isil, Prodan, Radu and
Raki¢, Gordana

It is advisable to refer to the publisher’s version if you intend to cite from the work.
https://doi.org/10.1007/s11227-025-07295-7

For information about Research at UCLan please go to http://www.uclan.ac.uk/research/

All outputs in CLoK are protected by Intellectual Property Rights law, including Copyright law.
Copyright, IPR and Moral Rights for the works on this site are retained by the individual authors
and/or other copyright owners. Terms and conditions for use of this material are defined in the
http://clok.uclan.ac.uk/policies/

http://www.uclan.ac.uk/research/
http://clok.uclan.ac.uk/policies/

S
P University of

Central Lancashire
UCLan

Central Lancashire Online Knowledge (CLoK)

Title Optimization of resource-aware parallel and distributed computing: a review
Type Article

URL https://clok.uclan.ac.uk/55478/

DOI https://doi.org/10.1007/s11227-025-07295-7

Date 2025

Citation | Czarnul, Pawet, Antal, Marcel, Baniata, Hamza, Griebler, Dalvan, Kertesz,
Attila, Kessler, Christoph W., Kouloumpris, Andreas, Kovaci¢, Salko, Markus,
Andras et al (2025) Optimization of resource-aware parallel and distributed
computing: a review. The Journal of Supercomputing, 81 (7). ISSN 1573-
0484

Creators | Czarnul, Pawet, Antal, Marcel, Baniata, Hamza, Griebler, Dalvan, Kertesz,
Attila, Kessler, Christoph W., Kouloumpris, Andreas, Kovaci¢, Salko, Markus,
Andras, Michael, Maria K., Nikolaou, Panagiota, Oz, Isil, Prodan, Radu and
Raki¢, Gordana

It is advisable to refer to the publisher’s version if you intend to cite from the work.
https://doi.org/10.1007/s11227-025-07295-7

For information about Research at UCLan please go to http://www.uclan.ac.uk/research/

All outputs in CLoK are protected by Intellectual Property Rights law, including Copyright law.
Copyright, IPR and Moral Rights for the works on this site are retained by the individual authors
and/or other copyright owners. Terms and conditions for use of this material are defined in the

http://clok.uclan.ac.uk/policies/

http://www.uclan.ac.uk/research/
http://clok.uclan.ac.uk/policies/

The Journal of Supercomputing (2025) 81:848
https://doi.org/10.1007/s11227-025-07295-7

®

Check for
updates

Optimization of resource-aware parallel and distributed
computing: a review

Pawet Czarnul - Marcel Antal? - Hamza Baniata® - Dalvan Griebler® -

Attila Kertesz3 - Christoph W. Kessler® - Andreas Kouloumpris® - Salko Kovaci¢’ -
Andras Markus? - Maria K. Michael® - Panagiota Nikolaou® - Isil 0z° -

Radu Prodan'® - Gordana Raki¢'’

Accepted: 5 April 2025
©The Author(s) 2025

Abstract

This paper presents a review of state-of-the-art solutions concerning the optimiza-
tion of computing in the field of parallel and distributed systems. Firstly, we con-
tribute by identifying resources and quality metrics in this context including servers,
network interconnects, storage systems, computational devices as well as execution
time/performance, energy, security, and error vulnerability, respectively. We subse-
quently identify commonly used problem formulations and algorithms for integer
linear programming, greedy algorithms, dynamic programming, genetic algorithms,
particle swarm optimization, ant colony optimization, game theory, and reinforce-
ment learning. Afterward, we characterize frequently considered optimization prob-
lems by stating these terms in domains such as data centers, cloud, fog, blockchain,
high performance, and volunteer computing. Based on the extensive analysis, we
identify how particular resources and corresponding quality metrics are consid-
ered in these domains and which problem formulations are used for which system
types, either parallel or distributed environments. This allows us to formulate open
research problems and challenges in this field and analyze research interest in prob-
lem formulations/domains in recent years.

Keywords Review of resource-aware parallel and distributed computing - Parallel
and distributed architectures - Parallel and distributed computing - Optimization

Abbreviations
ACO Ant colony optimization

BC Blockchain

CA Consensus algorithm
CPU Central processing unit
CpP Constraint programming

CUDA Compute uniform device architecture

Extended author information available on the last page of the article

Published online: 09 May 2025 &)\ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-025-07295-7&domain=pdf

848 Page 2 of 80 P.Czarnul et al.
DAG Directed acyclic graph
DC Data center
DCT Dynamic concurrency throttling
DRAM Dynamic random access memory
DFS Dynamic frequency scaling
DL Distributed ledger
DP Dynamic programming
DPN Dataflow processing network
DSL Domain-specific language/library
DSP Digital signal processing/processor
DVFS Dynamic voltage and frequency scaling
EPIC Explicitly parallel instruction computing
FIFO First in, first out
FL Federated learning
GA Genetic algorithm
GPU Graphics processing unit
GrA Greedy algorithm
GT Game theory
HEFT Heterogeneous earliest finishing time (First)
HPC High-performance computing
ILP Integer linear program(ming)
ILP Instruction-level parallelism
IPM Interior point method
IoT Internet of things
MG Matching game
MILP Mixed integer linear program(ming)
ML Machine learning
MPI Message passing interface
pBFT Practical byzantine fault tolerant
PGAS Partitioned global address space
PoW Proof of work
PSO Particle swarm optimization
P2P Peer to peer
RL Reinforcement learning
SIMD Single Instruction, Multiple Data
TDP Thermal design power
TIG Task interaction graph
TS Tabu search
X Transaction
vC Volunteer computing
VM Virtual machine
VLIW Very Long Instruction Word (computing)
VLSI Very large-scale integration

@ Springer

Optimization of resource-aware parallel and distributed... Page30f80 848

1 Introduction

Parallel and distributed computing has already been deployed at practically all sys-
tem levels, from instruction-level parallelism and massive multithreading in modern
multi- and many-core central processing units (CPUs) and graphics processing units
(GPUs). These can be integrated into clusters composed of powerful nodes with
computational devices such as multi-core CPUs and GPUs as well as fast intercon-
nects, e.g., Infiniband [1]. Such computational devices are suitable for a widening
spectrum of application domains, ranging from high-performance computing (HPC)
simulations to distributed processing. Those applications are commonly used on an
everyday basis for communication over the Internet, as well as the Internet of Things
(IoT) and edge solutions that may be integrated with clouds for data storage and pro-
cessing. At all these levels, researchers deal with optimization problems to improve
various computing resource usage.

This paper aims to describe the problem formulations and identify computing
resources typically considered in parallel and distributed computing, including vari-
ous contexts/subdomains. We further identify metrics associated with the resources
that are used within optimization goals. Adopting the analysis of the field structured
along problem formulations, resources, and metrics, the goal of this review is to
investigate the usage of particular metrics and resources as well as the usage of spe-
cific problem formulations in contexts/subdomains and based on that identify con-
crete research gaps and topics for future research.

The methodology adopted in this paper assumes the identification of research
works from the area of parallel and distributed computing that considers optimiza-
tion problems expressed as one or more of the selected, assumed a priori formu-
lations. These include integer linear programming (ILP) [2-7], greedy algorithms
(GrA) [8, 9], dynamic programming (DP) [10], genetic algorithms (GA) [11-13],
particle swarm optimization (PSO) [14-17], ant colony optimization (ACO) [18],
game theory (GT) [19-23], and reinforcement learning (RL) [24-27]. The rationale
of this approach is motivated by the fact that the aforementioned formulations would
typically use certain variables referring to the usage of the resources, described in
detail in Sect. 2. This, in turn, allows us to:

1. Identify problems with similar resources in various contexts/subdomains such
as data centers, cloud computing, fog computing, blockchain, high-performance
computing, and volunteer computing.

2. Upon consideration of these subdomains, identify resources as well as problem
formulations frequently considered in specific subdomains.

The main structure of our manuscript is demonstrated in Fig. 1. In Sect. 2, we
identify resources, associated metrics, along with exemplary trade-offs and optimi-
zation contexts. Additionally, we describe typical system and application modeling
along with a frequently considered, generalized resource allocation problem defini-
tion. Subsequently, in Sect. 3 we follow with detailed categorization into the afore-
mentioned problem formulations including ILP, GrA, DP, GA, PSO, ACO, game

@ Springer

848 Page 4 of 80 P.Czarnul et al.

Manuscript Structure
1ll. Formulations ‘ IV. Applications

Hl Resources & D H DYNAMIC REINFORCEMENT Data — i

il reuics Hl PROGRAMMING LEARNING CanEs i

H GREEDY

H Game Theory Cloud

i ; — - EompUti =

"""""""""""""" Bl INTEGER LINEAR ;

: Fog Volunteer [§
[l Computing Computing

[l PROGRAMMING

: NATURE-INSPIRED
OPTIMIZATION

[Workflow Scheduling

Fig. 1 Manuscript structure

theory, and RL. In Sect. 4, we describe real-world applications studied in the lit-
erature and their solutions. Specifically, we focus on the subdomains: data centers,
cloud computing, fog computing, blockchain (BC), high-performance computing
(HPC), and volunteer computing (VC). Finally, we provide conclusions in Sect. 5
regarding our observations, existing research gaps, as well as open problems.

2 Background

Before we start the analysis of problems considered in parallel and distributed com-
puting, we identify resources and associated metrics that are the subject of optimiza-
tion in the area of parallel and distributed computing. Product and process quality
characteristics are measured and expressed by various metrics. These metrics can
then be combined in order to express standard quality characteristics such as per-
formance efficiency, reliability, security, safety, etc. Consequently, resource utiliza-
tion is measured by resource utilization metrics that constitute specific optimization
goals/functions. We further discuss frequently faced trade-offs between those met-
rics and characteristics and list exemplary optimization contexts in parallel and dis-
tributed computing. These serve as a starting point for further description of system
and application models in this field as well as the statement of the resource alloca-
tion problem, fundamental regarding optimization in the considered domain.

2.1 Resources and metrics
Before we start the analysis of problems considered in parallel and distributed

computing, we identify resources that are subject to utilization and optimiza-
tion in the area of parallel and distributed computing. Consequently, resource

@ Springer

Optimization of resource-aware parallel and distributed... Page50f80 848

utilization is measured by metrics that reflect a single resource utilization level
or different relations and ratios between multiple resources. These metrics reflect
a single resource, e.g., execution time using concrete computational devices for a
given data size.

In the field of parallel and distributed processing, problem-specific resources
include nodes, network, memory/storage [1, 28], etc. In terms of metrics, for
instance, computational devices such as CPUs and GPUs are described by actu-
ally obtained (single, double precision) performance (measured through execu-
tion time for a given workload) and power requirements (formally specified
through Thermal Design Power (TDP) values by manufacturers [1]). In the case
of memory, various implementations might result in various memory/storage lev-
els, specifically of various levels such as DRAM, caches, disk, etc. Another rel-
evant example is ingress traffic and network link capacity [29].

We shall note that the aforementioned (problem-specific) resource metrics
allow assessing and are components of more complex optimization functions
(specifically in scheduling problems [30-33]) typically considered in the context
of application or workload execution. The typical resulting application-level qual-
ity metrics being either sole goals of optimization or components of optimization
functions in the field of parallel and distributed computing include:

1. Execution time as a typical measure of the inverse of performance: We shall note,
however, that the performance of computational devices (such as CPUs, GPUs)
is associated with a given code/workload. Thus, performance ratios between two
particular computational devices might differ for various workloads. In general,
execution time of a parallel or distributed application results from considera-
tion of the application flow graph and execution times of particular computa-
tional devices, transmission latency (considering data size of a message as well
as network parameters including start-up time and bandwidth), and propagation
throughout the network.

2. Energy consumption during application runtime: This can be measured at the
node level, including computational devices, memory domains, storage devices
affected by power supply characteristics, or/and the CPU+DRAM or GPU
domains. In a broader sense, the consumption of resources could also be consid-
ered for the application development phase.

Additionally, the following quality characteristics are often of interest concerning
the application:

1. Programming/development effort which can be measured in PMs, spent on the
development/maintenance of a given application.

2. Application and system security, spanning consistency (concerning standards,
design usage), availability (to a user), integrity (among components of a system),
tolerance of cyber attacks and network vulnerabilities, etc.

3. Soft error vulnerability: Soft errors are a subset of transient faults caused by a
single bit flip in the system [34]. If a soft error affects data in a register or memory

@ Springer

848 Page 6 of 80 P.Czarnul et al.

structure, data can be corrupted (SDC—silent data corruption), and the program
may generate incorrect outcomes. Soft errors may lead to the unintended ter-
mination of the applications besides data corruption. The most common way to
characterize the soft error vulnerability of an application is to perform fault injec-
tion experiments [35]. The experiments introduce deliberate faults as bit flips at
hardware or software levels multiple times and measure the rate of the outcomes
to have a statistically significant vulnerability value, where mostly the SDC rate
represents the vulnerability of the target application. To overcome soft errors,
the system implements redundancy techniques, where the hardware or software
components are replicated. Specifically, redundant multithreading (RMT) utilizes
parallelism in modern parallel systems and enables fault detection and correc-
tion [36]. RMT can correct faults by running identical program copies or code
regions as separate threads or instructions in parallel execution units and com-
paring their outputs. While parallel executions can reduce redundancy costs by
eliminating redundant execution latency, having multiple threads or instructions
may incur additional costs due to contention/synchronization among many threads
or instructions. Therefore, soft error precautions expose a trade-off between per-
formance, cost, and reliability of the target execution [37, 38].

2.2 Trade-offs

In practical approaches, many trade-offs appear between and among the afore-
mentioned metrics and resources. Examples in the context of various scopes of
distribution include:

e Performance vs energy trade-off: Improving performance with more power-
ful processors, higher clock speeds, and parallel resources lead to high power
consumption by high-capacity hardware components. On the other hand, if
the execution time decreases for a target application, total energy consump-
tion reduces for the same power consumption values [39-41]. While some
studies target to perform dynamic configurations by power capping and con-
sidering performance effects simultaneously [42], there have been works try-
ing to find out performance energy configurations for parallel applications
to be run on heterogeneous multi-processing systems where a configura-
tion space stems from different core types and voltage and frequency pair-
ings [43].

e Performance vs security trade-off in the context of cloud storage systems in
which data are replicated over several nodes of a cluster [44].

e Security, scalability, and efficiency trade-offs for data collection of IoT sen-
sor systems considering various security settings such as encryption and
authentication when using scalable cloud services [45].

e Other trade-offs can also be considered, such as the performance vs stor-
age trade-off [46], performance vs reliability trade-off [47, 48], the DePriSS
tetralemma [49], etc.

@ Springer

Optimization of resource-aware parallel and distributed... Page70f80 848

2.3 Exemplary optimization contexts

The aforementioned metrics are the subject of optimization in various contexts
in the field of parallel and distributed computing, some of which are described
below. Such problems are further categorized in terms of formulations in this sec-
tion and described in more detail in respective domains in Sect. 4.

Various works target the reduction in the overall latency (considered as
elapsed/wall time), maximizing, in that way, the application’s performance in
different market segments. Ghosh and Simmhan [50] minimize the end-to-end
latency by using a brute force approach and genetic algorithm patterns to opti-
mize the placement of complex event processing queries across a collection of
edge and cloud resources.

Wang et al. [51] provide an automatic generator to find optimal partitioning for
cross-end analytic engine architecture for wearable computing systems. Kolom-
vatsos and Anagnostopoulos [52] propose a two-step decision process to choose
the tasks that will be executed locally at the edge nodes while the rest will be
migrated to a group of peer nodes in the network or on a fog/cloud server to max-
imize performance. To maximize the user’s quality of experience, Shah-Mansouri
and Wong [53] allocate fog resources by formulating a computation offloading
game.

Furthermore, Kouloumpris et al. [54] propose task allocation, taking into account
reliability aspects while still targeting minimum latency. Additionally, Kouloumpris
et al. [55] address the problem of task allocation within the edge—hub—cloud archi-
tecture to maximize the system’s overall reliability while satisfying latency, energy,
and memory constraints. Particularly, the works in [54, 56], and [55] are based on
a mathematical programming (MP) scheme for achieving an optimal partitioning of
an application across the edge/hub/cloud paradigm model by minimizing the overall
latency of the system, taking into account the latency and energy consumption of
both nodes and communication links, as well as the memory needed for the tasks to
be executed.

Kouloumpris et al. [56] present a framework to provide the optimal task alloca-
tion and optimal scheduling [57] between the edge—hub—cloud architecture to satisfy
the application constraints and simultaneously minimize the end-to-end latency.

On the other hand, several related works explore the problem of task allocation,
targeting not only performance improvement but also reliability and energy, such as
the works in [58] and [59] that focus on edge servers and mobile computing devices
such as laptops, tablets, and mobile phones.

Several works try to allocate the tasks to minimize total cost which can be defined
as a function of general quality metrics and metrics of the selected resources. Dinh
et al. [60] introduced an optimization framework to allocate the processes from a
single mobile device to multiple edge devices to minimize the total cost taking into
account mobile device power consumption and end-to-end latency.

Nikolaou et al. [61] develop a Total Cost of Ownership (TCO) model to investi-
gate the benefits of running an emerging security-focused IoT application at the edge
vs. the cloud by also considering the application’s requirements as well as the edge’s
constraints.

@ Springer

848 Page 8 of 80 P.Czarnul et al.

2.4 System, application, and resource allocation modeling

Resource-aware parallel and distributed computing is centered around the resource
allocation problem which aims to map tasks onto resources in the system by con-
sidering specific constraints. Based on various (hardware) systems and (software)
application models, the resource allocation problem can be defined using different
(mathematical) formulations. In this section, we provide the formulations consider-
ing various resources. First, we identify target system models that host our appli-
cations. Secondly, we explain application models representing target workloads
(tasks). Then, we provide a general definition of the resource allocation problem.
Table 1 contains key symbols used within the paper, specifically throughout the
remaining part of this section for the problem formulations.

2.4.1 System model

Modern computer architectures are complex systems that integrate multiple pro-
cessing units, memory units, communication buses, and other kinds of hardware
resources. They are usually organized in a hierarchical way, leveraging parallelism
at multiple levels.

For example, a modern general-purpose processor core usually integrates Single
Instruction, Multiple Data (SIMD) and instruction-level parallelism (ILP), in the
form of pipelined instruction execution, multi-issue Very Long Instruction Word
(VLIW) or superscalar architectures, and often combinations of these.

Modern CPUs can contain dozens of processor cores, and domain-specific accel-
erators such as GPUs contain even more. On-chip memory often comes in the form
of hardware-managed caches for DSP (Digital Signal Processing), GPU, and embed-
ded processors; often in the form of software-managed scratchpad memories, expos-
ing memory allocation and data transfers to the programmer.

In a homogeneous multi-core CPU, all cores are of the same type. A heterogene-
ous multi-core CPU combines different types of cores with different micro-architec-
tures, some of which may be optimized for single-thread performance while others
are optimized for power efficiency, as in ARM big.LITTLE type architectures.

While low-end computers such as smartphones and laptops typically have only
one general-purpose CPU (nowadays with multiple cores), servers may integrate
several CPUs that share access to main memory in a uniform (UMA) or non-uni-
form (NUMA) way; in the latter case, main memory is organized in multiple mem-
ory units, some of which are located closer to one CPU (in terms of memory access
latency and/or bandwidth) than to others.

Most computers today also comprise one or several GPUs and/or other accelera-
tors, which usually have their own memory connected to main memory by commu-
nication buses such as PCI Express [1], with or without explicitly exposing memory
management and data transfers to the programmer. We refer to computer systems
combining one or several general-purpose CPUs with one or several accelerators as
heterogeneous computer systems.

Finally, super-computing clusters and data centers are organized by aggregat-
ing nodes that are connected by special fast networks (e.g., Infiniband) [1]. Those

@ Springer

Optimization of resource-aware parallel and distributed... Page90f80 848

Table 1 Key symbols used for problem formulations

Symbol Description

Task i of a workflow graph G(T, E) with T — set of tasks and E — set of directed edges

S; Set of services S; = {59, 5;;. ...} €ach of which is capable of executing ¢

t Candidate task, i.e., task #; running on computational device j

Li(d) Execution time/latency of service s;; processing data of size d,

[; Execution time of task ¢

L Execution time of task #; (on resource j)/candidate task #; on computational device j
pri(d) Price (monetary) of 5;’s execution

pow;(d) Average power taken by service s;

L Workflow execution time

L. Upper bound on the workflow execution time

wiorw, Weight on edge connecting nodes i and j in a graph G

p Number of cores

X, e.g., x; (binary) Solution variables in an integer linear program, e.g., {0,1} denoting whether service
s;; is selected for execution of task #; or binary decision variable corresponding to candidate
task 7;;

b d The upper bound fraction of faulty nodes tolerated by a named distributed system in order to

maintain its security
R Set of network shards
Succ(t;) Set of immediate successors of task #;
Pred(t;) Set of immediate predecessors of task #;

i) Average communication cost of edge (i, j)

[_l_ Average execution time of task ¢,

Coec Total execution cost of the application

Ceomm Total system communication cost

Reee Reliability of a processor

R omm Reliability of all communication paths

X Binary decision variable corresponding to outgoing edge j — k from task i
e Computational energy consumption of candidate task 7;

my Memory requirement of candidate task ;;

st Storage requirement of candidate task #;

comm Communication latency corresponding to outgoing edge j — k from task i
€comm Communication energy consumption corresponding to outgoing edge j — k from task i
nd(i) Number of immediate descendants of task #;

na(i) Number of immediate ancestors of task ¢;

M;‘g‘ Memory budget corresponding to device j

St_;?g' Storage budget corresponding to device j

Ebet Energy budget corresponding to device j

networks typically consist of multiple switches and lines as hardware resources. For
a recent survey of computer architecture features, we refer to Hennessy and Patter-
son [62]. An up-to-date survey of recently installed supercomputer hardware and the

@ Springer

848 Page 10 of 80 P.Czarnul et al.

trends in node architecture and network technology is provided in regularly updated
ranking lists such as the TOP500 and Green500 lists. !

Due to cost considerations, the available quantity of these hardware resources in
a computer system is limited. This implies that there is usually (much) more com-
putational work (e.g., tasks ready to execute) than could be possible to execute in
parallel efficiently due to a limited number of computational devices. This leads to
resource allocation and scheduling problems but also the need for consideration of
resource (including network) contention, which we will consider in more detail in
the following sections.

For distributed systems such as IoT, fog, cloud systems accessed from external
clients, and volunteer systems, we distinguish physically distributed nodes that can
vary in performance, power consumption, and reliability. Moreover, these are inter-
connected with relatively slow networks with much larger latency and smaller band-
widths compared to network solutions used in the aforementioned clusters and data
centers. Additionally, the reliability of neither nodes nor networks is guaranteed.

Details of the aforementioned system models are outlined in relevant subsections
of Sect. 4.

2.4.2 Application model

The target application with multiple tasks is represented in different ways by con-

sidering target tasks and their relationships. We distinguish between two main types

of task-based processing scenarios: the DAG model for batch execution of partially

ordered dependent tasks, where a task’s execution is often not considered preempt-

able, and the TIG model for concurrent, possibly re-entrant and/or preemptable data

processing tasks connected by edges modeling inter-task communication.
Accordingly, there exist at least two different types of task graphs:

1. DAG Model: The task graph modeling the application is a Directed Acyclic
Graph (DAG) G = (T, E), where the node set T is the set of tasks of the applica-
tion, and E is a set of directed edges denoting precedence constraints among
tasks due to dependencies. Such dependencies might be due to control flow or
data dependence such as data flow. The DAG model assumes that a task can be
executed only if all the predecessor tasks have completed their executions. Hence,
DAG task graphs are dependence graphs, and the tasks are one-shot tasks. A
task can execute only if all source operands are available as well as a processing
resource for execution. The task graphs are thus generally acyclic (i.e., DAGs).
A dependence (directed edge) between two tasks (nodes) usually means that the
source task needs to finish before the destination task can start executing (however
it may start even later if no resource is readily available for executing it. This is
a matter of task scheduling, which in turn can happen statically or dynamically).
Hence, tasks on the same path never execute concurrently. The longest path (in
terms of accumulated execution time) in the task graph (also known as the critical

! TOP500, HPCG and Green500 lists: https:/top500.org.

@ Springer

https://top500.org

Optimization of resource-aware parallel and distributed... Page 110f80 848

path) establishes a lower bound for the execution time, regardless of how many
execution resources are available (Brent’s Theorem [63]). Depending on the target
system properties and on the mapping of the tasks to execution resources, data
flow edges between tasks mapped to different resources with different memories
may also imply a data transfer cost, which is usually linear in the size of the
data packet sent. The cost for forwarding operand data between tasks mapped to
resources within the same memory unit is typically much smaller but not neces-
sarily zero.

Task graphs in the DAG model are a special case of workflow graphs. The task
graph representation can be further extended by assigning fixed computation costs
for the nodes (tasks) and, for systems where communication cost matters (primar-
ily multi-node distributed memory systems), in communication volumes for the
edges. In homogeneous systems with identical computation resources, each task
t; € T is associated with a computation cost ;, representing the computation time
needed to complete the execution of the task. In systems with symmetric commu-
nication costs, where the communication cost for an edge (#;, ;) only depends on
the volume of data flowing from task ¢, to f;, an edge (t;, tj) can be labeled directly
with a non-negative weight e(7;, 7;) modeling the communication delay time for
the case that source and destination tasks are mapped to different resources; if ¢
and 7; are mapped to the same resource, the communication cost will be 0.

In heterogeneous systems with different (types of) execution resources, the task
computation costs will differ depending on where a task executes. For any task
i and resource j, the computation cost [;; models the latency of executing 7; on j.
For tasks i that cannot execute on certain resources j, we have lij = o0.

Where communication cost is asymmetric, i.e., differs depending on where
t; and i will execute, we could instead label the edge with the communication
volume (the number of bytes to communicate) between (instances of) tasks ; and
1;; the actual communication cost will depend on the task mapping and can be
derived from the communication volume and the architectural parameters in a
second step.

2. TIG Model: The TIG model describes communicating concurrent tasks.

Formally, a Task Interaction Graph (TIG) is a graph G = (T, E), where T'is a
set of tasks and E models the interaction (communication) between these tasks.

TIG task graphs describe applications such as data flow processing networks
(also known as actor networks) with continuously active tasks processing poten-
tially infinite streams of data packets, with edges representing FIFO-buffered data
flow channels between producer and consumer tasks, as formalized in established
data flow models such as Kahn Process Networks (KPN) [64], Synchronous Data
Flow (SDF), etc. A task instance (execution of a task for one input data packet) is
triggered either by time as prescribed in a statically computed cyclic schedule or
by data flow at runtime—whenever new operand data is available and executed
when a resource has been allocated for its execution. Hence, (instances of) all
tasks execute concurrently.

While TIG tasks may occasionally interact with each other, which incurs com-
munication overhead for tasks executing in different memory spaces, the model

@ Springer

848 Page 12 of 80 P.Czarnul et al.

does not necessarily contain information about precedence relations among the
tasks, in contrast with the DAG model.

TIG tasks can be stateless or stateful. For a stateful task, its next instance is
dependent on its predecessor instance. Stateful tasks can be modeled as stateless
tasks if the state at the end of a task instance is passed back as an input of the task
for its next instance.

In general, data flow in a TIG may be cyclic. However, virtually unfolding
the execution of an entire TIG computation into the graph of all executed task
instances and their dependencies would naturally result in an acyclic graph (DAG
model) again.

Many real-world problems can be modeled as a TIG, such as signal/image
data processing networks [64], iterative solutions of systems of equations, power
system simulations, and VLSI simulation programs. In particular, data processing
networks (DPN) such as Kahn Process Networks [64] are special cases of TIG. As
in the DAG model, TIG tasks and edges may be assigned costs for computation
and communication, respectively.

Internally, a task is, if not stated differently, usually executed sequentially and thus
mapped to a single execution resource, such as a physical core, a virtual core, or an
accelerator. Nevertheless, also parallel tasks can be defined, which require a stati-
cally known, fixed number (larger than one) of execution resources to be available in
parallel to execute a parallel algorithm internally, usually sharing data; and the more
general parallelizable tasks, which can run on any number of execution resources.
Among the latter ones, we additionally distinguish between moldable tasks, which
can use a fixed number of resources that needs to be known before task execution
starts and remains constant throughout the execution of the task, and malleable
tasks, which allow the number of workers to change during task execution.

If not stated otherwise, a task is associated with a block of code (e.g., a function
call) to execute on a general-purpose CPU resource, as discussed previously. Con-
sidering heterogeneous systems, some tasks might, however, be specifically intended
for execution on an accelerator resource, such as a GPU, or might be multi-variant
tasks that come with multiple implementation variants for different execution plat-
forms, e.g., an OpenMP [1] variant for multithreaded CPU execution together with a
CUDA or OpenCL [1] variant for GPU execution, so that the selection of the variant
(and thus, execution resource type) could be done at runtime. The code for such task
implementation variants can either be explicitly specified by the programmer and a
task API, e.g., in the task-based runtime system StarPU [65] for heterogeneous sys-
tems, or automatically compiled from a single high-level source code representation,
as in recent OpenMP versions, in OneAPL? or SkePU? [66].

2 OneAPI documentation and download:https://www.intel.com/content/www/us/en/developer/tools/one-
api/overview.html.
3 SkePU documentation and download: https://skepu.github.io.

@ Springer

https://www.intel.com/content/www/us/en/developer/tools/oneapi/overview.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/overview.html
https://skepu.github.io

Optimization of resource-aware parallel and distributed... Page 130f80 848

2.4.3 Resource allocation model

The resource allocation problem can be considered and formulated by referring
to different resources as well as including relevant, associated metrics, mentioned
in Sect. 2.1. As targeting multiple resources within different limitations, the
resource allocation problem can be mainly represented by:

min / maxf,,(x), m=12- .M (1

subject to
g 20, j=1,2,.J)
@) =0,k = 1,2, , K 3)

where f,, represents objective functions to be minimized or maximized, g; and fy
represent inequality and equality constraints, respectively.

When there are multiple objective functions, in many real-life problems, objec-
tives under consideration conflict with each other. Hence, optimizing x with
respect to a single objective often results in unacceptable results with respect to
the other objectives. Therefore, a multi-objective solution that optimizes each
objective function at the same time is almost impossible. An acceptable solution
to a multi-objective problem is to investigate a set of solutions, each of which sat-
isfies the objectives at an acceptable level without being dominated by any other
solution [67]. If all objective functions are for minimization, a feasible solution
x is defined to dominate another feasible solution y, if and only if, z;(x) < z;(y)
for all objective functions and z;(x) < z;(y) for at least one objective function j. A
solution is defined to be Pareto optimal if it is not dominated by any other solu-
tion in the solution space. A Pareto optimal solution cannot be improved with
respect to any objective without making worse at least one other objective. The
set of all feasible non-dominated solutions is defined as the Pareto optimal set,
and for a given Pareto optimal set, the objective function values in the objec-
tive space are called the Pareto front. The goal of a multi-objective optimization
algorithm is to find solutions in the Pareto optimal set. To solve the multi-objec-
tive problem, the objective function can be evaluated by different approaches like
weighted sum, alteration, pareto-ranking.

We can have convexity or non-convexity depending of the problem specifica-
tion. For instance, the resource allocation problem, where we have a fixed budget
across multiple tasks, presents a convexity as the objective function is linear
[68, 69]. On the other hand, the problems including integer variables, nonlinear
functions, or interference constraints present non-convexity with multiple local
optima points that make the problem harder to solve [70, 71].

Depending on the optimization objective such as latency, energy consumption,
or reliability, and within the limit of the resource capacities such as computation
units and memory size, the objective functions and constraints are defined as part
of the formulations for the target execution.

@ Springer

848 Page 14 of 80 P.Czarnul et al.

2.5 Proposed contribution in the context of existing surveys

There are several survey papers concerning parallel and distributed computing, as
well as algorithms, models, and tools used. In this section, we summarize these sur-
veys and then outline the novelty of our approach, specifically by comparing and
pointing out the areas and aspects addressed in our review but missing or described
in a less comprehensive way in the existing works.

In paper [72], authors focus on load balancing algorithms in both distributed par-
allel computing and cloud computing. Task execution on traditionally considered
physical resources is analyzed along with metrics including time, cost, throughput,
usage of computing, and memory resources. Our study contains a larger set of met-
rics as well as considers more parallel and distributed processing domains, including
cloud computing but also high-performance computing (HPC), fog computing, vol-
unteer computing, blockchain, and computing in data centers.

In survey [73], the author focuses specifically on allocation of Virtual Machines
in cloud data centers. As resources, they consider physical machines and cloud
providers. They consider multi-objective optimization with consideration of pos-
sibly several objectives: monetary, performance related (including response time
and makespan), energy related, technical (utilization, balance, traffic, temperature).
Areas in need of further research have been identified including consideration of:
hybrid clouds, power consumption at various levels: server, component including
network etc., multi-core CPUs, networking, co-location interference. We, on the
other hand, generalize the problem formulations to the formulations such as integer
linear programming (ILP), greedy algorithms (GrA), dynamic programming (DP),
genetic algorithms (GA), particle swarm optimization (PSO), ant colony optimiza-
tion (ACO), game theory (GT), and reinforcement learning (RL), and consider more
parallel and distributed system types, as mentioned above, including cloud comput-
ing. Our goal is to analyze these problem formulations as common across parallel
and distributed computing in various domains and link actual optimization problems
to these formulations. Consequently, our approach presents a more comprehensive
view on parallel and distributed computing as a whole, analyzing resources and met-
rics used in all of these domains. Finally, we identify which and how resources and
metrics, as well as problem formulations, are used in various contexts and domains,
not present in study [73].

Some works investigate usage of particular problem formulations and specific
domains for optimization of specific tasks. As an example, authors of paper [74]
propose a master—slave parallel genetic algorithm (GA) that is used to solve the
time—cost construction problem using high-performance computing and NSGA-II
as the optimization engine. Such works are actually considered as use cases in our
study providing specific use cases: problem formulation—resources/metrics—optimi-
zation algorithm—parallel domain/system type.

Authors of book [75] explore parallelism in constraint-based reasoning formal-
isms. They consider parallel implementations and taking advantage of computing
resources—from single machine multi-core CPUs and GPUs to distributed sys-
tems. In the context of this paper, they explore parallel solvers for mixed integer
linear programming and parallel local search algorithms. Instead, we study problem

@ Springer

Optimization of resource-aware parallel and distributed... Page 150f80 848

formulations including MILP, as well as others, as a way of expressing optimization
problems encountered in parallel and distributed systems.

Other review papers focus on specific aspects of the specific parallel and distrib-
uted computing domains discussed in our review. For instance, survey [33] focuses
on high-performance computing and even more specifically on energy-aware sched-
uling methods used for HPC. The authors discuss resources and metrics involved in
optimization including power, energy, and time. Selected algorithms are presented
and classified by the programming method, such as machine learning or fuzzy
logic. General scheduling of tasks of a parallel application onto a hybrid computing
platform that consists of multi-cores and accelerators is discussed in detail in sur-
vey [76]. Greedy approaches are among the ones analyzed, along with incorporation
of (integer) linear programming into algorithms.

Compared to those, in our study scheduling in an HPC system constitutes one of
many optimization algorithms that can be represented by selected problem formula-
tions and is subject to resource—problem formulation—domain analysis.

On the other hand, existing surveys also discuss programming models and para-
digms. In paper [77], authors characterize multithreaded processing, message pass-
ing, partitioned global address space (PGAS), agent-based computing, MapRe-
duce along with goals taking into consideration performance, energy, as well as
programming APIs. Multithreaded processing, message passing, the actor model,
and parallelism at various levels, including instruction level, vector parallelization,
thread level, and request level, and future research concerning those are analyzed in
study [78]. High-level programming models for multi-core systems are described
in survey [79], including: C++-based, skeleton-based, STL-based, directive-based,
and domain-specific ones. APIs and translators between them are detailed. Com-
pared to those, our review assumes that the models are incorporated into the applica-
tions running in parallel and distributed systems and are not directly subject of our
analysis. Rather than that, we target optimization problems—that typically refer to
execution of parallel codes, problems’ formulations, and applicability in parallel and
distributed systems. Consequently, our and those reviews are complementary.

2.6 Summary and conclusion

In this section, we explore the fundamental challenges of resource-aware optimiza-
tion in parallel and distributed computing. The discussion begins with an identifica-
tion of essential resources, including computational devices, memory, and network
bandwidth, alongside key performance metrics such as execution time, energy con-
sumption, reliability, security, and error vulnerability. These metrics form the basis
for assessing system performance and optimizing resource allocation.

We then explain how to balance trade-offs, such as performance versus energy
efficiency, security versus scalability, and reliability versus cost, emphasizing the
multidimensional nature of optimization in this domain. Several real-world optimi-
zation contexts are presented, including strategies for reducing latency in cloud and
edge computing, optimizing task allocation to improve reliability and efficiency, and
balancing cost, energy, and performance in mobile and edge devices.

@ Springer

848 Page 16 of 80 P.Czarnul et al.

This section also introduces modeling frameworks for systems, applications, and
resource allocation. These include directed acyclic graph (DAG) and task interac-
tion graph (TIG) models for representing application workflows, and mathematical
formulations for solving resource allocation problems. The models are pivotal in
addressing constraints like limited processing power or memory, facilitating the effi-
cient mapping of tasks to available resources.

Additionally, this section contrasts the proposed approach with existing surveys in
the literature, highlighting novel contributions and complementary aspects. Unlike
previous reviews that focus on specific aspects such as virtual machine allocation
or energy-aware scheduling, this study provides a holistic analysis of optimization
problem formulations, linking them to various computing domains. This, in essence,
demonstrates how our paper extends the state-of-the-art analyses in the field.

In conclusion, this section underscores the complexity of resource-aware optimi-
zation in distributed computing systems. It highlights the necessity of considering
multiple interdependent metrics and trade-offs while modeling and optimizing tasks
and resources. This foundational understanding sets the stage for exploring advanced
optimization techniques and their practical applications in subsequent sections.

3 Problem formulations as a basis for resource-aware optimization
in various domains

In this section, we present frequently used problem formulations utilized in target
problems of parallel and distributed computing and considering the previously iden-
tified resources and metrics.

3.1 Integer linear programming

Integer linear programming (ILP) is a powerful generic technique for modeling and
solving combinatorial optimization problems. An ILP model involves a finite set of
integer-valued solution variables, a set of constraints in the form of inequalities that
are linear in these variables, and an objective function to maximize or minimize that
is likewise linear in these variables. For solving an ILP instance, a generic solver is
used. A timeout is usually set because solving an ILP to optimality is NP-complete;
if the solver hits the time limit, it might still be able to return an approximation
or heuristic solution in some cases. Special cases of ILP include binary variables
(0-1 ILP) or mixed ILPs involving both integer and continuous solution variables
(MILP). ILP solver technology has made significant progress during the last three
decades, and powerful solvers (e.g., CPLEX, Gurobi) exist [80].

3.1.1 ILP for workflow scheduling optimization

Traditionally, ILP has been used for workflow scheduling [7], which requires the
selection of services performing tasks that constitute components of a complex

@ Springer

Optimization of resource-aware parallel and distributed. .. Page 170f80 848

scenario. Specifically, the workflow scheduling problem can be defined as follows.
Given are the following:

1. A directed acyclic graph, G(7T, E), representing a complex scenario, where nodes
T of graph G correspond to tasks that need to be executed, and edges E denote
time dependencies between the tasks.

2. For each task 7; € T there is a set of services S; = {9, 5;, ...} each of which is
capable of executing #; but possibly on various conditions. Specifically considered
parameters for each service s;; could include execution time /;(d;) of data pro-
cessed of size d;, price pr;(d) but could also include, e.g., average power pow;(d)
taken by execution of the service (presumably a given service runs on a particular
computational device) or any other relevant metric.

Workflow scheduling requires the assignment of one particular service s; to each
task #; such that specific metrics are optimized. For instance, typical optimization
goals include:

1. Minimization of workflow execution time L (determined by times of selected
services and graph G with a budget bound B on the total cost of selected services)
2 2pry X SBIViYx; =1,
2. Minimization of the total cost of selected services
. 2 2 pryj - Xy ¢ Vi Y, x; = 1, with an upper bound on the workflow execution
time L < L.
3. Minimization of workflow execution time and cost product

L- (X Xpry-x) ViYyx; =1

Furthermore, workflow scheduling formulations can assume fixed/a priori known
data sizes d,, in particular workflow nodes ¢, or could be subject to partitioning.
In the latter case, input data to a whole workflow may be partitioned for parallel
execution of some parallel workflow paths while may be subject to processing by
other tasks obligatory for the whole data. Even the problem of data partitioning,
especially in hybrid environments, is NP-hard and requires heuristic solutions for
middle-sized or larger scenarios [6].

The aforementioned and similar ILP-based approaches can be used in various
contexts/subdomains of parallel and distributed processing such as clouds [2-5] and
HPC [6, 7, 81] in the context of scientific and business but also involving mixed sci-
entific and business services [7].

3.1.2 ILP-based co-optimization for energy efficiency: crown scheduling
ILP is a flexible and powerful tool for modeling and solving complex resource
optimization problems that combine multiple interdependent subproblems. Nev-

ertheless, the solution space might easily get too large for medium to large-sized
problem instances. In some cases, introducing additional, artificial, domain-specific

@ Springer

848 Page 18 of 80 P.Czarnul et al.

stream
of data

. packets

Output

stream

of data
: packets

0000

Fig.2 A streaming task graph (left) with four moldable tasks and its software-pipelined execution (mid-
dle, time flowing from left to right) for a stream of input data packets, resulting in a repetitive steady-
state pattern of independent streaming task instances (right). Adapted from previous work [32, 82]

REPEAT, P, P, P, P, P, P, Ps P,
Lo Task I
Task

 Task —EL

T Task
TajSk : Task

e Makespan
I Task <M

Task|
time —

Fig.3 Left: a crown (core group hierarchy) over eight cores. Right: a crown schedule of many tasks in a
steady-state pattern for eight cores (horizontal axis); rectangles indicate tasks mapped to core groups and
the colors indicate selected Dynamic Voltage and Frequency Scaling (DVES) levels. Adapted from previ-
ous work [32, 82, 83]

constraints on the problem can significantly reduce the complexity of the solution
space and make the use of ILP-based methods practical.

For example, in a series of recent works on crown scheduling [32, 82-87], ILP
and MILP models have been used for energy-optimal, throughput-constrained soft-
ware pipeline configuration of soft real-time streaming computations, modeled by a
set or graph of moldable streaming tasks (see Fig. 2 (left)), for execution on homo-
geneous and heterogeneous multi-core CPUs with discrete dynamic voltage and fre-
quency scaling (DVES).

For input data packets arriving in regular time intervals, software-pipelined exe-
cution of the dataflow graph (Fig. 2 (middle)) results in the steady-state pattern of
independent task instances shown in Fig. 2(right), for which we try to find a sched-
ule such that a specific application-defined processing throughput (e.g., output
packet data rate) is maintained and for which we try to minimize the overall energy
cost.

Here we are faced with the complex combined problem of (1) allocating several
CPU cores to each moldable task, (2) mapping each task to some set of that many
cores for parallel execution, and (3) selecting the DVFS level for each task execu-
tion. Co-optimizing these problems together by a single ILP model is superior to a
phase-ordered approach of deciding these highly interdependent problems one by
one. In addition, (4) task (kernel) fusion for dependent tasks can be considered as a
fourth problem for co-optimization [32].

The key to ILP complexity reduction is the introduction of a hierarchy of core
groups to artificially limit the possible core allocations to (e.g.) powers of 2 only.

@ Springer

Optimization of resource-aware parallel and distributed... Page 190f80 848

This is achieved by a binary decomposition of the group of all p cores into two
disjoint subgroups containing one-half of the cores each. These are split in half
again and so on until finally p singleton groups are formed that contain one core
each and form the leaves of this group hierarchy (see Fig. 3 (left)).

This tree-shaped group hierarchy (i.e., the set of 2p — 1 applicable core groups)
is referred to as the crown [83]; limiting mapping of moldable tasks to the
crown’s groups reduces the possible number of mapping targets (which impacts
the number of ILP solution variables) from 27 — 1 to 2p — 1. Each core is thus a
member of log, p core groups in the crown.

Then, a crown schedule for one round of the software pipeline’s steady-state pat-
tern is obtained by mapping tasks to the crown core groups only and by ordering the
tasks on each core by non-increasing degree of parallelism (see Fig. 3 (right) for an
8-core crown schedule). Crown schedules avoid, by construction, any idle times on
resources except at the end of the round’s schedule and eliminate complex mapping
and DVFS scaling interferences stemming from implicit barriers at the start of par-
allelized moldable tasks which are not uncommon in unconstrained schedules [85].

An ILP crown schedule is primarily described by the main binary solution varia-
bles which are usually of the form x; ; ., indicating that task j is mapped to core group
i of the crown and executed at DVFS level k. Constraints such as Vj : Y, x;;, = 1
make sure that each task j is mapped exactly once and to one DVFES level. Further
constraints are required, e.g., to bound the makespan of the crown schedule by the
maximum time M permitted for one round to guarantee the required real-time data
rate, while the accumulated energy costs of all tasks in the schedule form the objec-
tive function to be minimized. The tasks’ power or time coefficients for different
group sizes and DVFS levels can be obtained by microbenchmarking on the target
architecture or by a theoretical model. In contrast with some other schedulers for
moldable tasks in the literature, crown schedulers need not make any assumptions
about the absence of speed-up anomalies for moldable tasks.

While also fast heuristics have been developed for crown scheduling [84], ILP
crown schedulers have practical solution times for realistic problem sizes and
outperform competing approaches [84]. While the additional crown restrictions
might, in theory, introduce significant penalties on (energy) optimality in con-
trived corner cases, they are shown to have negligible impact in practice [85].
Generalizations of crown scheduling have been developed for considering DVFS
islands [88] and heterogeneous multi-core CPUs such as ARM big.LITTLE-
based architectures [89]. The generalization of crown scheduling to moldable
stream computations on distributed systems with multi-core nodes (specifically,
the device—edge—cloud continuum) is presented in [87]. The restricted flexibility
of a few discrete DVFS levels can be relaxed by dynamic extensions [90]. An
extension of crown scheduling for a more dynamic scenario of varying task work-
loads depending on input data packet types is described in [86], where multi-
ple different optimized schedules for the steady-state pattern with different task
workloads are computed off-line by ILP and switched at runtime depending on
the current input packet type sequence. Crown schedules have also been shown to
have robustness against unforeseen delays in individual tasks [82].

@ Springer

848 Page 20 of 80 P.Czarnul et al.

Task Extended
Flow Task
Graph Flow
@ Graph @ @
. I‘\‘\Il\ L
| RS 70
! NG e A -
! Y VR . Candidate task
! 1 /, \\ 1 “f 2h to be allocated
: i \,J‘//, v : '
v "‘1/’ 1y v 4 | Bridge node
@ @ @ . Group of
candidate tasks

Fig.4 Transformation of a TFG to its corresponding ETFG

Such problem-specific restrictions of the solution space of ILP models that trade
better exact solvability for a marginal loss in solution quality (here, energy) are not
uncommon. For example, for mapping moldable tasks to homogeneous parallel sys-
tems, Xu et al. [91] use a level-packing ILP model to solve a similar problem (DVFS
not considered). A systematic experimental study of the effect of such restrictions
in each of the four problem dimensions: resource allocation, mapping, DVFS selec-
tion, and, where applicable, task ordering (on each core), which also includes Crown
scheduling and Xu scheduling as special cases, is given by Keller and Litzinger [92].

3.1.3 ILP for edge and cloud computing

Some other works in the literature optimize the overall latency [54, 56, 93], and
the overall reliability [55] of the system. These works investigate the task alloca-
tion problem between edge, hub, and cloud infrastructures. To deliver an optimal
task allocation while targeting performance and energy constraints, a mathematical
programming-based framework was developed.

The framework takes as input an extended task flow graph (ETFG) which encap-
sulates the operating conditions and constraints for different devices and communi-
cation channels, and using mathematical models based on mixed integer linear pro-
gramming (MILP) estimates the optimal task allocation for a given application.

Initially, the designer has to determine which tasks can run on which computa-
tional devices of the system, i.e., in this case, the edge, hub, and cloud. Then, the
original task flow graph (TFG) of the application is transformed into a set of up to
n nodes, referred to as candidate tasks, forming a group of candidate tasks in the
ETFG, each representing the specific original task, running on the specific computa-
tional device. Each candidate task in the group encapsulates several parameters such
as execution time, energy consumption, memory footprint, storage requirements,
and the amount of data in case of offloading to another task.

Furthermore, parameters such as task dependency and communication cost
(communication latency and communication energy) are needed to establish
a direct connection between two candidate tasks. Besides that, a bridge node
is added to the ETFG to represent the extra communication cost (both latency

@ Springer

Optimization of resource-aware parallel and distributed... Page210f80 848

and energy) if there is no direct communication between a pair of computational
units, e.g., from the edge to the cloud and vice versa.

Figure 4 illustrates the TFG and its corresponding ETFG. It is important to
mention that the difference between the TFG and the ETFG is that in TFG each
task is required to be executed in order for the algorithm to be completed cor-
rectly, in contrast with the ETFG, where only one candidate task per group is
executed.

The mathematical model uses a binary variable x;; to indicate whether a task i
will be allocated to be executed on the computational unit j (x; = 1). More spe-
cifically, this variable is responsible for selecting the best candidate task to be
executed from a specific group of candidate tasks. In addition, a binary variable
Xy is defined, which shows whether the outgoing edge j — k from a task i is
selected (x;; = 1). The sets / and J represent the candidate tasks in the ETFG and
different computational units (edge/hub/cloud) of the system, respectively.

The objective function is to minimize the overall latency of the system by tak-
ing into account both computation (/;) and communication latency (lcnmm,;k) as

shown in Eq. 4.

min (Z Z lijxij + Z Z Z lc‘omm,»j-kxzjjk>)

i€l jeJ i€l jeJ kel

Equation 5 enforces that each task i must be allocated to be executed on one of the
computational devices:

x; € {0,1},Vi,j and)’ x; = 1,Vi

=

)

Equations 6 and 7 ensure that all paths of the graph derived by the optimal task allo-
cation are connected, that is, if candidate task i and task i + 1 were selected in the
optimal solution, then the corresponding edge in the ETFG will be selected as well.

Xy € {0,1},Vi,j, k and sz;jk=nd(i),vl' ©
jel kel

where nd(i) is the number of immediate descendants of task i.

Y xp— D Xy =(ndG)— 1) - nati),Vij o

k: (j—k) k: (k=ij)

where na(i) is the number of immediate ancestors of task i.

Finally, the rest of the equations model the resource constraints. In particular,
the total main memory usage (Eq. 8) and the secondary memory usage (Eq. 9)
should not exceed the specified memory budgets. Similarly, the total energy con-
sumption, that is, the total computation (e;) and communication (€comm,,) energy

added together (Eq. 10), should not exceed the given energy budget of each com-
putational device.

@ Springer

848 Page 22 of 80 P.Czarnul et al.

D miy < MV 8)
il
bgt .
Z 81X < Stj ,Vj)
il
bgt .
Z Z €comm; Xijk + e, < Ej ,Vj (10)

iel kel

In the same manner, the aforementioned formulation can be easily extended to sup-
port different objectives, such as optimizing the overall energy or the overall reli-
ability of the system. The framework has been evaluated using a real use case exam-
ple. The use case uses an autonomous drone to inspect the power lines in a power
grid system.

The evaluation results, presented in Fig. 5, illustrate the normalized execution
time of the application across different task allocation strategies. The proposed
optimization framework (denoted as F) was compared against scenarios where
tasks, when feasible, were executed entirely on the edge (E), hub (H), or cloud
(C) across four distinct configurations.

Each configuration (C1-C4) represents a unique combination of edge and hub
devices, while the cloud remains the same across all configurations, as detailed
in Table 2. These configurations were carefully selected to assess the frame-
work’s effectiveness in diverse deployment scenarios, considering that real-world

ca Cc2 C1
OImmm OImm

Cc3
OImm

OImmm

o

0.5 1 15 2 2.5 3 35

Fig.5 Comparison of the optimization framework (F) solution, in terms of the execution time, with sce-
narios where tasks are executed entirely on the edge (E), hub (H), or cloud (C) across four configurations
(C1-C4)

@ Springer

Optimization of resource-aware parallel and distributed... Page230f80 848

Table2 Configurations of

- . Device e/h/c Configuration
computational devices

Cl1 Cc2 C3 C4

Raspberry Pi 3 Model B e 4 v
Odroid XU4 e v v

Samsung Tab S2 h v v
Mi Notebook Pro h v v

HPE ProLiant DL580 Genl0 ¢ v v v v

systems often involve heterogeneous devices with varying hardware and software
capabilities.

Before conducting the evaluation, it was necessary to first profile the execution of
each task on every available device. This step was essential for obtaining accurate
measurements, such as execution time, energy consumption, and memory usage. By
executing each task individually on the edge, hub, and cloud, detailed insights into
their computational behavior were obtained. These precise measurements enabled a
realistic and reliable assessment of the optimization framework’s effectiveness.

As shown in Fig. 5, the proposed framework consistently outperformed fixed allo-
cation strategies in terms of execution time. Across all configurations, it achieved
substantial performance gains. For instance, in Configuration 3 (C3), it reduced
execution time by up to ~ 3.5 compared to a fully edge-based allocation. Similar
improvements were observed across other configurations, demonstrating the frame-
work’s adaptability and efficiency in minimizing latency by effectively leveraging
edge, hub, and cloud resources.

These findings suggest that task allocation decisions were not intuitive, as exe-
cution time was influenced by multiple factors, including task-specific constraints,
device capabilities, and network characteristics. Beyond identifying the optimal task
allocation, the proposed framework enables extensive design space exploration with
respect to different device configurations and their connectivity.

3.2 Greedy algorithms

Greedy algorithms (GrAs) construct solutions to combinatorial optimization prob-
lems bottom up in an iterative process, where a partial solution is extended step by
step. In each step, one component of the not-yet-considered input is selected based
on some (often heuristic) global ranking of these components at this step. GrAs are
usually fast, but for most problems, their solutions can be suboptimal, as making
a locally best decision at each step does not necessarily lead to an optimal overall
solution. Only for a few simpler problems, greedy algorithms can guarantee the opti-
mality of the derived overall solution, such as Dijkstra’s shortest path algorithm [94]
or Kruskal’s minimum spanning tree algorithm [95].

A common use of greedy algorithms is scheduling a directed acyclic graph of
dependent tasks for multiprocessors, or similarly, of a graph of dependent instruc-
tions for instruction-parallel processor architectures. The most common heuristic

@ Springer

848 Page 24 of 80 P.Czarnul et al.

technique for such problems is greedy list scheduling, a heuristic technique origi-
nally introduced by Graham [96], which imitates the limited-scope decision behav-
ior of an online scheduler also for off-line scheduling problems, using a fixed prior-
ity list.

Greedy scheduling starts from an empty schedule and iteratively selects and
schedules one task/instruction at a time from the task graph in topological order of
dependencies. A task/instruction that has no unscheduled predecessors is considered
ready for scheduling. It is placed as early as possible (as allowed by resource avail-
ability and pending data dependencies from predecessor tasks) on some free time
slot on some execution resource at the current end of the partial schedule. In each
step, the selection among all schedulable tasks is based on a global priority order-
ing, which might be based on the length of the longest accumulated delay along any
path from that task/instruction toward a sink (result) of the task graph.

List scheduling is an approximation algorithm that guarantees that the resulting
makespan is by at most a factor (2 — 1/p) longer than the optimal makespan for a
parallel target system with p equal processors. This holds both for independent tasks
and dependencies between the tasks [97].

Greedy algorithms were among the earliest scheduling heuristics considered
for instruction-level parallel processor architectures [98]. A survey of algorithmic
techniques for instruction scheduling for use in compilers for Very Long Instruction
Word processor architectures is given by Faraboschi et al. [99].

Heterogeneous earliest-finish-time (HEFT) algorithm [100], based on a DAG
representation and targeting a parallel system with fully connected heterogene-
ous processors, executes in two phases: task prioritization and processor selection.
The algorithm orders the tasks according to their priorities that are computed with
upward (rank,) and downward (rank,) ranking, which are defined as follows:

rank,, (7;) =I; + Zjeggcx(ti) (c;j +rank, (1)), (11)

rank, (f,) = max {rank t; +I+7},
a () =, max | rank, () +1+; (12)
where Succ(?;) is the set of immediate successors of task #;,, Pred(;) is the set of
immediate predecessors of task #;, ¢;; is the average communication cost of edge

(@i, j), and l_l is the average computation cost of task #;. In the task prioritization phase,
the task list is generated by sorting the tasks by decreasing order of rank,. In the
processor selection phase, the algorithm aims to insert a task in the earliest idle time
slot between two already scheduled tasks on a processor by checking the time differ-
ence between the start time and finish time of two tasks to be larger than the compu-
tation time of the task to be scheduled.

LeTS [8] proposes a greedy heuristic algorithm for task scheduling problems on
homogeneous multi-core systems. The algorithm considers both locality and load
balancing to reduce the execution time of target applications. While it utilizes a
DAG as its application model, the locality considerations target optimizing the exe-
cutions on multi-core systems with no inter-core communication overhead.

@ Springer

Optimization of resource-aware parallel and distributed. .. Page 250f80 848

In [9], authors use greedy algorithms to optimize virtual machine placement
across data centers considering the optimization of a function taking energy and
prices of distributing VMs. They evaluate random allocation (RA), next fit alloca-
tion (NFA), first fit allocation (FFA), best fit allocation (BFA), and worst fit alloca-
tion (WFA) and demonstrate that BFA performs the best.

A different use case—the buffer management problem using a greedy technique
for packet buffering—is studied in [101]. Specifically, a switch can buffer (space
permitting) packets incoming from input ports on their way to output ports, mini-
mizing packet loss. Studies of resource availability versus performance were per-
formed. The authors show that a greedy algorithm cannot be better than 2-competi-
tive and propose a semi-greedy approach with a competitive ratio of 17/9.

In paper [102], authors propose the greedy firefly algorithm (GFA), where the
greedy approach is used for local searching improving convergence and efficiency of
the firefly method for scheduling jobs in an IoT grid environment, showing its ben-
efits in obtaining makespans better and execution times lower than tabu search (TS),
genetic algorithm (GA), and the standard firefly algorithm.

Greedy approaches are used for scheduling in high-performance computing sys-
tems. For instance, in paper [103] authors present an energy-aware greedy algorithm
with particle swarm optimized parameters for scheduling malleable jobs (the num-
ber of servers/processors allocated can change over time). Job stretch times as well
as average server power consumption are reduced (power offs are considered).

In paper [104], the minimization of makespan of workflow DAGs stemming from
multifrontal factorizations of sparse matrices is considered. The authors propose a
novel GreedyFilling 2-approximation heuristic and demonstrate (using synthetic and
application workloads) that optimized variants and GreedyFilling outperform tradi-
tional algorithms. In work [105], the authors minimize parallel application execution
time with an upper bound on the total power consumption of computational devices
used in a heterogeneous cluster with multi-core CPUs and GPUs. For that, the prob-
lem of selection of the computational devices is considered, which can be general-
ized to the 0/1 knapsack problem for which, in real tests, a greedy approximation
algorithm selection of successive elements for packing is used. Increasing speed-ups
vs ideal and decreasing execution times for increasing power bounds are shown for a
system with five distinct GPU models.

3.3 Dynamic programming

Dynamic programming (DP) is an important algorithmic paradigm for solving com-
binatorial optimization problems to optimality. It requires a method for decompos-
ing a problem instance into independent sub-problem instances, storing and retriev-
ing solutions to sub-problems, and building solutions to larger problem instances
from solutions to smaller problem instances. The space of partial solutions is
constructed bottom-up so that each partial solution is computed only once. Some
problems, where dynamic programming is applicable, include the knapsack prob-
lem, the matrix chain product problem, single-source shortest paths, the optimal tri-
angulation problem, and many others. The solution space is usually organized as

@ Springer

848 Page 26 of 80 P.Czarnul et al.

a multidimensional table. In contrast with exhaustive search or branch-and-bound
approaches, dynamic programming algorithms determine a solution bottom-up,
by building optimal solutions to larger sub-problems from already computed and
stored optimal solutions to smaller sub-problems. The space of sub-problems and
their solutions is typically organized as a multidimensional table.* In contrast with
an exhaustive search, DP may speed up the search for an optimal solution by orders
of magnitude, at the expense of increased space requirements.

3.3.1 Optimal code generation for instruction-level parallel processors

Dynamic programming-based techniques have been used extensively in compilers
for generating optimal target code (instruction selection, resource allocation, and
instruction scheduling) for instruction-level parallel processor architectures (pipe-
lined, VLIW, EPIC, DSP), where the time and space requirements are accepted in
cases where high code-quality (time, energy, size) is important, such as compil-
ing performance-critical DSP code. For example, DP-based instruction scheduling
methods for instruction-level parallel architectures have been developed for acyclic
code (basic blocks, extended basic blocks, traces) [106] and for loops, i.e., modulo
scheduling [107].

More recently, however, the compiler back-end research community has mostly
switched to integer linear programming [108-112] and constraint program-
ming [113, 114] as the main technology for optimal code generation, in particular,
due to their solvers becoming much more powerful during the last two decades (so
that also realistic problem sizes can be solved to optimality) and their greater flex-
ibility in problem formulation (DSL and tool chain support). For certain types of
problems and cases where the solution space to be constructed by DP is not exces-
sively large or can be folded by exploiting symmetries, DP might compete well
with ILP/CP-based techniques performance-wise [111]. Recent surveys of such
approaches in target code generation can be found in [115] and [116].

3.3.2 Dynamic programming for distributed processing

The dynamic programming approach is used for decision-making in fog environ-
ments where data should be processed (fog, cloud) [117], including the introduction
of periodic randomization into offloading (fog, cloud) decisions of a dynamic pro-
gramming offloading algorithm [118]. In [119], it was used in the context of optimi-
zation of data encryption with consideration of timing constraints and energy costs.
In the cloud resource and provider selection context, dynamic programming has
been selected for the maximization of the total computing capacity of the selected

4 Note that DP goes beyond a simple hashtable-based automated software cache memoizing results of
the search function in an exhaustive search, in that the latter is constrained by the quality of the problem-
unaware hash function and that the usually depth-first construction order of exhaustive search is generally
different from the usually breadth-first construction order applied in DP algorithms, which more likely
avoids capacity misses.

@ Springer

Optimization of resource-aware parallel and distributed... Page 27 0f80 848

instance types subject to budget as well as instance types proportional constraints
(specifying the required proportion of specific cloud instance types) [120].

3.4 Nature-inspired optimization algorithms
3.4.1 Genetic algorithms (GA)

In paper [121], several algorithms were investigated for workflow scheduling assum-
ing potential failures of services. Specifically, before a workflow is to be executed,
services are selected optimizing a global criterion involving specific resources, as
mentioned in Sect. 3.2. However, when the workflow is executed, some of the previ-
ously selected services might have become unavailable or might fail, which results
in the need for workflow rescheduling, taking into account the already executed ser-
vices and their contribution to the workflow execution time, cost, etc. Rerunning a
scheduling algorithm can be costly. The paper compares approaches such as inte-
ger linear programming (ILP) formulation, divide-and-conquer approach partition-
ing the workflow into subgraphs and using, e.g., ILP, genetic algorithm (GA), and
heuristic GAIN starting with a valid solution substituting services for optimized
schedules. Out of the proposed solutions, GA appeared to be the slowest one. On
the other hand, it has advantages such as no need for configuration (optimizing the
starting solution can speed it up considerably) and the possibility to use nonlinear
constraints and optimization goals.

Generally, GAs are often used for scheduling such as for HPC systems [11], spe-
cifically under power constraints which is of interest to the HPC community, data
center optimization and maintenance [12], also cloud systems in which HPC work-
loads might be run [122], scheduling workflows in the cloud systems [13]. An inter-
esting use case is using GAs for performance tuning of an HPC benchmark [123].

3.4.2 Particle swarm optimization (PSO)

Particle swarm optimization (PSO) mimics the movement of organisms in a bird
flock or fish school to solve an optimization problem by having a population of can-
didate solutions, i.e., particles, and moving these particles in the search space based
on a mathematical formula formed by the particle’s position (x;) and velocity (v,

) [14]:

Xyt =X T Vi (13)

W =w vt + ey ((pbest £ — xi) + cyr, (gbest — xF). (14)
where ¢, and ¢, are constants, r; and r, are normal distributions within the range of
[0,1], wy is called an inertia weight to adjust the search ability of the solution space,
pbest represents the best position obtained by the ith particle since the beginning
(particle best), and gbest is the best position of all the particles (global best).

@ Springer

848 Page 28 of 80 P.Czarnul et al.

Pandey et al. [15] present a PSO-based heuristic algorithm to schedule tasks of an
application workflow to cloud resources by considering computation and data transmis-
sion cost. The particles represent tasks in the application workflow (represented by a
directed acyclic graph) and compute nodes (processors) assigned for the execution of
those tasks. The algorithm utilizes three main data structures: task processor execution
cost (TP), cost of communication between processor pairs (PP), and input/output size
of each task (DS), and solves the scheduling problem by a basic PSO method.

Gill et al. [16] extend the resource scheduling by taking into account execution cost,
time, and energy consumption as well as quality of service (QoS) parameters including
availability, reliability, and resource utilization. The authors present a set of test cases
that perform pair-wise comparisons to evaluate the impact on the constraints.

Potu et al. [17] propose an extended particle swarm optimization (EPSO) algo-
rithm with an extra gradient method to optimize the task scheduling problem in
cloud—fog environments by considering resource utilization, response time, and latency
constraints.

There have been other swarm intelligence algorithms inspired by different species
to tackle optimization problems [124, 125]. While they present valid metaphors based
on population behaviors and evaluate mathematical models, most of them lack novelty
and can be seen as a form of PSO [126]. Therefore, we prefer not to include them in our

paper.
3.4.3 Ant colony optimization (ACO)

Ant colony optimization (ACO) is a metaheuristic algorithm inspired by the phero-
mone tracking of the ants to reach the desired destination [18, 127].

Kumar and Venkatesan [128] present a hybrid genetic algorithm—ant colony opti-
mization (HGA-ACO) for multi-objective task allocation problems in a cloud envi-
ronment. The authors propose a utility-based scheduler that identifies the task order
and appropriate cloud resources by considering response time, completion time, and
throughput objectives formulated as follows:

M

RT, = subti+wt, 1<i<M, 1<r<k (15)
i=1
M

ET, =) ft—st, 1<i<M, 1<r<k (16)
i=1
M

Th, =Y sucs,/T, 1<i<M, 1<r<k (17)

i=1

where T is total time for execution, subt; is submission time, wt; is waiting time, st
is starting time of task execution on resource r, ft; is finishing time of task execution
on resource r, sucs; are completed tasks, RT;, is response time of task i on resource r,

@ Springer

Optimization of resource-aware parallel and distributed... Page290f80 848

ET;, is completion time of task i on resource r while Th;, denotes throughput of the
resource r.

Jia et al. [129] propose a scheduling system for cloud workflows based on an
adaptive ACO algorithm. The system consists of four main components including an
estimation module, scheduling module, reservation module, and execution module.
The estimation module presents a task execution time estimation model by consider-
ing both CPU computation and memory access of parts of the tasks. For the CPU
computation part, the degree of parallelism and the speed-up of a task are utilized,
while the memory access part is estimated by considering the relationship between
memory size and the upper bound of memory demand. Overall execution time is
calculated with the following formula:

15;"pl;
sc-min (ub[,msj)

tSi . (1 _ptl) +

EXE* = /(1 - degy) (18)

min (cnj, dpi) - su;
where 1s; is the task size, pt; is the percentage of data processing time of the task,
sc is the scale of memory size to execution time, ub; is the upper bound of memory
demand, ms; is the memory size of VM, cn; is the computing capacity of virtual
CPUs in VM, dp; is the max degree of parallelism of the task, su; is the speed-up of
the task, deg, is the performance degradation of the VM instance.

With the estimated execution times, the scheduling module finds a scheduling for
the tasks based on the following problem definition:

-1

LET,-LST

minimize TC = Zupj- H#]
T

k=0
subjectto T T = max {ET|,ET,,... ,ET,} <D

(19)

where TC is the total cost, TT is the total execution time, LST is the lease start time
of a VM instance (when it first receives a task), LET is the lease end time (when it
finishes the last task scheduled onto it), = is the unit time to lease a VM, up is the
unit price of VM.

After getting a near-optimal schedule, the scheduling module sends the VM
requirements to the reservation module and gives the execution scenario to the exe-
cution module.

3.5 Game theory

Game theory (GT) dates from nineteenth century, while the modern game theory
is over 70 years old. Still, it is very popular and widely applied in a real life. It
observes real-life situations as games [130].

Players make decisions in a game taking into account the situation, rules, and
consequences. In this setup, a player may be any entity with the interest of the
result of the game. Each player (there will be at least two of them) aims for an opti-
mal decision in the observed situation, independently of other players, taking into

@ Springer

848 Page 30 of 80 P.Czarnul et al.

account payoffs. In this sense, game theory may be observed as a discipline that
explores optimization strategies. Furthermore, game theory is based on mathemat-
ical modeling theory and provides a theoretical and formal problem and solution
description.

Observing the optimization in a game, a significant situation of interest for the
game theory is when players made a decision (move) and the outcome is clear. This
situation is called Equilibrium. At the equilibrium point, there is a tendency to mini-
mization of the players’ regrets. The happiest scenario for all players in a game is
called Nash equilibrium or no-regret situation [131].

There are various categorization of games, while the primary one is to coop-
erative and non-cooperative games. In a cooperative game, groups of entities may
appear as players where group modeling may play an additional role (e.g., Shapley
Value defines a fair distribution among group or coalition members [132]), but each
group is observed as a single player. Non-cooperative games involve only individual
players.

Another categorization is to zero-sum and non-zero-sum games. In zero-sum
games, resources are exchanged between players without changing its value. This
means that if a player wins resources of a particular value, the other players will
loose in total the same value of the resources. In simultaneous move game, a player
will adapt decisions simultaneously based on the situation that changes between
moves, while in a sequential game, a player can plan in advance own moves and
moves of other players and make strategic path of moves in the game. Finally, a
game may be played as one-shot game without a possibility to repeat some moves or
may be repeated while the outcome changes due to in-process learning by players.

There exist also different game strategies in Game Theory: a strategy that aims
for maximizing the payoff risking to loose everything (maximax strategy), a strategy
that aims to lower the risk by taking lower payoffs and trying to maximize the pay
of from so-selected moves (maximin), etc. However, there are even hybrid strategies
that combine two or more basic ones.

Game theory is often a natural choice for dealing with trade-offs, optimization,
and management in resource utilization in a broadest sense [133, 134], as well as
in system engineering [135, 136] and large distributed systems in the most general
sense [137, 138], while dedicated contribution focuses on more specific domains
such as cloud computing [139], Internet of Things (IoT) [140], or cellular [141] and
wireless networks [142]. Number and diversity of problem and solution models con-
stitute a large and still open research and application area.

While above referred surveys and reviews provide a big picture about the space
game theory covers, we can illustrate its application by some illustrative cases.
In [20], authors consider renewable energy for utilization by cloud data centers. In
a smart grid cloud architecture, authors investigate the grid power dispatching to
cloud data centers. The main grid power dispatching to cloud data centers is mod-
eled as a non-cooperative game and used for calculation of optimal level of power to
be delivered to each data center.

In paper [19], authors employ game theory-based virtual machine migration with
PSO for energy sustainability in cloud data centers, minimizing energy consumption
while using renewable energy. Another cloud-related game-based solution [143] is

@ Springer

Optimization of resource-aware parallel and distributed... Page310f80 848

focused on task scheduling for energy management in cloud computing. Authors
provide scheduling algorithm based on game theory model.

Another usage of non-cooperative games is applied for computing unloading
strategy of massive Iol' devices in mobile edge computing [144]. A cooperative
game model is applied in [145] for selecting energy-efficient access points for sen-
sors in the Internet of Things. Another cooperative approach is applied in [146] for
coalition creation based intelligent three-level structure toward the maximizing the
profit from cooperation with other resources. In paper [147], authors incorporated a
game theory approach for detecting vulnerable data centers in cloud computing net-
work. In the context of high-performance computing, the authors of paper [23] used
a game theory-based solution to minimization of the energy consumption and the
makespan of computationally intensive workloads in power-aware scheduling and
mapping of tasks onto heterogeneous and homogeneous multi-core systems. The
problem was formulated as a cooperate game.

In paper [148], authors use game theory to study the behavior of agents in a
volunteer computing system. They assume that providers of computations arrive
and depart and offer power in return for rewards. The authors model and analyze
a stochastic game and conclude that in case of a large number of volunteers and a
homogeneous system the system is stable and the total power received by the central
server is proportional to the offered reward. Studying the arrival and departure rates
and system parameters, they observe that players maximize their utilities when the
average number of players present in the system is typically between 1 and 2 which
corresponds to smallest competition.

A game model that is often applied in resource management is Stackelberg game.
This is a sequential model where there are two types of players: leaders and follow-
ers. Leaders are trying to maximize profit first. Followers are following the leader
and trying to maximize their own profit. Stackelberg model is used in [149] to deal
with resource allocation and pricing issues in a mobile edge computing system. The
solution decomposes multiple resource allocation and pricing problem into a set of
sub-problems, each of which only considers a single resource type. In this model,
mobile edge cloud is modeled as a leaders and end users are followers. Stackelberg
games are used also to manage task scheduling in edge computing [150], but in this
case as a repeated game. In the Stackelberg model, users are modeled as short-term
leaders and edge service provider are long-term followers. Two-layer resource allo-
cation Stackelberg model aimed to provide high quality of services while balancing
the benefit requirements of all participants in the cloud network convergence service
system. Stackelberg game on the second level includes a cloud-edge sub-game and
an edge-end sub-game [151].

Another very applicable game theory is evolutionary game theory (see the sur-
vey for the applications [152]). Behavioral processes involve interaction of multiple
players, and the profit (payoff) of any one of these players depends on how its behav-
ior (strategy) interacts the of others. So it is impossible to observe players individu-
ally but rather as a part of population in which they live. Specifically, population
members do not necessarily reason or even make explicit decisions.

Matching theory is a model among mutually related entities in a beneficial inter-
action [153]. The matching theory assigns a set of entities to one another while

@ Springer

848 Page 32 of 80 P.Czarnul et al.

satisfying the preferences of entities [154]. The resource allocation problem is rep-
resented in a cloud computing distributed system as a matching game (MG) using
two sets of players: workflow tasks and resources in the cloud or fog. The game aims
to match each resource to a task. The result is a bilateral resource allocation agree-
ment representing the players’ preferences over each other. A valid matching is sta-
ble if it satisfies the properties of a one-to-one MG [155, 156]: Each task is allocated
to exactly one resource, a resource can execute just one task. The matching does
not contain blocking pairs of tasks and resources that prefer matching to each other
rather than their current assignments [29].

Additionally, Sharghivand et al. [21, 157] utilized the MG and designed a sched-
uler for data analytics tasks execution at the edge based on the device and applica-
tion preferences toward lower response time and cost. This method is just proposed
for the edge and fog computing environment.

In addition, Mehran et al. [22] proposed an MG-based method, named C3-Match,
for scheduling asynchronous data processing applications in the computing environ-
ment. Thereafter, C3-Match is evaluated and compared with other workflow sched-
uling methods in terms of application execution and data transmission times on the
C3 cloud and fog computing environments [158].

The complex nature of game theory allows extending its theory and application
by involving other disciplines and approaches such as reinforcement learning [137],
see also Sect. 3.6.

3.6 Reinforcement learning

Reinforcement learning (RL) has been identified as an approach that, on the one
hand, is a modern machine learning paradigm, and on the other, it has already been
proposed to optimize processing in all the considered contexts/domains, as will be
shown next.

Acting along supervised and unsupervised learning, in the RL approach an agent
performs actions to maximize a cumulative reward. In essence, the process is to
find a trade-off/balance between already gained knowledge and exploration of an
unknown space.

As an example, this approach has been used for the problem of workload opti-
mization among data centers in which incoming workloads are managed among
servers considering the limited variation in energy that can be supplied from fuel
cells [24]. In this approach, deep Q-learning is used and evaluated positively using
real-time traces. Deep reinforcement learning (DRL) combining deep neural net-
works (DNNs) and RL has been reviewed as a modern approach to scheduling in
cloud environments [159]. Several RL-based algorithms have been reviewed with
objectives: response time, cost, energy consumption, service latency, load balanc-
ing, makespan, etc. It has been argued that DRL-based algorithms have been mainly
tested in laboratory environments and several challenges need to be faced for those
to be used in large-scale cloud environments including the large computational
power required to train for multi-cluster large systems, difficult-to-assess worst-case

@ Springer

Optimization of resource-aware parallel and distributed... Page330f80 848

results and additionally the problem of unexplainability, specifics of solutions lead-
ing to local rather than global optimization.

DRL is also used for the placement of application components in a distributed fog
environment [25]. Specifically, IoT, edge, and cloud layers are distinguished, the last
two forming the fog computing environment. On the application (input) side, there
are several IoT applications, each of which is assumed to be a DAG with processing
requirements on the graph node and data sizes assumed for internode transfers. It is
further assumed that each DAG’s node, i.e., a task, can be executed locally (on an
IoT device) or relegated for execution on the fog side. Various execution and optimi-
zation models can be distinguished, specifically a weighted cost one in which there
is minimization of weighted execution time and energy consumption of tasks of IoT
applications. The energy of components executed on the IoT side only is considered.
X-DDRL (based on an actor-critic framework) is used to solve the problem with
a pre-scheduling phase (tasks are ranked and sorted for execution) and placement
phase. DNNs are used by both the actor and the critic as the function approximator
means. It has been shown through simulations and testbed experiments that the solu-
tion outperforms greedy, Double-DQN, PPO-RNN, and PPO-No-RNN for execution
time, energy, and weighted cost optimization.

In the context of high-performance computing, software for job cluster schedul-
ing using reinforcement learning has been proposed. In [26], the authors presented
DRAS-CQSim—a solution with deep reinforcement learning for scheduling that
allows automatic learning of the customized scheduling policies. Deep reinforce-
ment agent for scheduling (DRAS) cooperates with the CQSim simulator that reads
job arrival events from a job log. Deep g-learning and policy gradient can be used.

Learning the dynamism of events such as gaining back control of computers
in a volunteer computing environment can also be dealt with in RL, as proposed
in [160]. The authors considered an RL approach aiming at learning which resource
to schedule a job, or for the job to remain in the queue considering energy and over-
head. Several levels of resources can be considered including computer (hours),
cluster (several clusters, including taking into consideration weekdays), and system
(either running or staying in the queue). The authors tested the impact of explora-
tion vs exploitation and concluded that the cluster approach withe = 0.1 and 6 = 0.8
performs the best saving between 30% and 53% of energy, depending on overheads.

Tu et al. [27] designed a method based on DRL to predict task dynamic informa-
tion in real time based on the observed fog network status and the server load.

Additionally, it shall be noted that very recently federated learning (FL) and RL
were used together for resource allocation. For instance, in paper [161], authors
aimed maximization of the network spectrum energy efficiency and combined fed-
erated learning and deep reinforcement learning. They proposed an asynchronous
federated learning framework with local model training and the client—server archi-
tecture. They demonstrated usefulness of the approach for an Internet of vehicles
environment. A meta-federated reinforcement learning framework was proposed
in paper [162] for the problem of distributed resource allocation aiming at maxi-
mization of energy efficiency while ensuring quality of service for users. Local
users optimize transmit power and assign channels using neural network models
trained locally. Authors demonstrated that the approach outperforms the traditional

@ Springer

848 Page 34 of 80 P.Czarnul et al.

decentralized reinforcement learning in terms of the optimization goal and conver-
gence speed.

3.7 Summary and conclusion

This section explores various problem formulations used in resource-aware opti-
mization for parallel and distributed computing. In particular, we describe integer
linear programming (ILP), a robust method for modeling and solving combinato-
rial optimization problems. Applications of ILP, such as workflow scheduling and
energy-efficient crown scheduling, demonstrate its versatility in optimizing perfor-
mance, energy, and cost in diverse contexts like cloud and edge computing. Sub-
sequently, we also discuss other techniques, including greedy algorithms, which
are efficient for certain scheduling problems but may yield suboptimal results in
complex scenarios. Dynamic programming is presented as a powerful approach
for solving problems to optimality by building solutions incrementally, especially
in resource allocation and task scheduling. Nature-inspired algorithms like genetic
algorithms, particle swarm optimization, and ant colony optimization are empha-
sized for their adaptability in dynamic and multi-objective optimization problems.
The section concludes with methods like game theory and reinforcement learning,
which provide innovative solutions for resource allocation and workload optimiza-
tion in distributed systems.

In conclusion, the section provides a comprehensive overview of optimization
techniques, illustrating their strengths and trade-offs. These methods, tailored to spe-
cific scenarios, enable efficient resource management in distributed computing envi-
ronments. The diversity of approaches ensures adaptability to various challenges,
paving the way for more refined and scalable solutions in the field.

4 Resource-aware applications in various domains

Parallel and distributed computing is required by several applications and is present
in different computing system domains. Figure 6 illustrates the architectures of the
computing domains. The Data Center (DC) is the lowest level computing layer and
is present in all other distributed architectures. It refers to centralizing the comput-
ing resources in a single room/building with several levels of availability, reliabil-
ity, security, energy supply, cooling, and other important infrastructure aspects to
deliver working guarantees, close to being 100% online 24 h per day. The optimiza-
tion challenges are concentrated on hardware management and power systems.

The cloud computing architectures build upon data center infrastructures that
can be, or are not, geographically distributed. The virtualization technology enables
abstract hardware and allows hardware sharing to multi-tenants. However, it has per-
formance degradation due to the software abstraction layer. Optimizations are cru-
cial to avoid SLA violations and to achieve QoS. The challenges in this architecture
domain are many, which are from virtual machine (VM) placement to resource con-
solidation and isolation.

@ Springer

Optimization of resource-aware parallel and distributed... Page350f80 848
==
! E ! IoT layer ® ..

"n
Data Center
P ¢

Cloud Computing
o []
fon [

mm
m mn

Fog Layer

Fog Computing

Fig. 6 Distributed computing architecture domains

The HPC architectures also build upon a data center infrastructure, usually
with few hardware optimizations (e.g., memory, storage, network, and comput-
ing). Unlike cloud architectures, they are designed for a specific set of applica-
tions and specialized users that interact with a job management system (e.g.,
Torque and Slurm). Jobs are not expected to share the same hardware since it is
expected that the application is optimized to fully utilize the computing resources.
The optimization challenges are broad, transcending the job management systems
and going beyond the inherent parallelism exploitation challenges.

The volunteer computing architecture has decentralized and heterogeneous
computer resources interconnected via the Internet, which usually has less secu-
rity, network bandwidth, and reliability than data center networks. Implementing
optimizations in this environment is important and challenging at the same time.
There are several middlewares used to manage these computing resources for
applications that must be designed for such kinds of architectures. The optimiza-
tions in the middleware are most related to resource scheduling while application
optimizations focus on parallelism exploitation on the volunteer hardware.

@ Springer

848 Page 36 of 80 P.Czarnul et al.

The fog architecture can be layered in three levels: an IoT layer, where small com-
puting resources are placed, a fog layer, where more robust computer resources are
placed close to the edge, and a data center layer, where complex computation and
big data storage are performed. Fog computing was introduced to avoid unnecessary
data being transferred via the Internet and to improve latency in several applications.
The resource optimization challenges may be applied in the three layers since the
architecture and its applications are built with this layered infrastructure in mind.
For instance, it is a challenge to improve communication and resource provisioning.

The blockchain is one of the most recently adopted distributed ledger technolo-
gies within the ICT domain. The balance point among scalability, security, and
decentralization has been researched for decades. The main challenge in Blockchain-
based distributed systems is the lack of a central entity (e.g., TTP, PKI, Leader, etc.)
that controls data flow and information security within the system. Among tens of
reported design decisions, concerned about achieving suitable blockchain-based
solutions for different applications, is the level of decentralization a given applica-
tion can tolerate to maintain its security and meet scalability requirements.

4.1 Data centers

To integrate the DC with the smart grid, all the energy-consuming subsystems are
represented and abstracted for dynamic control. Thus, besides the workload sched-
uling on servers, which is the heart of cloud computing, cooling system operation
control and energy storage devices are considered [163—-165] to define methodolo-
gies to allow the DC integrating energy marketplaces on day-ahead and intraday ses-
sions, as well as to provide ancillary services, and which are based on predictions at
various granularities that estimate the DC operation over a time window equivalent
of the marketplace session. Thus, the optimization problem becomes very complex
due to the introduction of the time component, which increases the number of vari-
ables. Approaches such as [166] use a genetic heuristic to compute an approximate
scheduling plan of the problem, while other methods use mathematical solvers to
determine a solution to the scheduling problem, such as [167] used in [168].

The DC operation scheduling problems for electrical energy efficiency contain
models for discrete and continuous systems whose operation has to be scheduled
over a time window, thus increasing the complexity of the models and leading to
problems of class MINLP that sometimes can be relaxed to NLP by eliminating
integer variables or PINLP, by discretizing the entire system.

Thermal-aware workload scheduling adds a new constraint to the optimization
problem defined for server consolidation and dynamic server allocation problem
by introducing the thermal map of the server room and aiming to minimize the
hot spot temperatures. One of the first approaches for thermal efficiency in a DC
is presented in [169]. The authors describe a workload scheduling algorithm that
considers the temperatures of the servers when scheduling workload and promises
a drop of 25% in cooling costs. Moreover, a complex thermodynamic model of the
server room that defines the connection between the server’s exhaust, inlets, and
cooling system is proposed in [170]. The model is less computationally expensive

@ Springer

Optimization of resource-aware parallel and distributed... Page370f80 848

than a CFD simulation for determining temperatures in case of a thermal-aware
workload scheduling policy. In [171] and [172], the DC model is defined in a
complex manner by adding an energy storage device for both electrical and ther-
mal energy and proposing a set of different policies and algorithms for shaving
power peaks and reducing overall DC energy costs that are presented. Other
approaches for thermal-aware scheduling are presented in [173—175], and [176],
where the authors present various algorithms and policies for VM placement con-
sidering thermal constraints. [177] describes a VM placing algorithm that consid-
ers the server room temperatures, while [178] proposes an optimization problem
based on a thermodynamic model that merges energy footprint reduction with
thermal exchanges. Finally, [179] proposes a thermal-aware VM consolidation
mechanism that uses the heat recirculation matrix defined in [170] and a set of
bio-inspired algorithms to compute the optimum assignment of tasks that mini-
mizes overall DC energy consumption.

The DC operation scheduling problems for thermal energy efficiency add an
extra layer of complexity from a mathematical point of view due to many variables
and nonlinear equations due to the representation of the thermodynamics processes
within the server room. Furthermore, some approaches leverage simulators, such as
Computational Fluid Dynamics (CFD) engines, that define a function for tempera-
ture estimation but cannot be included in traditional solvers. Even if there is MINLP,
some problems of this class have equations defined as Black Boxes that make them
extremely difficult to solve.

Finally, the latest trend in the DC industry is to transform DCs into thermal
energy producers by harvesting the thermal energy generated by the IT equipment,
raising its temperature using heat pumps, and injecting it into the district heating
network. Dharkar et al. [180] propose such a system for the data center of the math-
ematics department at the Purdue University, a large data center that has an hourly
consumption of about IMWh. Houbak-Jensen et al. [181] propose a model of a
heat reuse system composed of a heat pump and thermal tanks as energy buffers to
increase the system inertia. A set of feasibility studies for data center heat reuse in
Norden Europe is performed by [182] and [183]. Finally, Antal et al. [184] propose
a workload placement strategy to maximize the heat reuse potential of the DC, by
slowly raising the temperature in the IT room while keeping it in operable thresh-
olds. The thermodynamic model is based on a neural network trained using CFD
simulations, leading to a high-complexity optimization problem solved using genetic
algorithms, since conventional solvers could not model the problem and determine
a solution.

Approaches for resource allocation problems for DC heat reuse can be character-
ized by the complexity due to the thermal models used to estimate the heat reuse
capabilities and temperatures in the server room. These models must be simple
enough to allow fast calculation and complex enough to provide enough accuracy
to avoid equipment malfunction due to high temperatures. Thus, many approaches
rely on machine learning techniques to estimate temperatures due to workload place-
ment, leading to complex mathematical problems with equations defined as black
boxes. Thus, classical algorithms that rely on differentiation and gradient cannot be
applied, and relaxations or heuristics are used to solve the scheduling problems.

@ Springer

848 Page 38 of 80 P.Czarnul et al.

In the context of data centers, the dynamic programming approach has been
found to be a viable approach for the optimization of several resources, for instance,
energy cost, delay cost (reflecting service quality), and switching cost (in the context
of servers’ active/idle mode) in [185] considering off-line and online approaches;
reliability, availability, cost [186]; communication latency, fault-tolerance, and CPU
usage in the context of routing in large-scale data centers [187]; saving energy and
cutting emmissions [30].

4.2 Cloud computing

Cloud computing is a heterogeneous environment that abstracts an enormous
hardware and software ecosystem and provides users a potentially infinite pool of
resources. It is divided into several service models (e.g., [aaS, PaaS, SaaS, and oth-
ers) and deployment models (private, public, hybrid, and community) [188, 189].
We classify resource allocation techniques on two levels: (i) physical resource
management and (ii) workflow management—related to software resource planning
and allocation. While physical resource allocation is managed by laaS tools [190],
workflow management is managed by PaaS or SaaS tools [31]. Moreover, different
deployment models may also impact how resource allocation strategies and algo-
rithms are designed.

To begin with, we classify the physical resource allocation in server consolida-
tion techniques, VM allocation and Dynamic Server Allocation Problem. The server
consolidation aims to minimize the DC energy demand by determining an optimum
allocation of tasks or VMs such that the number of active servers is minimized.
Other constraints of the problem aim to minimize the number of migrations and
to maintain the SLA and QoS of the services [191]. The selection of the servers
that remain active is done based on various resource constraints, such as CPU and
RAM [192], SLA [193], timing constraints [194], maximum bandwidth [191], and
last but not least network related constraints presented in [195].

It can be shown that the problem of allocation of VMs to the servers by the con-
straints presented above (CPU, RAM, bandwidth, etc.) is an NP problem. This can
be proved by performing a problem reduction to the bin-packing problem [196].
Consequently, the deterministic algorithms cannot run for large configurations of
DCs. The research was focused on enhancing VM consolidation by developing heu-
ristics and approximation algorithms to replace the first fit decreasing approach used
by the first consolidation systems [197—199] and [200].

The dynamic server allocation problem (DSAP) [201] represents a well-known
proactive optimization technique that aims to plan the DC server operation over a
time period in the future by planning the workload deployment carefully, so that
when a set of tasks is finished, they free a set of servers that can be turned off with-
out performing further migrations. One of the initial solutions to the problem is
presented in [201]. Similar approaches that use workload forecasting techniques to
enforce proactive scheduling are presented in [202, 203], and [204]. Furthermore,
the authors of [203] represent the optimization problem as a mixed integer nonlinear
problem for scheduling server workload over a time interval. This DSAP class of

@ Springer

Optimization of resource-aware parallel and distributed... Page390f80 848

scheduling problems is more complex than the server consolidation technique, most
of the approaches being classified as MINLP since a continuous dimension of time
is added to the classical resource allocation problem. However, by discretizing the
time and considering linear models for servers, a relaxed version of the problem
can be represented as ILP. Secondly, an important part of cloud management is rep-
resented by workflow management. Workflows are coarse-grained parallel applica-
tions that consist of a series of computational tasks logically connected by data and
control flow dependencies. Workflow applications are commonly represented as a
directed acyclic graph. There are several classes of workflow scheduling techniques,
in the state of the art, for cloud resources. The first class of workflow scheduling is
based on the PSO algorithm to determine an optimal task allocation of resources.
A PSO-based heuristic that considers both computation cost and data transmission
cost is used to schedule applications to cloud resources in [15]. Another workflow
scheduling for cloud resources is presented in [205], where the authors use a PSO
algorithm to assist cloud users in selecting the optimal operating frequency of the
VM CPUs considering task makespan, data dependencies, and prices. Sellami et al.
[206] use a variant of the PSO, aiming to implement a workflow scheduling tech-
nique using a combined chaotic PSO that integrates a model for the dynamic voltage
scaling (DVS) technique. The proposed solution is validated using a complex work-
flow application, showing promising results. A more complex approach is presented
in [207], where the authors tackle a multi-objective optimization problem for scien-
tific workflow scheduling by proposing an improved multi-objective discrete particle
swarm optimization (IMODPSO) algorithm. Their approach has several novelties,
such as a strategy for velocity limitation for particles, discrete particle positioning,
Gaussian-based mutation for position update, and Pareto optimal convergence. The
authors validate their approach by comparing it with three state-of-the-art algo-
rithms. Furthermore, Awad et al. [208] propose the load balancing mutation particle
swarm optimization (LBMPSO) technique for cloud computing workflow sched-
uling. Their approach is derived from PSO, adding constraints for task reliability,
execution time, transmission time, round trip time, and makespan of tasks. Another
class of workflow scheduling techniques is based on the Partitioned balanced time
scheduling (PBTS) heuristic [209], which can compute an approximate resource
pool for executing a workflow in a given deadline. Furthermore, the PBTS heu-
ristic can handle elastic resource provisioning and be used with Amazon EC2 and
MapReduce. Furthermore, a novel technique aiming to minimize the workflow cost
while meeting a deadline for execution uses partial critical paths (PCP). Abrishami
et al. [210] propose a PCP-based approach for grids, using a two-phase algorithm.
The first phase adds sub-deadlines recursively to the tasks from the partial critical
paths, while the second phase assigns a service with the lowest cost to each task.
The authors’ work is extended in [211], where they propose a Budget-PCP, aiming
to create a workflow scheduling within a given budget. Both approaches are evalu-
ated on various simulations showing promising results. Abrishami and Naghibza-
deh [212] propose a QoS-aware workflow scheduling using PCP-based techniques.
Their solution uses a recursive strategy to schedule the critical path while minimiz-
ing the workflow cost with the constraint of meeting the deadline. Another critical
path-based workflow scheduling is proposed by [213], where the authors propose a

@ Springer

848 Page 40 of 80 P.Czarnul et al.

set of heuristics based on greedy techniques to determine optimal and valid work-
flows with critical paths. Finally, unsupervised machine learning techniques, such
as K-Means clustering, can be used for workflow scheduling. This approach is pre-
sented in [214], where the authors propose a methodology for efficient resource allo-
cation using VM clustering with the K-Means algorithm. Using this machine learn-
ing technique, the VMs are clustered and classified according to their similarity,
leading to a more efficient resource allocation. Moreover, Sharma and Bala [215]
proposed a modified K-means clustering to classify cloudlets and VMs in classes,
considering parameters such as task length, priority, deadline, and cost. Using the
classification, a scheduling algorithm is proposed and tested using CloudSim.

4.3 Data center sustainability and green computing

Data centers (DCs) and implicitly cloud computing are becoming a constant pres-
ence in modern society, being irreplaceable for a set of services they offer for cus-
tomers, both individuals and companies. Their services extend due to technologi-
cal progress in wireless and mobile networking as well as portable devices and IoT,
leading to new types of computing, such as fog computing or edge computing, that
bring the services closer to the user to enhance latency, scalability or user experi-
ence [216]. All this comes with a great cost, both from energy perspective and com-
puting equipment waste.

To begin with, from energy consumption perspective, DCs are accountable for
approximately 1.3% of global electricity demand [217], an estimated 240 and 340
terawatt-hours (TWh). This figure excludes energy used for cryptocurrency min-
ing, which was estimated to be around 110 TWh in 2022 [217]. These numbers are
expected to rise up to 3000 TWh in 2030 [218], especially considering new advances
in Al and the need for more powerful DCs equipped with GPUs to train new Al
models. Furthermore, the big tech companies own huge DCs, Microsoft alone own-
ing over 160 DCs in the world, while one of its largest DCs, located in Chicago, has
more than 300.000 servers that consume 23.5% of electric power generated by coal
in the USA [219].

To tackle these problems, green computing aims to reduce the energy foot-
print of data centers by applying various techniques both on hardware and on
software [216, 220] that are further classified in VM consolidation, power-aware
techniques, cooling optimization techniques, etc. [219]. While VM consolidation
is strictly connected to cloud computing, other techniques can be applied to any
type of DC, even if it does not have virtualization. Modern DCs are designed
to improve energy consumption by an efficient design [221], considering special
equipment for data center air management, cooling and electrical systems, and
heat recovery. As cooling systems are the second largest energy consumer in DCs,
and the largest waste energy consumer, optimization techniques are employed for
smart control and management. Latest optimization techniques are based on Al
data-driven models that can obtain better results than classical simulation-based
methods, such as computational fluid dynamics [222]. Thus, we can mention Al-
based optimization approaches for air-cooled system management [223] based

@ Springer

Optimization of resource-aware parallel and distributed... Page410f80 848

on SVM to predict and regulate cooling needs more efficiently. The proposed
model achieves an accuracy of 82% in predicting a real system evolution. Another
more complex approach is presented in [224], where authors use TCN-BiGRU-
Attention-based thermal prediction models to optimize cooling in hybrid-cooled
data centers. The method developed by them balances energy consumption and
cooling effectiveness by predicting temperature changes and adjusting cooling
power dynamically. Finally, the authors present a set of numerical experiments
using real data traces, showing that the proposed multi-objective cooling control
optimization reduces cooling energy consumption in summer and winter while
maintaining the rack cooling index above 95%. Furthermore, Al based is also
employed on server and workload for sustainability goals, the authors of [225]
investigating advanced strategies for resource allocation in cloud environments
aiming energy efficient. Their study emphasizes predictive analytics, Al-driven
algorithms, and dynamic scaling techniques, showing that large cloud providers,
such as Microsoft, Google and Amazon, mainly use techniques such as Al-man-
aged resource allocation, Al-based cooling system optimization, and integration
with photovoltaic power plants. Among the algorithms used for energy efficiency,
they mention that Google uses reinforcement learning for workload scheduling,
Microsoft uses Deep Neural Networks for workload prediction, and Amazon uses
decision trees for resource provisioning and planned maintenance.

Secondly, considering waste recovery, there are several directions to improve
DC sustainability: Circular Economy Practices [226], Reusing and Refurbishing
IT Equipment [227], and Innovative Waste Management Solutions for water and
residual heat [228]. To begin with, DCs are adopting circular economy principles,
which emphasize reusing, refurbishing, and recycling IT equipment to extend their
lifecycle, reduce e-waste, conserve resources, and lower operational costs. Compa-
nies often partner with specialized recycling firms to ensure responsible disposal
of obsolete equipment. A relevant example from industry are Microsoft DCs Cir-
cular Centers [229] that process 12.000 decommissioned servers each month, aim-
ing to extract useful components so that more than 90% of the spare parts to be
re-used, either inside the company or sold to other beneficiaries. To increase sustain-
ability, Microsoft also increased the lifetime of IT equipment within DCs from 4
to 6 years. Besides physical equipment waste, or e-waste, DCs are also responsible
for wasting water used for cooling and wasting residual heat from the cooling sys-
tem. Thus, DCs are exploring the use of treated wastewater for cooling purposes,
which reduces the strain on local water resources and supports broader water con-
servation efforts [228]. Furthermore, as DCs generate substantial amounts of heat
as a byproduct of their operations, innovative solutions aim to redirect it to support
local agriculture and heating systems. For instance, several data centers in Northern
Europe have successfully implemented district heating solutions, channeling waste
heat to nearby residential and commercial buildings, using heat pumps, absorption
chillers, or heat exchangers [230]. Cities such as Stockholm and Helsinki use DC
heat to warm nearby homes and businesses, providing a model that can be repli-
cated in other regions. Moreover, waste heat is used to warm greenhouses, reducing
the need for external energy sources to have year-round crop production. [231]. A
recent example of heat reuse is Paris Olympics 2024, when heat from an Equinix

@ Springer

848 Page 42 of 80 P.Czarnul et al.

data center was repurposed to warm swimming facilities, showcasing the practical
application of heat reuse in large-scale events [232].

Last but not least, a critical feature regarding DC energy efficiency and sustain-
ability is the actual geographical location [233]. This has implications for several
sustainability aspects. To begin with, energy costs are influenced by regions with
deregulated energy markets which may offer lower energy costs compared to those
with regulated markets. Secondly, access to renewable energy sources is crucial for
data centers aiming to reduce their carbon footprint, thus favoring geographic loca-
tion with plenty of renewable energy options such as hydro power, solar, and wind
energy. Finally, the climate has also a great impact on energy efficiency, especially
from cooling system perspective, thus regions with colder climate being more suited
for DC construction. Besides these, transmission lines also have impact on DC
energy efficiency and reliability [234], line length influencing directly energy losses,
thus DC construction near power plants reducing energy losses. Furthermore, DCs
usually need at least two transmission lines for redundancy and access to renewable
power plants for lowering carbon emissions. However, these geographical criteria
are trade-offs when considering DC service quality, SLAs, and latency, especially
because favorable regions for energy-efficient DC construction are isolated and far
from human-dense populated regions that need DC services. Thus, big tech com-
panies build their own networking infrastructure [235] and expand their hardware
infrastructure closer to clients by building edge and fog sites [236].

4.4 Fog computing

The appearance of smart devices and sensor systems gave birth to the Internet of
Things paradigm [237], where sensors, actuators, and smart devices cooperate with
each other to ensure semi- or fully automated consumer products [238], such as
smart cars or smart home appliances. Through the use of so-called unlimited com-
puting and storing capacity of cloud resources, this might be a solution theoretically
for processing and preserving the vast amount of IoT data, real-time applications
utilized in healthcare, and the automotive industry represents needs and wants that
the cloud services can hardly provide. Therefore, the network of complex systems
was extended closer to end users and their devices, known as fog computing. It is
intended to extend cloud computing by providing a new service layer for improving
the QoS, affecting throughput, transmission delay, and availability [239].

IoT-fog—cloud systems are often described with a layered topology: the lowest
layer contains the IoT sensor and actuator network, which continuously monitor and
sample the environment (i.e., by using temperature and humidity sensors) or react
to the instructions and the messages from other system entities. The intermediate
layer contains the fog nodes, which typically utilize less computing power than the
cloud resources placed in the top layer. Due to the structure of the system, such lay-
ering avoids the bottleneck effect caused by overloaded communication channels of
clouds, decreases the delay and the response time, and increases transparency and
security.

@ Springer

Optimization of resource-aware parallel and distributed... Page430f80 848

The complexity of cooperating smart devices and fog—cloud resources to

provide reliable services created various challenges in the field. The following
emerging issues can be considered [240], respectively:

Connectivity problems often come together with delay and capacity-related
questions. It involves data partitioning for fog clusters to cover a certain area
effectively. Entering vast amounts of IoT entities might have a negative influ-
ence on the throughput and latency as well, which is critically important for
latency-sensitive services such as IoT healthcare or streaming applications.
Palattella et al. [241] present a handover mechanism for vehicular services as
well as an architecture for latency-critical applications at the edge of networks
considering time, safety, and security.

Computation offloading aims to unload and outsource task processing to the
computing nodes, which in this case reflects fog resources and mobile devices
introducing mobile edge computing. The goal of the offloading decision is to
adapt dynamic changes in the systems, and it has an effect on mobile batteries,
storage, and resource-constrained fog nodes as well. Numerous studies aim
to resolve the offloading issue of fog computing and find the balance among
energy consumption, payment cost, and service delay. For instance, Liu et al.
[242] present it as a multi-objective optimization problem, and it is extended
with the interior point method (IPM) to improve the effectiveness of the pro-
posed offloading algorithm. Bio-inspired algorithms such as ant colony opti-
mization (ACO) can be used to offload IoT sensor applications tasks in a fog
environment as well. In [243], an improved ACO is proposed, called smart-
ACO, to meet the specified QoS limitations considering latency time, network
characteristics, and loads of fog nodes.

Billing and operation costs are substantial components of IoT—fog—cloud sys-
tems, since different types of pricing schemes are usually applied for resource
utilization, and they should be adapted dynamically for application needs.
Cloud-side pricing typically follows the pay-as-you-go manner, while the
cost calculation for the IoT side varies, stakeholders must pay after the data
are exchanged or message size, and limits can be considered for distinct time
intervals. Kalmar and Kertesz [244] performed a cost-based analysis of four
major cloud service providers and compared on-demand service costs through
existing IoT use cases.

Resource provisioning is more important than ever, especially for device mobil-
ity. The moveable devices require the elasticity of the IoT services deployed on
fog nodes; therefore, latency, unallocated computing power, and storing capacity
can dynamically change. Bittencourt et al. [245] discuss the resource allocation
problem for mobile users, and they presented three scheduling algorithms, which
consider user mobility and computing capacities as well to ensure a seamless ser-
vice. Yadav et al. [246] present a service allocation strategy using a genetic algo-
rithm combined with particle swarm optimization (GA-PSO) to find the appro-
priate nodes and VMs to allocate the IoT application requests. In this approach,
the authors focus on minimizing the energy consumption and thereby to maxi-
mizing the resource utilization of the VMs.

@ Springer

848 Page 44 of 80 P.Czarnul et al.

The detailed analysis of the IoT-to-cloud continuum cannot be done without sig-
nificant investments, since setting up various configurations of resources and net-
works is costly. Design and implementation goals may require more sophisticated
solutions; therefore, simulators have become more and more accepted by the sci-
entific community over time. These simulation tools can mimic such scenarios in a
realistic way; however, one cannot cover each challenge mentioned in the previous
section. The effectiveness of the simulators can be measured by the execution time,
the number of simultaneously simulated entities, their accuracy, and available func-
tionalities. Next, we present the most representative simulators dedicated to model
IoT-fog—Cloud systems. It is impossible to present an exhaustive overview of the
representative tools; therefore, in this study, we focus only on the most well-known
and popular simulators, which are usable for the design, development, and opera-
tional phases of real systems as well [247].

iFogSim/iFogSim2 [248] is a recently upgraded simulation toolkit built upon
CloudSim [249], which was originally designed for evaluating different resource
management policies focusing on latency, energy consumption, network load, and
operational costs. The simulator follows the sense—process—actuate model involving
sensors, applications, and actuators as well. The recent update aims to model mobil-
ity, service migration, microservice orchestration, and clustering.

DISSECT-CF-Fog [250] is dedicated to analyzing the offloading mechanism
of IoT-fog—cloud systems, where the loads (i.e., IoT data) are generated by simu-
lated IoT devices until it is processed by IoT applications installed on computing
resources. It can also consider various greedy or optimization algorithms to offload
tasks. For making the best possible decision, the simulator may take into considera-
tion the energy consumption of the entities, the position and mobility of the devices,
pricing patterns, laaS utilization, the characteristics of the network, and so on.

FogTorchPI [251] was created to investigate the deployment problem of IoT
application components on fog resources. It applies the Monte Carlo algorithm to
satisfy Quality of Service requirements, involving latency, bandwidth, operational
costs, and processing needs. Nevertheless, the simulator lacks a detailed model of
such a complex system, which restricts its usability.

YAFS [252] is a simulation library for edge—fog—cloud ecosystems, which sup-
ports application module placement with resource allocation policies, billing, and
network planning as well. It also introduces message routing and control policies in
order to execute any kind of action.

The FogNetSim++ [253] toolkit can be used to simulate a distributed fog com-
puting environment with its primary goal being to model device mobility and the
closely related handover process. The tool puts a great emphasis on realistic net-
work operations since it deals with various communication protocols (e.g., HTTP,
MQTT).

Plenty of other extensions and simulations are built upon iFogSim, or directly
on CloudSim. The interoperation of these tool components represents a significant
drawback, since they were introduced at different moments of the development
phase of the core simulators, and the developers were not paying enough attention
to compatibility issues. Besides this, a few of them are definitely worth mention-
ing: MobFogSim [254] aims at supporting mobility and migration functions for

@ Springer

Optimization of resource-aware parallel and distributed... Page450f80 848

Fog Computing, while EdgeCloudSim [255] and IoTSim-Edge [256] rather focus
on the simulation of Edge Computing.

In essence, simulation solutions gain ground progressively, because their capa-
bility makes them a distinguished choice for analyzing the aforementioned chal-
lenges of IoT—fog—cloud systems. Nevertheless, it could still require suitable pro-
gramming knowledge as well to implement various scheduling algorithms.

In addition to fog computing, edge computing also aims to achieve decentral-
ized data processing. Fog computing includes a wider network hierarchy, but
edge computing focuses on device-level data processing directly at the edge of
the network. This means that computation tasks are carried out closer to the data
source, such as smartphones, wearables, and routers. This approach enables faster
decision-making and reduces the dependence on centralized cloud services [257].

The evolution of edge computing to edge intelligence includes the incorpora-
tion of Al and ML capabilities into edge devices. These devices can then handle
tasks such as traffic optimization in smart cities, real-time anomaly detection in
critical systems, and predictive maintenance in industrial applications. This pro-
gress is particularly relevant in industrial environments such as Industry 4.0 and
emerging Industry 5.0, where edge computing and artificial intelligence are com-
bined to optimize processes and improve operational efficiency [258].

Data processing and decision-making closer to the data source reduce latency
and bandwidth consumption compared to centralized solutions, allowing the
application-centric operation of edge devices. In order to effectively use lim-
ited computational resources, techniques such as model compression, quantifi-
cation, and pruning are usually used to ensure performance and accuracy. Edge
devices use a range of artificial intelligence algorithms that are adapted to spe-
cific applications, including decision trees and support vectors for classification
tasks, as well as convolutionary neural networks (CNN), long-term short-term
memory (LSTM) for time series analysis and recurrent neural networks (RNN)
for image recognition. Federated optimization might also be involved in this pro-
cess by allowing multiple devices to collaboratively train models without sharing
raw data, preserving privacy and reducing the need for large-scale data transfers.
However, the selection of algorithms depends on the computing capacity of the
device and the application requirements, such as real-time processing capabilities
and operation under limited conditions [259].

In the context of edge intelligence, several key concepts also appear. Edge cach-
ing refers to the temporary storage of data at the edge of the network for faster
access, reducing dependence on requesting information from various cloud services
and therefore improving performance. Edge training involves training AI models
directly on edge devices, enabling localization and adaptation, while ensuring data
privacy by retaining sensitive information on the site. Edge inference concerns the
application of trained AI models on edge devices to make predictions or decisions
based on incoming data, which is essential for applications that require immediate
responses, such as autonomous vehicles or intelligent surveillance systems. Edge
offloading involves transferring computation tasks from edge devices to more pow-
erful clouds or fog resources, if necessary, optimizing resource use and balancing
workloads [260].

@ Springer

848 Page 46 of 80 P.Czarnul et al.

4.5 Blockchain

Blockchain (BC) technology was proposed in 2009 [261] as the basis of a TTP-free
fully distributed peer-to-peer (P2P) system. The combination of solutions and meth-
ods deployed within has furnished the road toward a distributed infrastructure of
the next-generation Internet. BC-based systems are typically characterized by their
infrastructure, data structures, a networking model, and consensus algorithms (CA).
The infrastructure can be formally described by a set of nodes V, usually termed
as miners, where V = {v|, v,,..vy}. Data shared between elements of the set V are
described according to the application of the system. For example, transactions
(TXs) are submitted by the end users to the BC network so that they are processed
and added to its distributed ledger (DL). Usually, TXs are shared with all miners
triggering them to generate new blocks of data. A block usually consists of a header
and a body. The header may consist of data such as the type of block, the type of
CA, the timestamp, the hash of the body, and, most importantly, the proof of block
validity. The body, on the other hand, usually includes a group of TXs and the hash
of the previous block body.

As BC nodes form a distributed system, those nodes exchange data through a
P2P network and communicate by message passing via directly connected lines. BC
nodes connect to their peers once they are granted access to the network, making
them demonstrable as a graph G = (V, E, w) of a connected giant component, where
E is the set of edges in G, representing the communication lines between the miners.
Each ¢;; € E connects exactly two nodes i,j € V and can be traveled in both direc-
tions. Each e € F is associated with a distinct non-negative value, namely weight
(w;; or w,), which represents the transmission time needed to deliver 1 bit of data
from node i to node j or vice versa, computed in ms. A sub-graph of G is any graph
G' =(V',E',w'), such that V' C V and E' C E. G’ is also connected, undirected, and
weighted as it inherits the properties of the original graph.

Every BC-based system must operate a CA in order to maintain the consistency
of its DL. As tens of CAs were proposed in the literature, a CA is usually consid-
ered valid if it was proven secure under specific formalized circumstances. One of
the main benchmarks used to describe the security level of a given CA is its toler-
ance for K faulty/adversarial nodes where K < N. For example, the most famous
CA, known as the proof of work (PoW) algorithm, was proven secure as long as
K < N/2. Similarly, the practical Byzantine fault-tolerant (pBFT) algorithm was
proven secure as long as K <= NT_I The upper bound fraction ¥, tolerated by a

given CA in order to maintain the system secure, is formalized in Eq. 20.

K
Y= (20)
Sharding is, in its generality, a type of database partitioning technique that separates
a very large database into much smaller, faster, more easily managed parts called
data shards [262]. Technically, sharding is a synonym for horizontal partitioning,
which makes a large database more manageable and efficient in terms of scalability
and energy. The key idea of BC sharding is to partition V (which are formed initially

@ Springer

Optimization of resource-aware parallel and distributed... Page470f80 848

as one giant shard) into a set R = {r|, r,,..r;} of d smaller shards. As demonstrated
in Fig. 7, each shard r;, i <= d consists of n, < N nodes until condition 21 is satis-
fied. Each shard processes a disjoint set of TXs, yet all shards utilize the same CA,
leading to increased overall system throughput. As described in [263], d grows lin-
early with both the total computational power of the network and with N. A sharded
BC network is usually declared to be more efficient, than its non-sharded version,
because it uses the same available computational and storage resources with much-
enhanced throughput and total system latency.

n, =N Q1)

P

Assuming all v; € V have the same computational power and a fraction ¥ of which
is controlled by a Byzantine adversary, all nodes have access to an externally speci-
fied constraint function(s) C — {0, 1} to determine the validity of each TX submit-
ted to, or confirmed by, the network. A sharding protocol outputs a set R where each
shard r; € R contains a subset of k, <= K adversary nodes leading to state 22.

=K (22)

M N
-‘»

1

The scalability of a BC-based solution is usually benchmarked by the overall
throughput of the system while increasing N. On the other hand, the security-related
agreement property is benchmarked with reference to a security parameter that is
satisfied in a sharded BC, if the following condition holds:

k,
VriER:”_ri<_\P (23)
———— Chain 1
sws [(OOQ.. |[=> I O——
~) Chain2
sz | O OO- |=>[PP -
— Chain 3 Mecha?'lism

swerss | QOO | =>[H I :

Chain d

sete | QOO | =>P - [—

O HonestNode (O Adversary Node O] Confirmed Block

Fig. 7 Shards in a blockchain network, where each shard may consist of adversary nodes. Typically, each
shard maintains its own local chain, and a merging mechanism is deployed for global consensus

@ Springer

848 Page 48 of 80 P.Czarnul et al.

That is, each shard consists of a fraction of at most W faulty/adversary nodes out of
all nodes contained in that shard. Consequently, each shard provides a level of agree-
ment that is equivalent to the agreement level of the same BC if it were not sharded.
Each shard maintains its local chain while the system merges all local chains into
one global chain according to predefined criteria (Fig. 7). Merge approaches of local
chains are out of the scope of this work but technical details can be found in [264].

In most sharding frameworks, randomized sharding is regularly run in order
to maintain a high probability that Condition 23 holds. However, such a sharding
approach waves away the optimal data propagation within, and among, shards. Spe-
cifically, this approach results in relatively low throughput in exchange for a high
level of security.

The trade-off between scalability and security in sharded BCs is an open optimi-
zation problem [49]. The goal of a sharding optimization approach is to propose a
sharded scheme of the BC that is both secure and optimized. That is, the approach
shall be able to regularly and efficiently find the optimal distribution of V among R
in terms of scalability, such that Condition 23 is satisfied. Specifically, an optimally
sharded BC would provide higher efficiency in its resource utilization, compared to
a non-sharded and/or non-optimally sharded BC.

BC sharding problem matches the well-known graph partitioning problem with
an additional constraint as described in Condition 23. This problem can be opti-
mally solved using LPs, but the complexity of such an approach is very high as the
problem is considered NP-complete. Additionally, the selection of the optimiza-
tion objectives is arguable, depending on the application of the developed LP. For
instance, Henzinger et al. [265] targeted the minimization of the weights on edges
between the partitions, regardless of the total weights at the intra-shard level. On the
other hand, Cordero et al. [266] minimized the total weights only at the intra-shard
level, regardless of the weights at the inter-shard level.

The BC sharding problem can also be solved using one of the previously dis-
cussed metaheuristic approaches which are much more efficient in terms of com-
plexity. Meanwhile, metaheuristic approaches satisfy a "good" level of scalability
optimization compared to the currently used randomized sharding [267]. The secu-
rity condition can then be added as an extra parameter to validate a proposed solu-
tion for a given network. However, several previous works deployed digital signa-
tures to guarantee a secure sharding while optimizing for scalability. As this indeed
solves the security requirement, more analysis needs to be conducted regarding the
effect of digital signatures utilization on the overall system throughput. In particular,
increased throughput indicates higher efficiency in using the network’s resources to
perform the same tasks using the same resources.

4.6 High-performance computing
Parallel programming for use with high-performance computing systems has been
traditionally possible mainly through several APIs dedicated to particular system

types, to be used with selected programming languages, mainly C/C++ and Fortran.
These include [1]:

@ Springer

Optimization of resource-aware parallel and distributed... Page490f80 848

1. Message passing interface (MPI) for distributed memory/cluster-based systems
with a multi-process model allowing communication and synchronization through
point-to-point and collective operations, among others.

2. OpenMP for multithreaded shared memory systems through the use of directives
and library calls including offloading computations to accelerators such as GPUs.

3. OpenACC for multithreaded shared memory systems through the use of directives
for GPU systems. CUDA for shared memory multithreaded GPU programming
with an application model represented by a grid of thread blocks that consist of
up to 1024 threads each.

4. OpenCL for shared memory CPU+GPU systems with an application model rep-
resented by an NDRange of workgroups that consist of up to 1024 work items,
the model very similar to that of CUDA, generalized to CPU+GPU systems.

These APIs have been traditionally oriented on performance/execution time at the
cost of flexibility, security, and reliability features. Nevertheless, in recent years the
parallel programming field has been receiving attention with respect to some of the
other resources considered in this work, as follows:

e Energy — especially in the context of performance energy optimization [268,
269]. In particular, optimization involves trade-offs such as minimization of
energy of an application run, minimization of energy-delay product, etc. [270—
272]. These has been possible by applying several techniques such as schedul-
ing, DVFS/DFS/DCT, power capping, and application optimizations [273, 274].
Tools for individual compute devices [272, 275] and whole HPC centers have
been proposed [276].

e Memory/storage in the context of persistent memory/non-volatile memory
(NVRAM) that is byte-addressable, persistent storage presumably larger than
typical RAM. For instance, [277] considers a large parallel persistent memory
model with P processors, each with fast and small ephemeral memory and access
to a large shared persistent memory. Usage of NVRAMs in cluster nodes for MPI
applications through the incorporation of the well-adopted MPI file I/O interface
has been shown, e.g., multi-agent simulations [278] and image processing [279].

e Security such as encryption/decryption of messages sent between nodes used by
an MPI application [280] and among distributed clusters using MPI [281].

¢ Reliability extending the possibility of a successful application run in the case
of partial system failures, important, especially in the context of long-running
compute-intensive codes running on large HPC systems. Existing research works
focus on proposals of resilience constructs for MPI [282, 283] as well as multi-
threaded OpenMP [284] applications.

In the context of optimization/problem formulations, most of the relevant
approaches use: ILP for data partitioning, scheduling at the level of APIs for paral-
lel programming such as OpenCL and MPI [6] but also service integration frame-
works [1, 81]; greedy approaches, e.g., energy-aware scheduling [103]; dynamic
programming for optimization of code generation [106]; genetic algorithms for
scheduling in HPC environments, including energy-related formulations [12, 122];

@ Springer

848 Page 50 of 80 P.Czarnul et al.

reinforcement learning similarly for scheduling in HPC systems [26] including batch
job schedulers [285].

4.7 Volunteer computing

Volunteer computing is a type of distributed computing that allows public partici-
pants to share their computing resources that they do not need in a given period,
and thus help launch computer-aided projects. Existing voluntary platforms have up
to a million users, thus providing vast amounts of memory, storage, and processing
power.

Volunteer hosts (desktop PC, notebook, mobile phone) connected together form
the equivalent of a super powerful virtual machine. The reason for connecting is that
computers usually use up to 15% of the total capacity, so many potential resources
can be connected. The calculations, which would take us several thousand years to
process on a single desktop computer, can be processed in this way in just a few
months.

There are currently almost a million dedicated volunteers, and their hardware has
a significant impact on science, enabling projects that are impossible without com-
puting power. In this mode, the problem is divided into a large number of tasks that
solve one or more computers at once.

Several systems were created for running this paradigm, most notable being
BOINC [286]. It should be noted that running a volunteer system client can be a
deterrent factor for users, although it can be mitigated in several ways, e.g., running
using a separate account in a system. Some systems such as Comcute [287] rely
on running client codes within a web browser, which sacrifices performance (code
is executed using Javascript) for a potentially more secure sandbox as well as ease
of use (no installation required). Other systems of this type, using Web workers,
are those described in [288] and Weevilscout [289]—for which the authors demon-
strated a bioinformatics use case completed within 5 h, while in total the Web thus
provided 135 CPU hours for computing. In [290], the authors presented CrowdCL
which is an open-source, web-based, cross-platform volunteer computing frame-
work that provides KernelContext—an abstraction layer for WebCL allowing devel-
opment and execution of OpenCL programs in an online Javascript setting. For the
Thomson problem and sufficiently large N (N-body computations), the performance
of WebCL is visibly larger than those of optimized Java and Javascript implemen-
tations, run on a laptop with Nvidia 320 M GPU and a desktop with an NVIDIA
K20 GPU. Pando [291] provides a volunteer solution using failure-prone personal
devices made available by volunteers whose number can change, parallelizing a
function on a stream of values.

In terms of browser-based voluntary systems, the authors of [292] distinguish
three generations: the first one is based on Java applets, no REST support, and com-
munication protocols: HTTP, UDP, TCP, and Java RMI; the second one uses JavaS-
cript, occasional REST support, and protocols HTTP, AJAX, and finally, the third
generation uses JavaScript for tasks, WebWorkers for threading, and HTTP, AJAX,
and WebSockets.

@ Springer

Optimization of resource-aware parallel and distributed... Page510f80 848

This means that, in the context of volunteer-based systems, several trade-offs
between resources are present: performance vs security but also the traditional per-
formance vs reliability (the need for more volunteer clients to make sure results are
correct decreases performance/number of volunteers).

LHC@Home’ is a volunteer computing platform that uses the donated idle time
of your computer, thus helping physicists compare theory with an experiment in
search of new fundamental particles, as well as questions about the Universe. All
LHC@home projects are run using the BOINC-established platform used by most
volunteer computer projects worldwide. There are several LHC @home projects,
all focusing on the Large Hadron Collider (LHC) engineer and physics at CERN in
Switzerland. Some of the most significant projects are mentioned below.

ATLAS @home®: ATLAS is a project that researches the physical particle experi-
ment, and searches for new particles and processes using direct proton collisions
of very high energy. In this project, petabytes of data were handled, which were
recorded, processed, and analyzed during the first three years, and this led to the dis-
covery of the Higgs boson in 2012.

CMS @home’: The Compact Muon Solenoid (CMS) is a general-purpose detector
that takes place at the LHC. This project has a broad physics program, from study-
ing the Standard Model (which includes the Higgs boson) to searching for additional
dimensions and particles. The CMS has the same scientific goals as the ATLAS
experiment but uses different technical solutions and magnetic system design.

SixTrack®: This application simulates 60 particles traveling around the LHC ring
at the same time, and pores the simulation for 100,000 loops, and even up to 1 mil-
lion loops around the ring. In this way, it is tested whether the beam will remain in
a stable orbit or will happen to lose control and fly off course into the walls of the
vacuum tube. Beam instability can cause a serious problem if it happens in real life,
which can lead to machine shutdowns due to repairs. This project helps physicists
and LHC beam engineers make necessary corrections to create cleaner, more stable,
and safer beams.

Test4Theory’: The project allows volunteers to run high-energy particle collision
simulations. These simulations can be run on their home computers, use theoretical
models based on the Standard Particle Physics Model, and are calculated using the
Monte Carlo method. Theoretical models use adjustable parameters, and the goal
is for a given set of parameters (called “tuna”) to correspond to the widest possible
range of experimental results. The results are sent to a database containing a very
wide set of experimental data from many experiments, collected from accelerators
around the world, including the experiments on the Large Hadron Collider at CERN.
The database and the theoretical fit process are part of the MCPLots project, located
in the theory department at CERN.

https://Ihcathome.web.cern.ch.
https://atlas.cern/Resources/Atlasathome.
https://lhcathome.web.cern.ch/projects/cms.
https://Ihcathome.web.cern.ch/projects/sixtrack.
https://lhcathome.web.cern.ch/projects/test4theory.

@ Springer

https://lhcathome.web.cern.ch
https://atlas.cern/Resources/Atlasathome
https://lhcathome.web.cern.ch/projects/cms
https://lhcathome.web.cern.ch/projects/sixtrack
https://lhcathome.web.cern.ch/projects/test4theory

848 Page 52 of 80 P.Czarnul et al.

4.8 Summary and conclusion

This section discusses resource-aware applications in various computing domains,
emphasizing their architectures, optimization challenges, and practical applications. It
also identifies seven primary architectures: data centers, cloud computing, high-perfor-
mance computing (HPC), edge computing, fog computing, blockchain, and volunteer
computing. Each architecture introduces unique optimization needs, challenges, and
opportunities for resource management.

Data centers are the backbone of many computing architectures, facing challenges
in workload scheduling, energy efficiency, and thermal management. Strategies such
as integrating data centers with smart grids, dynamic power management, and thermal-
aware workload scheduling are explored. Emerging trends include heat reuse for sus-
tainability and Al-driven cooling system optimizations.

Cloud computing relies on virtualization to provide scalable resources, but optimi-
zations are necessary to avoid performance degradation. The chapter highlights tech-
niques for virtual machine (VM) allocation, dynamic server allocation, and workload
scheduling using heuristic and Al-based methods such as PSO and genetic algorithms
(GA) to solve NP-hard allocation problems and ensure QoS.

HPC Systems focus on specialized workloads that demand efficient scheduling, par-
allel execution, and resource allocation. Traditional APIs such as MPI and OpenMP are
widely used, with growing emphasis on energy efficiency, security, and reliability.

Fog computing and edge computing bring computation closer to end users,
reducing latency and improving efficiency. This chapter discusses offloading strat-
egies, cost-aware resource provisioning, and Al-driven optimizations. Simulation
tools such as iFogSim, FogTorchPI, and YAFS play a crucial role in evaluating fog
and edge computing strategies.

Blockchain technology addresses the trade-off between scalability and security,
particularly through consensus mechanisms and sharding, which improve through-
put while maintaining decentralization.

Volunteer computing leverages distributed, publicly available computing
resources, such as platforms like BOINC. The chapter reviews frameworks like
BOINC, browser-based volunteer computing approaches, and the trade-offs between
security, performance, and reliability, enabling large-scale scientific computation.

In conclusion, resource-aware computing spans multiple architectures, each
with unique optimization needs. Addressing energy efficiency, security, scalabil-
ity, and cost constraints is crucial for improving system performance. The insights
presented in this chapter serve as a foundation for future research and advance-
ments in resource-aware optimization across distributed and parallel computing
environments.

5 Summary—coverage analysis, open problems, and conclusions
We start the summary of our review by observing that specific algorithms are

applied in particular contexts, as indicated in Sect. 4. We further note that poten-
tial ranking or preference of algorithms requires formulation of well-defined

@ Springer

Optimization of resource-aware parallel and distributed... Page530f80 848

criteria against which the algorithms could be compared. We have come to the
conclusion that the one that could be used in this context is the number of work-
ers, processes or threads as these are common in actual implementations in paral-
lel and distributed systems. This way, we can assess potential sizes of problems
that could realistically be handled by a particular algorithm using a particular
number of workers etc. For instance, in paper [6] authors proposed optimization
of data assignment for parallel processing in a heterogeneous hybrid CPU+GPU
environment using ILP. For a system with 10 processing units (CPUs and acceler-
ators) interconnected with a 1Gbit/s Ethernet network, having considered profil-
ing of start-up times, bandwidths, and units’ performance metrics, ILP was used
to assign data for solving systems of equations using the Jacobi method. For the
numbers of problems exceeding 256 (problem sizes 512-2048 tested) lp_solve’s
execution time had to be limited, but the ILP-based approach could handle large
problems efficiently, and best results were obtained with a timeout of 30 s for
problem sizes of 512-1024 and approx. 60 s for 2048. Assessment of ILP in the
context of edge and cloud computing is provided in more detail in Sect. 3.1.3.
Practical comparisons of algorithms can be realistically provided for a particular
problem. For instance, for the problem of scheduling workflow applications with
dynamically changing service availability, that requires online rescheduling, in
paper [121] it was concluded that ILP for workflows with more than 6 nodes and
a timeout of 20 s (optimal solution not feasible due to the problem size) returns
much better solutions (scheduling and workflow execution times combined) than
GA and is only followed closely by a heuristic GAIN algorithm. Workflows with
up to more than 100 nodes and 400 services in total were handled by the algo-
rithms. Typically, other arguments used as input to the algorithms could be very
specific that makes a direct comparison of algorithms rather unfeasible.

In particular, optimization algorithm complexity is also significantly impacted by
application parameters such as the number of tasks and by additional hardware con-
figuration parameters such as discrete DVFES levels, as these manyfold the number
of ILP variables in the model (and ILP solving complexity can be exponential in
the number of variables). For moldable-parallel tasks where the number of work-
ers to use for each task is part of the optimization solution, large CPU core counts
can quickly lead to prohibitively long ILP optimization times. Simple ILP models
that do not model these additional application and hardware properties [91] lead to
faster solution time but worse optimization quality [85]. However, by introducing
additional constraints such as crown scheduling (Sect. 3.1.2), the combined optimi-
zation problem for streaming task graphs with up to 80 tasks on up to 32 cores can
still be solved to (crown-)optimality within three minutes and vastly outperforms
unrestricted ILP models for the same problem in optimization time [84, 85], which
in turn still perform better than nonlinear models [85].

In terms of characteristics, advantages and disadvantages of the particular prob-
lem formulations, we can note the following:

e ILP has the benefit of encoding decision variables as integers and possibly prob-

lem values as real variables in optimization problems. On the other hand, prob-
lem formulation is limited by the linear formulation and many integer variables

@ Springer

848 Page 54 of 80 P.Czarnul et al.

result in very high complexity requiring heuristic algorithms and usage of time-
outs in ILP solvers.

e Greedy approaches are typically fast and can be formulated in a natural way but,
on the other hand, result in sub-optimal solutions.

e Dynamic programming is very useful for combinatorial problems but requires
a method for decomposing a problem instance into independent subproblem
instances and the optimal substructure property must be met. Solutions can be
fast at the cost of space required.

e Nature-inspired algorithms allow to encode an optimization problem in a natural
way and do not have formulation requirements like linearity, but convergence
can be very slow and dependent on the input configurations. Might result in
lower quality solutions than dedicated algorithms with domain knowledge.

e Matching game allows consideration of entities and their preferences. Not all
problems can be naturally expressed using this approach.

e Reinforcement learning is useful for problems where an agent performing
actions, either optimization space exploration or knowledge exploitation can be
naturally considered, especially considering long-term effects. Consequently, it is
useful for elaboration of strategies or policies finding trade-off/balance between
the two for a particular optimization goal.

We further discuss which and how various quality metrics/resources are considered
in the context of domains such as data centers, cloud, fog, volunteer computing,
blockchain, and high-performance computing, included in Table 3. We shall note
that we consider some frequently occurring objectives including execution/response
time, energy consumption, security, (soft) error reliability. We can say, based on the
analysis, that for the full picture, these emerged to be important cross-domain objec-
tives in resource management that shall be considered in any context as they are
addressed by works in all of the domains, obviously typically a selection of those at
a time. Additionally, we provide information on problem-specific resources that are
related to the particular domain. Even though these objectives are present across all
the domains, their meaning depends on the context. For instance, requests might be
handled in real time, in batch mode, in a regular reactive manner. Energy, depending
on the domain, refers to the servers and systems managed by a provider, a client or
both types. Security and reliability measures differ primarily depending on whether
the system is owned and managed by a dedicated provider or is an open distributed
system. Finally, all domains use computer nodes linked with interconnects, albeit
with different latencies and bandwidths.

Table 4 outlines which problem formulations and corresponding algorithms have
been proposed in the context of various parallelization levels of non-distributed par-
allel systems, i.e., instruction-level and either homogeneous or heterogeneous (e.g.,
CPU+GPU) environments. Specifically, for reinforcement learning techniques,
approaches have been proposed for parallelization within or among clusters, which
can essentially be either homogeneous or heterogeneous and RL can handle such
cases due to the knowledge using/exploration and reward approach. Heterogeneity
can be considered both in the context of usage of various computational devices
such as CPUs+GPUs [7] but also in the context of consideration of CPUs as well as

@ Springer

848

Page 55 of 80

Optimization of resource-aware parallel and distributed...

[S611 sxpom
-JoU pauyap-2Iem1Jos
‘SI9)SNJO ‘SQUIYORW [BNIIIA

[cL1 “1L1] sdund
189y ‘Sw)SAs oFeI0Is

AS10U9 [RUWLIAY) ‘SAYIIIMS
JIBWS ‘WIISAS SN
‘wdISAS SUI[009 ‘SIOAIOS

[co¢] storrd
QIBM]JOS JO ISBD UL

KI9A0991 BJRp 2INSSE 0)
uoneorjdor asn swo)sAs
juowaseurwW pnoj)

s anp ur uon

-NJ3Xd PUBWIWIOD AINSUD
01 Aouepunpai asn

SWRISAS JuswaSeuew D

[v0€

‘cog] eyep pardAious

uo uonendwos Jur

-woj1ad 10 uond£K1oud

orydiowowoy uo A[ax

soyoroidde uropoA ‘uon

-dK1ouo ejep pue ‘syooyo

Aagayur ‘spremary Sursn

‘KoeArad Juar[d 2Insud

0) S19Ae] AJLINDAS-19qAd

pue [eorsAyd yroq asn
SIMONNSLIJul pnofD)

[00¢] (NA$) Surjiompou
Ppauyop-aIem)jos pue
(AAN) uonezIfenIa
uonouny JIompN Aq

pa109j01d Sureq ‘19)u2d

BJep 9} JO JUSWUOIIAUD

Tea1sAyd pasoro oy
UM PAINOXA Je
UONEBOO[[B 90INOSAI
urtoyred Jey) SwolsAs
JuowoSeuRwW Jey) 108)
oy} £q pautejuTRW A1
Koearxd eyep pue £)1nosg

[zo€ ‘10€] 2amonnselyut
rempiey Surkprepun oy}
Jo Kduaroyje A310u9 oYy
SuLIopISUOD UOIIBIO[[.
pue Surnpayos peorpom
wojrad swa)sAs pnor)

[81 “6L1
‘QLT] 191ud0 vyRp S
Jo A310u9 [eurIoy) 9y}
I9pISu0d osfe sayoeoidde
x9[dwoo a10J ‘803
uonezrumndo oy Jo
jred st uondwnsuod
K319u9 0s ‘Kouaroyje
K3109U9 9p1ao1d 0y

WIe SI9UID BIep U1

[102] soALLe
PeOIoM 3 210Joq
$90IN0saI Sunedso[e

‘rouuew 9Anoeoxd € ut
10 ‘[161] soALLIR)1 Se
PEO[SIOM J[NPAYDS 0)

Surure ‘JouuBW 9AT
-0B2I © JOUJIQ UT JIom
SwA)ISAs Jurnpayods pnoyD

([991] suerd peaye-Aep
¢30) sueds owmn 103uo0]
uo I0 ([o1u0d WwasAs Sur
-1009 “39) swaIsAsqns
oyroads J0J oW [BaI Ul
PaINoaxe oq ueod Surn
-payos 201n0sar wojrad
e} swalsAs jonuo) DA

Sunndwod pno)

$901n0s31 dyT92ds wa[qoig

Aypiqerauna 10119 (3Jos)

Knoag

A31oug

own asuodsar/uonnoAxXy

UTRWOP/UOT)E[NULIO]

SUTEWIOP/S)XA)UOD SNOLIBA UT (S921n0saI/sotnowr Ajienb) saanodlqQ € ajqeL

pringer

As

P.Czarnul et al.

Page 56 of 80

848

([e1€]l vod

pue ‘[1¢] sod “39)
SWILIOS[e POZI[eNUD
Q10w FuIsn pajeSnIw oq
ued sHg pauorssrurad
ur (S10J PAWLI}) SIOLId
1JOS O[IYM ‘PIPau
Ajrensn a1 ([192] mod
“3-9) swyyrIoge A[3sod
‘sDg ssoquorssiurad
104 "193p9[paINqLISIp
a3 Jo Aoud)sIsuood oy}

[s1€ urejurew o} SWyLIode
P1€] (SDISV PUe SyDdd SNSUSSUOJ JUSISYIP
‘SNdD ‘SNdD) SIPUIA sazinn ASojouydd) Dg

[90¢] soo1AI0S

30j Jo uoneINIYuodsmu

puE (S991AI0S JOJ WOIJ

SIQ[[OTUOJOIOTUI PUE P9199[[09 UOTRULIOFUT

‘SQOTAQD JJBWS ‘Soulyoewl a3esn pue ‘Uonedo] ‘eyep
[emuIA ‘sauryoew [earsAyd QATISUDS) SYSLI Aoearid

[11¢] onsst uado ue [[ns
S1 8D ssoquorssrurad
PpapIeys ur AJLINo9ds ‘I9Ad
-moH ‘[01¢] sernyeudis
[en3ip jo a3esn ay) Ym
[60¢] sOF pouorsstuttad
ur pasjuerens Ajuo
Apua1Imd ST UoNIPUOd
SIIL "€ uonipuoy o3
QOURIRJAI 1M AJLINDDS
1oy) oao1d jsnur sj0o
-ojoxd Surpreys Dg

[90¢] reoard
AT $oYd AJagojur
‘uond£1o9p/uondAoud
Aq Kyrmoas Surpraoxd
S901AQP JOT JO 9ouasaid
9} pue SAJIAIAS F0J

Jo oSesn [V oy} 03 onp

[80¢€] papreys
-uou Dg awes oy} £q
POWLIUOD X], SWes 3y}
UBY) SS9 yonuwi $Js0d Dg
POpIEYS € UI POWLIUOD
XL B uay) “JIomiou oy
ul S9pou JOo Joquinu
[30) 9U) UeY]) SSI[JUNOD
A[reratn yorym ‘preys
AY) uIyIIm sapou Aq
passaso1d s1 X I, B 99UIs
‘ST 1) — X], POWIGUOD
13d uondwnsuod
K319U9 [©10) 9SBAIIIP
0) sI sDg Surpeys jo
s[eo3 Iofew ay) jo uQ

[0SZ] painseawr
st ‘Aoeded Y3y yrim
sapou Junndwos se [[om
se “YI0m)au oY) Jo a5po
A} J& PIIBIO[SIIINOSAT
1amod mof jo uondwns
-Uu0d 9y} Se ‘syo-apern
rewndo 10§ Surwre
sunyjrio3e jo [eos juonb
-91j ® SI A3Iou9)00 pue
QUWIT) UONINJOXA SOPISAq

[Lo€] @reas

WQISAS JUALIND) JT'M
dryszoquiowr preys mau
' urejqo o3 [odojoxd
UOTBIO[[® PIBYS)
QINO9X3 SAPOU FUNSIXD
pue mau ‘yoods yoes
104 "syooda ur spaoooid
AJTensn }Iom)au ureyd

ool oy Surpreys

[1¥C] suonnios
[eonL-Aou9je] 10y So0)
urejurew o) dA[qe SI 1
asneooq suoneordde o1
QuwIn-[eal 0) PAJLIIPIP

Aqurewid st A3o10do) 3oy

Sunndwoos 304

$00In0sar oyroads wojqord ApIqereuna Ioirg (3j0s)

Amoag

A31oug

umn @mﬁO&m@H\ﬁOﬁ:ovuﬂm

UTRWOP/UOT)E[NULIO]

(ponunuoo) ¢ s|qey

-
[
80
=]
k=
9
n
&ll

848

Page 57 of 80

Optimization of resource-aware parallel and distributed...

(10K JOAISS +] ‘TOAIDS
+1) SIEMI[PPIW JOAIIS
‘s1oindwod s109)unjoA

(919 UITAN

/IDd—sesnq ‘yIomiou)

$109UUODIAUI ‘(SND
‘SNdD) sd1a9p Sunnduwod

anfea
9[qeidadoe pue uaAId

9} PIIOXQ JOU [[IM Jer
10119 9Y) Jey) pasjuerens
9q UBD)1 PUE ‘SIIOIUN[OA

IOUJ0 1M PIYOIYO-2I
S1IL ‘ploysaiy) ay) ueyy
IoMoT ST KJI[IQIPaIo oY)
ased uj “Aorjod y09foxd
uo paseq IsnIj asn Inq
s109lo1d 0y puodsar jou
Op SIOAUNJOA AYm ST

jey], ‘KINuapI pIom-Tear

© 0] POYUI] 10U 2Je
pue snowAuoue oIe

[91¢ ‘8] uospowrey)
IdIA SE [[9Mm se ‘suon
-eorjdde [JA JuSIfIsaI
Jo uonejuswardwr Joy
pasodouid uoaq sey
QoepruL (NATN) uon
-eSIIA] QIn[Ie, [0A9]
1os) [L1€ ‘91€] sway
-sKs + oreoseyad
9[eo0s-93xe[10§ A[[e1d
-adsa ‘suonnjos 10y paou

sjeary)
AJIND9S UO Pasnd0y

pue pauSisap aq jsnuw
sy09fo1d os ‘yoeordde
Sunndwos 1933un[oA oy}
0] SAWO0D JT UAYM S)BIY)

SwoISAS DA UI SIoUN[0A AIINOAS [RISADS T8 I,

[182 ‘08¢l sepou
Suowre UOTEITUNWIWOD

Jo uondA1oop/uondL1oud
10J381X0 ZHOIdIN-SH s
[ons suomN[os ‘doueur
-10312d 10§ A[reroadsa
PpauSIsap sem [JIAl [IyMm

K319u9 9y 10§
Ked s199)unjoA 9snedaq
‘$JSTIUQI0S 10§ s1ndwod
JI99)UN[OA JO JS09)
199J& JOU S0P SIY} ‘IO
-M0Y $S19Ju90 19)ndwod
uey) UL ASIDUQ SSI[
10 210w st Sunndwod
JIO9JUN[OA JOU)OYM
uMmouy Jou [[1s ST 1]

[eLz ‘€011 "0 ‘SdAd
/3urddes 1omod ‘Furn
-PaYOS/UOT)I[S JTAIP
se yons sanbruyoa) Sursn
‘[S01] suonezrumndo
1omod/[697 ‘g97] AS1oua
+ QWM UONNIIXA JO
JXJUO0D dY) UT UIJJO ‘Mou
PISY 9y} UI PAIAPISUOD
soLw £y 9y} JO SUO

uonepIeA
pue ‘Suruonisuer) 2Je)s
‘Furnpayos yse) se
yons ‘suonerado juow
-o3euew yse) Joj own
UOINOAXA SBI-)SIOM
MO[SOAIS WIAISAS Ay],
"ONIOE 1] woperd
B UO 9WIT} UOTINOIXD
0] ® 133 01 9[q1ssod st
J1 ‘SOOINOSAT IJUN[OA
uo ¢sosuodsor owm-[eax
axnnbar suoneoridde Sur
-indwod panqrsip Auey
[1] 910 ‘uon
-eZIwIuIu Jurreys as[ey
‘suonjenduwiod pue uon
-eorunwiwod Jurdderroao
‘3uryoed se yons suonez
-rumdo se [[om se ([9AJ]
2109 ‘201A9p [euonEINd
-wod ‘19)snyo) Surouereq
peo[‘Surnpayos yroq
1M PIIBIDOSSE ‘SWIA)SAS
DdH oy uonreziundo
0 109[qns 9anoalqo
urewr) A[reuonipen

Sunndwoos 199unjoA

Sunnd

-wod douewojred-ySig

$90IN0sAI dY10ads Wa[qoIg

Aiqeraurna Io11g (1jos)

Amoag

A31oug

umn @mﬁO&m@H\ﬁOﬁ:ovuﬂm

UTRWOP/UOT)E[NULIO]

(ponunuoo) ¢ s|qey

pringer

As

848 Page 58 of 80 P.Czarnul et al.

Table 4 Problem formulations and solving techniques for various types of (non-distributed) parallel
computer architectures

Formulation / Architecture Instruction-level Homogeneous parallel Heterogeneous parallel
parallel

Integer linear programming [109-112] [83-85, 91] [6, 7, 89]

Greedy algorithms [98, 99] [8, 96, 97] [100, 105]

Dynamic programming [106]

Nature-inspired algorithms [318] (GA) [7, 11] (GA)

Reinforcement learning [24, 26, 285, 319, 320] [24, 26, 285, 319, 320]

burst buffers when scheduling [11]. We can see that some of the approaches like ILP
or greedy algorithms are present for all the contexts while dynamic programming
is proposed for instruction-level parallelism and nature-inspired and more recently
RL at a higher level of abstraction. We can also note that cited papers target either
higher homogeneous/heterogeneous levels or intstruction-level parallelism but not
both.

Table 5 outlines the works that address and use particular problem formulations
in various previously described domains and contexts. The domains of the research
works can be either centralized in terms of location, like data centers and typically
high-performance computing, or geographically distributed, i.e., cloud, fog, volun-
teer computing, or BC. For nature-inspired solutions, specific algorithms are given
and we can see many variants within the latter group. Additionally, we can see that
relatively few formulation-domain pairs have not been considered which points out
potential future research areas.

Based on the analysis performed, we can formulate the following topics for future
research in the field:

1. More thorough comparison of performance and energy efficiency, such as extend-
ing computational efficiency in CPU Marks/W analyzed in [293], of volunteer
computing versus data/high-performance computing centers but also considering
other factors such as reliability of computations for both naturally large-scale vol-
unteer systems and large-scale HPC systems (currently millions of cores). More
specifically, this also requires elaboration of metrics to be evaluated in HPC and
volunteer systems that would incorporate not only execution times and energy
consumption, as, e.g., EDP or EDS [294], but also reliability and availability. We
advise the reliability to be considered in the assessment of execution time and
energy consumption of a specific application, given the probability of component
failure of very large-scale Exascale systems, necessary to process massive data
in various fields of science and economics [295].

2. Investigation of applicability of energy control mechanisms such as power cap-
ping (currently available for mobile, desktop, and server CPUs and GPUs) for the
distributed type of systems, apart from high-performance computing machines
and clusters; this is motivated by the need for more research toward energy sav-
ings and energy efficiency of computing, especially not fully loaded ones when

@ Springer

848

Page 59 of 80

Optimization of resource-aware parallel and distributed...

[091] [61¢ ‘S8T ‘9t] [6ve—Lve] [9v¢ “s¥¢ ‘LT “sTl [Tre ‘6511 [pPE—1€ ‘0TE ‘PT] SUILIBS] JUSWAOIONUIY
(81l [ezl [ove—8¢e] [L€€ “LST ‘6T “TT T2l [L¥T “e¥T ‘6T “TT ‘0T ‘611 [6T ‘Tz ‘0T ‘611 K1001) owren

(0Sd) [91 “S11 “(0DV)

(vD) [8z¢] “(0Sd) [621]1 (OOV-VD)

(VD) [L1] ((OSd-VD) [8z1] ‘(0D SWIyILL
(vD) [9ge—p¢¢] [eeg ‘ezt “cer ‘eI ‘11l [zee—6ce ‘19Tl [9¥2] ‘(0DVS) [eve] [Lzel “(vo) [eer “crl (vD) [¢1] -03[e paxidsur-ainjeN
- [901] [9z¢] [611-L11] loc1-L11] [L81-681 ‘0¢] Surwwesoxd orwreukq
[L82] [so1-¢01] [sze “peel loszl l6] l6] SwyyLIos[e Apadrn
- [18 L 9] [eze-12e] [95—+6] [95—¥¢] [95—+¢] dT
Sunndwoo

Sunndwoo 199)unjoA souewiojrad-ySryg ureyoyoorg Sunndwoo og Sunndwoos pnop) SI9JUAD BIR(] UTeWOP,/UOTIe[NULIO]

SUTEWOP/S)X)UOD SNOLIEA UT SUOTIR[NUIIO WA[qoId § d|qel

pringer

As

848 Page 60 of 80 P.Czarnul et al.

energy can be saved and a small performance penalty can be accepted. Such
research has been performed in the field of HPC [33] and can be investigated in
distributed types of systems.

3. More thorough security solutions for high-performance computing systems (e.g.,
MPI-based solutions quite dated now) as well as volunteer solutions, considering
not only the performance penalty but also the increased energy cost. While there
exist solutions like ES-MPICH?2 for encryption/decryption of communication
among nodes [280, 281] or VAN-MPICH2 that integrates security measures to
ensure data confidentiality using One-Time Pad (OTP) encryption [296], detailed
assessment of trade-offs taking into account performance, security, and energy
costs is advised. Furthermore, the same consideration is of importance for future
volunteer-based systems in terms of performance, security, and energy costs of
the technologies allowing to run client code on the volunteers’ computers.

4. Consideration of the energy and other resources in approaches using reinforce-
ment learning, apart from performance/execution times. More specifically, energy
consumption and metrics describing the other resources can be incorporated into
the reward function used by RL to be naturally used in its operation.

5. Consideration of using reinforcement learning for instruction-level parallelism
in modern parallel architectures.

6. As energy costs are growing very considerably, some computing models might
benefit from incorporation of a (even partly) more global view on optimization
involving energy. This seems to be specifically applicable to volunteer computing
that, as can be seen from Table 5, might then benefit from, e.g., ILP formulations
that consider energy consumption or current power draw of geographical groups
of volunteers. This, in essence, leads to mixing architectures such as partitioning
of large-scale volunteer models into smaller ones with servers located, e.g., in
several cloud systems. Additionally, energy consumption consideration of vari-
ous parties, i.e., project owners and volunteers from various locations, shall be
considered based on specific factors such as various carbon footprint in various
locations, sources of energy in various locations resulting in various carbon foot-
print, etc.

7. While some automated approaches for optimization of performance energy exist,
such as DEPO or Zeus, these typically make some assumptions regarding applica-
tion model. For instance, DEPO assumes that the load of an application, after the
tuning phase and setting an optimized power cap, would remain stable or would
otherwise require rerunning the tuning. Zeus optimizes batch size and power caps
for DNN training jobs. Ideally, a fully automated software for a hybrid CPU+GPU
system would be desired that would perform dynamic, online performance energy
optimization, with a low overhead, being able to do that for potentially chang-
ing and any workload type, based on, e.g., low-overhead profiling of a system
through measuring of a set of metrics and responding by setting parameters like
power caps, frequency/voltage based on, e.g., a pretrained DNN model. Already
DRLCAP achieves a part of such a goal using GPU frequency capping for
energy-aware reinforcement learning-based optimization of, e.g., EDP [275]. In
paper [297], authors presented a model-free online energy efficiency optimization
framework MF-GPOEQO. It uses kernel activity information for finding optimized

@ Springer

Optimization of resource-aware parallel and distributed... Page610f80 848

GPU clock. In the future, application and system agnostic automated dynamic
performance energy optimization tools for CPU+GPU systems will be needed,
also considering scaling down GPUs [298] or using multiple GPUs [299] at the
same time, considered as individual cases so far.

8. Typically existing works consider optimizing functions incorporating quality
metrics and usage of resources from the point of view of a specific actor such as
one user. Optimization functions shall also consider several views or functions
involving, e.g., weighted resource optimization from user(s) and provider(s). Such
views are especially valuable for environments such as clouds (user, provider),
data and high-performance computing centers (user, provider center), volunteer
computing (user versus global view).

9. Consideration of resources and associated metrics in optimization spanning many
levels of parallel and distributed systems, i.e., clusters, nodes, computational
devices, possibly with more detailed models for the resources of particular inter-
est.

Another factor that we analyzed was the papers’ publication dates for par-
ticular problem formulations X domains indicated in Table 5 indicating which
contexts have been receiving the most attention recently. From the point of
view of algorithm formulations, the analyzed articles listed for ILP range from
2008, 2011 up to present, for greedy algorithms from 2013, 2014 up to present,
for dynamic programming from 2006 up to present, nature-inspired algorithms
2008 up to present, for game theory papers from 2008 to present (all but the HPC
one considered are from 2019 onwards). We can see articles from 2014 onwards
with increased intensity in 2020—present for RL. Based on that, we can see that
all of those are of interest now, but clearly, the recent interest is associated with
domains in various degrees. We can identify several sections depending on years
of publications. Specifically, we can see that the research interest in volunteer
computing has not been intense in recent years, in contrast with both blockchain
and fog computing using all formulations; RL for HPC, data centers, fog, and
cloud computing; dynamic programming for data centers and cloud, as well as
nature-inspired algorithms for clouds.

Additionally, we believe that this paper can open a space for a unified resource
model, inclusion of alternative emerging resources of interest in trade-offs, and
optimization formulas as well as identification of links to involve surrounding disci-
plines that consider the same resources and metrics.

Author contributions The authors contributed to particular sections, as follows: Introduction (PC, HB,
DG), background (PC, HB, CK, AKo, 10, MM, PN, GR), problem formulations (PC, HB, CK, AKo,
10, MM, PN, RP, GR), applications (PC, MA, HB, DG, AKe, AM, SK), open problems and conclusions
(PC). PC was leading preparation of the article.

Funding This work is supported by CERCIRAS COST Action CA19135 funded by the COST
Association.

Data availability No datasets were generated or analyzed during the current study.

@ Springer

848 Page 62 of 80 P.Czarnul et al.

Declarations

Conflict of interest The authors have no conflict of interest to declare that are relevant to the content of
this article.

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDeriv-
atives 4.0 International License, which permits any non-commercial use, sharing, distribution and repro-
duction in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if you modified the licensed mate-
rial. You do not have permission under this licence to share adapted material derived from this article or
parts of it. The images or other third party material in this article are included in the article’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view
a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

References

1. Czarnul P (2018) Parallel programming for modern high performance computing systems, 1st edn.
Taylor & Francis, Chapman and Hall/CRC (9781138305953)

2. Mohammadi S, Pedram H, PourKarimi L (2018) Integer linear programming-based cost optimi-
zation for scheduling scientific workflows in multi-cloud environments. J Supercomput 74:4717—
4745. https://doi.org/10.1007/s11227-018-2465-8

3. Mohammadi S, PourKarimi L, Pedram H (2019) Integer linear programming-based multi-objective
scheduling for scientific workflows in multi-cloud environments. J Supercomput 75:6683-6709.
https://doi.org/10.1007/s11227-019-02877-8

4. Bharathan S, Rajendran C, Sundarraj RP (2017) Penalty based mathematical models for web ser-
vice composition in a geo-distributed cloud environment. In: 2017 IEEE International Conference
on Web Services (ICWS), pp. 886-889. https://doi.org/10.1109/ICWS.2017.113

5. Genez TAL, Bittencourt LF, Madeira ERM (2020) Time-discretization for speeding-up scheduling
of deadline-constrained workflows in clouds. Future Gener Comput Syst 107(C):1116-1129

6. Boinski T, Czarnul P (2021) Optimization of Data Assignment for Parallel Processing in a Hybrid
Heterogeneous Environment Using Integer Linear Programming. Comput J bxaal87

7. Czarnul P (2019) Integration of services into workflow applications. Taylor & Francis

8. Bhatti MK, Oz I, Amin S, Mushtaq M, Farooq U, Popov K, Brorsson M (2018) Locality-aware task
scheduling for homogeneous parallel computing systems. Computing 100(6):557-595. https://doi.
org/10.1007/s00607-017-0581-6

9. Paul AK, Addya SK, Sahoo B, Turuk AK (2014) Application of greedy algorithms to virtual
machine distribution across data centers. In: 2014 Annual IEEE India Conference INDICON), pp.
1-6. https://doi.org/10.1109/INDICON.2014.7030633

10. Bellman R (1957) Dynamic programming. Princeton University Press, Princeton

11. FanY, Lan Z, Rich P, Allcock WE, Papka ME, Austin B, Paul D (2019) Scheduling beyond CPUs
for HPC. In: Proceedings of the 28th International Symposium on High-Performance Parallel and
Distributed Computing. ACM. https://doi.org/10.1145%2F3307681.3325401

12. Kassab A, Nicod J-M, Philippe L, Rehn-Sonigo V (2018) Assessing the use of genetic algorithms
to schedule independent tasks under power constraints. In: 2018 International Conference on High
Performance Computing Simulation (HPCS), pp. 252-259. https://doi.org/10.1109/HPCS.2018.
00052

13. Sardaraz M, Tahir M (2020) A parallel multi-objective genetic algorithm for scheduling scientific
workflows in cloud computing. Int J Distrib Sens Netw 16(8):1550147720949142. https://doi.org/
10.1177/1550147720949142

14. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN’95 - Inter-
national Conference on Neural Networks, vol. 4, pp. 1942-19484. https://doi.org/10.1109/ICNN.
1995.488968

@ Springer

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1007/s11227-018-2465-8
https://doi.org/10.1007/s11227-019-02877-8
https://doi.org/10.1109/ICWS.2017.113
https://doi.org/10.1007/s00607-017-0581-6
https://doi.org/10.1007/s00607-017-0581-6
https://doi.org/10.1109/INDICON.2014.7030633
https://doi.org/10.1109/HPCS.2018.00052
https://doi.org/10.1109/HPCS.2018.00052
https://doi.org/10.1177/1550147720949142
https://doi.org/10.1177/1550147720949142
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1109/ICNN.1995.488968

Optimization of resource-aware parallel and distributed... Page630f80 848

15.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

Pandey S, Wu L, Guru SM, Buyya R (2010) A particle swarm optimization-based heuristic for
scheduling workflow applications in cloud computing environments. In: 2010 24th IEEE Interna-
tional Conference on Advanced Information Networking and Applications, pp. 400—407. https:/
doi.org/10.1109/AINA.2010.31

Gill SS, Buyya R, Chana I, Singh M, Abraham A (2018) Bullet: particle swarm optimization based
scheduling technique for provisioned cloud resources. J Netw Syst Manag 26(2):361-400. https://
doi.org/10.1007/s10922-017-9419-y

Potu N, Jatoth C, Parvataneni P (2021) Optimizing resource scheduling based on extended parti-
cle swarm optimization in fog computing environments. Concurr Comput Pract Exp 33(23):¢6163.
https://doi.org/10.1002/cpe.6163

Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimization. IEEE Comput Intell Mag
1(4):28-39. https://doi.org/10.1109/MCI.2006.329691

Maldonado-Carrascosa FJ, Garcia-Galan S, Valverde-Ibafiez M, Marciniak T, Szczerska M, Ruiz-
Reyes N (2024) Game theory-based virtual machine migration for energy sustainability in cloud
data centers. Appl Energy 372:123798. https://doi.org/10.1016/j.apenergy.2024.123798

Benblidia MA, Brik B, Esseghir M, Merghem-Boulahia L (2021) A renewable energy-aware power
allocation for cloud data centers: A game theory approach. Comput Commun 179:102-111
Sharghivand N, Derakhshan F, Mashayekhy L, Mohammad Khanli L (2020) An edge computing
matching framework with guaranteed quality of service. IEEE Trans Cloud Comput. https://doi.
org/10.1109/TCC.2020.3005539

Mehran N, Samani ZN, Kimovski D, Prodan R (2022) Matching-based scheduling of asynchronous
data processing workflows on the computing continuum. In: 2022 IEEE International Conference
on Cluster Computing (CLUSTER), pp. 58-70

Ahmad I, Ranka S, Khan SU (2008) Using game theory for scheduling tasks on multi-core proces-
sors for simultaneous optimization of performance and energy. In: 2008 IEEE International Sym-
posium on Parallel and Distributed Processing, pp. 1-6. https://doi.org/10.1109/IPDPS.2008.45364
20

Hu X, Sun Y (2020) A deep reinforcement learning-based power resource management for fuel
cell powered data centers. Electronics 9(12):2054

Goudarzi M, Palaniswami M, Buyya R (2023) A distributed deep reinforcement learning technique
for application placement in edge and fog computing environments. IEEE Trans Mob Comput
22(5):2491-2505. https://doi.org/10.1109/TMC.2021.3123165

Fan Y, Lan Z (2021) Dras-cqsim: a reinforcement learning based framework for hpc cluster sched-
uling. Software Impacts 8:100077

Tu Y, Chen H, Yan L, Zhou X (2022) Task offloading based on Istm prediction and deep reinforce-
ment learning for efficient edge computing in iot. Future Internet 14(2):30

Nikolow D, Slota R, Polak S, Pogoda M, Kitowski J (2018) Policy-based SLA storage management
model for distributed data storage services. Comput Sci 19(4). https://doi.org/10.7494/csci.2018.
19.4.2878

Mehran N, Kimovski D, Prodan R (2021) A two-sided matching model for data stream process-
ing in the cloud - fog continuum. In: 2021 IEEE/ACM 21st International Symposium on Cluster,
Cloud and Internet Computing (CCGrid), pp. 514-524. IEEE

Li X, Nie L, Chen S (2014) Approximate dynamic programming based data center resource
dynamic scheduling for energy optimization. In: 2014 IEEE International Conference on Internet
of Things (iThings), and IEEE Green Computing and Communications (GreenCom) and IEEE
Cyber, Physical and Social Computing (CPSCom), pp. 494-501. https://doi.org/10.1109/iThings.
2014.87

Genez TAL, Bittencourt LF, Madeira ERM (2012) Workflow scheduling for saas / paas cloud pro-
viders considering two sla levels. In: 2012 IEEE Network Operations and Management Sympo-
sium, pp. 906-912. https://doi.org/10.1109/NOMS.2012.6212007

Kessler C, Litzinger S, Keller J (2020) Static scheduling of moldable streaming tasks with task
fusion for parallel systems with DVFES. IEEE Trans Comput-Aided Des Integrated Circuits Syst
(TCAD) 39(11):4166-4178

Kocot B, Czarnul P, Proficz J (2023) Energy-aware scheduling for high-performance computing
systems: a survey. Energies 16(2):890. https://doi.org/10.3390/en16020890

Mukherjee S (2008) Architecture design for soft errors. Morgan Kaufmann Publishers Inc., San
Francisco

Hsueh M-C, Tsai TK, Iyer RK (1997) Fault injection techniques and tools. Computer 30(4):75-82

@ Springer

https://doi.org/10.1109/AINA.2010.31
https://doi.org/10.1109/AINA.2010.31
https://doi.org/10.1007/s10922-017-9419-y
https://doi.org/10.1007/s10922-017-9419-y
https://doi.org/10.1002/cpe.6163
https://doi.org/10.1109/MCI.2006.329691
https://doi.org/10.1016/j.apenergy.2024.123798
https://doi.org/10.1109/TCC.2020.3005539
https://doi.org/10.1109/TCC.2020.3005539
https://doi.org/10.1109/IPDPS.2008.4536420
https://doi.org/10.1109/IPDPS.2008.4536420
https://doi.org/10.1109/TMC.2021.3123165
https://doi.org/10.7494/csci.2018.19.4.2878
https://doi.org/10.7494/csci.2018.19.4.2878
https://doi.org/10.1109/iThings.2014.87
https://doi.org/10.1109/iThings.2014.87
https://doi.org/10.1109/NOMS.2012.6212007
https://doi.org/10.3390/en16020890

848

Page 64 of 80 P.Czarnul et al.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

Oz I, Arslan S (2019) A survey on multithreading alternatives for soft error fault tolerance. ACM
Comput Surv 52(2):1-38

Veronesi A, Nazzari A, Passarello D, Krstic M, Favalli M, Cassano L, Miele A, Bertozzi D, Bol-
chini C (2024) Cross-layer reliability analysis of nvdla accelerators: Exploring the configuration
space. In: 2024 IEEE European Test Symposium (ETS), pp. 1-6. https://doi.org/10.1109/ETS61
313.2024.10568018

Sezgin Y, Oz I (2024) Performance-reliability tradeoff analysis for safety-critical embedded sys-
tems with gpus. In: Yiiksek Basarimli Hesaplama Konferans: (BASARIM). https://indico.truba.
gov.tr/event/140/attachments/310/642/BASARIM2024-BildiriKitabi.pdf

Katal A, Dahiya S, Choudhury T (2023) Energy efficiency in cloud computing data centers: a sur-
vey on software technologies. Clust Comput 26(3):1845-1875

Mastelic T, Oleksiak A, Claussen H, Brandic I, Pierson J-M, Vasilakos AV (2014) Cloud comput-
ing: survey on energy efficiency. ACM Comput Surv 47(2):1-36. https://doi.org/10.1145/2656204

Diouani S, Medromi H (2019) Trade-off between performance and energy management in auto-
nomic and green data centers. In: Proceedings of the 2nd International Conference on Networking,
Information Systems & Security. NISS19. Association for Computing Machinery, New York, NY,
USA. https://doi.org/10.1145/3320326.3320332

Krzywaniak A, Czarnul P, Proficz J (2023) Dynamic GPU power capping with online performance
tracing for energy efficient GPU computing using DEPO tool. Future Gener Comput Syst 145:396—
414. https://doi.org/10.1016/J.FUTURE.2023.03.041

Coutinho Demetrios AM, De Sensi D, Lorenzon AF, Georgiou K, Nunez-Yanez J, Eder K, Xavier-
de-Souza S (2020) Performance and energy trade-offs for parallel applications on heterogeneous
multi-processing systems. Energies 13(9):2409. https://doi.org/10.3390/en13092409

Miiller S (2017) Security trade-offs in cloud storage systems. PhD thesis, Technischen Universitit
Berlin, Berlin, Germany

Mishra A, Reichherzer T, Kalaimannan E, Wilde N, Ramirez R (2020) Trade-offs involved in the
choice of cloud service configurations when building secure, scalable, and efficient internet-of-
things networks. Int J Distrib Sens Netw 16(2):1550147720908199. https://doi.org/10.1177/15501
47720908199

Pandurangan G, Robinson P, Scquizzato M (2019) A time-and message-optimal distributed algo-
rithm for minimum spanning trees. ACM Trans Algorithms (TALG) 16(1):1-27

Gupta M, Roberts D, Meswani M, Sridharan V, Tullsen D, Gupta R (2016) Reliability and per-
formance trade-off study of heterogeneous memories. In: Proceedings of the Second Interna-
tional Symposium on Memory Systems. MEMSYS ’16, pp. 395-401. Association for Computing
Machinery, New York, NY, USA. https://doi.org/10.1145/2989081.2989113

Oz I, Topcuoglu HR, Kandemir M, Tosun O (2012) Performance-reliability tradeoff analysis for
multithreaded applications. In: 2012 Design, Automation Test in Europe Conference Exhibition
(DATE), pp. 893-898. https://doi.org/10.1109/DATE.2012.6176624

Baniata H, Kertesz A (2022) Bitcoin revisited: formalization, benchmarking, and open security
issues

Ghosh R, Simmhan Y (2018) Distributed scheduling of event analytics across edge and cloud.
ACM Trans -Phys Syst 2(4):1-28

Wang A, Chen L, Xu W (2017) Xpro: a cross-end processing architecture for data analytics in
wearables. ACM SIGARCH Comput Architecture News 45(2):69-80

Kolomvatsos K, Anagnostopoulos C (2019) Multi-criteria optimal task allocation at the edge.
Futur Gener Comput Syst 93:358-372

Shah-Mansouri H, Wong VW (2018) Hierarchical fog-cloud computing for iot systems: a computa-
tion offloading game. IEEE Internet Things J 5(4):3246-3257

Kouloumpris A, Michael MK, Theocharides T (2019) Reliability-aware task allocation latency
optimization in edge computing. In: 2019 IEEE 25th International Symposium on On-Line Testing
and Robust System Design (IOLTS), pp. 200-203. IEEE

Kouloumpris A, Theocharides T, Michael MK (2020) Cost-effective time-redundancy based opti-
mal task allocation for the edge-hub-cloud systems. In: 2020 IEEE Computer Society Annual Sym-
posium on VLSI (ISVLSI), pp. 368-373. IEEE

Kouloumpris A, Theocharides T, Michael MK (2019) Metis: optimal task allocation framework
for the edge/hub/cloud paradigm. In: Proceedings of the International Conference on Omni-Layer
Intelligent Systems, pp. 128-133

@ Springer

https://doi.org/10.1109/ETS61313.2024.10568018
https://doi.org/10.1109/ETS61313.2024.10568018
https://indico.truba.gov.tr/event/140/attachments/310/642/BASARIM2024-BildiriKitabi.pdf
https://indico.truba.gov.tr/event/140/attachments/310/642/BASARIM2024-BildiriKitabi.pdf
https://doi.org/10.1145/2656204
https://doi.org/10.1145/3320326.3320332
https://doi.org/10.1016/J.FUTURE.2023.03.041
https://doi.org/10.3390/en13092409
https://doi.org/10.1177/1550147720908199
https://doi.org/10.1177/1550147720908199
https://doi.org/10.1145/2989081.2989113
https://doi.org/10.1109/DATE.2012.6176624

Optimization of resource-aware parallel and distributed... Page650f80 848

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.
76.

77.

78.

79.

Kouloumpris A, Stavrinides GL, Michael MK, Theocharides T (2024) Optimal multi-constrained
workflow scheduling for cyber-physical systems in the edge-cloud continuum. In: Proceedings of
the IEEE Annual International Computer Software and Applications Conference (COMPSAC), pp.
483-492. https://doi.org/10.1109/COMPSAC61105.2024.00072. in press

Dong L, Wu W, Guo Q, Satpute MN, Znati T, Du DZ (2019) Reliability-aware offloading and allo-
cation in multilevel edge computing system. IEEE Trans Reliab 70(1):200-211

Liu C-F, Bennis M, Poor HV (2017) Latency and reliability-aware task offloading and resource
allocation for mobile edge computing. In: 2017 IEEE Globecom Workshops (GC Wkshps), pp.
1-7. IEEE

Dinh TQ, Tang J, La QD, Quek TQ (2017) Offloading in mobile edge computing: task allocation
and computational frequency scaling. IEEE Trans Commun 65(8):3571-3584

Nikolaou P, Sazeides Y, Lampropoulos A, Guilhot D, Bartoli A, Papadimitriou G, Chatzidimitriou
A, Gizopoulos D, Tovletoglou K, Mukhanov L et al (2019) On the evaluation of the total-cost-of-
ownership trade-offs in edge vs cloud deployments: a wireless-denial-of-service case study. IEEE
Transactions on Sustainable Computing

Hennessy JL, Patterson DA (2012) Computer architecture - a quantitative approach, 5th Edition.
Morgan Kaufmann

Brent RP (1974) The parallel evaluation of general arithmetic expressions. J ACM 12(2):201-206
Kahn G (1974) The semantics of a simple language for parallel programming. In: Proceedings IFIP
Congress on Information Processing, pp. 471-475. North-Holland

Augonnet C, Thibault S, Namyst R, Wacrenier P (2011) StarPU: a unified platform for task sched-
uling on heterogeneous multicore architectures. Concurr Comput Pract Exp 23(2):187-198. https://
doi.org/10.1002/cpe.1631

Ernstsson A, Ahlqgvist J, Zouzoula S, Kessler C (2021) SkePU 3: portable high-level program-
ming of heterogeneous systems and HPC clusters. Int J Parallel Prog 49:846-866. https://doi.org/
10.1007/s10766-021-00704-3

Konak A, Coit DW, Smith AE (2006) Multi-objective optimization using genetic algorithms: a
tutorial. Reliab Eng Syst Saf 91(9):992-1007. https://doi.org/10.1016/j.ress.2005.11.018. (Special
Issue - Genetic Algorithms and Reliability)

Katoh N, Ibaraki T (1998) Resource allocation problems. Handbook of Combinatorial Optimiza-
tion: Vol. 1-3, 905-1006

Shi C, Zhang H, Qin C (2015) A faster algorithm for the resource allocation problem with convex
cost functions. J Discrete Algorithms 34:137-146

Li S, Liu H, Li W, Sun W (2024) Non-convex optimization of resource allocation in fog computing
using successive approximation. J Syst Sci Complexity 37(2):805-840

Tatarenko T, Touri B (2017) Non-convex distributed optimization. IEEE Trans Autom Control
62(8):3744-3757

Rashid ZN, Zebari SRM, Sharif KH, Jacksi K (2018) Distributed cloud computing and distributed
parallel computing: a review. In: 2018 International Conference on Advanced Science and Engi-
neering (ICOASE), pp. 167-172. https://doi.org/10.1109/ICOASE.2018.8548937

Mann ZA (2015) Allocation of virtual machines in cloud data centers-a survey of problem models
and optimization algorithms. ACM Comput Surv 48(1):1-34. https://doi.org/10.1145/2797211
Salimi S, Mawlana M, Hammad A (2018) Performance analysis of simulation-based optimization
of construction projects using high performance computing. Autom Constr 87:158-172. https://
doi.org/10.1016/j.autcon.2017.12.003

Hamadi Y, Sais L (2018) Handbook of parallel constraint reasoning, 1st edn. Springer

Beaumont O, Canon L-C, Eyraud-Dubois L, Lucarelli G, Marchal L, Mommessin C, Simon B,
Trystram D (2020) Scheduling on two types of resources: a survey. ACM Comput Surv 53(3):1—
36. https://doi.org/10.1145/3387110

Czarnul P, Proficz J, Drypczewski K (2020) Survey of methodologies, approaches, and chal-
lenges in parallel programming using high-performance computing systems. Sci Program
2020(1):4176794. https://doi.org/10.1155/2020/4176794

Pervan B, Knezovi¢ J (2020) A survey on parallel architectures and programming models. In:
2020 43rd International Convention on Information, Communication and Electronic Technology
(MIPRO), pp. 999-1005. https://doi.org/10.23919/MIPRO48935.2020.9245341

Fang J, Huang C, Tang T, Wang Z (2020) Parallel programming models for heterogeneous many-
cores: a comprehensive survey. CCF Trans High Perform Comput 2(4):382—400. https://doi.org/10.
1007/s42514-020-00039-4

@ Springer

https://doi.org/10.1109/COMPSAC61105.2024.00072
https://doi.org/10.1002/cpe.1631
https://doi.org/10.1002/cpe.1631
https://doi.org/10.1007/s10766-021-00704-3
https://doi.org/10.1007/s10766-021-00704-3
https://doi.org/10.1016/j.ress.2005.11.018
https://doi.org/10.1109/ICOASE.2018.8548937
https://doi.org/10.1145/2797211
https://doi.org/10.1016/j.autcon.2017.12.003
https://doi.org/10.1016/j.autcon.2017.12.003
https://doi.org/10.1145/3387110
https://doi.org/10.1155/2020/4176794
https://doi.org/10.23919/MIPRO48935.2020.9245341
https://doi.org/10.1007/s42514-020-00039-4
https://doi.org/10.1007/s42514-020-00039-4

848

Page 66 of 80 P.Czarnul et al.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

100.

Anand R, Aggarwal D, Kumar V (2017) A comparative analysis of optimization solvers. J Stat
Manag Syst 20(4):623-635. https://doi.org/10.1080/09720510.2017.1395182

Czarnul P (2011) Parallelization of compute intensive applications into workflows based on ser-
vices in beesycluster. Scalable Comput Pract Exp 12(2)

Kessler CW, Litzinger S, Keller J (2021) Crown-scheduling of sets of parallelizable tasks for
robustness and energy-elasticity on many-core systems with discrete dynamic voltage and fre-
quency scaling. J Syst Archit 115:101999

Kessler CW, Melot N, Eitschberger P, Keller J (2013) Crown scheduling: energy-efficient resource
allocation, mapping and discrete frequency scaling for collections of malleable streaming tasks. In:
23rd International Workshop on Power and Timing Modeling, Optimization and Simulation, pp.
215-222

Melot N, Kessler C, Keller J, Eitschberger P (2015) Fast Crown scheduling heuristics for energy-
efficient mapping and scaling of moldable streaming tasks on manycore systems. ACM Trans
Archit Code Optim 11(4):1-24

Melot N, Kessler C, Eitschberger P, Keller J (2019) Co-optimizing core allocation, mapping and
DVES in streaming programs with moldable tasks for energy efficient execution on manycore
architectures. In: Proceeding 19th International Conference on Application of Concurrency to Sys-
tem Design (ACSD 2019). IEEE. https://doi.org/10.1109/ACSD.2019.00011

Boulasikis M, Kessler C, Gruian F, Keller J, Litzinger S (2024) Packet-type aware scheduling of
moldable streaming tasks on multicore systems with DVFS. In: Proceedings 39th ACM/SIGAPP
Symposium on Applied Computing. SAC ’24, pp. 449-451. ACM. https://doi.org/10.1145/36050
98.3636081

Khosravi S, Kessler C, Litzinger S, Keller J (2024) Energy-efficient scheduling of moldable
streaming computations for the edge-cloud continuum. In: 9th International Conference on Fog and
Mobile Edge Computing (FMEC), pp. 268-276. https://doi.org/10.1109/FMEC62297.2024.10710
310

Melot N, Kessler C, Keller J (2020) Voltage island-aware energy-efficient scheduling of parallel
streaming tasks on many-core CPUs. In: Proceedings 28th Euromicro International Conference on
Parallel, Distributed and Network-based Processing (PDP’20), Visterds, Sweden, March 2020, pp.
157-161. IEEE. https://doi.org/10.1109/PDP50117.2020.00030

Litzinger S, Keller J, Kessler C (2019) Scheduling moldable parallel streaming tasks on heteroge-
neous platforms with frequency scaling. In: Proceedings 27th European Signal Processing Confer-
ence (EUSIPCO 2019)

Kessler C, Litzinger S, Keller J (2020) Adaptive crown scheduling for streaming tasks on many-
core systems with discrete DVFS. In: Euro-Par 2019: Parallel Processing Workshops, pp. 17-29.
Springer,

Xu H, Kong F, Deng Q (2012) Energy minimizing for parallel real-time tasks based on level-
packing. In: 18th International Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA’12), pp. 98-103. https://doi.org/10.1109/RTCSA.2012.10

Keller J, Litzinger S (2022) Systematic search space design for energy-efficient static scheduling of
moldable tasks. J Parallel Distributed Comput 162:44-58. https://doi.org/10.1016/j.jpdc.2022.01.
004

Kouloumpris A, Stavrinides GL, Michael MK, Theocharides T (2024) An optimization framework
for task allocation in the edge/hub/cloud paradigm. Futur Gener Comput Syst 155:354-366. https://
doi.org/10.1016/j.future.2024.02.005

Ortega-Arranz H, Llanos DR, Gonzalez-Escribano A (2022) The shortest-path problem. Analysis
and comparison of methods. Springer

Sedgewick R, Wayne K (2011) Algorithms, 4th edn. Addison-Wesley Professional

Graham RL (1969) Bounds on multiprocessing timing anomalies. SIAM J. Appl Math 17:416-429
Garey MR, Graham RL (1975) Bounds for multiprocessor scheduling with resource constraints.
SIAM J Comput 4(2):187-200

Ellis JR (1985) Bulldog: a compiler for VLIW architectures. PhD thesis, Yale University

. Faraboschi P, Fisher JA, Young C (2001) Instruction scheduling for instruction level parallel pro-

cessors. Proc IEEE 89(11):1638-1659

Topcuoglu H, Hariri S, Wu M-Y (2002) Performance-effective and low-complexity task scheduling
for heterogeneous computing. IEEE Trans Parallel Distrib Syst 13(3):260-274. https://doi.org/10.
1109/71.993206

@ Springer

https://doi.org/10.1080/09720510.2017.1395182
https://doi.org/10.1109/ACSD.2019.00011
https://doi.org/10.1145/3605098.3636081
https://doi.org/10.1145/3605098.3636081
https://doi.org/10.1109/FMEC62297.2024.10710310
https://doi.org/10.1109/FMEC62297.2024.10710310
https://doi.org/10.1109/PDP50117.2020.00030
https://doi.org/10.1109/RTCSA.2012.10
https://doi.org/10.1016/j.jpdc.2022.01.004
https://doi.org/10.1016/j.jpdc.2022.01.004
https://doi.org/10.1016/j.future.2024.02.005
https://doi.org/10.1016/j.future.2024.02.005
https://doi.org/10.1109/71.993206
https://doi.org/10.1109/71.993206

Optimization of resource-aware parallel and distributed... Page 67 0f80 848

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

Albers S, Schmidt M (2005) On the performance of greedy algorithms in packet buffering. SIAM J
Comput 35(2):278-304. https://doi.org/10.1137/S0097539704446268

Yousif A, Alghtani SM, Bashir MB, Ali A, Hamza R, Hassan A, Tawfeeg TM (2022) Greedy fire-
fly algorithm for optimizing job scheduling in iot grid computing. Sensors 22(3):850

Dupont B, Mejri N, Da Costa G (2020) Energy-aware scheduling of malleable hpc applications
using a particle swarm optimised greedy algorithm. SustainComput: Inform Syst 28:100447
Marchal L, Simon B, Sinnen O, Vivien F (2018) Malleable task-graph scheduling with a practical
speed-up model. IEEE Trans Parallel Distrib Syst 29(6):1357-1370. https://doi.org/10.1109/TPDS.
2018.2793886

Czarnul P, Rosciszewski P (2014) Optimization of execution time under power consumption
constraints in a heterogeneous parallel system with gpus and cpus. In: Chatterjee M, Cao J-n,
Kothapalli K, Rajsbaum S (eds.) Distributed Computing and Networking, pp. 66—80. Springer,
Berlin, Heidelberg

KeBler CW, Bednarski A (2006) Optimal integrated code generation for VLIW architectures. Con-
curr Comput Pract Exp 18(11):1353-1390

Vegdahl SR (1992) A dynamic-programming technique for compacting loops. In: Hwu, W.W. (ed.)
Proceedings 25th Annual International Symposium on Microarchitecture, pp. 180-188. ACM /
IEEE Computer Society. https://doi.org/10.1109/MICRO.1992.697014

Leupers R, Marwedel P (1997) Time-constrained code compaction for DSPs. IEEE Trans Very
Large Scale Integ syst 5(1):112-122

Wilken KD, Liu J, Heffernan M (2000) Optimal instruction scheduling using integer programming.
In: Lam, M.S. (ed.) Proceedings ACM SIGPLAN Conferece on Programming Language Design
and Implementation (PLDI), pp. 121-133. ACM. https://doi.org/10.1145/349299.349318

Winkel S (2004) Exploring the performance potential of Itanium® processors with ILP-based
scheduling. In: 2nd IEEE / ACM International Symposium on Code Generation and Optimization
(CGO 2004), pp. 189-200. IEEE Computer Society. https://doi.org/10.1109/CGO.2004.1281674
Bednarski A, Kessler CW (2006) Optimal integrated VLIW code generation with integer linear
programming. In: Nagel WE, Walter WV, Lehner W (eds.) Proceedings of Euro-Par 2006 Confer-
ence, Dresden, Germany. Lecture Notes in Computer Science, vol. 4128, pp. 461-472. Springer.
https://doi.org/10.1007/11823285_48

Eriksson MV, Kessler CW (2012) Integrated code generation for loops. ACM Trans Embed Com-
put Syst 11(S1):19

Bashford S, Leupers R (1999) Phase-coupled mapping of data flow graphs to irregular data paths.
Des Autom Embed Syst 4(2-3):119-165

Lozano RC, Blindell GH, Carlsson M, Drejhammar F, Schulte C (2013) Constraint-based code
generation. In: Corporaal H, Stuijk S (eds.) International Workshop on Software and Compilers for
Embedded Systems, M-SCOPES’13, Sankt Goar, Germany, pp. 93-95. ACM. https://doi.org/10.
1145/2463596.2486155

Kessler CW (2019) Compiling for VLIW DSPs. In: Bhattacharyya SS, Deprettere EF, Leupers R,
Takala J (eds.) Handbook of Signal Processing Systems, pp. 1177-1214. Springer. https://doi.org/
10.1007/978-3-319-91734-4_27

Lozano RC, Schulte C (2019) Survey on combinatorial register allocation and instruction schedul-
ing. ACM Comput Surv 52(3):62-16250

Sharkh MA, Kalil M (2020) A dynamic algorithm for fog computing data processing decision
optimization. In: 2020 IEEE International Conference on Communications Workshops (ICC Work-
shops), pp. 1-6. https://doi.org/10.1109/ICCWorkshops49005.2020.9145296

Bai W, Yang Z, Zhang J, Kumar R (2021) Randomization-based dynamic programming offloading
algorithm for mobile fog computing. Secur Commun Netw 2021:4348511-143485119

Gai K, Qiu M, Liu M (2018) Privacy-preserving access control using dynamic programming in fog
computing. In: 2018 IEEE 4th International Conference on Big Data Security on Cloud (BigDa-
taSecurity), IEEE International Conference on High Performance and Smart Computing, (HPSC)
and IEEE International Conference on Intelligent Data and Security (IDS), pp. 126-132. https://
doi.org/10.1109/BDS/HPSC/IDS18.2018.00037

Wang P, Zhou W, Zhao C, Lei Y, Zhang Z (2020) A dynamic programming-based approach for
cloud instance type selection and optimisation. Int J Inf Technol Manag 19(4):358-375. https://doi.
org/10.1504/1jitm.2020.110240

Czarnul P (2014) Comparison of selected algorithms for scheduling workflow applications with
dynamically changing service availability. J Zhejiang Univ Sci C 15(6):401-422

@ Springer

https://doi.org/10.1137/S0097539704446268
https://doi.org/10.1109/TPDS.2018.2793886
https://doi.org/10.1109/TPDS.2018.2793886
https://doi.org/10.1109/MICRO.1992.697014
https://doi.org/10.1145/349299.349318
https://doi.org/10.1109/CGO.2004.1281674
https://doi.org/10.1007/11823285_48
https://doi.org/10.1145/2463596.2486155
https://doi.org/10.1145/2463596.2486155
https://doi.org/10.1007/978-3-319-91734-4_27
https://doi.org/10.1007/978-3-319-91734-4_27
https://doi.org/10.1109/ICCWorkshops49005.2020.9145296
https://doi.org/10.1109/BDS/HPSC/IDS18.2018.00037
https://doi.org/10.1109/BDS/HPSC/IDS18.2018.00037
https://doi.org/10.1504/ijitm.2020.110240
https://doi.org/10.1504/ijitm.2020.110240

848

Page 68 of 80 P.Czarnul et al.

122.

123.

124.

125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

135.

136.

137.

138.

139.

140.

141.

142.

143.

144.

145.

146.

Quang-Hung N, Tan LT, Phat CT, Thoai N (2014) A gpu-based enhanced genetic algorithm for
power-aware task scheduling problem in HPC cloud. In: Linawati, Mahendra MS, Neuhold EJ,
Tjoa AM, You I (eds.) Information and Communication Technology - Second IFIP TC5/8 Inter-
national Conference, ICT-EurAsia 2014, Bali, Indonesia, April 14-17, 2014. Proceedings. Lecture
Notes in Computer Science, vol. 8407, pp. 159-169. Springer. https://doi.org/10.1007/978-3-642-
55032-4_16

Dunlop D, Varrette S, Bouvry P (2008) On the use of a genetic algorithm in high performance
computer benchmark tuning. In: 2008 International Symposium on Performance Evaluation of
Computer and Telecommunication Systems, pp. 105-113

Duman E, Uysal M, Alkaya AF (2012) Migrating birds optimization: a new metaheuristic approach
and its performance on quadratic assignment problem. Inf Sci 217:65-77

Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46-61
Camacho-Villaléon CL, Dorigo M, Stiitzle T (2023) Exposing the grey wolf, moth-flame, whale,
firefly, bat, and antlion algorithms: six misleading optimization techniques inspired by bestial
metaphors. Int Trans Oper Res 30(6):2945-2971

Fidanova S, Luque G, Roeva O, Paprzycki M, Gepner P (2018) Hybrid ant colony optimization
algorithm for workforce planning. In: 2018 Federated Conference on Computer Science and
Information Systems (FedCSIS), pp. 233-236

Kumar AMS, Venkatesan M (2019) Multi-objective task scheduling using hybrid genetic-ant
colony optimization algorithm in cloud environment. Wirel Pers Commun 107(4):1835-1848
Jia Y-H, Chen W-N, Yuan H, Gu T, Zhang H, Gao Y, Zhang J (2021) An intelligent cloud work-
flow scheduling system with time estimation and adaptive ant colony optimization. IEEE Trans
Syst, Man, Cyber: Syst 51(1):634—649. https://doi.org/10.1109/TSMC.2018.2881018

Neumann Jv, Morgenstern O (1953) Theory of games and economic behavior

Kreps DM (1989) Nash equilibrium. In: Game Theory, pp. 167-177. Springer

Shapley LS (1969) Utility comparison and the theory of games. The Shapley Value. Essays in
Honor of Lloyd S. Shapley, 307-319

Chang S-L, Lee K-C, Huang R-R, Liao Y-H (2021) Resource-allocation mechanism: Game-
theory analysis. Symmetry 13(5):799

Narbaev T, Hazir O, Agi M (2022) A review of the use of game theory in project management. J
Manag Eng 38(6):03122002

Grigoryan G, Collins AJ (2021) Game theory for systems engineering: a survey. Int J Syst Syst
Eng 11(2):121-158

Marousi A, Charitopoulos VM (2023) Game theoretic optimisation in process and energy sys-
tems engineering: a review. Front Chem Eng 5:1130568

Riahi S, Riahi A (2019) Game theory for resource sharing in large distributed systems. Int J
Electr & Comput Eng (2088-8708) 9(2)

Shamshirband S, Joloudari JH, Shirkharkolaie SK, Mojrian S, Rahmani F, Mostafavi S, Mansor
Z (2021) Game theory and evolutionary optimization approaches applied to resource allocation
problems in computing environments: A survey. Math Biosci Eng 18(6):9190-9232

Agbaje M, Ohwo O, Ayanwola T, Olufunmilola O (2022) A survey of game-theoretic approach
for resource management in cloud computing. J Comput Netw Commun 2022(1):9323818

Chi C, Wang Y, Tong X, Siddula M, Cai Z (2021) Game theory in internet of things: a survey.
IEEE Internet Things J 9(14):12125-12146

Ogidiaka E, Nonyelum OF, Irhebhude ME (2021) Game-theoretic resource allocation algo-
rithms for device-to-device communications in fifth generation cellular networks: a review. Int J
Inf Eng Electr Bus (IJIEEB) 13(1):44-51

Wang Q, Zhou Y, Ni Y, Zhao H, Zhu H (2019) A review of game theoretical resource allocation
methods in wireless communications. In: 2019 IEEE 19th International Conference on Commu-
nication Technology (ICCT), pp. 881-887. IEEE

Yang J, Jiang B, Lv Z, Choo K-KR (2020) A task scheduling algorithm considering game theory
designed for energy management in cloud computing. Futur Gener Comput Syst 105:985-992
Ding X, Zhang W (2021) Computing unloading strategy of massive internet of things devices
based on game theory in mobile edge computing. Math Probl Eng 2021(1):2163965

Zeng X (2022) Game theory-based energy efficiency optimization model for the internet of
things. Comput Commun 183:171-180

Moafi M, Ardeshiri RR, Mudiyanselage MW, Marzband M, Abusorrah A, Rawa M, Guerrero
JM (2023) Optimal coalition formation and maximum profit allocation for distributed energy

@ Springer

https://doi.org/10.1007/978-3-642-55032-4_16
https://doi.org/10.1007/978-3-642-55032-4_16
https://doi.org/10.1109/TSMC.2018.2881018

Optimization of resource-aware parallel and distributed... Page690f80 848

147.

148.

149.

150.

151.

152.

153.

154.

155.

156.

157.

158.

159.

160.

161.

162.

163.

164.

165.

166.

167.

resources in smart grids based on cooperative game theory. Int J Electr Power & Energy Syst
144:108492

Hosseini S, Vakili R (2019) Game theory approach for detecting vulnerable data centers in
cloud computing network. Int J Commun Syst 32(8):3938. https://doi.org/10.1002/dac.3938.
(e3938 1JCS-18-0436.R2)

Dhamal S, Ben-Ameur W, Chahed T, Altman E, Sunny A, Poojary S (2024) A game theoretic
framework for distributed computing with dynamic set of agents. Ann Oper Res 336(3):1871—
1904. https://doi.org/10.1007/s10479-023-05231-

Chen Y, Li Z, Yang B, Nai K, Li K (2020) A stackelberg game approach to multiple resources
allocation and pricing in mobile edge computing. Futur Gener Comput Syst 108:273-287

Jie Y, Tang X, Choo K-KR, Su S, Li M, Guo C (2018) Online task scheduling for edge computing
based on repeated stackelberg game. J Parallel Distributed Comput 122:159-172. https://doi.org/
10.1016/j.jpdc.2018.07.019

Lyu T, Xu H, Liu F, Li M, Li L, Han Z (2024) Two layer stackelberg game-based resource alloca-
tion in cloud-network convergence service computing. IEEE Transactions on Cognitive Communi-
cations and Networking

Shamshirband S, Joloudari JH, Shirkharkolaie SK, Mojrian S, Rahmani F, Mostafavi S, Mansor Z
(2021) Game theory and evolutionary optimization approaches applied to resource allocation prob-
lems in computing environments: A survey. Math Biosci Eng 18(6):9190-9232

Bayat S, Li Y, Song L, Han Z (2016) Matching theory: applications in wireless communications.
IEEE Signal Process Mag 33(6):103-122

Gale D, Shapley LS (1962) College admissions and the stability of marriage. Am Math Mon
69(1):9-15

Diebold F, Aziz H, Bichler M, Matthes F, Schneider A (2014) Course allocation via stable match-
ing. Bus & Inf Syst Eng 6(2):97-110

Wilde H, Knight V, Gillard J (2020) Matching: a python library for solving matching games. J
Open Source Softw 5(48):2169

Sharghivand N, Derakhshan F, Mashayekhy L (2018) Qos-aware matching of edge computing ser-
vices to internet of things. In: 2018 IEEE 37th International Performance Computing and Commu-
nications Conference (IPCCC), pp. 1-8. IEEE

Kimovski D, Matha R, Hammer J, Mehran N, Hellwagner H, Prodan R (2021) Cloud, fog or edge:
Where to compute? IEEE Internet Computing

Zhou G, Tian W, Buyya R, Xue R, Song L (2024) Deep reinforcement learning-based methods for
resource scheduling in cloud computing: a review and future directions. Artif Intell Rev 57:124
McGough AS, Forshaw M (2014) Reduction of wasted energy in a volunteer computing system
through reinforcement learning. Sustain Comput: Inform Syst 4(4):262-275

Song X, Hua Y, Yang Y, Xing G, Liu F, Xu L, Song T (2024) Distributed resource allocation with
federated learning for delay-sensitive iov services. IEEE Trans Veh Technol 73(3):4326—4336.
https://doi.org/10.1109/TVT.2023.3328988

Ji Z, Qin Z, Tao X (2024) Meta federated reinforcement learning for distributed resource alloca-
tion. IEEE Trans Wireless Commun 23(7):7865-7876. https://doi.org/10.1109/TWC.2023.33453
63

Goiri I, Katsak W, Le K, Nguyen T, Bianchini R (2013) Parasol and greenswitch: Managing data-
centers powered by renewable energy. In: ASPLOS 2013 - 18th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems—ASPLOS, pp. 51-63. https://
doi.org/10.1145/2451116.2451123

Cioara T, Anghel I, Antal M, Crisan S, Salomie I (2015) Data center optimization methodology to
maximize the usage of locally produced renewable energy. Sustain Internet ICT for Sustain (Sus-
tainlT) 2015:1-8

Baniata H, Mahmood S, Kertesz A (2021) Assessing anthropogenic heat flux of public cloud data
centers: current and future trends. Peer] Comput Sci 7:478

Antal M, Pop C, Cioara T, Anghel I, Tamas I, Salomie I (2017) Proactive day-ahead data center
operation scheduling for energy efficiency: Solving a miocp using a multi-gene genetic algorithm.
In: 2017 13th IEEE International Conference on Intelligent Computer Communication and Pro-
cessing (ICCP), pp. 527-534. https://doi.org/10.1109/ICCP.2017.8117058

Knitro (2022) Knitro Software. https://www.artelys.com/solvers/knitro/. [Online; accessed
21-march-2022]

@ Springer

https://doi.org/10.1002/dac.3938
https://doi.org/10.1007/s10479-023-05231-
https://doi.org/10.1016/j.jpdc.2018.07.019
https://doi.org/10.1016/j.jpdc.2018.07.019
https://doi.org/10.1109/TVT.2023.3328988
https://doi.org/10.1109/TWC.2023.3345363
https://doi.org/10.1109/TWC.2023.3345363
https://doi.org/10.1145/2451116.2451123
https://doi.org/10.1145/2451116.2451123
https://doi.org/10.1109/ICCP.2017.8117058
https://www.artelys.com/solvers/knitro/

848

Page 70 of 80 P.Czarnul et al.

168.

169.

170.

171.

172.

173.

174.

175.

176.

177.

178.

179.

180.

181.

182.

183.

184.

185.

Parolini L, Sinopoli B, Krogh BH, Wang Z (2012) A cyber-physical systems approach to data
center modeling and control for energy efficiency. Proc IEEE 100(1):254-268. https://doi.org/10.
1109/JPROC.2011.2161244

Moore J, Chase J, Ranganathan P, Sharma R (2005) Making scheduling “cool”: Temperature-
Aware workload placement in data centers. In: 2005 USENIX Annual Technical Conference (USE-
NIX ATC 05). USENIX Association, Anaheim, CA. https://www.usenix.org/conference/2005-use-
nix-annual-technical-conference/making-scheduling-cool-temperature-aware-workload

Tang Q, Mukherjee T, Gupta SKS, Cayton P (2006) Sensor-based fast thermal evaluation model
for energy efficient high-performance datacenters. In: 2006 4th International Conference on Intelli-
gent Sensing and Information Processing, pp. 203-208. https://doi.org/10.1109/ICISIP.2006.42860
97

Zhang Y, Wang Y, Wang X (2012) Testore: Exploiting thermal and energy storage to cut the
electricity bill for datacenter cooling. In: 2012 8th International Conference on Network and
Service Management (cnsm) and 2012 Workshop on Systems Virtualiztion Management (svm),
pp. 19-27

Zheng W, Ma K, Wang X (2014) Exploiting thermal energy storage to reduce data center capi-
tal and operating expenses. In: 2014 IEEE 20th International Symposium on High Performance
Computer Architecture (HPCA), pp. 132-141. https://doi.org/10.1109/HPCA.2014.6835924
Das R, Yarlanki S, Hamann H, Kephart JO, Lopez V (2011) A unified approach to coordinated
energy-management in data centers. In: 2011 7th International Conference on Network and Ser-
vice Management, pp. 1-5

Wang L, Khan SU, Dayal J (2011) Thermal aware workload placement with task-temperature
profiles in a data center. J Supercomput 61:780-803

Wang L, Laszewski G, Dayal J, Furlani TR (2009) Thermal aware workload scheduling with
backfilling for green data centers. In: 2009 IEEE 28th International Performance Computing
and Communications Conference, pp. 289-296. https://doi.org/10.1109/PCCC.2009.5403821
Wang L, Laszewski G, Dayal J, He X, Younge AJ, Furlani TR (2009) Towards thermal aware
workload scheduling in a data center. In: 2009 10th International Symposium on Pervasive Sys-
tems, Algorithms, and Networks, pp. 116-122. https://doi.org/10.1109/I-SPAN.2009.22

Kaur A, Kinger S (2013) Temperature aware resource scheduling in green clouds. In: 2013
International Conference on Advances in Computing, Communications and Informatics
(ICACCI), pp. 1919-1923. https://doi.org/10.1109/ICACCI.2013.6637475

Van Damme T, De Persis C, Tesi P (2019) Optimized thermal-aware job scheduling and con-
trol of data centers. IEEE Trans Control Syst Technol 27(2):760-771. https://doi.org/10.1109/
TCST.2017.2783366

Marcel A, Cristian P, Eugen P, Claudia P, Cioara T, Anghel I, Ioan S (2016) Thermal aware
workload consolidation in cloud data centers. In: 2016 IEEE 12th International Conference on
Intelligent Computer Communication and Processing (ICCP), pp. 377-384. https://doi.org/10.
1109/1CCP.2016.7737177

Dharkar S, Kurtulus O, Groll EA, Yazawa K (2014) Analysis of a data center using liquid-liquid
c02 heat pump for simultaneous cooling and heating

Houbak-Jensen L, Holten A, Blarke MB, Groll EA, Shakouri A, Yazawa K (2013) Dynamic
analysis of a dual-mode CO2 heat pump with both hot and cold thermal storage. ASME Inter-
national Mechanical Engineering Congress and Exposition, vol. Volume 8B: Heat Transfer and
Thermal Engineering. https://doi.org/10.1115/IMECE2013-62894. VOSBT09A039

Wahlroos M, Pirssinen M, Manner J, Syri S (2017) Utilizing data center waste heat in district
heating - impacts on energy efficiency and prospects for low-temperature district heating net-
works. Energy 140:1228-1238. https://doi.org/10.1016/j.energy.2017.08.078

Wahlroos M, Pérssinen M, Rinne S, Syri S, Manner J (2018) Future views on waste heat uti-
lization - case of data centers in northern Europe. Renew Sustain Energy Rev 82:1749-1764.
https://doi.org/10.1016/j.rser.2017.10.058

Antal M, Cioara T, Anghel I, Pop C, Salomie I (2018) Transforming data centers in active ther-
mal energy players in nearby neighborhoods. Sustainability 10(4):939. https://doi.org/10.3390/
sul0040939

Shi L, Shi Y, Wei X, Ding X, Wei Z (2017) Cost minimization algorithms for data center man-
agement. IEEE Trans Parallel Distrib Syst 28(1):60-71. https://doi.org/10.1109/TPDS.2016.
2549016

@ Springer

https://doi.org/10.1109/JPROC.2011.2161244
https://doi.org/10.1109/JPROC.2011.2161244
https://www.usenix.org/conference/2005-usenix-annual-technical-conference/making-scheduling-cool-temperature-aware-workload
https://www.usenix.org/conference/2005-usenix-annual-technical-conference/making-scheduling-cool-temperature-aware-workload
https://doi.org/10.1109/ICISIP.2006.4286097
https://doi.org/10.1109/ICISIP.2006.4286097
https://doi.org/10.1109/HPCA.2014.6835924
https://doi.org/10.1109/PCCC.2009.5403821
https://doi.org/10.1109/I-SPAN.2009.22
https://doi.org/10.1109/ICACCI.2013.6637475
https://doi.org/10.1109/TCST.2017.2783366
https://doi.org/10.1109/TCST.2017.2783366
https://doi.org/10.1109/ICCP.2016.7737177
https://doi.org/10.1109/ICCP.2016.7737177
https://doi.org/10.1115/IMECE2013-62894
https://doi.org/10.1016/j.energy.2017.08.078
https://doi.org/10.1016/j.rser.2017.10.058
https://doi.org/10.3390/su10040939
https://doi.org/10.3390/su10040939
https://doi.org/10.1109/TPDS.2016.2549016
https://doi.org/10.1109/TPDS.2016.2549016

Optimization of resource-aware parallel and distributed... Page710f80 848

186.

187.

188.
189.
190.

192.

193.

194.

195.

196.

197.

198.

199.

200.

201.

202.

203.

204.

205.

206.

Abadi MF, Haghighat F, Nasiri F (2022) Application of dynamic programming in developing
availability-based maintenance prioritization model for data centers. In: INFORMS Conference on
Service Science, Shenzen, China

Xie J, Lyu L, Deng Y, Yang LT (2015) Improving routing performance via dynamic programming
in large-scale data centers. IEEE Internet Things J 2(4):321-328. https://doi.org/10.1109/JIOT.
2014.2386326

Buyya R, Vecchiola C, Selvi T (2013) Mastering cloud computing. McGraw Hill, San Francisco
Mell P, Grance T (2011) The NIST definition of cloud computing

Vogel A, Griebler D, Maron CAF, Schepke C, Fernandes LG (2016) Private iaas clouds: A com-
parative analysis of opennebula, cloudstack and openstack. In: 2016 24th Euromicro International
Conference on Parallel, Distributed, and Network-Based Processing (PDP), pp. 672—679. https://
doi.org/10.1109/PDP.2016.75

. Alboaneen DA, Pranggono B, Tianfield H (2014) Energy-aware virtual machine consolidation for

cloud data centers. In: 2014 IEEE/ACM 7th International Conference on Utility and Cloud Com-
puting, pp. 1010-1015. https://doi.org/10.1109/UCC.2014.166

Kayed A, Akijian T (2015) Resource allocation technique to obtain energy efficient cloud. In: Pro-
ceedings of the The International Conference on Engineering & MIS 2015. ICEMIS ’15. Associa-
tion for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/2832987.2833028
Soltanshahi M, Asemi R, Shafiei N (2019) Energy-aware virtual machines allocation by krill herd
algorithm in cloud data centers. Heliyon 5(7):02066. https://doi.org/10.1016/j.heliyon.2019.e02066
Berral JL, Goiri In, Nou R, Julia F, Guitart J, Gavalda R, Torres J (2010) Towards energy-aware
scheduling in data centers using machine learning. In: Proceedings of the 1st International Confer-
ence on Energy-Efficient Computing and Networking. e-Energy *10, pp. 215-224. Association for
Computing Machinery, New York, NY, USA. https://doi.org/10.1145/1791314.1791349

Cao B, Gao X, Chen G, Jin Y (2014) Nice: Network-aware vm consolidation scheme for energy
conservation in data centers. In: 2014 20th IEEE International Conference on Parallel and Distrib-
uted Systems (ICPADS), pp. 166—173. https://doi.org/10.1109/PADSW.2014.7097805

Martello S, Toth P (1990) Knapsack problems: algorithms and computer implementations. John
Wiley & Sons Inc, USA

Haque Monil MA, Qasim R, Rahman RM (2014) Energy-aware vm consolidation approach using
combination of heuristics and migration control. In: 9th International Conference on Digital Infor-
mation Management (ICDIM 2014), pp. 74-79. https://doi.org/10.1109/ICDIM.2014.6991413
Joshi S, Kaur S (2015) Cuckoo search approach for virtual machine consolidation in cloud data
centre. In: International Conference on Computing, Communication Automation, pp. 683—686.
https://doi.org/10.1109/CCAA.2015.7148461

Lee S, Panigrahy R, Prabhakaran V, Ramasubramanian V, Talwar K, Uyeda LK, Wieder U (2011)
Validating heuristics for virtual machines consolidation

Roytman A, Kansal A, Govindan S, Liu J, Nath S (2013) Algorithm design for performance aware
vm consolidation

Bichler M, Setzer T, Speitkamp B (2006) Capacity planning for virtualized servers. Information
Technology & Systems

Lin H, Qi X, Yang S, Midkiff S (2015) Workload-driven vm consolidation in cloud data centers.
In: 2015 IEEE International Parallel and Distributed Processing Symposium, pp. 207-216. https://
doi.org/10.1109/IPDPS.2015.90

Goudarzi H, Ghasemazar M, Pedram M (2012) Sla-based optimization of power and migration
cost in cloud computing. In: 2012 12th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (ccgrid 2012), pp. 172-179. https://doi.org/10.1109/CCGrid.2012.112

Hoyer M, Schroder K, Schlitt D, Nebel W (2011) Proactive dynamic resource management in
virtualized data centers. In: Proceedings of the 2nd International Conference on Energy-Efficient
Computing and Networking. e-Energy *11, pp. 11-20. Association for Computing Machinery, New
York, NY, USA. https://doi.org/10.1145/2318716.2318719

Genez TAL, Pietri I, Sakellariou R, Bittencourt LF, Madeira ERM (2015) A particle swarm opti-
mization approach for workflow scheduling on cloud resources priced by cpu frequency. In: Pro-
ceedings of the 8th International Conference on Utility and Cloud Computing. UCC 15, pp. 237-
241. IEEE Press,

Sellami K, Tiako PF, Sellami L, Kassa R (2020) Energy efficient workflow scheduling of
cloud services using chaotic particle swarm optimization. In: 2020 IEEE Green Technologies
Conference(GreenTech), pp. 74-79. https://doi.org/10.1109/GreenTech46478.2020.9289818

@ Springer

https://doi.org/10.1109/JIOT.2014.2386326
https://doi.org/10.1109/JIOT.2014.2386326
https://doi.org/10.1109/PDP.2016.75
https://doi.org/10.1109/PDP.2016.75
https://doi.org/10.1109/UCC.2014.166
https://doi.org/10.1145/2832987.2833028
https://doi.org/10.1016/j.heliyon.2019.e02066
https://doi.org/10.1145/1791314.1791349
https://doi.org/10.1109/PADSW.2014.7097805
https://doi.org/10.1109/ICDIM.2014.6991413
https://doi.org/10.1109/CCAA.2015.7148461
https://doi.org/10.1109/IPDPS.2015.90
https://doi.org/10.1109/IPDPS.2015.90
https://doi.org/10.1109/CCGrid.2012.112
https://doi.org/10.1145/2318716.2318719
https://doi.org/10.1109/GreenTech46478.2020.9289818

848

Page 72 of 80 P.Czarnul et al.

207.

208.

209.

210.

211.

212.

213.

214.

215.

216.

217.

218.

219.

220.

221.

222.

223.

224.

225.

226.

2217.
228.

229.
230.

Peng G, Wolter K (2019) Efficient task scheduling in cloud computing using an improved particle
swarm optimization algorithm. In: CLOSER

Awad Al, El-Hefnawy NA, Abdel_kader, H.M. (2015) Enhanced particle swarm optimization for
task scheduling in cloud computing environments. Procedia Comput Sci 65:920-929. https://doi.
org/10.1016/j.procs.2015.09.064

Byun E-K, Kee Y-S, Kim J-S, Maeng S (2011) Cost optimized provisioning of elastic resources
for application workflows. Futur Gener Comput Syst 27(8):1011-1026. https://doi.org/10.1016/j.
future.2011.05.001

Abrishami S, Naghibzadeh M, Epema DHJ (2012) Cost-driven scheduling of grid workflows using
partial critical paths. IEEE Trans Parallel Distrib Syst 23(8):1400-1414. https://doi.org/10.1109/
TPDS.2011.303

Abrishami S, Naghibzadeh M (2011) Budget constrained scheduling of grid workflows using par-
tial critical paths. https://api.semanticscholar.org/CorpusID: 18484532

Abrishami S, Naghibzadeh M (2012) Deadline-constrained workflow scheduling in software as a
service cloud. Scientia Iranica 19(3):680-689. https://doi.org/10.1016/j.scient.2011.11.047

Taal A, Wang J, de Laat C, Zhao Z (2019) Profiling the scheduling decisions for handling critical
paths in deadline-constrained cloud workflows. Futur Gener Comput Syst 100:237-249. https://doi.
org/10.1016/j.future.2019.05.002

Indhira M, Divya P, AshfaqHaris A, Keerthika P (2018) Efficient resource allocation in cloud envi-
ronment. Int J Eng Res Technol 6

Sharma V, Bala M (2020) An improved task allocation strategy in cloud using modified k-means
clustering technique. Egypt Inform J 21(4):201-208. https://doi.org/10.1016/j.eij.2020.02.001
Nagarathinam A, Chellasamy A, Antonysamy K, Saravanan V, Gopalakrishnan M (2024) In: El
Khoury R (ed.) Green data centers: a review of current trends and practices, pp. 251-264. Springer,
Cham. https://doi.org/10.1007/978-3-031-51997-0_21

International Energy Agency (2023) Data centres and data transmission networks. Accessed: 2025-
02-28. https://www.iea.org/energy-system/buildings/data-centres-and-data-transmission-networks
Katal A, Dahiya S, Choudhury T (2023) Energy efficiency in cloud computing data cent-
ers: a survey on software technologies. Clust Comput 26:1845-1875. https://doi.org/10.1007/
$10586-022-03713-0

Bharany S, Sharma S, Khalaf OI, Abdulsahib GM, Al Humaimeedy AS, Aldhyani THH, Maashi
M, Alkahtani H (2022) A systematic survey on energy-efficient techniques in sustainable cloud
computing. Sustainability 14(10):6256. https://doi.org/10.3390/su14106256

Name A (2023) Green cloud computing: a sustainable energy-efficiency approach for business
rapidity and the environment. Int J Green Computi 12:67-89. https://doi.org/10.1109/1JGC.2023.
1234567

Van Geet O, Sickinger D (July 2024) Best practices guide for energy-efficient data center design.
Technical report, National Renewable Energy Laboratory (NREL), Golden, CO (United States).
https://doi.org/10.2172/2417618. https://www.osti.gov/biblio/2417618

Azarifar M, Arik M, Chang J-Y (2024) Liquid cooling of data centers: a necessity facing chal-
lenges. Appl Therm Eng 247:123112. https://doi.org/10.1016/j.applthermaleng.2024.123112
Zaman SN, Sharme NH, Sumona RN, Islam MJ, Reza AW, Arefin MS (2023) Ai-based air cooling
system in data center. In: intelligent computing and optimization. Lecture notes in networks and
systems, vol. 852, pp. 53-65. Springer. https://doi.org/10.1007/978-3-031-50330-6_6

Lin J, Lin W, Lin W, Liu T, Wang J, Jiang H (2024) Multi-objective cooling control optimization
for air-liquid cooled data centers using tcn-bigru-attention-based thermal prediction models. Build
Simul 17:2145-2161. https://doi.org/10.1007/s12273-024-1185-7

Ganesh N, Rao TS (2025) Advancing sustainability in cloud computing: energy-efficient resource
allocation and green infrastructure strategies. SSRN Electron J. https://doi.org/10.2139/ssrn.51386
69

Swinhoe D (2022) Re-use, refurb, recycle: circular economy thinking and data center it assets.
DatacenterDynamics

Cooper L (2024) Data center refurbishment: an alternative solution to recycling. Human-I-T
Jarnagin S (2024) Circular economy in data center operations: turning waste into opportunity. Data
Center Knowledge

Circular Center (2025) Microsoft news

Engineering A (2024) From waste to resource: the future of data center heat reuse. Ardebili Engi-
neering Blog

@ Springer

https://doi.org/10.1016/j.procs.2015.09.064
https://doi.org/10.1016/j.procs.2015.09.064
https://doi.org/10.1016/j.future.2011.05.001
https://doi.org/10.1016/j.future.2011.05.001
https://doi.org/10.1109/TPDS.2011.303
https://doi.org/10.1109/TPDS.2011.303
https://api.semanticscholar.org/CorpusID:18484532
https://doi.org/10.1016/j.scient.2011.11.047
https://doi.org/10.1016/j.future.2019.05.002
https://doi.org/10.1016/j.future.2019.05.002
https://doi.org/10.1016/j.eij.2020.02.001
https://doi.org/10.1007/978-3-031-51997-0_21
https://www.iea.org/energy-system/buildings/data-centres-and-data-transmission-networks
https://doi.org/10.1007/s10586-022-03713-0
https://doi.org/10.1007/s10586-022-03713-0
https://doi.org/10.3390/su14106256
https://doi.org/10.1109/IJGC.2023.1234567
https://doi.org/10.1109/IJGC.2023.1234567
https://doi.org/10.2172/2417618
https://www.osti.gov/biblio/2417618
https://doi.org/10.1016/j.applthermaleng.2024.123112
https://doi.org/10.1007/978-3-031-50330-6_6
https://doi.org/10.1007/s12273-024-1185-7
https://doi.org/10.2139/ssrn.5138669
https://doi.org/10.2139/ssrn.5138669

Optimization of resource-aware parallel and distributed... Page730f80 848

231.

232.
233.
234.

235.
236.
237.

238.

239.

240.

241.

242.

243.

244.

245.

246.

247.

248.

249.

250.

251.

252.

253.

From byproduct to resource (2024) How data centers are turning waste heat into valuable energy.
Datacenters.com

Tozzi C (2024) Top 10 data center sustainability stories of 2024. Data Center Knowledge

Impact of geographic location on data center energy costs (2025) DataCenters.com

U.S. Department of Energy (2024) Best Practices Guide for Energy-Efficient Data Center Design.
U.S. Department of Energy. https://www.energy.gov/sites/default/files/2024-07/best-practice-
guide-data-center-design.pdf

Tech giants are building their own undersea fibre-optic networks (2017) The Economist

Top 10: Edge computing companies and solutions (2023) Data Centre Magazine

Atzori L, Iera A, Morabito G (2010) The internet of things: a survey. In: computer networks, pp.
54-15. https://doi.org/10.1016/j.comnet.2010.05.010

Asghari P, Rahmani AM, Javadi HHS (2019) Internet of things applications: a systematic review.
In: computer networks, pp. 148-241261. https://doi.org/10.1016/j.comnet.2018.12.008

Mahmud R, Ramamohanarao R, Buyya R (2018) Fog computing: a taxonomy, survey and future
directions. In: internet of everything: algorithms, methodologies, technologies and perspectives,
pp. 103-13. https://doi.org/10.1007/978-981-10-5861-5_5

Yi S, Li C, Li Q (2015) A survey of fog computing: concepts, applications and issues. In: In Pro-
ceedings of the Workshop on Mobile Big Data, pp. 37-42. https://doi.org/10.1145/2757384.27573
97

Palattella MR, Soua R, Khelil A, Engel T (2019) Fog computing as the key for seamless connectiv-
ity handover in future vehicular networks. In: In Proceedings of the 34th ACM/SIGAPP Sympo-
sium on Applied Computing, pp. 1996-2000. https://doi.org/10.1145/3297280.3297475

Liu L, Chang Z, Guo X, Mao S, Ristaniemi T (2018) Multiobjective optimization for computation
offloading in fog computing. IEEE Internet Things J 5(1):283-294. https://doi.org/10.1109/JIOT.
2017.2780236

Kishor A (2021) Task offloading in fog computing for using smart ant colony optimization. In:
wireless personal communications, pp. 1572-834. https://doi.org/10.1007/s11277-021-08714-7
Kalmar E, Kertesz A (2017) What does i(0)t cost? In: Proceedings of the 8th ACM/SPEC on Inter-
national Conference on Performance Engineering Companion, pp. 19-24. https://doi.org/10.1145/
3053600.3053601

Bittencourt LF, Diaz-Montes J, Buyya R, Rana OF, Parashar M (2017) Mobility-aware applica-
tion scheduling in fog computing. In: IEEE Cloud Computing, pp. 4-2635. https://doi.org/10.1109/
MCC.2017.27

Yadav V, Natesha BV, Guddeti RMR (2019) Ga-pso: service allocation in fog computing environ-
ment using hybrid bio-inspired algorithm. In: TENCON 2019 - 2019 IEEE Region 10 Conference
(TENCON), pp. 1280-1285. https://doi.org/10.1109/TENCON.2019.8929234

Markus A, Kertesz A (2020) A survey and taxonomy of simulation environments modelling fog
computing. Simul Model Practice Theory 101:102042. https://doi.org/10.1016/j.simpat.2019.
102042

Mahmud R, Pallewatta S, Goudarzi M, Buyya R (2022) ifogsim2: an extended ifogsim simulator
for mobility, clustering, and microservice management in edge and fog computing environments. J
Syst Softw 190:111351. https://doi.org/10.1016/j.js5.2022.111351

Buyya R, Ranjan R, Calheiros RN (2009) Modeling and simulation of scalable cloud computing
environments and the cloudsim toolkit: Challenges and opportunities. In: 2009 International Con-
ference on High Performance Computing & Simulation, pp. 1-11. https://doi.org/10.1109/HPC-
SIM.2009.5192685

Markus A, Biro M, Kecskemeti G, Kertesz A (2021) Actuator behaviour modelling in iot-fog-
cloud simulation. Peer] Comput Sci 7:e651. https://doi.org/10.7717/peerj-cs.651

Brogi A, Forti S, Ibrahim A (2017) How to best deploy your fog applications, probably. In: 1st
International Conference on Fog and Edge Computing, pp. 105-114. https://doi.org/10.1109/
ICFEC.2017.8

Lera I, Guerrero C, Juiz C (2019) Yafs: a simulator for iot scenarios in fog computing. IEEE
Access 7:91745. https://doi.org/10.1109/ACCESS.2019.2927895

Qayyum T, Malik AW, Khattak MAK, Khalid O, Khan SU (2018) Fognetsim++: a toolkit for
modeling and simulation of distributed fog environment. IEEE Access 6:63570. https://doi.org/10.
1109/ACCESS.2018.2877696

@ Springer

https://www.energy.gov/sites/default/files/2024-07/best-practice-guide-data-center-design.pdf
https://www.energy.gov/sites/default/files/2024-07/best-practice-guide-data-center-design.pdf
https://doi.org/10.1016/j.comnet.2010.05.010
https://doi.org/10.1016/j.comnet.2018.12.008
https://doi.org/10.1007/978-981-10-5861-5_5
https://doi.org/10.1145/2757384.2757397
https://doi.org/10.1145/2757384.2757397
https://doi.org/10.1145/3297280.3297475
https://doi.org/10.1109/JIOT.2017.2780236
https://doi.org/10.1109/JIOT.2017.2780236
https://doi.org/10.1007/s11277-021-08714-7
https://doi.org/10.1145/3053600.3053601
https://doi.org/10.1145/3053600.3053601
https://doi.org/10.1109/MCC.2017.27
https://doi.org/10.1109/MCC.2017.27
https://doi.org/10.1109/TENCON.2019.8929234
https://doi.org/10.1016/j.simpat.2019.102042
https://doi.org/10.1016/j.simpat.2019.102042
https://doi.org/10.1016/j.jss.2022.111351
https://doi.org/10.1109/HPCSIM.2009.5192685
https://doi.org/10.1109/HPCSIM.2009.5192685
https://doi.org/10.7717/peerj-cs.651
https://doi.org/10.1109/ICFEC.2017.8
https://doi.org/10.1109/ICFEC.2017.8
https://doi.org/10.1109/ACCESS.2019.2927895
https://doi.org/10.1109/ACCESS.2018.2877696
https://doi.org/10.1109/ACCESS.2018.2877696

848

Page 74 of 80 P.Czarnul et al.

254.

255.

256.

257.

258.

259.

260.

261.

262.

263.

264.

265.

266.

267.

268.

269.

270.

271.

272.

273.

Puliafito C, Gongalves DM, Lopes MM, Martins LL, Madeira E, Mingozzi E, Rana O, Bittencourt
LF (2020) Mobfogsim: simulation of mobility and migration for fog computing. Simul Model
Practice Theory 101:102062. https://doi.org/10.1016/j.simpat.2019.102062

Sonmez C, Ozgovde A, Ersoy C (2018) Edgecloudsim: an environment for performance evaluation
of edge computing systems. Trans Emerg Telecommun Technol 29:¢3493. https://doi.org/10.1002/
ett.3493

Jha DN, Alwasel K, Alshoshan A, Huang X, Naha R, Battula S, Garg S, Puthal D, James P, Zom-
aya A, Dustdar S, Ranjan R (2020) Iotsim-edge: a simulation framework for modeling the behav-
ior of internet of things and edge computing environments. Softw: Practice Exp 50(6):844-867.
https://doi.org/10.1002/spe.2787

Varghese B, Wang N, Barbhuiya S, Kilpatrick P, Nikolopoulos DS (2016) Challenges and opportu-
nities in edge computing. In: 2016 IEEE International Conference on Smart Cloud (SmartCloud),
pp. 20-26. https://doi.org/10.1109/SmartCloud.2016.18

Dmitrieva, E., Thakur, G., Prabhakar, P.K., Prakash, A., Vyas, A., Prasanna, Y.L.: Edge computing
and ai: Advancements in industry 5.0- an experimental assessment. BIO Web of Conferences 86,
01096 (2024) https://doi.org/10.1051/bioconf/20248601096

Deng S, Zhao H, Fang W, Yin J, Dustdar S, Zomaya AY (2020) Edge intelligence: the confluence
of edge computing and artificial intelligence. IEEE Internet Things J 7(8):7457-7469. https://doi.
org/10.1109/J10T.2020.2984887

XuD, Li T, Li Y, Su X, Tarkoma S, Jiang T, Crowcroft J, Hui P (2021) Edge intelligence: empow-
ering intelligence to the edge of network. Proc IEEE 109(11):1778-1837. https://doi.org/10.1109/
JPROC.2021.3119950

Nakamoto S (2008) Bitcoin: a peer-to-peer electronic cash system. Decentralized Business Review,
21260

Liu Y, Wang Y, Jin Y (2012) Research on the improvement of mongodb auto-sharding in cloud
environment. In: 2012 7th International Conference on Computer Science & Education (ICCSE),
pp. 851-854. IEEE

Wang G, Shi ZJ, Nixon M, Han S (2019) Sok: Sharding on blockchain. In: Proceedings of the 1st
ACM Conference on Advances in Financial Technologies, pp. 41-61

Yu G, Wang X, Yu K, Ni W, Zhang JA, Liu RP (2020) Survey: sharding in blockchains. IEEE
Access 8:14155-14181

Henzinger A, Noe A, Schulz C (2020) Ilp-based local search for graph partitioning. J Exp Algo-
rithmics (JEA) 25:1-26

Cordero M, Miniguano-Trujillo A, Recalde D, Torres R, Vaca P (2022) Graph partitioning in con-
nected components with minimum size constraints via mixed integer programming https://doi.org/
10.48550/ARX1V.2202.11254

Baniata H, Anaqreh A, Kertesz A (2023) Distributed scalability tuning for evolutionary shard-
ing optimization with random-equivalent security in permissionless blockchain. Internet Things
24:100955

Manumachu RR, Lastovetsky A (2018) Bi-objective optimization of data-parallel applications on
homogeneous multicore clusters for performance and energy. IEEE Trans Comput 67(2):160-177.
https://doi.org/10.1109/TC.2017.2742513

Khaleghzadeh H, Fahad M, Shahid A, Manumachu RR, Lastovetsky A (2021) Bi-objective opti-
mization of data-parallel applications on heterogeneous hpc platforms for performance and energy
through workload distribution. IEEE Trans Parallel Distrib Syst 32(3):543-560. https://doi.org/10.
1109/TPDS.2020.3027338

Krzywaniak A, Proficz J, Czarnul P (2018) Analyzing energy/performance trade-offs with power
capping for parallel applications on modern multi and many core processors. In: 2018 Federated
Conference on Computer Science and Information Systems (FedCSIS), pp. 339-346

Krzywaniak A, Czarnul P (2020) Performance/energy aware optimization of parallel applications
on gpus under power capping. In: Processing Parallel, Mathematics Applied (eds) Wyrzykowski R,
Deelman E, Dongarra J, Karczewski K. Springer, Cham, pp 123-133

Krzywaniak A, Czarnul P, Proficz J (2022) Depo: a dynamic energy-performance optimizer tool
for automatic power capping for energy efficient high-performance computing. Softw: Practice Exp
52(12):2598-2634. https://doi.org/10.1002/spe.3139

Czarnul P, Proficz J, Krzywaniak A (2019) Energy-aware high-performance computing: survey of
state-of-the-art tools, techniques, and environments. Sci Program 2019:8348791-1834879119

@ Springer

https://doi.org/10.1016/j.simpat.2019.102062
https://doi.org/10.1002/ett.3493
https://doi.org/10.1002/ett.3493
https://doi.org/10.1002/spe.2787
https://doi.org/10.1109/SmartCloud.2016.18
https://doi.org/10.1051/bioconf/20248601096
https://doi.org/10.1109/JIOT.2020.2984887
https://doi.org/10.1109/JIOT.2020.2984887
https://doi.org/10.1109/JPROC.2021.3119950
https://doi.org/10.1109/JPROC.2021.3119950
https://doi.org/10.48550/ARXIV.2202.11254
https://doi.org/10.48550/ARXIV.2202.11254
https://doi.org/10.1109/TC.2017.2742513
https://doi.org/10.1109/TPDS.2020.3027338
https://doi.org/10.1109/TPDS.2020.3027338
https://doi.org/10.1002/spe.3139

Optimization of resource-aware parallel and distributed... Page750f80 848

274.

275.

2176.

271.

278.

279.

280.

281.

282.

283.

284.

285.

286.

287.

288.

289.

290.

291.

292.

Cunha Sa, Silva L, Saraiva Ja, Fernandes JaP (2024) Trading runtime for energy efficiency: lever-
aging power caps to save energy across programming languages. In: Proceedings of the 17th ACM
SIGPLAN International Conference on Software Language Engineering. SLE °24, pp. 130-142.
Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/3687997.
3695638

Wang Y, Hao M, He H, Zhang W, Tang Q, Sun X, Wang Z (2024) Drlcap: runtime gpu frequency
capping with deep reinforcement learning. IEEE Trans Sustain Comput 9(5):712-726. https://doi.
org/10.1109/TSUSC.2024.3362697

Simmendinger C, Marquardt M, Méder J, Schneider R (2024) Powersched - managing power con-
sumption in overprovisioned systems. In: 2024 IEEE International Conference on Cluster Com-
puting Workshops (CLUSTER Workshops), pp. 1-8. https://doi.org/10.1109/CLUSTERWorkshop
$61563.2024.00012

Blelloch GE, Gibbons PB, Gu Y, McGuffey C, Shun J (2018) The parallel persistent memory
model. In: Proceedings of the 30th on Symposium on Parallelism in Algorithms and Architectures.
SPAA 18, pp. 247-258. Association for Computing Machinery, New York, NY, USA. https://doi.
org/10.1145/3210377.3210381

Malinowski A, Czarnul P (2019) Multi-agent large-scale parallel crowd simulation with nvram-
based distributed cache. J Comput Sci 33:83-94

Malinowski A, Czarnul P (2018) A solution to image processing with parallel MPI I/O and distrib-
uted NVRAM cache. Scalable Comput Pract Exp 19(1):1-14

Ruan X, Yang Q, Mohammed IA, Yin S, Ding Z, Xie J, Lewis J, Qin X (2010) Es-mpich2: A mes-
sage passing interface with enhanced security. In: International Performance Computing and Com-
munications Conference, pp. 161-168. https://doi.org/10.1109/PCCC.2010.5682312

Maffina MA, RamPriya RS (2013) An improved and efficient message passing interface for secure
communication on distributed clusters. In: 2013 International Conference on Recent Trends in
Information Technology (ICRTIT), pp. 329-334. https://doi.org/10.1109/ICRTIT.2013.6844225
Losada N, Gonzalez P, Martin MJ, Bosilca G, Bouteiller A, Teranishi K (2020) Fault tolerance of
mpi applications in exascale systems: the ulfm solution. Futur Gener Comput Syst 106:467—481
Lion R, Thibault S, (2020) From tasks graphs to asynchronous distributed checkpointing with local
restart. In: 2020 IEEE/ACM 10th Workshop on Fault Tolerance for HPC at eXtreme Scale (FTXS).
Atlanta, USA https://doi.org/10.1109/FTXS51974.2020.00009. https://hal.archives-ouvertes.fr/hal-
02970529

Tahan O, Shawky M (2012) Using dynamic task level redundancy for openmp fault tolerance.
In: Proceedings of the 25th International Conference on Architecture of Computing Systems.
ARCS’12, pp. 25-36. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28293-5_3
Zhang D, Dai D, He Y, Bao FS, Xie B (2020) Rlscheduler: an automated hpc batch job scheduler
using reinforcement learning. In: Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis. SC *20. IEEE Press,

Anderson DP (2020) Boinc: a platform for volunteer computing. J Grid Comput 18:99-122
Czarnul P, Kuchta J, Matuszek MR (2013) Parallel computations in the volunteer-based comcute
system. In: Wyrzykowski R, Dongarra JJ, Karczewski K, Wasniewski J (eds.) Parallel Processing
and Applied Mathematics - 10th International Conference, PPAM 2013, Warsaw, Poland, Septem-
ber 8-11, 2013, Revised Selected Papers, Part I. Lecture Notes in Computer Science, vol. 8384, pp.
261-271. Springer. https://doi.org/10.1007/978-3-642-55224-3_25

Chorazyk P, Godzik M, Pietak K, Turek W, Kisiel-Dorohinicki M, Byrski A (2017) Lightweight
volunteer computing platform using web workers. Procedia Comput Sci 108:948-957

Cushing R, Putra GHH, Koulouzis S, Belloum A, Bubak M, Laat C (2013) Distributed comput-
ing on an ensemble of browsers. IEEE Internet Comput 17(5):54-61. https://doi.org/10.1109/MIC.
2013.3

MacWilliam T, Cecka C (2013) Crowdcl: Web-based volunteer computing with webcl. In: 2013
IEEE High Performance Extreme Computing Conference (HPEC), pp. 1-6. https://doi.org/10.
1109/HPEC.2013.6670348

Lavoie E, Hendren L, Desprez F (2017) Pando: A volunteer computing platform for the web.
In: 2017 IEEE 2nd International Workshops on Foundations and Applications of Self* Systems
(FAS*W), pp. 387-388. https://doi.org/10.1109/FAS-W.2017.184

Fabisiak T, Danilecki A (2017) Browser-based harnessing of voluntary computational power.
Foundations Comput Decision Sci 42(1):3-42. https://doi.org/10.1515/fcds-2017-0001

@ Springer

https://doi.org/10.1145/3687997.3695638
https://doi.org/10.1145/3687997.3695638
https://doi.org/10.1109/TSUSC.2024.3362697
https://doi.org/10.1109/TSUSC.2024.3362697
https://doi.org/10.1109/CLUSTERWorkshops61563.2024.00012
https://doi.org/10.1109/CLUSTERWorkshops61563.2024.00012
https://doi.org/10.1145/3210377.3210381
https://doi.org/10.1145/3210377.3210381
https://doi.org/10.1109/PCCC.2010.5682312
https://doi.org/10.1109/ICRTIT.2013.6844225
https://doi.org/10.1109/FTXS51974.2020.00009
https://hal.archives-ouvertes.fr/hal-02970529
https://hal.archives-ouvertes.fr/hal-02970529
https://doi.org/10.1007/978-3-642-28293-5_3
https://doi.org/10.1007/978-3-642-55224-3_25
https://doi.org/10.1109/MIC.2013.3
https://doi.org/10.1109/MIC.2013.3
https://doi.org/10.1109/HPEC.2013.6670348
https://doi.org/10.1109/HPEC.2013.6670348
https://doi.org/10.1109/FAS-W.2017.184
https://doi.org/10.1515/fcds-2017-0001

848

Page 76 of 80 P.Czarnul et al.

293.

294.

295.

296.

297.

298.

299.

300.

301.

302.

303.

304.

305.

306.

307.

308.

309.

310.

312.

Czarnul P, Matuszek M (2016) Considerations of computational efficiency in volunteer and cluster
computing. In: Wyrzykowski R, Deelman E, Dongarra J, Karczewski K, Kitowski J, Wiatr K (eds)
Processing Parallel, Mathematics Applied Springer, Cham, pp 66-74

Roberts SI, Wright SA, Fahmy SA, Jarvis SA (2017) Metrics for energy-aware software optimisa-
tion. In: Kunkel JM, Yokota R, Balaji P, Keyes D (eds) High performance computing. Springer,
Cham, pp 413-430

Bouras M, Idrissi A (2023) In: Idrissi A (ed.) A Survey of Parallel Computing: Challenges, Meth-
ods and Directions, pp. 67-81. Springer, Cham. https://doi.org/10.1007/978-3-031-33309-5_6
Rekhate V, Tale A, Sambhus N, Joshi A (2016) Secure and efficient message passing in distributed
systems using one-time pad. In: 2016 International Conference on Computing, Analytics and Secu-
rity Trends (CAST), pp. 393-397. https://doi.org/10.1109/CAST.2016.7915001

Wang F, Hao M, Zhang W, Wang Z (2024) Model-free gpu online energy optimization. IEEE
Trans Sustain Comput 9(2):141-154. https://doi.org/10.1109/TSUSC.2023.3314916

Espenshade C, Peng R, Hong E, Calman M, Zhu Y, Parida P, Lee EK, Kim MA (2024) Charac-
terizing training performance and energy for foundation models and image classifiers on multi-
instance gpus. In: Proceedings of the 4th Workshop on Machine Learning and Systems. EuroML-
Sys ’24, pp. 47-55. Association for Computing Machinery, New York, NY, USA. https://doi.org/
10.1145/3642970.3655830

Koszczat G, Dobrosolski J, Matuszek M, Czarnul P (2024) Performance and energy aware train-
ing of a deep neural network in a multi-gpu environment with power capping. In: Zeinalipour D,
Blanco Heras D, Pallis G, Herodotou H, Trihinas D, Balouek D, Diehl P, Cojean T, Fiirlinger
K, Kirkeby MH, Nardelli M, Di Sanzo P (eds) Euro-Par 2023: parallel processing workshops.
Springer, Cham, pp 5-16

Pattaranantakul M, He R, Song Q, Zhang Z, Meddahi A (2018) Nfv security survey: from use
case driven threat analysis to state-of-the-art countermeasures. IEEE Commun Surv & Tutorials
20(4):3330-3368. https://doi.org/10.1109/COMST.2018.2859449

Patel YS, Mehrotra N, Soner S (2015) Green cloud computing: A review on green it areas for
cloud computing environment. In: 2015 International Conference on Futuristic Trends on Compu-
tational Analysis and Knowledge Management (ABLAZE), pp. 327-332. https://doi.org/10.1109/
ABLAZE.2015.7155006

Tudosoiu M-F, Pop F (2021) Bin packing scheduling algorithm with energy constraints in cloud
computing. In: 2021 IEEE 17th International Conference on Intelligent Computer Communication
and Processing (ICCP), pp. 77-84. https://doi.org/10.1109/ICCP53602.2021.9733463

Tebaa M, Hajji SE, Ghazi AE (2012) Homomorphic encryption method applied to cloud comput-
ing. In: 2012 National Days of Network Security and Systems, pp. 86—89. https://doi.org/10.1109/
JNS2.2012.6249248

Popa RA, Redfield CMS, Zeldovich N, Balakrishnan H (2011) Cryptdb: protecting confidential-
ity with encrypted query processing. In: Proceedings of the Twenty-Third ACM Symposium on
Operating Systems Principles. SOSP ’11, pp. 85-100. Association for Computing Machinery, New
York, NY, USA. https://doi.org/10.1145/2043556.2043566

Milani BA, Navimipour NJ (2017) A systematic literature review of the data replication techniques
in the cloud environments. Big Data Res 10:1-7. https://doi.org/10.1016/j.bdr.2017.06.003

Khan S, Parkinson S, Qin Y (2017) Fog computing security: a review of current applications and
security solutions. J Cloud Comput. https://doi.org/10.1186/s13677-017-0090-3

Han R, Yu J, Zhang R (2020) Analysing and improving shard allocation protocols for sharded
blockchains. Cryptology ePrint Archive

Khan D, Jung LT, Hashmani MA (2021) Systematic literature review of challenges in blockchain
scalability. Appl Sci 11(20):9372

Luu L, Narayanan V, Zheng C, Baweja K, Gilbert S, Saxena P (2016) A secure sharding protocol
for open blockchains. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pp. 17-30

Huang C, Wang Z, Chen H, Hu Q, Zhang Q, Wang W, Guan X (2020) Repchain: a reputation-
based secure, fast, and high incentive blockchain system via sharding. IEEE Internet Things J
8(6):4291-4304

. Baniata H, Kertesz A (2023) Approaches to overpower proof-of-work blockchains despite minor-

ity. IEEE Access 11:2952-2967
Barhanpure A, Belandor P, Das B (2018) Proof of stack consensus for blockchain networks. In:
International Symposium on Security in Computing and Communication, pp. 104—-116. Springer

@ Springer

https://doi.org/10.1007/978-3-031-33309-5_6
https://doi.org/10.1109/CAST.2016.7915001
https://doi.org/10.1109/TSUSC.2023.3314916
https://doi.org/10.1145/3642970.3655830
https://doi.org/10.1145/3642970.3655830
https://doi.org/10.1109/COMST.2018.2859449
https://doi.org/10.1109/ABLAZE.2015.7155006
https://doi.org/10.1109/ABLAZE.2015.7155006
https://doi.org/10.1109/ICCP53602.2021.9733463
https://doi.org/10.1109/JNS2.2012.6249248
https://doi.org/10.1109/JNS2.2012.6249248
https://doi.org/10.1145/2043556.2043566
https://doi.org/10.1016/j.bdr.2017.06.003
https://doi.org/10.1186/s13677-017-0090-3

Optimization of resource-aware parallel and distributed... Page 77 0f 80 848

313.

314.

315.

316.

317.

318.

319.

320.

321.

322.

323.

324.

325.

326.

3217.

328.

329.

330.

332.

333.

A Avasthi A, Saxena A (2018) Two hop blockchain model: resonating between proof of work
(pow) and proof of authority (poa). Int J Inform Syst & Manag Sci 1(1)

Pandya SB, Sanghvi HA, Patel RH, Pandya AS (2022) Gpu and fpga based deployment of block-
chain for cryptocurrency—a systematic review. In: 2022 International Conference on Computational
Intelligence and Sustainable Engineering Solutions (CISES), pp. 18-25. IEEE

Ferraz O, Subramaniyan S, Chinthalaa R, Andrade J, Cavallaro JR, Nandy SK, Silva V, Zhang X,
Purnaprajna M, Falcao G (2021) A survey on high-throughput non-binary ldpc decoders: Asic,
fpga, and gpu architectures. IEEE Commun Surv & Tutorials 24(1):524-556

Hiibner L, Kozlov AM, Hespe D, Sanders P, Stamatakis A (2021) Exploring parallel MPI
fault tolerance mechanisms for phylogenetic inference with RAXML-NG. Bioinformatics
37(22):4056-4063

Czarnul P, Kuchta J, Matuszek M, Proficz J, RoSciszewski P, Wojcik M, Szymarnski J (2017) Merp-
sys: an environment for simulation of parallel application execution on large scale hpc systems.
Simul Model Pract Theory 77:124-140

Kwok Y-K, Ahmad I (1997) Efficient scheduling of arbitrary task graphs to multiprocessors using
a parallel genetic algorithm. J Parallel Distributed Comput 47(1):58-77

Fan Y, Lan Z, Childers T, Rich P, Allcock W, Papka ME (2021) Deep reinforcement agent for
scheduling in hpc. In: 2021 IEEE International Parallel and Distributed Processing Symposium
(IPDPS), pp. 807-816. https://doi.org/10.1109/IPDPS49936.2021.00090

Lin X, Wang Y, Pedram M (2016) A reinforcement learning-based power management framework
for green computing data centers. In: 2016 IEEE International Conference on Cloud Engineering
(IC2E), pp. 135-138. https://doi.org/10.1109/IC2E.2016.33

Ozdemir MB (2019) Evaluation of multi-objective closed loop supply chain network integrated
with blockchain for used lubrication oils obtained from vehicles in military forces by the linear
programming. PhD thesis, Ankara Yildirim Beyazit Universitesi Fen Bilimleri Enstitiisii

Li F, Huang J, Lippman A (2008) A linear integer programming approach to analyze p2p media
streaming. In: 2008 42nd Annual Conference on Information Sciences and Systems, pp. 1125-
1130. IEEE

Sasabe M (2021) Analysis of minimum distribution time of tit-for-tat-based p2p file distribution:
linear programming based approach. Peer-to-Peer Netw Appl 14(4):2127-2138

Li D, Dai J, Jiang R, Wang X, Xu Y (2020) Gapg: a heuristic greedy algorithm for grouping stor-
age scheme in blockchain. In: 2020 IEEE/CIC International Conference on Communications in
China (ICCC Workshops), pp. 91-95. IEEE

Chang S-Y Greedy networking in cryptocurrency blockchain. In: ICT Systems Security and Pri-
vacy Protection: 37th IFIP TC 11 International Conference, SEC 2022, Copenhagen, Denmark,
June 13-15, 2022, Proceedings, p. 343. Springer

Kalysh I, Alimkhan A, Temirtayev I, Nunna HK, Doolla S, Vipin K (2019) Dynamic program-
ming based peer-to-peer energy trading framework for smart microgrids. In: 2019 IEEE 13th
International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POW-
ERENG), pp. 1-6. IEEE

Yuan H, Zhou M (2021) Profit-maximized collaborative computation offloading and resource allo-
cation in distributed cloud and edge computing systems. IEEE Trans Autom Sci Eng 18(3):1277—
1287. https://doi.org/10.1109/TASE.2020.3000946

Kimovski D, Ijaz H, Saurabh N, Prodan R (2018) Adaptive nature-inspired fog architecture. In:
2018 IEEE 2nd International Conference on Fog and Edge Computing (ICFEC), pp. 1-8. IEEE
Bizzaro F, Conti M, Pini MS (2020) Proof of evolution: leveraging blockchain mining for a coop-
erative execution of genetic algorithms. In: 2020 IEEE International Conference on Blockchain
(Blockchain), pp. 450-455. IEEE

Mureddu M, Ghiani E, Pilo F (2020) Smart grid optimization with blockchain based decentralized
genetic algorithm. In: 2020 IEEE Power & Energy Society General Meeting (PESGM), pp. 1-5.
IEEE

. Chao S (2022) Construction model of e-commerce agricultural product online marketing system

based on blockchain and improved genetic algorithm. Secur Commun Netw 2022:4055698
Baniata H, Anaqreh A, Kertesz A (2021) Pf-bts: a privacy-aware fog-enhanced blockchain-assisted
task scheduling. Inf Process & Manag 58(1):102393

Omara FA, Arafa MM (2010) Genetic algorithms for task scheduling problem. J Parallel Distrib-
uted Comput 70(1):13-22

@ Springer

https://doi.org/10.1109/IPDPS49936.2021.00090
https://doi.org/10.1109/IC2E.2016.33
https://doi.org/10.1109/TASE.2020.3000946

848

Page 78 of 80 P.Czarnul et al.

334.

335.

336.

337.

338.

339.

340.

341.

342.

343.

344.

345.

346.

347.

348.

349.

Balicki J, Kortub W, Szymanski J, Zakidalski M (2014) Big data paradigm developed in volunteer
grid system with genetic programming scheduler. In: Intelligence Artificial, Computing Soft (eds)
Rutkowski L, Korytkowski M, Scherer R, Tadeusiewicz R, Zadeh LA, Zurada JM. Springer, Cham,
pp 771-782

Qu B, Lei Y, Zhao Y (2010) A new genetic algorithm based scheduling for volunteer computing.
In: 2010 International Conference on Computer and Communication Technologies in Agriculture
Engineering, vol. 3, pp. 228-231. https://doi.org/10.1109/CCTAE.2010.5544240

Estrada T, Fuentes O, Taufer M (2008) A distributed evolutionary method to design scheduling
policies for volunteer computing. SIGMETRICS Perform Eval Rev 36(3):40-49

Abedin SF, Alam MGR, Kazmi SA, Tran NH, Niyato D, Hong CS (2018) Resource allocation for
ultra-reliable and enhanced mobile broadband iot applications in fog network. IEEE Trans Com-
mun 67(1):489-502

Wu Y, Tang S, Zhao B, Peng Z (2019) Bptm: blockchain-based privacy-preserving task matching
in crowdsourcing. IEEE access 7:45605-45617

Liu Z, Luong NC, Wang W, Niyato D, Wang P, Liang Y-C, Kim DI (2019) A survey on block-
chain: a game theoretical perspective. IEEE Access 7:47615-47643. https://doi.org/10.1109/
ACCESS.2019.2909924

Fan Y, Shen G, Jin Z, Hu D, Shi L, Yuan X (2020) Stackelberg game based edge computing
resource management for mobile blockchain. In: Proceedings of the ACM Turing Celebration Con-
ference - China. ACM TURC ’20, pp. 225-229. Association for Computing Machinery, New York,
NY, USA. https://doi.org/10.1145/3393527.3393565

Wei T, Ren S, Zhu Q (2021) Deep reinforcement learning for joint datacenter and hvac load control
in distributed mixed-use buildings. IEEE Trans Sustain Comput 6(03):370-384. https://doi.org/10.
1109/TSUSC.2019.2910533

Shaw R, Howley E, Barrett E (2022) Applying reinforcement learning towards automating energy
efficient virtual machine consolidation in cloud data centers. Inf Syst 107:101722

Chen L, Lingys J, Chen K, Liao X (2021) Datacenter Traffic Optimization with Deep Reinforce-
ment Learning, pp. 223-259. John Wiley & Sons, Ltd. Chap. 10. https://onlinelibrary.wiley.com/
doi/abs/10.1002/9781119675525.ch10

Tessler C, Shpigelman Y, Dalal G, Mandelbaum A, Haritan Kazakov D, Fuhrer B, Chechik G,
Mannor S (2022) Reinforcement learning for datacenter congestion control. SIGMETRICS Per-
form Eval Rev 49(2):43—46. https://doi.org/10.1145/3512798.3512815

Baek J-y, Kaddoum G, Garg S, Kaur K, Gravel V (2019) Managing fog networks using reinforce-
ment learning based load balancing algorithm. In: 2019 IEEE Wireless Communications and Net-
working Conference (WCNC), pp. 1-7. https://doi.org/10.1109/WCNC.2019.8885745

Poltronieri F, Tortonesi M, Stefanelli C, Suri N (2021) Reinforcement learning for value-based
placement of fog services. In: 2021 IFIP/IEEE International Symposium on Integrated Network
Management (IM), pp. 466-472

Dai Y, Xu D, Maharjan S, Chen Z, He Q, Zhang Y (2019) Blockchain and deep reinforcement
learning empowered intelligent 5g beyond. IEEE Network 33(3):10-17

Xiao L, Ding Y, Jiang D, Huang J, Wang D, Li J, Poor HV (2020) A reinforcement learning and
blockchain-based trust mechanism for edge networks. IEEE Trans Commun 68(9):5460-5470
Ning Z, Sun S, Wang X, Guo L, Wang G, Gao X, Kwok RY (2021) Intelligent resource allocation
in mobile blockchain for privacy and security transactions: a deep reinforcement learning based
approach. Sci China Inf Sci 64(6):1-16

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer

https://doi.org/10.1109/CCTAE.2010.5544240
https://doi.org/10.1109/ACCESS.2019.2909924
https://doi.org/10.1109/ACCESS.2019.2909924
https://doi.org/10.1145/3393527.3393565
https://doi.org/10.1109/TSUSC.2019.2910533
https://doi.org/10.1109/TSUSC.2019.2910533
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119675525.ch10
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119675525.ch10
https://doi.org/10.1145/3512798.3512815
https://doi.org/10.1109/WCNC.2019.8885745

Optimization of resource-aware parallel and distributed... Page790f80 848

Authors and Affiliations

Pawet Czarnul - Marcel Antal? - Hamza Baniata® - Dalvan Griebler® -

Attila Kertesz? - Christoph W. Kessler® - Andreas Kouloumpris® - Salko Kovati¢’
Andras Markus? - Maria K. Michael® - Panagiota Nikolaou® - Isil 0z° -

Radu Prodan'® - Gordana Raki¢'’

P4 Pawet Czarnul
pczarnul @eti.pg.edu.pl

Marcel Antal
marcel.antal @cs.utcluj.ro

Hamza Baniata
baniatah @inf.u-szeged.hu

Dalvan Griebler
dalvan.griebler @pucrs.br

Attila Kertesz
keratt@inf.u-szeged.hu

Christoph W. Kessler
christoph.kessler @liu.se

Andreas Kouloumpris
kouloumpris.andreas @ucy.ac.cy

Salko Kovadié¢
salko@unmo.ba

Andras Markus
markusa@inf.u-szeged.hu

Maria K. Michael
mmichael @ucy.ac.cy

Panagiota Nikolaou
pnikolaoul @uclan.ac.uk

Isil Oz
isiloz@iyte.edu.tr

Radu Prodan
radu.prodan @aau.at

Gordana Rakié¢

gordana.rakic @dmi.uns.ac.rs

Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology,
11/12 Narutowicza, 80-233 Gdarisk, Poland

Computer Science Department, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
Department of Software Engineering, University of Szeged, Szeged, Hungary

4 School of Technology, Pontifical Catholic University of Rio Grande do Sul (PUCRS),
Porto Alegre, Brazil

Department of Computer and Information Science, Linkoping University, Linkoping, Sweden

Department of Electrical and Computer Engineering, KIOS Research and Innovation Center
of Excellence, University of Cyprus, Nicosia, Cyprus

@ Springer

848 Page 80 of 80 P.Czarnul et al.

DZemal Bijedi¢ University of Mostar, Mostar, Bosnia and Herzegovina

University of Central Lancashire Cyprus, Larnaka, Cyprus

Computer Engineering Department, Izmir Institute of Technology, Izmir, Turkey

Institute of Information Technology, Alpen-Adria-Universitét Klagenfurt, Klagenfurt, Austria

Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia

@ Springer

	Optimization of resource-aware parallel and distributed computing: a review
	Abstract
	1 Introduction
	2 Background
	2.1 Resources and metrics
	2.2 Trade-offs
	2.3 Exemplary optimization contexts
	2.4 System, application, and resource allocation modeling
	2.4.1 System model
	2.4.2 Application model
	2.4.3 Resource allocation model

	2.5 Proposed contribution in the context of existing surveys
	2.6 Summary and conclusion

	3 Problem formulations as a basis for resource-aware optimization in various domains
	3.1 Integer linear programming
	3.1.1 ILP for workflow scheduling optimization
	3.1.2 ILP-based co-optimization for energy efficiency: crown scheduling
	3.1.3 ILP for edge and cloud computing

	3.2 Greedy algorithms
	3.3 Dynamic programming
	3.3.1 Optimal code generation for instruction-level parallel processors
	3.3.2 Dynamic programming for distributed processing

	3.4 Nature-inspired optimization algorithms
	3.4.1 Genetic algorithms (GA)
	3.4.2 Particle swarm optimization (PSO)
	3.4.3 Ant colony optimization (ACO)

	3.5 Game theory
	3.6 Reinforcement learning
	3.7 Summary and conclusion

	4 Resource-aware applications in various domains
	4.1 Data centers
	4.2 Cloud computing
	4.3 Data center sustainability and green computing
	4.4 Fog computing
	4.5 Blockchain
	4.6 High-performance computing
	4.7 Volunteer computing
	4.8 Summary and conclusion

	5 Summary—coverage analysis, open problems, and conclusions
	References

