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Abstract
This paper presents a review of state-of-the-art solutions concerning the optimiza-
tion of computing in the field of parallel and distributed systems. Firstly, we con-
tribute by identifying resources and quality metrics in this context including servers, 
network interconnects, storage systems, computational devices as well as execution 
time/performance, energy, security, and error vulnerability, respectively. We subse-
quently identify commonly used problem formulations and algorithms for integer 
linear programming, greedy algorithms, dynamic programming, genetic algorithms, 
particle swarm optimization, ant colony optimization, game theory, and reinforce-
ment learning. Afterward, we characterize frequently considered optimization prob-
lems by stating these terms in domains such as data centers, cloud, fog, blockchain, 
high performance, and volunteer computing. Based on the extensive analysis, we 
identify how particular resources and corresponding quality metrics are consid-
ered in these domains and which problem formulations are used for which system 
types, either parallel or distributed environments. This allows us to formulate open 
research problems and challenges in this field and analyze research interest in prob-
lem formulations/domains in recent years.

Keywords  Review of resource-aware parallel and distributed computing · Parallel 
and distributed architectures · Parallel and distributed computing · Optimization
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DAG	� Directed acyclic graph
DC	� Data center
DCT	� Dynamic concurrency throttling
DRAM	� Dynamic random access memory
DFS	� Dynamic frequency scaling
DL	� Distributed ledger
DP	� Dynamic programming
DPN	� Dataflow processing network
DSL	� Domain-specific language/library
DSP	� Digital signal processing/processor
DVFS	� Dynamic voltage and frequency scaling
EPIC	� Explicitly parallel instruction computing
FIFO	� First in, first out
FL	� Federated learning
GA	� Genetic algorithm
GPU	� Graphics processing unit
GrA	� Greedy algorithm
GT	� Game theory
HEFT	� Heterogeneous earliest finishing time (First)
HPC	� High-performance computing
ILP	� Integer linear program(ming)
ILP	� Instruction-level parallelism
IPM	� Interior point method
IoT	� Internet of things
MG	� Matching game
MILP	� Mixed integer linear program(ming)
ML	� Machine learning
MPI	� Message passing interface
pBFT	� Practical byzantine fault tolerant
PGAS	� Partitioned global address space
PoW	� Proof of work
PSO	� Particle swarm optimization
P2P	� Peer to peer
RL	� Reinforcement learning
SIMD	� Single Instruction, Multiple Data
TDP	� Thermal design power
TIG	� Task interaction graph
TS	� Tabu search
TX	� Transaction
VC	� Volunteer computing
VM	� Virtual machine
VLIW	� Very Long Instruction Word (computing)
VLSI	� Very large-scale integration
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1  Introduction

Parallel and distributed computing has already been deployed at practically all sys-
tem levels, from instruction-level parallelism and massive multithreading in modern 
multi- and many-core central processing units (CPUs) and graphics processing units 
(GPUs). These can be integrated into clusters composed of powerful nodes with 
computational devices such as multi-core CPUs and GPUs as well as fast intercon-
nects, e.g., Infiniband [1]. Such computational devices are suitable for a widening 
spectrum of application domains, ranging from high-performance computing (HPC) 
simulations to distributed processing. Those applications are commonly used on an 
everyday basis for communication over the Internet, as well as the Internet of Things 
(IoT) and edge solutions that may be integrated with clouds for data storage and pro-
cessing. At all these levels, researchers deal with optimization problems to improve 
various computing resource usage.

This paper aims to describe the problem formulations and identify computing 
resources typically considered in parallel and distributed computing, including vari-
ous contexts/subdomains. We further identify metrics associated with the resources 
that are used within optimization goals. Adopting the analysis of the field structured 
along problem formulations, resources, and metrics, the goal of this review is to 
investigate the usage of particular metrics and resources as well as the usage of spe-
cific problem formulations in contexts/subdomains and based on that identify con-
crete research gaps and topics for future research.

The methodology adopted in this paper assumes the identification of research 
works from the area of parallel and distributed computing that considers optimiza-
tion problems expressed as one or more of the selected, assumed a priori formu-
lations. These include integer linear programming (ILP)  [2–7], greedy algorithms 
(GrA)  [8, 9], dynamic programming (DP)  [10], genetic algorithms (GA)  [11–13], 
particle swarm optimization (PSO)  [14–17], ant colony optimization (ACO)  [18], 
game theory (GT) [19–23], and reinforcement learning (RL) [24–27]. The rationale 
of this approach is motivated by the fact that the aforementioned formulations would 
typically use certain variables referring to the usage of the resources, described in 
detail in Sect. 2. This, in turn, allows us to: 

1.	 Identify problems with similar resources in various contexts/subdomains such 
as data centers, cloud computing, fog computing, blockchain, high-performance 
computing, and volunteer computing.

2.	 Upon consideration of these subdomains, identify resources as well as problem 
formulations frequently considered in specific subdomains.

The main structure of our manuscript is demonstrated in Fig. 1. In Sect. 2, we 
identify resources, associated metrics, along with exemplary trade-offs and optimi-
zation contexts. Additionally, we describe typical system and application modeling 
along with a frequently considered, generalized resource allocation problem defini-
tion. Subsequently, in Sect. 3 we follow with detailed categorization into the afore-
mentioned problem formulations including ILP, GrA, DP, GA, PSO, ACO, game 
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theory, and RL. In Sect.  4, we describe real-world applications studied in the lit-
erature and their solutions. Specifically, we focus on the subdomains: data centers, 
cloud computing, fog computing, blockchain (BC), high-performance computing 
(HPC), and volunteer computing (VC). Finally, we provide conclusions in Sect. 5 
regarding our observations, existing research gaps, as well as open problems.

2 � Background

Before we start the analysis of problems considered in parallel and distributed com-
puting, we identify resources and associated metrics that are the subject of optimiza-
tion in the area of parallel and distributed computing. Product and process quality 
characteristics are measured and expressed by various metrics. These metrics can 
then be combined in order to express standard quality characteristics such as per-
formance efficiency, reliability, security, safety, etc. Consequently, resource utiliza-
tion is measured by resource utilization metrics that constitute specific optimization 
goals/functions. We further discuss frequently faced trade-offs between those met-
rics and characteristics and list exemplary optimization contexts in parallel and dis-
tributed computing. These serve as a starting point for further description of system 
and application models in this field as well as the statement of the resource alloca-
tion problem, fundamental regarding optimization in the considered domain.

2.1 � Resources and metrics

Before we start the analysis of problems considered in parallel and distributed 
computing, we identify resources that are subject to utilization and optimiza-
tion in the area of parallel and distributed computing. Consequently, resource 

Fig. 1   Manuscript structure
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utilization is measured by metrics that reflect a single resource utilization level 
or different relations and ratios between multiple resources. These metrics reflect 
a single resource, e.g., execution time using concrete computational devices for a 
given data size.

In the field of parallel and distributed processing, problem-specific resources 
include nodes, network, memory/storage  [1, 28], etc. In terms of metrics, for 
instance, computational devices such as CPUs and GPUs are described by actu-
ally obtained (single, double precision) performance (measured through execu-
tion time for a given workload) and power requirements (formally specified 
through Thermal Design Power (TDP) values by manufacturers [1]). In the case 
of memory, various implementations might result in various memory/storage lev-
els, specifically of various levels such as DRAM, caches, disk, etc. Another rel-
evant example is ingress traffic and network link capacity [29].

We shall note that the aforementioned (problem-specific) resource metrics 
allow assessing and are components of more complex optimization functions 
(specifically in scheduling problems [30–33]) typically considered in the context 
of application or workload execution. The typical resulting application-level qual-
ity metrics being either sole goals of optimization or components of optimization 
functions in the field of parallel and distributed computing include: 

1.	 Execution time as a typical measure of the inverse of performance: We shall note, 
however, that the performance of computational devices (such as CPUs, GPUs) 
is associated with a given code/workload. Thus, performance ratios between two 
particular computational devices might differ for various workloads. In general, 
execution time of a parallel or distributed application results from considera-
tion of the application flow graph and execution times of particular computa-
tional devices, transmission latency (considering data size of a message as well 
as network parameters including start-up time and bandwidth), and propagation 
throughout the network.

2.	 Energy consumption during application runtime: This can be measured at the 
node level, including computational devices, memory domains, storage devices 
affected by power supply characteristics, or/and the CPU+DRAM or GPU 
domains. In a broader sense, the consumption of resources could also be consid-
ered for the application development phase.

Additionally, the following quality characteristics are often of interest concerning 
the application: 

1.	 Programming/development effort which can be measured in PMs, spent on the 
development/maintenance of a given application.

2.	 Application and system security, spanning consistency (concerning standards, 
design usage), availability (to a user), integrity (among components of a system), 
tolerance of cyber attacks and network vulnerabilities, etc.

3.	 Soft error vulnerability: Soft errors are a subset of transient faults caused by a 
single bit flip in the system [34]. If a soft error affects data in a register or memory 
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structure, data can be corrupted (SDC—silent data corruption), and the program 
may generate incorrect outcomes. Soft errors may lead to the unintended ter-
mination of the applications besides data corruption. The most common way to 
characterize the soft error vulnerability of an application is to perform fault injec-
tion experiments [35]. The experiments introduce deliberate faults as bit flips at 
hardware or software levels multiple times and measure the rate of the outcomes 
to have a statistically significant vulnerability value, where mostly the SDC rate 
represents the vulnerability of the target application. To overcome soft errors, 
the system implements redundancy techniques, where the hardware or software 
components are replicated. Specifically, redundant multithreading (RMT) utilizes 
parallelism in modern parallel systems and enables fault detection and correc-
tion [36]. RMT can correct faults by running identical program copies or code 
regions as separate threads or instructions in parallel execution units and com-
paring their outputs. While parallel executions can reduce redundancy costs by 
eliminating redundant execution latency, having multiple threads or instructions 
may incur additional costs due to contention/synchronization among many threads 
or instructions. Therefore, soft error precautions expose a trade-off between per-
formance, cost, and reliability of the target execution [37, 38].

2.2 � Trade‑offs

In practical approaches, many trade-offs appear between and among the afore-
mentioned metrics and resources. Examples in the context of various scopes of 
distribution include:

•	 Performance vs energy trade-off: Improving performance with more power-
ful processors, higher clock speeds, and parallel resources lead to high power 
consumption by high-capacity hardware components. On the other hand, if 
the execution time decreases for a target application, total energy consump-
tion reduces for the same power consumption values [39–41]. While some 
studies target to perform dynamic configurations by power capping and con-
sidering performance effects simultaneously [42], there have been works try-
ing to find out performance energy configurations for parallel applications 
to be run on heterogeneous multi-processing systems where a configura-
tion space stems from different core types and voltage and frequency pair-
ings [43].

•	 Performance vs security trade-off in the context of cloud storage systems in 
which data are replicated over several nodes of a cluster [44].

•	 Security, scalability, and efficiency trade-offs for data collection of IoT sen-
sor systems considering various security settings such as encryption and 
authentication when using scalable cloud services [45].

•	 Other trade-offs can also be considered, such as the performance vs stor-
age trade-off [46], performance vs reliability trade-off [47, 48], the DePriSS 
tetralemma [49], etc.
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2.3 � Exemplary optimization contexts

The aforementioned metrics are the subject of optimization in various contexts 
in the field of parallel and distributed computing, some of which are described 
below. Such problems are further categorized in terms of formulations in this sec-
tion and described in more detail in respective domains in Sect. 4.

Various works target the reduction in the overall latency (considered as 
elapsed/wall time), maximizing, in that way, the application’s performance in 
different market segments. Ghosh and Simmhan [50] minimize the end-to-end 
latency by using a brute force approach and genetic algorithm patterns to opti-
mize the placement of complex event processing queries across a collection of 
edge and cloud resources.

Wang et al. [51] provide an automatic generator to find optimal partitioning for 
cross-end analytic engine architecture for wearable computing systems. Kolom-
vatsos and Anagnostopoulos [52] propose a two-step decision process to choose 
the tasks that will be executed locally at the edge nodes while the rest will be 
migrated to a group of peer nodes in the network or on a fog/cloud server to max-
imize performance. To maximize the user’s quality of experience, Shah-Mansouri 
and Wong [53] allocate fog resources by formulating a computation offloading 
game.

Furthermore, Kouloumpris et al. [54] propose task allocation, taking into account 
reliability aspects while still targeting minimum latency. Additionally, Kouloumpris 
et al. [55] address the problem of task allocation within the edge–hub–cloud archi-
tecture to maximize the system’s overall reliability while satisfying latency, energy, 
and memory constraints. Particularly, the works in [54, 56], and [55] are based on 
a mathematical programming (MP) scheme for achieving an optimal partitioning of 
an application across the edge/hub/cloud paradigm model by minimizing the overall 
latency of the system, taking into account the latency and energy consumption of 
both nodes and communication links, as well as the memory needed for the tasks to 
be executed.

Kouloumpris et al. [56] present a framework to provide the optimal task alloca-
tion and optimal scheduling [57] between the edge–hub–cloud architecture to satisfy 
the application constraints and simultaneously minimize the end-to-end latency.

On the other hand, several related works explore the problem of task allocation, 
targeting not only performance improvement but also reliability and energy, such as 
the works in [58] and [59] that focus on edge servers and mobile computing devices 
such as laptops, tablets, and mobile phones.

Several works try to allocate the tasks to minimize total cost which can be defined 
as a function of general quality metrics and metrics of the selected resources. Dinh 
et  al. [60] introduced an optimization framework to allocate the processes from a 
single mobile device to multiple edge devices to minimize the total cost taking into 
account mobile device power consumption and end-to-end latency.

Nikolaou et al. [61] develop a Total Cost of Ownership (TCO) model to investi-
gate the benefits of running an emerging security-focused IoT application at the edge 
vs. the cloud by also considering the application’s requirements as well as the edge’s 
constraints.
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2.4 � System, application, and resource allocation modeling

Resource-aware parallel and distributed computing is centered around the resource 
allocation problem which aims to map tasks onto resources in the system by con-
sidering specific constraints. Based on various (hardware) systems and (software) 
application models, the resource allocation problem can be defined using different 
(mathematical) formulations. In this section, we provide the formulations consider-
ing various resources. First, we identify target system models that host our appli-
cations. Secondly, we explain application models representing target workloads 
(tasks). Then, we provide a general definition of the resource allocation problem. 
Table  1 contains key symbols used within the paper, specifically throughout the 
remaining part of this section for the problem formulations.

2.4.1 � System model

Modern computer architectures are complex systems that integrate multiple pro-
cessing units, memory units, communication buses, and other kinds of hardware 
resources. They are usually organized in a hierarchical way, leveraging parallelism 
at multiple levels.

For example, a modern general-purpose processor core usually integrates Single 
Instruction, Multiple Data (SIMD) and instruction-level parallelism (ILP), in the 
form of pipelined instruction execution, multi-issue Very Long Instruction Word 
(VLIW) or superscalar architectures, and often combinations of these.

Modern CPUs can contain dozens of processor cores, and domain-specific accel-
erators such as GPUs contain even more. On-chip memory often comes in the form 
of hardware-managed caches for DSP (Digital Signal Processing), GPU, and embed-
ded processors; often in the form of software-managed scratchpad memories, expos-
ing memory allocation and data transfers to the programmer.

In a homogeneous multi-core CPU, all cores are of the same type. A heterogene-
ous multi-core CPU combines different types of cores with different micro-architec-
tures, some of which may be optimized for single-thread performance while others 
are optimized for power efficiency, as in ARM big.LITTLE type architectures.

While low-end computers such as smartphones and laptops typically have only 
one general-purpose CPU (nowadays with multiple cores), servers may integrate 
several CPUs that share access to main memory in a uniform (UMA) or non-uni-
form (NUMA) way; in the latter case, main memory is organized in multiple mem-
ory units, some of which are located closer to one CPU (in terms of memory access 
latency and/or bandwidth) than to others.

Most computers today also comprise one or several GPUs and/or other accelera-
tors, which usually have their own memory connected to main memory by commu-
nication buses such as PCI Express [1], with or without explicitly exposing memory 
management and data transfers to the programmer. We refer to computer systems 
combining one or several general-purpose CPUs with one or several accelerators as 
heterogeneous computer systems.

Finally, super-computing clusters and data centers are organized by aggregat-
ing nodes that are connected by special fast networks (e.g., Infiniband)  [1]. Those 
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networks typically consist of multiple switches and lines as hardware resources. For 
a recent survey of computer architecture features, we refer to Hennessy and Patter-
son [62]. An up-to-date survey of recently installed supercomputer hardware and the 

Table 1   Key symbols used for problem formulations

Symbol Description

ti Task i of a workflow graph G(T, E) with T – set of tasks and E – set of directed edges
Si Set of services Si = {si0, si1, ...} each of which is capable of executing ti
tij Candidate task, i.e., task ti running on computational device j
lij(di) Execution time/latency of service sij processing data of size di
li Execution time of task ti
lij Execution time of task ti (on resource j)/candidate task tij on computational device j
prij(d) Price (monetary) of sij ’s execution
powij(d) Average power taken by service sij
L Workflow execution time
Lmax Upper bound on the workflow execution time
wij or we Weight on edge connecting nodes i and j in a graph G
p Number of cores
x, e.g., xij (binary) Solution variables in an integer linear program, e.g., {0,1} denoting whether service 

sij is selected for execution of task ti or binary decision variable corresponding to candidate 
task tij

Ψ The upper bound fraction of faulty nodes tolerated by a named distributed system in order to 
maintain its security

R Set of network shards
Succ(ti) Set of immediate successors of task ti
Pred(ti) Set of immediate predecessors of task ti
ci,j Average communication cost of edge (i, j)

li Average execution time of task ti
C
exec

Total execution cost of the application
Ccomm Total system communication cost
R
exec

Reliability of a processor
Rcomm Reliability of all communication paths
xijk Binary decision variable corresponding to outgoing edge j → k from task i
eij Computational energy consumption of candidate task tij
mij Memory requirement of candidate task tij
stij Storage requirement of candidate task tij
lcommijk

Communication latency corresponding to outgoing edge j → k from task i
ecommijk

Communication energy consumption corresponding to outgoing edge j → k from task i
nd(i) Number of immediate descendants of task ti
na(i) Number of immediate ancestors of task ti
M

bgt

j
Memory budget corresponding to device j

St
bgt

j
Storage budget corresponding to device j

E
bgt

j
Energy budget corresponding to device j
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trends in node architecture and network technology is provided in regularly updated 
ranking lists such as the TOP500 and Green500 lists.1

Due to cost considerations, the available quantity of these hardware resources in 
a computer system is limited. This implies that there is usually (much) more com-
putational work (e.g., tasks ready to execute) than could be possible to execute in 
parallel efficiently due to a limited number of computational devices. This leads to 
resource allocation and scheduling problems but also the need for consideration of 
resource (including network) contention, which we will consider in more detail in 
the following sections.

For distributed systems such as IoT, fog, cloud systems accessed from external 
clients, and volunteer systems, we distinguish physically distributed nodes that can 
vary in performance, power consumption, and reliability. Moreover, these are inter-
connected with relatively slow networks with much larger latency and smaller band-
widths compared to network solutions used in the aforementioned clusters and data 
centers. Additionally, the reliability of neither nodes nor networks is guaranteed.

Details of the aforementioned system models are outlined in relevant subsections 
of Sect. 4.

2.4.2 � Application model

The target application with multiple tasks is represented in different ways by con-
sidering target tasks and their relationships. We distinguish between two main types 
of task-based processing scenarios: the DAG model for batch execution of partially 
ordered dependent tasks, where a task’s execution is often not considered preempt-
able, and the TIG model for concurrent, possibly re-entrant and/or preemptable data 
processing tasks connected by edges modeling inter-task communication.

Accordingly, there exist at least two different types of task graphs: 

1.	 DAG Model:  The task graph modeling the application is a Directed Acyclic 
Graph (DAG) G = (T ,E) , where the node set T is the set of tasks of the applica-
tion, and E is a set of directed edges denoting precedence constraints among 
tasks due to dependencies. Such dependencies might be due to control flow or 
data dependence such as data flow. The DAG model assumes that a task can be 
executed only if all the predecessor tasks have completed their executions. Hence, 
DAG task graphs are dependence graphs, and the tasks are one-shot tasks. A 
task can execute only if all source operands are available as well as a processing 
resource for execution. The task graphs are thus generally acyclic (i.e., DAGs). 
A dependence (directed edge) between two tasks (nodes) usually means that the 
source task needs to finish before the destination task can start executing (however 
it may start even later if no resource is readily available for executing it. This is 
a matter of task scheduling, which in turn can happen statically or dynamically). 
Hence, tasks on the same path never execute concurrently. The longest path (in 
terms of accumulated execution time) in the task graph (also known as the critical 

1  TOP500, HPCG and Green500 lists: https://​top500.​org.

https://top500.org
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path) establishes a lower bound for the execution time, regardless of how many 
execution resources are available (Brent’s Theorem [63]). Depending on the target 
system properties and on the mapping of the tasks to execution resources, data 
flow edges between tasks mapped to different resources with different memories 
may also imply a data transfer cost, which is usually linear in the size of the 
data packet sent. The cost for forwarding operand data between tasks mapped to 
resources within the same memory unit is typically much smaller but not neces-
sarily zero.

	   Task graphs in the DAG model are a special case of workflow graphs. The task 
graph representation can be further extended by assigning fixed computation costs 
for the nodes (tasks) and, for systems where communication cost matters (primar-
ily multi-node distributed memory systems), in communication volumes for the 
edges. In homogeneous systems with identical computation resources, each task 
ti ∈ T  is associated with a computation cost li , representing the computation time 
needed to complete the execution of the task. In systems with symmetric commu-
nication costs, where the communication cost for an edge (ti, tj) only depends on 
the volume of data flowing from task ti to tj , an edge (ti, tj) can be labeled directly 
with a non-negative weight e(ti, tj) modeling the communication delay time for 
the case that source and destination tasks are mapped to different resources; if ti 
and tj are mapped to the same resource, the communication cost will be 0.

	   In heterogeneous systems with different (types of) execution resources, the task 
computation costs will differ depending on where a task executes. For any task 
i and resource j, the computation cost lij models the latency of executing ti on j. 
For tasks i that cannot execute on certain resources j, we have lij = ∞.

	   Where communication cost is asymmetric, i.e., differs depending on where 
ti and tj will execute, we could instead label the edge with the communication 
volume (the number of bytes to communicate) between (instances of) tasks ti and 
tj ; the actual communication cost will depend on the task mapping and can be 
derived from the communication volume and the architectural parameters in a 
second step.

2.	 TIG Model:  The TIG model describes communicating concurrent tasks.
	   Formally, a Task Interaction Graph (TIG) is a graph G = (T ,E) , where T is a 

set of tasks and E models the interaction (communication) between these tasks.
	   TIG task graphs describe applications such as data flow processing networks 

(also known as actor networks) with continuously active tasks processing poten-
tially infinite streams of data packets, with edges representing FIFO-buffered data 
flow channels between producer and consumer tasks, as formalized in established 
data flow models such as Kahn Process Networks (KPN) [64], Synchronous Data 
Flow (SDF), etc. A task instance (execution of a task for one input data packet) is 
triggered either by time as prescribed in a statically computed cyclic schedule or 
by data flow at runtime—whenever new operand data is available and executed 
when a resource has been allocated for its execution. Hence, (instances of) all 
tasks execute concurrently.

	   While TIG tasks may occasionally interact with each other, which incurs com-
munication overhead for tasks executing in different memory spaces, the model 
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does not necessarily contain information about precedence relations among the 
tasks, in contrast with the DAG model.

	   TIG tasks can be stateless or stateful. For a stateful task, its next instance is 
dependent on its predecessor instance. Stateful tasks can be modeled as stateless 
tasks if the state at the end of a task instance is passed back as an input of the task 
for its next instance.

	   In general, data flow in a TIG may be cyclic. However, virtually unfolding 
the execution of an entire TIG computation into the graph of all executed task 
instances and their dependencies would naturally result in an acyclic graph (DAG 
model) again.

	   Many real-world problems can be modeled as a TIG, such as signal/image 
data processing networks [64], iterative solutions of systems of equations, power 
system simulations, and VLSI simulation programs. In particular, data processing 
networks (DPN) such as Kahn Process Networks [64] are special cases of TIG. As 
in the DAG model, TIG tasks and edges may be assigned costs for computation 
and communication, respectively.

Internally, a task is, if not stated differently, usually executed sequentially and thus 
mapped to a single execution resource, such as a physical core, a virtual core, or an 
accelerator. Nevertheless, also parallel tasks can be defined, which require a stati-
cally known, fixed number (larger than one) of execution resources to be available in 
parallel to execute a parallel algorithm internally, usually sharing data; and the more 
general parallelizable tasks, which can run on any number of execution resources. 
Among the latter ones, we additionally distinguish between moldable tasks, which 
can use a fixed number of resources that needs to be known before task execution 
starts and remains constant throughout the execution of the task, and malleable 
tasks, which allow the number of workers to change during task execution.

If not stated otherwise, a task is associated with a block of code (e.g., a function 
call) to execute on a general-purpose CPU resource, as discussed previously. Con-
sidering heterogeneous systems, some tasks might, however, be specifically intended 
for execution on an accelerator resource, such as a GPU, or might be multi-variant 
tasks that come with multiple implementation variants for different execution plat-
forms, e.g., an OpenMP [1] variant for multithreaded CPU execution together with a 
CUDA or OpenCL [1] variant for GPU execution, so that the selection of the variant 
(and thus, execution resource type) could be done at runtime. The code for such task 
implementation variants can either be explicitly specified by the programmer and a 
task API, e.g., in the task-based runtime system StarPU [65] for heterogeneous sys-
tems, or automatically compiled from a single high-level source code representation, 
as in recent OpenMP versions, in OneAPI,2 or SkePU3 [66].

2  OneAPI documentation and download:https://​www.​intel.​com/​conte​nt/​www/​us/​en/​devel​oper/​tools/​one-
api/​overv​iew.​html.
3  SkePU documentation and download: https://​skepu.​github.​io.

https://www.intel.com/content/www/us/en/developer/tools/oneapi/overview.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/overview.html
https://skepu.github.io
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2.4.3 � Resource allocation model

The resource allocation problem can be considered and formulated by referring 
to different resources as well as including relevant, associated metrics, mentioned 
in Sect.  2.1. As targeting multiple resources within different limitations, the 
resource allocation problem can be mainly represented by:

subject to

where fm represents objective functions to be minimized or maximized, gj and hk 
represent inequality and equality constraints, respectively.

When there are multiple objective functions, in many real-life problems, objec-
tives under consideration conflict with each other. Hence, optimizing x with 
respect to a single objective often results in unacceptable results with respect to 
the other objectives. Therefore, a multi-objective solution that optimizes each 
objective function at the same time is almost impossible. An acceptable solution 
to a multi-objective problem is to investigate a set of solutions, each of which sat-
isfies the objectives at an acceptable level without being dominated by any other 
solution [67]. If all objective functions are for minimization, a feasible solution 
x is defined to dominate another feasible solution y, if and only if, zi(x) ≤ zi(y) 
for all objective functions and zj(x) < zj(y) for at least one objective function j. A 
solution is defined to be Pareto optimal if it is not dominated by any other solu-
tion in the solution space. A Pareto optimal solution cannot be improved with 
respect to any objective without making worse at least one other objective. The 
set of all feasible non-dominated solutions is defined as the Pareto optimal set, 
and for a given Pareto optimal set, the objective function values in the objec-
tive space are called the Pareto front. The goal of a multi-objective optimization 
algorithm is to find solutions in the Pareto optimal set. To solve the multi-objec-
tive problem, the objective function can be evaluated by different approaches like 
weighted sum, alteration, pareto-ranking.

We can have convexity or non-convexity depending of the problem specifica-
tion. For instance, the resource allocation problem, where we have a fixed budget 
across multiple tasks, presents a convexity as the objective function is linear 
[68, 69]. On the other hand, the problems including integer variables, nonlinear 
functions, or interference constraints present non-convexity with multiple local 
optima points that make the problem harder to solve [70, 71].

Depending on the optimization objective such as latency, energy consumption, 
or reliability, and within the limit of the resource capacities such as computation 
units and memory size, the objective functions and constraints are defined as part 
of the formulations for the target execution.

(1)min ∕max fm(x), m = 1, 2,⋯ ,M

(2)gj(x) ≥0, j = 1, 2,⋯ , J

(3)hk(x) =0, k = 1, 2,⋯ ,K
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2.5 � Proposed contribution in the context of existing surveys

There are several survey papers concerning parallel and distributed computing, as 
well as algorithms, models, and tools used. In this section, we summarize these sur-
veys and then outline the novelty of our approach, specifically by comparing and 
pointing out the areas and aspects addressed in our review but missing or described 
in a less comprehensive way in the existing works.

In paper [72], authors focus on load balancing algorithms in both distributed par-
allel computing and cloud computing. Task execution on traditionally considered 
physical resources is analyzed along with metrics including time, cost, throughput, 
usage of computing, and memory resources. Our study contains a larger set of met-
rics as well as considers more parallel and distributed processing domains, including 
cloud computing but also high-performance computing (HPC), fog computing, vol-
unteer computing, blockchain, and computing in data centers.

In survey [73], the author focuses specifically on allocation of Virtual Machines 
in cloud data centers. As resources, they consider physical machines and cloud 
providers. They consider multi-objective optimization with consideration of pos-
sibly several objectives: monetary, performance related (including response time 
and makespan), energy related, technical (utilization, balance, traffic, temperature). 
Areas in need of further research have been identified including consideration of: 
hybrid clouds, power consumption at various levels: server, component including 
network etc., multi-core CPUs, networking, co-location interference. We, on the 
other hand, generalize the problem formulations to the formulations such as integer 
linear programming (ILP), greedy algorithms (GrA), dynamic programming (DP), 
genetic algorithms (GA), particle swarm optimization (PSO), ant colony optimiza-
tion (ACO), game theory (GT), and reinforcement learning (RL), and consider more 
parallel and distributed system types, as mentioned above, including cloud comput-
ing. Our goal is to analyze these problem formulations as common across parallel 
and distributed computing in various domains and link actual optimization problems 
to these formulations. Consequently, our approach presents a more comprehensive 
view on parallel and distributed computing as a whole, analyzing resources and met-
rics used in all of these domains. Finally, we identify which and how resources and 
metrics, as well as problem formulations, are used in various contexts and domains, 
not present in study [73].

Some works investigate usage of particular problem formulations and specific 
domains for optimization of specific tasks. As an example, authors of paper  [74] 
propose a master–slave parallel genetic algorithm (GA) that is used to solve the 
time–cost construction problem using high-performance computing and NSGA-II 
as the optimization engine. Such works are actually considered as use cases in our 
study providing specific use cases: problem formulation–resources/metrics–optimi-
zation algorithm–parallel domain/system type.

Authors of book  [75] explore parallelism in constraint-based reasoning formal-
isms. They consider parallel implementations and taking advantage of computing 
resources—from single machine multi-core CPUs and GPUs to distributed sys-
tems. In the context of this paper, they explore parallel solvers for mixed integer 
linear programming and parallel local search algorithms. Instead, we study problem 
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formulations including MILP, as well as others, as a way of expressing optimization 
problems encountered in parallel and distributed systems.

Other review papers focus on specific aspects of the specific parallel and distrib-
uted computing domains discussed in our review. For instance, survey [33] focuses 
on high-performance computing and even more specifically on energy-aware sched-
uling methods used for HPC. The authors discuss resources and metrics involved in 
optimization including power, energy, and time. Selected algorithms are presented 
and classified by the programming method, such as machine learning or fuzzy 
logic. General scheduling of tasks of a parallel application onto a hybrid computing 
platform that consists of multi-cores and accelerators is discussed in detail in sur-
vey [76]. Greedy approaches are among the ones analyzed, along with incorporation 
of (integer) linear programming into algorithms.

Compared to those, in our study scheduling in an HPC system constitutes one of 
many optimization algorithms that can be represented by selected problem formula-
tions and is subject to resource–problem formulation–domain analysis.

On the other hand, existing surveys also discuss programming models and para-
digms. In paper [77], authors characterize multithreaded processing, message pass-
ing, partitioned global address space (PGAS), agent-based computing, MapRe-
duce along with goals taking into consideration performance, energy, as well as 
programming APIs. Multithreaded processing, message passing, the actor model, 
and parallelism at various levels, including instruction level, vector parallelization, 
thread level, and request level, and future research concerning those are analyzed in 
study  [78]. High-level programming models for multi-core systems are described 
in survey [79], including: C++-based, skeleton-based, STL-based, directive-based, 
and domain-specific ones. APIs and translators between them are detailed. Com-
pared to those, our review assumes that the models are incorporated into the applica-
tions running in parallel and distributed systems and are not directly subject of our 
analysis. Rather than that, we target optimization problems—that typically refer to 
execution of parallel codes, problems’ formulations, and applicability in parallel and 
distributed systems. Consequently, our and those reviews are complementary.

2.6 � Summary and conclusion

In this section, we explore the fundamental challenges of resource-aware optimiza-
tion in parallel and distributed computing. The discussion begins with an identifica-
tion of essential resources, including computational devices, memory, and network 
bandwidth, alongside key performance metrics such as execution time, energy con-
sumption, reliability, security, and error vulnerability. These metrics form the basis 
for assessing system performance and optimizing resource allocation.

We then explain how to balance trade-offs, such as performance versus energy 
efficiency, security versus scalability, and reliability versus cost, emphasizing the 
multidimensional nature of optimization in this domain. Several real-world optimi-
zation contexts are presented, including strategies for reducing latency in cloud and 
edge computing, optimizing task allocation to improve reliability and efficiency, and 
balancing cost, energy, and performance in mobile and edge devices.



	 P. Czarnul et al.  848   Page 16 of 80

This section also introduces modeling frameworks for systems, applications, and 
resource allocation. These include directed acyclic graph (DAG) and task interac-
tion graph (TIG) models for representing application workflows, and mathematical 
formulations for solving resource allocation problems. The models are pivotal in 
addressing constraints like limited processing power or memory, facilitating the effi-
cient mapping of tasks to available resources.

Additionally, this section contrasts the proposed approach with existing surveys in 
the literature, highlighting novel contributions and complementary aspects. Unlike 
previous reviews that focus on specific aspects such as virtual machine allocation 
or energy-aware scheduling, this study provides a holistic analysis of optimization 
problem formulations, linking them to various computing domains. This, in essence, 
demonstrates how our paper extends the state-of-the-art analyses in the field.

In conclusion, this section underscores the complexity of resource-aware optimi-
zation in distributed computing systems. It highlights the necessity of considering 
multiple interdependent metrics and trade-offs while modeling and optimizing tasks 
and resources. This foundational understanding sets the stage for exploring advanced 
optimization techniques and their practical applications in subsequent sections.

3 � Problem formulations as a basis for resource‑aware optimization 
in various domains

In this section, we present frequently used problem formulations utilized in target 
problems of parallel and distributed computing and considering the previously iden-
tified resources and metrics.

3.1 � Integer linear programming

Integer linear programming (ILP) is a powerful generic technique for modeling and 
solving combinatorial optimization problems. An ILP model involves a finite set of 
integer-valued solution variables, a set of constraints in the form of inequalities that 
are linear in these variables, and an objective function to maximize or minimize that 
is likewise linear in these variables. For solving an ILP instance, a generic solver is 
used. A timeout is usually set because solving an ILP to optimality is NP-complete; 
if the solver hits the time limit, it might still be able to return an approximation 
or heuristic solution in some cases. Special cases of ILP include binary variables 
(0-1 ILP) or mixed ILPs involving both integer and continuous solution variables 
(MILP). ILP solver technology has made significant progress during the last three 
decades, and powerful solvers (e.g., CPLEX, Gurobi) exist [80].

3.1.1 � ILP for workflow scheduling optimization

Traditionally, ILP has been used for workflow scheduling  [7], which requires the 
selection of services performing tasks that constitute components of a complex 
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scenario. Specifically, the workflow scheduling problem can be defined as follows. 
Given are the following: 

1.	 A directed acyclic graph, G(T, E), representing a complex scenario, where nodes 
T of graph G correspond to tasks that need to be executed, and edges E denote 
time dependencies between the tasks.

2.	 For each task ti ∈ T  there is a set of services Si = {si0, si1, ...} each of which is 
capable of executing ti but possibly on various conditions. Specifically considered 
parameters for each service sij could include execution time lij(di) of data pro-
cessed of size di , price prij(d) but could also include, e.g., average power powij(d) 
taken by execution of the service (presumably a given service runs on a particular 
computational device) or any other relevant metric.

Workflow scheduling requires the assignment of one particular service sij to each 
task ti such that specific metrics are optimized. For instance, typical optimization 
goals include: 

1.	 Minimization of workflow execution time L (determined by times of selected 
services and graph G with a budget bound B on the total cost of selected services) ∑

i

∑
j prij ⋅ xij ≤ B ∶ ∀i

∑
j xij = 1,

2.	 Minimization of the total cost of selected services
	 

∑
i

∑
j prij ⋅ xij ∶ ∀i

∑
j xij = 1 , with an upper bound on the workflow execution 

time L ≤ Lmax,
3.	 Minimizat ion of  workf low execution t ime and cost  product 

L ⋅ (
∑

i

∑
j prij ⋅ xij) ∶ ∀i

∑
j xij = 1.

Furthermore, workflow scheduling formulations can assume fixed/a priori known 
data sizes di , in particular workflow nodes ti , or could be subject to partitioning. 
In the latter case, input data to a whole workflow may be partitioned for parallel 
execution of some parallel workflow paths while may be subject to processing by 
other tasks obligatory for the whole data. Even the problem of data partitioning, 
especially in hybrid environments, is NP-hard and requires heuristic solutions for 
middle-sized or larger scenarios [6].

The aforementioned and similar ILP-based approaches can be used in various 
contexts/subdomains of parallel and distributed processing such as clouds [2–5] and 
HPC [6, 7, 81] in the context of scientific and business but also involving mixed sci-
entific and business services [7].

3.1.2 � ILP‑based co‑optimization for energy efficiency: crown scheduling

ILP is a flexible and powerful tool for modeling and solving complex resource 
optimization problems that combine multiple interdependent subproblems. Nev-
ertheless, the solution space might easily get too large for medium to large-sized 
problem instances. In some cases, introducing additional, artificial, domain-specific 
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constraints on the problem can significantly reduce the complexity of the solution 
space and make the use of ILP-based methods practical.

For example, in a series of recent works on crown scheduling [32, 82–87], ILP 
and MILP models have been used for energy-optimal, throughput-constrained soft-
ware pipeline configuration of soft real-time streaming computations, modeled by a 
set or graph of moldable streaming tasks (see Fig. 2 (left)), for execution on homo-
geneous and heterogeneous multi-core CPUs with discrete dynamic voltage and fre-
quency scaling (DVFS).

For input data packets arriving in regular time intervals, software-pipelined exe-
cution of the dataflow graph (Fig. 2 (middle)) results in the steady-state pattern of 
independent task instances shown in Fig. 2(right), for which we try to find a sched-
ule such that a specific application-defined processing throughput (e.g., output 
packet data rate) is maintained and for which we try to minimize the overall energy 
cost.

Here we are faced with the complex combined problem of (1) allocating several 
CPU cores to each moldable task, (2) mapping each task to some set of that many 
cores for parallel execution, and (3) selecting the DVFS level for each task execu-
tion. Co-optimizing these problems together by a single ILP model is superior to a 
phase-ordered approach of deciding these highly interdependent problems one by 
one. In addition, (4) task (kernel) fusion for dependent tasks can be considered as a 
fourth problem for co-optimization [32].

The key to ILP complexity reduction is the introduction of a hierarchy of core 
groups to artificially limit the possible core allocations to (e.g.) powers of 2 only. 

Fig. 2   A streaming task graph (left) with four moldable tasks and its software-pipelined execution (mid-
dle, time flowing from left to right) for a stream of input data packets, resulting in a repetitive steady-
state pattern of independent streaming task instances (right). Adapted from previous work [32, 82]

Fig. 3   Left: a crown (core group hierarchy) over eight cores. Right: a crown schedule of many tasks in a 
steady-state pattern for eight cores (horizontal axis); rectangles indicate tasks mapped to core groups and 
the colors indicate selected Dynamic Voltage and Frequency Scaling (DVFS) levels. Adapted from previ-
ous work [32, 82, 83]
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This is achieved by a binary decomposition of the group of all p cores into two 
disjoint subgroups containing one-half of the cores each. These are split in half 
again and so on until finally p singleton groups are formed that contain one core 
each and form the leaves of this group hierarchy (see Fig. 3 (left)).

This tree-shaped group hierarchy (i.e., the set of 2p − 1 applicable core groups) 
is referred to as the crown  [83]; limiting mapping of moldable tasks to the 
crown’s groups reduces the possible number of mapping targets (which impacts 
the number of ILP solution variables) from 2p − 1 to 2p − 1 . Each core is thus a 
member of log2 p core groups in the crown.

Then, a crown schedule for one round of the software pipeline’s steady-state pat-
tern is obtained by mapping tasks to the crown core groups only and by ordering the 
tasks on each core by non-increasing degree of parallelism (see Fig. 3 (right) for an 
8-core crown schedule). Crown schedules avoid, by construction, any idle times on 
resources except at the end of the round’s schedule and eliminate complex mapping 
and DVFS scaling interferences stemming from implicit barriers at the start of par-
allelized moldable tasks which are not uncommon in unconstrained schedules [85].

An ILP crown schedule is primarily described by the main binary solution varia-
bles which are usually of the form xi,j,k , indicating that task j is mapped to core group 
i of the crown and executed at DVFS level k. Constraints such as ∀j ∶

∑
i,k xi,j,k = 1 

make sure that each task j is mapped exactly once and to one DVFS level. Further 
constraints are required, e.g., to bound the makespan of the crown schedule by the 
maximum time M permitted for one round to guarantee the required real-time data 
rate, while the accumulated energy costs of all tasks in the schedule form the objec-
tive function to be minimized. The tasks’ power or time coefficients for different 
group sizes and DVFS levels can be obtained by microbenchmarking on the target 
architecture or by a theoretical model. In contrast with some other schedulers for 
moldable tasks in the literature, crown schedulers need not make any assumptions 
about the absence of speed-up anomalies for moldable tasks.

While also fast heuristics have been developed for crown scheduling [84], ILP 
crown schedulers have practical solution times for realistic problem sizes and 
outperform competing approaches [84]. While the additional crown restrictions 
might, in theory, introduce significant penalties on (energy) optimality in con-
trived corner cases, they are shown to have negligible impact in practice  [85]. 
Generalizations of crown scheduling have been developed for considering DVFS 
islands  [88] and heterogeneous multi-core CPUs such as ARM big.LITTLE-
based architectures  [89]. The generalization of crown scheduling to moldable 
stream computations on distributed systems with multi-core nodes (specifically, 
the device–edge–cloud continuum) is presented in [87]. The restricted flexibility 
of a few discrete DVFS levels can be relaxed by dynamic extensions  [90]. An 
extension of crown scheduling for a more dynamic scenario of varying task work-
loads depending on input data packet types is described in [86], where multi-
ple different optimized schedules for the steady-state pattern with different task 
workloads are computed off-line by ILP and switched at runtime depending on 
the current input packet type sequence. Crown schedules have also been shown to 
have robustness against unforeseen delays in individual tasks [82].
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Such problem-specific restrictions of the solution space of ILP models that trade 
better exact solvability for a marginal loss in solution quality (here, energy) are not 
uncommon. For example, for mapping moldable tasks to homogeneous parallel sys-
tems, Xu et al. [91] use a level-packing ILP model to solve a similar problem (DVFS 
not considered). A systematic experimental study of the effect of such restrictions 
in each of the four problem dimensions: resource allocation, mapping, DVFS selec-
tion, and, where applicable, task ordering (on each core), which also includes Crown 
scheduling and Xu scheduling as special cases, is given by Keller and Litzinger [92].

3.1.3 � ILP for edge and cloud computing

Some other works in the literature optimize the overall latency [54, 56, 93], and 
the overall reliability  [55] of the system. These works investigate the task alloca-
tion problem between edge, hub, and cloud infrastructures. To deliver an optimal 
task allocation while targeting performance and energy constraints, a mathematical 
programming-based framework was developed.

The framework takes as input an extended task flow graph (ETFG) which encap-
sulates the operating conditions and constraints for different devices and communi-
cation channels, and using mathematical models based on mixed integer linear pro-
gramming (MILP) estimates the optimal task allocation for a given application.

Initially, the designer has to determine which tasks can run on which computa-
tional devices of the system, i.e., in this case, the edge, hub, and cloud. Then, the 
original task flow graph (TFG) of the application is transformed into a set of up to 
n nodes, referred to as candidate tasks, forming a group of candidate tasks in the 
ETFG, each representing the specific original task, running on the specific computa-
tional device. Each candidate task in the group encapsulates several parameters such 
as execution time, energy consumption, memory footprint, storage requirements, 
and the amount of data in case of offloading to another task.

Furthermore, parameters such as task dependency and communication cost 
(communication latency and communication energy) are needed to establish 
a direct connection between two candidate tasks. Besides that, a bridge node 
is added to the ETFG to represent the extra communication cost (both latency 

Fig. 4   Transformation of a TFG to its corresponding ETFG
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and energy) if there is no direct communication between a pair of computational 
units, e.g., from the edge to the cloud and vice versa.

Figure  4 illustrates the TFG and its corresponding ETFG. It is important to 
mention that the difference between the TFG and the ETFG is that in TFG each 
task is required to be executed in order for the algorithm to be completed cor-
rectly, in contrast with the ETFG, where only one candidate task per group is 
executed.

The mathematical model uses a binary variable xij to indicate whether a task i 
will be allocated to be executed on the computational unit j ( xij = 1 ). More spe-
cifically, this variable is responsible for selecting the best candidate task to be 
executed from a specific group of candidate tasks. In addition, a binary variable 
xijk is defined, which shows whether the outgoing edge j → k from a task i is 
selected ( xijk = 1 ). The sets I and J represent the candidate tasks in the ETFG and 
different computational units (edge/hub/cloud) of the system, respectively.

The objective function is to minimize the overall latency of the system by tak-
ing into account both computation ( lij ) and communication latency ( lcommijk

 ) as 
shown in Eq. 4.

Equation 5 enforces that each task i must be allocated to be executed on one of the 
computational devices:

Equations 6 and 7 ensure that all paths of the graph derived by the optimal task allo-
cation are connected, that is, if candidate task i and task i + 1 were selected in the 
optimal solution, then the corresponding edge in the ETFG will be selected as well.

where nd(i) is the number of immediate descendants of task i.

where na(i) is the number of immediate ancestors of task i.
Finally, the rest of the equations model the resource constraints. In particular, 

the total main memory usage (Eq.  8) and the secondary memory usage (Eq.  9) 
should not exceed the specified memory budgets. Similarly, the total energy con-
sumption, that is, the total computation ( eij ) and communication ( ecommijk

 ) energy 
added together (Eq. 10), should not exceed the given energy budget of each com-
putational device.

(4)min

(∑
i∈I

∑
j∈J

lijxij +
∑
i∈I

∑
j∈J

∑
k∈J

lcommijk
xijk

)

(5)xij ∈ {0, 1},∀i, j and
∑
j∈J

xij = 1,∀i

(6)xijk ∈ {0, 1},∀ i, j, k and
∑
j∈J

∑
k∈J

xijk = nd(i),∀ i

(7)
∑

k∶(ij→k)

xijk −
∑

k∶(k→ij)

xkij = (nd(i) − 1) − na(i) ,∀ i, j
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In the same manner, the aforementioned formulation can be easily extended to sup-
port different objectives, such as optimizing the overall energy or the overall reli-
ability of the system. The framework has been evaluated using a real use case exam-
ple. The use case uses an autonomous drone to inspect the power lines in a power 
grid system.

The evaluation results, presented in Fig. 5, illustrate the normalized execution 
time of the application across different task allocation strategies. The proposed 
optimization framework (denoted as F) was compared against scenarios where 
tasks, when feasible, were executed entirely on the edge (E), hub (H), or cloud 
(C) across four distinct configurations.

Each configuration (C1–C4) represents a unique combination of edge and hub 
devices, while the cloud remains the same across all configurations, as detailed 
in Table  2. These configurations were carefully selected to assess the frame-
work’s effectiveness in diverse deployment scenarios, considering that real-world 

(8)
∑
i∈I

mijxij ≤ M
bgt

j
,∀j

(9)
∑
i∈I

stijxij ≤ St
bgt

j
,∀j

(10)
∑
i∈I

∑
k∈J

ecommijk
xijk + eijxij ≤ E

bgt

j
,∀j
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Fig. 5   Comparison of the optimization framework (F) solution, in terms of the execution time, with sce-
narios where tasks are executed entirely on the edge (E), hub (H), or cloud (C) across four configurations 
(C1–C4)
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systems often involve heterogeneous devices with varying hardware and software 
capabilities.

Before conducting the evaluation, it was necessary to first profile the execution of 
each task on every available device. This step was essential for obtaining accurate 
measurements, such as execution time, energy consumption, and memory usage. By 
executing each task individually on the edge, hub, and cloud, detailed insights into 
their computational behavior were obtained. These precise measurements enabled a 
realistic and reliable assessment of the optimization framework’s effectiveness.

As shown in Fig. 5, the proposed framework consistently outperformed fixed allo-
cation strategies in terms of execution time. Across all configurations, it achieved 
substantial performance gains. For instance, in Configuration 3 (C3), it reduced 
execution time by up to ∼ 3.5× compared to a fully edge-based allocation. Similar 
improvements were observed across other configurations, demonstrating the frame-
work’s adaptability and efficiency in minimizing latency by effectively leveraging 
edge, hub, and cloud resources.

These findings suggest that task allocation decisions were not intuitive, as exe-
cution time was influenced by multiple factors, including task-specific constraints, 
device capabilities, and network characteristics. Beyond identifying the optimal task 
allocation, the proposed framework enables extensive design space exploration with 
respect to different device configurations and their connectivity.

3.2 � Greedy algorithms

Greedy algorithms (GrAs) construct solutions to combinatorial optimization prob-
lems bottom up in an iterative process, where a partial solution is extended step by 
step. In each step, one component of the not-yet-considered input is selected based 
on some (often heuristic) global ranking of these components at this step. GrAs are 
usually fast, but for most problems, their solutions can be suboptimal, as making 
a locally best decision at each step does not necessarily lead to an optimal overall 
solution. Only for a few simpler problems, greedy algorithms can guarantee the opti-
mality of the derived overall solution, such as Dijkstra’s shortest path algorithm [94] 
or Kruskal’s minimum spanning tree algorithm [95].

A common use of greedy algorithms is scheduling a directed acyclic graph of 
dependent tasks for multiprocessors, or similarly, of a graph of dependent instruc-
tions for instruction-parallel processor architectures. The most common heuristic 

Table 2   Configurations of 
computational devices

Device e∕h∕c Configuration

C1 C2 C3 C4

Raspberry Pi 3 Model B e ✓ ✓

Odroid XU4 e ✓ ✓

Samsung Tab S2 h ✓ ✓

Mi Notebook Pro h ✓ ✓

HPE ProLiant DL580 Gen10 c ✓ ✓ ✓ ✓
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technique for such problems is greedy list scheduling, a heuristic technique origi-
nally introduced by Graham [96], which imitates the limited-scope decision behav-
ior of an online scheduler also for off-line scheduling problems, using a fixed prior-
ity list.

Greedy scheduling starts from an empty schedule and iteratively selects and 
schedules one task/instruction at a time from the task graph in topological order of 
dependencies. A task/instruction that has no unscheduled predecessors is considered 
ready for scheduling. It is placed as early as possible (as allowed by resource avail-
ability and pending data dependencies from predecessor tasks) on some free time 
slot on some execution resource at the current end of the partial schedule. In each 
step, the selection among all schedulable tasks is based on a global priority order-
ing, which might be based on the length of the longest accumulated delay along any 
path from that task/instruction toward a sink (result) of the task graph.

List scheduling is an approximation algorithm that guarantees that the resulting 
makespan is by at most a factor (2 − 1∕p) longer than the optimal makespan for a 
parallel target system with p equal processors. This holds both for independent tasks 
and dependencies between the tasks [97].

Greedy algorithms were among the earliest scheduling heuristics considered 
for instruction-level parallel processor architectures [98]. A survey of algorithmic 
techniques for instruction scheduling for use in compilers for Very Long Instruction 
Word processor architectures is given by Faraboschi et al. [99].

Heterogeneous earliest-finish-time (HEFT) algorithm  [100], based on a DAG 
representation and targeting a parallel system with fully connected heterogene-
ous processors, executes in two phases: task prioritization and processor selection. 
The algorithm orders the tasks according to their priorities that are computed with 
upward ( ranku ) and downward ( rankd ) ranking, which are defined as follows:

where Succ(ti) is the set of immediate successors of task ti , Pred(ti) is the set of 
immediate predecessors of task ti , ci,j is the average communication cost of edge 
(i, j), and li is the average computation cost of task ti . In the task prioritization phase, 
the task list is generated by sorting the tasks by decreasing order of ranku . In the 
processor selection phase, the algorithm aims to insert a task in the earliest idle time 
slot between two already scheduled tasks on a processor by checking the time differ-
ence between the start time and finish time of two tasks to be larger than the compu-
tation time of the task to be scheduled.

LeTS [8] proposes a greedy heuristic algorithm for task scheduling problems on 
homogeneous multi-core systems. The algorithm considers both locality and load 
balancing to reduce the execution time of target applications. While it utilizes a 
DAG as its application model, the locality considerations target optimizing the exe-
cutions on multi-core systems with no inter-core communication overhead.
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In  [9], authors use greedy algorithms to optimize virtual machine placement 
across data centers considering the optimization of a function taking energy and 
prices of distributing VMs. They evaluate random allocation (RA), next fit alloca-
tion (NFA), first fit allocation (FFA), best fit allocation (BFA), and worst fit alloca-
tion (WFA) and demonstrate that BFA performs the best.

A different use case—the buffer management problem using a greedy technique 
for packet buffering—is studied in  [101]. Specifically, a switch can buffer (space 
permitting) packets incoming from input ports on their way to output ports, mini-
mizing packet loss. Studies of resource availability versus performance were per-
formed. The authors show that a greedy algorithm cannot be better than 2-competi-
tive and propose a semi-greedy approach with a competitive ratio of 17/9.

In paper  [102], authors propose the greedy firefly algorithm (GFA), where the 
greedy approach is used for local searching improving convergence and efficiency of 
the firefly method for scheduling jobs in an IoT grid environment, showing its ben-
efits in obtaining makespans better and execution times lower than tabu search (TS), 
genetic algorithm (GA), and the standard firefly algorithm.

Greedy approaches are used for scheduling in high-performance computing sys-
tems. For instance, in paper [103] authors present an energy-aware greedy algorithm 
with particle swarm optimized parameters for scheduling malleable jobs (the num-
ber of servers/processors allocated can change over time). Job stretch times as well 
as average server power consumption are reduced (power offs are considered).

In paper [104], the minimization of makespan of workflow DAGs stemming from 
multifrontal factorizations of sparse matrices is considered. The authors propose a 
novel GreedyFilling 2-approximation heuristic and demonstrate (using synthetic and 
application workloads) that optimized variants and GreedyFilling outperform tradi-
tional algorithms. In work [105], the authors minimize parallel application execution 
time with an upper bound on the total power consumption of computational devices 
used in a heterogeneous cluster with multi-core CPUs and GPUs. For that, the prob-
lem of selection of the computational devices is considered, which can be general-
ized to the 0/1 knapsack problem for which, in real tests, a greedy approximation 
algorithm selection of successive elements for packing is used. Increasing speed-ups 
vs ideal and decreasing execution times for increasing power bounds are shown for a 
system with five distinct GPU models.

3.3 � Dynamic programming

Dynamic programming (DP) is an important algorithmic paradigm for solving com-
binatorial optimization problems to optimality. It requires a method for decompos-
ing a problem instance into independent sub-problem instances, storing and retriev-
ing solutions to sub-problems, and building solutions to larger problem instances 
from solutions to smaller problem instances. The space of partial solutions is 
constructed bottom-up so that each partial solution is computed only once. Some 
problems, where dynamic programming is applicable, include the knapsack prob-
lem, the matrix chain product problem, single-source shortest paths, the optimal tri-
angulation problem, and many others. The solution space is usually organized as 
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a multidimensional table. In contrast with exhaustive search or branch-and-bound 
approaches, dynamic programming algorithms determine a solution bottom-up, 
by building optimal solutions to larger sub-problems from already computed and 
stored optimal solutions to smaller sub-problems. The space of sub-problems and 
their solutions is typically organized as a multidimensional table.4 In contrast with 
an exhaustive search, DP may speed up the search for an optimal solution by orders 
of magnitude, at the expense of increased space requirements.

3.3.1 � Optimal code generation for instruction‑level parallel processors

Dynamic programming-based techniques have been used extensively in compilers 
for generating optimal target code (instruction selection, resource allocation, and 
instruction scheduling) for instruction-level parallel processor architectures (pipe-
lined, VLIW, EPIC, DSP), where the time and space requirements are accepted in 
cases where high code-quality (time, energy, size) is important, such as compil-
ing performance-critical DSP code. For example, DP-based instruction scheduling 
methods for instruction-level parallel architectures have been developed for acyclic 
code (basic blocks, extended basic blocks, traces) [106] and for loops, i.e., modulo 
scheduling [107].

More recently, however, the compiler back-end research community has mostly 
switched to integer linear programming  [108–112] and constraint program-
ming [113, 114] as the main technology for optimal code generation, in particular, 
due to their solvers becoming much more powerful during the last two decades (so 
that also realistic problem sizes can be solved to optimality) and their greater flex-
ibility in problem formulation (DSL and tool chain support). For certain types of 
problems and cases where the solution space to be constructed by DP is not exces-
sively large or can be folded by exploiting symmetries, DP might compete well 
with ILP/CP-based techniques performance-wise  [111]. Recent surveys of such 
approaches in target code generation can be found in [115] and [116].

3.3.2 � Dynamic programming for distributed processing

The dynamic programming approach is used for decision-making in fog environ-
ments where data should be processed (fog, cloud) [117], including the introduction 
of periodic randomization into offloading (fog, cloud) decisions of a dynamic pro-
gramming offloading algorithm [118]. In [119], it was used in the context of optimi-
zation of data encryption with consideration of timing constraints and energy costs. 
In the cloud resource and provider selection context, dynamic programming has 
been selected for the maximization of the total computing capacity of the selected 

4  Note that DP goes beyond a simple hashtable-based automated software cache memoizing results of 
the search function in an exhaustive search, in that the latter is constrained by the quality of the problem-
unaware hash function and that the usually depth-first construction order of exhaustive search is generally 
different from the usually breadth-first construction order applied in DP algorithms, which more likely 
avoids capacity misses.
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instance types subject to budget as well as instance types proportional constraints 
(specifying the required proportion of specific cloud instance types) [120].

3.4 � Nature‑inspired optimization algorithms

3.4.1 � Genetic algorithms (GA)

In paper [121], several algorithms were investigated for workflow scheduling assum-
ing potential failures of services. Specifically, before a workflow is to be executed, 
services are selected optimizing a global criterion involving specific resources, as 
mentioned in Sect. 3.2. However, when the workflow is executed, some of the previ-
ously selected services might have become unavailable or might fail, which results 
in the need for workflow rescheduling, taking into account the already executed ser-
vices and their contribution to the workflow execution time, cost, etc. Rerunning a 
scheduling algorithm can be costly. The paper compares approaches such as inte-
ger linear programming (ILP) formulation, divide-and-conquer approach partition-
ing the workflow into subgraphs and using, e.g., ILP, genetic algorithm (GA), and 
heuristic GAIN starting with a valid solution substituting services for optimized 
schedules. Out of the proposed solutions, GA appeared to be the slowest one. On 
the other hand, it has advantages such as no need for configuration (optimizing the 
starting solution can speed it up considerably) and the possibility to use nonlinear 
constraints and optimization goals.

Generally, GAs are often used for scheduling such as for HPC systems [11], spe-
cifically under power constraints which is of interest to the HPC community, data 
center optimization and maintenance [12], also cloud systems in which HPC work-
loads might be run [122], scheduling workflows in the cloud systems [13]. An inter-
esting use case is using GAs for performance tuning of an HPC benchmark [123].

3.4.2 � Particle swarm optimization (PSO)

Particle swarm optimization (PSO) mimics the movement of organisms in a bird 
flock or fish school to solve an optimization problem by having a population of can-
didate solutions, i.e., particles, and moving these particles in the search space based 
on a mathematical formula formed by the particle’s position ( xk ) and velocity ( vk
) [14]:

where c1 and c2 are constants, r1 and r2 are normal distributions within the range of 
[0,1], wk is called an inertia weight to adjust the search ability of the solution space, 
pbest represents the best position obtained by the ith particle since the beginning 
(particle best), and gbest is the best position of all the particles (global best).
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Pandey et al. [15] present a PSO-based heuristic algorithm to schedule tasks of an 
application workflow to cloud resources by considering computation and data transmis-
sion cost. The particles represent tasks in the application workflow (represented by a 
directed acyclic graph) and compute nodes (processors) assigned for the execution of 
those tasks. The algorithm utilizes three main data structures: task processor execution 
cost (TP), cost of communication between processor pairs (PP), and input/output size 
of each task (DS), and solves the scheduling problem by a basic PSO method.

Gill et al. [16] extend the resource scheduling by taking into account execution cost, 
time, and energy consumption as well as quality of service (QoS) parameters including 
availability, reliability, and resource utilization. The authors present a set of test cases 
that perform pair-wise comparisons to evaluate the impact on the constraints.

Potu et  al. [17] propose an extended particle swarm optimization (EPSO) algo-
rithm with an extra gradient method to optimize the task scheduling problem in 
cloud–fog environments by considering resource utilization, response time, and latency 
constraints.

There have been other swarm intelligence algorithms inspired by different species 
to tackle optimization problems [124, 125]. While they present valid metaphors based 
on population behaviors and evaluate mathematical models, most of them lack novelty 
and can be seen as a form of PSO [126]. Therefore, we prefer not to include them in our 
paper.

3.4.3 � Ant colony optimization (ACO)

Ant colony optimization (ACO) is a metaheuristic algorithm inspired by the phero-
mone tracking of the ants to reach the desired destination [18, 127].

Kumar and Venkatesan [128] present a hybrid genetic algorithm–ant colony opti-
mization (HGA-ACO) for multi-objective task allocation problems in a cloud envi-
ronment. The authors propose a utility-based scheduler that identifies the task order 
and appropriate cloud resources by considering response time, completion time, and 
throughput objectives formulated as follows:

where T is total time for execution, subti is submission time, wti is waiting time, sti 
is starting time of task execution on resource r, fti is finishing time of task execution 
on resource r, sucsi are completed tasks, RTir is response time of task i on resource r, 

(15)RTir =

M∑
i=1

subti + wti, 1 ≤ i ≤ M, 1 ≤ r ≤ k

(16)ETir =

M∑
i=1

fti − sti, 1 ≤ i ≤ M, 1 ≤ r ≤ k

(17)Thir =

M∑
i=1

sucsi∕T , 1 ≤ i ≤ M, 1 ≤ r ≤ k
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ETir is completion time of task i on resource r while Thir denotes throughput of the 
resource r.

Jia et  al. [129] propose a scheduling system for cloud workflows based on an 
adaptive ACO algorithm. The system consists of four main components including an 
estimation module, scheduling module, reservation module, and execution module. 
The estimation module presents a task execution time estimation model by consider-
ing both CPU computation and memory access of parts of the tasks. For the CPU 
computation part, the degree of parallelism and the speed-up of a task are utilized, 
while the memory access part is estimated by considering the relationship between 
memory size and the upper bound of memory demand. Overall execution time is 
calculated with the following formula:

where tsi is the task size, pti is the percentage of data processing time of the task, 
sc is the scale of memory size to execution time, ubi is the upper bound of memory 
demand, msj is the memory size of VM, cnj is the computing capacity of virtual 
CPUs in VM, dpi is the max degree of parallelism of the task, sui is the speed-up of 
the task, degk is the performance degradation of the VM instance.

With the estimated execution times, the scheduling module finds a scheduling for 
the tasks based on the following problem definition:

where TC is the total cost, TT is the total execution time, LST is the lease start time 
of a VM instance (when it first receives a task), LET is the lease end time (when it 
finishes the last task scheduled onto it), � is the unit time to lease a VM, up is the 
unit price of VM.

After getting a near-optimal schedule, the scheduling module sends the VM 
requirements to the reservation module and gives the execution scenario to the exe-
cution module.

3.5 � Game theory

Game theory (GT) dates from nineteenth century, while the modern game theory 
is over 70 years old. Still, it is very popular and widely applied in a real life. It 
observes real-life situations as games [130].

Players make decisions in a game taking into account the situation, rules, and 
consequences. In this setup, a player may be any entity with the interest of the 
result of the game. Each player (there will be at least two of them) aims for an opti-
mal decision in the observed situation, independently of other players, taking into 
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account payoffs. In this sense, game theory may be observed as a discipline that 
explores optimization strategies. Furthermore, game theory is based on mathemat-
ical modeling theory and provides a theoretical and formal problem and solution 
description.

Observing the optimization in a game, a significant situation of interest for the 
game theory is when players made a decision (move) and the outcome is clear. This 
situation is called Equilibrium. At the equilibrium point, there is a tendency to mini-
mization of the players’ regrets. The happiest scenario for all players in a game is 
called Nash equilibrium or no-regret situation [131].

There are various categorization of games, while the primary one is to coop-
erative and non-cooperative games. In a cooperative game, groups of entities may 
appear as players where group modeling may play an additional role (e.g., Shapley 
Value defines a fair distribution among group or coalition members [132]), but each 
group is observed as a single player. Non-cooperative games involve only individual 
players.

Another categorization is to zero-sum and non-zero-sum games. In zero-sum 
games, resources are exchanged between players without changing its value. This 
means that if a player wins resources of a particular value, the other players will 
loose in total the same value of the resources. In simultaneous move game, a player 
will adapt decisions simultaneously based on the situation that changes between 
moves, while in a sequential game, a player can plan in advance own moves and 
moves of other players and make strategic path of moves in the game. Finally, a 
game may be played as one-shot game without a possibility to repeat some moves or 
may be repeated while the outcome changes due to in-process learning by players.

There exist also different game strategies in Game Theory: a strategy that aims 
for maximizing the payoff risking to loose everything (maximax strategy), a strategy 
that aims to lower the risk by taking lower payoffs and trying to maximize the pay 
of from so-selected moves (maximin), etc. However, there are even hybrid strategies 
that combine two or more basic ones.

Game theory is often a natural choice for dealing with trade-offs, optimization, 
and management in resource utilization in a broadest sense  [133, 134], as well as 
in system engineering [135, 136] and large distributed systems in the most general 
sense  [137, 138], while dedicated contribution focuses on more specific domains 
such as cloud computing [139], Internet of Things (IoT) [140], or cellular [141] and 
wireless networks [142]. Number and diversity of problem and solution models con-
stitute a large and still open research and application area.

While above referred surveys and reviews provide a big picture about the space 
game theory covers, we can illustrate its application by some illustrative cases. 
In [20], authors consider renewable energy for utilization by cloud data centers. In 
a smart grid cloud architecture, authors investigate the grid power dispatching to 
cloud data centers. The main grid power dispatching to cloud data centers is mod-
eled as a non-cooperative game and used for calculation of optimal level of power to 
be delivered to each data center.

In paper [19], authors employ game theory-based virtual machine migration with 
PSO for energy sustainability in cloud data centers, minimizing energy consumption 
while using renewable energy. Another cloud-related game-based solution [143] is 
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focused on task scheduling for energy management in cloud computing. Authors 
provide scheduling algorithm based on game theory model.

Another usage of non-cooperative games is applied for computing unloading 
strategy of massive IoT devices in mobile edge computing  [144]. A cooperative 
game model is applied in [145] for selecting energy-efficient access points for sen-
sors in the Internet of Things. Another cooperative approach is applied in [146] for 
coalition creation based intelligent three-level structure toward the maximizing the 
profit from cooperation with other resources. In paper [147], authors incorporated a 
game theory approach for detecting vulnerable data centers in cloud computing net-
work. In the context of high-performance computing, the authors of paper [23] used 
a game theory-based solution to minimization of the energy consumption and the 
makespan of computationally intensive workloads in power-aware scheduling and 
mapping of tasks onto heterogeneous and homogeneous multi-core systems. The 
problem was formulated as a cooperate game.

In paper  [148], authors use game theory to study the behavior of agents in a 
volunteer computing system. They assume that providers of computations arrive 
and depart and offer power in return for rewards. The authors model and analyze 
a stochastic game and conclude that in case of a large number of volunteers and a 
homogeneous system the system is stable and the total power received by the central 
server is proportional to the offered reward. Studying the arrival and departure rates 
and system parameters, they observe that players maximize their utilities when the 
average number of players present in the system is typically between 1 and 2 which 
corresponds to smallest competition.

A game model that is often applied in resource management is Stackelberg game. 
This is a sequential model where there are two types of players: leaders and follow-
ers. Leaders are trying to maximize profit first. Followers are following the leader 
and trying to maximize their own profit. Stackelberg model is used in [149] to deal 
with resource allocation and pricing issues in a mobile edge computing system. The 
solution decomposes multiple resource allocation and pricing problem into a set of 
sub-problems, each of which only considers a single resource type. In this model, 
mobile edge cloud is modeled as a leaders and end users are followers. Stackelberg 
games are used also to manage task scheduling in edge computing [150], but in this 
case as a repeated game. In the Stackelberg model, users are modeled as short-term 
leaders and edge service provider are long-term followers. Two-layer resource allo-
cation Stackelberg model aimed to provide high quality of services while balancing 
the benefit requirements of all participants in the cloud network convergence service 
system. Stackelberg game on the second level includes a cloud-edge sub-game and 
an edge-end sub-game [151].

Another very applicable game theory is evolutionary game theory (see the sur-
vey for the applications [152]). Behavioral processes involve interaction of multiple 
players, and the profit (payoff) of any one of these players depends on how its behav-
ior (strategy) interacts the of others. So it is impossible to observe players individu-
ally but rather as a part of population in which they live. Specifically, population 
members do not necessarily reason or even make explicit decisions.

Matching theory is a model among mutually related entities in a beneficial inter-
action  [153]. The matching theory assigns a set of entities to one another while 
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satisfying the preferences of entities [154]. The resource allocation problem is rep-
resented in a cloud computing distributed system as a matching game (MG) using 
two sets of players: workflow tasks and resources in the cloud or fog. The game aims 
to match each resource to a task. The result is a bilateral resource allocation agree-
ment representing the players’ preferences over each other. A valid matching is sta-
ble if it satisfies the properties of a one-to-one MG [155, 156]: Each task is allocated 
to exactly one resource, a resource can execute just one task. The matching does 
not contain blocking pairs of tasks and resources that prefer matching to each other 
rather than their current assignments [29].

Additionally, Sharghivand et al. [21, 157] utilized the MG and designed a sched-
uler for data analytics tasks execution at the edge based on the device and applica-
tion preferences toward lower response time and cost. This method is just proposed 
for the edge and fog computing environment.

In addition, Mehran et al. [22] proposed an MG-based method, named C3-Match, 
for scheduling asynchronous data processing applications in the computing environ-
ment. Thereafter, C3-Match is evaluated and compared with other workflow sched-
uling methods in terms of application execution and data transmission times on the 
C3 cloud and fog computing environments [158].

The complex nature of game theory allows extending its theory and application 
by involving other disciplines and approaches such as reinforcement learning [137], 
see also Sect. 3.6.

3.6 � Reinforcement learning

Reinforcement learning (RL) has been identified as an approach that, on the one 
hand, is a modern machine learning paradigm, and on the other, it has already been 
proposed to optimize processing in all the considered contexts/domains, as will be 
shown next.

Acting along supervised and unsupervised learning, in the RL approach an agent 
performs actions to maximize a cumulative reward. In essence, the process is to 
find a trade-off/balance between already gained knowledge and exploration of an 
unknown space.

As an example, this approach has been used for the problem of workload opti-
mization among data centers in which incoming workloads are managed among 
servers considering the limited variation in energy that can be supplied from fuel 
cells [24]. In this approach, deep Q-learning is used and evaluated positively using 
real-time traces. Deep reinforcement learning (DRL) combining deep neural net-
works (DNNs) and RL has been reviewed as a modern approach to scheduling in 
cloud environments  [159]. Several RL-based algorithms have been reviewed with 
objectives: response time, cost, energy consumption, service latency, load balanc-
ing, makespan, etc. It has been argued that DRL-based algorithms have been mainly 
tested in laboratory environments and several challenges need to be faced for those 
to be used in large-scale cloud environments including the large computational 
power required to train for multi-cluster large systems, difficult-to-assess worst-case 
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results and additionally the problem of unexplainability, specifics of solutions lead-
ing to local rather than global optimization.

DRL is also used for the placement of application components in a distributed fog 
environment [25]. Specifically, IoT, edge, and cloud layers are distinguished, the last 
two forming the fog computing environment. On the application (input) side, there 
are several IoT applications, each of which is assumed to be a DAG with processing 
requirements on the graph node and data sizes assumed for internode transfers. It is 
further assumed that each DAG’s node, i.e., a task, can be executed locally (on an 
IoT device) or relegated for execution on the fog side. Various execution and optimi-
zation models can be distinguished, specifically a weighted cost one in which there 
is minimization of weighted execution time and energy consumption of tasks of IoT 
applications. The energy of components executed on the IoT side only is considered. 
X-DDRL (based on an actor-critic framework) is used to solve the problem with 
a pre-scheduling phase (tasks are ranked and sorted for execution) and placement 
phase. DNNs are used by both the actor and the critic as the function approximator 
means. It has been shown through simulations and testbed experiments that the solu-
tion outperforms greedy, Double-DQN, PPO-RNN, and PPO-No-RNN for execution 
time, energy, and weighted cost optimization.

In the context of high-performance computing, software for job cluster schedul-
ing using reinforcement learning has been proposed. In [26], the authors presented 
DRAS-CQSim—a solution with deep reinforcement learning for scheduling that 
allows automatic learning of the customized scheduling policies. Deep reinforce-
ment agent for scheduling (DRAS) cooperates with the CQSim simulator that reads 
job arrival events from a job log. Deep q-learning and policy gradient can be used.

Learning the dynamism of events such as gaining back control of computers 
in a volunteer computing environment can also be dealt with in RL, as proposed 
in [160]. The authors considered an RL approach aiming at learning which resource 
to schedule a job, or for the job to remain in the queue considering energy and over-
head. Several levels of resources can be considered including computer (hours), 
cluster (several clusters, including taking into consideration weekdays), and system 
(either running or staying in the queue). The authors tested the impact of explora-
tion vs exploitation and concluded that the cluster approach with � = 0.1 and � = 0.8 
performs the best saving between 30% and 53% of energy, depending on overheads.

Tu et al. [27] designed a method based on DRL to predict task dynamic informa-
tion in real time based on the observed fog network status and the server load.

Additionally, it shall be noted that very recently federated learning (FL) and RL 
were used together for resource allocation. For instance, in paper  [161], authors 
aimed maximization of the network spectrum energy efficiency and combined fed-
erated learning and deep reinforcement learning. They proposed an asynchronous 
federated learning framework with local model training and the client–server archi-
tecture. They demonstrated usefulness of the approach for an Internet of vehicles 
environment. A meta-federated reinforcement learning framework was proposed 
in paper  [162] for the problem of distributed resource allocation aiming at maxi-
mization of energy efficiency while ensuring quality of service for users. Local 
users optimize transmit power and assign channels using neural network models 
trained locally. Authors demonstrated that the approach outperforms the traditional 
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decentralized reinforcement learning in terms of the optimization goal and conver-
gence speed.

3.7 � Summary and conclusion

This section explores various problem formulations used in resource-aware opti-
mization for parallel and distributed computing. In particular, we describe integer 
linear programming (ILP), a robust method for modeling and solving combinato-
rial optimization problems. Applications of ILP, such as workflow scheduling and 
energy-efficient crown scheduling, demonstrate its versatility in optimizing perfor-
mance, energy, and cost in diverse contexts like cloud and edge computing. Sub-
sequently, we also discuss other techniques, including greedy algorithms, which 
are efficient for certain scheduling problems but may yield suboptimal results in 
complex scenarios. Dynamic programming is presented as a powerful approach 
for solving problems to optimality by building solutions incrementally, especially 
in resource allocation and task scheduling. Nature-inspired algorithms like genetic 
algorithms, particle swarm optimization, and ant colony optimization are empha-
sized for their adaptability in dynamic and multi-objective optimization problems. 
The section concludes with methods like game theory and reinforcement learning, 
which provide innovative solutions for resource allocation and workload optimiza-
tion in distributed systems.

In conclusion, the section provides a comprehensive overview of optimization 
techniques, illustrating their strengths and trade-offs. These methods, tailored to spe-
cific scenarios, enable efficient resource management in distributed computing envi-
ronments. The diversity of approaches ensures adaptability to various challenges, 
paving the way for more refined and scalable solutions in the field.

4 � Resource‑aware applications in various domains

Parallel and distributed computing is required by several applications and is present 
in different computing system domains. Figure 6 illustrates the architectures of the 
computing domains. The Data Center (DC) is the lowest level computing layer and 
is present in all other distributed architectures. It refers to centralizing the comput-
ing resources in a single room/building with several levels of availability, reliabil-
ity, security, energy supply, cooling, and other important infrastructure aspects to 
deliver working guarantees, close to being 100% online 24 h per day. The optimiza-
tion challenges are concentrated on hardware management and power systems.

The cloud computing architectures build upon data center infrastructures that 
can be, or are not, geographically distributed. The virtualization technology enables 
abstract hardware and allows hardware sharing to multi-tenants. However, it has per-
formance degradation due to the software abstraction layer. Optimizations are cru-
cial to avoid SLA violations and to achieve QoS. The challenges in this architecture 
domain are many, which are from virtual machine (VM) placement to resource con-
solidation and isolation.
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The HPC architectures also build upon a data center infrastructure, usually 
with few hardware optimizations (e.g., memory, storage, network, and comput-
ing). Unlike cloud architectures, they are designed for a specific set of applica-
tions and specialized users that interact with a job management system (e.g., 
Torque and Slurm). Jobs are not expected to share the same hardware since it is 
expected that the application is optimized to fully utilize the computing resources. 
The optimization challenges are broad, transcending the job management systems 
and going beyond the inherent parallelism exploitation challenges.

The volunteer computing architecture has decentralized and heterogeneous 
computer resources interconnected via the Internet, which usually has less secu-
rity, network bandwidth, and reliability than data center networks. Implementing 
optimizations in this environment is important and challenging at the same time. 
There are several middlewares used to manage these computing resources for 
applications that must be designed for such kinds of architectures. The optimiza-
tions in the middleware are most related to resource scheduling while application 
optimizations focus on parallelism exploitation on the volunteer hardware.

Fig. 6   Distributed computing architecture domains
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The fog architecture can be layered in three levels: an IoT layer, where small com-
puting resources are placed, a fog layer, where more robust computer resources are 
placed close to the edge, and a data center layer, where complex computation and 
big data storage are performed. Fog computing was introduced to avoid unnecessary 
data being transferred via the Internet and to improve latency in several applications. 
The resource optimization challenges may be applied in the three layers since the 
architecture and its applications are built with this layered infrastructure in mind. 
For instance, it is a challenge to improve communication and resource provisioning.

The blockchain is one of the most recently adopted distributed ledger technolo-
gies within the ICT domain. The balance point among scalability, security, and 
decentralization has been researched for decades. The main challenge in Blockchain-
based distributed systems is the lack of a central entity (e.g., TTP, PKI, Leader, etc.) 
that controls data flow and information security within the system. Among tens of 
reported design decisions, concerned about achieving suitable blockchain-based 
solutions for different applications, is the level of decentralization a given applica-
tion can tolerate to maintain its security and meet scalability requirements.

4.1 � Data centers

To integrate the DC with the smart grid, all the energy-consuming subsystems are 
represented and abstracted for dynamic control. Thus, besides the workload sched-
uling on servers, which is the heart of cloud computing, cooling system operation 
control and energy storage devices are considered [163–165] to define methodolo-
gies to allow the DC integrating energy marketplaces on day-ahead and intraday ses-
sions, as well as to provide ancillary services, and which are based on predictions at 
various granularities that estimate the DC operation over a time window equivalent 
of the marketplace session. Thus, the optimization problem becomes very complex 
due to the introduction of the time component, which increases the number of vari-
ables. Approaches such as [166] use a genetic heuristic to compute an approximate 
scheduling plan of the problem, while other methods use mathematical solvers to 
determine a solution to the scheduling problem, such as [167] used in [168].

The DC operation scheduling problems for electrical energy efficiency contain 
models for discrete and continuous systems whose operation has to be scheduled 
over a time window, thus increasing the complexity of the models and leading to 
problems of class MINLP that sometimes can be relaxed to NLP by eliminating 
integer variables or PINLP, by discretizing the entire system.

Thermal-aware workload scheduling adds a new constraint to the optimization 
problem defined for server consolidation and dynamic server allocation problem 
by introducing the thermal map of the server room and aiming to minimize the 
hot spot temperatures. One of the first approaches for thermal efficiency in a DC 
is presented in [169]. The authors describe a workload scheduling algorithm that 
considers the temperatures of the servers when scheduling workload and promises 
a drop of 25% in cooling costs. Moreover, a complex thermodynamic model of the 
server room that defines the connection between the server’s exhaust, inlets, and 
cooling system is proposed in [170]. The model is less computationally expensive 
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than a CFD simulation for determining temperatures in case of a thermal-aware 
workload scheduling policy. In  [171] and  [172], the DC model is defined in a 
complex manner by adding an energy storage device for both electrical and ther-
mal energy and proposing a set of different policies and algorithms for shaving 
power peaks and reducing overall DC energy costs that are presented. Other 
approaches for thermal-aware scheduling are presented in [173–175], and [176], 
where the authors present various algorithms and policies for VM placement con-
sidering thermal constraints. [177] describes a VM placing algorithm that consid-
ers the server room temperatures, while [178] proposes an optimization problem 
based on a thermodynamic model that merges energy footprint reduction with 
thermal exchanges. Finally, [179] proposes a thermal-aware VM consolidation 
mechanism that uses the heat recirculation matrix defined in  [170] and a set of 
bio-inspired algorithms to compute the optimum assignment of tasks that mini-
mizes overall DC energy consumption.

The DC operation scheduling problems for thermal energy efficiency add an 
extra layer of complexity from a mathematical point of view due to many variables 
and nonlinear equations due to the representation of the thermodynamics processes 
within the server room. Furthermore, some approaches leverage simulators, such as 
Computational Fluid Dynamics (CFD) engines, that define a function for tempera-
ture estimation but cannot be included in traditional solvers. Even if there is MINLP, 
some problems of this class have equations defined as Black Boxes that make them 
extremely difficult to solve.

Finally, the latest trend in the DC industry is to transform DCs into thermal 
energy producers by harvesting the thermal energy generated by the IT equipment, 
raising its temperature using heat pumps, and injecting it into the district heating 
network. Dharkar et al. [180] propose such a system for the data center of the math-
ematics department at the Purdue University, a large data center that has an hourly 
consumption of about 1MWh. Houbak-Jensen et  al. [181] propose a model of a 
heat reuse system composed of a heat pump and thermal tanks as energy buffers to 
increase the system inertia. A set of feasibility studies for data center heat reuse in 
Norden Europe is performed by [182] and [183]. Finally, Antal et al. [184] propose 
a workload placement strategy to maximize the heat reuse potential of the DC, by 
slowly raising the temperature in the IT room while keeping it in operable thresh-
olds. The thermodynamic model is based on a neural network trained using CFD 
simulations, leading to a high-complexity optimization problem solved using genetic 
algorithms, since conventional solvers could not model the problem and determine 
a solution.

Approaches for resource allocation problems for DC heat reuse can be character-
ized by the complexity due to the thermal models used to estimate the heat reuse 
capabilities and temperatures in the server room. These models must be simple 
enough to allow fast calculation and complex enough to provide enough accuracy 
to avoid equipment malfunction due to high temperatures. Thus, many approaches 
rely on machine learning techniques to estimate temperatures due to workload place-
ment, leading to complex mathematical problems with equations defined as black 
boxes. Thus, classical algorithms that rely on differentiation and gradient cannot be 
applied, and relaxations or heuristics are used to solve the scheduling problems.
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In the context of data centers, the dynamic programming approach has been 
found to be a viable approach for the optimization of several resources, for instance, 
energy cost, delay cost (reflecting service quality), and switching cost (in the context 
of servers’ active/idle mode) in  [185] considering off-line and online approaches; 
reliability, availability, cost [186]; communication latency, fault-tolerance, and CPU 
usage in the context of routing in large-scale data centers [187]; saving energy and 
cutting emmissions [30].

4.2 � Cloud computing

Cloud computing is a heterogeneous environment that abstracts an enormous 
hardware and software ecosystem and provides users a potentially infinite pool of 
resources. It is divided into several service models (e.g., IaaS, PaaS, SaaS, and oth-
ers) and deployment models (private, public, hybrid, and community)  [188, 189]. 
We classify resource allocation techniques on two levels: (i) physical resource 
management and (ii) workflow management–related to software resource planning 
and allocation. While physical resource allocation is managed by IaaS tools [190], 
workflow management is managed by PaaS or SaaS tools [31]. Moreover, different 
deployment models may also impact how resource allocation strategies and algo-
rithms are designed.

To begin with, we classify the physical resource allocation in server consolida-
tion techniques, VM allocation and Dynamic Server Allocation Problem. The server 
consolidation aims to minimize the DC energy demand by determining an optimum 
allocation of tasks or VMs such that the number of active servers is minimized. 
Other constraints of the problem aim to minimize the number of migrations and 
to maintain the SLA and QoS of the services  [191]. The selection of the servers 
that remain active is done based on various resource constraints, such as CPU and 
RAM [192], SLA [193], timing constraints [194], maximum bandwidth [191], and 
last but not least network related constraints presented in [195].

It can be shown that the problem of allocation of VMs to the servers by the con-
straints presented above (CPU, RAM, bandwidth, etc.) is an NP problem. This can 
be proved by performing a problem reduction to the bin-packing problem  [196]. 
Consequently, the deterministic algorithms cannot run for large configurations of 
DCs. The research was focused on enhancing VM consolidation by developing heu-
ristics and approximation algorithms to replace the first fit decreasing approach used 
by the first consolidation systems [197–199] and [200].

The dynamic server allocation problem (DSAP)  [201] represents a well-known 
proactive optimization technique that aims to plan the DC server operation over a 
time period in the future by planning the workload deployment carefully, so that 
when a set of tasks is finished, they free a set of servers that can be turned off with-
out performing further migrations. One of the initial solutions to the problem is 
presented in [201]. Similar approaches that use workload forecasting techniques to 
enforce proactive scheduling are presented in  [202, 203], and  [204]. Furthermore, 
the authors of [203] represent the optimization problem as a mixed integer nonlinear 
problem for scheduling server workload over a time interval. This DSAP class of 
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scheduling problems is more complex than the server consolidation technique, most 
of the approaches being classified as MINLP since a continuous dimension of time 
is added to the classical resource allocation problem. However, by discretizing the 
time and considering linear models for servers, a relaxed version of the problem 
can be represented as ILP. Secondly, an important part of cloud management is rep-
resented by workflow management. Workflows are coarse-grained parallel applica-
tions that consist of a series of computational tasks logically connected by data and 
control flow dependencies. Workflow applications are commonly represented as a 
directed acyclic graph. There are several classes of workflow scheduling techniques, 
in the state of the art, for cloud resources. The first class of workflow scheduling is 
based on the PSO algorithm to determine an optimal task allocation of resources. 
A PSO-based heuristic that considers both computation cost and data transmission 
cost is used to schedule applications to cloud resources in [15]. Another workflow 
scheduling for cloud resources is presented in [205], where the authors use a PSO 
algorithm to assist cloud users in selecting the optimal operating frequency of the 
VM CPUs considering task makespan, data dependencies, and prices. Sellami et al. 
[206] use a variant of the PSO, aiming to implement a workflow scheduling tech-
nique using a combined chaotic PSO that integrates a model for the dynamic voltage 
scaling (DVS) technique. The proposed solution is validated using a complex work-
flow application, showing promising results. A more complex approach is presented 
in [207], where the authors tackle a multi-objective optimization problem for scien-
tific workflow scheduling by proposing an improved multi-objective discrete particle 
swarm optimization (IMODPSO) algorithm. Their approach has several novelties, 
such as a strategy for velocity limitation for particles, discrete particle positioning, 
Gaussian-based mutation for position update, and Pareto optimal convergence. The 
authors validate their approach by comparing it with three state-of-the-art algo-
rithms. Furthermore, Awad et al. [208] propose the load balancing mutation particle 
swarm optimization (LBMPSO) technique for cloud computing workflow sched-
uling. Their approach is derived from PSO, adding constraints for task reliability, 
execution time, transmission time, round trip time, and makespan of tasks. Another 
class of workflow scheduling techniques is based on the Partitioned balanced time 
scheduling (PBTS) heuristic  [209], which can compute an approximate resource 
pool for executing a workflow in a given deadline. Furthermore, the PBTS heu-
ristic can handle elastic resource provisioning and be used with Amazon EC2 and 
MapReduce. Furthermore, a novel technique aiming to minimize the workflow cost 
while meeting a deadline for execution uses partial critical paths (PCP). Abrishami 
et al. [210] propose a PCP-based approach for grids, using a two-phase algorithm. 
The first phase adds sub-deadlines recursively to the tasks from the partial critical 
paths, while the second phase assigns a service with the lowest cost to each task. 
The authors’ work is extended in [211], where they propose a Budget-PCP, aiming 
to create a workflow scheduling within a given budget. Both approaches are evalu-
ated on various simulations showing promising results. Abrishami and Naghibza-
deh [212] propose a QoS-aware workflow scheduling using PCP-based techniques. 
Their solution uses a recursive strategy to schedule the critical path while minimiz-
ing the workflow cost with the constraint of meeting the deadline. Another critical 
path-based workflow scheduling is proposed by [213], where the authors propose a 
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set of heuristics based on greedy techniques to determine optimal and valid work-
flows with critical paths. Finally, unsupervised machine learning techniques, such 
as K-Means clustering, can be used for workflow scheduling. This approach is pre-
sented in [214], where the authors propose a methodology for efficient resource allo-
cation using VM clustering with the K-Means algorithm. Using this machine learn-
ing technique, the VMs are clustered and classified according to their similarity, 
leading to a more efficient resource allocation. Moreover, Sharma and Bala [215] 
proposed a modified K-means clustering to classify cloudlets and VMs in classes, 
considering parameters such as task length, priority, deadline, and cost. Using the 
classification, a scheduling algorithm is proposed and tested using CloudSim.

4.3 � Data center sustainability and green computing

Data centers (DCs) and implicitly cloud computing are becoming a constant pres-
ence in modern society, being irreplaceable for a set of services they offer for cus-
tomers, both individuals and companies. Their services extend due to technologi-
cal progress in wireless and mobile networking as well as portable devices and IoT, 
leading to new types of computing, such as fog computing or edge computing, that 
bring the services closer to the user to enhance latency, scalability or user experi-
ence [216]. All this comes with a great cost, both from energy perspective and com-
puting equipment waste.

To begin with, from energy consumption perspective, DCs are accountable for 
approximately 1.3% of global electricity demand [217], an estimated 240 and 340 
terawatt-hours (TWh). This figure excludes energy used for cryptocurrency min-
ing, which was estimated to be around 110 TWh in 2022 [217]. These numbers are 
expected to rise up to 3000 TWh in 2030 [218], especially considering new advances 
in AI and the need for more powerful DCs equipped with GPUs to train new AI 
models. Furthermore, the big tech companies own huge DCs, Microsoft alone own-
ing over 160 DCs in the world, while one of its largest DCs, located in Chicago, has 
more than 300.000 servers that consume 23.5% of electric power generated by coal 
in the USA [219].

To tackle these problems, green computing aims to reduce the energy foot-
print of data centers by applying various techniques both on hardware and on 
software [216, 220] that are further classified in VM consolidation, power-aware 
techniques, cooling optimization techniques, etc. [219]. While VM consolidation 
is strictly connected to cloud computing, other techniques can be applied to any 
type of DC, even if it does not have virtualization. Modern DCs are designed 
to improve energy consumption by an efficient design [221], considering special 
equipment for data center air management, cooling and electrical systems, and 
heat recovery. As cooling systems are the second largest energy consumer in DCs, 
and the largest waste energy consumer, optimization techniques are employed for 
smart control and management. Latest optimization techniques are based on AI 
data-driven models that can obtain better results than classical simulation-based 
methods, such as computational fluid dynamics [222]. Thus, we can mention AI-
based optimization approaches for air-cooled system management  [223] based 
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on SVM to predict and regulate cooling needs more efficiently. The proposed 
model achieves an accuracy of 82% in predicting a real system evolution. Another 
more complex approach is presented in  [224], where authors use TCN-BiGRU-
Attention-based thermal prediction models to optimize cooling in hybrid-cooled 
data centers. The method developed by them balances energy consumption and 
cooling effectiveness by predicting temperature changes and adjusting cooling 
power dynamically. Finally, the authors present a set of numerical experiments 
using real data traces, showing that the proposed multi-objective cooling control 
optimization reduces cooling energy consumption in summer and winter while 
maintaining the rack cooling index above 95%. Furthermore, AI based is also 
employed on server and workload for sustainability goals, the authors of  [225] 
investigating advanced strategies for resource allocation in cloud environments 
aiming energy efficient. Their study emphasizes predictive analytics, AI-driven 
algorithms, and dynamic scaling techniques, showing that large cloud providers, 
such as Microsoft, Google and Amazon, mainly use techniques such as AI-man-
aged resource allocation, AI-based cooling system optimization, and integration 
with photovoltaic power plants. Among the algorithms used for energy efficiency, 
they mention that Google uses reinforcement learning for workload scheduling, 
Microsoft uses Deep Neural Networks for workload prediction, and Amazon uses 
decision trees for resource provisioning and planned maintenance.

Secondly, considering waste recovery, there are several directions to improve 
DC sustainability: Circular Economy Practices  [226], Reusing and Refurbishing 
IT Equipment  [227], and Innovative Waste Management Solutions for water and 
residual heat [228]. To begin with, DCs are adopting circular economy principles, 
which emphasize reusing, refurbishing, and recycling IT equipment to extend their 
lifecycle, reduce e-waste, conserve resources, and lower operational costs. Compa-
nies often partner with specialized recycling firms to ensure responsible disposal 
of obsolete equipment. A relevant example from industry are Microsoft DCs Cir-
cular Centers [229] that process 12.000 decommissioned servers each month, aim-
ing to extract useful components so that more than 90% of the spare parts to be 
re-used, either inside the company or sold to other beneficiaries. To increase sustain-
ability, Microsoft also increased the lifetime of IT equipment within DCs from 4 
to 6 years. Besides physical equipment waste, or e-waste, DCs are also responsible 
for wasting water used for cooling and wasting residual heat from the cooling sys-
tem. Thus, DCs are exploring the use of treated wastewater for cooling purposes, 
which reduces the strain on local water resources and supports broader water con-
servation efforts  [228]. Furthermore, as DCs generate substantial amounts of heat 
as a byproduct of their operations, innovative solutions aim to redirect it to support 
local agriculture and heating systems. For instance, several data centers in Northern 
Europe have successfully implemented district heating solutions, channeling waste 
heat to nearby residential and commercial buildings, using heat pumps, absorption 
chillers, or heat exchangers  [230]. Cities such as Stockholm and Helsinki use DC 
heat to warm nearby homes and businesses, providing a model that can be repli-
cated in other regions. Moreover, waste heat is used to warm greenhouses, reducing 
the need for external energy sources to have year-round crop production. [231]. A 
recent example of heat reuse is Paris Olympics 2024, when heat from an Equinix 
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data center was repurposed to warm swimming facilities, showcasing the practical 
application of heat reuse in large-scale events [232].

Last but not least, a critical feature regarding DC energy efficiency and sustain-
ability is the actual geographical location  [233]. This has implications for several 
sustainability aspects. To begin with, energy costs are influenced by regions with 
deregulated energy markets which may offer lower energy costs compared to those 
with regulated markets. Secondly, access to renewable energy sources is crucial for 
data centers aiming to reduce their carbon footprint, thus favoring geographic loca-
tion with plenty of renewable energy options such as hydro power, solar, and wind 
energy. Finally, the climate has also a great impact on energy efficiency, especially 
from cooling system perspective, thus regions with colder climate being more suited 
for DC construction. Besides these, transmission lines also have impact on DC 
energy efficiency and reliability [234], line length influencing directly energy losses, 
thus DC construction near power plants reducing energy losses. Furthermore, DCs 
usually need at least two transmission lines for redundancy and access to renewable 
power plants for lowering carbon emissions. However, these geographical criteria 
are trade-offs when considering DC service quality, SLAs, and latency, especially 
because favorable regions for energy-efficient DC construction are isolated and far 
from human-dense populated regions that need DC services. Thus, big tech com-
panies build their own networking infrastructure  [235] and expand their hardware 
infrastructure closer to clients by building edge and fog sites [236].

4.4 � Fog computing

The appearance of smart devices and sensor systems gave birth to the Internet of 
Things paradigm [237], where sensors, actuators, and smart devices cooperate with 
each other to ensure semi- or fully automated consumer products  [238], such as 
smart cars or smart home appliances. Through the use of so-called unlimited com-
puting and storing capacity of cloud resources, this might be a solution theoretically 
for processing and preserving the vast amount of IoT data, real-time applications 
utilized in healthcare, and the automotive industry represents needs and wants that 
the cloud services can hardly provide. Therefore, the network of complex systems 
was extended closer to end users and their devices, known as fog computing. It is 
intended to extend cloud computing by providing a new service layer for improving 
the QoS, affecting throughput, transmission delay, and availability [239].

IoT–fog–cloud systems are often described with a layered topology: the lowest 
layer contains the IoT sensor and actuator network, which continuously monitor and 
sample the environment (i.e., by using temperature and humidity sensors) or react 
to the instructions and the messages from other system entities. The intermediate 
layer contains the fog nodes, which typically utilize less computing power than the 
cloud resources placed in the top layer. Due to the structure of the system, such lay-
ering avoids the bottleneck effect caused by overloaded communication channels of 
clouds, decreases the delay and the response time, and increases transparency and 
security.
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The complexity of cooperating smart devices and fog–cloud resources to 
provide reliable services created various challenges in the field. The following 
emerging issues can be considered [240], respectively:

•	 Connectivity problems often come together with delay and capacity-related 
questions. It involves data partitioning for fog clusters to cover a certain area 
effectively. Entering vast amounts of IoT entities might have a negative influ-
ence on the throughput and latency as well, which is critically important for 
latency-sensitive services such as IoT healthcare or streaming applications. 
Palattella et al. [241] present a handover mechanism for vehicular services as 
well as an architecture for latency-critical applications at the edge of networks 
considering time, safety, and security.

•	 Computation offloading aims to unload and outsource task processing to the 
computing nodes, which in this case reflects fog resources and mobile devices 
introducing mobile edge computing. The goal of the offloading decision is to 
adapt dynamic changes in the systems, and it has an effect on mobile batteries, 
storage, and resource-constrained fog nodes as well. Numerous studies aim 
to resolve the offloading issue of fog computing and find the balance among 
energy consumption, payment cost, and service delay. For instance, Liu et al. 
[242] present it as a multi-objective optimization problem, and it is extended 
with the interior point method (IPM) to improve the effectiveness of the pro-
posed offloading algorithm. Bio-inspired algorithms such as ant colony opti-
mization (ACO) can be used to offload IoT sensor applications tasks in a fog 
environment as well. In  [243], an improved ACO is proposed, called smart-
ACO, to meet the specified QoS limitations considering latency time, network 
characteristics, and loads of fog nodes.

•	 Billing and operation costs are substantial components of IoT–fog–cloud sys-
tems, since different types of pricing schemes are usually applied for resource 
utilization, and they should be adapted dynamically for application needs. 
Cloud-side pricing typically follows the pay-as-you-go manner, while the 
cost calculation for the IoT side varies, stakeholders must pay after the data 
are exchanged or message size, and limits can be considered for distinct time 
intervals. Kalmar and Kertesz [244] performed a cost-based analysis of four 
major cloud service providers and compared on-demand service costs through 
existing IoT use cases.

•	 Resource provisioning is more important than ever, especially for device mobil-
ity. The moveable devices require the elasticity of the IoT services deployed on 
fog nodes; therefore, latency, unallocated computing power, and storing capacity 
can dynamically change. Bittencourt et al. [245] discuss the resource allocation 
problem for mobile users, and they presented three scheduling algorithms, which 
consider user mobility and computing capacities as well to ensure a seamless ser-
vice. Yadav et al. [246] present a service allocation strategy using a genetic algo-
rithm combined with particle swarm optimization (GA-PSO) to find the appro-
priate nodes and VMs to allocate the IoT application requests. In this approach, 
the authors focus on minimizing the energy consumption and thereby to maxi-
mizing the resource utilization of the VMs.
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The detailed analysis of the IoT-to-cloud continuum cannot be done without sig-
nificant investments, since setting up various configurations of resources and net-
works is costly. Design and implementation goals may require more sophisticated 
solutions; therefore, simulators have become more and more accepted by the sci-
entific community over time. These simulation tools can mimic such scenarios in a 
realistic way; however, one cannot cover each challenge mentioned in the previous 
section. The effectiveness of the simulators can be measured by the execution time, 
the number of simultaneously simulated entities, their accuracy, and available func-
tionalities. Next, we present the most representative simulators dedicated to model 
IoT–fog–Cloud systems. It is impossible to present an exhaustive overview of the 
representative tools; therefore, in this study, we focus only on the most well-known 
and popular simulators, which are usable for the design, development, and opera-
tional phases of real systems as well [247].

iFogSim/iFogSim2  [248] is a recently upgraded simulation toolkit built upon 
CloudSim  [249], which was originally designed for evaluating different resource 
management policies focusing on latency, energy consumption, network load, and 
operational costs. The simulator follows the sense–process–actuate model involving 
sensors, applications, and actuators as well. The recent update aims to model mobil-
ity, service migration, microservice orchestration, and clustering.

DISSECT–CF–Fog  [250] is dedicated to analyzing the offloading mechanism 
of IoT–fog–cloud systems, where the loads (i.e., IoT data) are generated by simu-
lated IoT devices until it is processed by IoT applications installed on computing 
resources. It can also consider various greedy or optimization algorithms to offload 
tasks. For making the best possible decision, the simulator may take into considera-
tion the energy consumption of the entities, the position and mobility of the devices, 
pricing patterns, IaaS utilization, the characteristics of the network, and so on.

FogTorchPI  [251] was created to investigate the deployment problem of IoT 
application components on fog resources. It applies the Monte Carlo algorithm to 
satisfy Quality of Service requirements, involving latency, bandwidth, operational 
costs, and processing needs. Nevertheless, the simulator lacks a detailed model of 
such a complex system, which restricts its usability.

YAFS [252] is a simulation library for edge–fog–cloud ecosystems, which sup-
ports application module placement with resource allocation policies, billing, and 
network planning as well. It also introduces message routing and control policies in 
order to execute any kind of action.

The FogNetSim++ [253] toolkit can be used to simulate a distributed fog com-
puting environment with its primary goal being to model device mobility and the 
closely related handover process. The tool puts a great emphasis on realistic net-
work operations since it deals with various communication protocols (e.g., HTTP, 
MQTT).

Plenty of other extensions and simulations are built upon iFogSim, or directly 
on CloudSim. The interoperation of these tool components represents a significant 
drawback, since they were introduced at different moments of the development 
phase of the core simulators, and the developers were not paying enough attention 
to compatibility issues. Besides this, a few of them are definitely worth mention-
ing: MobFogSim [254] aims at supporting mobility and migration functions for 
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Fog Computing, while EdgeCloudSim [255] and IoTSim-Edge [256] rather focus 
on the simulation of Edge Computing.

In essence, simulation solutions gain ground progressively, because their capa-
bility makes them a distinguished choice for analyzing the aforementioned chal-
lenges of IoT–fog–cloud systems. Nevertheless, it could still require suitable pro-
gramming knowledge as well to implement various scheduling algorithms.

In addition to fog computing, edge computing also aims to achieve decentral-
ized data processing. Fog computing includes a wider network hierarchy, but 
edge computing focuses on device-level data processing directly at the edge of 
the network. This means that computation tasks are carried out closer to the data 
source, such as smartphones, wearables, and routers. This approach enables faster 
decision-making and reduces the dependence on centralized cloud services [257].

The evolution of edge computing to edge intelligence includes the incorpora-
tion of AI and ML capabilities into edge devices. These devices can then handle 
tasks such as traffic optimization in smart cities, real-time anomaly detection in 
critical systems, and predictive maintenance in industrial applications. This pro-
gress is particularly relevant in industrial environments such as Industry 4.0 and 
emerging Industry 5.0, where edge computing and artificial intelligence are com-
bined to optimize processes and improve operational efficiency [258].

Data processing and decision-making closer to the data source reduce latency 
and bandwidth consumption compared to centralized solutions, allowing the 
application-centric operation of edge devices. In order to effectively use lim-
ited computational resources, techniques such as model compression, quantifi-
cation, and pruning are usually used to ensure performance and accuracy. Edge 
devices use a range of artificial intelligence algorithms that are adapted to spe-
cific applications, including decision trees and support vectors for classification 
tasks, as well as convolutionary neural networks (CNN), long-term short-term 
memory (LSTM) for time series analysis and recurrent neural networks (RNN) 
for image recognition. Federated optimization might also be involved in this pro-
cess by allowing multiple devices to collaboratively train models without sharing 
raw data, preserving privacy and reducing the need for large-scale data transfers. 
However, the selection of algorithms depends on the computing capacity of the 
device and the application requirements, such as real-time processing capabilities 
and operation under limited conditions [259].

In the context of edge intelligence, several key concepts also appear. Edge cach-
ing refers to the temporary storage of data at the edge of the network for faster 
access, reducing dependence on requesting information from various cloud services 
and therefore improving performance. Edge training involves training AI models 
directly on edge devices, enabling localization and adaptation, while ensuring data 
privacy by retaining sensitive information on the site. Edge inference concerns the 
application of trained AI models on edge devices to make predictions or decisions 
based on incoming data, which is essential for applications that require immediate 
responses, such as autonomous vehicles or intelligent surveillance systems. Edge 
offloading involves transferring computation tasks from edge devices to more pow-
erful clouds or fog resources, if necessary, optimizing resource use and balancing 
workloads [260].
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4.5 � Blockchain

Blockchain (BC) technology was proposed in 2009 [261] as the basis of a TTP-free 
fully distributed peer-to-peer (P2P) system. The combination of solutions and meth-
ods deployed within has furnished the road toward a distributed infrastructure of 
the next-generation Internet. BC-based systems are typically characterized by their 
infrastructure, data structures, a networking model, and consensus algorithms (CA). 
The infrastructure can be formally described by a set of nodes V, usually termed 
as miners, where V = {v1 , v2,..vN} . Data shared between elements of the set V are 
described according to the application of the system. For example, transactions 
(TXs) are submitted by the end users to the BC network so that they are processed 
and added to its distributed ledger (DL). Usually, TXs are shared with all miners 
triggering them to generate new blocks of data. A block usually consists of a header 
and a body. The header may consist of data such as the type of block, the type of 
CA, the timestamp, the hash of the body, and, most importantly, the proof of block 
validity. The body, on the other hand, usually includes a group of TXs and the hash 
of the previous block body.

As BC nodes form a distributed system, those nodes exchange data through a 
P2P network and communicate by message passing via directly connected lines. BC 
nodes connect to their peers once they are granted access to the network, making 
them demonstrable as a graph G = (V ,E,w) of a connected giant component, where 
E is the set of edges in G, representing the communication lines between the miners. 
Each ei,j ∈ E connects exactly two nodes i, j ∈ V  and can be traveled in both direc-
tions. Each e ∈ E is associated with a distinct non-negative value, namely weight 
( wi,j or we ), which represents the transmission time needed to deliver 1 bit of data 
from node i to node j or vice versa, computed in ms. A sub-graph of G is any graph 
G� = (V �,E�,w�) , such that V ′ ⊆ V  and E′ ⊆ E . G′ is also connected, undirected, and 
weighted as it inherits the properties of the original graph.

Every BC-based system must operate a CA in order to maintain the consistency 
of its DL. As tens of CAs were proposed in the literature, a CA is usually consid-
ered valid if it was proven secure under specific formalized circumstances. One of 
the main benchmarks used to describe the security level of a given CA is its toler-
ance for K faulty/adversarial nodes where K < N . For example, the most famous 
CA, known as the proof of work (PoW) algorithm, was proven secure as long as 
K < N∕2 . Similarly, the practical Byzantine fault-tolerant (pBFT) algorithm was 
proven secure as long as K <=

N−1

3
 . The upper bound fraction Ψ , tolerated by a 

given CA in order to maintain the system secure, is formalized in Eq. 20.

Sharding is, in its generality, a type of database partitioning technique that separates 
a very large database into much smaller, faster, more easily managed parts called 
data shards  [262]. Technically, sharding is a synonym for horizontal partitioning, 
which makes a large database more manageable and efficient in terms of scalability 
and energy. The key idea of BC sharding is to partition V (which are formed initially 

(20)Ψ =
K

N
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as one giant shard) into a set R = {r1, r2, ..rd} of d smaller shards. As demonstrated 
in Fig. 7, each shard ri, i <= d consists of nri < N nodes until condition 21 is satis-
fied. Each shard processes a disjoint set of TXs, yet all shards utilize the same CA, 
leading to increased overall system throughput. As described in [263], d grows lin-
early with both the total computational power of the network and with N. A sharded 
BC network is usually declared to be more efficient, than its non-sharded version, 
because it uses the same available computational and storage resources with much-
enhanced throughput and total system latency.

Assuming all vi ∈ V  have the same computational power and a fraction Ψ of which 
is controlled by a Byzantine adversary, all nodes have access to an externally speci-
fied constraint function(s) C → {0, 1} to determine the validity of each TX submit-
ted to, or confirmed by, the network. A sharding protocol outputs a set R where each 
shard ri ∈ R contains a subset of kri <= K adversary nodes leading to state 22.

The scalability of a BC-based solution is usually benchmarked by the overall 
throughput of the system while increasing N. On the other hand, the security-related 
agreement property is benchmarked with reference to a security parameter that is 
satisfied in a sharded BC, if the following condition holds:

(21)
d∑
i=1

nri = N

(22)
d∑
i=1

kri = K

(23)∀ ri ∈ R ∶
kri

nri

<= Ψ

Fig. 7   Shards in a blockchain network, where each shard may consist of adversary nodes. Typically, each 
shard maintains its own local chain, and a merging mechanism is deployed for global consensus
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That is, each shard consists of a fraction of at most Ψ faulty/adversary nodes out of 
all nodes contained in that shard. Consequently, each shard provides a level of agree-
ment that is equivalent to the agreement level of the same BC if it were not sharded. 
Each shard maintains its local chain while the system merges all local chains into 
one global chain according to predefined criteria (Fig. 7). Merge approaches of local 
chains are out of the scope of this work but technical details can be found in [264].

In most sharding frameworks, randomized sharding is regularly run in order 
to maintain a high probability that Condition 23 holds. However, such a sharding 
approach waves away the optimal data propagation within, and among, shards. Spe-
cifically, this approach results in relatively low throughput in exchange for a high 
level of security.

The trade-off between scalability and security in sharded BCs is an open optimi-
zation problem [49]. The goal of a sharding optimization approach is to propose a 
sharded scheme of the BC that is both secure and optimized. That is, the approach 
shall be able to regularly and efficiently find the optimal distribution of V among R 
in terms of scalability, such that Condition 23 is satisfied. Specifically, an optimally 
sharded BC would provide higher efficiency in its resource utilization, compared to 
a non-sharded and/or non-optimally sharded BC.

BC sharding problem matches the well-known graph partitioning problem with 
an additional constraint as described in Condition 23. This problem can be opti-
mally solved using LPs, but the complexity of such an approach is very high as the 
problem is considered NP-complete. Additionally, the selection of the optimiza-
tion objectives is arguable, depending on the application of the developed LP. For 
instance, Henzinger et al. [265] targeted the minimization of the weights on edges 
between the partitions, regardless of the total weights at the intra-shard level. On the 
other hand, Cordero et al. [266] minimized the total weights only at the intra-shard 
level, regardless of the weights at the inter-shard level.

The BC sharding problem can also be solved using one of the previously dis-
cussed metaheuristic approaches which are much more efficient in terms of com-
plexity. Meanwhile, metaheuristic approaches satisfy a "good" level of scalability 
optimization compared to the currently used randomized sharding [267]. The secu-
rity condition can then be added as an extra parameter to validate a proposed solu-
tion for a given network. However, several previous works deployed digital signa-
tures to guarantee a secure sharding while optimizing for scalability. As this indeed 
solves the security requirement, more analysis needs to be conducted regarding the 
effect of digital signatures utilization on the overall system throughput. In particular, 
increased throughput indicates higher efficiency in using the network’s resources to 
perform the same tasks using the same resources.

4.6 � High‑performance computing

Parallel programming for use with high-performance computing systems has been 
traditionally possible mainly through several APIs dedicated to particular system 
types, to be used with selected programming languages, mainly C/C++ and Fortran. 
These include [1]: 
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1.	 Message passing interface (MPI) for distributed memory/cluster-based systems 
with a multi-process model allowing communication and synchronization through 
point-to-point and collective operations, among others.

2.	 OpenMP for multithreaded shared memory systems through the use of directives 
and library calls including offloading computations to accelerators such as GPUs.

3.	 OpenACC for multithreaded shared memory systems through the use of directives 
for GPU systems. CUDA for shared memory multithreaded GPU programming 
with an application model represented by a grid of thread blocks that consist of 
up to 1024 threads each.

4.	 OpenCL for shared memory CPU+GPU systems with an application model rep-
resented by an NDRange of workgroups that consist of up to 1024 work items, 
the model very similar to that of CUDA, generalized to CPU+GPU systems.

These APIs have been traditionally oriented on performance/execution time at the 
cost of flexibility, security, and reliability features. Nevertheless, in recent years the 
parallel programming field has been receiving attention with respect to some of the 
other resources considered in this work, as follows:

•	 Energy – especially in the context of performance energy optimization  [268, 
269]. In particular, optimization involves trade-offs such as minimization of 
energy of an application run, minimization of energy-delay product, etc. [270–
272]. These has been possible by applying several techniques such as schedul-
ing, DVFS/DFS/DCT, power capping, and application optimizations [273, 274]. 
Tools for individual compute devices  [272, 275] and whole HPC centers have 
been proposed [276].

•	 Memory/storage in the context of persistent memory/non-volatile memory 
(NVRAM) that is byte-addressable, persistent storage presumably larger than 
typical RAM. For instance,  [277] considers a large parallel persistent memory 
model with P processors, each with fast and small ephemeral memory and access 
to a large shared persistent memory. Usage of NVRAMs in cluster nodes for MPI 
applications through the incorporation of the well-adopted MPI file I/O interface 
has been shown, e.g., multi-agent simulations [278] and image processing [279].

•	 Security such as encryption/decryption of messages sent between nodes used by 
an MPI application [280] and among distributed clusters using MPI [281].

•	 Reliability extending the possibility of a successful application run in the case 
of partial system failures, important, especially in the context of long-running 
compute-intensive codes running on large HPC systems. Existing research works 
focus on proposals of resilience constructs for MPI [282, 283] as well as multi-
threaded OpenMP [284] applications.

In the context of optimization/problem formulations, most of the relevant 
approaches use: ILP for data partitioning, scheduling at the level of APIs for paral-
lel programming such as OpenCL and MPI [6] but also service integration frame-
works  [1, 81]; greedy approaches, e.g., energy-aware scheduling  [103]; dynamic 
programming for optimization of code generation  [106]; genetic algorithms for 
scheduling in HPC environments, including energy-related formulations [12, 122]; 
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reinforcement learning similarly for scheduling in HPC systems [26] including batch 
job schedulers [285].

4.7 � Volunteer computing

Volunteer computing is a type of distributed computing that allows public partici-
pants to share their computing resources that they do not need in a given period, 
and thus help launch computer-aided projects. Existing voluntary platforms have up 
to a million users, thus providing vast amounts of memory, storage, and processing 
power.

Volunteer hosts (desktop PC, notebook, mobile phone) connected together form 
the equivalent of a super powerful virtual machine. The reason for connecting is that 
computers usually use up to 15% of the total capacity, so many potential resources 
can be connected. The calculations, which would take us several thousand years to 
process on a single desktop computer, can be processed in this way in just a few 
months.

There are currently almost a million dedicated volunteers, and their hardware has 
a significant impact on science, enabling projects that are impossible without com-
puting power. In this mode, the problem is divided into a large number of tasks that 
solve one or more computers at once.

Several systems were created for running this paradigm, most notable being 
BOINC  [286]. It should be noted that running a volunteer system client can be a 
deterrent factor for users, although it can be mitigated in several ways, e.g., running 
using a separate account in a system. Some systems such as Comcute  [287] rely 
on running client codes within a web browser, which sacrifices performance (code 
is executed using Javascript) for a potentially more secure sandbox as well as ease 
of use (no installation required). Other systems of this type, using Web workers, 
are those described in [288] and Weevilscout [289]—for which the authors demon-
strated a bioinformatics use case completed within 5 h, while in total the Web thus 
provided 135 CPU hours for computing. In [290], the authors presented CrowdCL 
which is an open-source, web-based, cross-platform volunteer computing frame-
work that provides KernelContext—an abstraction layer for WebCL allowing devel-
opment and execution of OpenCL programs in an online Javascript setting. For the 
Thomson problem and sufficiently large N (N-body computations), the performance 
of WebCL is visibly larger than those of optimized Java and Javascript implemen-
tations, run on a laptop with Nvidia 320 M GPU and a desktop with an NVIDIA 
K20 GPU. Pando [291] provides a volunteer solution using failure-prone personal 
devices made available by volunteers whose number can change, parallelizing a 
function on a stream of values.

In terms of browser-based voluntary systems, the authors of  [292] distinguish 
three generations: the first one is based on Java applets, no REST support, and com-
munication protocols: HTTP, UDP, TCP, and Java RMI; the second one uses JavaS-
cript, occasional REST support, and protocols HTTP, AJAX, and finally, the third 
generation uses JavaScript for tasks, WebWorkers for threading, and HTTP, AJAX, 
and WebSockets.
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This means that, in the context of volunteer-based systems, several trade-offs 
between resources are present: performance vs security but also the traditional per-
formance vs reliability (the need for more volunteer clients to make sure results are 
correct decreases performance/number of volunteers).

LHC@Home5 is a volunteer computing platform that uses the donated idle time 
of your computer, thus helping physicists compare theory with an experiment in 
search of new fundamental particles, as well as questions about the Universe. All 
LHC@home projects are run using the BOINC-established platform used by most 
volunteer computer projects worldwide. There are several LHC@home projects, 
all focusing on the Large Hadron Collider (LHC) engineer and physics at CERN in 
Switzerland. Some of the most significant projects are mentioned below.

ATLAS@home6: ATLAS is a project that researches the physical particle experi-
ment, and searches for new particles and processes using direct proton collisions 
of very high energy. In this project, petabytes of data were handled, which were 
recorded, processed, and analyzed during the first three years, and this led to the dis-
covery of the Higgs boson in 2012.

CMS@home7: The Compact Muon Solenoid (CMS) is a general-purpose detector 
that takes place at the LHC. This project has a broad physics program, from study-
ing the Standard Model (which includes the Higgs boson) to searching for additional 
dimensions and particles. The CMS has the same scientific goals as the ATLAS 
experiment but uses different technical solutions and magnetic system design.

SixTrack8: This application simulates 60 particles traveling around the LHC ring 
at the same time, and pores the simulation for 100,000 loops, and even up to 1 mil-
lion loops around the ring. In this way, it is tested whether the beam will remain in 
a stable orbit or will happen to lose control and fly off course into the walls of the 
vacuum tube. Beam instability can cause a serious problem if it happens in real life, 
which can lead to machine shutdowns due to repairs. This project helps physicists 
and LHC beam engineers make necessary corrections to create cleaner, more stable, 
and safer beams.

Test4Theory9: The project allows volunteers to run high-energy particle collision 
simulations. These simulations can be run on their home computers, use theoretical 
models based on the Standard Particle Physics Model, and are calculated using the 
Monte Carlo method. Theoretical models use adjustable parameters, and the goal 
is for a given set of parameters (called “tuna”) to correspond to the widest possible 
range of experimental results. The results are sent to a database containing a very 
wide set of experimental data from many experiments, collected from accelerators 
around the world, including the experiments on the Large Hadron Collider at CERN. 
The database and the theoretical fit process are part of the MCPLots project, located 
in the theory department at CERN.

5  https://​lhcat​home.​web.​cern.​ch.
6  https://​atlas.​cern/​Resou​rces/​Atlas​athome.
7  https://​lhcat​home.​web.​cern.​ch/​proje​cts/​cms.
8  https://​lhcat​home.​web.​cern.​ch/​proje​cts/​sixtr​ack.
9  https://​lhcat​home.​web.​cern.​ch/​proje​cts/​test4​theory.

https://lhcathome.web.cern.ch
https://atlas.cern/Resources/Atlasathome
https://lhcathome.web.cern.ch/projects/cms
https://lhcathome.web.cern.ch/projects/sixtrack
https://lhcathome.web.cern.ch/projects/test4theory
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4.8 � Summary and conclusion

This section discusses resource-aware applications in various computing domains, 
emphasizing their architectures, optimization challenges, and practical applications. It 
also identifies seven primary architectures: data centers, cloud computing, high-perfor-
mance computing (HPC), edge computing, fog computing, blockchain, and volunteer 
computing. Each architecture introduces unique optimization needs, challenges, and 
opportunities for resource management.

Data centers are the backbone of many computing architectures, facing challenges 
in workload scheduling, energy efficiency, and thermal management. Strategies such 
as integrating data centers with smart grids, dynamic power management, and thermal-
aware workload scheduling are explored. Emerging trends include heat reuse for sus-
tainability and AI-driven cooling system optimizations.

Cloud computing relies on virtualization to provide scalable resources, but optimi-
zations are necessary to avoid performance degradation. The chapter highlights tech-
niques for virtual machine (VM) allocation, dynamic server allocation, and workload 
scheduling using heuristic and AI-based methods such as PSO and genetic algorithms 
(GA) to solve NP-hard allocation problems and ensure QoS.

HPC Systems focus on specialized workloads that demand efficient scheduling, par-
allel execution, and resource allocation. Traditional APIs such as MPI and OpenMP are 
widely used, with growing emphasis on energy efficiency, security, and reliability.

Fog computing and edge computing bring computation closer to end users, 
reducing latency and improving efficiency. This chapter discusses offloading strat-
egies, cost-aware resource provisioning, and AI-driven optimizations. Simulation 
tools such as iFogSim, FogTorchPI, and YAFS play a crucial role in evaluating fog 
and edge computing strategies.

Blockchain technology addresses the trade-off between scalability and security, 
particularly through consensus mechanisms and sharding, which improve through-
put while maintaining decentralization.

Volunteer computing leverages distributed, publicly available computing 
resources, such as platforms like BOINC. The chapter reviews frameworks like 
BOINC, browser-based volunteer computing approaches, and the trade-offs between 
security, performance, and reliability, enabling large-scale scientific computation.

In conclusion, resource-aware computing spans multiple architectures, each 
with unique optimization needs. Addressing energy efficiency, security, scalabil-
ity, and cost constraints is crucial for improving system performance. The insights 
presented in this chapter serve as a foundation for future research and advance-
ments in resource-aware optimization across distributed and parallel computing 
environments.

5 � Summary—coverage analysis, open problems, and conclusions

We start the summary of our review by observing that specific algorithms are 
applied in particular contexts, as indicated in Sect. 4. We further note that poten-
tial ranking or preference of algorithms requires formulation of well-defined 
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criteria against which the algorithms could be compared. We have come to the 
conclusion that the one that could be used in this context is the number of work-
ers, processes or threads as these are common in actual implementations in paral-
lel and distributed systems. This way, we can assess potential sizes of problems 
that could realistically be handled by a particular algorithm using a particular 
number of workers etc. For instance, in paper [6] authors proposed optimization 
of data assignment for parallel processing in a heterogeneous hybrid CPU+GPU 
environment using ILP. For a system with 10 processing units (CPUs and acceler-
ators) interconnected with a 1Gbit/s Ethernet network, having considered profil-
ing of start-up times, bandwidths, and units’ performance metrics, ILP was used 
to assign data for solving systems of equations using the Jacobi method. For the 
numbers of problems exceeding 256 (problem sizes 512-2048 tested) lp_solve’s 
execution time had to be limited, but the ILP-based approach could handle large 
problems efficiently, and best results were obtained with a timeout of 30  s for 
problem sizes of 512-1024 and approx. 60 s for 2048. Assessment of ILP in the 
context of edge and cloud computing is provided in more detail in Sect.  3.1.3. 
Practical comparisons of algorithms can be realistically provided for a particular 
problem. For instance, for the problem of scheduling workflow applications with 
dynamically changing service availability, that requires online rescheduling, in 
paper [121] it was concluded that ILP for workflows with more than 6 nodes and 
a timeout of 20 s (optimal solution not feasible due to the problem size) returns 
much better solutions (scheduling and workflow execution times combined) than 
GA and is only followed closely by a heuristic GAIN algorithm. Workflows with 
up to more than 100 nodes and 400 services in total were handled by the algo-
rithms. Typically, other arguments used as input to the algorithms could be very 
specific that makes a direct comparison of algorithms rather unfeasible.

In particular, optimization algorithm complexity is also significantly impacted by 
application parameters such as the number of tasks and by additional hardware con-
figuration parameters such as discrete DVFS levels, as these manyfold the number 
of ILP variables in the model (and ILP solving complexity can be exponential in 
the number of variables). For moldable-parallel tasks where the number of work-
ers to use for each task is part of the optimization solution, large CPU core counts 
can quickly lead to prohibitively long ILP optimization times. Simple ILP models 
that do not model these additional application and hardware properties [91] lead to 
faster solution time but worse optimization quality  [85]. However, by introducing 
additional constraints such as crown scheduling (Sect. 3.1.2), the combined optimi-
zation problem for streaming task graphs with up to 80 tasks on up to 32 cores can 
still be solved to (crown-)optimality within three minutes and vastly outperforms 
unrestricted ILP models for the same problem in optimization time [84, 85], which 
in turn still perform better than nonlinear models [85].

In terms of characteristics, advantages and disadvantages of the particular prob-
lem formulations, we can note the following:

•	 ILP has the benefit of encoding decision variables as integers and possibly prob-
lem values as real variables in optimization problems. On the other hand, prob-
lem formulation is limited by the linear formulation and many integer variables 
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result in very high complexity requiring heuristic algorithms and usage of time-
outs in ILP solvers.

•	 Greedy approaches are typically fast and can be formulated in a natural way but, 
on the other hand, result in sub-optimal solutions.

•	 Dynamic programming is very useful for combinatorial problems but requires 
a method for decomposing a problem instance into independent subproblem 
instances and the optimal substructure property must be met. Solutions can be 
fast at the cost of space required.

•	 Nature-inspired algorithms allow to encode an optimization problem in a natural 
way and do not have formulation requirements like linearity, but convergence 
can be very slow and dependent on the input configurations. Might result in 
lower quality solutions than dedicated algorithms with domain knowledge.

•	 Matching game allows consideration of entities and their preferences. Not all 
problems can be naturally expressed using this approach.

•	 Reinforcement learning is useful for problems where an agent performing 
actions, either optimization space exploration or knowledge exploitation can be 
naturally considered, especially considering long-term effects. Consequently, it is 
useful for elaboration of strategies or policies finding trade-off/balance between 
the two for a particular optimization goal.

We further discuss which and how various quality metrics/resources are considered 
in the context of domains such as data centers, cloud, fog, volunteer computing, 
blockchain, and high-performance computing, included in Table  3. We shall note 
that we consider some frequently occurring objectives including execution/response 
time, energy consumption, security, (soft) error reliability. We can say, based on the 
analysis, that for the full picture, these emerged to be important cross-domain objec-
tives in resource management that shall be considered in any context as they are 
addressed by works in all of the domains, obviously typically a selection of those at 
a time. Additionally, we provide information on problem-specific resources that are 
related to the particular domain. Even though these objectives are present across all 
the domains, their meaning depends on the context. For instance, requests might be 
handled in real time, in batch mode, in a regular reactive manner. Energy, depending 
on the domain, refers to the servers and systems managed by a provider, a client or 
both types. Security and reliability measures differ primarily depending on whether 
the system is owned and managed by a dedicated provider or is an open distributed 
system. Finally, all domains use computer nodes linked with interconnects, albeit 
with different latencies and bandwidths.

Table 4 outlines which problem formulations and corresponding algorithms have 
been proposed in the context of various parallelization levels of non-distributed par-
allel systems, i.e., instruction-level and either homogeneous or heterogeneous (e.g., 
CPU+GPU) environments. Specifically, for reinforcement learning techniques, 
approaches have been proposed for parallelization within or among clusters, which 
can essentially be either homogeneous or heterogeneous and RL can handle such 
cases due to the knowledge using/exploration and reward approach. Heterogeneity 
can be considered both in the context of usage of various computational devices 
such as CPUs+GPUs [7] but also in the context of consideration of CPUs as well as 
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burst buffers when scheduling [11]. We can see that some of the approaches like ILP 
or greedy algorithms are present for all the contexts while dynamic programming 
is proposed for instruction-level parallelism and nature-inspired and more recently 
RL at a higher level of abstraction. We can also note that cited papers target either 
higher homogeneous/heterogeneous levels or intstruction-level parallelism but not 
both.

Table 5 outlines the works that address and use particular problem formulations 
in various previously described domains and contexts. The domains of the research 
works can be either centralized in terms of location, like data centers and typically 
high-performance computing, or geographically distributed, i.e., cloud, fog, volun-
teer computing, or BC. For nature-inspired solutions, specific algorithms are given 
and we can see many variants within the latter group. Additionally, we can see that 
relatively few formulation-domain pairs have not been considered which points out 
potential future research areas.

Based on the analysis performed, we can formulate the following topics for future 
research in the field: 

1.	 More thorough comparison of performance and energy efficiency, such as extend-
ing computational efficiency in CPU Marks/W analyzed in [293], of volunteer 
computing versus data/high-performance computing centers but also considering 
other factors such as reliability of computations for both naturally large-scale vol-
unteer systems and large-scale HPC systems (currently millions of cores). More 
specifically, this also requires elaboration of metrics to be evaluated in HPC and 
volunteer systems that would incorporate not only execution times and energy 
consumption, as, e.g., EDP or EDS [294], but also reliability and availability. We 
advise the reliability to be considered in the assessment of execution time and 
energy consumption of a specific application, given the probability of component 
failure of very large-scale Exascale systems, necessary to process massive data 
in various fields of science and economics [295].

2.	 Investigation of applicability of energy control mechanisms such as power cap-
ping (currently available for mobile, desktop, and server CPUs and GPUs) for the 
distributed type of systems, apart from high-performance computing machines 
and clusters; this is motivated by the need for more research toward energy sav-
ings and energy efficiency of computing, especially not fully loaded ones when 

Table 4   Problem formulations and solving techniques for various types of (non-distributed) parallel 
computer architectures

Formulation / Architecture Instruction-level 
parallel

Homogeneous parallel Heterogeneous parallel

Integer linear programming [109–112] [83–85, 91] [6, 7, 89]
Greedy algorithms [98, 99] [8, 96, 97] [100, 105]
Dynamic programming [106]
Nature-inspired algorithms [318] (GA) [7, 11] (GA)
Reinforcement learning [24, 26, 285, 319, 320] [24, 26, 285, 319, 320]
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energy can be saved and a small performance penalty can be accepted. Such 
research has been performed in the field of HPC [33] and can be investigated in 
distributed types of systems.

3.	 More thorough security solutions for high-performance computing systems (e.g., 
MPI-based solutions quite dated now) as well as volunteer solutions, considering 
not only the performance penalty but also the increased energy cost. While there 
exist solutions like ES-MPICH2 for encryption/decryption of communication 
among nodes [280, 281] or VAN-MPICH2 that integrates security measures to 
ensure data confidentiality using One-Time Pad (OTP) encryption [296], detailed 
assessment of trade-offs taking into account performance, security, and energy 
costs is advised. Furthermore, the same consideration is of importance for future 
volunteer-based systems in terms of performance, security, and energy costs of 
the technologies allowing to run client code on the volunteers’ computers.

4.	 Consideration of the energy and other resources in approaches using reinforce-
ment learning, apart from performance/execution times. More specifically, energy 
consumption and metrics describing the other resources can be incorporated into 
the reward function used by RL to be naturally used in its operation.

5.	 Consideration of using reinforcement learning for instruction-level parallelism 
in modern parallel architectures.

6.	 As energy costs are growing very considerably, some computing models might 
benefit from incorporation of a (even partly) more global view on optimization 
involving energy. This seems to be specifically applicable to volunteer computing 
that, as can be seen from Table 5, might then benefit from, e.g., ILP formulations 
that consider energy consumption or current power draw of geographical groups 
of volunteers. This, in essence, leads to mixing architectures such as partitioning 
of large-scale volunteer models into smaller ones with servers located, e.g., in 
several cloud systems. Additionally, energy consumption consideration of vari-
ous parties, i.e., project owners and volunteers from various locations, shall be 
considered based on specific factors such as various carbon footprint in various 
locations, sources of energy in various locations resulting in various carbon foot-
print, etc.

7.	 While some automated approaches for optimization of performance energy exist, 
such as DEPO or Zeus, these typically make some assumptions regarding applica-
tion model. For instance, DEPO assumes that the load of an application, after the 
tuning phase and setting an optimized power cap, would remain stable or would 
otherwise require rerunning the tuning. Zeus optimizes batch size and power caps 
for DNN training jobs. Ideally, a fully automated software for a hybrid CPU+GPU 
system would be desired that would perform dynamic, online performance energy 
optimization, with a low overhead, being able to do that for potentially chang-
ing and any workload type, based on, e.g., low-overhead profiling of a system 
through measuring of a set of metrics and responding by setting parameters like 
power caps, frequency/voltage based on, e.g., a pretrained DNN model. Already 
DRLCAP achieves a part of such a goal using GPU frequency capping for 
energy-aware reinforcement learning-based optimization of, e.g., EDP [275]. In 
paper [297], authors presented a model-free online energy efficiency optimization 
framework MF-GPOEO. It uses kernel activity information for finding optimized 
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GPU clock. In the future, application and system agnostic automated dynamic 
performance energy optimization tools for CPU+GPU systems will be needed, 
also considering scaling down GPUs [298] or using multiple GPUs [299] at the 
same time, considered as individual cases so far.

8.	 Typically existing works consider optimizing functions incorporating quality 
metrics and usage of resources from the point of view of a specific actor such as 
one user. Optimization functions shall also consider several views or functions 
involving, e.g., weighted resource optimization from user(s) and provider(s). Such 
views are especially valuable for environments such as clouds (user, provider), 
data and high-performance computing centers (user, provider center), volunteer 
computing (user versus global view).

9.	 Consideration of resources and associated metrics in optimization spanning many 
levels of parallel and distributed systems, i.e., clusters, nodes, computational 
devices, possibly with more detailed models for the resources of particular inter-
est.

Another factor that we analyzed was the papers’ publication dates for par-
ticular problem formulations × domains indicated in Table  5 indicating which 
contexts have been receiving the most attention recently. From the point of 
view of algorithm formulations, the analyzed articles listed for ILP range from 
2008, 2011 up to present, for greedy algorithms from 2013, 2014 up to present, 
for dynamic programming from 2006 up to present, nature-inspired algorithms 
2008 up to present, for game theory papers from 2008 to present (all but the HPC 
one considered are from 2019 onwards). We can see articles from 2014 onwards 
with increased intensity in 2020–present for RL. Based on that, we can see that 
all of those are of interest now, but clearly, the recent interest is associated with 
domains in various degrees. We can identify several sections depending on years 
of publications. Specifically, we can see that the research interest in volunteer 
computing has not been intense in recent years, in contrast with both blockchain 
and fog computing using all formulations; RL for HPC, data centers, fog, and 
cloud computing; dynamic programming for data centers and cloud, as well as 
nature-inspired algorithms for clouds.

Additionally, we believe that this paper can open a space for a unified resource 
model, inclusion of alternative emerging resources of interest in trade-offs, and 
optimization formulas as well as identification of links to involve surrounding disci-
plines that consider the same resources and metrics.
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