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Abstract— Machinery prognostics facilitates predictive
maintenance, minimizing downtime and operational expenses.
Nonetheless, challenges persist due to low signal-to-noise ratio
and non-stationary signals. Spatiotemporal feature extraction
through recurrent and convolutional neural networks has
shown promise in addressing these challenges. Nevertheless, the
traditional convolutional learning algorithm, which is based on
Euclidean distances between the learned features, can increase
the model uncertainty. Moreover, traditional feature fusion
techniques can weaken the model's performance. This study
proposes a novel inferential spatiotemporal approach. Two
independent networks based on long short-term memory and a
graph convolutional network are designed to extract the
influential spatiotemporal features. Then an adaptive neuro-
fuzzy inferential network is introduced to calculate the
remaining useful life based on the extracted spatiotemporal
features. Experimental validation using a benchmark bearing
dataset under various operational conditions demonstrates that
the proposed approach outperforms existing state-of-the-art
methods by 59.34%.

Keywords— predictive maintenance; machinery prognostics;
graph convolutional networks; remaining useful life prediction

I. INTRODUCTION

The accurate prediction of the Remaining Useful Life
(RUL) of rotating machinery is critical for optimizing
operational efficiency and mitigating unexpected failures
across various applications, including manufacturing systems,
wind turbines, and vehicles [1], [2]. Prognostic approaches to
RUL estimation are generally classified into model-based and
data-driven methods. Model-based approaches that are based
on techniques such as particle filters, Kalman filters, and
unscented filters, utilize mathematical models to characterize
equipment degradation. Nevertheless, these methods often
demand substantial expert knowledge and face challenges
when addressing nonlinear and complex degradation
dynamics [3]. Conversely, data-driven approaches, which
leverage machine learning and deep learning algorithms, have
received significant attention due to their capability
to

autonomously predict equipment lifespan with greater
reliability while reducing reliance on domain expertise [4], [5].

Recurrent neural networks (RNN) and convolutional
neural networks (CNN) have proven their effectiveness in
machinery prognostics applications. However, the progressive
degradation of machinery during operation necessitates the
evaluation of temporal interdependencies which is more suited
to RNN. Nevertheless, their performance is often constrained
by issues such as vanishing and exploding gradients during
backpropagation [6]. Advanced RNN architectures, including
Long Short-Term Memory (LSTM) and Gated Recurrent Unit
(GRU), address these limitations by employing gating
mechanisms to preserve important information. For instance,
studies by Mao et al. [7] have demonstrated the effectiveness
of LSTMs in extracting temporal features for RUL prediction
of bearings. While Chen et al. [8] incorporated Empirical
Mode Decomposition (EMD) as a preprocessing step to
further enhance the ability of LSTMs to learn with
characteristics of low signal-to-noise ratio (SNR). Additional
advancements include the application of adversarial learning
for noise suppression and Bidirectional LSTMs (Bi-LSTMs)
for capturing both forward and backward dependencies [9]. In
[10], a GRU-based architecture integrated as a machinery
health indicator is proposed. Despite the effectiveness of
advanced RNN techniques, false sensory readings and poor
SNR can mislead the model during training, potentially
resulting in the loss of critical features.

CNN on the other hand, learns the sensory data based on
the grid structure of the influential spatial features in the
feature space. Ren et al. [11] employed a CNN architecture to
predict the RUL of bearings under specific operational
conditions. While to expedite the learning process of CNN
models, Majali et al. [6] introduced a signal preprocessing
stage prior to training, where the vibration signals were
statistically analyzed across time domain and frequency
spectrum. A similar preprocessing stage was adopted in [12],
though employing LeNet-5 convolutional network to increase
the robustness of the CNN model in learning the relevant
effective characteristics [13]. Despite the achieved results,



relying on a limited set of statistical features can lead to less
accurate predictions and the omission of vital information. To
address this limitation, the authors of [4] utilized an
autoencoder (AE) to identify and focus on the most critical
features during training.

The integration of global and local features from lower-
level layers known as multi-scale CNN (CNN) has been
demonstrated effective in overcoming limitations of signal
preprocessing stage and enhance the feature extraction
process. In this context, the authors of [14] proposed a
MSCNN in which the features of both convolutional and
pooling layers are leveraged for the prognostic process. The
authors of [15] introduced a dilated MSCNN to incorporate
features from various time steps. From the analysis of the
previous studies, two key observations can be listed: (1)
Convolutional networks primarily excel at extracting the
spatial features of acquired machinery signals but may
overlook temporal dependencies. (2) In spatial learning,
convolutional mechanisms rely on Euclidean distances
between spatial instances, which are particularly effective in
grid-structured data applications such as images and computer
vision.

Consequently, spatiotemporal analysis has proven to
alleviate the performance of either temporal or spatial
approaches. For instance, Zhao et al. [16] proposed a temporal
convolutional approach for spatiotemporal feature learning.
The authors demonstrated that spatiotemporal feature
extraction can alleviate the accuracy of estimated RUL values
by 10-20%. Qiao et al. [17] proposed another spatiotemporal
approach based on Conv-LSTM. It aims to learn both temporal
and spatial features concurrently by employing convolution
operations to replace matrix multiplication within the LSTM
unit, focusing on data changes over time steps. However, such
an approach is computationally expensive. Moreover, the
limitation of traditional convolutional operations which relies
on Euclidean distances still persist.

Thus [18] proposed a spatiotemporal prognostic approach
based on a multi-scale graph convolutional network
(MSGCN). The aim of the GCN is to avoid reliance on
Euclidean distances while preserving the reliability of spatial
characteristics. The temporal dependencies and fault
observations are detected using the sliding windowing
technique, while the spatial relations are learned by the GCN.
A similar graph structure approach but based on TCN for
temporal learning is introduced in [19]. On the other hand,
Hua et al. [20] proposed another spatiotemporal approach
based on GCN for spatial learning followed by GRU for
temporal learning. While in [21], a Bi-LSTM model is
employed to extract temporal features, followed by GCN to
predict the RUL of the bearing. While these methods
demonstrate notable effectiveness, the sequential topology of
the network introduces a critical dependency on the
performance of the initial network rather than the achieved
RUL values. As during backpropagation, the weights and
parameters of the initial network remain unaffected by the
optimization processes of the subsequent network.

In the context of the above, this paper proposes a
spatiotemporal approach based on LSTM and GCN. However,
to avoid the influence of the performance of one network on
the other, each network is trained independently and in a
parallel manner. While a novel adaptive neuro-fuzzy inference
system (ANFIS) is proposed to estimate the final RUL based
on the inference of the learned temporal and spatial features at

each time step. The proposed approach is evaluated using the
PRONOSTTA public dataset [22], which comprises 17 full
bearings’ lifecycle datasets under varying operational
conditions.

The structure of this paper is as follows: Section II describe
the experimental setup of the employed dataset. Section 3
describes the detailed methodology. Section 4 presents the
experimental results and analysis. Finally, Section 5 concludes
the study

II. METHODS AND MATERIALS

A. Data Description

The PRONOSTIA dataset [22] serves as a benchmark in
the field of machinery prognostics and is frequently used in
the state-of-the-art for evaluation. This dataset comprises 17
run-to-failure experiments involving bearings subjected to
three distinct operating conditions, as outlined in Table I. To
expedite the degradation process, a radial force exceeding the
maximum dynamic load capacity of the bearings was applied,
leading to failure within a few hours. Throughout the tests, the
rotational speed of the bearings was maintained at a constant
value. Data acquisition was performed using two
accelerometers, enabling precise measurement of bearing
vibrations. A critical failure state was defined as the point
where the vibration signal exceeded 20 g, beyond which the
bearing was classified as non-operational.

The vibration data was sampled at a frequency of 25,600
samples per second, ensuring high-resolution observations.
Each sample covered a duration of 0.1 seconds, consisting of
2,560 data points. Data recording occurred at regular 10-
second intervals, ensuring consistent and accurate monitoring
of the degradation process throughout the experiments.

TABLE L CHARACTERISTICS OF THE PRONOSTIA DATASET [22]
Characteristics 1 2 3
Load (N) 4000 4200 5000
Speed (rpm) 1800 1650 1500
Training Bl 1 B2 1 B3 1
Bl 2 B2- 2 B3 2
Bl 3 B2 3
Validation/ Testing Bl _4 B2 4 B3 3
BL 5 B2 5
Bl 6 B2 6
Bl 7 B2 7

III. PROPOSED FRAMEWORK

This section outlines the proposed framework which is
structured into four interconnected stages: data processing,
feature learning, feature mapping, and RUL prediction. In the
initial stage, raw vibration signals from the monitored bearings
were sampled at a frequency of 25.6 kHz. The raw signals
were segmented into equal-length windows, with each
segment comprising 2,560 instantancous accelerometer
readings. The standard deviation (Std) of each segment was
then computed, resulting in a single representative value for
each window. This approach not only addresses the SNR but
also facilitates the model training process and enhance the
convergence rate. Following segmentation and feature
extraction, the data was normalized using the min-max scaling
technique.

Next, for the feature learning stage, the LSTM network
architecture is utilized to learn the temporal patterns of the
acquired vibration signal of the test bearings. During this
stage, the LSTM is designed to encounter the influential



features at different time steps using the internal memory cell
and output gates. The proposed temporal network is
configured as a one layer, however, with 32 LSTM cells in a
sequential manner. In which the input time sample is trained
using 32 LSTM cells, each has its independent memory cell,
update gate, and set of weights, before being encountered as
an extracted features. This has proven to effectively eliminate
the depicted noise in the signal and achieve higher
performance. During backpropagation, the model's weights
are adjusted after quantifying the error of each training epoch
of the 100 epochs, ensuring that the model parameters are
refined iteratively. Adam has been selected as the optimizer,
with a learning rate of 0.01.

On the other hand, the spatial features are being learned
using the proposed GCN. At first, the bearing signal is
segmented according to the calculated Std value. Afterwards,
each window value is considered as a node feature within the
designed graph structure. While the edges of the graph capture
the interconnections among the graph nodes. Formally, in this
study, the proposed graph can be characterized as an
undirected graph and it can mathematically be expressed as:

G=(V,E,A) (1)

V represents the set of nodes, where v; € V, and similarly
E represents the set of edges, where e;; = (vi,vj) € E which
imply the connectivity of nodes v; and v;. Afterwards, the
adjacency matrix of the graph is introduced to represent the
connection structure of the nodes in which:

A = {1, €ij €EE (2)
u O'Qij &E

Afterwards, each node v; integrates its own feature x;
with the features of its neighbouring nodes x; to compute a
new representation. The aggregated features are then passed
through a nonlinear activation function to generate the final
output. The process can be entirely be expressed as follows:

H(l+1) — 0.(5 —1/2A5 —1/2H(1)W(1)) (3)

A is equal to A + I, where A is the adjacency matrix A
with self-loops (identity matrix T). Also, D is the degree
matrix with corresponding to A. For this graph structured
network, 16 channels are configured to process the data of
each node and aggregate it to the neighboring nodes.
Moreover, in this study, the H® and W are randomly
initiated and they are get optimized during the network
training as it is conducted over 100 epochs, allowing the
network to converge to an optimal global minimum.

Afterwards, the extracted spatial and temporal features of
both networks are then fed to the configured ANFIS, defined
as the feature mapping stage. By leveraging the IF-THEN
rules of the fuzzy logic system in conjunction with the
backpropagation mechanism of the neural network, the system
effectively calculates the RUL based on multi-dimensional
feature representations at each time step. In this scenario, the
input matrix of the ANFIS model is of 2 dimensions and the
employed membership functions is selected to be Gaussian to
facilitate the representation of intricate and non-linear
relationships. The inference process utilizes the Sugeno
model, enabling the efficient generation of accurate output
functions through weighted average computations.

Finally, the overall accuracy of the proposed model is
quantified using the root mean square error which is described

as:
RMSE = M )

Where f (x;) is the output of the model for the i;;, sample,
y; represents the matching label, and n represents the length
of the entire data vector.

IV. RESULTS AND DISCUSSION

This section discusses the findings of the proposed study.
For this study, the first three bearing sets from the first and
second operational conditions, as specified in Table I, were
used for training, while the remaining sets were reserved for
testing. This dataset allocation ensured an 80-20 split between
training and testing data, providing a robust evaluation
framework for the proposed method. Thus, the procedure was
conducted nine times, each focusing on a distinct bearing set:
B1 4, B1 5, B1 6, B1 7, B2 4, B2 5, B2 6, B2 7, and
B3 3.

Initially, the extracted Std values for each window were
input into the GCN to enable spatial learning while preserving
temporal mapping. The network weights were initialized
randomly and updated iteratively based on the calculated
mean squared error (MSE). Figure 1 is a box plot that
illustrates the MSE values over 100 epochs for all test bearing
sets used in this study. Similarly, the temporal network was
trained using the same procedure, with Figure 2 depicting the
MSE values recorded after each epoch.

MSE of the Graph Convolutional Network

0301 o
o
0.25 o
o o
0.20 1
2 015
Zo
o
o
0.10 °
o
0.05 o i g
- = g == ! o
0.00 -

Bl4 BlS5 Bl6 Bl7 B24 B25 B26 B27 B33

Fig. 1. MSE values of the proposed spatial network



MSE of LSTM Temporal Network
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Fig. 2. MSE values of the proposed temporal network

It can be noted that in Figure 1, the MSE values stay almost
constant across all of the operational sets. This shows that this
method works well for capturing the spatial characteristics,
which can be very similar for the same experimental setup and
bearing manufacturing. The MSE values in Figure 2 change
noticeably between operational conditions and slightly within
the same operational condition. This shows the temporal
dynamics that happened and how well the system learned to
capture and learn these dynamics until they reached a global
minimum. This emphasizes the critical importance of
spatiotemporal analysis, which encounters both characteristics
of the extracted features in the estimation of the RUL values.

Finally, the ANFIS network was trained to estimate the
RUL by leveraging the inferential relationships derived from
the extracted spatial and temporal features. Table II
summarizes the RMSE results obtained by the ANFIS network
for the first operational condition, while Table III presents the
corresponding RMSE results for the second and third
operational conditions.

TABLE IL EVALUATION RESULTS OF THE PROPOSED METHOD FOR THE
FIRST OPERATIONAL CONDITION SETTINGS
Test set B1 4 Bl1S [ Bl16 | B17
RMSE 0.0394 | 0.0571 | 0.025 | 0.015
TABLE IIL. EVALUATION RESULTS OF THE PROPOSED METHOD FOR THE

SECOND AND THIRD OPERATIONAL CONDITION SETTINGS

Test set B2 4 B2 5 B2 6 B2 7 B3 3
RMSE 0.022 0.046 0.01 0.020 0.022

To further evaluate the effectiveness of the proposed
method, recent state-of-the-art techniques were reviewed to
establish a comparative benchmark for the obtained results.
Zhu et al. [14] employed an MSCNN-based approach to
predict the RUL of bearings in the PRONOSTIA dataset. This
study transformed the one-dimensional signal array into a two-
dimensional matrix to leverage the grid structure of spatial
features during MSCNN training. Similarly, Huang et al. [23]
integrated spatial and temporal features using a multi-layer
perceptron (MLP) to estimate bearing lifespan values.
Furthermore, Rathore et al. [24] proposed a prognostic
framework utilizing LSTM combined with an attention

mechanism to identify the most critical features and address
the low SNR of the monitored signals.

TABLE IV. EVALUATION RESULTS OF THE PROPOSED AND STATE-OF-
THE-ART METHODS
Set/ [14] [23] [24] Proposed
RMSE method
B1_4 0.515 0.39 0.0969 0.0394
B1_5 0.366 0.32 0.2499 0.0571
B1_6 0.480 0.34 0.2414 0.025
B1_7 0.170 0.35 0.2636 0.015
B2_4 - - 0.0799 0.022
B2_5 - - 0.1678 0.046
B2_6 - - 0.0761 0.01
B2_7 - - 0.0224 0.020
B3_3 - - 0.0209 0.022

Table IV presents the RMSE values of all reviewed studies
alongside those of the proposed method. The results
demonstrate that the proposed method significantly
outperforms the existing approaches, underscoring the
effectiveness of the multi-scenario feature space designed with
graph neural networks and temporal networks. This advantage
is attributed to the inference capabilities across multi-scenario
data, which surpass traditional fusion strategies such as MLP.

V. CONCLUSION

Recent advancements have demonstrated the efficacy of
deep learning techniques in machinery prognostics. However,
conventional approaches, such as CNNs, may constrain the
accuracy of RUL predictions due to their reliance on
Euclidean distances between features in the latent space.
Additionally, the low SNR and non-stationary nature of
machinery signals can hinder the ability of deep learning
models to effectively capture critical features. To address
these challenges, this paper introduced a multi-scenery
spatiotemporal method that employed a graph-based structure
for spatial feature representation, circumventing the
limitations of grid-based learning, and utilized LSTM
networks for temporal feature extraction. Subsequently, an
ANFIS was applied to infer the lifespan of the target
machinery at each time step within the multi-scenery space.
Experimental results on a real benchmark bearing dataset
demonstrated that the proposed approach effectively mitigated
the impact of low SNR, resolved the challenges associated
with spatial feature learning in traditional CNNs, and achieved
superior accuracy in RUL estimation.
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