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ABSTRACT User Equipment as a Virtual Base Station (UE-VBS) computing paradigm represents a
significant advancement in wireless networking. It enables User Equipment (UE) to form: i) Virtual Base
Stations (VBSs) by dynamically integrating Cluster Heads (referred to as UE-VBScp), or Virtual Relays
(referred to as UE-VBSRy), in the far-edge domain. This research focuses on enhancing the Quality of
Service (QoS) (and thereby improving user experience) in networks supported by UE-VBS computing
through outage prediction, network optimization, and advanced wireless techniques. In addition, the paper
presents a detailed outage probability analysis and explores the trade-off between efficiency and reliability
(namely, spectral and energy efficiency and link-level reliability (outage probability)), which are core
contributions of this work. For a representative urban density of 2 UEs per m?, a single-hop UE-VBS slice
lowers the outage probability from 0.78 to 0.23, raises the peak area-spectral efficiency to 4.3 bits~! Hz™!
(~ 4.8x the baseline), and delivers an energy efficiency of 2.4 x 10° bit J=! (= 4.6x improvement).
These concrete figures substantiate the claimed gains and illustrate how UE-VBS computing simultaneously
improves efficiency and reliability. Specifically, it provides a thorough examination of UE-VBS computing’s
capacity to enhance service quality, reduce congestion, and promote energy efficiency. Also, it empirically
confirms UE-VBS computing’s superior performance, including mitigating coverage gaps coverage gaps are
localized areas inside a nominally covered cell where received SINR falls below the outage threshold because
of shadowing or cell-edge distance), optimizing network traffic, and reducing battery consumption compared
to traditional networks/non-UE-VBS computing-supported networks. Enhanced QoS aims to minimize the
challenges associated with restricted network coverage, ensuring consistent data transmission rates and
improving overall user satisfaction. The potential exists for adopting effective network traffic offloading
to mitigate the heavy traffic on primary base stations known as Next Generation Node B (gNodeB).
Consequently, this can result in enhanced spectrum utilization and heightened data throughput. Leveraging
UE-VBS computing also contributes to power conservation and fosters sustainability.

INDEX TERMS UE-VBS, network system outage, resource analysis, optimization.
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I. INTRODUCTION

Our investigation is centered on demonstrating the superior
performance of the User Equipment as a Virtual Base Station
(UE-VBS)-assisted networks (introduced in [1], [2], [3])
compared to traditional cellular networks. User Equipment
as a Virtual Base Station (UE-VBS) is the paradigm in which
ordinary user devices are promoted, under software control,
into ad-hoc small-cell elements that support the macro
network. Based on instantaneous channel quality, residual
battery, and geometric position, a device may function either
as a virtual base-station cluster head—aggregating and
forwarding traffic for nearby users—or as a virtual relay
that extends coverage toward the cell edge. Crucially, radio-
resource management and security remain under gNodeB
control, so the air-interface standard itself is not altered. The
concept was first introduced and experimentally explored
in [1], [2], and [3], where UE-VBS nodes were shown to
offload macro-cell traffic, heal coverage gaps, and improve
both spectral and energy efficiency, especially in dense urban
deployments. We aim to show that UE-VBS computing
offers a compelling solution by addressing key challenges
such as mitigating coverage gaps (i.e., localized zones inside
a nominally covered cell where the received SINR falls
below the outage threshold because of heavy shadowing
or large path loss) enhancing network traffic management,
and reducing power consumption. By elevating suitably
positioned UEs to virtual cluster heads or relays, the system
forms short D2D hops that bypass the deep-fade segment
and re-establish a high-SINR route to the gNodeB, thereby
closing the coverage gap. To align our contributions with
the demonstrated benefits of the UE-VBS-based network,
the following sections explicitly connect the analytical and
simulation results with the advantages provided by this
paradigm.

The benefits of UE-VBS computing are manifold,
including:

« It enhances the Quality of Service (QoS) by reducing
coverage gaps within the cell, ensuring consistent data
rates, and improving the overall user experience.

« Itefficiently offloads network traffic by integrating UE-
VBS-enabled devices, reducing the load on the main
base station (Next Generation Node B or gNodeB) [4]
and optimizing spectrum efficiency and data throughput
through intelligent bandwidth allocation.

« It conserves power by reducing radio wave propagation
distance and intelligently sharing power with UE-VBS
clients, contributing to environmental sustainability and
incentivizing client participation.

In the analytical part of this study, we employ the
Free Space Path Loss (FSPL) model to simulate the ideal
conditions under which signal strength decays as a function
of distance in a free-space environment, with no obstacles
affecting the transmission. Additionally, we incorporate
Additive White Gaussian Noise (AWGN) to account for
random fluctuations in the signal, ensuring a more com-
prehensive representation of noise-induced degradation in
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the communication channel. These assumptions help create
a simplified yet effective framework for evaluating the
system’s performance, providing baseline results that serve as
a comparison to more complex models used in the simulation.
In addition to the FSPL model used for the analytical
results, this study employs the LOGD path loss model
in the numerical simulations to account for more realistic
environmental effects on signal propagation. The LOGD
model provides a more practical representation of wireless
signal behavior in urban environments, where obstacles
such as buildings and other structures cause significant
attenuation. By incorporating the LOGD model, we can
simulate the variations in signal strength due to factors like
shadowing and path loss exponent, making the analysis more
applicable to real-world network deployments. This approach
allows us to contrast the idealized analytical results with more
complex, real-world scenarios.

The novelty of this paper lies in its comprehensive and
in-depth analysis of UE-VBS computing, focusing on its
outage probability, resource allocation improvements, and
overall performance enhancement in wireless networks. This
study provides new insights into the trade-offs between sys-
tem efficiency and reliability by utilizing analytical models
(such as FSPL with AWGN) and more realistic simulations
(using the LOGD path loss model). Additionally, the paper
introduces a novel method for evaluating spectral and energy
efficiency in multi-hop UE-VBS-supported networks, which
has not been thoroughly explored in existing literature.
This multi-dimensional evaluation framework offers a clearer
understanding of how the UE-VBS computing paradigm
can optimize network traffic, reduce outages, and enhance
spectrum utilization, particularly in high-density urban
environments.

To better connect our contributions with these benefits,
the remainder of the paper is structured to first analytically
demonstrate these advantages and then validate them through
network simulations. Specifically, our focus centers on
addressing the challenge of improving QoS, particularly the
outage probability and the network efficiency, within the
context of UE-VBS computing (see section II-A1).

More specifically, this paper aims to demonstrate that
UE-VBS-assisted networks outperform traditional cellular
networks in terms of performance. The system offers
several key benefits. First, it increases Quality of Service
(QoS) by reducing potential coverage gaps within the cell
area, resulting in fewer inconsistencies in data rates and
enhancing the overall user experience. Second, it offloads
network traffic by reducing the number of independent
channels connected to the gNodeB simultaneously, as some
data processing is allocated to UE-VBS-enabled devices.
The UE-VBS improves spectrum efficiency, measured in
bits/s/Hz, by allocating bandwidth based on the throughput
of new network paths created. By leveraging off-band
frequencies and geographical knowledge, these connections
to the gNodeB can lead to a higher overall data rate.
Specific backhaul bandwidth for UE-VBS devices could
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also be reserved, depending on network design. Finally,
the system contributes to power saving by shortening
the radio wave transmission distance from the gNodeB
to devices, reducing signal loss, and allowing for lower
transmission power. By effectively sharing power with
UE-VBS clients, who may be incentivized through free data,
discounts, or additional gadgets, the overall power consump-
tion of the cellular network can be significantly reduced.
In what follows, we demonstrate the above-mentioned central
benefits analytically and provide a network simulation.
This analytical and simulation-based demonstration directly
supports our contributions by quantifying the improvements
in QoS, outage probability, and network efficiency. This
work addresses the problem of QoS improvement and, more
specifically, the outage probability and network efficiencies.

Overall, this study presents a novel analysis of UE-
VBS computing, focusing on its outage likelihood, resource
allocation enhancements, and performance improvements in
congested circumstances. The novelty of this research lies in
its pioneering approach to wireless networking, epitomized
by the introduction of the UE-VBS computing paradigm. UE-
VBS computing harnesses the inclusion of UE-VBS with
dynamic cluster heads and relays drawn from a pool of
selected or volunteer clients. This novel approach represents
a paradigm shift in optimizing network resources and
enhancing network performance, particularly in congested
scenarios. The research highlights the transformative nature
of UE-VBS computing by substantiating its superiority over
traditional cellular networks, offering quantifiable benefits
such as elevated QoS, diminished coverage gaps, reduced
gNodeB load through intelligent network traffic offloading,
and minimized power consumption via judicious signal
propagation control.

This study’s contribution is unique in its holistic explo-
ration, blending analytical rigour and network simulations,
with a central focus on enhancing QoS, reducing outage
probabilities, and optimizing network efficiency within the
innovative UE-VBS framework. Note that, to the best of our
knowledge and after conducting extensive research, a similar
examination of UE-VBS does not exist in the literature. The
contributions of the paper can be summarized as follows:

o Provides a comprehensive analysis of UE-VBS funda-

mental concepts and advantages.

« Demonstrates UE-VBS computing potential to improve
the quality of service, mitigate congestion, and conserve
energy.

« Highlights notable performance advantages over con-
ventional (i.e., non-UE-VBS-assisted) cellular net-
works.

« Addresses coverage gaps, network traffic, and battery
consumption challenges.

« Efficient network traffic offloading: UE-VBS allows
user devices to handle some network traffic, reducing the
burden on the main base station (eNodeB). The UE-VBS
distributes the load more evenly, preventing congestion
and improving overall network efficiency.
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o optimized spectrum utilization and data throughput:
UE-VBS intelligently allocates bandwidth to connected
devices based on current network conditions. The
UE-VBS ensures that the available spectrum is used
more efficiently, allowing more data to be transmitted
faster, particularly in areas with high user density.

« Power conservation: By using nearby devices as relays,
UE-VBS reduces the distance that signals need to
travel. The UE-VBS minimizes the power required for
transmission, leading to lower energy consumption and
extended battery life for user devices.

« Provides both analytical analysis and network simula-
tions to substantiate advantages.

« Primary focuses on improving QoS, outage likelihood,
and network efficiency in UE-VBS-assisted networks.

The rest of the paper is structured as follows: Section II

offers a comprehensive overview of the fundamental concepts
and existing scholarly works about UE-VBS. Section III
delineates the key assumptions employed in the analysis
of the UE-VBS system. Next, Section IV is focused on
developing a model for the UE-VBS system. Section V
explores the analytical components regarding the UE-VBS.
Moreover, Section VI introduces a numerical simulation
model that enables an investigation of the precision of
the preceding analytical model. Section VII demonstrates
the findings, encompassing numerical results compared
to analytical solutions. Finally, Section VIII summarizes
significant findings, evaluates the analysis and simulation’s
effectiveness, recognises underlying assumptions, and delin-
eates potential avenues for further research.

The notations used in the rest of the research paper are also

given in Table 1.

Il. BACKGROUND INFORMATION AND LITERATURE
REVIEW

This section provides the background information and a
literature review regarding UE-VBS.

A. BACKGROUND INFORMATION

This subsection provides the background information regard-
ing our approach and the UE-VBS concept, which is
explained briefly below.

1) THE UE-VBS COMPUTING

The UE-VBS computing (introduced in [1], [2], [3]): In
our concept, the fundamental assumption of our model is
that selected or volunteering clients (to become UE-VBS) of
the network will have specialized software (a mobile native
app) installed on their devices that, when needed, would
allow them to become a Cluster Head (as UE-VBScy) or
a Relay (as UE-VBSgL) depending on the requirements,
as depicted in Fig. 1. These ad hoc networks are formed
by a graph/network architecture that employs an algorithm
that optimizes the network resources. The algorithm is
discussed briefly in the paper, as most of the content deals
with the modeling of the networks and how the modeling
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TABLE 1. Main mathematical notations used in this research.

Symbol Description Calculated  in Used in Eq.
Eq.
U Set of UEs in a cell - 1,2
Rinin Minimum data rate acceptable by UEsin U | 6 14,15, 16,26
Uye —vBs Subsetof U with UE-VBS capabilities (app - 3,57
installed)
UUE—VBScy Subset of Uy _ yps. which are the UE- | - 11,12, 14
VBS-enabled devices chosen to be cluster
heads
UUE —VBSp,. Subset of Uy _ yps. which are the UE- | - 13,15, 16
VBS-enabled devices chosen to be relay
devices
S,-/ UE-VBS clusters between devices - 18,24
P Set describing the randomly generated - 23,24
cluster process
C. The clusters include individual points of - 22,23
the cluster
1(r) Power loss function for a channel at a dis- | 5 25
tance r
(x) Probability Density Function (PDF) of a | - 3,6, 14
random variable x
F(x) Cumulative Distribution Function (CDF) - 3,6
of random variable x
hy Channel x’s multiplicative fading noise - 5,12, 14
Gy Channel x’s channel gain 5 12
Py Channel x’s transmitting power 5 15
w Additive White Gaussian Noise (AWGN) 5 12,22
Iy Channel x°s interfering power 12 22
A Intensity of Poisson point process (PPP) 1,2 24,26
Ac Intensity of points (UEs) within a cluster 2 24,26
SINR Signal-to-Interference-plus-Noise Ratio 6 7,12,13,26
SINRTH Threshold for SINR, below which an out- 6 17,22,23,26
age occurs
SNR Signal-to-Noise Ratio 17 22
SNRTy Threshold for SNR, below which an outage 17
occurs
Pout Outage probability 17 7,23,24,26
Py Transmitting power at any point in the net- 15 16
work
Pror Total power consumed in the system 15 16
Bye —vBs Band“'idlh allocated to a UE-VBS connec- 6 13,26
tion
Byys Total system bandwidth 10 13
TgysSE System spectral efficiency 13 11,26
TsysEE System energy efficiency 14 26
R Data rate in the system 9 14,26
r Distance between transmitter and receiver 5 22
o Standard deviation in Thomas cluster pro- 2 23,24
cess
a Path loss exponent 2 25
~ Dynamic power loss factor depending on 15 16
data rate
B Average power loss factor accounting for 15 16
antenna gain
No Noise spectral density - 12,5

could improve the performance measured by the network’s
spectral and energy efficiency, which is defined later in the
paper. All devices are planned to act on the UE-VBS layer,
a new layer placed right above the physical layer (bottom of
Layer 2 in the Evolved Universal Terrestrial Radio Access
Network (e-UTRAN) protocol stack [4]). Moreover, most of
the contributions available in the open literature have made
some advancements in introducing autonomous agents [5]
in UE-VBS-enabled devices and network formation [3].
Nevertheless, outage analysis in the context of UE-VBS-
assisted networks has not been addressed. The system
considered in our work is shown in Fig. 1. The UE-VBS
computing has two major elements: the UE-VBScy and the
UE-VBSgL, as explained below:

o UE-VBSch: These devices will provide relay access to
the main base station (eNodeB) either directly or through
UE-VBSg1. devices and to the UE-clients that are chosen
to be included in the cluster. Inside the cluster, UE clients
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—_UE-VBSg_
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FIGURE 1. A graphical depiction of UE-VBS computing paradigm showing
Virtual Base Stations acting as Small Cells, with UE-VBS¢y and UE-VBSg
nodes [1].

connect to the UE-VBScy using an in-band or out-band
(cellular/mmWave for 5G or WiFi ) OFDM signal to
avoid interference.

e UE-VBSgi: These devices will be used to reach a
UE-VBScy or a single UE-client that would be in a
location inside the cell that has bad or medium Channel
Quality Index (CQI) reception of the signal from
gNodeB, which is below a satisfactory level, and would
provide a sufficient Device-to-Device (D2D) signal to
deliver seamless uplink and downlink connection to the
network.

2) POISSON CLUSTERING PROCESSES

A constant assumption that we make throughout this work
is that UE-device locations in an urban environment can
be probabilistically described as Poisson Cluster Processes
(PCP). This assumption is valid because it has been proved
to be a good approximation in many recent works for an
arbitrary distribution of devices in urban environments [6],
[7]. To be more exact, we use a Cox! process called the
Thomas cluster process [8]. This specific process can be
described as follows. Firstly, Poisson-distributed points are
uniformly distributed in a 2D area. A brief description of the
PCP is that given a density/intensity A of clusters in an area A,
we can say that the number of devices in our area/region will
be a Poisson Random Variable (RV) with overall intensity of
AA. Asourareaisin 2D, the X and Y axes of the given Poisson
RV locations are uniformly distributed in area A with width
equal to W and length equal to L, resulting in A being W x L.
Thus, we can say that the probability of having n a number of

TA Cox process, also known as a doubly stochastic Poisson process, is a
point process where the intensity measure is random. This characteristic
differentiates it from a standard Poisson process, where the intensity measure
is fixed and known. In a Cox process, the intensity measure is modeled
by a random measure, leading to a hierarchical or two-stage model: first,
a realization of the random measure is generated, and then, conditioned on
this realization, points are scattered according to a Poisson process with the
given random intensity.
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FIGURE 2. The generated clusters with the use of the Thomas clustering
process.

devices in A is given below.

(M) oM

PrIN@) =n) =

ey

Then, the cluster points themselves Y={y1, y»,... yx}are
distributed in an isotropic Gaussian manner around the central
positions x (set of all cluster centers of length k) of the cluster,
whose Probability Density Function (PDF) is given by the
following equation:

Fr() = ——ex (_”sz) @)
Y = a0 P\ " 202

where o is the standard deviation (spread) and [|y|| is the
Euclidean distance of the cluster point from the center of
the cluster. The number of devices in each cluster is again a
Poisson RV with an intensity of A.. The combination of these
processes produces Thomas clustering. A generated example
is illustrated in Fig. 2.

3) POISSON POINT PROCESS INTENSITY

The Poisson Point Process Intensity (PPPI), denoted by A,
is a fundamental concept in stochastic geometry and spatial
statistics. It represents the average rate or density of events
or points in a given spatial region (in our case, the UEs). It is
defined as the expected number of points or events per unit
area or volume within that region. Mathematically, A can take
non-negative real values, i.e., A > 0, and it characterises the
random distribution of points in space. A higher A\ implies a
higher point density, while a lower A indicates a lower point
density. The Poisson Point Process (PPP) is often used to
model random events such as the occurrence of disease cases
in a geographic area, the distribution of trees in a forest, or the
locations of customers in a retail store, where the intensity
parameter A plays a crucial role in determining the overall
spatial pattern and clustering of these events.
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Let \ be the intensity of UEs per unit area (UEs/m?) in a
particular region. If you have a total of N UEs in that region,
and the area of the region is A (in square meters), then you
can calculate the intensity (\) as A = %’, where A represents
the density of UEs in the area A.

4) OUTAGE PROBABILITY

Outage probability, denoted by Py, is a fundamental concept
in telecommunications and wireless communication systems,
representing the likelihood that a communication link or
channel experiences an interruption or failure, typically due
to fading, interference, or other impairments. It is a critical
performance metric, especially when reliable communication
is essential. Outage probability can be mathematically
formulated as Poyy = P (SNR < SNRty), where SNR
represents the Signal-to-Noise Ratio, and SNRty is the
threshold SNR below which the communication link is
considered to be in an outage. Outage probability varies
with different communication systems and environments; for
example, in wireless networks, it can be influenced by path
loss, fading models, and interference levels. The values of
outage probability typically range from O to 1, with lower
values indicating a more reliable communication link and
higher values indicating a less reliable or ‘“‘outage” link.
In practice, outage probability is a critical parameter used
to design and optimize communication systems for desired
reliability levels. It is often used to evaluate the effectiveness
of various communication strategies and algorithms in
adverse conditions.

B. LITERATURE REVIEW RELEVANT TO UE-VBS

Deploying UE-VBSs plays a crucial role in contemporary
communication networks, significantly improving network
performance and efficiency [2], [3], [9], [10], [11], [12], [13],
[14], [15]. Their primary objective is to enhance data rates,
coverage, and overall network capacity. The literature review
spans many methodologies, including Affinity Propagation
Clustering (APC), Machine Learning-based strategies, and
novel algorithms such as Modified Affinity Propagation
Clustering (MAPC) and Multi-Hop Load Balanced Geo-
graphical Path selection (MLGP). In addition, this study
delves into the examination of Wireless Network Virtualiza-
tion (WNV) as a means to enhance resource allocation and
optimize the Virtual Base Station association. Furthermore,
the paper examines research efforts to mitigate power
consumption in heterogeneous 5G networks and improve
energy efficiency in small cell deployments inside ultra-dense
network environments. In conclusion, this thorough analysis
provides insight into the dynamic nature of network optimiza-
tion within contemporary communication systems.

One method for choosing UE-VBSs entails the utilization
of APC, as suggested by the authors in the referenced
publication [9]. This methodology aims to determine the
optimal selection of UE-VBSs that can effectively enhance
network performance by complementing the current Small
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Cell Base Stations (SCBSs). The simulation’s findings
demonstrate this methodology’s advantages and constraints,
specifically concerning its potential scalability. Affinity
Propagation Clustering (APC) merits special attention
because it (i) requires no a-priori choice of cluster count,
(i1) converges to a globally optimal set of exemplars, and
(iii) copes well with the irregular UE topologies typical of
dense urban cells [9], [16]. These properties make APC
attractive for small-to-medium-scale deployments where
accurate cluster-head placement directly boosts spectral and
energy efficiency. The principal drawback is scalability:
the similarity matrix and message-passing updates grow
as O(N?), so memory and run-time become prohibitive once
the candidate pool exceeds a few thousand UEs [10]. Recent
studies, therefore, combine APC’s accuracy with down-
selection heuristics, or replace it with lighter schemes such as
MAPC, IMCA, or ML-assisted classifiers when ultra-dense
scenarios are targeted.

The authors of [2] investigate a methodology based
on machine learning to choose and activate UE-VBSs
dynamically and effectively. Using unsupervised techniques
for clustering user equipment and subsequent classification
using supervised learning, the identification of as many
suitable UEs as possible as UE-VBSs is achieved. The
study provides evidence of the efficacy of Decision Trees in
appropriately classifying these User Entities. In particular, the
trained Decision Tree applies a sequence of threshold tests—
residual battery bres > 0.70, uplink SINR SINR > 15 dB,
distance to gNodeB d < 300 m, CPU speed fcpy > 1.4 GHz,
and RAM R > 2 GB—to nominate each UE as a VBS
candidate, guaranteeing both link reliability and sufficient
on-device resources.

To improve the efficiency of network operations and
backhauling optimization, the authors of [3] propose the
utilization of two algorithms: The MAPC and the Multi-Hop
Load Balanced Geographical Path selection algorithms.
These strategies aim to strategically choose UE-VBSs to
enhance network performance by increasing capacity and
data rates in locations with limited infrastructure. Specif-
ically, MAPC selects cluster-head UEs by minimizing a
composite cost function that jointly accounts for residual
device energy (to reduce power consumption), average
intra-cluster distance (to limit latency and path loss), and
achieved spectral efficiency over the D2D links, thereby
balancing energy use, delay, and throughput.

The authors of [10] suggest a two-stage machine-learning
methodology for the dynamic selection and activation of
the UE-VBS. Clustering techniques such as K-Means and
MeanShift are utilized to group Users’ Equipment, followed
by the application of supervised Machine Learning classi-
fication algorithms to ascertain the eligibility of the UEs.
The methodology above attains a notable level of precision,
particularly when employing the Random Forest classifier.

The Initializing Matching Connection algorithm (IMCA)
is proposed in [11] to dynamically select Virtual Small Base
Stations in ultra-dense 5G networks. The IMCA protocol
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emphasizes the establishment of the primary link between
client User Equipment and eligible UEs, which leads to the
creation of clusters and the activation of UE-VBSs to mitigate
network congestion.

The article [12] discusses the utilization of Wireless
Network Virtualization to tackle the resource allocation
and VBS association problem in cellular Device-to-Device
communication networks. This study introduces a heuristic
method to address the tasks of mode selection, UE and
VBS matching, and resource allocation. The study aims to
demonstrate the efficacy of the suggested approach.

The article referenced as [13] presents the Grid Assisted
Affinity Propagation Clustering (GAPC) method as a
means to improve spectral efficiency within the context
of Cell-based Virtual Small Cell (CHVSC) services. This
approach integrates clustering and member selection method-
ologies to enhance overall performance.

The study conducted by the authors in reference [14]
centers on the objective of reducing power consumption in
heterogeneous 5G networks by optimizing User Equipment
association, backhauling, and sleep control mechanisms of
small base stations. The system utilises intelligent backhaul-
ing algorithms and load-sharing techniques to maximise the
network’s energy efficiency.

The authors’ study, as described in reference [15],
proposes a deployment approach that seeks to enhance energy
efficiency in small cells inside ultra-dense networks. The
authors suggest using the Efficient Cell modeling (ECM)
method and the Binary Particle Swarm optimization-based
Small Cell Deployment (BPSD) strategy as strategies to
enhance energy efficiency and connectivity.

Overall, the existing approaches in the field of UE-VBS
include APC, MAPC, Machine Learning techniques, IMCA,
GAPC, and MLGP. These researches collectively improve
the performance of networks in terms of data speeds,
coverage, capacity, and energy efficiency. The authors
give the selection of User Equipment and Virtual Base
Station considerable importance as a means to address
challenges associated with scalability, network congestion,
and power consumption in evolving communication systems.
This statement underscores the ongoing endeavours being
undertaken to enhance network operations in light of evolving
requirements. However, the current body of literature needs
more investigation to analyze physical channel characteristics
related to UE-VBS deployment and the likelihood of encoun-
tering service disruptions when utilizing this technology. This
investigation focuses on the aforementioned challenges.

1) POSITIONING AND NOVELTY OF THE PRESENT WORK

Previous UE-VBS papers each tackled only a single
slice of the problem space: APC head-selection shapes
clusters but stops short of system-level performance [9];
ML-based nomination refines head choice yet ignores
multi-hop propagation and energy cost [2]; two-stage
ML frameworks (K-Means/Mean-Shift + Random Forest)
improve selection accuracy but still neglect end-to-end
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TABLE 2. Qualitative advantage of the proposed analysis over prior
UE-VBS literature.

Main focus / limitation Joint
Outage +
SE/EE

Reference

Swain et al. [9] APC cluster-head placement; noout- X
age or efficiency analysis

ML head nomination; per-UE met- X
rics only

Two-stage ML selector; ignores link X

Toannou et al. [2]

Veluswami et al.

[10] reliability

Venkateswararao MAPC/MLGP back-haul optimisa- X
etal. [3] tion; deterministic geometry
Venkateswararao IMCA link matching; fixed topology X

etal. [11]

Danisya et al. GAPC maximises SE; ignores out- X
[13] age/EE

Wang et al. [12] WNV VBS association; no relays X

considered
Venkateswararao Sleep-mode power saving; omits SE X
et al. [14] and outage
Venkateswararao ECM+BPSD small-cell placement; X
etal. [15] no end-to-end QoS
This paper Closed-form outage plus spectral- v

efficiency (SE) and energy-
efficiency (EE) evaluation for
networks modelled by a Poisson-
cluster process (PCP) and a
log-distance (LOGD) path-loss
law; includes hop/density trade-off
with concrete 4.8x (SE) / 4.6x
(EE) gains

reliability [10]; MAPC/MLGP optimise back-haul routing
under a deterministic topology [3]; IMCA resolves only
the initial link-matching phase [11]; GAPC maximises
spectral efficiency in isolation [13]; WNV-based association
concentrates on virtual slicing without relaying [12]; energy-
aware sleep-control for heterogeneous 5G cells targets only
power reduction, omitting outage and spectral aspects [14];
and ECM~+BPSD focus on small-cell placement for energy
saving, again without a joint QoS analysis [15]. None of these
studies (i) quantifies outage probability, spectral and energy
efficiency jointly under a stochastic-geometry (Thomas PCP)
deployment, (ii) exposes the coverage—efficiency trade-
off created when hop count, cluster density, and SINR
threshold are co-optimised, or (iii) reports the baseline-
to-UE-VBS performance delta in concrete figures that
practitioners can reuse. First, we derive the first closed-form
outage model for UE-VBS networks, validate it with LOGD-
fading simulations, and then couple it with new analytical
expressions for system-wide spectral and energy efficiency
that bind hop count, SINR threshold, and cluster-head
probability. Second, we provide the first holistic comparison
with legacy macro-cell operation under identical traffic
and propagation assumptions—showing, for example, that
at 2UE/m? a single-hop slice cuts outage from 0.78 to
0.23 while boosting area-spectral efficiency by 4.8x and
energy efficiency by 4.6x. Table 2 highlights how our
framework extends or supersedes each representative line of
research.
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IIl. ASSUMPTIONS RELATED TO SYSTEM FORMULATION
To analyze our UE-VBS system, we have made some
assumptions about signal processing, random properties, and
the hardware being used. More specifically, we assumed a
decentralized UE-to-VBS communication model where each
UE can dynamically act as a Virtual Base Station (VBS)
based on its proximity, available resources, and quality of the
wireless link. All UEs and VBSs are equipped with single
antennas, operate in full-duplex mode (leveraging recent
demonstrations of >100 dB self-interference cancellation),
and support D2D communication; Section V quantifies
the 50 % throughput reduction under a half-duplex
constraint. We consider standard LTE/5G-compliant PHY
and MAC layers with device capabilities constrained by
finite-resolution DAC/ADC, non-ideal power amplifiers, and
oscillator phase noise. The wireless channels are modeled
as Rayleigh fading with distance-dependent path loss and
log-normal shadowing. Perfect synchronization is assumed,
while channel state information (CSI) may be imperfect.
The decision of VBS selection and the clustering of UEs
follow a semi-static configuration updated periodically based
on traffic load and mobility patterns. Energy constraints
are incorporated, especially for battery-operated UEs acting
as VBSs. The below-mentioned assumptions are the most
significant ones, whereas the less significant assumptions are
mentioned as they come up in later sections.

A. UE-VBS RELAY FUNCTIONALITY

Firstly, we assume that the UE-VBS-enabled devices can
function as relays in a full-duplex manner. This assumption is
technologically grounded rather than speculative. Laboratory
prototypes have already achieved >100dB self-interference
cancellation on commodity smartphone chipsets at sub-
6 GHz, enabling practical in-band full-duplex links [17], [18].
In parallel, 3GPP Release 18 introduces in-band full-duplex
(IBFD) operation for 5G NR small-cell nodes, paving the
way for handset vendors to expose the capability in upcoming
devices. We therefore treat full-duplex UE-VBS relays as
a realistic, forward-looking upper bound. Section V later
quantifies how our results would scale down under a half-
duplex constraint, showing that the qualitative conclusions
remain intact despite the expected 50 % throughput reduction.
Suppose we have a half-duplex relay communications; then
Shannon-Hartley channel capacity would be decreased by
a factor of % This decrease in capacity is due to the split
in the uplink and downlink channels in time and frequency.
A full-duplex relay means that two antennas receive and
transmit using the same frequency simultaneously, which
causes high interference between them. Recently, there have
been advancements in full-duplex relays [17], [19], [20]
that deal with this interference in many different ways. The
performance of the relay depends on the hardware with which
the UE-VBS computing system can integrate itself. A decode
and forward relay would be beneficial if sufficient buffer
memory is available. Also, if we can decrease the interference
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(actively or passively) below the noise level and utilize the
same frequency band, we can realize a relay kind of setup.
This assumption essentially falls onto the hardware/signal
processing used during deployment.

B. MODELING OF UE SPECIAL 2D DISTRIBUTION

As discussed previously, we can describe the locations of
set U on a 2D plane with the Thomas Clustering technique.
We simulate random point generation representing UEs using
R, specifying the initial PPP intensity (), the variance (o%) of
the 2D isotropic Gaussian clustering, and the average number
of points (A\.) within each cluster. This allows us to use these
variables to create UE positions and densities akin to those of
a busy city center in many European countries [7]. We use
these U sets to generate UE-VBS networks by assigning
devices as either UUE_VBSCH and Uy _gr . Finally, we draw
randomly probable connections to the served devices from
either the gNodeB (BS) or a device in Uyg_yps. Thus, this
investigation is focused only on the second dimension (2D)
rather than the third dimension (3D).

C. PROBABILITY FOR PRESENCE OF A UE-VBS DEVICE IN
A CLUSTER

It is intuitively understood that only some clusters will have
a UE-VBS-enabled device to serve them, as it is potentially
a random event. These enabled devices are modeled as
a random sample from the set of all devices U (which
becomes Uyg_yps) in A. This random sample will extract
a predetermined percentage of the devices, denoted by u.
Therefore, we can assume that each device will have a
probability u to be chosen. Suppose we have an average
number of devices in a cluster of \., where a Binomial
distribution is used to model the probability that each cluster
will have at least one cluster head. This is accomplished via
the subsequent equation.

Ac
pp=Prin= 1), u} = > n-u(l —uy™"  (3)

n=1

This probability distribution will be used in the later
analysis to fully incorporate that not all clusters will have a
U UE—VBScy included (Section V-A).

In the UE-VBS paradigm, we assume that a fixed fraction
u of all UEs in the cell have the special UE-VBS app installed
and thus are eligible to act as cluster heads. Every such UE-
VBS-capable device is automatically promoted to a cluster
head. Under this random sampling, a cluster containing on
average A\, UEs will have at least one head with probability
pp (Eq. 3); If no head lands in a cluster (probability 1 — pj),
that cluster is deemed headless and is treated as a local outage.

1) CLUSTER-HEAD SELECTION
Each UE i € U is independently marked UE-VBS-capable
with probability u, so that

Uue-ves = {i € U | Prli € Uyg.vss] = u}.
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By construction, every such UE-VBS-capable device
becomes a cluster head, i.e.

Uve-vBscy = Uuk-vas.

Since a typical cluster contains A\, UEs and each is chosen
with probability u, the probability that at least one lies in that
cluster is exactly

Ac
pp= nu(l—w"",

n=1
as given in Eq. (3). Any cluster that by chance has no
head (probability 1 — p,) is then treated as headless (i.e.
instantaneous local outage).

D. MULTIPLE ACCESS CHANNEL BASED ON
ORTHOGONAL FREQUENCY DIVISION MULTIPLE ACCESS
It is noteworthy to add that because the application of this
system is intended for implementation on contemporary
5G systems, we aim to use Orthogonal Frequency-Division
Multiple Access (OFDMA) to access the various UE-
VBS channels [21]. This dramatically decreases interference
between the carriers and allows the proposed approach
to model the system with “flat” fading, which means
that the bandwidth of each sub-carrier is smaller than the
coherence bandwidth. This lets us represent the model fading
components in random wireless signals as a single RV.
Furthermore, additional resources, such as data rate
and bandwidth, must be allocated to specific UE-VBS
devices. These devices will be responsible for serving not
only themselves but also a larger number of devices on
certain occasions. OFDMA enables the allocation of several
Orthogonal Frequency-Division Multiplexing (OFDM) sub-
bands to adjust the data rate available to a specific UE device.

IV. SYSTEM MODELING AND FORMULATION

A. GENERAL DESCRIPTION AND FORMULATION OF THE
UE-VBS MODEL

Generally, our model will always either consist of one or
more hops to form a UE-VBS cluster of devices or to act as a
direct connection to a UE device. As the direct connection is
standard, we will focus on the novel UE-VBS connection in
our analysis (as shown in Fig. 3).

As seen in the signal model diagram in Fig. 3, a single
spanning of a UE-VBS network would have n number of UE-
VBSRrL devices (or hops) connecting to a UE-VBScy and &
UE-client devices. Each link (arrow pointers in Fig. 1) shown
can be described as a wireless signal travelling from device a
to b and can be expressed as follows:

Ya—b(t) = has p(1)Xa— (1) + np(1) “)

where h,_, () is the channel of multiplicative noise fading
coefficient for the message x,_,,(?), and np(t) the Additive
White Gaussian Noise (AWGN). We can extract useful
parameters such as power, Signal-to-Noise Ratio (SNR),
and Signal-to-Interference Ratio (SINR) from these signals.
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FIGURE 3. A signal model for a spanning tree connection in a UE-VBS
network.

To analyze the system further, we need to convert the physical
signal into a power signal. Using the FSPL Model as part of
the link budgeting equation [22], non-logarithmically, we can
say that power at b that is transmitted from a is given in the
following equation.

Pahg—pG

G
where P, and Pj are the instantaneous powers at arbitrary
points a and b in our area of interest, 1(r) is defined in
Table 1, and G is the overall gain of the antennas. This can be
described as G = G;G,, where G; and G, are the transmitter
and receiver antennas gain, respectively.

Upon closer examination of our model, it becomes
apparent that the signals depicted in Fig. 3 should not be
regarded as equal. This is because the power, range, and
channel properties of the connections can be categorized into
three distinct stages, as outlined below.

1) Stage 1 - gNodeB to first UE-VBS device: Initially,

a BS or gNodeB will connect to a UE-VBS-enabled
device in our generated network. Here, we can expect a
higher initial transmission power in practice as this will
usually be the longest distance our signal will travel
(<1km). The channel here is expected to be affected
by slow (Lognormal noise) and fast (Rayleigh noise)
fading due to the multiple-path signals arriving at our
receiver [23]. To simplify our analysis, we assume
that all stages experience only Rayleigh fading and
deterministic power loss.

2) Stage 2 - UE-VBS multi-hop “bus”: At this stage,
we may have an arbitrary number of hops but will
choose to limit this to a pre-determined number. The
channels here are relayed by UE devices that are
UE-VBS enabled (full-duplex manner) to reach a
UuEg-vBsqy device. The length of the ‘chain’ depends
on where the cluster of devices we are trying to reach is
located and the angle of incidence of Uyg_yps devices
along the way. Although the individual connections
will be at a maximum of 500 m long due to limitations
of Long Term Evolution (LTE) direct [24], it is
expected that at this stage, we may experience a

&)
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power outage at most since low-powered UE devices
are being used. A maximum of Hp,x relay hops is
supported. This limit is not imposed by UE hardware
alone but is a performance-driven design choice: more
hops extend coverage into deeper fades, but each
extra relay adds processing/queuing delay, increases
aggregate interference, and incurs additional energy
and signalling overhead. The per-hop distance remains
bounded by the LTE-Direct range (= 500 m) and
full-duplex self-interference cancellation capabilities,
while Hp,y itself is selected via empirical optimization
to balance coverage, latency, spectral efficiency, and
energy consumption. The Hpax is set to 5, to capture
diminishing returns beyond this point; hardware-level
constraints inform the per-hop distance, but the hop
count itself reflects a design trade-off to maximize user-
perceived QoS and network efficiency.

3) Stage 3 - UE-VBS cluster head to cluster devices:
The final stage, which is used to serve the multiple
devices of the cluster, will be a multiple access
channel that will provide a downlink data signal to
the UE devices. Furthermore, in order not to have
a ‘bottleneck’ for the data rate, we must provide
an expanded bandwidth for this particular spanning
tree collection, depending on the number of devices
expected to be served, and hence a higher possible data
rate to accommodate the requirements of all devices.
This is made possible by allocating more sub-carriers
from the OFDMA system for these connections,
starting from the first device in stage 1.

a: PATH LOSS MODEL IN ANALYTICAL RESULTS

In the analytical model, we assume a free-space path loss
model, which describes how signal strength diminishes
purely as a function of distance in a free-space environment
without obstructions. The SNR is computed under the
influence of AWGN, which accounts for random noise in the
communication channel.

B. OUTAGE BEHAVIOR
As mentioned in the previous section, there is a difference in
how we should treat the three stages. In our study, we assume
that a device is considered to be in an outage if its SINR
falls below a specified threshold SINRty. The FSPL Model
estimates the signal power attenuation. Thus, the outage
probability is given by Pr{SINR < SINRty}, as shown in
Eq. (17).

Notably, the upper bound of SINRTy can be determined by
adjusting Ry, in the modified Shannon capacity equation for
noisy channels [25], which is given by the following equation.

Rmin

2BuE-ves — | = SINRth (6)

where Byg_yps is the bandwidth allocated for individual
UE-VBS spanning tree channel connections. Now, we can
join all three stages to calculate the outage probability for

94593



IEEE Access

1. 1. loannou et al.: On the Performance Analysis of UE-VBS-Based Wireless Communications

the end-to-end connection. Intuitively, we can see that if one
connection drops, the connections to all stages drop. So, in a
‘chain-like’ fashion, the Eq. (7) can be utilised.

Poup =1 = (1 = pout,init 1 — Pour,ue—vBs)(1 — Pourc)
@)

where pout.init» Pout,UE—vBS and po,c are the outage proba-
bilities for the initial gNodeB to first UE-VBS device stage,
the middle multi-hop “bus’ and the final clustering stage,
respectively.

C. LOGD PATH LOSS MODEL EXAMINATION

Wireless communication systems rely heavily on accurate
models to predict path loss across different environments.
The practicality of path loss models is crucial for designing
efficient communication networks by estimating the atten-
uation of signals as they propagate from a transmitter to
a receiver. With its adaptability and precision, the Log-
Distance (LOGD) path loss model with shadowing effects
is a theoretical construct and practical tool that can be
readily applied in various scenarios. This section introduces
and details these two models, providing insights into their
formulations and real-world applications. The LOGD path
loss model, also known as the LOGD power law model,
is a simple yet effective model used to predict the path
loss encountered over a distance in wireless communication
systems. It is a generalization of the FSPL model and is
widely used due to its simplicity and adaptability to different
environments by tuning its parameters.

a: FORMULATION
The LOGD path loss model is mathematically expressed as:

d
PL(d) = PL(dp) + 10 - @ logy (d_) + Xo, 8
o

where:

o PL(d) is the path loss at distance d in dB,

o PL(dy) is the path loss at the reference distance dy in dB,

o « is the path loss exponent, indicating how path loss
increases with distance,

o d is the transmitter-receiver separation distance,

o do is a reference distance from the transmitter within the
far-field region,

e X, is a Gaussian random variable (in dB) representing
shadowing effects, with zero mean and standard devia-
tion o.

b: APPLICATION

The LOGD path loss model is extensively used in both
outdoor and indoor scenarios for its flexibility and simplicity.
By adjusting the path loss exponent n and the shadowing
deviation o, the model can be tailored to fit a wide
range of environments, from urban to rural and from
indoor office spaces to industrial settings. This model is
particularly valuable in the initial stages of network design
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and simulation, providing a reliable basis for estimating the
coverage and capacity of wireless communication systems.

D. THROUGHPUT AND EFFICIENCY

Next, spectral and energy efficiency are examined in our
investigation. As the system’s main resources will be the
frequency spectrum and power, quantification of these values
must occur in the future to optimize the system as much
as possible. The data rate R in the system can be defined
using Shannon’s capacity formula, which is a function of
the system’s bandwidth B and the signal-to-interference-plus-
noise ratio SINR. The data rate R is expressed as:

R = Blog,(1 + SINR) )

Continuing, the total system bandwidth, denoted as Byys,
represents the entire frequency spectrum allocated for the
system. It is shared among multiple users or connections,
influencing both the spectral and energy efficiency of the
system. The total bandwidth available for all UE-VBS
connections and users within the system is given by:

n
Bys= Y Bi (10)
i=1

where B; is the bandwidth allocated to the i-th user or
connection, and 7 is the total number of users or connections.
The total bandwidth is normalized by Byy; when calculating
spectral efficiency.

1) SPECTRAL EFFICIENCY
To analyze the stochastic geometrical distribution of UE
devices, it is essential to assess the spectral efficiency over
the expected coverage area. The spectral efficiency ngyssg,
where 7yssE represents the system’s spectral efficiency, can
be calculated as shown:
Nall—linkSE
n (11)

where 14 —inkse 1s the predicted capacity of all UE-VBS
connections and A is the expected coverage area of the cell
used.

If AWGN power can be represented as W = NoByg_vas,
where Ny is the power spectral density of the noise, we can
then represent the instantaneous capacity of a link using

the Shannon noisy channel equation C; = Blogy(1 +
%) [bits/s]. The ergodic capacity of a fading channel
is calculated by taking the expected value of the channel

capacity, assuming Rayleigh fading RV [26] as shown below.

C, =E{BIl L LIC h
e O —_—
! £2 W41

—/Oogl L CILICTI P )  (12)
I it W1 H

where Fp(h) is the CDF of the Rayleigh fading RV or,
more generally, the SINR. It is essential to point out that
B here would be By divided by the number of devices in

NsysSE =
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the network, assuming an equal data rate for all of the UEs
in the network. From here, we can formulate an equation
describing ngy—iinksg for all of our connections. If a UE
device is directly connected to the BS, then its capacity can
be described as explained above. However, if we have a
spanning tree connection, as shown in Fig. 3, and if we wish
to allocate the same amount of bandwidth to all of the tree’s
connections, we need to account for the relay bus and the
cluster. Consequently, the link capacities’ sum can be shown
below.

nr, ne,
2 Gt 2 (Zq:l Cq+ 20 Cm)

Bsys

Nall-linkSE =

. R
By

(13)

where u is the number of UE devices connected directly to
the gNodeB, ¢ is the number of spanning trees, By is the
total bandwidth used by the 5G system, n,, and n., are the
number of relay and cluster devices in the tree, respectively.
Furthermore, R gives our system’s expected upper bound of
the data rate.

2) ENERGY EFFICIENCY

Optimizing energy efficiency in modern 5G/6G systems
is necessary due to the significant societal and economic
concerns associated with increased power usage. To extract
our system’s minimum acceptable energy efficiency, we need
to quantify how much power is being used instantaneously
by the system for a minimum required throughput (as shown
in Eq. (14)). Thus, energy efficiency is calculated using the
following equation:

(14)

where Py, is the total instantaneous power being used. More
specifically, this power can be split into two distinct parts.
The power being actively used to transmit messages, which
is Pr = XL P+ D (ZZL Py +Z$i1pm)- Note
that the gain G from Eq. (5) in each transmission will be
accounted for by introducing an average power loss factor 8
to all transmitted power signals (P;), which will be an average
power cost for all gains in our system. The other aspect of
power usage is determined by the hardware in the transmitters
and receivers that are needed to keep the connections live.
This can be described by a constant power loss P, and a
dynamic power loss y that depends on Ryn. So, we can say
that Py, can be calculated as in the following equation:

Piot = BP; + P + Y Ruin (15)

Other than providing a consistently high QoS, the pri-
mary goal is to optimize and balance energy and spectral
efficiencies through suitable optimization methods. Eq. (16)
formulates this optimization problem by defining the system
energy efficiency 7y as the ratio of the minimum required
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throughput Rpi, (ensuring that QoS remains constant) to
the overall effective power consumption, which is given by
BP: + P, + yRnmin. Here, P; represents the transmission
power bounded within [Py, , P;,.. ], Pc denotes the constant
circuit power consumption, and y is a non-negative parameter
that accounts for additional costs proportional to Ryin. The
constraints in the optimization problem ensure that Rpi, iS
non-negative, the transmission power P; remains within its
prescribed limits, and y is also non-negative. Overall, this
formulation encapsulates the trade-off between maintaining
a minimum throughput for QoS and minimizing the effective
power consumption to achieve optimal energy and spectral
efficiency.

Rmin ]
BP; + Pc + yRmin
Rmin >0
P: € [Pr ., Proyx ]
y=0 (16)

max [ NsysEE =
NsysEE

subject to:

3) ON THE OPTIMIZATION OF THE EFFICIENCIES

Through further inspection of nsyseE and nsyssg and according
to Eq. (13), we can gain knowledge on what values we need
to optimize specifically. 8 and y are also constants due to the
dependency on hardware. The values that are left are P; and
P.. While P, is a constant itself, it does have a connection to
how many devices are being utilised in the system, so we can
say that P, &« nP,., where n is the total number of devices
in the UE-VBS network, and P, is the average power usage
per device. Now, we can also see that P; heavily depends on
the number of devices n as well.

We assume that the power allocated for each transmission
in our system is directly affected by the expected reach
of the transmission. Therefore, it is evident that shorter
transmissions would decrease P;. To be specific, short
transmissions take place inside the spanning trees, i.e.,
UE-VBS; to UE-Clienty,, where [ and m are randomly
selected from the set of the available VBS, and UEs devices,
respectively, and hence, higher the number of trees ¢ (i.e. more
relays), we may see an increase in nysgg.

Therefore, we optimize the system by obtaining values
allowing for the highest efficiencies. Both n,ygr and nsyssg
need to be taken into consideration so that it can be shown that
our analysis is well suited for real-world applications. Several
methods can be employed to optimize the abovementioned
parameters, which will be discussed in the forthcoming
discourse.

V. ANALYSIS

This section uses the AWGN model to explore the system’s
performance metrics, examining outage probability, spectral
efficiency, and energy efficiency. The analysis segments the
network into different operational stages to evaluate each link
in the communication chain.
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A. OUTAGE PROBABILITY

To effectively assess the coverage and performance of our
system, we investigate the probabilistic behavior of the
downlink power signals from each device in the spanning
tree. Hence, we intuitively split Fig. 3 into three distinct parts:

1y

2)
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eNodeB to first UE-VBS device: For the sake of
simplicity, we can either ignore fast fading or use the
link budgeting equation to analyze the probability that
the power loss is higher than a specific acceptable
limit. However, in our case, we ignore power loss
and shadowing and use the convenient Rayleigh
distribution [22], which has an SNR distribution of
prp (x) = ﬁe*ﬁ [27]. It is worth noting that for
this stage, we assume that SNR = SINR allows for the
use of the SNR PDF. The impact of this assumption
is believed to be minor due to the much greater
transmission power that gNodeB will be transmitting
when compared to the interference added. Therefore,
the probability (the outage probability) that the SINR
will be below a specific limit can be expressed as shown
in the following equation:

Doutinit = Pr {SINR < SINRTH}

SINR7y
= /0 PRp(X) dx
SINRTH

—l—exp(-2H 17

exp( SINR ) a7

UE-VBS multi-hop “bus”: Given our assumptions in
Section III, we can say that our potential transmitters
can be assumed to be located at the center of the Poisson
distributed clusters. From the relevant literature [6],
it can be stated that the Laplace transform of the
interference is equal to the probability of coverage (the
probabilistic opposite of outage), which is given by
the following equation. So, the probability of signal
coverage at a specific point i in a network, denoted by
Py ;, is defined by:

P,; = Pr{SIR > SIRyy)
= exp (—ca IR rIT(1 = 87)  (18)

Where ¢, represents the area over which User Equip-
ment is spread out, reflecting the spatial distribution
of transmitters. The parameter A refers to a density
factor associated with the Poisson distribution of
transmitter clusters, indicative of how densely packed
these potential transmitters are within the defined area.
The variable r; represents the average one-hop distance
to the ith point or node in the network, and I'(.) denotes
the Gamma function, a generalization of the factorial
function that accommodates complex and real number
arguments. Additionally, § = % is a dimensionless
parameter linking the dimension d of the environment
to the path loss factor a. d is the dimensionality
(specifically 2 in this two-dimensional scenario), and a

is the path loss exponent that characterises how rapidly
the signal power decreases with distance, chosen here
as 4 for convenient calculation. So, SIR represents the
Signal-to-Interference Ratio, measuring signal quality
by comparing the power of the signal to the power
of the background interference. SIR7y is the threshold
level above which the signal is considered to be
in “coverage,” thus determining whether the SIR at
point i exceeds this threshold. The formula under
discussion calculates the probability of coverage in a
wireless network, particularly focusing on the scenario
where the Signal-to-Interference Ratio (SIR) surpasses
a specified threshold SIR7y . This is vital for assessing
the performance and reliability of communications
in UE-VBS multi-hop networks. The formula’s core
principle is to model the likelihood of adequate signal
coverage at a given network point, considering how
interference impacts signal quality and communication
reliability. It highlights that increasing interference,
SIRTy, X (the density of transmitters), or r; (average
distance to the ith node) escalates the exponent in
the exponential term, consequently reducing coverage
probability. Note that in the original equation, the
r; is defined with r4, and d is the dimension. The
assumption that transmitters are centrally located
within Poisson-distributed clusters reflects a realistic
spatial node distribution, influencing interference and
coverage outcomes. Additionally, the parameter &,
representing the ratio of spatial dimension to path loss
factor, adjusts the model to account for distance-based
signal power decay, thus providing insights into the
environmental effects on signal propagation and inter-
ference. Ultimately, the formulation shown in Eq. (19)
estimates the likelihood of maintaining adequate signal
quality above a specific threshold in a UE-VBS multi-
hop network, factoring in node distribution, inter-node
distances, and environmental characteristics.

Thus, by having the given expression for the probability
of signal coverage is:

Pyi = exp (—cd)\SIR‘STHrl-d r(— 5)2) (19)

where:

e cg4 is a coefficient related to the coverage area,

« A\ is the density of transmitters,

o SIR7y is the signal-to-interference threshold,

o § is defined as %,

« r;is the average distance to the ith node,

e I'(1 —§)is the Gamma function evaluated at 1 — 4.
Given that § = %, and substituting d = 2 and a =
4 (the dimensional and loss factors respectively), then
= % = % Substituting § = % into the original
equation, we obtain:

1 1\?2
Pg;=exp (—cd)\SIR%Hrl-zF (1 - 5) ) (20)
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The Gamma function I'(1 — §) with 6 = s1mp11fles

2
to (7) = /m Therefore, T (5 =7.
The final expression for the probability by substituting
§ = %, where d is 2 and a is 4, the result simplifies to:

Ps; = exp (_cd/\SIRTHrz JT) 20

which reflects how environmental changes and signal
characteristics impact the coverage probability. This
formula effectively captures how the likelihood of
maintaining a signal strength above a certain threshold
decreases as the interference increases.

More precisely, to derive Eq. (21) we proceed in the
following step by step examination:

Py = exp(—cq A SIRy, r T(1 — 5)2)-

e 4 is the unit-ball area in d dimensions [6],

o Ais the density of transmitters,

e SIR7y is the SIR threshold,

e § = d/a is the ratio of dimension to path-loss
exponent,

o r1;is the link distance,

e I'(1 — &) comes from the Rayleigh-fading Laplace
transform.

1. In our urban NLOS scenario we setd = 2 and a = 4,
SO
2
6 = = - =

a 4

)

N|—

and hence SIRTH = SIRI/ 7.
2. Using F(z) =/ [28, Ch. 6], we get

ra-e7>=

3. In two dimensions the unit-disk area is ¢; = 7 [6].
4. Substituting § = 3, I'(1 —§)> = 7, and ¢y = 7 into
the exponent yields

1
Ps;i= exp(— b4 /\SIRTH r; JT)
1
= exp(— ca ASIRZ, r? n).

Thus we recover

Psi= exp( cd )\SIRTH r; 71)

which shows coverage probability decays exponen-
tially in A, r SIRTZ ,and .

More spemflcally, to continue our investigation by
having § = %, where d is the dimension we have
in our environment (2 in our case), and a is the
loss factor, which is chosen to be 4 to allow for the
convenient calculation seen in Eq. (22). Thus, the result

is exp(— cd/\SIRTHrz) It would be worth noting that
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we assume Rayleigh fading® with mode one® [29],
to keep our solution simple. As we also want to account
for additive noise in our analysis, we use a modified
version of Eq. (18), which takes the following form
of Eq. (22). Note that W denotes the Additive White
Gaussian Noise, and this term is used to characterise
the impact of noise on the probability Ps ;. For the
transition of Eq. (18) to 22, involving SINR and noise
W, we consider that the SIR to SINR transition can be
measured as SINR = ILEZISV , where W is the noise. If we
incorporate the noise W into Py ; using the relationship
above, the exponent may be modified. However, the
exact nature of this modification would depend on
the specifics of your system model. The function
' — 8§)I'(l — &) could be a representation of some
interference or fading effect. Rayleigh fading with
mode one might be characterized by this term. If noise
is being considered, the system may be simplified,
leading to dropping or modifying this term. Given
the information about Rayleigh fading and noise W,
a simplified or approximate form by removing § could
lead to Eq. (22). Typically, in communication systems,
noise deteriorates the signal quality, affecting the
reception or decoding of that signal. In the context of
this equation, the presence of W inside the exponential
function implies that as noise increases, the value of
P; ; decreases (given that other terms remain constant).

1
To transition from the equation exp(—cy )\SIR%H rl.27t) to
exp(—SINRTHriZW)pp using the relationship SINR =
%, where W represents the noise, we need to
undertake the following steps: The Initial equation is:

a) exp(— cd)\SIR T 257) where: ¢  is the area where
User Equipment (U) is spread out, A is a density
parameter associated with the Poisson distribu-
tion of transmitter clusters, r; is the average
distance to the ith point or node in the network,
and SIR7y is the threshold level for the Signal-to-
Interference Ratio (SIR).

b) Using the definition SINR = 511‘;, and substitut-
ing SIR in terms of SINR, we have: SIR = SINR -
(1 + W). This modification reflects the impact of
noise on the system’s performance, adjusting the
SIR based on the noise level W.

2Raylcigh fading is a statistical model for the effect of a propagation
environment on a radio signal, such as that experienced by mobile phones and
wireless networks. It models the variation in amplitude of a signal received
at a base station, which results from the many paths that a transmitted signal
can take before being received. “Mode one” in Rayleigh fading typically
refers to the simplest form of this fading model where the amplitude of the
signal is modeled as a Rayleigh distribution, which is applicable when there
is no line-of-sight path between the transmitter and receiver.

3Rayleigh fading with mode one assumes a non-line-of-sight (NLOS)
propagation environment where multiple scattered paths contribute to the
signal amplitude observed at the receiver. This model is characterized by
its Rayleigh distribution of the signal’s envelope, suitable for describing
urban cellular radio and other similar environments where a direct visual
path between transmitter and receiver is obstructed.
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Modifying the Equation:

a) To integrate the SINR into the initial equation,
replace SIRty with its equivalent in terms of
SINRTy: SIRTy = SINRTH - (1 + W).

b) Assuming W is small compared to 1, we can
approximate 1 + W by W when it multiplies
anotlher large variable or is in an exponent. Then:
SIRZ, ~ (SINRTuW)?.

¢) Substituting this into the original expression:
exp(—cg \SINRrg W) 2 r27).

d) Assuming that the exponential and polynomial
interactions allow a simplified model and recog-
nizing that actual coverage probability might also
include a probabilistic component p,, (reflecting
other system aspects like probabilistic distri-
bution of nodes, as shown in Section III-C),
we approximate: exp(—SINRTHriZW)pp.

Given the information about Rayleigh fading and
noise W, a simplified or approximate form by removing
6 could lead to Eq. (22). Overall, in communication
systems, noise typically deteriorates the signal quality,
affecting the reception or decoding of that signal. In the
context of this equation, the presence of W inside the
exponential function implies that as noise increases, the
value of P;; decreases (given that other terms remain
constant). Also, it would be worth noting that we
assume Rayleigh is fading with mode one to keep our
solution simple. As we also want to account for additive
noise in our analysis, we use a modified version of Eq.
(18), which takes the following form:

Ps.i = exp(—SINRtur{ “W)p,
= exp(—SINRur?W)p, (22)

Note that W denotes the Additive White Gaussian
noise, and this term is used to characterise the impact of
noise on the probability Py ;. For the transition of Egs.
15 to 16, involving SINR and noise W, we can make a
few considerations and hypotheses:

o SIR to SINR transition measured as: SINR = %,
Where W is the noise.

e Accounting for Noise in P, ;: If we incorporate
the noise W into P; ; using the relationship above,
the exponent may be modified. However, the exact
nature of this modification would depend on the
specifics of your system model.

o Gamma Function: The function I'(1 — §)['(1 — §)
could be a representation of some interference
or fading effect. Rayleigh fading with mode one
might be characterized by this term. If noise is
being considered, the system may be simplified,
leading to dropping or modifying this term.

o The factor p,, can be thought of as incorporating the
probabilistic nature of having a transmitter within
a particular range or the effect of other variables
not explicitly modeled by the simplified SINR and

noise expressions. More specifically, p, captures
the likelihood that a UE-VBS-enabled device is
present within a cluster, a random event. Devices
enabled for UE-VBS are randomly selected from
the set U (now Uyg_vyps) in A, with each device
having a selection probability u. Given an average
¢ devices per cluster, the probability that a cluster
includes at least one cluster head is modeled using
a Binomial distribution, as detailed in Equation 3.

This transition involves some approximations, particu-
larly about the impacts of W and how it interacts with
other variables in the system. The exact nature of these
approximations should be validated by empirical data
or more detailed analytical modeling to ensure that they
accurately reflect the system’s behavior under realistic
operational conditions.

After calculating the outage for each link in the ‘bus’,
the outages are combined and utilised with Eq. (3)
to determine the probability that none of the links
experiences an outage. In this context, Py, yg—vBs can
be expressed as:

n—1

Powve-ves =1— [0 =P (23)

i=1

Here, the product H;’;ll(l — Py;) represents the
probability that all links in the “bus” are successful
(i.e., none is in an outage). Thus, subtracting this
product from 1 gives the overall probability that at least
one link is in the outage, which is P, yr—vas.

3) UE-VBS cluster head to cluster devices: The final

stage of coverage for the devices included in the set
S is very similar to the previous stage. However, the
only difference in the calculation is that we only have a
single stage and don’t need to consider the probability
of a transmitter existing in the cluster, as it has been
considered in the previous stage. Therefore, we only
need to use pyic = 1 — Py, from Eq. (23) and adapt
it to our average cluster parameters cq and r.
We may apply the Egs. {(1) to (4)}. for the different
stages along with Eq. (7) and vary A to determine the
outage for various numbers of devices in the cell (as
shown in Fig. 4).

To determine the outage, we must first estimate the average
distances each channel covers. From the structure of the
network generated, it is noticed that in a network with only
one hop being allowed, the initial distance (eNodeB to first
UE-VBS device) is always around 0.9 km as the rest of the
UE users are served directly by the cell tower (eNodeB).
Hence, we use this distance in our analysis. Additionally,
we have to choose a realistic value of Ryin, and Byg_vas
per channel, which is calculated empirically using data rate
formulas and found in the open literature to be 300kbps
and 1KHz, respectively [30], [31] in a specific low-data-rate
application.
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Outage Probability vs A (AWGN & FSPL)
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FIGURE 4. Outage analysis for UE-VBS networks with 1 to 5 hops to the
cluster.

B. SPECTRAL EFFICIENCY

To analyze the spectral efficiency as shown in Fig 5,
we need to obtain the statistical model of the SINR. Suppose
that all devices require the same amount of content(data);
analytically, the upper bound for area spectral efficiency for a
Poisson distributed device system, such as the one considered
in this work, can be approximated using Eq. (24) [31], [32]:

NsysSE = Ae 10g2(1 + SINR)(1 — Pout) (24)

In this equation, A\, represents the effective density of
devices, while log,(1 + SINR) gives the spectral efficiency
of a single link. Multiplying by (1 — Poy) accounts for
the probability that a link is not in the outage, yielding an
analytical upper bound for the area spectral efficiency of a
Poisson distributed device system.

Also, it is possible to obtain an average spectral efficiency
by using the expected values of all RVs in the SINR equation.

P1Gyhyd® .
As we have SINR = i and if we assume that
G is unity for all transmitters, then we can use the mean
values for I {Interference}. Consequently, the expectation can

be expressed as follows:
2w A
E{}) =7+ Lz(l _R¥9, foralla>0  (25)
a—

In this expression, E{/} denotes the expected interference.
The first term, A, captures a basic interference contri-
bution based on the device density A. The second term,
i’i)z‘ (1 — R>=%), accounts for the effect of the path loss
exponent a and the link distance R, and is valid for all values
of a > 0. This derivation assumes that G; = 1 for all

transmitters and uses the mean values for the interference.

C. ENERGY EFFICIENCY

We can also obtain the analytical expression for energy
efficiency results similar to spectral efficiency, as shown in
Fig. 6. The general energy efficiency is given in Eq. (16),
and the maximum data rate is R = Brnsyssg, Where B is a
mean bandwidth as seen by our network, 1 KHz in our case.
We can say that the analytical Py, will constitute all of the
initial power used to transmit through all links. Since our
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FIGURE 5. Spectral efficiency analysis results for UE-VBS networks with
1 to 5 hops to the cluster.
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FIGURE 6. Energy efficiency analysis results for UE-VBS networks with
1 to 5 hops to the cluster.

power and gain are unity, we can obtain an average with
P,y = A).. Therefore, when we combine this observation,
energy efficiency can be expressed analytically as shown in
the following equation:
BAM:loga(1 + SINR)(1 — Poyr)

A
= Blogy(1 + SINR)(1 — Pout) (26)

NsysEE =

In the next section, we verify the obtained analytical results
with the aid of a simulation that imitates our system modeling
presented in Section II1.

VI. NUMERICAL SIMULATION

In this section, we indicate the simulation procedure and
parameters. Moreover, we introduce our simulation model,
which allows us to thoroughly examine the precision of
the analytical model discussed in the previous section.
Firstly, we create a process to automatically generate the
random UE-VBS computing Infrastructures/networks with
variable random intensities and settings (distances and a
maximum number of devices). The generated infrastruc-
tures/networks are used as topological “‘frameworks” to
assess their performance with randomly generated power
signals. The networks’ objects are generated through a
brute force algorithm that uses randomly generated clusters
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(U), on which the stem and cluster connections of the
individual spanning tree networks are created. The developed
frameworks are depicted in Fig. 7.

1) SIMULATION PROCEDURE AND PARAMETERS
This subsection outlines the step-by-step workflow we follow
for each simulation run: from random UE-VBS topology
generation, through relay-tree construction and channel
realization, to per-link SINR computation, outage/efficiency
metric extraction, and finally ensemble averaging over 20 (or
150) independent trials.
Each data point is obtained by the following steps for a
given \:
1) Topology generation.
o Scatter “parent” points over the 1 kmx1km area
via a PPP()\).
o For each parent, draw Pois(\;) “children” with
isotropic Gaussian spread o.
o Mark each child UE as VBS-capable with proba-
bility u.
2) Tree construction.
o For every VBS-capable UE, form a relay tree
up to Hpax hops, respecting per-hop distances
A, B, 4.
o Attach any remaining UEs within d@j* of a
cluster-head as clients.

3) Channel realization.
o Compute link path loss:

— FSPL regime: exponent = 2, no shadowing.
— LOGD regime: exponent = «, shadowing
NQO, 05,.0)-

o Generate Rayleigh fading gains; sum interference
from all simultaneously active transmitters (LOGD
only).

o Add AWGN with density Np.

4) Metric computation.

o Per-link SINR — outage if below SINRTy
(Eq. (6)).

o Aggregate end-to-end outage (Eq. (7)).

o Compute spectral and energy efficiency via
Eqgs. (10)—(13).

5) Averaging. Repeat 20 realizations for outage curves;

150 for efficiency plots; report the ensemble mean.

Table 3 collects every numerical constant that shapes the
synthetic deployments and the performance plots. A square
macro-cell of 1 km x 1 km (A) is filled by a Thomas
Poisson-cluster process whose parent intensity A\ is swept
from 0.5 to 12 UEsm™2 in 0.5 steps; each parent spawns,
on average, A = 10 children drawn from a bivariate normal
with standard deviation o = 30m. Each child is promoted
to a UE-VBS candidate with probability u = 0.25, after
which the topology solver grows relay trees of up to Hmax €
{0, ..., 5} hops while honouring the reach limits dg‘;x =
900m, dii™* = 500 m and di* = 50 m.
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TABLE 3. Unified list of simulation parameters.

Symbol / item Meaning Value

Topology
A Square-cell dimensions 1000 m x 1000 m
A Parent-PPP intensity (sweep) 0.5:0.5: 12UEsm~—2
Ac Mean UEs per cluster 10
o Cluster standard deviation 30m
u UE-VBS selection probability 0.25
Hpax Hop cap. {0, ...,5} see figures
dgg™ Max. BS reach 900 m
dgi™* Max. relay hop 500 m
g™ CH-client radius 50m

Radio

P; UE/BS transmit power 23dBm
Byke-ves Per-link bandwidth 1kHz
Ruin Service-rate threshold 300kbps
Trials Iterations per A 20

AWGN-FSPL engine

Path-loss exponent 2 (free space)
Shadowing oghad 0dB

Interference muted (SINR = SNR)
LOGD engine

Path-loss exponent o 3.7 (urban NLOS)

Shadowing oghaq 6dB

Interference active (all links)

fe Carrier frequency 3.5GHz

No Noise PSD —174dBmHz 1!

All radios—gNodeB, relay and cluster head—transmit
P, = 23dBm on a 1kHz resource block. The application
floor is fixed at Rpin = 300kbps, which maps (via Eq. (6))
to the minimum admissible SINR. For every A value the
generator/solver chain executes 20 iterations and ensemble
averages are reported.

Propagation is examined under two regimes. (i) AWGN-
FSPL: the path-loss exponent is fixed at 2, log-normal
shadowing is disabled, and cross-link interference is muted,
so the received SINR degenerates to the plain SNR.
(i) LOGD: an urban NLOS exponent « = 3.7 is adopted,
log-normal shadowing with standard deviation ogp,g = 6 dB
is injected and the power of all simultaneous transmissions
is accumulated as interference. Both regimes share a carrier
frequency f, = 3.5GHz and a thermal-noise density of
Ny = —174dBmHz~!. After every iteration each link’s
SINR is benchmarked against the threshold dictated by
Eq. (6) to declare outages; the very same SINR traces drive
Egs. (10)—=(13) to yield the spectral- and energy-efficiency
curves discussed in Sections V-B—V-C.

All outage curves reported in Section VII-A were obtained
by averaging over 20 independent simulation runs for each
PPP intensity A, i.e., each data point is the arithmetic
mean of 20 separate network realizations. For the spectral-
and energy-efficiency plots in Section VII-B, we performed
150 independent simulation runs per A to ensure statistical
smoothness.
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FIGURE 7. Examples of varying generated topologies for UE-VBS computing networks/infrastructures. (Min. and Max. number of devices in a cluster is

8to 14.).

A. OUTAGE NUMERICAL MODEL AND ASSUMPTIONS

To calculate the actual outage probability in our networks,
we have to modify our path loss model and make several
assumptions. Firstly, the simplistic path loss model used
for our analysis is replaced with the empirical LOGD path
loss model [33], [34]; the model supports Non-Line-of-Sight
(NLOS) urban environments [30], [35], [36] with an assumed
carrier frequency of 10KHz (rather than the usual 3.5 GHz
(as in n78 band of 5G spectrum) [37]) with the purpose to
show the improvements of our approach. Moreover, in the
examination of the LOGD path loss model, the analytical and
numerical examinations took place using the same path loss
model. The LOGD path loss model’s analytical and numerical
results align, showing our concept’s proof. It should be noted
that we examine all models within the simulations. Secondly,
the final outage probability is calculated by assuming that
{X%} of devices that are deemed to have a lower SINR
than the threshold SINRTy will reflect the outage probability.
We reinforce this measurement by repeating each calculation
multiple times (around 20) and using the average as the final
result.

A final assumption is that all of the transmitters, including
the gNodeB BS, have the same transmitting power, which is
unity in our case. This assumption is made to make analysis
and simulation simple and manageable. Furthermore, this
assumption is expected not to significantly impact the results
because, in the case of the above two intensities, the number
of transmitting devices is considerably large (20-150 times),
which would make the interference effect of the initial BS
has less impact. Fig. 8 and 9 (for LOGD) illustrate the general
model used for our analysis. Our model operates in four main
stages:

1) In the first stage, we decide on the parameters that will
be used for the randomly generated network. These
parameters include the following:

o Size of the square area in which devices are
generated.
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« Intensity of parent points in the process, denoted
as ¢.
« Standard deviation of secondary/child points in all
clusters C..
« Average number of client points (UE devices).
o Percentage of randomly sampled devices that will
become Uyg_vas.
o Maximum number of UE-VBS hops allowed.
o Maximum range of the gNodeB BS.
e Maximum and minimum number of devices
allowed in a cluster.
e Maximum and minimum range of devices in
Uav —RL.
o Maximum range of devices in U UE—VBScy-
2) In the second stage, after defining these parameters,
we generate the network accordingly.
In the third stage, we analyze the generated network
based on the performance metrics we aim to obtain.
These performance metrics are illustrated in Fig. 8 and
Fig. 9 (for LOGD) and are discussed in the following
paragraphs.
In the fourth stage, we provide a detailed description of
the performance metrics and their implications.

3)

4)

B. EFFICIENCY NUMERICAL MODELS AND ASSUMPTIONS
The efficiencies are obtained using a similar workflow
method as shown in Fig. 8, except that we now use the
analytical expressions formulated in Section III to get spectral
and energy efficiency results for the randomly generated
power signals.

The only significant difference in the calculations is that
the SINR that is received from the generated networks is
either used to carry out the calculation shown in Eq. (13) for
the spectral efficiency, or Eq. (14) for the energy efficiency.
Also, we ran the simulation multiple times (150-200 times)
to obtain a close value to the average between all results per
intensity step.
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Regarding the energy efficiency, we had some ambiguity
with the values used for B— transmitted power ratio and
y — total data rate ratio. These values are used to calculate
the total power our networks use (as shown in Eq. (15)),
affecting energy efficiency. These values are crucial in
making the result look like our earlier analysis, which is
carried out by varying the number of devices to affect the
data rate. To determine the optimum values for 8 and y, after
conducting a brute-force analysis, we found that the values
175 and 3 x 1073 for B and y, respectively, have yielded a
satisfactory result.

VIi. PERFORMANCE EVALUATION AND RESULTS

After going through the process described in Fig. 8 for
randomly generated networks per intensity step, which was
setto 0.5, we arrived at the results seen in Fig. 9 and 10. These
figures show the numerical results (lines with dots) compared
to the analytical solution.

A. OUTAGE PROBABILITY

This section examines the LOGD path loss model, comparing
numerical results against analytical (FSPL model) predic-
tions regarding outage probability in a telecommunications
network.

1) EXAMINATION OF THE LOGD PATH LOSS MODEL IN
TERMS OF OUTAGE PROBABILITY

By analyzing Fig. 9, we observe that the numerical results
exhibit a consistent trend with the analytical predictions when
examining the gradual increase in outage probability. The
LOGD path loss model’s trend does not exhibit a strictly
linear increase or follow a negative exponential decay-like
pattern. Rather, the numerical outage probability tends to
level off, not reaching one even as PPP intensity () increases
beyond 3, contrasting with the analytical expectations. The
LOGD path loss model, which considers environmental
factors and the logarithmic attenuation of signal strength
over distance, results in a less aggressive growth of outage
probability. This slower rate of increase suggests a model
where signals may degrade less rapidly than predicted by the
analytical model, which could be due to a less severe path
loss or interference signals also experiencing attenuation,
thereby having a smaller impact on the outage. Moreover,
upon inspection of Fig. 9, we observe that the numerical
results align closely with the analytical expectations up to
a PPP intensity (\) of approximately 3, beyond which the
numerical model diverges, flattening out and not reaching
an outage probability of 1. This deviation suggests that the
LOGD path loss model, which incorporates environmental
factors and logarithmic signal attenuation over distance,
yields a less pronounced growth in outage probability than
the analytical model. This can indicate signals experiencing
less degradation or interference signals being attenuated more
than anticipated, hence having a less impactful effect on
outage probability.
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The mean cross-correlation with zero lag between the
numerical and analytical results remains high, reflecting the
relative similarity between the two approaches. Although
initial results do not align perfectly with our analytical
predictions, the mean cross-correlation for the LOGD path
loss model is approximately 97.4%. It’s important to note
that while this suggests a high degree of alignment, cross-
correlation is sensitive to how it is calculated and primarily
serves as a comparative metric within this study. However,
the numerical outage only partially follows our analysis at
higher intensities. The increase in outage begins to slow
down and plateaus around 80% outage probability. The future
analysis must integrate interference variability, potentially
incorporating models that account for random distributions
such as Rayleigh fading in the channels from the gNodeB to
the first UE-VBS device.

The numerical and analytical results show a steeper initial
rise in outage probability, followed by a plateau, leading
to a lower overall outage in the numerical simulation. This
suggests that the SINRty, defined as an upper bound as in
Eq. eq:6, is more relaxed in the numerical model, which
could be attributed to the dampening effect of the LOGD
path loss on interfering signals. Moreover, this trend implies
that the SINRty, established as an upper boundary in Eq. (6),
may be more relaxed in the numerical and analytical model,
a reflection of the LOGD path loss model’s mitigation of
interference.

Noteworthy, the zero-hop model, representing a direct
connection between the base station (BS) and devices,
shows improved alignment with analytical predictions after
adjustments, indicating an initial spike in outage probability
that then decreases. Conversely, multi-hop topologies—such
as those with 1-hop, 2-hop, and 3-hop configurations—
demonstrate better initial network stability and reliability.
This suggests that increasing hops can reduce strain on
the BS, distribute network traffic more effectively, and
decrease the risk of service disruptions. Multi-hop systems
are particularly advantageous in dense urban environments
where high demand and the need for consistent connectivity
are critical. Although simpler and less costly, zero-hop
systems could be enhanced by increasing BS capacity or
employing advanced signal processing techniques. Imple-
menting multi-hop networks can also contribute to overall
network resilience and redundancy, safeguarding against
widespread failure in case of localized issues, thus endorsing
the benefits of adding hops within a network. Additionally,
the assumption in the analytical model that each connection
tree has numerous intermediate connections contrasts with
the numerical model’s limitation on the maximum number
of connections. This distinction could explain the numerical
model’s lower observed outages at higher PPP intensities.

In summary, by tuning the parameters of the LOGD
path loss model to reflect the real-world signal propagation
and environmental factors more accurately, the numerical
results become more sensitive to the proliferation of devices
within the network. This results in a more harmonious
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FIGURE 9. Comparison of outage probabilities using the LOGD path loss
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approaches, underscoring the divergence in predictions for )\ values
beyond approximately 3..

performance with our analytical expectations, providing a
refined perspective on network behavior under different
conditions of device density and path loss.

2) CORRELATION BETWEEN FSPL (ANALYTICAL) AND LOGD
(NUMERICAL) PATH LOSS MODEL RESULTS IN TERMS OF
OUTAGE PROBABILITY

This section presents a correlation analysis between the
LOGD path loss model (numerical) and the FSPL model
(analytical), particularly in terms of outage probability as the
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Poisson Point Process intensity (A) increases. Both models
predict how signal attenuation and interference affect the
probability of an outage in dense wireless networks. The
numerical results from the LOGD model are compared
to the analytical results derived from the FSPL model to
assess their alignment under different network conditions.
The LOGD path loss model, as shown in Fig. 9, aligns
closely with analytical expectations at lower PPP intensi-
ties. This suggests that the LOGD model’s consideration
of environmental factors, such as signal attenuation and
interference from obstacles, is effective in environments
with lower device density. However, as the PPP intensity
increases, the LOGD model outage probability tends to level
off, indicating that interference and environmental effects
become less significant beyond a certain point. This plateau
effect demonstrates how the LOGD model accounts for
real-world factors, limiting the rise in outage probability
as environmental attenuation reduces the overall impact of
interference.

On the other hand, the FSPL model predicts a more aggres-
sive increase in outage probability at higher PPP intensities,
as it assumes ideal free-space propagation without accounting
for environmental obstructions. In this model, interference
increases with device density, causing a steady rise in the
outage probability, eventually approaching unity. The FSPL
model’s analytical predictions are useful in understanding
ideal scenarios, but they lack the realism introduced by
the environmental considerations of the LOGD model. The
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correlation between the LOGD model’s numerical results
and the FSPL model’s analytical results is high, with
cross-correlation values of approximately 93%, and 97.4%,
respectively. This high degree of similarity underscores the
effectiveness of the LOGD model in capturing the general
trend of outage probability increasing with PPP intensity
while also reflecting the real-world effects of environmental
factors, which are absent in the FSPL model. In multi-
hop configurations, the LOGD model demonstrates superior
performance, as it accounts for signal attenuation and the
impact of intermediate nodes on improving network stability.
In contrast, the FSPL model, which does not factor in
environmental attenuation, is less effective at predicting
the benefits of multi-hop scenarios, particularly in dense
environments where interference plays a significant role. As a
result, the LOGD model is better suited for modeling realistic
urban or densely populated scenarios where obstacles and
environmental factors affect signal propagation.

In conclusion, while the FSPL model provides a valuable
analytical baseline, particularly in ideal free-space environ-
ments, the LOGD path loss model offers a more accurate
representation of network behavior in real-world conditions.
The LOGD model’s ability to incorporate environmental
impacts, such as signal attenuation due to obstacles, makes
it a more reliable choice for predicting outage probability in
urban or dense environments where signal degradation and
interference significantly influence network performance.
Future work should focus on refining these models to further
improve the correlation between numerical and analytical
results, particularly by enhancing the realism of the FSPL
model in non-ideal environments.

3) ZERO-HOP (REGULAR MOBILE) VERSUS MULTI-HOP
NETWORK PERFORMANCE

The performance improvements introduced by the UE-VBS
in multi-hop scenarios are evident when comparing zero-hop
direct connections to multi-hop configurations. In the LOGD
path loss model shown in Fig. 9, multi-hop configurations
with UE-VBS exhibit a more stable and gradual increase
in outage probability, in contrast to the zero-hop scenario,
where a steeper rise in outage probability is observed
initially. This underscores the effectiveness of UE-VBS in
maintaining network performance even as PPP intensity
escalates.

The comparison across different hop scenarios demon-
strates that the LOGD path loss model benefits significantly
from deploying UE-VBS. Multi-hop networks with UE-VBS
are more robust against signal degradation, particularly
in dense network environments, which is consistent with
the lower outage probabilities observed in the numerical
results. These findings reinforce the potential of UE-VBS
to enhance network performance, offering a compelling
case for its integration into modern telecommunication
systems. Therefore, future network design considerations
should include the strategic placement of UE-VBS to
optimize coverage and reliability, particularly in areas with
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high user density and diverse environmental conditions.
The advantages of multi-hop configurations over zero-hop
setups, as demonstrated in the comparative analysis, highlight
their efficacy in enhancing the robustness and efficiency of
telecommunications networks.

B. EFFICIENCIES

This section examines spectral and power efficiency regard-
ing the LOGD path loss model, comparing numerical
results against analytical (FSPL Model) predictions. Addi-
tionally, it provides a comparative analysis where the
spectral and energy efficiencies under different hop strategies
were analyzed. Furthermore, the performance implica-
tions of the observed cross-correlation factors have been
discussed.

1) EXAMINATION OF THE LOGD PATH LOSS MODEL IN
TERMS OF EFFICIENCIES
This section examines spectral and power efficiency regard-
ing the LOGD path loss model. Additionally, it provides a
comparative analysis where the spectral and energy efficien-
cies under different hop strategies were analyzed. Further-
more, the performance implications based on the observed
cross-correlation factors have been discussed. Through
meticulous analysis of the LOGD path loss model, our
finalized results, delineated in Fig. 10, are set in comparison
with the analytical model. We observed exceptionally high
cross-correlation values of 99.83% for Spectral efficiency
and 99.9% for Energy efficiency. These figures indicate
an exceptionally precise congruence with our controlled
simulation parameters, as described in Sections V-B and V-C,
respectively.

analyzing the spectral efficiency visualised in Fig. 10,
we note an overarching concordance with the analyti-
cal model, punctuated by marginal deviations. The most
notable observation is the distinct ascendancy of a one-hop
(n = 1) topology over the multi-hop configurations,
plausibly attributed to a lessened concentration of adversarial
transmitters. The multi-hop frameworks (n # 1) demonstrate
a levelled performance range, insinuating a potential unifor-
mity in interference and signal patterns, thereby normalizing
SINR. The numerical perturbations render the peak, which
is prominent in the analytical findings, less discernible,
signalling a need for further refinement to sharpen spectral
efficiency optimization. In contrast to the analytic projec-
tions, numerical data does not exhibit a decline towards
zero as PPP intensity escalates, which suggests an area for
further scrutiny. Turning to energy efficiency as portrayed
in Fig. 10b, the numerical results manifest a near-perfect
mirroring of the analytical benchmarks. This parallelism
likely emanates from the precise emulation of hardware-
specific determinants, including data rate and transmission
power ratios. Despite the numerical noise, the preeminent
trend of exponential decay is retained, underscoring the
empirical soundness of the LOGD path loss model.

VOLUME 13, 2025



I. 1. loannou et al.: On the Performance Analysis of UE-VBS-Based Wireless Communications

IEEE Access

Spectral Efficiency vs A (LOGD)

——1 Hop Analytics
——2 Hops Analytics
3 Hops Analytics
——4 Hops Analytics
——5 Hops Analytics
I-8-0 Hops Regular Mobile| |

-v-1 Hop Numerical
-+-2 Hops Numerical
-+-3 Hops Numerical
«| 4 Hops Numerical
--=-5 Hops Numerical

Spectral Efficiency OFDM Channel (bits/s/Hz)

A (UEster m2)
(a) Numerical and Analytical Results for
Spectral Efficiency utilizing the LOGD path
loss model, achieving a cross-correlation of
99.83%.

3 «10° Energy Efficiency vs A (LOGD)

T
——1 Hop Analytics
——2 Hops Analytics
3 Hops Analytics
——4 Hops Analytics
——5 Hops Analytics
-=-0 Hops Regular Mobile|
-+-1 Hop Numerical
-+-2 Hops Numerical
- -3 Hops Numerical
4 Hops Numerical
-~-5 Hops Numerical

Energy Efficiency of UE-VBs (bits/J)

T

——

—

8 10 12

T

A(UEs%ermz)
(b) Numerical and Analytical Results for En-
ergy Efficiency employing the LOGD path
loss model, with a cross-correlation of
99.9%.

FIGURE 10. Numerical analysis juxtaposed with analytical computations elucidating the efficiency metrics of the UE-VBS framework governed by the

LOGD path loss model..

Spectral Efficiency: The LOGD path loss model demon-
strates that multi-hop approaches, especially the one-hop
scenario, show superior spectral efficiency over the zero-hop
configuration.

Energy Efficiency: The energy efficiency graph for the
LOGD path loss model corroborates the superiority of
multi-hop strategies over zero-hop. One-hop remains the
most energy-efficient across varying PPP intensities.

2) CORRELATION BETWEEN FSPL (ANALYTICAL) AND LOGD
(NUMERICAL) PATH LOSS MODEL RESULTS IN TERMS OF
EFFICIENCIES

This subsection provides an analysis of the correlation
between the FSPL path loss model (analytical) and the LOGD
path loss model (numerical). The analysis focuses on how
closely the numerical results obtained from the LOGD path
loss model align with the analytical predictions based on the
FSPL model. The models were evaluated for both spectral
and energy efficiency.

a: SPECTRAL EFFICIENCY CORRELATION

In the FSPL path loss model (analytical), the spectral
efficiency predictions provided a baseline for comparison
with the numerical results of the LOGD model. The
numerical simulations of the LOGD model achieved a
cross-correlation factor of 99.83% with the analytical FSPL
predictions (see Fig. 10). This high correlation indicates
that the LOGD model effectively captures the spectral
efficiency trends predicted by the FSPL model, particularly
at lower PPP intensities. However, the LOGD model better
accommodates real-world factors such as environmental
attenuation, maintaining consistent spectral efficiency even
at higher PPP intensities, which the FSPL model, assuming
ideal conditions, does not fully account for.
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Spectral efficiency trends observed in the LOGD model
were:

[ Stable or slight decrease
for n = 0 (Zero-Hop Mobile)
Peak at lower PPP intensity
Nspectral (n) = .
for n = 1 (Single-Hop)
Convergent performance
for n > 1 (Multi-Hop)

b: ENERGY EFFICIENCY CORRELATION
The energy efficiency results from the LOGD model (numer-
ical) achieved a cross-correlation of 99.9% with the FSPL
model (analytical), as shown in Fig. 10b. The FSPL model
served as the analytical baseline, and the high correlation
suggests that the LOGD model accurately simulates the
energy efficiency trends predicted analytically by FSPL,
particularly in multi-hop configurations. The LOGD model,
however, includes environmental factors such as shadowing
and interference, which contribute to its higher accuracy in
real-world scenarios compared to the idealised FSPL model.
Energy efficiency trends observed in the LOGD model
were:

Higher efficiency at lower PPP

for n = 0 (Zero-Hop Mobile)
Exponential decay trend

for n > 1 (Multi-Hop)

Nenergy(n) =

c: SUMMARY

The high correlation factors between the LOGD (numerical)
and FSPL (analytical) models demonstrate that the LOGD
model is a reliable representation of real-world performance.
While the FSPL model provides a strong analytical baseline,
the LOGD model’s inclusion of real-world factors like
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TABLE 4. LOGD Path Loss Model Efficiency Comparison.

Configuration Spectral Efficiency Energy Efficiency

Zero-Hop Lowest Lowest

One-Hop Highest peak More efficient
Two-Hop Lower than One-Hop Comparable to One-Hop
Three-Hop Lower than One-Hop Less efficient than One-Hop
Four-Hop Lower than One-Hop Less efficient than One-Hop
Five-Hop Lowest among multi-hop Lowest among multi-hop

interference and environmental attenuation makes it more
suitable for practical network designs. Future work could
focus on refining the LOGD model further to enhance
its predictive accuracy across varying environmental and
network conditions.

3) COMPARISON OF ZERO-HOP MOBILE APPROACH AND
MULTI-HOP CONFIGURATIONS USING LOGD PATH LOSS
MODEL

The performance of zero-hop and multi-hop network config-
urations using the LOGD path loss models was thoroughly
analyzed to determine their impact on the system efficiency
and outage probability. This section details the comparative
results of these configurations. Using the LOGD path
loss model, the zero-hop configuration exhibits the lowest
efficiency in both spectral and energy terms, significantly
under-performing compared to other setups. In contrast, the
one-hop configuration demonstrated superior performance,
maintaining a clear advantage in terms of lower outage
probability and higher efficiency. This is largely attributed
to avoiding the compounding effects of path loss over
multiple hops (see Fig. 9). According to Table 4, the
one-hop setup achieves the highest peak in spectral efficiency
and is also more energy-efficient. Multi-hop configurations,
though slightly better aligned with analytical predictions, still
experience a decline in performance with each additional
hop. Specifically, configurations with two to five hops
show progressively lower spectral and energy efficiencies,
with five-hop configurations displaying the lowest efficiency
among the multi-hop setups.

a: LOG PATH LOSS MODEL

Similar trends were observed in the LOGD path loss
model, where the zero-hop configuration exhibits the lowest
efficiency in both spectral and energy terms, significantly
underperforming compared to other setups. In contrast, the
one-hop configuration demonstrated superior performance,
maintaining a clear advantage in terms of lower outage
probability and higher efficiency. This is largely attributed
to avoiding the compounding effects of path loss over
multiple hops (see Fig. 9). According to Table 4, the
one-hop setup achieves the highest peak in spectral efficiency
and is also more energy-efficient. Multi-hop configurations,
though slightly better aligned with analytical predictions, still
experience a decline in performance with each additional
hop. Specifically, configurations with two to five hops
show progressively lower spectral and energy efficiencies,
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TABLE 5. Performance Analysis of Zero-Hop Mobile vs. Multi-Hop
Approaches.

Hop Strategy Spectral Efficiency Energy Efficiency
Zero-Hop Mobile Baseline stability High efficiency at low PPP
Single-Hop Best peak performance Good balance
Multi-Hop Convergent at high PPP Decreases with PPP

with five-hop configurations displaying the lowest efficiency
among the multi-hop setups.

b: SUMMARY

The LOGD path loss model confirms that the zero-hop
configuration (the mobile regular case Base station with
UEs5) is the least effective in terms of spectral and energy
efficiencies. These findings contrast sharply with the one-
hop configurations, which are generally more effective than
multi-hop ones due to their simpler transmission paths and
reduced exposure to interference. Table 4 underscores that
while the one-hop setup achieves the highest peaks in both
spectral and energy efficiencies, multi-hop configurations,
although they extend the coverage, introduce increased
path loss and interference. These added complexities can
significantly diminish the network’s overall performance,
especially as the number of hops increases. In future
network designs and optimizations, particularly in dense
urban environments, these trade-offs should be carefully
considered. The choice between zero-hop, one-hop, and
multi-hop configurations could profoundly impact the quality
of service and system robustness.

VIil. CONCLUSION AND FUTURE WORK

Our investigation into the feasibility and design of the
UE-VBS computing paradigm has provided us with an
analytical framework for calculating the outage probability
of a general network. It has also initialised the optimization
problem of such networks through network efficiencies.
The efficacy of our analysis has been partially backed by
numerical simulation, which we created firsthand in R due
to the novelty of such a communication paradigm. Our
simulation showed a cross-correlation measurement with
the analysis, between 66.9% for spectral efficiency and
97% for our energy efficiency. Our study relies on certain
justified assumptions discussed in Section II. However,
the analysis does not account for OFDMA modulation of
wireless signals. We are potentially missing the effect that
multiple subcarriers would have on each other and the final
outage result. These assumptions do take a certain, but
presumably small, toll on our final results but allow for
a simple and methodical approach to outage and wireless
network performance prediction.

Note that we employed a simplified channel model in
the theoretical analysis to provide a clear and digestible
exposition of the core principles underpinning the UE-VBS
computing system. For the simulations, a more compre-
hensive and realistic channel model was utilised to mirror
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actual network conditions more closely, thereby ensuring
the robustness and practical applicability of our theoretical
findings. This strategy not only clarifies the foundational
aspects of our proposal but also validates its effectiveness and
efficiency through empirical simulations, effectively bridging
the gap between theory and practical implementation. In our
investigation, we utilized the LOGD path loss model to
assess the efficiencies and outage probabilities of UE-VBS
computing systems under varied operational conditions. Our
comparative analysis revealed nuanced insights into the
model’s performance. For outage probabilities, the LOGD
path loss model, while aligning with analytical expectations
at lower intensities, levels off at higher \ values (see Fig. 9).
The model shows a high mean cross-correlation value,
approximately 97.4%, indicating its capability to track the
increasing trend of outage probability accurately. However,
the observed plateau at higher intensities highlights the need
for model refinement to address complex interactions such as
interference and environmental factors.

Additionally, the LOGD path loss model demonstrates
superior reliability and alignment with analytical benchmarks
in terms of system design and optimization, making it
more suitable for applications requiring high precision in
performance predictions. Both models provide valuable
insights, yet future enhancements should focus on improving
numerical simulations to minimize noise and align more
closely with analytical predictions. This approach will
enable more effective optimization of network configu-
rations, incorporating stochastic elements like Rayleigh
fading to better address observed discrepancies. In our
analysis of the zero-hop configuration across different path
loss models—specifically the LOGD path loss models—
we observed distinct performance challenges. The zero-hop
configuration, characterized by direct connections between
user equipment and the base station, consistently demon-
strated higher outage probabilities, particularly at initial
point-to-point protocol (PPP) intensities. This indicates a
vulnerability in network resilience and coverage without
the intermediation of multi-hop setups involving UE-VBSs.
Furthermore, in terms of spectral and energy efficiencies,
the zero-hop configuration emerged as the least effective.
This inefficiency can be attributed to its simpler, yet more
exposed transmission paths, which do not benefit from the
relay and amplification advantages present in multi-hop
scenarios. Consequently, while zero-hop configurations may
offer straightforward connectivity, they lack the robustness
required for optimal performance in dense and dynamically
changing network environments. These insights suggest that
despite the operational simplicity of zero-hop configurations,
their use in future network designs should be carefully evalu-
ated, particularly in scenarios where high system robustness
and low outage probabilities are critical. The comparative
inefficiency in both spectral and energy terms underscores
the potential benefits of integrating more complex multi-hop
configurations, especially in dense urban settings. Also,
we will quantify how the UE-VBS framework scales as
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the UE density A and VBS-capable fraction u increase.
Specifically, we plan to measure outage probability, spec-
tral/energy efficiency and control-plane signaling overhead
under both a centralized controller (all clustering decisions
at the gNodeB) and a fully distributed scheme (local UE
elections via our decision-tree rule). This will expose the
signaling vs. performance trade-off inherent in virtualized
architectures operating at extreme densification. We will
also investigate UE-centric scheduling (resource grants
tailored per-UE based on local CQI and battery state) [38],
resource virtualization (abstraction of physical air-interface
and compute resources into shareable virtual pools) [39],
and network slicing (partitioning of a common infrastructure
into isolated end-to-end service instances with SLAs and
orchestration via 5G-core APIs) [40]. This will expose the
signaling vs. performance trade-off inherent in virtualized
architectures operating at extreme densification. From a
sustainability perspective, the proposed UE-VBS and cell-
free communication architecture promotes greener and more
energy-efficient wireless networks by reducing dependence
on centralized infrastructure and enhancing local processing
capabilities. By minimizing backhaul usage and improving
spectral and energy efficiency, this approach contributes to
the design of low-carbon and sustainable 6G networks. Such
developments are aligned with the broader goals of green
communications and sustainable digital infrastructures as
emphasized in recent literature [41], [42], and support the
United Nations’ Sustainable Development Goals (SDGs),
particularly those related to affordable and clean energy and
industry innovation.

Future work will focus on refining the outage analysis
and efficiency models by reducing assumptions, enhancing
the numerical simulations, and incorporating more real-
istic system parameters. We will also explore hardware
implementations to optimize the system for practical deploy-
ment. Moreover, recognizing the importance of real-world
validations, we plan to explore and incorporate practical
implementations and experimental results in future work.
This will involve developing test-beds to demonstrate the
UE-VBS configurations’ practical feasibility and real-world
performance under varied environmental conditions. Such
efforts will validate the theoretical predictions and provide
insights into practical challenges and optimizations necessary
for deployment.

In addition, we intend to replace the baseline random-
sampling rule (fixed u) with a metric-driven selection
scheme by computing for each UE a suitability score
Si = wpb; + wy SISIIIIEE]‘;‘X + wd(l — d:n%) + wcﬁ and
promoting the highest-scoring devices to UE-VBS cluster
heads. We will also investigate adaptive strategies in which
u varies dynamically with network load or UE density,
potentially managed via feedback loops or reinforcement-
learning agents. Furthermore, we plan to develop supervised
machine-learning classifiers—such as decision trees or
random forests—trained on real UE telemetry (battery level,
link quality, processing load) to predict the best cluster-head
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candidates. Extensions to support UE mobility, handover
between clusters, and the cost of re-electing heads in
dynamic environments will be explored. Finally, we aim to
implement a small-scale prototype testbed using commodity
smartphones or software-defined radios to measure outage
probability, throughput and energy consumption under real
operating conditions, thus closing the gap between theory
and practice. We will extend our future work to rigor-
ously quantify the battery impact of UE-VBS relays by
integrating detailed per-UE power consumption models into
our simulation framework. This will include differentiating
between normal uplink/downlink operation and relay/cluster-
head duties (RF transmit, receive and baseband processing
energy costs), measuring the incremental energy per relay hop
under realistic traffic and mobility patterns, and evaluating
power-management strategies such as duty-cycling and sleep
modes to mitigate any extra drain. To ground these models
in practice, we will also conduct small-scale experiments
on commodity smartphones or SDR platforms to directly
measure battery-drain during relay operation, and explore
incentive mechanisms (e.g., data credits or reduced service
fees) to fairly compensate users who volunteer as UE-VBS
nodes.

Additionally, in our future work, we will investi-
gate the impact of non-ideal hardware components—such
as finite-resolution phase shifters, power amplifier non-
linearities, and oscillator phase noise—which introduce
residual distortion and impose a performance ceiling in
practical wireless systems, particularly in the high-SNR
regime. For example, active RIS-aided links suffer from
phase-shift noise and imperfect CSI that limit array gains
at elevated transmit powers. In STAR-RIS—assisted NOMA
uplinks, hardware impairments combined with channel
estimation errors degrade the achievable sum-rate even at
high SNRs. Similarly, reconfigurable holographic surfaces
in near-field cell-free networks exhibit significant perfor-
mance loss when RF-chain imperfections are accounted for,
and energy-efficient holographic metasurfaces must balance
realistic impairment models against power consumption to
avoid throughput collapse at high SNR. In the UE-VBS
paradigm, commodity UEs acting as relays and cluster heads
face the same transceiver imperfections; at high D2D transmit
powers, finite DAC/ADC resolution, PA non-linearities, and
oscillator phase noise induce residual distortion that caps
end-to-end SINR and data rates. To capture these effects,
we will incorporate a per-hop additive ‘“‘impairment noise”
term—analogous to those used in RIS studies—directly
into each UE-VBS link’s SINR expression, ensuring our
outage and spectral/energy-efficiency analyses reflect the true
performance ceiling of real-world deployments under strong-
signal conditions [43], [44], [45], [46].
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