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ABSTRACT

Inspired by transformation optics and photonic crystals, this paper presents a computational investigation
into the interaction between water surface waves and array waveguides of cylinders with multiple previously
unexplored lattice geometries, including, for the first time, quasiperiodic geometries. Extending beyond conven-
tional square and hexagonal periodic arrays, transformation optics has opened up entirely new opportunities
to investigate water wave propagation through arrays based on quasiperiodic lattices, and quasiperiodically
arranged vacancy defects. Using the linear potential flow open-source code Capytaine, missing element and
7-scaled Fibonacci square lattices, the Penrose lattice, hexagonal H, lattice and Ammann-Beenker lattice are
investigated. The existence of band gaps for all arrays is observed. A hexagonal lattice with vacancy defects
transmits the least energy. Bragg diffraction consistent with azimuthal rotational symmetry is observed from
all arrays. Bragg resonance causes reflection from arrays, resulting in multiple Bloch band gaps. Away from
Bragg resonance, waves will distort significantly to achieve periodic relationships with arrays, supporting
transformation-based waveguides. The possible uses include adaptation to more versatile waveguides with

applications such as offshore renewable energy and coastal defence.

1. Introduction

The vast potential of the revolution in optical waveguide engineer-
ing known as ‘transformation optics’ has stimulated optics research for
the past two decades (Pendry et al., 2006; Chen et al., 2010). Combined
with contemporary developments in manufacturing capability, partic-
ular success has been found in constructing photonic crystals: meta-
materials with structures on length scales similar to the wavelength of
the radiation. By modifying the permittivity and the permeability of
the propagation medium, photonic crystals have been shown to exert
deep influence on electromagnetic wave propagation (Joannopoulos
et al,, 1997; Dong et al., 2015), leading to the demonstration of
superlenses and invisibility devices (Pendry et al., 2006). A similar
field is transformation acoustics, in which the Young’s modulus of the
propagation medium is modified, with similarly useful results (Chen
and Chan, 2010).

Inspired by transformation optics and photonic crystals, in this
article we present an investigation into the interaction of water surface
waves with ‘metamaterials’ consisting of arrays of vertical cylinders in
crystalline and other arrangements.

Improving our ability to manage and harness the energy in ocean
waves is a problem of paramount importance, and has been the focus
of much work over recent years (Zhu et al.,, 2024; Zhang et al.,
2018, 2012; Wang et al., 2013, 2014; Hu and Chan, 2005; Hu et al.,
2003, 2004; Tang et al., 2006; Yang et al., 2009; Linton and Evans,
1990). Free-surface water waves (disturbances of water) have been
comprehensively studied analytically (Longuet-Higgins and Cokelet,
1976), numerically (Kirby, 2016), and through observations both in
controlled physical experiments and field measurements (Blenkinsopp
et al., 2010, 2012). It has been shown that water surface waves share
many of the same features as waves in other areas of physics (including
fundamental processes such as reflection, refraction, diffraction, etc.).
However, water waves also exhibit unique behaviour including shoal-
ing (change of wave height) and breaking (collapse of waves) when
they propagate into progressively shallower water. While the increasing
emphasis on extracting energy from ocean waves and coastal protection
has expanded our knowledge and understanding, new research is still
needed, particularly to improve our understanding of complex wave
interactions and the exploitation of wave energy devices.
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There are several approaches to investigating the interaction of
water waves with structures. In the predominant approach, which
started before simulation via computation became mainstream, efforts
are focused on identifying those systems which lend themselves to
analytical solutions. The majority of these systems are 2-dimensional
problems, x being the propagation dimension and y being the depth.
The obstacles are modelled as variations in the propagation medium
as functions of x and y, including floating horizontal, vertical or other-
wise mathematically defined bars, plates and 1-dimensional periodic
structures (Peters, 1950; Zhang et al., 2024; Liu et al., 2019), fixed
versions of similar structures (Walker and Eatock Taylor, 2005), or
similar structures applied to the sea bed (Xie et al., 2011; Linton, 2011).

Parallel behaviour in the interactions between water waves and
periodic structures and between x-rays and crystals was noticed early
on - in particular, the advantageous Bragg resonance, in which waves
are reflected from a periodic array and a Bloch frequency band gap is
formed in which waves cannot propagate (Davies, 1982; Mei, 1985). In
arrangements which are symmetrical in the propagation direction, zero-
reflection wave modes, in which waves are able to propagate freely
through the structure, are also possible (Xie et al., 2011; Goyal and
Martha, 2025). These phenomena in crystals underpin x-ray and elec-
tron diffraction, and the understanding of the behaviour of electrons
in solids, including the band gap in semiconductors and conduction in
metals (Bloch, 1929).

Where analytical solutions were possible, they were developed,
including of 3-dimensional systems of infinite 2-dimensional arrays of
modulations of the propagation medium such as floating discs, based
on square (4-fold) and triangular/hexagonal (6-fold) lattices (Chou,
1998). Arrays of surface-piercing cylinders were also investigated, with
periodic boundary conditions (PBC) for infinite arrays (Mclver, 2000;
Hu and Chan, 2005; Linton and Evans, 1990) and without PBC for
finite arrays (Liu et al., 2011; Ha et al., 2002; Ohl et al., 2001). To
the best of our knowledge, all infinite and finite periodic arrangements
exhibit Bloch band gaps. The relationship between a 2-dimensional
array and the propagation direction, however, is no longer implicit;
waves with different propagation directions experience different lattice
periodicities and different transmission properties, including band gap.
The variability in periodicity is a function of the n-fold rotational
symmetry of the lattice on which the array is based.

In addition to periodic lattices based on crystalline symmetries,
quasiperiodic lattices may also be constructed that have no translational
symmetry but higher-order rotational symmetries (higher values of n),
such as the pentagonal Penrose tiling (10-fold) (Penrose, 1979) and
the octagonal Ammann-Beenker tiling (8-fold) (Arnoux et al., 2001).
Quasicrystals (quasiperiodic crystals) based on these lattices are the
appropriate analogue of periodic crystals (Shechtman et al., 1984;
Levine and Steinhardt, 1984). The higher orders of rotational symmetry
available in quasiperiodic structures are attractive because they offer
the same behaviours that periodic structures do, such as band gaps,
but with greater isotropy and hence less angular selectivity (Rechtsman
et al., 2008), supporting, in principle, manipulation of waves travelling
in different directions. Quasicrystalline metamaterials have been shown
to have fractal transmission spectra with several large gaps (Davies
et al., 2023).

Regarding the comparison with transformation optics (in which the
relative permittivity and permeability are modified), the analogous
properties which affect propagation of water waves are gravity and
depth. Despite the clear analogies between transformation optics and
water wave propagation, such lattice arrangements of cylinder arrays
and scatterers are yet to be fully investigated for water waves.

With respect to water surface waves, and in the long-wavelength
regime (4 > a, where A is the wavelength and a is a characteristic
crystal dimension, defined as the lattice parameter for periodic arrays),
it has been shown that the presence of an array of vertical cylinders
alters the refractive index via modification of the effective gravity
within the array, allowing construction of lenses and prisms (Hu and
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Chan, 2005). This approach has also been shown experimentally to
result in superlensing (Hu et al., 2004). Moreover, analogous to the
manipulation of permittivity/permeability in photonic materials, ma-
nipulating the depth via modification of either the floor or the free
surface can lead to the full range of transformation optics effects (Wu
and Mei, 2018; Qin et al., 2023; Wang et al., 2015).

Generally, modifying the density of a lattice of elements of given
permeability/permittivity [Young’s modulus] causes optical [acoustic]
waves to propagate in the direction of the density modifications. The
situation for water surface waves is essentially the same.

A water surface waveguide array can modify the effective gravity
and effective depth in the region of the array. This is in contrast to
modifications of bathymetry, which allow control only over the effec-
tive depth, and which, in the context of coastal defence, are expensive
and temporary.

Regarding analytical approaches, as mentioned, the application of
PBC allows the derivation of transmission functions for linear waves
through arrays (Kakuno and Liu, 1993). If the problem is restricted
to two dimensions, as is possible for infinite depth or floor-mounted
cylinders, it is possible to derive transmission functions even for fi-
nite arrays (Linton and Evans, 1990). However, as suggested by the
name, PBC cannot describe quasiperiodic geometries of any kind. In
principle PBC may be applied to higher-dimensional space, from which
a quasiperiodic two- or three-dimensional solution may be obtained
(using the cut-and-project method De Wolff, 1974; Elser, 1985). Such
a solution preserves the general behaviour expected from an infinite
quasiperiodic lattice, but interpreting the implications in real space is
non-trivial and a source of unwanted complexity.

Regarding computational approaches, any conceivable system may
be investigated using fully-non-linear potential flow (FNLPF) calcula-
tions, but these calculations are extremely expensive in terms of time
and computing resources. Alternatively, the popular boundary-element-
method (BEM) may be used to investigate arbitrary three-dimensional
problems within the fully linear regime (including those that can be
simplified with PBC, with concomitant increases in efficiency).

Here, we demonstrate the use of the Capytaine (Ancellin and Dias,
2019) BEM python package to investigate a three-dimensional problem:
finite arrays of finite-length cylinders in infinite-depth water. This
problem, despite its apparent simplicity, is intractable via any other
method except FNLPF calculations, and is thus ideal to demonstrate the
validity of the BEM method to study arrays with arbitrary properties.

The robustness of the approach with respect to arbitrary arrays is of
great importance for the development of the field of water wave array
waveguides. The versatility of the approach enables the study of an
arbitrary number of optimization parameters and thus, in principle, the
tailoring of a waveguide to a particular situation.

We explore the interaction between monochromatic water surface
waves and small (N < 300) arrays of vertical surface-piercing cylinders.
These cylinders are arranged in translational and rotational symmetries
previously uninvestigated and, in particular, we measure their capacity
to allow or stop wave propagation in the near-Bragg regime (1 ~ 2a).
Our focus is on the detailed structure of the arrays, which include peri-
odic, quasiperiodic, and defected periodic geometries with the resulting
effects on water surface wave propagation.

The paper is structured as follows: first, we introduce the arrays that
are investigated, and characterize them in terms of their symmetries.
Then, we describe the wave modelling and numerical setup using the
open-source software Capytaine (Ancellin and Dias, 2019; Babarit and
Delhommeau, 2015), before presenting the results from the simula-
tions. We finish with a discussion on future work and conclusions.

2. Lattices
We differentiate between arrays and lattices as follows: an array

is a realization of a geometric lattice consisting of an arrangement of
cylindrical free-surface-piercing scatterers.
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Fig. 1. Plan views of the waveguide designs and notation used in this work. Descriptions of the lattice geometries can be found in the text. The waveguides are plotted to scale:
the lattice parameter of 4f; is 1 m and the diameter of each element is 0.4 m. The arrays vary slightly in size, with the largest, 4f;, measuring 11.4 m x 21.4 m. Each waveguide
is placed at the centre of a 40 m x 40 m computational domain with waves impinging from the left. The insets show geometric details. For lattices 4f; and 4f, the Fibonacci

sequence is indicated via the use of L and S segments.

Our interest lies in exploring the wave propagation properties of
arrays with varying rotational symmetries and periodic/quasiperiodic
structures. The designs investigated are shown in Fig. 1, encompassing
archetypes and simple modifications thereof of 4-, 6-, 8-, and 10-fold
rotational symmetries, where they are generally referred to by their
n-fold symmetry as nf. The finer details of their structure and nomen-
clature are discussed below. In an effort to study the effects of geometry
independently of other characteristics of the array, where possible, the
most common nearest neighbour distance is fixed at NN = 1 m. A
cylinder is placed at each lattice point (Section 3.2). The filling fraction
(FF) is defined as the area occupied by cylinders divided by the total
area of the array (see Fig. 2(b)). Each infinite lattice has a calculable
FF. However, in keeping with the desire to deal only with properties of
finite arrays, here FF is calculated directly by summing the cylinder
cross-sectional areas and dividing by the area of the bounding box of
the array. According to the work of Hu and Chan (2005), the refractive
index is then n = /1 + FF. Number of elements, FF and n are given
for each array in Table 1. For the purposes of comparison both periodic
and aperiodic arrays are investigated. We note that the derivation of Hu
et al. contains no reference to the array geometry at any stage, implying
its validity for both periodic and aperiodic arrays. We also note that it
is derived in the long wavelength limit; however, the correspondence
principle implies that long-wavelength-regime phenomena will also
apply in the Bragg regime we are operating in, although they will be
dominated by other effects.

2.1. Periodic arrays

The two simplest classes of periodic lattice are 4-fold (square)
and 6-fold (hexagonal), arrays based on which are shown in Fig. 1
and labelled as 4f; and 6f; respectively, where the subscript s de-
notes ‘simple’. All continuous lattices in two-dimensional space must
have even-number n, due to their indistinguishability under rotational
inversion (Lifshitz, 1996).

2.2. Quasiperiodic arrays

The remaining arrays are quasiperiodic. Here, we discuss the struc-
ture and characteristics of their underlying lattices.

» Missing-element square Fibonacci lattice

Array 4fp is based on a square lattice with elements missing in
an quasiperiodic fashion. The missing elements are chosen based
on the binary Fibonacci sequence (LSLLSLS..), where the individual
elements of the sequence are either a (S, short) or 2a (L, long). The
sequence is indicated in the figure.

« r-scaled square Fibonacci lattice

Array 4f, is a square lattice of elements placed according to 2
perpendicular Fibonacci sequences, one of which is indicated in the
figure, where L/S is equal to the golden ratio z. As there are 7
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Table 1
Number of elements, filling fraction and refractive indices of the arrays.

Array N elements Filling fraction (FF) Refractive index n
Af 264 0.136 1.066
4fp 199 0.118 1.057
4f, 288 0.184 1.088
6f, 250 0.150 1.072
6fy 202 0.110 1.054
611 232 0.138 1.067
8f 240 0.153 1.074
10f 246 0.154 1.074

times as many L segments as .S segments in each (infinite) sequence,
the NN in this case is 1/z = 0.618.., and the FF is accordingly
high (Lifshitz, 2002).

+ Hexagonal lattices based on the H lattice

Array 6fy is based on a periodic hexagonal lattice with elements
removed to produce a quasiperiodic arrangement, similar to 4f;. The
lattice points decorate the vertices of the Hy, lattice identified by
Coates et al. (2023), where the short and long edges of the rhombic
and hexagonal tiles are both set to 1 m (Coates, 2024). Array 6fy.
is also produced using the H, lattice with tile edges set to 1 m,
but instead uses the centre points of the tiles. In these cases, the
relationship to the Fibonacci sequence is not trivial, so it is not
indicated. Further details can be found in Refs. Coates et al. (2023),
Coates (2024).

+ Ammann-Beenker lattice

Array 8f is constructed from the vertices of the octagonal Ammann—
Beenker lattice (Beenker, 1982; Socolar, 1989; Arnoux et al., 2001),
which consists of squares and rhombi with an internal angle of
% rad. The edge length of squares and rhombi in the lattice is 1 m,

but elements are separated by /2 — \/5 m along the short diagonal
of the rhombi.

« Penrose lattice

Array 10f is formed from the vertices of a Penrose P3 lattice (Pen-
rose, 1979), which is perhaps the most well-known quasiperiodic
geometry. The lattice is composed of two types of rhombi, with
internal angles Z rad (thin) and 2?” rad (fat), arranged according
to matching rules. Though it is often described as pentagonal, its
indistinguishability under rotational inversion gives this lattice over-
all 10-fold symmetry (Lifshitz, 1996). The rhombus edge length is
chosen to be 1 m. This again leads to elements being separated by
less than 1 m, here, along the short diagonal of the thin rhombi, with
the separation being equal to 7! m.

3. Methods
3.1. Numerical domain

The array is placed at the centre of a 40 m x 40 m square grid, with
a grid resolution of 512 x 512 and a resultant cell size of 7.8 x 7.8 cm.
The calculations result in linear solutions to a linear problem. This
means that the grid resolution of the water surface does not affect
the calculation or the results, in contrast with the effects of the cell
size in FNLPF simulations. The linear solution is sampled at each
point in the grid, and the grid size set as the lowest power of 2 that
preserves the smallest details observed in the data. Convergence testing
of the grid resolution for 8 values in the range 64 to 1024 yields a
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constant (L2 error norm vs Ax) gradient of 0.175, where Ax is equal
to the computational domain edge length (40 m) divided by the grid
resolution. For well-converged results, the gradient is not greater than
1. The gradient in our test is much smaller than 1, so the results are
converged. The gradient in this case is entirely due to the improvement
expected from an increase in sampling resolution, and cannot therefore
decrease further.

The waves are incident from the left hand side. They impinge on
the array, are scattered, and we observe the steady state response of
the water waves in the domain. The water is set to infinite depth
so that the waves can be considered deep water waves. The arrays
themselves are composed of fixed 0.2 m radius, 10 m long, 13-gon
prism approximations to cylinders, with 5 m submerged. The number of
sides is chosen to maximize resolution whilst keeping within memory
constraints, and also to avoid any rotational symmetries in common
with the arrays. As noted, the most common separation present in the
array is set to 1 m. Wave heights are scaled from unity in Capytaine:
any wave height or motion amplitude can be retrieved by multiplying
the result by the desired value (Ancellin and Dias, 2019), and the results
are valid in the linear regime.

3.2. Water wave modelling with capytaine

The interaction between the waves and the arrays is simulated
herein using the Capytaine open-source software (Ancellin and Dias,
2019 and Babarit and Delhommeau, 2015). Capytaine is a Python-
based boundary element method (BEM) solver for linear potential
flow in water waves (Ancellin, 2023). Based on previous code known
as NEMOH (Babarit and Delhommeau, 2015), the linear potential
flow approach has been widely used including multi-frequency and
multi-direction wave loads on wind turbine platforms (Kurnia and
Ducrozet, 2022). Starting from the assumptions of inviscid, irrotational
and incompressible flow, the linear potential flow theory solves the
problem in the frequency domain and is able to predict the radiation
and diffraction processes. As a potential flow solver, the approach
can be used to predict waves until they become near nonlinear and
eventually break, at which point alternative (and computationally more
expensive) approaches are required, such as full Navier-Stokes solvers
(OpenFOAM, 2022 and Dominguez et al., 2021). The predictions herein
are only linear, so as the frequency increases, the maximum wave
height for which they are applicable decreases. According to the limit
for strict linearity Ho?/4gz2 < 0.001, our waves are perfectly modelled
only for a height H between 4.3 cm at 3.0 rad s~! and 6 mm at 8.0 rad
sL.

The calculations were performed on the Jeremiah Horrocks Institute
High Throughput Cluster, which comprises 13 Dell R650XS nodes each
with 48 physical cores and 256 GB RAM running Oracle Linux 8.9 and
Slurm 20.11.9.

The arrays are constructed using Capytaine’s internal routines. One
cylinder is placed, then duplicated to create the array. Tridecagonal
prisms are used as they maximize usage of available RAM.

Capytaine can provide many kinds of output. Here we use the
water free surface, provided as separate grids of the real and imaginary
components of the solution to the wave equation. We use MATLAB to
present and perform calculations on these datasets. An example dataset
is shown in Fig. 3, showing the interaction between waves and the
6f, array. The two components of the free surface are shown in panels
(a,c). All data in this manuscript presented with this colourmap are
normalized to the range of the individual dataset.

We generate a reference wavefield of appropriate frequency and
phase to represent the incoming waves and subtract it from the real
component to give panel (b). This treatment aids in identification of
scattered waves, in particular their direction. However, if there is any
significant interaction between the waves and the array (i.e., if a phase
difference is introduced, and/or the amplitude is altered), the area to
the right of the array is dominated by the subtracted wavefield.
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Fig. 2. (a) Schematic of the simulation setup. Cylinders with a length of 10 m are submerged 5 m into water, which is set to infinite depth. (b) Top-down view of the cylinders

in the square array, which demonstrates how the filling factor (FF) is calculated.

In panel (d) we add the real and imaginary components squared,
which gives the intensity of the wave energy. Data presented with this
colourmap always represent intensity, and are normalized to the range
0-5, with 1 being the same intensity as the incoming waves.

In panel (e), a polar plot shows the angular distribution function
(ADF). This function is generated by taking a profile from the centre to
the periphery of the intensity map, at the denoted angle, and plotting
the mean value of this profile as a point on the red curve. For profiles
of either the real or imaginary components, it would be appropriate to
use the root mean square; as we use profiles of the intensity, there is no
inherent periodicity and so the mean is appropriate. The influence of
the varying length of the profiles in the non-circular data is minimized
by use of the mean rather than the integral. In the example given,
this shows strong intensity in the directions of scattered waves, and
zero intensity in the direction of propagation after interaction with the
array. The ADF calculation includes the area inside the array.

This system has mirror symmetry about the horizontal axis. The
apparent asymmetry in the results, particularly noticeable in the ADF,
is due to aliasing between the array and the simulation cell grid,
and would be reduced for a higher-density grid. Another non-mirror-
symmetric element, shown in Fig. 2, is the 13-gon prism used to
represent a cylinder, though the effect of this is negligible.

4. Results and discussion

There are several facets to the interaction between the array waveg-
uides and the impinging water surface waves. We begin with a descrip-
tion of the ‘blocking’ behaviour of the waveguides; that is, the capacity
of a waveguide to prevent wave energy from reaching the leeward side
of the array. This behaviour depends, to varying degrees according to
the various waveguides, on the primary Bragg resonance.

We then describe other Bragg diffraction behaviour. As we are
dealing with three-dimensional simulations of 2-dimensional arrays,
we have the opportunity to observe non-primary Bragg resonances
characteristic of the rotational symmetry of the waveguides. These
cause effective redirection of the wave energy.

We finish with a description of the transmission of wave energy
through the waveguides, which is accompanied and enabled by the
establishment of a periodic relationship between wave and waveguide.

4.1. Blocking

The capacity of an array to remove intensity from an area behind
the array versus the angular frequency of the incoming waves w, was
measured to give ‘blocking’ curves, which are presented in Fig. 4 for
each array. Blocking dips correlate with complete or incomplete band
gaps. Using the ADF described above to compile this data presents
two problems: firstly, it is strongly directionally selective; secondly,
its calculation includes data inside the array. These problems limit its
applicability to the question of how effective a given array is at blocking
waves, so we take another approach. In the inset in Fig. 4, we indicate
a region of interest (ROI) to the right of the array. All datasets in the
figure are generated using this ROI, with the mean value of intensity
(as defined above) within the ROI used to represent the capacity of an
array to remove intensity from the ROL

A numerical summary of these results is compiled in Table 2, where
we show the maximum blocking % for any frequency, and the total
blocking observed over the full frequency range. Earlier work by Ha
et al. using the multiple-scattering method - in which diffracted waves
are linked to the incoming wave and represented by Fourier-Bessel
expansions to derive the band structure of similar arrays — shows the
existence of complete Bloch band gaps at k¢/z= = 1.2 for a square array
and ka/z = 1.6 for a hexagonal array (Ha et al., 2002). Our results show
almost 100% blocking dips starting at lower frequencies and bounded
by these values at the upper end.

These results indicate that a specified periodic array can constitute
an effective strategy for blocking water wave propagation for a given
range of angular frequencies.

In contrast, arrays 4f; and 6f;, which are identical to 4f; and 6f;, but
with elements removed in a quasiperiodic fashion, have slightly lower
blocking in their respective Bloch band gaps. However, they do show
improved blocking in regions away from the major blocking dips. This
leads to overall better blocking performance over the entire frequency
range, as tabulated in Table 2.

Previous analytical approaches to two-dimensional problems have
shown that the existence of zero-reflection wave modes is expected if
and only if the scattering potential is symmetrical with respect to the
wave propagation direction (Xie et al., 2011; Goyal and Martha, 2025).
The behaviour of two-dimensional wave-obstacle systems cannot be
meaningfully extrapolated to fully describe three-dimensional interac-
tions between water waves and an array waveguide. However, the
lifting of symmetry via the addition of vacancy defects will contribute
to the removal of zero-reflection modes, and therefore the increased
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Fig. 3. Example output from Capytaine, processed with MATLAB. Hexagonal array, ¢/ = 1.288. (a,c): The real and imaginary components of the solution to the wave equation,
with the array superimposed. (b): The real component with the incoming waves subtracted to aid identification of diffracted waves. The colourbar indicates that each plot is
normalized to its own maximum and minimum values. (d): intensity, defined as the sum of the squared components. For equal intensity to the incoming waves, this has unit value
(124 0% = 1). (e): the angular distribution function of the intensity, superimposed on the intensity map. Each point on the polar curve is the mean value of a profile plotted from

the centre to the perimeter of the intensity map.

blocking outside of the band gap. This loss of symmetry also dis-
rupts the primary Bragg resonance, resulting in some transmission of
frequencies inside the band gap.

A hexagonal lattice is denser than a square lattice of the same lattice
parameter. Therefore, of the periodic arrays, 6f; has the highest filling
fraction, which seems a reasonable explanation of the slightly better
blocking performance of the hexagonal arrays. When this is combined
with symmetry removal via the addition of vacancy defects, the com-
bination of low filling fraction and optimal blocking performance is
achieved.

For the quasiperiodic arrays based on z, or on higher rotational
symmetries, the blocking curves are characterized by more dips, that
individually are narrower than those for the periodic arrays. The be-
haviour of 4f, is strikingly similar to 8f, in terms of the locations of the
blocking dips. The action of the arrays over a wide frequency range
indicates that quasiperiodic lattices could contribute to broadband
blocking strategies in addition to their rotational isotropy (which we do
not investigate here). The quasiperiodic arrays cannot by definition be
perfectly periodic, or symmetrical, in the propagation direction, which
limits the possibilities for both zero-reflection modes and a Bloch band
gap.

The overall relative behaviour of the arrays according to their
geometry is analogous to the situation of diffraction from crystals.
Quasicrystals, due to their quasiperiodicity, have a diffraction pattern
of infinite density. In practice, most of the diffraction peaks are too dim
to observe, so a discrete diffraction pattern is observed. This pattern is
of lower intensity than that from a periodic crystal, in which the scat-
tering planes contributing to a particular low-index peak are far more
numerous than those for a quasicrystal. Our quasiperiodic arrays 4f_,
6f}., 8f and 10f show analogous behaviour in their multiple blocking
dips which each are smaller than those for the periodic arrays. This
behaviour is reminiscent of the fractal transmission structure exhibited
by quasicrystalline metamaterials (Zolla et al.,, 1998; Davies et al.,
2023).

The difference between the 6f;; and 6fy. blocking curves is notable,
as they are based on the same underlying lattice but with a different
basis location. There therefore seem to be at least two independent

Table 2
Blocking performance of arrays.

Array Maximum blocking Maximum Total blocking over
per frequency (%) o (rad s71) [ke/z] frequency range (%)

4 99.2 5.6 [1.02] 31.6

4fp 97.6 5.6 [1.02] 32.9

4f, 84.2 6.0 23.4

6f, 98.8 6.8 [1.50] 33.4

6fy 96.4 6.6 [1.41] 36.5

6fc 54.8 6.3 15.6

8f 70.1 6.1 15.4

10f 68.0 6.3 16.7

components to the blocking behaviour: one dependent on standing
waves in a periodic lattice, after the Bloch theorem, and one dependent
on the underlying quasiperiodic ordering. In the blocking from 6f}; the
curve is dominated by the component from the periodic array, whereas
in the blocking from 6fy;., this component is entirely absent, revealing a
blocking curve with the same characteristics as the other quasiperiodic
arrays.

4.2. Bragg diffraction

In x-ray and electron crystallography, a beam of x-rays or electrons
is made incident on a crystal. The scatterers (atoms) in a crystal can
be grouped into families of parallel planes of atoms, where one is
differentiated from another via its Miller indices. The Miller indices are
the numbers of unit cells in each direction to define a family of planes
via its normal. For example, (001) in a cubic crystal involves moving
0 unit cells in x, O unit cells in y and 1 unit cell in z; this defines
the normal to, and thus refers to, the xy-planes [(010) refers to the
xz-planes, (100) refers to the yz-planes]. Each unique family of planes
has a unique set of Miller indices, and produces a family of harmonic
peaks in the diffraction pattern. The angle at which a peak is located is
given by the Bragg law ni = 2d sin §, where d is the separation between
planes.

In a two-dimensional array of scatterers, the planes are now lines
of scatterers, with particular separations. In general, all of the arrays
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Fig. 4. Blocking curves for the arrays with monochromatic waves incident from the left, against w. The curves represent the mean value in the crosshatched area of the intensity
graph shown in the lower-right corner. The shaded region represents the blocked waves. Each curve is plotted with a unitary y-scale. The @ x-scale is for all curves. For curves
obtained from an essentially periodic array, relevant values of k4/z(= ©*/x¢) are provided (blue).

produce strong diffraction when the Bragg condition is satisfied by one
or more separations in the array. The diffracted beams are directional
and diffuse, which is consistent with the small number of scatterers in
the arrays (Liu et al., 2019).

Here, we use the Bragg law to extract the apparent interlinear
distance d of the arrays when the wavefront is normal to the array. For
infinite periodic arrays d is a simple function of a4, the lattice parameter.
For finite periodic arrays, it is a function of « with an error due to the
finite radius of the scatterers.

For quasiperiodic arrays, there is no single lattice parameter, though
examination of the arrays reveals that their geometries depend on
arrangements of two characteristic separations. For example, in the
Penrose lattice 10f, these separations are 1 m, the rhombus edge
length, and z=! m, the width of narrow rhombi. Diffraction peaks
then arise from every possible combination of these distances, with
relative intensities given by the relative density of occurrences of each
combination. For more discussion on this topic, the reader is referred
to e.g. Diehl et al. (2003), Lifshitz (2002).

All the arrays have been simulated over the range 3.0 < @ < 8.0.
The procedure we have used in Fig. 5 is:

1. Identify the n-fold symmetry of the array

2. Select the value of w that produces diffraction at the expected
angle (i.e., through the side of the n-gon adjacent to the side
impinged upon by incoming waves)

3. Calculate d from known 6 and w using the Bragg law.

Close to the Bragg angles for a given lattice, constructive interfer-
ence may occur for a range of frequencies, with the diffracted beam
sweeping a concomitant range of angles. Therefore, it is appropriate to
use the Bragg law to extract d only when a lattice has one or more easily
identified directions of symmetry. Fig. 5 shows this analysis for the 4f,,
6f;, 8f, and 10f arrays, where a black arrow indicates the incoming
and diffracted wave direction and angle associated with the rotational
symmetry ny of the array (7/2 — #/n;). For the simple square array, the
2D Miller indices of the line family are (11), and d is found to be
close to the expected value of V2/2. For the simple hexagonal array,
the lines are in the 2d hep (100) family. Adjacent lines in this family
have d = \/5/2; we observe close to twice this value, as this is the
Bragg reflection available in our frequency range. The deviation from
the expected values is consistent with the finite size of the array and
the finite radius of the scatterers. For example, for array 4f;, scattering
is evident from a continuous range of lattices between those defined by
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Fig. 5. 2-dimensional Bragg diffraction from a subset of the arrays. Overlaid in dotted lines are the high-symmetry n-gons associated with the rotational symmetries of the arrays.
Black arrows indicate the incoming wave direction and angle associated with the rotational symmetry n of the array (z/2 — z/n). Variables d and 6 correspond to those in the
Bragg law. The white lines are a visual representation of the line family reconstructed from the Bragg law without knowledge of the scattering array. The data presented is the

real component (see Section) with incoming waves subtracted.

the innermost points and outermost points of the cylinders in the array.
In any finite periodic array, the number of elements and the dimensions
of the array lead to a minimum total number of lines (Nj;;¢;) belonging
to any set of Miller indices; in array 4f;, at an angle of 7/4 rad, (Miller
indices (11)), Njines is 11. This gives an approximate +5% error from
the limits of d, given by (Niipes =+ 4Reytinder//2) + Nijpes, Where Reyiinder 18
the cylinder radius.

The 4f, 6fy, and 6fy,. arrays show the same broad behaviour as the
simple structures with this analysis. The 8f and 10f arrays have well-
defined scattering angles, which permits the extraction of an apparent
‘interlinear’ distance, shown in the figure as d.

The r-scaled 4-fold array 4f,, not shown here, has ambiguous
behaviour: although it has 4-fold symmetry, it never strongly diffracts
from a set of lines at an angle of 7/4 rad as expected. However, weak
diffraction at multiple wavelengths yields values for d of 1.00 m and
1.39 m.

4.3. Lattice coherences

In our data, transmission of surface wave energy through an array
(visualized as intensity downstream of the array) is usually observed
simultaneously with a periodic variation in intensity inside the array.
The period is expressed via a simple ratio between the array periodicity

and the incident surface wavelength. We call this periodic variation in
intensity a lattice coherence (LC).

Various LCs were observed across the arrays, corresponding with
effective transmission. In each case, the wavelength is distorted from
the incident wavelength to fit the LC. The pattern of intensity within
the array is examined and the period and hence unit cell determined
via feature correlation. Following this, the number of wave crests in the
unit cell of the LC is counted. The number of lattice periods is readily
countable by superimposing the array on the data.

In Fig. 6, we explore the intensity maps for the 4f; array, the
simplest case, and the structurally similar 4f; array, for certain values
of w. The angular frequency w is an input variable, and runs from 3.0
— 8.0 rad s~! in increments of 0.1. In each panel for the 4f; array, we
list certain values:

* w;: the angular frequency of the incident surface wave (rad s~1)

* ka/z: a wave-lattice structure interaction parameter, provided for
comparison to the work of Ha et al. (2002)

+ 4;: the incident surface wavelength, calculated from 4; = zwizg

* 4,: the wavelength of the wave inside the array adjusted for the
lattice index of refraction, given by i, = 4/n, where n is the
refractive index calculated from the filling fraction of the array

n=1/1+ FF (Ha et al., 2002)
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Fig. 6. Upper half: LCs and reflection in array 4f;. Plots are of intensity, normalized to the range indicated. Further discussion is in text. Lower half: the corresponding intensity

plots for array 4fg, showing disruption of LCs.

+ Ai: the fractional difference between i, and the LC ratio, or
wavelength inside the array, 44 = 1 —1,+ N,/n,; this is a measure
of the distortion the waves undergo to reach LC

» LC ratio (at the bottom of each relevant panel): the ratio of
number of lattice periods (N ,,) to number of wavelengths (N,);
this is numerically equal to the wavelength of the waves inside
the array, given that the lattice period is 1 m.

Identifiable LCs are indicated; these follow a notation in which the
numerator is the number of lattice parameters and the denominator is
the number of wavelengths. A graphical representation of the LC is also
shown, showing the relationship between the surface waves (white) and
the array periodicity (red).

We borrow a phrase from condensed matter physics: higher order
commensurate (HOC), to describe the situation where a LC is visible via
a periodic pattern of intensity, but where a complete cycle of the LC
does not fit inside the array.

For array 4f;, LCs are strongly correlated with transmission, and,
to achieve LC, the wavelength inside the array may be distorted by

up to 44 =
between wave and array: waves at the same position in each unit cell

8.2% in our data. A LC results in a rational relationship

of a LC encounter a scatterer at the same angle of phase. Each unit
cell is therefore symmetrical; the transmission function for each unit
cell therefore has zero-reflection modes, and the stacking of unit cells
across the array extends the zero-reflection modes across the array.

The large degree of distortion achieved to gain LC is strongly sug-
gestive that the waves will follow such a LC even if the array undergoes
a moderate transformation. We leave this possibility for future work.

The corresponding intensity maps for array 4fg, based on a square
lattice with elements removed in a Fibonacci sequence, are shown in
the lower half of Fig. 6 for comparison. In analogy to the scattering of
electron waves by defects in periodic crystals (Bloch, 1929), the LCs
observed in 4f; are strongly disrupted by the defects in 4f, resulting in
reduced transmission. The mechanism for this disruption is the removal
of symmetry and periodicity, and therefore zero-reflection modes.
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5. Conclusions

We have used the open-source Capytaine software to investigate the
behaviour of water surface wave array waveguides for a range of array
geometries, with the number of array elements ranging from 199-288.
Using this approach, we have successfully replicated an earlier result
that finds band gaps for some of these array types (Ha et al., 2002),
and indeed have shown the existence of band gaps for all the arrays,
strongly indicating that this is a viable strategy for blocking and/or
reflecting wave energy. Our methodology allows us to directly observe
many wave phenomena in real space, for example Bragg diffraction,
refraction and resonance. Significantly, our use of simple archetypes of
periodic and quasiperiodic lattices demonstrates the potential of this
approach to investigate any kind of array waveguide within the linear
water wave regime.

A particularly striking result is the degree of reflection that is
achieved by many of these geometries. Nearly 100% reflection is
observed in several cases, strongly supporting the adoption of such
arrangements in coastal defence strategies.

Of the arrays tested, the periodic arrays and two quasiperiodic
arrays are characterized by a single lattice parameter. The blocking
curves of these arrays are characterized by two large blocking dips
caused by the primary Bragg resonance and formation of a Bloch band
gap.

The quasiperiodic arrays based on the golden ratio = or on higher-
order rotational symmetries generated blocking curves characterized by
several blocking dips that are smaller than those for periodic arrays.

The array with the most effective blocking over the frequency range
is hexagonal with quasiperiodically located vacancy defects. This array
also has the lowest filling fraction of those studied.

Transmission through the waveguides is heavily influenced by re-
lationships between the wavelength and the array geometry, here
called lattice coherences (LC). These LCs can be easily disrupted by,
e.g., removing array elements, further enhancing the ability of array
waveguides to block wave propagation. Here, we have placed vacancy
defects in a systematic quasiperiodic fashion. Future work could explore
different geometries of vacancies, for example, periodic or random.

Beyond this, the observation, from simple inspection of Fig. 6, that
the waves are in some kind of LC for a greater range of frequencies than
is blocked by band gaps, strongly suggests that it may be more effective
to control waves by using the transformation-optics-inspired approach
of modifying the arrays to aid propagation in preferred directions.

In this work, we have normalized the arrays by using the same array
element dimensions. To extract the detailed behaviour of geometry in
isolation from such confounding factors as array density, it may be
instructive to perform the study normalized to other factors, such as
the array refractive index, which can be modified by changing element
radius and thus filling fraction.

The use of full non-linear potential flow calculations in future appli-
cations of this approach would allow investigations of energy transfer
between different modes.

Finally, the results highlight the need for experimental investiga-
tions of array waveguides. Here, we probe only the linear regime,
and find significant opportunities. When the full range of water sur-
face wave phenomena are allowed to interact with array waveguides,
additional avenues for research may become apparent.
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