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ABSTRACT
Background  Functional neurological disorder (FND) 
frequently co-exists with chronic pain (CP), notably 
nociceptive and nociplastic (primary) pain disorders. 
The considerable overlap implies shared underlying 
mechanisms because of their similar clinical and 
epidemiological profiles. Although standard neuroimaging 
and electrophysiological tests typically show normal 
results in both FND and primary pain disorders, recent 
advancements in neuroimaging techniques have begun 
identifying neural biomarkers common to both conditions, 
though these findings remain preliminary and require 
further exploration.
Method  We performed a detailed literature review 
of studies investigating neural activity in FND and 
chronic pain using electroencephalogram, magneto-
encephalography, functional MRI, positron emission 
tomography and single photon emission computed 
tomography. Given the diverse nature of the reviewed 
studies, the synthesis is presented narratively.
Results  Despite methodological differences, convergent 
data suggest disrupted neural networks across both FND 
and CP. Common findings include (1) hyperactivation of 
sensorimotor networks, (2) altered activity within the 
default mode network—a critical region for self-referential 
thought—and (3) dysfunction in emotional processing 
regions, notably the anterior cingulate cortex and insula. 
Thalamocortical dysrhythmia was identified as a potential 
unifying concept, characterised by abnormal theta and 
beta oscillations that enhance pain perception in CP and 
trigger functional symptoms in FND. Both conditions also 
exhibit reduced alpha oscillations, likely amplifying sensory 
sensitivity and emotional responsiveness.
Conclusion  This review highlights shared neural 
abnormalities (Triple Network model) and introduces 
thalamocortical dysrhythmia as a novel explanatory 
framework linking FND and CP. Future research should 
target populations with coexisting disorders, potentially 
paving the way for innovative treatments, including 
hypnosis and neuromodulation/neurofeedback.

INTRODUCTION
Functional neurological disorder (FND) 
is a complex, common and disabling 
neurological condition characterised by 
neurological symptoms and signs without 
objective findings on diagnostic tests.1 2 

Chronic pain (CP), defined as pain that 
persists for more than 12 weeks despite 
treatment,3 is one of the most frequently 
reported comorbidities in patients with 
FND. Their symptoms frequently interact 
within a complex, self-sustaining cycle, 
complicating treatment efforts, as each 
condition may serve simultaneously as a 
precipitating factor and a perpetuating 
influence for the other.4–8 A recent system-
atic review and meta-analysis reported pain 
in approximately 55% of FND patients, 
notably higher among those with func-
tional movement disorders (61%) and 
functional seizures (FS, 42%). CP often 
precedes and predicts poorer outcomes in 
FND.9

The relationship between pain and 
FND dates back to Gowers, who associ-
ated pain with ‘hysteria’.10 Modern studies 
reinforce this link; fibromyalgia (FM) 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Functional neurological disorder (FND) and chron-
ic pain frequently co-occur and share overlapping 
clinical features. Although both conditions have 
been studied individually, little is known about their 
shared neurobiological mechanisms.

WHAT THIS STUDY ADDS
	⇒ This review identifies consistent evidence of shared 
dysfunction in brain networks related to sensorimo-
tor control, emotional regulation and self-referential 
processing across FND and chronic pain. It also 
highlights thalamocortical dysrhythmia as a poten-
tial unifying mechanism.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ Understanding shared neural mechanisms may in-
form the development of unified therapeutic strat-
egies such as neuromodulation or neurofeedback/
hypnosis. It also underscores the need for integrated 
clinical approaches and future studies targeting pa-
tients with both FND and chronic pain.
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predicts FS diagnosis with a 75% positive predic-
tive value,4 11 and FS accounts for 75% of parox-
ysmal events in FM patients, compared with 11% for 
epilepsy.12 In another study on people with FS,13 76% 
of patients reported moderate-to-severe pain of any 
type, showing a higher-than-usual frequency of pain 
symptoms, as compared with the general European 
population (18%).14 These robust clinical and epide-
miological associations between FND and CP suggest 
a potential convergent neurobiological mechanism 
for both conditions, as both FND and CP are linked 
to psychological factors like trauma and stress.15–19

Understanding their shared mechanisms could 
improve treatments,20 21 and common biomarkers 
could unveil novel therapeutic targets.22 23

METHODS
We reviewed neurophysiological and functional 
neuroimaging studies in patients with FND and CP 
and used the following databases: Medline/PubMed, 
SpringerLink, Science Direct, Ovid, Scopus, CInAHL/
EBSCO and Cochrane Library. The search syntaxes 
were created using keywords and MeSH terms related 
to FND and CP, as well as neurophysiological and 
neuroimaging methods. The search syntaxes were 
agreed on by all authors, and the search included 
studies conducted from 1990 to December 2024. The 
searches were conducted initially by KP (2021) and 
updated in 2024 by SK. A full list of the search terms 
used is reported in online supplemental table 1.

Studies were included if they:
	► Involved patients with a diagnosis of FND or CP.
	► Aimed to investigate the neurobiological basis of FND 

or CP.
	► Used electroencephalogram (EEG), magneto-

encephalography (MEG), functional MRI (fMRI), 
positron emission tomography (PET) or single 
photon emission computed tomography (SPECT).

	► Were published in English.
The following data were extracted from each study: 

the first author’s last name, publication year, sample 
size, study design, type of FND and CP, and type of 
neuroimaging used. Data were extracted by one 
reviewer (SK) and checked for accuracy by a second 
independent reviewer (AD). Disagreements were 
resolved by discussion.

Relevant literature cited within the publications 
identified was manually retrieved. Single case reports, 
commentaries, editorials, non-peer-reviewed publica-
tions and grey literature were not included. A further 
search on the search engine Google Scholar was also 
performed to identify potential studies that could 
be added to the results obtained from the database 
searches (figures 1 and 2).

Due to the heterogeneous nature of the data, results 
were analysed thematically and presented as a narra-
tive synthesis. Quantitative methods (eg, funnel plots, 

Egger’s test) for assessing publication bias were infea-
sible, as pooled effect sizes and standard errors were 
unavailable. Formal quality appraisal (eg, GRADE, 
Newcastle-Ottawa Scale) was also omitted due to the 
exploratory nature. However, detailed summary tables 
(online supplemental tables 2,3) outlining samples, 
imaging methods and key findings are provided to 
ensure transparency.

RESULTS
The results are organised by electrophysiological and 
neuroimaging modality, and each subsection high-
lights key findings from EEG, MEG, fMRI, PET and 
SPECT studies. online supplemental material

Electroencephalogram (EEG) studies
Electroencephalogram (EEG) correlates of functional neurological 
disorder (FND)
1.	 Beta frequency changes

	► Increased beta: A quantitative EEG (QEEG) study 
in FS patients reported higher 13–30 Hz beta 
activity over left central sites (C3) compared with 
controls, suggestive of cortical overactivation of 
fronto-parietal and sensorimotor cortices.24

	► Pre-attack beta suppression: Another QEEG inves-
tigation found a decrease in beta power at central 
electrodes (C3, C4, Cz) preceding FS attacks, an 
effect distinct from epileptic seizures.25 This is 
reminiscent of event-related desynchronisation 
prior to voluntary movement, possibly reflecting a 
maladaptive anticipation of motor activity modu-
lated by dopaminergic pathways.26

2.	 Gamma frequency changes
	► Increased gamma in left parietal regions suggests 

heightened sensorimotor processing in FS.24

	► Reduced gamma in the right superior temporal 
gyrus27 or between frontal and posterior regions28 
may reflect aberrant emotional processing in FS (eg, 
regulating stress responses).

3.	 Alpha band connectivity
	► Altered alpha connectivity involving basal ganglia, 

limbic regions, prefrontal, temporal, parietal and 
occipital cortices has been reported in FS compared 
with healthy controls.29 Graph-theoretic measures 
show reduced small-worldness that correlates with 
monthly FS frequency, reflecting global network 
dysregulation.30

4.	 Differentiation from epileptic seizures
	► Certain EEG-based features (eg, limited dominant 

frequency variation on Fast Fourier Transforms and 
rhythmic artefacts) help distinguish ‘convulsive’ FS 
from epileptic seizures.31

5.	 Functional motor disorders (FMD)
	► Patients with FMD show reduced inferior pari-

etal cortex (IPC) modulations (C-cluster) and 
altered inferior frontal gyrus (IFG) modulations 
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(R-cluster), further implicating frontoparietal and 
motor networks.32

Electroencephalogram (EEG) correlates of chronic pain (CP)
1.	 Alpha power changes

	► Patients with spinal cord injury and CP demonstrate 
decreased alpha power over frontal regions.33 34 
Acute pain studies35 and capsaicin-induced muscle 
pain also show alpha power reduction.36

	► Attention to pain further suppresses alpha activity37 
which may increase cortical excitability via a ‘thalam-
ocortical gate’ mechanism.38 39

2.	 Beta frequency changes
	► High beta activity from frontal, central and parietal 

regions is significantly associated with self-reported 
pain intensity in chronic low back pain.40

	► Psychological interventions (eg, mindfulness) may 
reduce beta power in cortical regions, correlating 
with decreased pain intensity.41

3.	 Theta and delta power
	► Increased theta and delta seen in CP conditions 

such as migraine and chronic pelvic pain,42–44 and 
FM.45 46 Elevated theta in prefrontal and anterior 

cingulate cortices (ACC) may reflect persistent 
emotional or cognitive distress.

4.	 Thalamocortical dysrhythmia (TCD)
	► Abnormal interactions between theta- and beta-

generating regions can produce the so-called 
‘edge effect’, where a central theta-hypoactive 
region is surrounded by beta-hyperactive areas. 
This pattern is observed in multiple CP syndromes, 
including FM, supporting the idea of widespread 
network-level maladaptive oscillations47 48

Overlap in functional neurological disorder (FND) and chronic pain 
(CP) (electroencephalogram (EEG))
Both conditions show overactivation of sensorimotor 
and fronto-parietal regions (beta/gamma changes) 
alongside impaired inhibitory or emotional regula-
tory mechanisms (altered alpha/gamma). Increased 
theta and disrupted thalamocortical rhythms also 
appear in both, indicating a shared pathophysiology 
involving excessive cortical excitability and ineffec-
tive gating of sensory or emotional signals.

Figure 1  Studies included for functional neurological disorder.
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Magneto-encephalography (MEG) studies
Magneto-encephalography (MEG) studies in functional neurological 
disorder (FND)
1.	 Reduced occipital alpha and increased low-frequency 

power in fronto-temporal regions suggest enhanced 
fronto-limbic excitability.49

2.	 Emotional processing tasks implicate an unchanged 
automatic emotional salience detection but with ab-
normal engagement of sensorimotor and posterior 
networks in patients with functional weakness and/or 
sensory disturbance.50

Magneto-encephalography (MEG) studies in chronic pain (CP)
1.	 High alpha power ratio (low:high) across multiple cor-

tical regions in CP.51

2.	 Increased theta power in the DMN (default mode net-
work) and decreased gamma in DMN/ascending no-
ciceptive pathway are emerging potential ‘signatures’ 
of CP.52

3.	 Pain relief interventions (eg, deep brain stimulation) 
show reduced ACC activation, supporting the ACC’s 
crucial role in affective pain processing.53

4.	 FM research using MEG reveals:

	► Reduced DMN–insula connectivity at theta band and 
negative correlation with the number of tender points 
at beta band.54

	► Increased theta in prefrontal/orbitofrontal cortex, 
excess beta/gamma in insular and sensorimotor 
cortices.55

5.	 Complex regional pain syndrome correlates with re-
duced somatosensory and precuneus activity, point-
ing to DMN involvement in abnormal pain percep-
tion.56

6.	 Temporomandibular disorder and central post-stroke 
pain also show prolonged cortical dipole activation 
and beta/gamma augmentation in parietal/frontal 
cortices.57 58

Overlap in functional neurological disorder (FND) and chronic pain 
(CP) (magneto-encephalography (MEG))
Both FND and CP populations show elevated low-
frequency (theta/delta) activity in fronto-limbic and DMN 
regions, alongside disrupted sensorimotor integration. 
This dysregulation reflects a breakdown in the coordina-
tion between emotional salience processing (via limbic 
structures), self-referential networks (DMN) and motor 
control systems—suggesting a shared core mechanism 

Figure 2  Studies included for chronic pain.
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that might be related to symptom generation/persistence 
in both conditions.

Functional MRI (fMRI) studies
Functional MRI (fMRI) studies in functional neurological disorder 
(FND)
1.	 Resting state networks

	► Increased connectivity among fronto-parietal, sensori-
motor, executive and DMN.59–62 Greater connectivity 
correlates with higher FS frequency, suggesting that 
excess crosstalk between emotional, executive and 
motor areas predisposes to dissociative attacks.

2.	 Involvement of limbic structures
	► Heightened amygdala and insula interactions with 

motor regions; hyperconnectivity in the right amyg-
dala–IFG axis in FS when compared with healthy 
controls.63 These patterns reflect emotional dysregu-
lation bleeding into motor control circuits. A mixed 
group of FND patients (FS, FMD, PPPD) showed 
insular co-(de)activation patterns compared with the 
salience network (SN), the somatomotor network and 
the DMN, compared with the controls.64 Moreover, 
in FND subjects, these dynamic alterations conjointly 
correlated with salivary amylase measures (marker 
of stress) and duration of symptoms.64 Additionally, 
increased amygdala activity was noted during cogni-
tive reappraisal compared with controls in a predomi-
nantly FMD cohort.65

3.	 Effective connectivity
	► Studies applying EC show inhibitory influences from 

limbic (eg, amygdala, ACC) onto motor/executive 
areas (eg, insula, IFG) in FS, disrupting normal voli-
tional motor control in FS.66–69

4.	 Delay in diagnosis
	► Individuals with delayed FS diagnosis can have unique 

connectivity patterns, such as greater bilateral poste-
rior cingulate cortex (PCC) and left anterior insula 
activation to stress.70 71

5.	 Structural-functional coupling
	► FS patients exhibit more lattice-like networks and 

reduced structural–functional connectivity, particu-
larly within attention, sensorimotor, subcortical 
and DMN regions.72–75 In mixed FND populations, 
increased functional connectivity between motor 
and insular regions correlated with symptom severity 
and clinical improvement,76 while significant shifts 
in Temporo-Parietal Junction (TPJ) and precuneus 
centrality were seen in functional weakness in FMD.77 
Wegrzyk et al found the caudate and amygdala hyper-
connectivity in FND,78 whereas diminished func-
tional connectivity from sensorimotor cortices to 
key areas (such as the SMA, insula, and dorsal ACC) 
was described in FMD.79 80 Sojka et al demonstrated 
heightened activation of sensorimotor and associa-
tive cortices (precuneus, post-central gyrus, PCC) in 
FND patients viewing negative stimuli,81 and Baek et al 
noted reduced inferior parietal engagement during 
involuntary versus voluntary movement, aligning with 

disrupted intention.82 Bühler et al83 further under-
lined the role of the TPJ in agency misjudgments.83

	► These findings highlight maladaptive limbic–motor 
interactions, particularly disrupted connectivity in 
emotional processing, sensorimotor integration 
and self-agency networks. The amygdala, TPJ, and 
precuneus consistently emerge as key nodes linking 
emotional salience to motor execution. Persistent 
amygdala hyperactivity correlates with abnormal 
sensorimotor responses, underscoring deficits in 
top-down control and agency within limbic–motor 
networks central to FND pathophysiology.84 85 Overall, 
impaired top-down regulation and self-agency are 
fundamental to FND neurobiology.

	► Therapeutically, multidisciplinary motor retraining 
reduced motor symptoms and modified amygdala 
connectivity. Positive outcomes corresponded with 
enhanced amygdala–ventromedial prefrontal connec-
tivity, whereas poorer responses correlated with 
stronger amygdala–primary motor cortex connec-
tivity,86 demonstrating that targeted interventions 
recalibrating emotional influence toward prefrontal 
executive networks may be important in treating FND.

Functional MRI (fMRI) studies in chronic pain (CP)
1.	 Acute versus chronic

	► While acute pain typically activates sensorimotor 
cortex, insula and ACC, CP shows stronger involve-
ment of prefrontal cortex (linked to the DMN).87 88

2.	 Connectivity alterations
	► Increased insula–DMN connectivity in FM.89–93

	► Greater ACC–basal ganglia–sensorimotor connec-
tivity also noted, correlating with pain intensity.94–100

	► In CLBP, heightened medial prefrontal to ACC/insula 
connectivity suggests persistent salience/emotional 
modulation.101–103 Equivalent results were found 
in comparable studies that investigated the fMRI 
changes in patients with chronic back pain.104–107

3.	 Stimulation-induced state changes
	► Pain stimulation can further increase connectivity 

among thalamus, insula, precuneus and other DMN 
nodes in CP patients.108–110

	► Deep brain stimulation of the ventral striatum/ante-
rior limb of the internal capsule (vs/ALIC) leads to 
reduced orbitofrontal cortex activation, highlighting 
a modulatory effect on affective pain circuits111 112

4.	 Complex regional pain syndrome
	► Marked by excess thalamo-somatosensory connec-

tivity, with additional involvement of the IFG and 
orbitofrontal cortex.113 114

Overlap in functional neurological disorder (FND) and chronic pain 
(CP) functional MRI (fMRI)
Shared alterations in ACC, insula, sensorimotor areas 
and DMN. Increased connectivity between emotional 
processing centres (eg, amygdala, insula) and motor/
executive networks is common. Dysregulated self-
referential processing (DMN) and salience/emotion 
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processing (limbic regions) underlie key symptoms in 
both conditions.

Positron emission tomography (PET) findings
Positron emission tomography (PET) studies in functional 
neurological disorder (FND)

	► Hypometabolism in right IPC and bilateral ACC 
is seen in FS, correlating with cerebellum and left 
hippocampal gyrus dysfunction.115 116

	► Hypermetabolism in the right PCC (involved in the 
DMN) in conversion disorder, suggesting excess self-
referential or arousal processing.

Positron emission tomography (PET) studies in chronic pain (CP)
	► Increased uptake in cingulate cortex, thalamus and 

amygdala in chronic arthritic knee pain versus acute 
experimental knee pain.117

	► CP from brachial plexus avulsion: decreases in right 
thalamus metabolism alongside increases in orbitof-
rontal cortex, insula and DLPFC, implicating affective 
and evaluative components of CP.118–121

	► Additionally, a significant body of PET studies in CP 
underscore the critical involvement of opioid and 
dopaminergic systems in pain’s affective and motiva-
tional components.122 In FM, PET imaging demon-
strates reduced mu-opioid receptor (MOR) binding 
potential (BP) in key pain-modulating regions, 
including the nucleus accumbens, amygdala, and 
dorsal cingulate cortex. Lower MOR BP in the nucleus 
accumbens correlates with higher affective pain 
ratings, with similar negative correlations observed 
throughout the cingulate cortex and striatum.123

	► Patients with chronic non-neuropathic back pain 
(CNBP) exhibit reduced dopamine D2/D3 receptor 
availability in the ventral striatum, linked to positive 
affect, pain tolerance and affective pain dimensions. 
During acute pain challenges, CNBP patients show 
decreased dopamine release compared with controls, 
correlating with altered endogenous opioid activity in 
the amygdala. Collectively, these findings implicate 
dopaminergic and opioid systems in CP’s motivational 
and affective components.124

	► In burning mouth syndrome, significantly decreased 
presynaptic dopaminergic function is observed in the 
putamen, indicated by reduced Fluorodopa (18F) 
(FDOPA) uptake. This aligns with prior neurophysi-
ological evidence of impaired dopaminergic inhibi-
tion, directly implicating nigrostriatal dopaminergic 
dysfunction in this CP disorder.125

Overlap in functional neurological disorder (FND) and chronic pain 
(CP)
Both demonstrate significant cingulate and parietal 
involvement. Thalamic and orbitofrontal/limbic meta-
bolic changes appear across FS and various CP states, 
reiterating a common subcortical–cortical dysregula-
tion underpinning emotional, attentional, and sensory 
processing.

Single photon emission computed tomography (SPECT) 
findings
Single photon emission computed tomography (SPECT) studies in 
functional neurological disorder (FND)
1.	 Perfusion changes

	► During FS, decreased perfusion has been noted in the 
posterior parietal cortex.126 127 117 128

	► Some FS patients show increased perfusion in areas 
overlapping the DMN (eg, right precuneus and 
right PCC),129 hinting at DMN overactivity during 
episodes.130

	► When comparing psychogenic tremor vs essential 
tremor, a study in FMD showed increased Regional 
cerebral blood flow (rCBF) in left IFG and insula, with 
reduced rCBF in anterior DMN regions during motor 
tasks.131

2.	 Subcortical structures
	► SPECT findings in conversion disorder highlight 

rCBF reductions in the thalamus and basal ganglia 
contralateral to functional deficits, which normalise 
on symptom resolution.132

Single photon emission computed tomography (SPECT) studies in 
chronic pain (CP)

	► Reduced prefrontal cortex and thalamic perfusion in 
chronic back pain.133–136

	► Increased thalamic and cingulate perfusion in somato-
form pain, but decreased in frontal, occipital and left 
temporal regions.137–139

	► FM studies show decreased perfusion in frontal, 
temporoparietal, right precuneus and right PCC—
paralleling certain FS findings.140–142

Overlap in functional neurological disorder (FND) and chronic pain 
(CP)
Similar patterns of DMN region hyper- or hypoperfusion 
(PCC, precuneus) and thalamic involvement emerge in 
both. The interplay of limbic–subcortical circuits (eg, thal-
amus and basal ganglia) and cortical networks (frontal/
parietal lobes) again demonstrates a shared pathophysio-
logical substrate.

DISCUSSION
Our review synthesises neurophysiological and neuroim-
aging findings across FND and CP, focusing on shared 
mechanisms rather than effect sizes. Although the included 
studies vary in quality and design, we identified recurring 
patterns—across modalities and patient groups—that 
support a convergent neurobiological model. These 
patterns are not drawn from isolated reports but reflect 
thematic overlaps identified in multiple independent 
studies, summarised in online supplemental tables 2 and 
3. These patterns point towards shared network dysfunc-
tion in emotion processing, sensorimotor control and 
default mode activity. These similarities may help explain 
why FND often coexists with CP conditions and highlight 
potential shared targets for therapeutic intervention.
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Below, we synthesise these findings.

Overactivation of sensorimotor networks
Both FND and CP patients exhibit overactivation in senso-
rimotor regions.24 90 In FND, this may stem from maladap-
tive emotional responses that amplify motor excitability, 
whereas in CP, persistent nociceptive input may sensi-
tise these same pathways. Functional MRI studies in CP 
show increased medial prefrontal cortex activity and 
connectivity with the anterior cingulate cortex, secondary 
somatosensory cortex and insula.101 By extension, exces-
sive sensorimotor or limbic activation during pain could 
occasionally ‘spill over’, overpowering executive control 
and precipitating FND events—consistent with evidence 
of heightened limbic-sensorimotor excitability in FND.49 
Hence, both conditions illustrate an intricate interplay 
among stress, pain and movement circuits.

Alterations in the default mode network (DMN) and functional 
connectivity
Dysfunction within the DMN, a network central to self-
referential processing, is consistently reported in both 
FND and CP. In FND, abnormal DMN hyperconnec-
tivity may predispose patients to dissociative-like states 
in response to external stressors. In CP, altered DMN 
function could underlie sustained pain perception 
even in the absence of ongoing nociceptive stimuli.143 
Notably, both FND and FM patients show decreased 
perfusion in the right precuneus and right posterior 
cingulate gyrus,129 144 regions commonly linked to the 
DMN. Additionally, FND exhibits stronger connectivity 
between emotion-processing and sensory integration 
areas, potentially impairing movement execution and 
self-perception.145 In CP, similar alterations in functional 
connectivity (eg, between frontolimbic and sensorimotor 
circuits) help explain the persistence of pain despite the 
resolution of the initial peripheral cause.49 53 61

Shared emotional processing Errors
Common disturbances in emotional regulation networks 
(anterior cingulate cortex, insula and amygdala) under-
score the role of affective factors in both FND and CP. 
These regions are central to the SN, which detect and 
prioritise emotionally significant stimuli. Emotional 
triggers can provoke/exacerbate FND (eg, heightened 
arousal, stress)64 73 74 or exacerbate CP.126 Thus, the SN 
over-responsiveness represents a potential unifying 
mechanism.

Thalamocortical dysrhythmia (TCD) and its impact on movement 
and perception
Thalamocortical dysrhythmia (TCD) provides a compel-
ling framework for both conditions.44 48 In TCD, reduced 
thalamic drive can induce low-frequency theta rhythms 
surrounded by compensatory beta overactivation (the 
‘edge effect’). In CP, TCD maintains sustained nocicep-
tive hypersensitivity; in FS, overactive beta oscillations, 
influenced by dopaminergic pathways, may predis-
pose individuals to seizure-like motor discharges.26 By 

extension, TCD can also affect DMN regulation, because 
the thalamus is essential for filtering information before 
it reaches higher cortical areas. Disruption here might 
exacerbate maladaptive self-focus on pain or distress, 
thus linking TCD to both CP experiences and functional 
seizures.

Shared role of alpha Oscillations
Both conditions reveal characteristic changes in alpha 
power—often interpreted as an index of inhibitory gating 
and cortical ‘idling’. FS patients show reduced occipital 
alpha power,49 while CP patients frequently present with 
decreased frontal alpha power.30 Such alpha suppression 
has been linked to heightened attention to internal or 
external stimuli; thus, in FS, an emotional or interocep-
tive trigger could promote excessive alpha suppression, 
facilitating a seizure-like event. Similarly, in CP, dimin-
ished alpha might enhance cortical responsiveness to 
nociceptive input and amplify pain perception.

The integrative cognitive model of FS posits that func-
tional seizures arise partly from defective inhibitory 
mechanisms.146 Emotional overload or stress may acti-
vate a ‘seizure scaffold’, wherein maladaptive sensorim-
otor and limbic integration produces FS. Clinically, CP 
could function as another potent stressor, triggering FS in 
susceptible individuals. Detailed characterisation of pain 
in FND populations—and vice versa—is therefore vital to 
clarify how each might perpetuate the other.

Triple network model
Involvement of three core networks—salience network 
(SN), DMN and central executive network (CEN)—can 
be framed within the triple network model, a founda-
tional framework for understanding neural dysregula-
tion in neuropsychiatric disorders.147 148 These networks 
interact dynamically to regulate sensory, emotional and 
cognitive processes. The SN (anterior insula, anterior 
cingulate cortex) identifies salient stimuli (eg, pain or 
internal disturbances) as significant, prompting the 
DMN (involved in self-referential processing) to integrate 
these sensations into an internal narrative, potentially 
amplifying subjective distress. Concurrently, maladap-
tive engagement or insufficient regulation by the CEN 
(involved in goal-directed behaviour) may foster ineffec-
tive coping or heightened rumination. Hence, in FND 
and CP, this dysfunctional interplay may be the source 
of symptom generation and persistence (eg, seizures, 
abnormal movements, CP). Although the triple network 
model is hypothesis-generating, its strength lies in consis-
tent multimodal evidence (EEG, MEG, fMRI, PET, 
SPECT) and shared oscillatory dysregulation (alpha/
beta), reinforcing the concept of a common neurobio-
logical substrate.

However, similar SN–DMN–CEN disruptions are also 
seen in depression, anxiety and Post-traumatic stress 
disorder (PTSD), frequently comorbid with FND/
CP.147 149 Future research using psychiatric control groups 
and matched symptom designs is crucial to clarify if these 
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network alterations represent core FND/CP features or 
broader transdiagnostic processes such as heightened 
salience attribution, impaired emotional regulation or 
altered self-referential processing.150

Cue for novel therapeutic approaches
From a therapeutic standpoint, neuromodulation and 
neurofeedback approaches targeting aberrant beta and 
alpha power have shown promising results in CP, with 
up to 82% pain reduction reported in some studies.151 
Similar approaches may hold promise for FND manage-
ment, given that both conditions exhibit overlapping 
rhythmic and network dysregulations.152 153

Another important tool would be the use of hypnosis, 
which has been proven effective in both FND154 and 
CP.155 156 This can be explained by the fact that hypnosis 
often shows the opposite changes in DMN and SN, as 
seen in FND and CP.157

Looking forward, clarifying the neurobiological links 
between FND and CP will inform the design of advanced 
therapeutic strategies—potentially addressing shared 
dysrhythmias across emotion, cognition and sensorim-
otor domains.

Limitations
This review has several limitations. First, most neuroim-
aging research in FND focuses on FS, potentially limiting 
generalisability. Second, we did not formally assess 
study quality or bias, constraining the interpretation of 
evidence. Our narrative synthesis highlights common 
neurobiological mechanisms across various methods and 
populations, but the lack of standardised quality ratings 
and pooled analyses restricts inferential depth. Third, 
limiting searches to English-language, peer-reviewed 
studies and excluding grey literature may introduce bias. 
Fourth, many included studies were cross-sectional and 
underpowered, weakening conclusions. Finally, the lack 
of standardised outcome measures and heterogeneity in 
imaging protocols prevented statistical synthesis, empha-
sising the need for future multimodal, longitudinal 
research with standardised methods.

Additionally, many studies did not control for psychi-
atric comorbidities such as depression and anxiety, preva-
lent in both FND and CP. Given overlapping network-level 
alterations across these conditions, as noted by Davis et 
al,150 it remains unclear if reported neural signatures are 
specific to FND or CP or reflect broader transdiagnostic 
processes, thus limiting interpretation as disorder-specific 
biomarkers.

CONCLUSIONS
To our knowledge, this is the first review synthesising 
neuroimaging and neurophysiological findings in both 
FND and CP—conditions that frequently overlap and 
co-occur clinically. The evidence highlights shared 
maladaptive neural responses to emotional and nocicep-
tive stressors, with consistent disruptions across salience, 

sensorimotor and self-referential networks. Clarifying 
the specificity of these neural signatures will critically 
enhance the development of precise, mechanism-based 
interventions.
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