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ABSTRACT

Background Functional neurological disorder (FND)
frequently co-exists with chronic pain (CP), notably
nociceptive and nociplastic (primary) pain disorders.

The considerable overlap implies shared underlying
mechanisms because of their similar clinical and
epidemiological profiles. Although standard neuroimaging
and electrophysiological tests typically show normal
results in both FND and primary pain disorders, recent
advancements in neuroimaging techniques have begun
identifying neural biomarkers common to both conditions,
though these findings remain preliminary and require
further exploration.

Method We performed a detailed literature review

of studies investigating neural activity in FND and
chronic pain using electroencephalogram, magneto-
encephalography, functional MRI, positron emission
tomography and single photon emission computed
tomography. Given the diverse nature of the reviewed
studies, the synthesis is presented narratively.

Results Despite methodological differences, convergent
data suggest disrupted neural networks across both FND
and CP. Common findings include (1) hyperactivation of
sensorimotor networks, (2) altered activity within the
default mode network—a critical region for self-referential
thought—and (3) dysfunction in emotional processing
regions, notably the anterior cingulate cortex and insula.
Thalamocortical dysrhythmia was identified as a potential
unifying concept, characterised by abnormal theta and
beta oscillations that enhance pain perception in CP and
trigger functional symptoms in FND. Both conditions also
exhibit reduced alpha oscillations, likely amplifying sensory
sensitivity and emotional responsiveness.

Conclusion This review highlights shared neural
abnormalities (Triple Network model) and introduces
thalamocortical dysrhythmia as a novel explanatory
framework linking FND and CP. Future research should
target populations with coexisting disorders, potentially
paving the way for innovative treatments, including
hypnosis and neuromodulation/neurofeedback.

INTRODUCTION

Functional neurological disorder (FND)
is a complex, common and disabling
neurological condition characterised by
neurological symptoms and signs without
objective findings on diagnostic tests.' *

,” Abhijit Das © '®

WHAT IS ALREADY KNOWN ON THIS TOPIC

= Functional neurological disorder (FND) and chron-
ic pain frequently co-occur and share overlapping
clinical features. Although both conditions have
been studied individually, little is known about their
shared neurobiological mechanisms.

WHAT THIS STUDY ADDS

= This review identifies consistent evidence of shared
dysfunction in brain networks related to sensorimo-
tor control, emotional regulation and self-referential
processing across FND and chronic pain. It also
highlights thalamocortical dysrhythmia as a poten-
tial unifying mechanism.

HOW THIS STUDY MIGHT AFFECT RESEARCH,
PRACTICE OR POLICY

= Understanding shared neural mechanisms may in-
form the development of unified therapeutic strat-
egies such as neuromodulation or neurofeedback/
hypnosis. It also underscores the need for integrated
clinical approaches and future studies targeting pa-

tients with both FND and chronic pain.

Chronic pain (CP), defined as pain that
persists for more than 12 weeks despite
treatment,” is one of the most frequently
reported comorbidities in patients with
FND. Their symptoms frequently interact
within a complex, self-sustaining cycle,
complicating treatment efforts, as each
condition may serve simultaneously as a
precipitating factor and a perpetuating
influence for the other.*™® A recent system-
atic review and meta-analysis reported pain
in approximately 55% of FND patients,
notably higher among those with func-
tional movement disorders (61%) and
functional seizures (FS, 42%). CP often
precedes and predicts poorer outcomes in
FND.’

The relationship between pain and
FND dates back to Gowers, who associ-
ated pain with ‘hysteria’.'” Modern studies
reinforce this link; fibromyalgia (FM)

BM) Group
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predicts FS diagnosis with a 75% positive predic-
tive value,* "' and FS accounts for 75% of parox-
ysmal events in FM patients, compared with 11% for
epilepsy.'? In another study on people with FS,"” 76%
of patients reported moderate-to-severe pain of any
type, showing a higher-than-usual frequency of pain
symptoms, as compared with the general European
population (18%)."* These robust clinical and epide-
miological associations between FND and CP suggest
a potential convergent neurobiological mechanism
for both conditions, as both FND and CP are linked
to psychological factors like trauma and stress.'>™?

Understanding their shared mechanisms could
improve treatments,”” * and common biomarkers
could unveil novel therapeutic targets.** **

METHODS

We reviewed neurophysiological and functional

neuroimaging studies in patients with FND and CP

and used the following databases: Medline/PubMed,

SpringerLink, Science Direct, Ovid, Scopus, CInAHL/

EBSCO and Cochrane Library. The search syntaxes

were created using keywords and MeSH terms related

to FND and CP, as well as neurophysiological and
neuroimaging methods. The search syntaxes were
agreed on by all authors, and the search included
studies conducted from 1990 to December 2024. The
searches were conducted initially by KP (2021) and
updated in 2024 by SK. A full list of the search terms

used is reported in online supplemental table 1.

Studies were included if they:

» Involved patients with a diagnosis of FND or CP.

» Aimed to investigate the neurobiological basis of FND
or CP.

» Used electroencephalogram (EEG), magneto-
encephalography (MEG), functional MRI (fMRI),
positron emission tomography (PET) or single
photon emission computed tomography (SPECT).

» Were published in English.

The following data were extracted from each study:
the first author’s last name, publication year, sample
size, study design, type of FND and CP, and type of
neuroimaging used. Data were extracted by one
reviewer (SK) and checked for accuracy by a second
independent reviewer (AD). Disagreements were
resolved by discussion.

Relevant literature cited within the publications
identified was manually retrieved. Single case reports,
commentaries, editorials, non-peer-reviewed publica-
tions and grey literature were not included. A further
search on the search engine Google Scholar was also
performed to identify potential studies that could
be added to the results obtained from the database
searches (figures 1 and 2).

Due to the heterogeneous nature of the data, results
were analysed thematically and presented as a narra-
tive synthesis. Quantitative methods (eg, funnel plots,

Egger’s test) for assessing publication bias were infea-
sible, as pooled effect sizes and standard errors were
unavailable. Formal quality appraisal (eg, GRADE,
Newcastle-Ottawa Scale) was also omitted due to the
exploratory nature. However, detailed summary tables
(online supplemental tables 2,3) outlining samples,
imaging methods and key findings are provided to
ensure transparency.

RESULTS

The results are organised by electrophysiological and
neuroimaging modality, and each subsection high-
lights key findings from EEG, MEG, fMRI, PET and
SPECT studies. online supplemental material

Electroencephalogram (EEG) studies

Electroencephalogram (EEG) correlates of functional neurological

disorder (FND)

1. Beta frequency changes

» Increased beta: A quantitative EEG (QEEG) study

in FS patients reported higher 13-30 Hz beta
activity over left central sites (C3) compared with
controls, suggestive of cortical overactivation of
fronto-parietal and sensorimotor cortices.**

» Pre-attack beta suppression: Another QEEG inves-
tigation found a decrease in beta power at central
electrodes (C3, C4, Cz) preceding FS attacks, an
effect distinct from epileptic seizures.”” This is
reminiscent of eventrelated desynchronisation
prior to voluntary movement, possibly reflecting a
maladaptive anticipation of motor activity modu-
lated by dopaminergic pathways.*

Gamma frequency changes

» Increased gamma in left parietal regions suggests

heightened sensorimotor processing in FS.**

» Reduced gamma in the right superior temporal
gyrus27 or between frontal and posterior regions™
may reflect aberrant emotional processing in FS (eg,
regulating stress responses).

Alpha band connectivity

» Altered alpha connectivity involving basal ganglia,

limbic regions, prefrontal, temporal, parietal and
occipital cortices hasbeenreportedin FS compared
with healthy controls.” Graph-theoretic measures
show reduced small-worldness that correlates with
monthly FS frequency, reflecting global network
dysregulation.”

ho

&

4. Differentiation from epileptic seizures

» Certain EEG-based features (eg, limited dominant
frequency variation on Fast Fourier Transforms and
rhythmic artefacts) help distinguish ‘convulsive’ FS
from epileptic seizures.

5. Functional motor disorders (FMD)

» Patients with FMD show reduced inferior pari-
etal cortex (IPC) modulations (C-cluster) and
altered inferior frontal gyrus (IFG) modulations

2
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Figure 1 Studies included for functional neurological disorder.

(R-cluster), further implicating frontoparietal and
motor networks.”

Electroencephalogram (EEG) correlates of chronic pain (CP)

1. Alpha power changes
» Patients with spinal cord injury and CP demonstrate

decreased alpha power over frontal regions.” **
Acute pain studies® and capsaicin-induced muscle
pain also show alpha power reduction.™

» Attention to pain further suppresses alpha activity37
which may increase cortical excitability via a ‘thalam-
ocortical gate’ mechanism.™ *

Beta frequency changes

» High beta activity from frontal, central and parietal

regions is significantly associated with self-reported
pain intensity in chronic low back pain.*

» Psychological interventions (eg, mindfulness) may
reduce beta power in cortical regions, correlating
with decreased pain intensity."!

Theta and delta power
Increased theta and delta seen in CP conditions
such as migraine and chronic pelvic pain,‘m_44 and
FM.* * Elevated theta in prefrontal and anterior

ho

v

cingulate cortices (ACC) may reflect persistent
emotional or cognitive distress.

4. Thalamocortical dysrhythmia (TCD)

» Abnormal interactions between theta- and beta-
generating regions can produce the so-called
‘edge effect’, where a central theta-hypoactive
region is surrounded by beta-hyperactive areas.
This pattern is observed in multiple CP syndromes,
including FM, supporting the idea of widespread
network-level maladaptive oscillations*” **

Overlap in functional neurological disorder (FND) and chronic pain
(CP) (electroencephalogram (EEG))

Both conditions show overactivation of sensorimotor
and fronto-parietal regions (beta/gamma changes)
alongside impaired inhibitory or emotional regula-
tory mechanisms (altered alpha/gamma). Increased
theta and disrupted thalamocortical rhythms also
appear in both, indicating a shared pathophysiology
involving excessive cortical excitability and ineffec-
tive gating of sensory or emotional signals.
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Figure 2 Studies included for chronic pain.

Magneto-encephalography (MEG) studies
Magneto-encephalography (MEG) studies in functional neurological
disorder (FND)

1. Reduced occipital alpha and increased low-frequency
power in fronto-temporal regions suggest enhanced
fronto-limbic excitability.*

2. Emotional processing tasks implicate an unchanged
automatic emotional salience detection but with ab-
normal engagement of sensorimotor and posterior
networks in patients with functional weakness and/or
sensory disturbance.”

Magneto-encephalography (MEG) studies in chronic pain (CP)

1. High alpha power ratio (low:high) across multiple cor-
tical regions in CP.”!

2. Increased theta power in the DMN (default mode net-
work) and decreased gamma in DMN/ascending no-
ciceptive pathway are emerging potential ‘signatures’
of CP.”®

3. Pain relief interventions (eg, deep brain stimulation)
show reduced ACC activation, supporting the ACC’s
crucial role in affective pain processing.

4. FM research using MEG reveals:

» Reduced DMN-insula connectivity at theta band and
negative correlation with the number of tender points
at beta band.”

» Increased theta in prefrontal/orbitofrontal cortex,
excess beta/gamma in insular and sensorimotor
cortices.”

5. Complex regional pain syndrome correlates with re-
duced somatosensory and precuneus activity, point-
ing to DMN involvement in abnormal pain percep-
tion.”®

6. Temporomandibular disorder and central post-stroke
pain also show prolonged cortical dipole activation
and beta/gamma augmentation in parietal/frontal
cortices.”

Overlap in functional neurological disorder (FND) and chronic pain
(CP) (magneto-encephalography (MEG))

Both FND and CP populations show elevated low-
frequency (theta/delta) activity in fronto-limbic and DMN
regions, alongside disrupted sensorimotor integration.
This dysregulation reflects a breakdown in the coordina-
tion between emotional salience processing (via limbic
structures), self-referential networks (DMN) and motor
control systems—suggesting a shared core mechanism

Kannan S, et al. BMJ Neurol Open 2025;7:€001032. doi:10.1136/bmjno-2025-001032
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that might be related to symptom generation/persistence
in both conditions.

Functional MRI (fMRI) studies

Functional MRI (fMRI) studies in functional neurological disorder

(FND)

1. Resting state networks

» Increased connectivity among fronto-parietal, sensori-
motor, executive and DMN.” Greater connectivity
correlates with higher FS frequency, suggesting that
excess crosstalk between emotional, executive and
motor areas predisposes to dissociative attacks.

2. Involvement of limbic structures

» Heightened amygdala and insula interactions with
motor regions; hyperconnectivity in the right amyg-
dala-IFG axis in FS when compared with healthy
controls.”” These patterns reflect emotional dysregu-
lation bleeding into motor control circuits. A mixed
group of FND patients (FS, FMD, PPPD) showed
insular co-(de)activation patterns compared with the
salience network (SN), the somatomotor network and
the DMN, compared with the controls.®* Moreover,
in FND subjects, these dynamic alterations conjointly
correlated with salivary amylase measures (marker
of stress) and duration of symptoms.”* Additionally,
increased amygdala activity was noted during cogni-
tive reappraisal compared with controls in a predomi-
nantly FMD cohort.”®

3. Effective connectivity

» Studies applying EC show inhibitory influences from
limbic (eg, amygdala, ACC) onto motor/executive
areas (eg, insula, IFG) in FS, disrupting normal voli-
tional motor control in FS.*%

4. Delay in diagnosis

» Individuals with delayed FS diagnosis can have unique
connectivity patterns, such as greater bilateral poste-
rior cingulate cortex (PCC) and left anterior insula
activation to stress.”’ !

5. Structural-functional coupling

» FS patients exhibit more lattice-like networks and
reduced structural-functional connectivity, particu-
larly within attention, sensorimotor, subcortical
and DMN regions.n’75 In mixed FND populations,
increased functional connectivity between motor
and insular regions correlated with symptom severity
and clinical improvement,”® while significant shifts
in Temporo-Parietal Junction (TP]) and precuneus
centrality were seen in functional weakness in FMD.”
Wegrzyk et al found the caudate and amygdala hyper-
connectivity in FND,” whereas diminished func-
tional connectivity from sensorimotor cortices to
key areas (such as the SMA, insula, and dorsal ACC)
was described in FMD.” ® Sojka et al demonstrated
heightened activation of sensorimotor and associa-
tive cortices (precuneus, post-central gyrus, PCC) in
FND patients viewing negative stimuli,”’ and Baek et al
noted reduced inferior parietal engagement during
involuntary versus voluntary movement, aligning with

disrupted intention.*” Biihler et al*® further under-
lined the role of the TPJ in agency misjudgments.83

» These findings highlight maladaptive limbic—motor
interactions, particularly disrupted connectivity in
emotional processing, sensorimotor integration
and self-agency networks. The amygdala, TP], and
precuneus consistently emerge as key nodes linking
emotional salience to motor execution. Persistent
amygdala hyperactivity correlates with abnormal
sensorimotor responses, underscoring deficits in
top-down control and agency within limbic-motor
networks central to FND pathophysiology.*** Overall,
impaired top-down regulation and self-agency are
fundamental to FND neurobiology.

» Therapeutically, multidisciplinary motor retraining
reduced motor symptoms and modified amygdala
connectivity. Positive outcomes corresponded with
enhanced amygdala—ventromedial prefrontal connec-
tivity, whereas poorer responses correlated with
stronger amygdala—primary motor cortex connec-
tivity,86 demonstrating that targeted interventions
recalibrating emotional influence toward prefrontal
executive networks may be importantin treating FND.

Functional MRI (fMRI) studies in chronic pain (CP)

1. Acute versus chronic

» While acute pain typically activates sensorimotor

cortex, insula and ACC, CP shows stronger involve-

ment of prefrontal cortex (linked to the DMN).87 88

Connectivity alterations

» Increased insula-DMN connectivity in F

» Greater ACC-basal ganglia—sensorimotor connec-
tivity also noted, correlating with pain intensity.w_m0

» In CLBP, heightened medial prefrontal to ACC/insula

connectivity suggests persistent salience/emotional

modulation.'”™”  Equivalent results were found
in comparable studies that investigated the fMRI
changes in patients with chronic back pain.'**" !

Stimulation-induced state changes

» Pain stimulation can further increase connectivity
among thalamus, insula, precuneus and other DMN
nodes in CP patients.'"*"'"

» Deep brain stimulation of the ventral striatum/ante-
rior limb of the internal capsule (vs/ALIC) leads to
reduced orbitofrontal cortex activation, highlighting
a modulatory effect on affective pain circuits''' '

4. Complex regional pain syndrome

Marked by excess thalamo-somatosensory connec-

tivity, with additional involvement of the IFG and

orbitofrontal cortex.'”” '

o

M.89_93

e

v

Overlap in functional neurological disorder (FND) and chronic pain
(CP) functional MRI (fMRI)

Shared alterations in ACC, insula, sensorimotor areas
and DMN. Increased connectivity between emotional
processing centres (eg, amygdala, insula) and motor/
executive networks is Dysregulated self-
referential processing (DMN) and salience/emotion

common.
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processing (limbic regions) underlie key symptoms in
both conditions.

Positron emission tomography (PET) findings

Positron emission tomography (PET) studies in functional

neurological disorder (FND)

» Hypometabolism in right IPC and bilateral ACC
is seen in FS, correlating with cerebellum and left
hippocampal gyrus dysfunction.'” '

» Hypermetabolism in the right PCC (involved in the
DMN) in conversion disorder, suggesting excess self-
referential or arousal processing.

Positron emission tomography (PET) studies in chronic pain (CP)

» Increased uptake in cingulate cortex, thalamus and
amygdala in chronic arthritic knee pain versus acute
experimental knee pain.117

» CP from brachial plexus avulsion: decreases in right
thalamus metabolism alongside increases in orbitof-
rontal cortex, insula and DLPFC, implicating affective
and evaluative components of CP.''*'%!

» Additionally, a significant body of PET studies in CP
underscore the critical involvement of opioid and
dopaminergic systems in pain’s affective and motiva-
tional components.122 In FM, PET imaging demon-
strates reduced mu-opioid receptor (MOR) binding
potential (BP) in key pain-modulating regions,
including the nucleus accumbens, amygdala, and
dorsal cingulate cortex. Lower MOR BP in the nucleus
accumbens correlates with higher affective pain
ratings, with similar negative correlations observed
throughout the cingulate cortex and striatum.'*’

» Patients with chronic non-neuropathic back pain
(CNBP) exhibit reduced dopamine D2/D3 receptor
availability in the ventral striatum, linked to positive
affect, pain tolerance and affective pain dimensions.
During acute pain challenges, CNBP patients show
decreased dopamine release compared with controls,
correlating with altered endogenous opioid activity in
the amygdala. Collectively, these findings implicate
dopaminergic and opioid systems in CP’s motivational
and affective components.'**

» In burning mouth syndrome, significantly decreased
presynaptic dopaminergic function is observed in the
putamen, indicated by reduced Fluorodopa (18F)
(FDOPA) uptake. This aligns with prior neurophysi-
ological evidence of impaired dopaminergic inhibi-
tion, directly implicating nigrostriatal dopaminergic
dysfunction in this CP disorder.'*

Overlap in functional neurological disorder (FND) and chronic pain

(CP)

Both demonstrate significant cingulate and parietal
involvement. Thalamic and orbitofrontal/limbic meta-
bolic changes appear across FS and various CP states,
reiterating a common subcortical-cortical dysregula-
tion underpinning emotional, attentional, and sensory
processing.

Single photon emission computed tomography (SPECT)

findings

Single photon emission computed tomography (SPECT) studies in

functional neurological disorder (FND)

1. Perfusion changes

» During FS, decreased perfusion has been noted in the
posterior parietal cortex, 20 127 117128

» Some FS patients show increased perfusion in areas
overlapping the DMN (eg, right precuneus and
right PCC),' hinting at DMN overactivity during
episodes.'”

» When comparing psychogenic tremor vs essential
tremor, a study in FMD showed increased Regional
cerebral blood flow (rCBF) in left IFG and insula, with
reduced rCBF in anterior DMN regions during motor
tasks.'!

2. Subcortical structures

» SPECT findings in conversion disorder highlight
rCBF reductions in the thalamus and basal ganglia
contralateral to functional deficits, which normalise
on symptom resolution.'*

Single photon emission computed tomography (SPECT) studies in

chronic pain (CP)

» Reduced prefrontal cortex and thalamic perfusion in
chronic back pain.wg’_136

» Increased thalamic and cingulate perfusion in somato-
form pain, but decreased in frontal, occipital and left
temporal regions.137_139

» FM studies show decreased perfusion in frontal,
temporoparietal, right precuneus and right PCC—
paralleling certain FS ﬁndings.lé}o_142

Overlap in functional neurological disorder (FND) and chronic pain
(CP)

Similar patterns of DMN region hyper- or hypoperfusion
(PCG, precuneus) and thalamic involvement emerge in
both. The interplay of limbic—subcortical circuits (eg, thal-
amus and basal ganglia) and cortical networks (frontal/
parietal lobes) again demonstrates a shared pathophysio-
logical substrate.

DISCUSSION

Our review synthesises neurophysiological and neuroim-
aging findings across FND and CP, focusing on shared
mechanismsrather than effectsizes. Although theincluded
studies vary in quality and design, we identified recurring
patterns—across modalities and patient groups—that
support a convergent neurobiological model. These
patterns are not drawn from isolated reports but reflect
thematic overlaps identified in multiple independent
studies, summarised in online supplemental tables 2 and
3. These patterns point towards shared network dysfunc-
tion in emotion processing, sensorimotor control and
default mode activity. These similarities may help explain
why FND often coexists with CP conditions and highlight
potential shared targets for therapeutic intervention.

6
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Below, we synthesise these findings.

Overactivation of sensorimotor networks

Both FND and CP patients exhibit overactivation in senso-
rimotor regions.”*” In FND, this may stem from maladap-
tive emotional responses that amplify motor excitability,
whereas in CP, persistent nociceptive input may sensi-
tise these same pathways. Functional MRI studies in CP
show increased medial prefrontal cortex activity and
connectivity with the anterior cingulate cortex, secondary
somatosensory cortex and insula.'”’ By extension, exces-
sive sensorimotor or limbic activation during pain could
occasionally ‘spill over’, overpowering executive control
and precipitating FND events—consistent with evidence
of heightened limbic-sensorimotor excitability in FND.*
Hence, both conditions illustrate an intricate interplay
among stress, pain and movement circuits.

Alterations in the default mode network (DMN) and functional
connectivity

Dysfunction within the DMN, a network central to self-
referential processing, is consistently reported in both
FND and CP. In FND, abnormal DMN hyperconnec-
tivity may predispose patients to dissociative-like states
in response to external stressors. In CP, altered DMN
function could underlie sustained pain perception
even in the absence of ongoing nociceptive stimuli.'*’
Notably, both FND and FM patients show decreased
perfusion in the right precuneus and right posterior
cingulate gyrus,"” '** regions commonly linked to the
DMN. Additionally, FND exhibits stronger connectivity
between emotion-processing and sensory integration
areas, potentially impairing movement execution and
self-perception.'® In CP, similar alterations in functional
connectivity (eg, between frontolimbic and sensorimotor
circuits) help explain the persistence of pain despite the
resolution of the initial peripheral cause.*? % %!

Shared emotional processing Errors

Common disturbances in emotional regulation networks
(anterior cingulate cortex, insula and amygdala) under-
score the role of affective factors in both FND and CP.
These regions are central to the SN, which detect and
prioritise emotionally significant stimuli. Emotional
triggers can provoke/exacerbate FND (eg, heightened
arousal, stress)®* 7 or exacerbate CP.'*® Thus, the SN
overresponsiveness represents a potential unifying
mechanism.

Thalamocortical dysrhythmia (TCD) and its impact on movement
and perception

Thalamocortical dysrhythmia (TCD) provides a compel-
ling framework for both conditions.**** In TCD, reduced
thalamic drive can induce low-frequency theta rhythms
surrounded by compensatory beta overactivation (the
‘edge effect’). In CP, TCD maintains sustained nocicep-
tive hypersensitivity; in FS, overactive beta oscillations,
influenced by dopaminergic pathways, may predis-
pose individuals to seizure-like motor discharges.® By

extension, TCD can also affect DMN regulation, because
the thalamus is essential for filtering information before
it reaches higher cortical areas. Disruption here might
exacerbate maladaptive self-focus on pain or distress,
thus linking TCD to both CP experiences and functional
seizures.

Shared role of alpha Oscillations

Both conditions reveal characteristic changes in alpha
power—often interpreted as an index of inhibitory gating
and cortical ‘idling’. FS patients show reduced occipital
alpha power,* while CP patients frequently present with
decreased frontal alpha power.”” Such alpha suppression
has been linked to heightened attention to internal or
external stimuli; thus, in FS, an emotional or interocep-
tive trigger could promote excessive alpha suppression,
facilitating a seizure-like event. Similarly, in CP, dimin-
ished alpha might enhance cortical responsiveness to
nociceptive input and amplify pain perception.

The integrative cognitive model of FS posits that func-
tional seizures arise partly from defective inhibitory
mechanisms.'*® Emotional overload or stress may acti-
vate a ‘seizure scaffold’, wherein maladaptive sensorim-
otor and limbic integration produces FS. Clinically, CP
could function as another potent stressor, triggering FS in
susceptible individuals. Detailed characterisation of pain
in FND populations—and vice versa—is therefore vital to
clarify how each might perpetuate the other.

Triple network model

Involvement of three core networks—salience network
(SN), DMN and central executive network (CEN)—can
be framed within the triple network model, a founda-
tional framework for understanding neural dysregula-
tion in neuropsychiatric disorders."*”'* These networks
interact dynamically to regulate sensory, emotional and
cognitive processes. The SN (anterior insula, anterior
cingulate cortex) identifies salient stimuli (eg, pain or
internal disturbances) as significant, prompting the
DMN (involved in self-referential processing) to integrate
these sensations into an internal narrative, potentially
amplifying subjective distress. Concurrently, maladap-
tive engagement or insufficient regulation by the CEN
(involved in goal-directed behaviour) may foster ineffec-
tive coping or heightened rumination. Hence, in FND
and CP, this dysfunctional interplay may be the source
of symptom generation and persistence (eg, seizures,
abnormal movements, CP). Although the triple network
model is hypothesis-generating, its strength lies in consis-
tent multimodal evidence (EEG, MEG, fMRI, PET,
SPECT) and shared oscillatory dysregulation (alpha/
beta), reinforcing the concept of a common neurobio-
logical substrate.

However, similar SN-DMN-CEN disruptions are also
seen in depression, anxiety and Post-traumatic stress
disorder (PTSD), frequently comorbid with FND/
CP."*7 " Future research using psychiatric control groups
and matched symptom designs is crucial to clarify if these
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network alterations represent core FND/CP features or
broader transdiagnostic processes such as heightened
salience attribution, impaired emotional regulation or
altered self-referential processing.'

Gue for novel therapeutic approaches

From a therapeutic standpoint, neuromodulation and
neurofeedback approaches targeting aberrant beta and
alpha power have shown promising results in CP, with
up to 82% pain reduction reported in some studies.''
Similar approaches may hold promise for FND manage-
ment, given that both conditions exhibit overlapping
rhythmic and network dysregulations.'”*'>

Another important tool would be the use of hypnosis,
which has been proven effective in both FND"* and
CP." ® This can be explained by the fact that hypnosis
often shows the opposite changes in DMN and SN, as
seen in FND and CP."”’

Looking forward, clarifying the neurobiological links
between FND and CP will inform the design of advanced
therapeutic strategies—potentially addressing shared
dysrhythmias across emotion, cognition and sensorim-
otor domains.

Limitations

This review has several limitations. First, most neuroim-
aging research in FND focuses on FS, potentially limiting
generalisability. Second, we did not formally assess
study quality or bias, constraining the interpretation of
evidence. Our narrative synthesis highlights common
neurobiological mechanisms across various methods and
populations, but the lack of standardised quality ratings
and pooled analyses restricts inferential depth. Third,
limiting searches to English-language, peerreviewed
studies and excluding grey literature may introduce bias.
Fourth, many included studies were cross-sectional and
underpowered, weakening conclusions. Finally, the lack
of standardised outcome measures and heterogeneity in
imaging protocols prevented statistical synthesis, empha-
sising the need for future multimodal, longitudinal
research with standardised methods.

Additionally, many studies did not control for psychi-
atric comorbidities such as depression and anxiety, preva-
lentin both FND and CP. Given overlapping network-level
alterations across these conditions, as noted by Davis et
al," it remains unclear if reported neural signatures are
specific to FND or CP or reflect broader transdiagnostic
processes, thus limiting interpretation as disorder-specific
biomarkers.

CONCLUSIONS

To our knowledge, this is the first review synthesising
neuroimaging and neurophysiological findings in both
FND and CP—conditions that frequently overlap and
co-occur clinically. The evidence highlights shared
maladaptive neural responses to emotional and nocicep-
tive stressors, with consistent disruptions across salience,

sensorimotor and self-referential networks. Clarifying
the specificity of these neural signatures will critically
enhance the development of precise, mechanism-based
interventions.
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