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Abstract 

Pregnancy and childbirth involve profound biomechanical transformations, adap-

tations, and functional demands on the maternal body. Although biomechanical 

complications have been identified as a major contributor to maternal morbidity and 

mortality, this remains one of the most under-researched areas in perinatal health. 

This systematic scoping review aimed to map and synthesise existing literature on 

the biomechanics of pregnancy and labour. Following Arksey and O’Malley’s frame-

work and PRISMA-ScR guidance, comprehensive searches of MEDLINE, EMBASE, 

and MIDIRS were conducted up to May 2025. Eligible sources were peer-reviewed 

empirical studies assessing musculoskeletal, kinematic, kinetic, postural, or dynamic 

parameters in pregnant or labouring women. Titles, abstracts, and full texts were 

screened against predefined eligibility criteria. Data were charted using a structured 

extraction form and synthesised narratively across key biomechanical themes. 

Eighty-seven studies were included, all of which focused on pregnancy. No studies 

conducted during labour were identified. Most were observational with small sam-

ple sizes and limited diversity. Ethnicity was reported in only one study. Four key 

themes emerged: (1) Posture and spinal curvature, (2) Gait and locomotor analy-

sis, (3) Functional tasks and interventions, and (4) Balance and stability. Findings 

showed high individual variability and no consistent biomechanical pattern across 

pregnancy. Real-world, neuromuscular, and labour-related biomechanics remain 

largely unexplored. This review underscores a critical gap in perinatal research: while 

biomechanical adaptations during pregnancy have been increasingly studied, labour 

remains entirely unexamined from a biomechanical perspective. Current evidence 

is fragmented, methodologically narrow, and lacks diversity, offering limited clinical 

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0337595&domain=pdf&date_stamp=2025-12-01
https://doi.org/10.1371/journal.pone.0337595
https://doi.org/10.1371/journal.pone.0337595
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-0280-6801
https://orcid.org/0000-0002-1718-6564
https://orcid.org/0000-0002-4927-8906
mailto:atopalidou@uclan.ac.uk


PLOS One | https://doi.org/10.1371/journal.pone.0337595  December 1, 2025 2 / 26

relevance. We are effectively operating in a biomechanical vacuum, without empirical 

data to guide safer, more efficient, and personalised birth practices. Existing clinical 

approaches rely heavily on tradition, anecdotal experience, and untested theoretical 

assumptions. Addressing this evidence void, particularly in labour biomechanics and 

ethnic representation, is essential to improve perinatal outcomes and support equity 

in maternal care.

Introduction

Pregnancy and childbirth are defining periods in a person’s life, during which the body 
undergoes a series of orchestrated adaptations affecting nearly every physiological 
system [1–3]. These include significant physiological and biomechanical changes 
aimed at accommodating the growing foetus and preparing the body for delivery 
[4,5]. From a biomechanical perspective, pregnancy involves adaptations such as 
increased ligament laxity, spinal realignment, changes in body mass distribution, and 
shifts in the centre of gravity (CoG) [6–9]. These changes necessitate adjustments in 
posture and mobility [6,7], which are critical for maintaining balance, reducing physi-
cal strain [10–12] and supporting the well-being of both the mother and the foetus.

As the pregnancy progresses to labour, the focus shifts to the biomechanics of 
childbirth, involving the dynamic interaction between the woman’s body and the 
foetus. This process encompasses the engagement of the foetus with the maternal 
pelvis [13,14], and changes in pelvic orientation and joint mobility [9,15] that facilitate 
descent through the birth canal [13,14]. During the second stage of labour, intra- 
abdominal pressure is generated through maternal voluntary effort, co-ordinated with 
involuntary uterine contractions [13,16,17]. The mechanical forces involved in labour 
and birth are multifaceted, combining musculoskeletal adaptations, adjustments in 
neuromuscular control, and physiological responses to the advancing stages of child-
birth [16–18].

The biomechanics of pregnancy typically refers to the study of the structural, 
mechanical, and functional changes of the maternal body in response to gestation. 
It examines how the musculoskeletal system adapts to the demands of carrying a 
growing foetus, including alterations in posture, balance, and mobility. This field also 
explores the forces exerted by and on the body, and how these interact with phys-
iological changes, such as ligament laxity, increased maternal mass, and shifts in 
the CoG [4,6,7,9]. Conversely, the biomechanics of labour and birth focuses on the 
study of the mechanical and functional processes involved as the body prepares 
for and facilitates the delivery of a baby. It encompasses the analysis of maternal 
positioning and movements, as well as pelvic dynamics that support foetal alignment. 
Additionally, in the second stage, it examines the mechanics of uterine contractions 
and maternal pushing, alongside the effect of birthing positions on foetal descent, 
mechanical efficiency, maternal comfort, and outcomes for both the woman and the 
baby [13,15,18–21]. The biomechanical efficiency of labour and birth also involves 
the energy expenditure and mechanical stress on maternal tissues, which are critical 
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for developing knowledge and interventions to reduce the risk of injury and complications [17,18]. Moreover, biomechanics 
investigates how an individual’s motor control, anatomical and musculoskeletal characteristics, such as pelvic geometry, 
joint mobility, alignments or angulations across the body, influence labour mechanics. It aims to provide a deeper under-
standing of the biomechanical challenges and solutions during this critical life event, and to determine optimal practices 
based on personal characteristics and the interactions between mother and foetus, as well as the internal and external 
forces involved [18,22,23].

The implications of biomechanical factors extend beyond adaptation; they are directly linked to outcomes. Maternal 
and neonatal mortality rates remain unacceptably high worldwide [15,24,25], with figures rising again in both low- and 
middle-income countries (LMICs) and high-income countries (HICs) — an issue described as a “major scandal” and a 
“global failure” [26]. In the United Kingdom (UK) for instance, maternal mortality rose to its highest level in 20 years [27]. 
Sustainable Development Goal (SDG) 3.1, which targets the reduction of maternal mortality, stands as the only SDG that 
has notably failed [26,28], with biomechanical complications being a major contributing factor [15,20]. Despite this critical 
impact, biomechanics remains one of the most under-researched areas in perinatal health. To date, no attempt has been 
made to systematically synthesise biomechanical research in pregnancy and labour. Bringing together the available evi-
dence is essential to establish what is currently known, to identify gaps, and to lay the foundation for future investigation 
that can better inform maternal health outcomes.

The purpose of this systematic scoping review is to comprehensively identify and map the existing literature on the 
biomechanics of pregnancy and labour, including adaptations and assessment methods. It aims to identify and synthesise 
studies that explore musculoskeletal, kinematic, kinetic, postural, and dynamic aspects of biomechanics, exclusively in 
pregnant and labouring women.

Methods

This systematic scoping review aimed to map out the key concepts and evidence available on the biomechanics of preg-
nancy and labour. It specifically focused on studies that investigated comprehensive biomechanical analyses during these 
periods, including musculoskeletal, kinematic (movement), kinetic (forces), postural, and dynamic assessments, exclu-
sively involving pregnant and labouring women.

The protocol for this review was structured using the methodological framework for scoping reviews as described by 
Arksey and O’Malley [29] and followed the guidance for conducting systematic scoping reviews as outlined by Peters et 
al. [30]. Systematic scoping reviews are designed to identify and map the primary concepts underpinning a research area, 
summarise the main sources of evidence, and outline the types of evidence available [29–31]. Unlike systematic reviews, 
which are narrower in scope, focus on specific questions and often assess the quality of included studies, scoping reviews 
allow for a broader enquiry and the methodology can be more flexible, making them suitable for emerging fields or com-
plex subjects where many studies might not focus strictly on intervention effectiveness [30,32,33].

To promote transparency, reduce bias, and support open science practices, the protocol was prospectively registered 
on the Open Science Framework (OSF) [Registration DOI https://doi.org/10.17605/OSF.IO/Z7KJW ] and is publicly avail-
able at: https://osf.io/z7kjw [34].

Based on the aim of this review, the review question was: “What biomechanical changes, adaptations, and responses 
occur during pregnancy and labour, and how are these assessed and quantified in terms of musculoskeletal, kinematic, 
kinetic, postural, and dynamic parameters in pregnant and labouring women?”. The secondary questions included, but 
were not limited to: “How do different stages of pregnancy and associated changes affect the biomechanical profiles of 
pregnant women?”, “How do various stages of labour, labour positions, and practices influence the biomechanical profiles 
of labouring women and the outcomes of labour?”, “What methodologies and technologies are primarily used to assess 
and investigate biomechanics during pregnancy and labour?”, and “Where are the significant gaps in the current research 
on biomechanics during pregnancy and labour?”.

https://doi.org/10.17605/OSF.IO/Z7KJW
https://osf.io/z7kjw
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Search strategy

A preliminary search of two databases [(Ovid MEDLINE(R) and Epub Ahead of Print, In-Process & Other Non-Indexed 
Citations and Daily) and (Ovid Embase)] was conducted to identify adequate search terms related to the scope of this 
review. Following this, an intensive literature search was conducted in the following electronic databases (from the earliest 
date in each database):

a)	OVID Embase (Ovid) <1974 to May 01, 2025> (Date of search: 02/05/2025)

b)	Ovid MEDLINE(R) ALL <1946 to May 01, 2025> (Date of search: 02/05/2025)

c)	 Maternity & Infant Care Database (MIDIRS) (Ovid) <1971 to April 29, 2025> (Date of search: 02/05/2025)

In order to extract all available data, the search strategy was kept necessarily broad combining the terms: “biomechanic*” 
OR “motion capture” OR “motion analysis” OR “movement analysis” OR “body tracking” AND “childbirth” OR “birth” OR 
“labo?r” OR “pregnan*”. The search strategy was limited to English language only. The full search strategy, including syn-
tax, and the number of hits for each query in each database are detailed in the supporting information (S1 Appendix).

Inclusion/exclusion criteria

Records were not excluded on the grounds of quality, geographical location, or date of study, as the purpose was to scan 
the literature and determine the up to date reported studies, knowledge, and gaps.

Inclusion criteria. 

a)	Study population: Only studies involving human participants who were pregnant during their antenatal period or during 
labour.

b)	Study focus: Studies that investigated musculoskeletal biomechanics during pregnancy and/or childbirth, which 
included musculoskeletal, kinematic, kinetic, postural assessments, and adjustments, as well as dynamic responses.

c)	 Type of studies: Original research studies that provided primary data with clear methodology and reporting of results, 
and had undergone peer-review.

Exclusion criteria. 

a)	Non-relevant population: Studies reporting solely on non-pregnant individuals or non-labouring populations.

b)	Non-relevant topics: Studies that focused on cellular, tissue-level, or organ-specific research without direct rele-
vance to musculoskeletal biomechanics (e.g., studies solely focused on the cervix, placenta, or cellular mecha-
nisms). Studies reporting anatomical measurements (e.g., stance width, girth, or base of support) were included 
only if these were linked to functional biomechanical assessments such as balance, postural control, or motion 
analysis.

c)	 Non-relevant types of studies: Records that did not report primary data, had not undergone peer-review, or lacked clear 
methodology and reporting of results, including reviews, protocols, methodological evaluations (e.g., inter- and intra-
rater reliability), editorials, opinion papers, letters, commentaries, book chapters, and preprints.

d)	Computational and modelling studies: Studies focused exclusively on computational modelling, finite element analy-
sis, digital human modelling, and avatars that did not include direct biomechanical measurements or assessments on 
human subjects.

e)	Language and accessibility: Records with no full text available in English. Conference abstracts without accessible full 
texts, and publications missing abstracts (at the first screening stage), or full texts (at the second screening stage).
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Screening process

In total, two stages of deduplication were performed. Initially, all exported citations were uploaded into EndNote (version 
21, Clarivate Analytics, Philadelphia, PA), where duplicate articles were identified and removed (1st stage of deduplication). 
Then the final EndNote dataset was exported and uploaded into Rayyan® (https://www.rayyan.ai/), a web-based software 
platform for systematic reviews [35], where further duplicates were detected and removed (2nd stage of deduplication).

The review process consisted of two levels of screening. At the first stage, using Rayyan®, the titles and abstracts 
of identified articles were screened according to the inclusion and exclusion criteria by two sets of researchers (RJ, AT; 
AT, LH) [35]. Disagreement between reviewers during this stage resulted in the article’s inclusion for full text review. All 
attempts were made to obtain the full texts of selected articles. Records that were not available in full text, or those that 
the authors were unable to obtain, are listed in supporting information (S2 Appendix). In the second stage, full text screen-
ing was conducted by three sets of reviewers (MHH, AT; MHH, LH; AT, LH) to identify eligible studies. A third reviewer 
helped resolve any disagreements as necessary. Articles that did not meet the inclusion criteria at this stage were docu-
mented, alongside the specific reasons for their exclusion.

The selection process followed the recommendations in the Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses Extension for Scoping Reviews (PRISMA-ScR) checklist [36] (see supporting information, S3 Appendix) 
and was mapped using the PRISMA flow diagram [30,37].

Charting data and analysis

Data were extracted from the selected studies using a data extraction form created by the authors. The following informa-
tion was extracted during the charting process:

a)	Study information: Author(s), publication year, country, study aim/objective, type of study

b)	Participants/characteristics of the study population: Sample size, age, weight, height, ethnicity, weeks of gestation and 
other demographics

c)	 Method(s) used for the biomechanical assessment/analysis/investigation.

d)	Type of assessment [as described by the author(s)]

e)	Description of assessment/analysis/investigation

f)	 Type of data/variables analysed/presented in the record

g)	Key findings

h)	Limitations (if any) as described by the author(s)

i)	 Comments

The data extraction form was initially pilot tested with a small subset of included studies to ensure its suitability. Based on this pilot, 
necessary adjustments were made to accommodate any data that did not fit into the existing fields, by creating new fields that 
more effectively addressed the scope of this review. Following the pilot, the research team convened to assess the consistency 
of the data extraction approach with the research question and objectives. A consensus was then reached regarding the final 
fields/categories to be used for data extraction. After the successful pilot test, the remaining included studies were systematically 
reviewed, and data were extracted and mapped into the established fields by three sets of reviewers (MHH, AT; MHH, LH; AT, LH).

As this study is a scoping review, the data analysis included a narrative synthesis of the extracted data. Findings from 
the included studies were organised and presented in tabular form, offering an overview of the key themes and patterns 
across the biomechanical aspects of pregnancy and labour.

https://www.rayyan.ai/
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Ethical considerations

As this study involved secondary research, no ethical approval was required. All data used were obtained from previously 
published studies, for which the original authors had secured the necessary ethical approvals.

Results

A total of 3638 records were identified through the database searches (EMBASE, MEDLINE and MIDIRS). After the 
removal of duplicates, 2637 records were screened by abstract and title, and 122 were taken forward for full text review. 
After the final full text selection, 87 records remained and were included in this review (Fig 1).

Study characteristics

The characteristics of the 87 included studies are summarised in S1 Table. The majority were observational in design 
(n = 82), with only five studies employing other methodologies: four experimental studies and one retrospective analysis 
of a randomised controlled trial. Among the observational studies, longitudinal follow-up designs were the most prevalent 
(n = 36), followed by longitudinal follow-up studies with a non-pregnant control group (n = 23), and cross-sectional compar-
ative studies (n = 16). The remaining 12 studies encompassed a range of other designs, as detailed in S1 Table. The full 
dataset is also provided as supporting information (S1 Table) for ease of access.

Although the first study assessing biomechanics during pregnancy was in 1990 [38], there were numerous publication 
gaps between 1990 and 2007. From 2008 to 2017, there was a relatively stable but modest level of research activity. A 
clear peak in publication frequency occurred between 2018 and 2020. While studies have continued to be published since 
then, the annual output has declined, and has not returned to peak levels (Fig 2).

Fig 1.  PRISMA flow chart illustrating the literature search and screening process.

https://doi.org/10.1371/journal.pone.0337595.g001

https://doi.org/10.1371/journal.pone.0337595.g001
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The included studies were undertaken in the following countries: the United States of America (USA) (n = 24), Poland 
(n = 9), Japan (n = 6), Australia (n = 5), Portugal (n = 5), Brazil (n = 4), Turkey (n = 4), France (n = 4), Canada (n = 3), the Neth-
erlands (n = 3), China (n = 3), Spain (n = 2), Norway (n = 2), Taiwan (n = 2), Benin (n = 2), South Africa (n = 2), Czech Republic 
(n = 2), Germany (n = 2), Switzerland (n = 1), India (n = 1) and Pakistan (n = 1).

The studies included in the review generally featured small sample sizes, ranging from as few as two participants [39], 
to a maximum of 131 participants [40]. Fifty percent of the studies recruited 23 or fewer participants; specifically, 14% 
(n = 12) involved 10 or fewer participants, 36% (n = 31) included 11–20 participants, 28% (n = 24) recruited 21–30 partic-
ipants, and 10% (n = 9) involved 31–40 participants. Although 87 studies were included in this review, analysis of partic-
ipant characteristics and sample sizes suggests that several publications likely drew from overlapping cohorts [41–58]. 
Across all studies, a total of 2,277 participants were reported. However, after accounting for likely duplicate reporting, an 
estimated 2,033 unique pregnant participants were included.

Although the majority of included studies reported participant age, height, weight, or body mass index (BMI), ethnicity 
was almost entirely unreported. Of the 87 studies, only one explicitly reported participant ethnicity, stating that all partici-
pants were Caucasian [59]. Another study described participants as Japanese [60], although this reflects nationality rather 
than ethnicity. Additionally, two studies implied participants’ ethnic backgrounds through geographical location, such as 
West African populations [61,62] but none provided detailed ethnic breakdowns or further demographic specifics.

Kinematic analyses emerged as the most frequently employed method (n = 47), closely followed by kinetic analyses 
(n = 42). Postural evaluations were conducted in 18 instances, while surface electromyographic (sEMG) assessments 
appeared in eight studies. Balance assessments were reported in six studies, and spatiotemporal gait parameters were 
evaluated in four. Biomechanical asymmetry was examined in only one study.

Notably, all 87 included studies were conducted during pregnancy, involving pregnant women. No studies were identi-
fied that investigated biomechanical parameters during labour, including labouring women.

Biomechanics of pregnancy

Narrative synthesis.  The reviewed literature presents a diverse range of biomechanical adaptations during 
pregnancy, in response to the anatomical, physiological, and functional demands of gestation. Findings are 
heterogeneous but cluster around four key domains (Table 1): posture and spinal curvature, gait and locomotor analysis, 
functional tasks including interventions, and balance and stability.

Fig 2.  Distribution of studies on the biomechanics of pregnancy by year of publication.

https://doi.org/10.1371/journal.pone.0337595.g002

https://doi.org/10.1371/journal.pone.0337595.g002
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Posture and spinal curvature.  Postural adaptations during pregnancy are highly individualised and biomechanically 
complex, influenced by factors such as gestational stage, body morphology, and task demands. While the literature 
consistently highlights changes in spinal curvature and pelvic orientation, findings remain heterogeneous, with no single 
trajectory or “optimal” postural response universally observed across individuals or trimesters.
Standing: The biomechanical adaptations of standing posture during pregnancy are complex and heterogeneous, with 
evidence revealing both shared trends and considerable inter-individual variability. Across the reviewed studies, changes 
in spinal alignment, including lumbar and cervical lordosis, thoracic kyphosis, trunk flexion angle, postural alignment, 
sacral inclination, and pelvic orientation, are inconsistently reported. This reflects the influence of methodological differ-
ences, gestational timing, body mass, and individuals’ characteristics, among other factors.

Specifically, lumbar lordosis during standing does not follow a uniform trajectory across gestation and appears to 
depend on individual characteristics. In a longitudinal study, Moore et al. [38] found that 56% of pregnant participants 
exhibited a decrease in lumbar curvature from the first to the second trimester, while 44% showed increased lordosis by 
the third trimester. Pauk and Swinarska [63] documented a statistically significant increase in both thoracic kyphosis and 
lumbar lordosis between the second and third trimester, with kyphosis rising from 53.2° to 57.3° and lordosis from 40.0° to 
44.2°. These increases were positively correlated with BMI, suggesting that maternal body mass plays a role in amplifying 
spinal curvature. However, Schroder et al. [64], reported a decrease in lumbar lordosis from 51.1° to 49.4° over the same 
period, and no consistent trend in sacral inclination. Bivia-Roig et al. [41] further supported this inconsistency by reporting 
no significant differences in lumbar curvature between pregnant, postpartum, and nulliparous participants in standing, 
despite observing increased trunk extensor muscle activity in pregnant women, possibly reflecting compensatory neu-
romuscular demands. Gilleard et al. [48] also observed no consistent sagittal plane changes in standing trunk posture 
across pregnancy, suggesting that some individuals adopt flatter spinal curves while others show increased extension.

Table 1.  Summary of the themes and corresponding studies included in this review.

Theme Studies

Posture and spinal curvature

Standing [38,42,48,53,58,64–67,69]

Sitting [48,70]

Birth position [39,45,46,71,72]

Gait and locomotor analysis

Spatiotemporal gait parameters [1,10,43,50–52,55,56,73–87]

Pelvic and thoracic kinematics [1,43,52,55,75,80,86,88,89]

Plantar pressure and foot loading [40,77,81,90–97]

Fall risk and neuromechanical adaptations [52,56,78,82,98–100]

Neuromuscular control and joint-level adaptations [44,84,98,101,102]

Functional tasks and interventions

Functional tasks:
  Sit-stand/ Stand-sit [49,57,58,60,103–107]

  Stair negotiations [53,54,108]

  Walking initiation and transitional movements [62,78,105]

  Load carrying tasks [47,61,62]

  Task-specific balance responses [47,61,62,109–112]

Interventions [113–115]

ROM-specific tasks [42,47,109]

Balance and stability

[9,41,55,59,77,82,116–120]

https://doi.org/10.1371/journal.pone.0337595.t001

https://doi.org/10.1371/journal.pone.0337595.t001
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Pelvic orientation also yielded inconsistent findings. Opala-Berdzik et al. [65] found no significant change in sacral incli-
nation from early to late pregnancy, whereas Catena and Wolcott [66] documented an increase in lumbopelvic angle up to 
the second trimester, which then plateaued. This adaptation appeared to reduce the standing hip moment and support the 
maintenance of centre of mass (CoM) alignment over the hips. Catena et al. [67] also reported anterior and superior shifts 
in both trunk and whole-body CoM across gestation, with lateral displacements varying in direction between individuals. 
These findings reinforce the view that postural adaptation is highly individualised and strategically modulated to maintain 
stability.

Task-specific studies discussed in detail below add further context. Paul et al. [68] quantified a 2.8-fold increase in hip 
joint moments during standing work postures between 10 and 40 weeks of gestation, with approximately half of this load 
increase attributable to postural adjustments. Gilleard et al. [48] reported reduced thoracic and thoracolumbar mobil-
ity during standing flexion and rotation tasks as pregnancy progressed, suggesting increased rigidity or neuromuscular 
restraint in the upper trunk. Clinical and metabolic conditions may further influence postural responses. In a comparative 
study, Valerio et al. [69] found that pregnant women with type 1 diabetes exhibited increased cervical lordosis, thoracic 
kyphosis, and lumbar lordosis compared to healthy controls. Interestingly, this group also demonstrated reduced pelvic 
anteversion and forward head posture, suggesting a distinct postural profile possibly shaped by altered muscle tone or 
metabolic influences.

These findings demonstrate that standing posture during pregnancy is not governed by a singular biomechanical 
pattern. Instead, it reflects a dynamic equilibrium between structural adaptation, body morphology, and compensatory 
strategies.
Sitting: Evidence on sitting posture adaptations during pregnancy is limited, with only two studies directly addressing 
this area. Gilleard et al. [48], using a static sitting protocol, reported no statistically significant changes in sagittal-plane 
upper body alignment when sitting, although there was a non-significant trend toward flatter spinal curves as pregnancy 
progressed. In contrast, Lee at al. [70], studying dynamic workstation tasks, identified clear postural differences between 
pregnant and non-pregnant women across various seated workstation configurations. Pregnant participants exhibited 
greater trunk flexion, increased thigh angles, and more forward-reaching upper arms, likely reflecting compensatory 
adjustments for abdominal enlargement. These changes increased biomechanical loading on the lower back and were 
influenced by workstation design. Specifically, a forward-sloping seat (10° inclination) reduced trunk flexion and was sub-
jectively preferred, whereas a flat seat (0°) was associated with greater discomfort. These findings suggest considering 
ergonomic factors in relation to pregnancy-related morphological changes, particularly when aiming to optimise seated 
posture and reduce musculoskeletal strain during sedentary work.
Birth position (experimental setting): Evidence on the biomechanics of birthing positions during pregnancy is limited 
to five experimental studies conducted with small samples of pregnant women (ranging from 13 to 23 participants), all in 
late gestation (>32 weeks) and not in labour [39,45,46,71,72]. Only a limited number of birthing positions were assessed, 
primarily variations of squatting, supine lithotomy, and the McRoberts’ manoeuvre, with most analyses focusing on  
sagittal-plane spinal curvature, hip angles, and pelvic alignment. These studies used motion capture and spinal curvature 
measurement systems to analyse static postures assumed in controlled environments; they were not conducted during 
labour, and they did not account for the dynamic physiological and mechanical influences of labour, uterine contractions, 
or foetal interaction.

Across studies, squatting postures demonstrated substantial interindividual variability in lumbar curvature and pelvic 
tilt. Tiptoe squatting induced greater lumbar lordosis and less favourable pelvic alignment compared to flat-foot squat-
ting, which was more frequently associated with kyphosis or flattened spines [45]. However, nearly all participants (11 
out of 13) spontaneously adopted the tiptoe position during initial testing, despite it being biomechanically suboptimal. 
While the flat-foot squat “naturally” approached the hypothesised optimal birth conditions, none of the participants in that 
study achieved the biomechanically “advantageous” position with both a flattened lumbar spine and a pelvic inlet plane 
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perpendicular to the spinal axis, that is considered ideal for foetal descent [45,46,71]. Achieving such alignment would 
have required participants to adopt a more kyphotic posture, which was not observed spontaneously, suggesting a mis-
match between biomechanical ideals and preferred or feasible movement strategies in pregnancy [45]. Hemmerich et al. 
[39] further reported that pregnant participants took longer to adopt the squatting position compared to non-pregnant con-
trols, and exhibited greater hip flexion, abduction, and pelvic tilt, alongside lower peak hip extension moments, indicating 
altered load distribution and reduced mechanical efficiency.

Comparisons between squatting and supine positions (with and without manual lordosis correction) revealed no signif-
icant differences in measured lumbar curvature or hip kinematics, suggesting that compensatory strategies may not fully 
overcome pregnancy-related constraints [46]. In the McRoberts’ manoeuvre, varying the degree of thigh abduction prior to 
execution did not significantly affect lumbar lordosis or pelvic inclination [72].

As a whole, the findings suggest that achieving biomechanically “optimal” spinal and pelvic alignment in the tested 
birthing positions may be inherently constrained, even under controlled conditions [39,45,46,71]. The entire body chain, 
including thoracic spine configuration, foot positioning, and individual anatomical variability, must be taken into account 
[45,46]. Despite common assumptions, the McRoberts’ manoeuvre, regardless of initial thigh abduction, did not confer 
measurable biomechanical advantages in pelvic inclination or lumbar lordosis [72]. Similarly, when considering pelvic 
biomechanics alone, such as lumbar curvature and hip kinematics, squatting showed no significant superiority over supine 
positions, even with manual lordosis correction [46].

Gait and locomotor analysis.  Spatiotemporal gait parameters: Across studies, pregnancy is generally associated 
with reduced walking velocity, shorter step and stride lengths, increased step width, and longer double support times. 
These changes typically emerge from the second trimester and become more pronounced in the third [1,10,52,73–78]. 
They are generally interpreted as compensatory strategies to enhance stability in response to the anterior shift in the CoM 
and increasing physical demands [1,79].

Step width was found to increase progressively in several studies [1,55,79–81], with Lymbery and Gilleard [81] quanti-
fying an average widening of 2.5 cm by late pregnancy. Increases in inter-ankle distance and base of support ratios were 
also reported, indicating lateral expansion to maintain medio-lateral stability [75].

However, findings are not entirely uniform. Some studies found no significant changes in walking velocity [50,80], step 
width [50,51,80,82], or stride length across gestation [75,83]. One study [84] even reported an increase in walking speed 
as pregnancy progressed, highlighting inter-individual variability and potential influences of habitual activity or context. 
Comparisons with non-pregnant controls showed reduced stride length in late pregnancy [56,78,85].

Cadence findings were similarly mixed: while some studies noted a decrease [10,80], others found it unchanged 
[75,77,83], suggesting individual differences in step frequency adjustments. Three longitudinal studies [43,75,86] con-
firmed that these spatiotemporal gait adaptations generally reverse postpartum, supporting the view that they are func-
tional and transient rather than pathological. While the majority of studies have focused on walking, Bagwell et al. [87] 
extended this analysis to running biomechanics, reporting altered lower limb kinematics and joint loading patterns in preg-
nant and postpartum women compared to nulligravid controls. Their findings highlight that gait adaptations may extend 
beyond walking, affecting higher-impact locomotor tasks such as running.
Pelvic and thoracic kinematics: Pregnancy induces a range of modifications in pelvic and thoracic kinematics, with 
some adaptations emerging as early as the second trimester [43,75,88] and others varying with the presence of pel-
vic girdle pain (PGP) [86,89]. Pelvic tilt tends to increase anteriorly with gestational age, particularly during walking 
[1,43,55,75,80,88]. Forczek et al. [75] also reported increased pelvic range of motion (RoM) between trimesters, espe-
cially in the transverse plane. Conversely, women with PGP demonstrated reduced frontal and transverse plane pelvic 
RoM, decreased lateral pelvic translation, and diminished thoracic rotation, suggesting a compensatory or protective 
adaptation [86]. Similar patterns (reduced pelvic RoM in the frontal and transverse planes and diminished thoracic rota-
tion) have also been observed in asymptomatic pregnant women compared to non-pregnant controls, suggesting that 
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these adaptations are not solely pain-driven but part of the broader biomechanical adaptations during pregnancy [80] 
(Gilleard, 2013). At the hip joint, women with PGP showed reduced sagittal and frontal plane RoM, even after accounting 
for gait speed and stride length [86].

Trunk and thoracic segment co-ordination also changes: McCrory et al. [52] identified altered thoracic co-ordination 
patterns in pregnant fallers, possibly reflecting shifts in motor control strategies, while Wu et al. [89] found disrupted timing 
and reduced co-ordination between horizontal trunk and pelvic rotations in women with PGP, suggesting further neurome-
chanical compensations specific to pain-related gait alterations.
Plantar pressure and foot loading: Pregnancy alters plantar pressure distribution during gait, prompting adaptations that 
may influence foot stability, arch support, and balance. Karadag-Saygi et al. [77] and Vatansever et al. [90] have reported 
increased peak pressures in the forefoot and midfoot regions, correlating with foot pain and discomfort. Masłoń et al. [91] 
demonstrated progressive increases in medial forefoot and midfoot loading across trimesters, accompanied by flattening 
of the medial longitudinal arch. Mikeska et al. [92] further confirmed increased plantar pressures and reported trimester- 
related changes in arch index and foot posture, supporting a gradual structural adaptation of the foot. Alterations in 
pressure trajectories have also been observed. Lymbery and Gilleard [81] noted medial-lateral shifts in pressure trajecto-
ries, possibly linked to balance control. Zhang et al. [93] identified changes in centre of pressure (CoP) progression and 
a reduction in propulsion velocity, suggesting compromised push-off mechanics. These findings align with earlier obser-
vations of arch flattening during pregnancy [40,94], which may contribute to foot discomfort and altered gait mechanics. 
Footwear design tailored to redistribute plantar pressure, as investigated by Gimunová et al. [95], showed some benefits 
in gait symmetry and comfort. Ramachandra et al. [96] observed a progressive increase in plantar contact area in the fore-
foot and medial midfoot regions as gestation advanced, accompanied by a significant reduction in dynamic arch height, 
indicating progressive flattening of the foot. These findings are reinforced by Casto et al. [97], who found that plantar 
pressure distribution in the third trimester differed not only in magnitude but also in spatial location. Pregnant participants 
showed significantly higher peak pressures in the midfoot and forefoot during walking and altered CoP trajectories, indi-
cating delayed push-off and reduced propulsive efficiency.
Fall risk and neuromechanical adaptations: A distinct subset of studies investigated gait in the context of fall risk by 
comparing pregnant fallers to non-fallers. McCrory et al. [52] reported that fallers exhibited significantly reduced gait 
speed and increased step width, while McCrory et al. [56] found altered thoracic segment co-ordination patterns, suggest-
ing compromised trunk control. These maladaptive compensations may reflect attempts to stabilise gait under increased 
biomechanical demands [52,56]. Bagwell et al. [98] and Catena et al. [99] further linked such changes to diminished 
dynamic balance control and reduced CoP excursion. Flores et al. [100] added that walking balance and postural stability 
on a treadmill decline progressively throughout gestation, particularly in the third trimester, with increased CoM sway and 
variability in step placement, indicating a growing instability risk under constrained locomotor conditions. Zia et al. [78] and 
Abedzadehzavareh and Catena [82] highlighted the biomechanical characteristics of waddling gait, which may enhance 
mediolateral stability but reduce energy efficiency. Despite these adaptations, the biomechanical mechanisms underpin-
ning falls in pregnancy remain multifactorial and incompletely understood.
Neuromuscular control and joint-level adaptations: Electromyographic and kinetic studies, including Music et al. 
[84], Bagwell et al. [98] and Bagwell et al. [101], reported greater hip and knee extensor muscle activity and altered joint 
kinetics during gait in late pregnancy. Specifically, reductions in ankle joint power and knee extensor moments, alongside 
increased hip extensor demand, suggest compensatory neuromuscular strategies to accommodate changes in posture, 
load distribution, and RoM. Bagwell et al. [98] also highlighted altered muscle activation patterns throughout pregnancy 
and into the postpartum period, underscoring continued neuromuscular adaptation beyond delivery. Catena et al. [99] also 
found that reduced hip extension and ankle plantarflexion RoM were associated with diminished balance control, reinforc-
ing the need for coordinated joint-level responses to preserve dynamic stability. Branco et al. [44] further suggested that 
increased body mass and fat distribution contribute to elevated joint loading and altered kinetic profiles, particularly in the 
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hip and ankle joints. Daneau et al. [102] added that trunk stiffness and damping characteristics change across pregnancy 
in response to hormonal and musculoskeletal factors, and these neuromechanical properties were significantly associated 
with clinical pain outcomes, highlighting the contribution of active trunk control mechanisms to maternal musculoskeletal 
health.

Functional tasks and interventions.  Functional tasks: Functional movements such as sit-to-stand transitions, 
stair negotiation, and load-carrying become biomechanically demanding during pregnancy due to increased body mass, 
anteriorly shifted CoM, and altered joint mobility and muscle function. Evidence suggests that pregnant women adopt 
compensatory strategies across multiple tasks to preserve stability and manage rising mechanical demands, particularly 
in late gestation.

Sit-to-stand and stand-to-sit transitions have been extensively studied as they require co-ordinated control of trunk 
and lower limb segments. Pregnancy-related adaptations reduce sagittal plane motion and redistribute joint loading. For 
example, Lou et al. [103] and Catena et al. [104] found reduced hip extension and trunk flexion angles in late pregnancy, 
alongside diminished hip joint moments, suggesting a shift in mechanical demand towards the knee and ankle. Sunaga 
et al. [60] and Sunaga et al. [105] demonstrated altered inertial parameters of the lower trunk and increased trunk flexion 
velocities during sit-to-stand tasks, highlighting the influence of changing body segment dynamics on transitional con-
trol. Gilleard et al. [49] similarly reported increased trunk flexion angles, longer task duration, and greater variability in 
lower limb kinematics during sit-to-stand, changes that persisted into postpartum. Takeda et al. [58] showed that using a 
handrail significantly reduced peak knee and hip moments and improved balance during sit-to-stand in the third trimester, 
suggesting that simple ergonomic aids may support movement efficiency. In a complementary analysis of the reverse 
movement, Takeda [57] observed altered muscle activation timing and joint co-ordination during stand-to-sit, indicating 
continued neuromechanical adaptations for controlled descent. Although this review focuses on the antenatal period, 
some evidence suggests that pregnancy-related adaptations may persist postpartum. Chu et al. [106] observed contin-
ued compensatory sit-to-stand patterns after delivery, while Eckland et al. [107] identified lingering inefficiencies in trunk 
co-ordination

Stair negotiation also presents challenges. Ascent and descent require precise control of limb trajectory and dynamic 
balance. McCrory et al. [53] and McCrory et al. [54] reported increased vertical ground reaction forces (GRFs) and longer 
double-support times during stair descent in pregnant women, suggesting a cautious motor strategy aimed at fall preven-
tion. Complementing these findings, Takeda et al. [108] observed a shift from ankle-dominant to hip-dominant strategies 
when managing stairs, indicating altered neuromuscular co-ordination to preserve equilibrium.

Walking initiation and transitional movements, such as the first steps from a static position, demand anticipatory con-
trol of posture. Zia et al. [78] and Sunaga et al. [105] both documented increased variability in step placement and CoP 
progression, alongside delayed activation of stabilising muscles. These findings suggest a disruption in the timing and 
co-ordination of anticipatory mechanisms. Dumas et al. [62] further reported elevated muscular effort in the trunk and 
lower limbs during transitional tasks, reinforcing the view that movement initiation becomes more physically demanding as 
pregnancy progresses.

Load-carrying tasks, especially under dual-load conditions, add further complexity to postural control and musculo-
skeletal demands. Dumas et al. [62] developed a biomechanical model of the pregnant trunk and showed that carrying 
anterior or asymmetrical loads significantly increased spinal extensor and hip joint demands compared to non-pregnant 
conditions, with spinal moments amplified by both gestational posture and load configuration. These findings reinforce the 
role of compensatory muscle strategies and highlight how load carriage can exacerbate mechanical strain during preg-
nancy. Beaucage-Gauvreau et al. [61] examined head load carriage in pregnant women and found pronounced lumbar 
lordosis and thoracic extension, potentially reflecting compensatory adjustments to offset anterior CoM displacement. 
Gilleard et al. [47] also observed increased trunk muscle activity and altered static posture during seated tasks, implicating 
muscular fatigue and postural strain as possible contributors to low back pain (LBP) during pregnancy.
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Lastly, task-specific balance responses highlight the impact of pelvic instability and musculoskeletal adaptation. De 
Groot et al. [109] and Christensen et al. [110] found impaired pelvic stability and altered motor control during tasks like the 
active straight leg raise (ASLR) in women with PGP. Bey et al. [111] reported structural changes in the vastus lateralis that 
may influence functional neuromuscular performance. Bagwell et al. [112] described reduced sway, slower sway velocity, 
and lower sample entropy in both medio-lateral and anteroposterior directions during single-leg stance across pregnancy, 
particularly in the second and third trimesters, suggesting a more rigid and repetitive postural control strategy. Shorter 
stance time and higher frequency responses in late pregnancy and even postpartum further indicated limited adaptability.
Interventions: Only three studies directly evaluated interventions to support functional movement during pregnancy, 
yet they provide early insights into how targeted aids or exercise modifications may alleviate biomechanical strain and 
enhance safety. Bayraktar et al. [113] found that using a handrail during sit-to-stand in the third trimester significantly 
reduced lower limb joint moments, improved balance, and shortened transition time, suggesting that simple supports 
can ease mechanical demands and enhance movement efficiency. Zurawski et al. [114] tested an antenatal exercise 
programme and observed improved trunk stability and reduced CoP sway during dynamic tasks, highlighting the value 
of targeted physical activity in preserving motor function and minimising compensatory patterns. In a water-based exer-
cise study, Alberton et al. [115] showed that aquatic immersion significantly reduced GRFs during walking and marching 
activities, suggesting that such environments may offer a safer, low-impact option for physical activity during pregnancy by 
decreasing mechanical load on the musculoskeletal system.
RoM-specific tasks: Three studies have examined RoM-specific tasks to investigate segmental mobility and neuromus-
cular adaptations during pregnancy, particularly in the lumbar spine and pelvis. De Groot et al. [109] used the ASLR to 
assess load transfer across the pelvis, finding that women with PGP showed greater pelvic rotation and impaired force 
closure, indicating compromised stability. Gilleard et al. [47] examined seated posture and reported increased anterior 
pelvic tilt and reduced lumbar lordosis during sitting in pregnancy, suggesting that static postural control is also affected by 
gestational changes. Bivia-Roig et al. [42] assessed lumbar motion patterns and found altered amplitude and co- 
ordination of trunk flexion and extension, along with modified erector spinae muscle activity, especially in the third tri-
mester, with some changes persisting postpartum. These studies highlight that RoM-specific tasks can sensitively detect 
lumbopelvic adaptations and may help identify individuals at risk of reduced function or musculoskeletal discomfort.

Balance and stability.  Maintaining balance during pregnancy becomes increasingly challenging due to increased 
body mass, anterior CoM shift, and neuromuscular adaptations affecting postural control. Across gestation, both static 
and dynamic balance are compromised, particularly in the third trimester. Opala-Berdzik et al. [9] and Oliveira et al. [116] 
reported significant increases in CoP displacement and reduced static stability, with only partial recovery postpartum. 
McCrory et al. [117] observed similar trends in dynamic conditions, including longer recovery times and larger CoP 
excursions, suggesting impaired neuromuscular responsiveness and a shift from ankle-dominant to hip-dominant control. 
Jang et al. [118] noted that pregnant women tend to overestimate their balance ability, which may increase fall risk. 
To enhance stability, women often adopt a wider stance, yet this “waddling” strategy may be insufficient in complex or 
unstable environments [55,82].

Studies of neuromuscular activity support these findings. Moreira et al. [119] observed increased myoelectric activity 
in postural muscles such as the erector spinae and gastrocnemius during quiet standing in the third trimester, suggest-
ing heightened muscular effort is required to maintain postural equilibrium. Bivia-Roig et al. [41] similarly documented 
altered trunk posture and muscle activity in pregnancy and postpartum, reinforcing that motor strategies for upright 
stance continue to adapt beyond delivery. Bagwell et al. [120] further showed that postural control characteristics in early 
pregnancy, specifically altered CoP parameters and reduced stability, were predictive of developing LBP or PGP later in 
gestation or postpartum. These findings highlight the potential clinical value of early balance assessment for identifying 
women at greater risk of musculoskeletal complications. Further biomechanical insights were provided by Catena et al. 
[59], who reported significant shifts in whole-body CoM location and altered postural alignment, particularly in the sagittal 
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plane. These kinematic changes, in combination with foot pressure redistribution, contribute to discomfort and instability. 
Karadag-Saygi et al. [77] quantified elevated forefoot plantar pressure and self-reported foot pain in the third trimester, a 
pattern that not only affects stability but may also disrupt normal stance patterns and walking.

Biomechanics of labour

Despite targeted searches and eligibility criteria allowing for studies conducted during labour, no studies were identified 
that investigated biomechanical outcomes involving labouring women. Accordingly, this section is not developed further as 
no evidence was available to synthesise.

Discussion

Given the absence of prior synthesis, this scoping review was essential to establish the scope of existing biomechani-
cal research in pregnancy and labour and to identify key knowledge gaps for future investigation. It provides the most 
comprehensive synthesis to date, mapping 87 peer-reviewed studies and identifying key domains on several antenatal 
adaptations, changes, and responses across posture, gait, functional tasks, and balance. Although it offers important 
knowledge, it also reveals substantial, critical, and urgent gaps in our understanding.

Antenatal biomechanics

Across all domains, the evidence consistently demonstrated that pregnancy elicits wide-ranging biomechanical adapta-
tions across posture, gait, functional movements, and balance. However, a key theme that emerged is the absence of 
a one-size-fits-all trajectory. Most adaptations appear to be highly individualised, influenced by gestational stage, body 
morphology, presence of pain (e.g., PGP), task type, and environmental context.

Although often assumed to increase uniformly, lumbar lordosis shows no consistent pattern across gestation, with 
some individuals exhibiting increased curvature [63], others showing a decrease [64], or no change [41,48,64], with even 
intra-sample variability reported [38]. Similarly, pelvic orientation varied between studies [65,66], highlighting the diversity 
of compensatory strategies rather than a uniform biomechanical shift. Common gait changes during pregnancy include 
increased step width and reduced walking velocity and stride length (e.g., [1,10,75,76]), though findings are inconsis-
tent, with some studies reporting no changes (e.g., [51,75,80,83]), and some individuals displaying unexpected patterns 
such as increased walking speed in late pregnancy [84]. Similar inconsistencies are seen for parameters like cadence 
[10,75,77,80,83] and pelvic RoM [75,86]. These inconsistencies suggest that gait adaptations are not universal but 
reflect diverse coping strategies. Similarly, functional movements such as sit-to-stand transitions, stair negotiation, and 
load carriage are performed differently during pregnancy, with individuals redistributing joint loading and relying more on 
neuromuscular control [103,112]. These adaptations often become more pronounced in late gestation and may persist 
postpartum [80,107], but their extent and clinical relevance vary considerably between individuals. This variability likely 
reflects differing strategies to accommodate the anterior shift in the CoM, shaped not only by individual factors but also by 
discomfort, fatigue, and underlying musculoskeletal conditions [52,56,84,101], or metabolic conditions [69].

Critical appraisal of the evidence and methodological limitations

This review identified that biomechanical research in pregnancy began to grow notably only after 2008. Several factors 
may explain this delay. Although biomechanics has its roots in Ancient Greece, with Aristotle (384–322 B.C.) describing 
the body as a mechanical system in his work De Motu Animalium (On the Movement of Animals), modern biomechanical 
investigations were limited for centuries. In the 1800s and 1900s, early pioneers explored human musculoskeletal bio-
mechanics using photography and rudimentary motion analysis techniques [121]. However, the lack of advanced tech-
nology constrained the field’s development. It was not until the 1990s that modern motion capture systems began to be 
introduced into research and clinical practice, enabling more precise and systematic study of human movement [122,123]. 
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Despite this, biomechanical knowledge in other fields is vast, has grown significantly, and continues to expand [124–126]. 
However, as shown by this review, it remains limited in the context of pregnancy. One contributing factor may be that the 
inclusion of women in research and clinical trials only became a law in 1993 [127,128]. Furthermore, it has been repeat-
edly reported that women’s health research remains chronically underfunded, receiving a disproportionately small share of 
public research funding, sometimes less than 2.5% [129–133].

For the majority of studies, a notable concern is the widespread reliance on small, convenience-based samples, often 
without power calculations or justification for sample size. Such limitations restrict statistical power and reduce the ability 
to detect subtle but potentially meaningful biomechanical differences. Additionally, several studies appeared to be based 
on overlapping participant cohorts, which may exaggerate the perceived breadth and diversity of the evidence base (e.g., 
[47–49,52–54]). On a positive note, over 40% of the studies used longitudinal designs with at least two or three antenatal 
follow-ups, and in some cases, an additional postnatal assessment (e.g., [44,48,60,118]). This is a valuable strength, as it 
allows for the examination of temporal adaptations across the antenatal period, with pregnancy being a dynamic, time- 
dependent process.

Reporting of participant demographics was inconsistent. While most studies reported height, weight and/or BMI, and 
gestational age, most omitted key variables such as parity, physical activity levels, or comorbidities. The most critical 
missing variable was ethnicity. Only one study explicitly reported the ethnic background of its participants [59], and a few 
others implied regional origin without providing meaningful demographic or ethnic detail [60–62]. As a result, no study 
included a racially or ethnically diverse sample, and none examined whether biomechanical parameters varied by ethnic-
ity, socioeconomic status, or cultural context. This omission not only limits the generalisability of findings but raises import-
ant concerns about equity and the representation of ethnically diverse pregnant populations in biomechanics research. 
This is particularly problematic given documented anatomical and physiological differences across population groups that 
may influence pregnancy biomechanics, such as variations in pelvic morphology [23,134,135] and joint mobility [136,137]. 
For instance, sacral slope has been reported to be approximately 3.6° larger in Caucasian women compared to Asian 
women [134,135]. East Asian women have also been observed to have reduced pelvic organ mobility in the anterior and 
posterior vaginal compartments [138] and Asian populations show the largest degree of age-related change in spinopel-
vic parameters compared to other groups, likely due to lower pelvic incidence [139]. The lack of knowledge about ethnic 
diversity in perinatal care from a biomechanical perspective, combined with recent findings that known risk factors do 
not fully explain ethnic disparities in maternal mortality [140], may partly explain and contribute to why mortality rates 
[140,141] and adverse pregnancy or birth outcomes [142] remain disproportionately high for Black and Asian women com-
pared to White women. For instance, MBRRACE-UK reports show that Black women in the UK face nearly three times the 
risk of maternal death compared to White women [143,144]. This makes it extremely urgent to address these gaps and 
better understand ethnic variations related to antenatal biomechanics.

Geographically, studies were disproportionately concentrated in HICs, particularly the USA and parts of Europe. Only a 
small number originated from LMICs, despite the fact that these areas often experience higher rates of maternal morbidity 
and mortality [26,145]. This lack of global representation, combined with the near-total absence of knowledge about ethnic 
diversity in pregnancy biomechanics, limits the applicability, generalisability, and equity of current findings in informing 
universal antenatal care.

Methodologically, the dominance of kinematic and kinetic assessments reflects the maturity of the biomechanical field, 
yet notable limitations remain. While motion capture systems, force plates, and pressure mapping were widely used, 
sEMG and real-time neuromuscular assessments were underutilised. Few studies employed integrated, multi-modal 
approaches, such as combining motion analysis with neuromuscular or physiological measurements (e.g., [41,109,119]). 
Moreover, very few linked biomechanical findings to clinical symptoms or outcomes (e.g., pain, fall risk, or birth outcomes) 
(e.g., [56,86,98,110]), reducing their translational value. Without these connections, it remains unclear how biomechanical 
adaptations relate to maternal well-being or clinical decision-making. There is an urgent need for future research to move 
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beyond describing what changes occur and how, to also asking so what; by explicitly linking biomechanical findings to 
clinical, functional, or obstetric outcomes. This highlights the importance of interdisciplinary collaboration that connects 
biomechanical data with lived experience and healthcare delivery.

Additionally, the overwhelming focus on controlled laboratory environments, often using static, constrained protocols, 
raises questions about ecological validity. Few studies considered real-world functional demands or environmental vari-
ability, limiting our understanding of how pregnant women adapt in everyday contexts. Finally, the most significant gap 
identified in this review is the complete absence of studies investigating the biomechanics of labour itself; a critical omis-
sion that warrants dedicated attention in the following section.

The missing science of labour

This review identified a striking and concerning gap: not a single study to date has investigated the biomechanics of 
labour. Despite global concern over maternal morbidity, mortality, and birth-related complications [26,145,146], no empir-
ical research has captured biomechanical data from labouring women. This absence limits our understanding of how 
posture, movement, clinical manoeuvres, and mechanical forces interact during labour, hindering the development of 
evidence-informed guidance for maternal positioning, physical support, and risk management during childbirth.

Labour represents one of the most biomechanically complex events in the human lifespan. It involves coordinated neu-
romuscular effort, dynamic pelvic motion, maternal–foetal interactions, and significant mechanical loading across the mus-
culoskeletal system [18,147,148]. Yet, in contrast to other fields [124–126], labour remains essentially unmeasured from a 
biomechanical perspective. We are, in effect, operating in a biomechanical evidence vacuum when supporting birth, as no 
empirical studies to date have investigated or described the dynamic biomechanical mechanisms of labour.

The only available insights come from five small experimental studies that assessed birthing positions in non-labouring, 
late-pregnant individuals under static, controlled conditions [39,45,46,71,72]. These studies could not account for the real-
time mechanical interplay of uterine contractions, maternal pushing, or foetal descent. Still, they provide a critical reality 
check for widely held clinical assumptions. Despite the common belief that positions like squatting or the McRoberts’ 
manoeuvre optimise pelvic mechanics [20,72,149,150], this limited body of antenatal evidence offers no biomechanical 
support for the superiority of any investigated position [39,45,46,71,72]. Squatting, for instance, demonstrated substantial 
interindividual variability and failed to produce the theorised “optimal” pelvic configuration in any participant studied. Even 
with manual lordosis correction or altered foot placement, no one achieved the alignment described in clinical guidance 
[45,46,71]. Notably, comparisons between squatting and supine positions, both with and without manual lordosis cor-
rection, revealed no significant differences in lumbar curvature or hip kinematics, suggesting that pregnancy-related 
biomechanical constraints may not be easily overcome by positional adjustments alone [46]. Similarly, the McRoberts’ 
manoeuvre, despite its routine use in obstetric emergencies, did not significantly affect pelvic inclination or lumbar lordo-
sis, regardless of thigh abduction [72].

While these studies are limited by sample size and were conducted outside of labour, their findings challenge the 
biomechanical assumptions underpinning routine obstetric care. If no measurable advantages are observed even in con-
trolled antenatal conditions, it is plausible that the perceived benefits of certain positions stem more from individual  
comfort, maternal agency, or midwifery facilitation than from mechanical optimisation [151–153]. All commonly used 
manoeuvres, manual handling techniques, and positional assumptions remain biomechanically unverified. These prac-
tices are based on tradition and clinical observation [150,154,155], not on direct biomechanical evidence. Until we study 
childbirth biomechanics directly, during labour, capturing maternal–foetal dynamics, contractions, and maternal effort, we 
must exercise caution in asserting mechanical “truths” about labour [21]. Clinical humility and personalised, responsive 
care remain the strongest tools. This underscores the urgent need for biomechanical research conducted during actual 
labour, capturing the dynamic influence of contractions, foetal descent, and maternal effort, to meaningfully inform  
evidence-based positioning guidance. It also reinforces that maternal positioning should remain individualised rather 
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than protocolised, informed by broader functional and physiological considerations beyond lumbopelvic alignment alone, 
respecting the complexity and variability of maternal anatomy and movement, and prioritising safety and well-being.

This persistent void in labour biomechanics is likely due, in part, to the methodological and ethical complexities of 
conducting research during childbirth. From a technical standpoint, conventional tools used in biomechanical analysis, 
particularly those for capturing kinematic and kinetic data, pose significant challenges in intrapartum settings. Kinematic 
analysis typically requires the placement of multiple reflective markers on the body, which must remain visible and unob-
structed. This is often impractical during labour, especially in certain positions where skin access is limited and movement 
is dynamic, assisted, and frequently involves close contact with healthcare staff. These systems also require considerable 
spatial setup, including approximately a dozen synchronised cameras, tripods, and processing units; equipment that is 
impractical to install in most clinical labour environments without disrupting care [21,45,72,156,157]. Even markerless 
motion capture systems, while less invasive, currently offer limited accuracy and still require similar infrastructure [158].

While computational modelling has offered some biomechanical insight, its scope remains constrained by simplifica-
tions, assumptions, and a lack of empirical validation. Most models are subject-specific, often representing only isolated 
components such as the pelvis, and fail to capture the integrated, chain-like nature of human movement. Furthermore, key 
inputs, such as soft tissue properties, uterine contractile force, or foetal interaction, are either assumed or not computable, 
limiting the ecological validity and generalisability of findings [19,20,159–161]. Consequently, experts in the field continue 
to emphasise the need for in vivo data, or at a minimum, studies that integrate both in vivo and in silico approaches to 
improve biomechanical realism and relevance [19,20].

However, the complete absence of even preliminary or feasibility studies in real-world labour settings points to more 
than technical difficulty. It suggests a deeper structural neglect of this research area. The implications of this omission 
are significant. Without direct biomechanical data from labouring individuals, the development of evidence-based guid-
ance on positioning, manual support, or intervention strategies remains speculative from a mechanical perspective. 
Moreover, the ability to understand how individual variations in anatomy, posture, or movement during labour affect 
clinical outcomes, such as labour duration, mode of birth, perineal trauma, or neonatal compromise, is severely limited 
[162–166]. Given that the biomechanics of labour directly impact both maternal and neonatal safety, this represents a 
missed opportunity to inform and improve perinatal outcomes [15,20]. Urgent research investment is needed to develop 
safe, ethical, and feasible methodologies that can capture the mechanical realities of childbirth in situ. Without this, the 
biomechanical dimension of labour will remain invisible, and the assumptions currently guiding clinical care will remain 
largely untested.

Implications for research and practice

While advances have been made in identifying the physiological mechanisms of pregnancy and childbirth, biomechani-
cal insights have not yet been fully leveraged to improve clinical outcomes, inform practice, or shape policy. This gap is 
particularly critical given the complex interplay between mechanical forces, maternal anatomy, labour progression, and the 
failure to improve mortality and morbidity rates.

For researchers, this review underscores the need to move beyond descriptive studies and towards more integrative, 
hypothesis-driven investigations that link biomechanical patterns to clinically relevant outcomes to improve the trans-
lational value of findings, support perinatal practice and wellbeing, and help identify women at risk of musculoskeletal 
complications. There is an urgent need to develop methodologies and means that allow real-world data acquisition, espe-
cially during labour. Participant diversity, individual variability, particularly in relation to ethnicity, and differences between 
ethnicities should be accounted for in any future studies. Understanding the mechanical realities of labour could inform 
decisions about birthing positions, assistive tools, or manual techniques used in clinical practice. As maternal morbidity 
and mortality remain unacceptably high globally, biomechanical research must become part of the broader agenda for 
improving perinatal outcomes.
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From a clinical perspective, the findings underscore the need for clinicians to develop a working understanding of 
pregnancy-related biomechanical changes. These insights can support the interpretation of physical symptoms, guide 
safe mobility and posture strategies, and inform timely referrals to specialist care, such as physiotherapy. Biomechani-
cal adaptations during pregnancy are clearly multi-faceted, involving complex interactions between posture, movement, 
stability, and neuromuscular control. These adaptations are not uniform and appear to be highly individualised, influ-
enced by factors such as gestational stage, body morphology, symptom presence, and task demands. Recognising this 
heterogeneity is crucial for informing personalised antenatal care and developing targeted interventions to support func-
tion and reduce physical strain. However, the complete lack of in vivo biomechanical evidence for intrapartum positions 
or manual techniques highlights a critical missed opportunity to support safer, more efficient, and more personalised 
birth. It also signals caution: common practices, including positioning, manual support, and manoeuvres, remain largely 
unverified from a mechanical standpoint. Without direct evidence, clinicians must avoid over-relying on tradition or theo-
retical assumptions. Instead, care should remain individualised, prioritising maternal comfort, agency, and safety, while 
maintaining clinical humility in the absence of empirical biomechanical truths. Bridging the gap between biomechanical 
insight and clinical application is essential for improving outcomes and empowering women throughout the perinatal 
journey.

Limitations of the review

Although the search strategy was comprehensive and covered multiple databases, only studies published in English 
were eligible for inclusion. This may have resulted in the omission of relevant research published in other languages. 
As a scoping review, we did not conduct a formal quality appraisal or risk of bias assessment of the included studies. 
While this approach is consistent with scoping review methodology, it limits our ability to comment on the strength or 
reliability of individual study findings beyond descriptive and narrative synthesis. Finally, data extraction was con-
strained by the completeness and clarity of reporting in the original publications. Inconsistent reporting of gestational 
age, anthropometric characteristics, and methodological details posed challenges for cross-study comparison and 
synthesis.

Conclusion

This scoping review mapped the current landscape of biomechanical research in pregnancy and labour. It identified 
a wide range of antenatal adaptations across posture, gait, functional tasks, and balance, reflecting the complex and 
individualised nature of physical change during pregnancy. However, the review also exposed substantial gaps, including 
limited methodological diversity, minimal integration with clinical and health outcomes, under-representation of ethnically 
and socioeconomically diverse populations, and the complete absence of studies investigating biomechanical processes 
during labour. Together, these findings highlight the urgent need for more inclusive, longitudinal, and outcome-oriented 
research that not only captures what biomechanical adaptations occur, but also how they relate to maternal well-being, 
clinical care, and antenatal outcomes. In particular, addressing the missing science of labour biomechanics and improving 
ethnic representation are critical next steps in advancing antenatal health equity and safety. As maternal morbidity and 
mortality remain pressing global issues, the integration of biomechanical insight into clinical and research practice is not 
only timely but essential.
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