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Introduction

The integration of artificial intelligence (AI) into decision-
support systems (DSS) for safety-critical tasks, such as air-
craft piloting, requires AI models that not only assist decision 
making, but also align with expert mental models (Steyvers & 
Kumar, 2023). Effective human-AI teaming should benefit 
from shared models, as do human teams, by facilitating antic-
ipation of actions and effective information exchange (O’Neil 
et al., 2023). However, current AI approaches often prioritize 
performance optimization while relying on developers’ intu-
ition of what “constitutes a ‘good’ explanation” (Miller, 2019, 
p. 1), rather than adapting to actual decision-making pro-
cesses. Addressing this gap requires approaches informed by 
human factors research that move beyond predictive outputs 
to better capture the criteria behind expert decisions. 
Enhancing human-AI model similarity can foster mutual 
understanding, support situation awareness, and improve 
decision reliability.

One such system is the Cognitive Shadow, a prototype 
cognitive assistant that continuously models the decision-
making pattern of the user and notifies them of any 

discrepancy between the model and the current decision 
of the user (i.e., when detecting potential errors due to 
distraction, fatigue, etc.; Lafond et al., 2020). The system 
has been applied in several contexts, including maritime 
and aviation decision-making domains (see Labonté et al., 
2021; MacLean et  al., 2024; Marois et  al., 2023). For 
doing so, it uses policy capturing, a judgment analysis 
technique that models how individuals make decisions by 
identifying consistent patterns in their responses across a 
knowledge capture phase presenting sets of cases with 
varying attributes, filtering out random error to infer a 
representative decision-making rule (Marois et al., 2023; 
Nokes & Hodgkinson, 2018).
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Abstract
Integrating AI into decision-support systems (DSS) for safety-critical domains like aviation requires aligning system behavior 
with pilot mental models to provide relevant information. Using the Cognitive Shadow—a DSS that models operator decisions 
and notifies discrepancies—we evaluated a novel knowledge-elicitation technique: the inverse counterfactual. After selecting 
their preferred option, users modified a single factor to make their second-best option preferable, creating paired cases 
across their decision boundary. In a simulated adverse-weather avoidance task, 44 participants completed 130 baseline trials 
and generated counterfactuals for 20 additional cases. Contrary to expectations, the current implementation of the technique 
did not enhance human-AI model similarity, as measured by the degree of agreement in a 20-case test phase. However, when 
counterfactuals involved minimal edits—remaining near the decision boundary—predictive accuracy improved and DSS 
recommendations were more often accepted. Larger edits degraded performance. These findings demonstrate the feasibility 
of counterfactual elicitation for improving model alignment with user mental models.
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Based on the research of Nuñez et al. (2019), the selected 
use-case is in-flight adverse weather avoidance. This situa-
tion allows sufficient variability to generate the required 
number of cases and leaves a gray zone of decisions open to 
the discretion of the pilots, resulting in between-subjects 
variability that the DSS will need to capture. Weather avoid-
ance typically involves evaluating current and forecasted 
weather data, anticipating hazardous meteorological condi-
tions, and adjusting the flight path to maintain safety and 
operational efficiency. These decisions require pilots to 
weigh competing constraints such as turbulence risk, fuel 
availability, and schedule demands, often under time pres-
sure and with incomplete information. The task was grounded 
in key elements identified in prior analyses of enroute 
adverse weather avoidance, such as weather severity and fuel 
consumption (Endsley & Jones, 2012; Ramon Alaman et al., 
2024). The task was designed to capture operational deci-
sions commonly encountered by pilots—for example, select-
ing the extent of a lateral or vertical deviation—while 
aligning with core objectives of flight operations of main-
taining safety and aircraft integrity, and managing fuel 
constraints.

The Inverse Counterfactual

Counterfactual reasoning, which explores how outcomes 
would change under different conditions, has long been cen-
tral to human cognition and causal inference (Miller, 2019). 
In explainable AI, counterfactual generation has been pro-
posed as a way to produce interpretable, and potentially 
causal, explanations by identifying the minimal modifica-
tions needed to alter the prediction of a model (Chou et al., 
2022). Inspired by such a use of counterfactuals, this study 
proposes a new knowledge-elicitation method called the 
“inverse counterfactual,” which is human-driven rather than 
AI-driven. This technique was developed with the objective 
of training AI models more efficiently. Here, for each case 
presented in the knowledge capture session, the user gener-
ates a new case on the opposite side of their decision bound-
ary, providing the DSS with additional information to more 
precisely model the decision boundary of the user. This 
higher precision on the decision boundary may, however, 
require a higher number of training cases to effectively sam-
ple the whole problem space for achieving similar model 
accuracy. Additionally, similarly to the benefit of process 
tracing (another human-centered data modeling approach 
relying on explicit feature information acquisition; Labonté 
et al., 2021), we hypothesize that self-reflection about those 
decision boundaries could enhance mental model quality, 
leading to more consistent decision making.

The approach was initially introduced by Marois et  al. 
(2023) for a binary classification task to support frugal learn-
ing (efficient cognitive modeling using a relatively small 
number of examples), though its impact was not assessed. 
MacLean et  al. (2024) later evaluated the impact of 

self-reflection with a sonar range prediction credibility 
assessment task, where participants could modify situational 
features to generate counterfactual cases. Their findings 
revealed that generating counterfactuals posed significant 
challenges for participants, due to the unrestricted nature of 
the counterfactual modifications that could be performed. 
Unlike natural counterfactual reasoning, which is typically 
limited to a small set of plausible alternatives under human 
control, the experimental task required participants to con-
sider numerous alternatives with the possibility to modify 
factors beyond their control, increasing difficulty (MacLean 
et al., 2024). This highlights a broader challenge in aligning 
AI systems with human cognition—specifically, how to 
elicit and represent human reasoning patterns in a way that 
supports mutual understanding (Wang & Chen, 2024).

Study Objectives

The primary objective of the study was to assess whether 
inverse counterfactuals can enhance the ability of the DSS to 
generate an individualized model which aligns with the oper-
ator’s (individual) decision-making model. Additionally, the 
study seeks to identify the characteristics of an effective 
inverse counterfactual case, providing insights into how 
effective human-DSS information sharing might enhance the 
similarity between human and AI decision-making models.

Method

Participants

Forty-four students or employees at Université Laval (24 
women, 20 men, Mage = 26.62 ± 8.81 years) took part in the 
study, which consisted of a 2-hr experimental session. They 
received CAD $20 as compensation.

Apparatus and Material

For each weather avoidance case presented, participants 
were given four avoidance options: stay on track or choose 
one of three diversion options (two lateral and one vertical). 
They had to select the option they considered best, based on 
how important each factor was to them personally. The cus-
tom-made interface provided all necessary information, 
enabled the generation of inverse counterfactuals, and man-
aged communication with the DSS. As shown in Figure 1, 
participants were presented with an interface that included 
two standard flight deck displays: the Primary Flight Display 
(PFD, left) and the Navigation Display (ND, right). While 
the PFD was present for realism, it did not display task-rele-
vant information. The ND, in contrast, presented a weather 
radar image along with two rhomboids indicating lateral 
avoidance options and their position relative to the aircraft 
(yellow cross). Tabular data provided additional information, 
including the movement (i.e., speed and direction) of the 
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adverse weather region, the fuel consumption associated 
with each option, available fuel, the altitude of the top of the 
adverse weather region, and the service ceiling (i.e., maxi-
mum operational flight altitude), which constrained the verti-
cal avoidance option. Features were selected for the task to 
be accessible to novices, simplified enough to be learnable, 
yet realistic enough to reflect the kinds of trade-offs that 
pilots typically face in operational settings.

Procedure

After signing the informed consent form, participants 
received task instructions. The instructions stated that their 
goal was to minimize fuel consumption while ensuring pas-
senger safety and aircraft integrity by maximizing lateral or 
vertical distance from the adverse-weather region and strictly 
avoiding at all costs crossing the zone of highest intensity 
displayed in red. Instructions clearly stated that the impor-
tance assigned to each factor was determined solely by the 
participant. This importance was reflected in the decisions 
they made. In practice, this meant that participants were free 
to prioritize or compromise on any criterion as they saw fit, 
provided that they respected the fuel limitations and the 
requirement to avoid the highest intensity zone.

Participants underwent a familiarization phase during 
which they received feedback from the experimenter. As was 
the case with the instructions, to allow for between-partici-
pants variability in the decision-making models the DSS 

would capture, the feedback was limited to indications of 
non-compliance with rules—for example, crossing the most 
intense region—or clarifications on the process. Participants 
then completed 130 cases, randomly drawn from a pool of 
170, where they had to choose the best option for each pre-
sented situation. In the next phase, involving 20 new cases, 
drawn from the same pool, the inverse counterfactual was 
produced. After selecting the best option, participants were 
required to choose the second-best option and then modify 
only one feature to make this second-best option preferable, 
thus generating an inverse counterfactual case.

Participants were randomly and equally assigned to either 
the control or the experimental condition. As shown in Figure 
2, for participants in the control condition, the DSS was 
trained only on those cases where participants only selected 
the first option, that is did not generate counterfactual case. 
In contrast, for participants in the experimental condition, 
the DSS was trained with all cases where participants needed 
to choose the best option, substituting the last 20 cases with 
20 inverse counterfactual cases. This allowed to isolate the 
effect of the inverse counterfactual on the DSS while gener-
alizing any potential effect it might have on the subjects per-
forming it, including self-reflection. A final set of 20 new 
cases, drawn from the same 170-cases pool, was performed 
by participants, which involved receiving DSS recommenda-
tions when their decisions did not align with the output of the 
model. As shown in Figure 3, after their initial choice, par-
ticipants received a recommendation if it diverged from the 

Figure 1.  Task interface used by participants, displaying all task-relevant information. PFD on the left under the tables. ND on the 
right under the tables. French terms in the image are translated as follows: “Zone jaune” = “Yellow zone,” “Zone rouge” = “Red 
zone,” “Par dessus” = “Overfly,” “Mouvement de la cellule” = “[Adverse weather] cell movement,” “Vitesse” = “Speed,” 
“Consommation” = “Consumption,” “Combustible disponible” = “Available fuel.”
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prediction of the DSS, which they could accept or reject 
(final choice).

Analysis

The performance of each training method was measured by 
the degree of agreement between the initial and final choice 

of the participant and the recommendation of the DSS (cf. 
Figure 3). As previously discussed, the inverse counterfactual 
method is intended to provide information on the decision 
boundary of the operator, enabling the DSS to accurately 
model it. For an inverse counterfactual case to be informative 
and fully leverage the technique, it must be close to the deci-
sion boundary of the user. To estimate this, we computed the 

Figure 2.  Training case selection for each condition based on the 130 simple decision cases and 20 counterfactual cases completed 
during the knowledge-elicitation phase.

Figure 3.  Interaction between the DSS and the participant for each case presented on at a time.
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Euclidean distance (Equation 1)—a common practice in 
proximity analysis in counterfactuals (cf. Keane et  al., 
2021)—between the feature vector of the initially selected 
option and that of the newly preferred option, after participant 

modifications, in each case. Let x( ) ( , , , )A A A
n
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where n is the number of features. These distances were then 
averaged across all cases for each participant to serve as an 
index of proximity to their individual decision boundary.

To further characterize the informational value of the 
cases produced by participants in the counterfactual phase, 
each edited option was also checked for dominance. An 
option is nondominated when no other feasible alternative is 
strictly better on all of its features—there is always at least 
one dimension on which the option matches or surpasses 
every other alternative (Nayak, 2020). For every participant 
we then computed the proportion of nondominated counter-
factuals they produced during training. This proportion 
served as an index of how often the participant generated 
cases where no compromise was made for any of the vari-
ables, so a higher share of them should give the DSS clearer 
information about where they draw the line between accept-
able and unacceptable choices.

Results

Decision Prediction

The DSS demonstrated overall a superior performance in 
predicting the initial choices of participants in the control 
condition (M = 71.82, SD = 11.19), compared to the experi-
mental condition (M = 58.86, SD = 17.45), Mann–Whitney 
U = 335.50, p = .017, r = .39. A similar pattern was observed 
for final choices (M = 85.91, SD = 9.21 for control; M = 72.27, 
SD = 19.32 for experimental), Mann–Whitney U = 350.50, 
p = .003, r = .45. Since all participants generated counterfac-
tual cases, which were then excluded from model training in 
the control condition, we were able to create alternative 
models for each participant, simulating the conditions of the 
opposite group (cf. Figure 2). We generated models with 
counterfactual cases for control participants and models 
without counterfactual cases for experimental participants. 
Since participants did not receive system recommendations 

from these ad hoc models, only initial choice coincidence 
could be measured, not the final choice. The control model 
achieved a mean coincidence of 67.49% (SD = 12.64), while 
the counterfactual model achieved 63.63% (SD = 15.63). A 
Wilcoxon Single-Ranked test comparing coincidence of ini-
tial choices between both models did not reach significance 
(W = 241.5, p = .060, Z = −1.88), suggesting that neither tech-
nique was definitively superior. This result points to variabil-
ity across participants, suggesting that some were able to 
fully leverage the counterfactual technique, generating bet-
ter-performing models as a result.

Counterfactual Case Quality

Considering these results, we aimed to identify the factors 
contributing to the observed differences and understand why 
some participants were able to effectively utilize the tech-
nique. The Euclidian distance between the original case and 
the inverse counterfactual generated was found to be nega-
tively and significantly correlated with the performance 
improvement from the model without counterfactuals to the 
one with counterfactuals, r(42) = −.34, p = .023. That is, as 
the distance between initial and alternative decisions 
increased, the performance prediction gain decreased. 
Additionally, greater distance was associated with lower 
alignment between participants’ final choices and the DSS 
recommendations—whether that alignment was based on 
initial agreement or a change following the DSS sugges-
tion—rs(20) = −.50, p = .021. Greater distance also correlated 
positively with a higher rate of DSS recommendation rejec-
tions, rs(20) = .50, p = .020.

To assess whether the quality of the counterfactual cases 
influenced model performance, we tested whether the pro-
portion of nondominated options produced during training 
predicted the extent of model improvement. A significant 
positive correlation was found, r(42) = .42, p = .005, indicat-
ing that participants who more consistently generated non-
dominated counterfactuals tended to benefit more from their 
inclusion in the DSS training dataset.

Discussion

Drawing on the pivotal role shared mental models play in 
human teams—enhancing performance through similarity 
(Cooke et  al., 2003; Hanna et  al., 2013)—the current study 
aimed to evaluate the impact of the inverse counterfactual tech-
nique on human-AI model similarity and to identify the core 
characteristics of an effective inverse counterfactual case. 
Contrary to our initial expectations, the current implementation 
of the technique did not enhance human-AI model similarity, as 
measured by the degree of agreement in decision choices. On 
average, between-groups comparisons showed that DSS mod-
els trained with inverse counterfactual cases did not outperform 
those trained with conventional cases. However, the absence of 
a significant difference in within-participant comparisons 
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suggests that the observed between-groups differences may not 
be due solely to the use of the inverse counterfactual technique. 
This prompted further analysis to explore whether variation in 
counterfactual case quality could account for differences in 
model performance.

The distance analysis indicated that performance 
depended on the extent of participant modifications: when 
edits were minimal—that is, when the average Euclidean 
distance between the original and the paired case was low—
the counterfactual model outperformed the conventional 
model for that participant, reflected in higher user-DSS 
agreement. In contrast, larger modifications pushed the 
counterfactual example further from the user’s true decision 
boundary, degrading model performance. Minimal modifica-
tions are likely to reveal borderline regions between classes, 
offering insight into where class transitions occur and where 
participant decisions tend to be more variable (Pascual-
Triana et al., 2025). Larger modifications, on the other hand, 
may introduce noise or reinforce already well-sampled prob-
lem-space regions, leading to overrepresentation. In short, 
operator-driven counterfactuals appear most informative 
when they remain close to the factual case, aligning with the 
“proximity” principle that underlies algorithmic counterfac-
tual generators in explainable AI (e.g., Suffian et al., 2024).

These difficulties are consistent with earlier findings. 
MacLean et al. (2024) reported that sonar analysts struggled 
when they were allowed to freely modify many variables. In 
the current study, guidance provided on counterfactual case 
generation and restrictions to the number of allowed modifi-
cations improved performance for some participants by help-
ing them to generate more informative cases. However, most 
participants still had difficulty producing counterfactual 
cases near their individual decision boundary, as reflected in 
the large modifications they made, and the experimental 
group performed worse than the control group. However, the 
results suggest an effect of model similarity on user-DSS 
interaction as measured by an increase in coincidence 
between the final choice of the participant and the recom-
mendation of the system. Specifically, smaller counterfactual 
modifications—that is cases closer to the participant’s deci-
sion boundary—were associated with fewer rejections of 
DSS recommendations. In other words, as counterfactual 
cases became more informative, the DSS not only predicted 
more accurately the initial choice of participants but also 
generated recommendations that were more likely to be 
accepted.

The current study demonstrates both the potential and 
technical feasibility of inverse counterfactuals for enhancing 
knowledge elicitation in training an AI-based DSS, particu-
larly for participants who were able to fully leverage the 
technique. The guidance provided for generating inverse 
counterfactual cases was improved based on the previous 
findings by MacLean et al. (2024). However, the results also 
highlight the need for further refinement of the method to 
better align it with human cognitive processes, ensuring that 

the generated counterfactual cases not only accurately repre-
sent the decision model of the operator but also provide 
information about boundary regions. Future research will 
address these challenges by leveraging the ability of AI to 
generate counterfactuals that users can validate. Building on 
these findings, upcoming work will focus on improving AI 
integration into DSS, with the goal of supporting more reli-
able and effective human-AI teaming.
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