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Abstract

This review explores the anomalous transport and acceleration of charged energetic parti-
cles in heliospheric and astrophysical plasmas. Traditional diffusion-advection models can
be insufficient to fully describe the observed behavior of energetic particles, prompting the
need for alternative frameworks based on non-Gaussian stochastic processes and fractional
differential equations to capture regimes of subdiffusion and superdiffusion of energetic
particles. We discuss the theoretical basis of these non-Gaussian transport processes and
examine the influence of magnetic turbulence, nonlinear diffusion, and field line random
walk on particle dynamics. Superdiffusion, where the particle mean-square displacement
grows faster than linear with time, and subdiffusion, with slower-than-linear growth, are
observed across a range of environments from solar energetic particles to supernova rem-
nants. This review highlights several examples from space and astrophysical plasmas that
demonstrate instances of anomalous transport and acceleration, with a particular focus on
its potential influence on fundamental processes such as shock acceleration and heliospheric
energetic particle propagation. Long-range correlations and structures in space plasmas can
impact both parallel and perpendicular transport. In the context of interplanetary shocks in
the solar wind, parallel superdiffusion predominates due to a distinct pitch-angle scattering
process not accounted for by quasi-linear theory, emphasizing the significance of nonlinear
interactions and trapping effects. At quasi-parallel shocks in supernova remnants, parallel
superdiffusion can also occur, leading to different acceleration spectra. In contrast to this
superdiffusion along the magnetic field, field line random walk in combination with paral-
lel particle diffusion can result in compound subdiffusion perpendicular to it. The review
concludes with open questions and future directions for research that could deepen our un-
derstanding of particle transport in the turbulent environments of space and astrophysical
plasmas.

Keywords Cosmic rays - Solar energetic particles - Particle transport - Particle
acceleration - Numerical modelling - Synthetic turbulence - Review
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1 Introduction
1.1 Motivation to Study Anomalous Transport

For the last 50 years since the introduction of the basic transport equation by Parker (1965),
models for the acceleration and propagation of energetic particles in the heliosphere, the
Galaxy and beyond, have adhered to the paradigm of a diffusion-advection equation de-
scribing the evolution of the particle distribution function. This equation holds, as long as
the energetic particles interact with ‘scattering centers’, realized by fluctuations carried by
the plasma, such that the fluctuations cause a normal Gaussian diffusion and advection of
the energetic particles with the plasma. The Parker equation has been employed with great
success, quantitatively computing the differential intensities of energetic test particles with-
out altering the properties of the background plasma (see the recent review by Giacalone
et al. 2022).

Since about 20 years (see, e.g., Zimbardo 2003) there is, however, increasing evidence
that the diffusive transport of energetic particles can also be anomalous (as reviewed in Perri
et al. 2022). Analyses of observations of energetic electrons (Perri and Zimbardo 2008a)
and protons (Perri and Zimbardo 2015) as well as of the magnetic fluctuations upstream of
interplanetary shocks (Perri et al. 2021), small-scale magnetic flux tubes in the interplanetary
medium (le Roux and Zank 2021; le Roux 2023), and of relativistic electrons in supernova
remnants (Perri et al. 2016) imply that the transport of energetic particles may not always
be consistent with Gaussian diffusion but rather be sub- or superdiffusive. Signatures of
the latter processes comprise modified spectra of energetic particles accelerated at shocks
(Kirk et al. 1996; Perri and Zimbardo 2012a), extended or shortened acceleration times
(Perri and Zimbardo 2015), increased intensity peaks at the acceleration sites (Effenberger
and Litvinenko 2014; Prete et al. 2019), and spatial power laws upstream of shocks (Perri
and Zimbardo 2009a). The concept of superdiffusion has not only be applied been applied to
shock acceleration processes in the heliosphere or at supernova remnants, but also to galactic
superbubbles (Barghouty and Schnee 2012), to molecular clouds (Hu et al. 2022), to Galactic
cosmic ray transport (Lagutin and Volkov 2024), and to galaxy clusters (Zimbardo and Perri
2018). The anomalous transport, however, cannot be described with standard Parker-type
equations, but requires the consideration of so-called fractional transport equations.

Interestingly, the anomalous power-law scaling can also be a result of nonlinearities oc-
curring in more sophisticated modelling, aimed at self-consistency. First extensions to self-
consistency were made in the 1990s in two directions, with energetic particles changing
the dynamics of the thermal plasma they traverse and affecting the evolution of the turbu-
lence spectra within. The desired self-consistency is achieved by a nonlinear coupling of
the linear Parker equation (possibly extended to contain momentum diffusion) to the (mag-
neto)hydrodynamical equations describing a thermal background plasma or to a wave or
turbulence transport equation. While in such coupling schemes, the nonlinearity does not
directly extend to the diffusion process itself, which remains treated as normal (Gaussian)
diffusion within the linear Parker equation, the alternative to the solution of coupled sys-
tems is the consideration of a single, but nonlinear diffusion-advection equation, see, e.g.,
Malkov et al. (2024). Notably, it has been shown that the transport resulting from such a
nonlinear treatment of the diffusion term can be anomalous (e.g., Tsallis and Bukman 1996;
Litvinenko et al. 2017). It appears that the topics of nonlinearity and anomaly of energetic
particle transport as well as acceleration can be intrinsically linked.
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1.2 Brief Overview over the Theoretical Framework of Anomalous Transport

The term ‘anomalous transport’ most often refers to ‘anomalous diffusion’. Diffusion can
be quantified by considering the time evolution of the mean square displacements (MSDs)
((Ax)?) as a result of an interaction or scattering process (e.g., Metzler and Klafter 2000,
2004; Eliazar and Klafter 2011):

(Ax)) =Kot ; O<a <2 (1.1)
The different diffusion regimes can be classified with the exponent «:

subdiffusion: 0 <« < 1
Normal diffusion: o =1

superdiffusion: 1 <o <2

While not always distinguished, the range for o > 2 should be referred to as the superballis-
tic regime (o = 2 is the ballistic case).

One difficulty with the quantitative modeling of sub- and superdiffusion is related to the
fact that the time-independent proportionality factor «, in Eq. (1.1) does not have the units
of a normal diffusion coefficient (i.e. [lenght?/time] for & = 1), in general, but a non-integer
(or fractional) power of time. The corresponding transport equation has, therefore, also to
be formulated for an anomalous ‘diffusion coefficient’ with fractional units. It can be shown
(e.g., Metzler and Klafter 2000, for a heuristic argument see Fichtner et al. 2014) that this
diffusion coefficient and the one in Eq. (1.1) are related via k, = «}/% with 4 =2/, and
that the corresponding transport equation is a so-called fractional differential equation. In
case of pure superdiffusion, the transport equation reads (for simplicity here in one space
dimension):

af af af paVaf

- v PO L sk pot 12
or o Vax T 3axap oD (1.2

wherein f(x, p,t) is the omnidirectional phase space density of the energetic particles,
X position, p momentum, ¢ time, V the speed of the thermal plasma, and S(x, p,f) a
source/sink. The first term on the right-hand side generalizes the normal diffusion to su-
perdiffusion. The fractional derivative (1 < pu < 2) should be understood as the symmetric
(indicated by the modulus of x) fractional Laplacian (e.g., Lischke et al. 2020) and is also
known as the Riesz derivative (Riesz 1949, see later).

If superdiffusion and subdiffusion occur simultaneously, the transport equation takes the
form
arf af paVaf

v L POV s pt 13
v Vax T3 axap @ PD (1.3)

DY f =«

where an additional fractional time derivative occurs. The latter can be understood as a Ca-
puto derivative (e.g., Mainardi et al. 2007), for alternatives see, e.g., Tateishi et al. (2017).
For numerical simulations it is useful to re-write Eq. (1.3) such that there remains a normal
first-order time derivative on the left-hand side. When doing so, two alternatives have to be
distinguished (Metzler and Klafter 2000), namely whether the subdiffusion-causing scatter-
ing centers (or ‘temporary particle traps’) are external to the moving medium or maintained
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by it. The respective equations are

af - o f af  pava

<L = o -V 4+ S(x, p.t 1.4
or =~ oD (""amu ax 3 ox a + S50 p. 1) (1.4)

af - " f af  pavaof
- = o - V—4+=——=+8(x,p,t 1.5
ot l (K“a|x|u) ox T3 ax oy TSE D (1.5)

with the Riemann-Liouville fractional derivative (1 <o < 2)
1= =) f(s)d 1.6
oD, " f() = F()dt/( $)*7 f(s)ds . (1.6)

As remarked by Metzler and Klafter (2000), only the second case is consistent with Galilei
invariance. Interestingly, the first alternative implies a modified advective transport as par-
ticles are trapped at ‘scattering centers’ outside the considered medium. In that sense, there
exist then also an anomalous advection. Given that the scattering centers, that are realized
by the turbulence in a given astrophysical plasma, are most often maintained by the latter
(i.e. are not external to it), the second alternative described by Eq. (1.5) is to be considered
for those space and astrophysical applications. Note however, that an example for the excep-
tions of externally maintained ‘traps’ may be the inner solar wind boundary, where magnetic
reconnection near current sheets associated with the so-called magnetic carpet in the corona
continuously produces magnetic islands.

This distinction has consequences when applying the generalized Ito lemma (It6 1951).
According to Magdziarz and Weron (2007) the above Eq. (1.4) is, when neglecting any
velocity gradient and source, equivalent to the following stochastic differential equations
(SDE):

dx(v) =—Vdr +k/"dL,(t) (1.7)

where 7 is an internal time related to physical time ¢ via a subordination, and L, is a Lévy
process (Lévy 1926) that in the case u = 2 corresponds to the Wiener process associated
with Gaussian diffusion. Therefore, for usual astrophysical applications the above SDE
should not be employed with a subordination process applied to all terms including advec-
tion. The equivalence should only be exploited for the diffusion part, whereas the treatment
of all effects related to advection require a different approach (e.g., a Strang splitting, Strang
1968).

A more fundamental study of anomalous transport can be carried out by solving the
equations of motion (EoMs) of many particles in a prescribed turbulent medium, i.e. by
so-called full-orbit simulations. For many astrophysical systems the relevant EoM is the
so-called Newton-Lorentz equation (e.g., Shalchi and Dosch 2008):

dp

wherein v and p are a particle’s velocity and momentum, ¢ its charge, and E =§E and
B= Eo + 8B are the electric and magnetic field, respectively, decomposed in an average
background and a fluctuating component. By solving for many particle orbits and comput-
ing their mean square displacements the nature of the transport and its dependence on the
properties of the turbulence can be investigated in great detail.
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Insights about anomalous diffusion regimes from full-orbit simulations will be dependent
on the turbulent magnetic field model that is employed. A common approach is to consider
synthetic fields that are a superposition of random-phase wave modes and that mimic the ob-
served turbulence geometry, e.g. a dominant 2D mode in solar wind turbulence with a guide
field. However, observations show also features of large-scale correlated structures in space
plasma turbulence related to intermittency. Such structures can have an impact on the actual
transport behaviour (e.g. Durrive et al. 2020; Liibke et al. 2024) and should be incorporated
in synthetic turbulence models to gain a more complete understanding of possible anoma-
lous propagation regimes. Intermittency has been observed in the solar wind (e.g Bruno and
Carbone 2013; Telloni et al. 2021) and the local interstellar medium (e.g. Fraternale et al.
2022) and there are observational indications that it is also ubiquitous in astrophysical plas-
mas, for example in molecular clouds (Falgarone et al. 2015). As discussed in Sect. 5.1.2,
the presence of intermittent turbulence in a wide range of plasma environments may thus in-
dicate that anomalous diffusion of energetic particles in astrophysical plasmas is also much
more common than is usually assumed.

1.3 Structure of the Review

This review originated in a workshop titled ‘Nonlinear and Anomalous Transport of Ener-
getic Particles in Astrophysical Environments’ that took place from 30 May to 2 June 2023
at the Ruhr-Universitit Bochum, Germany. In what follows this introductory section (MA.:'
H. Fichtner, F. Effenberger; CA:%J.A. le Roux, D. Walter), rather than providing a complete
overview of the relevant scientific activities, we highlight open issues in a, nonetheless,
comprehensive way, and refer to earlier reviews for various details. In Sect. 2 (MA: S. Perri,
G. Zimbardo, S. Aerdker, F. Effenberger, J.A. le Roux) different models of sub- and su-
perdiffusion are discussed, in Sect. 3 (MA: D. Walter, CA: F. Effenberger, H. Fichtner, Y.
Litvinenko) the topic of nonlinear diffusion and its relation to anomalous transport is pre-
sented, in Sect. 4 (MA: A. Shalchi; T. Laitinen), the relevance of field line random walk
and the transition of subdiffusion to normal diffusion is investigated, and in Sect. 5 (MA: J.
Liibke, P. Reichherzer, F. Effenberger; CA: R. Grauer, J.P. van den Berg) results from and
issues with full-orbit simulations are reported. The final Sect. 6 (MA: F. Effenberger, H.
Fichtner, D. Walter) briefly summarizes the review and lists open questions.

2 Contrasting Different Models for Super- and Subdiffusion

We present here a concise, and somewhat simplified, description of anomalous diffusion,
with the purpose of contrasting the properties and the assumptions of different models of
anomalous transport. The reader is referred to the cited literature for more formal treatments.

Normal diffusion is characterized by a mean square diplacement (MSD) ((Ax)?) growing
linearly in time as ((Ax)?) = 2Dt (see Eq. (1.1)), where the diffusion coefficient D can be
expressed as D = %kv = %kz /7, with A the mean free path and v the random walker average
speed. Also, A = vt, with t the “collision” time. On the other hand, anomalous diffusion
is characterized by ((Ax)?) o t¢ with & < 1 for subdiffusion and « > 1 for superdiffusion
(see Eq. (1.1) again). Since the central limit theorem (CLT) states that in the long time limit
the probability density of random walker positions has to be a Gaussian distribution, and

IMA = main author(s)
2CcA = contributing author(s)
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the MSD has to grow as 2Dt, the presence of superdiffusion implies that one or both of
the basic assumptions of the CLT are not satisfied. These assumptions are (i) a finite mean
square value of the free path lengths ¢, i.e., (€?y = A%, and (ii) independent, uncorrelated
random displacements (e.g., Metzler and Klafter 2000, 2004; Zaburdaev et al. 2015). In this
work we will consider that the elementary displacements £ are uncorrelated; then, we may
say that we have superdiffusion when (£?) — oo, i.e., when the mean free path diverges.
In such a case the diffusion coefficient is diverging, too. Conversely, we have subdiffusion
when the average time duration of the various free paths diverges, T — oo, so that D — 0.
In both cases, we have to consider a random walk process which has different statistical
properties than a Gaussian random walk. This means that the probability W (¢, t) of making
an elementary free path of length £ in a time 7 is a power-law function of ¢, such that

(62)=/ooa'r /00 P, 1)dl=00. 2.1
0 —00

If we assume that the probabilities of £ and 7 are independent, i.e., if we assume that
(e, 1) =gy (r) with [~ g(0)dt =1 and [;° ¥ (r)dt = 1, the divergence of (¢?) im-
plies that

O 2.2)

for large |£|, with 1 < u < 2; for small |€|, we consider that g(¢) has a non-diverging, bell-
shaped form. The above expression for g(¢) means that the probability of very long paths
is not exponentially small. These long free paths are called Lévy flights, and an appropriate
treatment shows that the corresponding probability density function for the random walker
position is given by a Lévy distribution (e.g., Zumofen and Klafter 1993; Metzler and Klafter
2000, 2004; Zaslavsky 2002; Zaburdaev et al. 2015),

Prp(k,t) =exp (—Ct|k|*) (2.3)

in Fourier space, and, in the limit |x| 3> (Ct)!/#, in physical space

~ F'(w+1) sin(ﬂ) Ct

2 ) e 2.4)

Prp(x,t)

Therefore, heavy tails for large |x| are found in the probability density. This probability
density is also the propagator of the problem, i.e., the solution of the transport equation for a
delta-function initial condition, and can be contrasted with the Gaussian propagator found in
the case of normal diffusion (e.g., Metzler and Klafter 2000, 2004). Further, if a power-law
distribution of waiting times (or travel times) 1 (t) such that (t) = fooo Ty (t)dt diverges,
with (£2) being finite, subdiffusive transport can be found.

On the other hand, from the point of view of anomalous transport the Lévy flight descrip-
tion leads to the following problem: assuming (x) = 0, if we compute the MSD at any given
time ¢, we find

(x(1)%) = /oo x*Prp(x,t)dx =00, 2.5)

that is, for u < 2 the MSD is diverging, too, and does not correspond to Eq. (1.1). This
divergence is physically related to the fact that in the Lévy flight description £ can be covered
even in an extremely short time, i.e., arbitrarily large speeds are possible, since the free
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path length is independent from the time needed to cover it. This is in agreement with the
factorization of W (¢, ) = g(£)¥(t) assumed above.

This problem can be solved by introducing Lévy walks (Shlesinger et al. 1987; Klafter
et al. 1987; Metzler and Klafter 2004; Zaburdaev et al. 2015), where the probability of
performing a free path of length £ is related to the time 7 needed to cover the distance (the
travel time). In the simple case of constant velocity v, the probability of displacements for
large |£] is given by

v, )= %A8(|€| —vr)le| ! (2.6)

which also yields (£2) = fEZ\l/(E, 7)dldt = 0o for 1 < u < 2, but the §-coupling between
£ and T ensures that the free paths are covered with a finite velocity v. Note that in our
notation the speed v is always positive, while the displacement ¢ can be both positive or
negative. Further, the §-coupling means that ¢ and t have the same power-law probability
distribution. This implies that non-Markovianity, that is the presence of memory effects due
to the presence of very long travel times, and non-locality, that is the presence of very long
displacements in the random walk, go together in the case of Lévy walks. With the Lévy
walk model, superdiffusion with an anomalous diffusion exponent &« = 3 — p is obtained
(Shlesinger et al. 1987; Klafter et al. 1987; Zumofen and Klafter 1993; Zimbardo and Perri
2013).

A derivation based on the continuous time random walk approach (that is, basically,
on the Montroll-Weiss equation (Montroll and Weiss 1965)) shows that the propagator for
Lévy walks is similar to that for Lévy flights, but has a cut off for |x| > vz, i.e., for distances
larger than those which could be reached by particles which move ballistically for time .
Therefore, for |x| < vt one has (Blumen et al. 1990; Zumofen and Klafter 1993; Metzler
and Klafter 2004; Zimbardo and Perri 2013; Zaburdaev et al. 2015)

Prw(x,t) >~

DD o (7)) @7

2 |x|u+1 ’

while the propagator goes to zero for |x| > vt. The comparison between the Lévy flights and
Lévy walk propagators is given graphically in Fig. 1. The determination of the constant C is
given in Zimbardo and Perri (2013) and Perri et al. (2015). With the Lévy walk propagator
going to zero for |x| > vt, we can compute the MSD restricting the integration domain
between vz (e.g., Perri et al. 2015),

vt
(x?) = / X2Ppw(x, dx oc 137 (2.8)

vt

in agreement with what is obtained by more formal derivations (Shlesinger et al. 1987;
Klafter et al. 1987; Zumofen and Klafter 1993; Zimbardo and Perri 2013). In summary, we
can see that the Lévy walk propagator is very similar to the Lévy flight propagator, even
though they imply a different dynamical model (see also the discussion in Zaburdaev et al.
2015). From this point of view, the Lévy flight scenario can be used to describe Lévy walks
to a good approximation (Perri et al. 2015). The actual Lévy walk propagator is shown
graphically by Zaburdaev et al. (2015), Fig. 2. The latter study shows that spikes at x = vt
are found in the propagator, which are due to the propagation of the ballistic fronts formed
by those particles which are never scattered in the available time ¢+ — something which
is reminiscent of the peak, observed in situ near the Earth, in the flux of solar energetic
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Fig.1 Comparison between the Lévy walk propagators (solid lines) and the Lévy flight propagators (dashed
lines) for u = 1.5 and for different dimensionless times given by r = 2" — 1, with n indicated close to each
curve. The propagator flattens and broadens as time goes by. Adopted from Blumen et al. (1990)

Fig.2 Lévy walk propagator for

= 1.5 (here, u = y) for three

different times ¢ = 100, 200 and 0.01
300 in dimensionless units. Note
the propagator spikes at the
ballistic propagation fronts. The
inset shows the same propagator
in log-log axes, multiplied by the
scaling factor Yy , which allows
to identify the power-law tails
typical of Lévy distributions.
Adopted from Zaburdaev et al.
(2015)

P&

0
-300 -200 -100 0 100 200 300

particles accelerated near the sun, due to scatter-free particles (e.g., Lin 1974; Reames 1999;
Lin 2005; Trotta and Zimbardo 2011).

Below we show how, in spite of the fact that Lévy walks and Lévy flights imply a dif-
ferent particle dynamics, the two processes lead to very similar results when the motion of
energetic particles around interplanetary (IP) shocks are considered. We show this agree-
ment first for analytical models, and then for numerical simulations.

2.1 Energetic Particle Profile at Shocks Obtained by the Lévy Walk Propagator

Perri and Zimbardo (2007, 2008b) considered the behaviour of energetic particles acceler-
ated by interplanetary (IP) shock waves, which are measured in situ by many spacecraft.

@ Springer



Open Issues in Non-Gaussian Transport and Acceleration Page 9 of 90 75

Assuming a one-dimensional shock, which is a reasonable assumption at large heliocen-
tric distances, we can express the density n(x, E, t) of particles of a given energy E, either
upstream or downstream of the source, as (Kirk et al. 1996; Ragot and Kirk 1997)

[oe) t
n(x,E, t)= / dx// dt'P(x —x',t —t)S(', 1) (2.9)

where the injected flux at the source, which is the moving shock, can be modeled as
S(x,1) = So(E)S(x — Vgut). Now, Perri and Zimbardo (2007, 2008b) proposed to use the
Lévy walk propagator in the long time regime, Eq. (2.7), so that well upstream of the shock
we have

00 t t—1¢
nx,E, t)= dx’ dt' A————So(E)S8(x" — Vipt) (2.10)
—o0 —00 (.X - x/)‘H—l

where the constant A gathers the constants in Eq. (2.7) and we assumed the shock to be
coming from t = —oo. A first integration over x” allows to exploit the §-function; then, for
convenience in the integration we set the shock start time as #;:

t—t

t
JE, )= dY/ASy(E) ——————. 2.11
n(x ) /t; o( )(x TP (2.11)
Introducing as an integration variable z = x — Vi,¢/, upon integrating we obtain
ASo(E)rx — Vit _ _
n, B = S [ E T = Vi) T = (= Vo) ]

Vsh —H

&= Va) T = = V) ] @12)
w—

Taking the limit ) — —oo, which corresponds to a time asymptotic steady state (Kirk et al.
1996), and considering that 1 < u < 2, we are left with

AS)(E) (x — V)=

nix,E, t)=
Vi o ou(p—1

(2.13)

that is, a power-law decay both in space and time with slope 8 = — 1 for ¢t < 0, i.e., before
the shock passing for x = 0. If we choose the observer position in x = 0, we have just a
power law in time (Perri and Zimbardo 2007, 2008b, 2009b).

In principle, this result holds for positions well upstream of the shock, since we used the
propagator form valid for |x| > (Ct'/*), with C depending on the value of the anomalous
diffusion coefficient. In practice, the value of C can be determined by the break in the
upstream power-law profile, see Perri and Zimbardo (2015) and Perri et al. (2015) for the
appropriate treatment. In addition, the determination of the power-law break position shows
that it is actually rather close to the shock (Prete et al. 2021). We note that such extended
power-law shock precursors are frequently observed in IP space, and in some cases also at
supernova remnant shocks (Perri et al. 2016; Perri 2018).

Turning to the region downstream of the shock, we can use the same expression (2.9) to
obtain the ratio between the density ng at the shock peak and the density far downstream.
These two densities are equal in the case of normal diffusion, but are found to be different
in the case of either subdiffusion or superdiffusion. We consider that, under steady state
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conditions, the flux of injected particles at the shock & equals the outbound flux far down-
stream, &y = n, V,. On the other hand, we can obtain the density n at the shock by setting
x = Vgt in Eq. (2.9), that is, having an observer moving with the shock. In the downstream
frame, Vi, = V5. From now on, we drop the dependence on energy in n(x, E, t) and Sy(E)
for brevity. Then we have

[e¢] t
no=n(Vgt,t) :/ dx// dt'P(Vgt —x',t —t)S(x', t)
—00 —00

t 0
:/ dl‘,S()P(VShl‘— Vshl,,t—l,):SQf dzP (Vgz,2) (2.14)
—_ 0

oo

where we introduced the integration variable z = ¢ — ¢’. Using the scaling properties of the
Lévy walk propagator, considering the normalization condition

/ PLw(X,l)dle

oo

and the parity of P.y with respect to x, we obtain (Kirk et al. 1996; Perri and Zimbardo
2012a; Zimbardo and Perri 2013, 2018)

ny u—1 2—«a

. (2.15)

no uw 3—«
It can be seen that in the case of superdiffusion, u <2 and « > 1, we have n, < ng, which
means that the density far downstream is lower than that at the shock, at variance with the
case of normal diffusion. The opposite, i.e., ny > ng, is found in the case of subdiffusion
(Kirk et al. 1996).

In summary, we can see that for the energetic particles accelerated at the shock, superdif-
fusive transport leads to a power-law profile rather than an exponential profile upstream of
the shock, and to far downstream densities lower than the density at the shock. Both proper-
ties are routinely observed by spacecraft at IP shock crossing (Giacalone 2012; Prete et al.
2021).

2.2 Energetic Particle Profiles Around Shocks Obtained by Fractional Transport
Equations

A complementary approach to the study of anomalous diffusion is based on the use of trans-
port equations which contain fractional derivatives (see, for instance, Metzler and Klafter
2000, 2004; Zaslavsky 2002; del-Castillo-Negrete et al. 2004; Webb et al. 2006; Perrone
et al. 2013; le Roux and Zank 2021). Typically, a fractional time derivative of order 8 < 1
leads to subdiffusion and a fractional space derivative of order u < 2 leads to Lévy flights
and superdiffusion, see the above references. Several definitions of fractional derivative have
been given; here, we adopt the spatial symmetric fractional derivative in Riesz’s form (e.g.,
Litvinenko and Effenberger 2014), defined by

S = (G ras [ FEEREIEIE D 2ae)
0

alx|w ghin

with 0 < u < 2, which clearly shows the nonlocal character of transport, since the function
f(x) at positions x + & and x — & is involved in the integral. We can get a quick grasp of
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the effects of fractional derivatives by considering a simplified version of Eq. (1.2)

of (1) 9" f(x,0)
ot T e

, 2.17)

where the anomalous diffusion coefficient «, has dimensions (length)*/time. Let us search
for solutions by Fourier transforming the x coordinate. Then, in Fourier space we obtain

afgj”) = —ru Ikl f k1), 2.18)

in agreement with the general rule for the Fourier transform of Riesz derivatives (Metzler
and Klafter 2000; del-Castillo-Negrete et al. 2004; Perrone et al. 2013; Isliker et al. 2017b).
We can solve with respect to time to find

fk, 1) =exp[—k,lkl"t] , (2.19)

which, for i < 2, is the Fourier transform of a symmetric Lévy distribution, as shown above
by Eq. (2.3).

The first application of fractional transport equations to the study of cosmic ray transport
(without acceleration) around a shock has been carried out by Litvinenko and Effenberger
(2014), who studied a still simplified version of Eq. (1.2)

a a o

8_{ + Va'—i :Kuﬁ + Spd(x). (2.20)
where V is the advection velocity and the spatial derivative corresponds to Riesz formula;
also, Sy represents the flux of particles injected at the shock, and the equation is written in
the shock frame. By taking the Fourier transform of this equation, they find that a general
solution depending on space and time is given by

/00 1 — expl(—i Vk — K, [k|)1]
. i Lkl +iVk

f(x,t)=i

exp (ikx)dk . (2.21)
2

Taking the limit of large distances, |x| > («¢)!'/#, and changing to the frame of reference of
the observer upstream of the shock, Litvinenko and Effenberger (2014) find

(x — Vipt)#~! (x + Vinto)*

P -1 S 1 — 1)Vt + o Vipt,
f(%t):%sin(nu)'(ﬂo[ x4+ (u )Vt +« ‘h0i|~

27/ Vi

(2.22)
Considering a shock starting from x = —oo, which in their notation corresponds to #y — oo,
the above expression coincides with the result obtained by use the Lévy walk propagator,
given by Eq. (2.13), in the same limit of shock coming from x = —o0. Keeping in mind the
diversity of the approaches, this agreement is remarkable, and confirms the robustness of
these results.

Furthermore, Litvinenko and Effenberger (2014) compare the solutions for the energetic
particle profiles upstream and downstream of the shock obtained by various methods and
approximations, see the captions of Fig. 3. Notably, they pointed out that “An interesting
feature of the solution is the peak at the injection site x = 0, which is not present for Gaus-
sian diffusion.” This peak at injection matches well with the finding, described in Sect. 2.1,
that the far downstream density is lower than the density at the shock in the case of su-
perdiffusion. It also matches the results of the numerical simulations described in the next
subsections.
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Fig. 3 Solutions for the energetic particle profiles around the shock at x = 0 obtained by Litvinenko and
Effenberger (2014). Left panel: short times after the shock onset; right panel: for larger times after the shock
onset. The solutions are obtained by means of several methods, like the Fourier transform in the weak dif-
fusion limit (solid black lines), a series solution (black symbols), an approximate steady-state solution (blue
dash-dots). The dashed green line represents the solution for normal diffusion, and the brown lines represent
an advection only, non-diffusive solution. Adopted from Litvinenko and Effenberger (2014)

2.3 Test Particle Numerical Simulations and Comparison with Observations

The transport properties of particles in the presence of magnetic turbulence in space plasmas
can be studied by means of numerical simulations (e.g., Giacalone and Jokipii 1999; Qin
et al. 2002a,b; Zimbardo et al. 2006; Pommois et al. 2007; Shalchi and Kourakis 2007b;
Pucci et al. 2016; Trotta et al. 2020, and many others). In particular, test particle simulations
allow to investigate the effect of specific “ingredients” on particle propagation. To study
anomalous transport in a region of space where a shock is present, we can also consider
stochastic differential equations (e.g., Strauss and Effenberger 2017). This method can be
used both for Lévy flights and Lévy walks; here we present first the scheme for Lévy flights.

2.3.1 Simulation of Lévy Flights

For the Lévy flights model, we use the equivalence of Fokker-Planck type equations and
SDEs (Ito 1951). The corresponding SDE for the spatial displacement dx is given by
Eq. (1.7) without subordination, so that T = ¢ and

dx(t) = Vdi +x,/"dL, (1), (2.23)

with the fractional diffusion coefficient «,, and Lévy process L,(t) (see, e.g., Magdziarz
and Weron 2007, for more details on the equivalence of fractional Fokker-Planck equations
and Lévy SDEs). Note, that Eq. (2.23) describes the evolution of a phase-space element
or pseudo-particle and not actual particle trajectories. The distribution function f(x,t) is
obtained by averaging over multiple such samples. We use a modified version of the cosmic
ray propagation framework CRPropa 3.2 (Alves Batista et al. 2022; Merten et al. 2017) to
model Lévy flights (Merten and Aerdker 2025). The diffusive transport module utilizes an
Euler-Maruyama scheme to solve Eq. (2.23).

Each simulation time step At =1, — f, a random number 7, , is drawn from the u-
stable Lévy distribution. The pseudo-particle position x,, is then updated according to

Xu1 — X = VAL + V26 Ay, (2.24)
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where the Chambers-Mallows-Stuck algorithm (Chambers et al. 1976) is used to generate
Lévy random numbers 7, ,. Essentially, the enhanced tails of the Lévy distribution lead
to Lévy flights. For ;« = 2 Brownian motion is recovered, which allows to easily compare
Gaussian and anomalous diffusion.

In the simplest case of pure fractional diffusion (V = 0), the power-law asymptotics of
the superdiffusive process becomes visible. Figure 4 shows the distribution function f (for
u = 1.7) decaying over time. The SDE approach is compared to a Fourier series approxi-
mation as discussed in Stern et al. (2014). Note the similarity to the Lévy flight propagators
shown in Fig. 1.

With that, the spatial transport of particles at shocks is modeled by Effenberger et al.
(2024). Pseudo-particles are injected at the shock at x = 0. They are advected downstream
with the background flow V and may diffuse back upstream. With continuous injection at
the shock a stationary solution develops. CRPropa 3.2 does not allow for such continuous
injection, pseudo-particles are injected at r = 0 and propagated until the simulation ends.?
One advantage of the SDE approach is its independence on a source term. Thus, assuming
a stationary background, the distribution function f(x,7T) at time 7 can be obtained by
integrating over the contributions f(x, T;) stored at times 7; < T during the simulation.
For more details we refer to (Aerdker et al. 2024; Merten and Aerdker 2025). While this
constraint may seem disadvantageous, the structure of CRPropa becomes important when
acceleration at the shock is taken into account, or when modeling superdiffusive transport
parallel and perpendicular to magnetic field lines.

In Fig. 5 the resulting distribution functions for different fractional dimensions p are
shown. The lower the fractional dimension, the more distinct is the peak right at the shock.
The results are in excellent agreement with the Fourier series approximation (see Sect. 2.2).
Note, that the advection V is constant and, thus, there is no particle acceleration. Units are
normalized so that xy = vyt; xo = 1 AU and vy = 400km/s results in #y &~ 4.3 days. Figure 6
shows the impact of the fractional dimension & as well as anomalous diffusion coefficient
k, on the upstream side compared to Gaussian diffusion. While the fractional dimension
changes the slope of the power-laws in space, the anomalous diffusion coefficient changes

330 far, there is no explicit time dependency in CRPropa 3.2. Instead, the trajectory length is often used to
infer back to the time, assuming that pseudo-particles move with constant speed.
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Fig. 6 Upstream Fourier-series solution (line) compared to the corresponding SDE solution (symbols) at
t = 100. Left: Different values of x;, with u = 1.7. Right: Different values of the fractional dimension
with «;, = 1. Results for Gaussian diffusion are shown by the dotted lines for comparison. Adopted from
Effenberger et al. (2024)

the position of the turn-over from a Gaussian-like to a power-law distribution. This may be
used to fit both, anomalous diffusion coefficient and fractional dimension, to observations.

Particle acceleration at a 1D planar shock is modeled by a varying background flow V (x)
for the shock and by solving the ordinary differential equation

dpty = -2V 4y (2.25)
3 ox

along with the SDE (2.23). In this macroscopic picture (Drury 1983), acceleration at the
shock results from the diverging background flow V (x). The energy spectrum at the shock
is determined by the interplay of advection and diffusion, which is related to the escape
probability, and the compression ratio ¢ = V;/ V,. For a strong shock with ¢ = 4 this leads
to the well known spectral slope s =2 — 3¢/(q — 1) = —2 when Gaussian diffusion is
considered. Lévy flights change the probability to escape the shock. The upstream power-
law distribution indicates that particles are more efficiently scattered back over the shock,
leading to a lower particle number density far downstream. This is discussed in more detail
in Aerdker et al. (2025).

In general, there are no constraints on the time step for the Euler-Maruyama scheme
as it is numerically stable. In the macroscopic picture the shock must have a finite width,
otherwise Eq. (2.25) diverges at the shock. The finite shock width then leads to constraints
on the time step. For Gaussian diffusion, we refer to e.g. Kruells and Achterberg (1994),
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Fig.7 Time evolution of the weighted %pectrum f(p,t) p4 at the shock for Gaussian diffusion, kp =1 (left),
time-dependent diffusion, «; (f) 12/1.7=1 (middle) and Lévy flights with &« = 1.7 and x1 7 = 1 (right). Note
that the time-dependent diffusion coefficient and Lévy flights have the same mean squared displacement. The
spectra are fitted at simulation time ¢ = 800, the corresponding slope is shown by the dashed line. Figure
adopted from Aerdker et al. (2025)

Achterberg and Schure (2011), Strauss and Effenberger (2017), Aerdker et al. (2024). In
summary, the shock width must be small compared to the diffusion length scale «/V to
model a shock and the time step must be sufficiently small so that pseudo-particles encounter
the changing background flow. The first constraint can be seen as a physical argument:
Diffusion must be high enough to allow particles to diffusive back against the background
flow. The second is a numerical constraint and determined by the chosen shock width.

Aerdker et al. (2025) compare the time-evolution of the energy spectrum at the shock
considering Lévy flights, Gaussian diffusion and Gaussian diffusion with a time-dependent
diffusion coefficient « (t) = kot*’*~'. The time-dependency is chosen such that the mean
squared displacement of the Gaussian process mimics that of a Lévy flight process with a
fractional dimension w. Differences in the spectrum and differential number density are then
solely determined by the different processes, and not by different mean squared displace-
ments at a given time.

Figure 7 shows the resulting momentum spectra at a shock with compression ¢ = 4 at
different simulation times until the stationary solution for p/py < 100 is reached. For Gaus-
sian diffusion, the acceleration time scale is given by t,.c =3/(Vi — Vo) (k1/ Vi + k2/ Va),
with upstream (1) and downstream (2) advection and diffusion coefficients, respectively.
The increasing diffusion coefficient over time slows down the acceleration process, while
the spectral slope remains unchanged. For Lévy flights the spectrum is harder and the accel-
eration is faster compared to the time-dependent Gaussian process.

The resulting spectral slopes can be compared to Lévy walk models. With the propagator
approach Perri and Zimbardo (2012a) obtain the power-law slope as

E 2u—2 1

=Pee——= =6 — 41, 2.26
Y escAE 3M_2(I_1+ ( )

for superdiffusive shock acceleration (see also Kirk et al. (1996) for the subdiffusive case).
Here the spectral slope is determined by the relative energy gain AE/E at a planar shock
with compression ratio ¢ and the escape probability P.. Note, that the parameter w used
here is different from the notation used in Perri and Zimbardo (2012a). This is due to the
different relations between the mean squared displacement and the fractional dimension for
Lévy flights (¢ = 2/u) and Lévy walks (@ =3 — p).
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Fig. 8 Spectral slopes obtained from Lévy flight simulations with different fractional dimensions p corre-
sponding to a mean squared displacement increasing with r*. The results for Lévy flights are compared to
Lévy walks given by Eq. 2.26. Left: compression ration ¢ = 2, right: compression ratio g =4
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Fig.9 Time evolution of the weighted spectrum f(p, t) p4 at the shock for energy-dependent normal diffu-
sion. Gaussian diffusion (left) is compared to Lévy flights (right). Both have the same values «;, o = 1 and
i = 1. Note, that «,, ( has different units depending on the fractional dimension u. Adopted from Aerdker
et al. (2025)

Figure 8 shows the spectral slope resulting from Lévy flights and Lévy walks for different
fractional dimensions p and compression ratios g. We compare processes with the same
time dependence of the mean squared displacement .

Given by the spectrum of the magnetic field turbulence, superdiffusion likely is momen-
tum dependent. With the SDE approach momentum-dependent Lévy flights are modeled
like described previously. The anomalous diffusion coefficient in Eq. 2.23 now is momen-

tum dependent, and
p o
K;L(P) =Ko (_> .
Po
with @ > 0.

Figure 9 shows the resulting momentum spectra at the shock for Gaussian diffusion and
Lévy flights. The acceleration time scale 7, depends on the diffusion coefficient, thus,
acceleration is slowed down over time, when particles reach higher momentum and the

2.27)
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(anomalous) diffusion coefficient increases. Due to the inherently higher mean squared dis-
placement the impact on the acceleration time scale is stronger for the Lévy flights. Note,
that the Gaussian diffusion and Lévy flight process have the same value «y = 1 here but
different units. Perri and Zimbardo (2012a) scale the diffusion coefficient for Lévy walks
with the fractional dimension pu, leading to a smaller anomalous diffusion coefficient. With
that, superdiffusive acceleration is faster compared to Gaussian diffusion.

2.3.2 Simulation of Lévy Walks

Now we present a numerical scheme for simulating Lévy walks. Following the approach of
Trotta and Zimbardo (2015), Prete et al. (2019) describe in a one dimensional simulation the
effects of advection and Lévy random walk, by writing the particle displacement dx as

dx = Vouidt + Vpandt (2.28)

where dt is the integration time step, Vi equals the advection velocity V; for x < 0 (up-
stream), and V, for x > 0 (downstream), with a stationary shock at x = 0. A large number
of particles, typically 10° are injected at x = 0 and then are followed for “sufficiently long
times” (see later). The random velocity vy, is chosen as

Vran = (26 — D, (2.29)

where & € [0, 1] is a random number and v the particle speed, which depends on energy
only and is constant in the simulations by Prete et al. (2019, 2021). Special care is necessary
for generating a new random velocity, as this depends on the desired scattering time. In
the case of normal diffusion, a constant scattering time t is chosen, with the integration
time step much smaller than 7: when the integration time increases by an amount 7, a new
random velocity is generated and the integration goes on. This effectively describes normal
diffusion, see Figs. 1-4 in Prete et al. (2019), and changing t corresponds to changing the
diffusion coefficient, given that D = %vzt.

On the other hand, for anomalous diffusion a new random velocity is generated when
the integration time is increased by a time 7 which is extracted from a Lévy distribution as
Y (1) >~ Av™*~!'t7#~! which is obtained from Eq. (2.6) upon integrating on £. In practice,
a string of scattering times 7; is generated for each particle before running the simulation.
Both long and short scattering times are included, as implied by the power-law probability
distribution. When the integration time is increased by the next of such 7;, a new random
velocity is generated. The probability of making a displacement of length £ in a time 7 is
given by Eq. (2.6) for T > 14, while it equals ¥ (¢, t) = %A5(|6| —v7) for T < 79. Hence,
7y is a break time in the power-law distribution of scattering times. Sample trajectories are
shown in Fig. 10. It is worth noticing that the distribution of free path lengths ¢, as well as
that of scattering times 7, in a Lévy walk is not totally scale free; rather, there must exist
a minimum free path length £y = v1, below which the power law W ~ |¢|=#~! no longer
holds, otherwise the probability density W (¢, ) would not have a finite normalization. Con-
versely, the condition f W (¢, t)dldt = 1 allows us to determine the normalization constant

A as
A—]< e ) (2.30)
S \ntl '
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As shown by Trotta and Zimbardo (2015), the Lévy distributed free path times can be gen-
erated by a random number £ € [0, 1] by means of the expression

1 1/n
T=T7 [m} . (231)

It can be seen that when £ — 1 very long free path times are generated. The particle velocity
is not changed during a given free path time t;, but only when a new t;, is to be used: in this
way the space-time §-coupling of Lévy walks is enforced. Such a scheme permits to repro-
duce superdiffusion (Trotta and Zimbardo 2015; Prete et al. 2019, 2021; Trotta et al. 2020)
as well as the shape of energetic particles spatial profiles around the shock (see Figs. 11 and
12).

In particular, we note that the features predicted by the analytical models for superdiffu-
sion described above, i.e., a power-law profile far upstream of the shock and a decreasing
density downstream of the shock, are easily reproduced by the numerical simulations, as
clearly shown in Fig. 11, where it is possible to notice the differences in the density profiles
between a normal (blue line) and a superdiffusive regime (red line). Further, we consider
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Fig. 12 Energetic particle profile T T T
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that the various approach presented here lead to the same results because in the stationary,
long time limit the difference between Lévy walks and Lévy flights is vanishing, as shown
by the propagators.

The simple test particle model described above is, thus, able to give in output different
spatial density profiles of energetic particles by changing the model parameters, as shown by
Fig. 12. Motivated by the rich variety of particle flux profiles detected in-situ by spacecraft
during IP shock crossings (Giacalone 2012; Perri et al. 2015; Zimbardo et al. 2020; Perri
etal. 2021), Prete et al. (2019, 2021) made a comparison between the outcomes of numerical
simulations in regimes of superdiffusion and satellite observations of ion fluxes at IP shock
waves. We point out that for such a comparison the spatial dependence coming from simula-
tions has to be recast into a time dependence (as is typical of spacecraft in sifu measurements
which produce time series) via the straightforward transformation t = x/ Vi”’ ,beingi =1,2
an index indicating the upstream or the downstream sides, where V" is the upstream or
downstream plasma speed in the shock rest frame. Notice that in the test particle simula-
tions all the quantities have been calculated in the shock frame, too, therefore it is necessary
to pay attention when making a comparison with quantities in the spacecraft frame. The sim-
ulation results have been tested against shocks with different macroscopic quantities, such
as the compression ratio r = n,/n;, namely the ratio between the particle number density
downstream and upstream, the Alfvénic Mach number M4 = V,;,/ V4, being V4 = B/\/4mp
the Alfvén speed, and the shock geometry, evaluated by means of the angle between the
shock normal and the upstream magnetic field direction, i.e., 6p,. Based on the thermal ion
reflection process at shocks, shocks with 0g, > 45° are termed quasi-perpendicular, while
for 6p, < 45° the shock is termed quasi-parallel. Prete et al. (2021) explored three dif-
ferent shock geometries, namely quasi-parallel, oblique, and quasi-perpendicular, for three
shock crossings by the Advanced Composition Explorer (ACE) spacecraft. Parameters of
the numerical models, such as the upstream and the downstream speeds, the compression
ratio of the shock, and the particle energies have been set by using the observed values for
each shock crossing. Figure 13 shows the comparison between ion fluxes as detected by
the ACE/EPAM/LEMS120 experiment as a function of the time “distance” from the shock
front (located at ¢ = 0) in four energy bins (panels from (a) to (d)). This was the ACE shock
crossing on 2000 June 8 and it was an oblique shock event with 6, ~ 45° and relatively
high compression ratio, i.e., r ~ 3. The black solid lines indicate the outcomes from the
numerical model for particles having an energy equal to the center of the energy bin in-
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Fig. 13 Energetic ion fluxes around the shock wave detected by ACE on 2000 June 8. Data at 12 s time
resolution have been used from the ACE/EPAM/LEMS120 experiment. Each panel refers to a given energy
bin. The vertical dashed line indicates the shock time, so that the upstream region is on the left and the
downstream region is on the right. The solid black lines are the density profiles obtained running the test
particle model with the superdiffusive parameters indicated in the figure legend and the particle energy and
the shock properties as coming from the observations of the event. Adopted from Prete et al. (2021). In this
figure, too, as in Fig. 12, the reported p corresponds to « + 1 in the present paper

dicated in each panel. The parameters © and 7y chosen in the runs are also reported. The
comparison displays a very good agreement between observed densities and modelled densi-
ties both upstream and downstream. Similar results have also been obtained for other shock
crossings, and confirm the superdiffusive character of energetic particle transport for these
events.

Although the comparison is satisfactory, there are several caveats that need to be taken
into account: first of all the model describes an infinite planar shock, where all possible cur-
vature effects are neglected; the magnetic field is not included so that it is not possible to
have any control on the shock geometry; the runs are performed in a rest frame in which
the shock is stationary (shock rest frame), thus all time variations related to the shock prop-
agation, front corrugation (Johlander et al. 2016; Kajdic¢ et al. 2019) are not considered; no
acceleration process at shock is modeled. Thus, the model reported in Prete et al. (2019) can
be considered as a first-order numerical model for energetic particle propagating around IP
shocks, and superdiffusive transport allows to reproduce the observed fluxes in a reasonable
way, but not all of the relevant physical effects are taken into account.

2.4 Superdiffusive Transport in Hybrid Simulations

Beyond test particle simulations, a quasi 1D hybrid numerical experiment with fluid elec-
trons and protons as macroparticles has been used to compare different techniques for the
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analysis of particle transport around a quasi-parallel shock wave (Trotta et al. 2020). In par-
ticular, the MSD of an ensemble of supra-thermal protons, accelerated locally at the shock,
has been tracked both upstream and downstream. Further, since the numerical simulation
is limited by the box size, while Eq. (1.1) is defined for very long times, in order not to
capture transients in the particle transport only, an extension of the MSD method has been
applied. This is called time-averaged mean square displacement (TAMSD), and it is used in
heterogeneous systems and in case of poor statistics (see Trotta et al. (2020) and references
therein). TAMSD use single particle trajectories and time averages instead of ensemble av-
erages, namely

T-t

Ax2(t) = % Z(x(t +1)—x(1)?, (2.32)
=1

where 7 is a time window, T is the total time of particle tracking, and x is the particle po-
sition. Because of the Central Limit Theorem, for a Brownian motion and for a very large
number of time records, MSD and TAMSD should converge. Trotta et al. (2020) making an
ensemble average of Eq. (2.32), found indeed a good agreement between the two techniques
upstream and downstream of the shock. While it is interesting to compare such techniques in
non-homogeneous systems, such as the plasma around shocks, the emergence of superdiffu-
sive transport of energetic protons upstream, mainly due to reflected protons streaming back
into the upstream region, has been reported. Both techniques recovered a value of the scal-
ing exponent « ~ 1.4 for long times, after a transient of « ~ 1.9. Evidences of anomalous
transport were also observed downstream, although a tendency to recover diffusion for long
times was detected. However, thanks to the novel TAMSD method based on single particle
trajectories, it was possible to check the co-existence of different types of particle transport
within the downstream, spanning from subdiffusion, due to a trapping within strong mag-
netic field fluctuations formed just after the shock transition, to superdiffusion caused by
particles moving rapidly away from the shock front. We note that this is consistent with the
model of truncated Lévy flights presented in Sect. 2.6. Examples of such particles are shown
in Fig. 14, adopted from Trotta et al. (2020).

It is true that the simulated system around a quasi-parallel shock has finite size and that
the results on particle transport can be influenced by this; however, few attempts made in
varying the box sizes did not affect the final results, although the limitation in size remains
an open question when dealing with Eq. (1.1) that imply asymptotic times. On the other
hand, shock waves in astrophysics can be considered finite-size systems, limited by their
typical lifetime and loss mechanisms (i.e., interplanetary shocks, supernova remnant shocks,
etc..), thus the detection of superdiffusive transport around such systems, both when using
test particle and self-consistent approaches, gives an indication on the natural emergence of
anomalous transport under particular conditions.

2.5 Non Locality and Uphill Transport

The test-particle treatments of energetic particle transport around a shock wave show that
the particle density profile has a peak at the shock location, that is, the density at the shock
is larger than the densities both upstream and downstream. The latter feature, although fre-
quently observed in spacecraft in situ data, is rather puzzling from the theoretical point of
view. We note in passing that these shock peaks should not be confused with the short-
lived shock spikes, that have been discussed already by Decker (1983), who explained them
with single-encounter shock-drift acceleration. Here, we rather concentrate on longer-lived
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Fig. 14 Examples of protons moving within the downstream region of the simulation box. Particle trajectories
are reported in the top panels, while the single particle TAMSDs are plotted in the bottom panels. Three
different types of transport can be recognized, as also shown by the magenta dashed lines in the bottom
panels, indicating the best power-law fits. The power-law slopes « are also displayed in the figure. Adopted
from Trotta et al. (2020)

peaks resulting from repeated scattering across the shock that is, thus, multiply encountered.
Therefore, let us consider the advection-diffusion expression for the flux J in one dimen-
sion,

af

J=Vf—-D=2,

™ (2.33)

where we used the standard flux-gradient relation for the diffusive flux. In steady state, up-
stream of the shock the total flux is zero, J = 0, that is, the advection flux (which is positive
with the signs as in Figs. 10 and 11) is balanced by diffusive flux which is negative because
af/dx > 0. Conversely, downstream of the shock the total flux must equal the injected flux
So, in agreement with Eq. (2.20), but in the case of a decreasing particle density downstream
(i.e., 3f/9x < 0) both the advection flux and the diffusive flux are positive and decreasing
with x; conversely, the solution of Eq. (2.33) implies a density f growing with x. This leads
to the conclusion that downstream the diffusive flux should be zero, df/dx = 0, and the
density profile flat (Drury 1983), so that J =V, f = 5.

We can solve this puzzle by remembering that fractional derivatives are non local op-
erators which involve not only the derivative df/dx at the position where the flux is being
calculated, but also the derivative, or the function f, in a wide region of space. In the words
of del-Castillo-Negrete (2006) we have:

“The standard diffusion paradigm assumes a local relationship between the flux and the
gradient, J = —Ddf/dx. This leads to “downhill” transport, i.e., transport in the direction
opposite to the gradient. [...] However, in the case of fractional diffusion, the flux is an
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integral operator that depends on the global properties of the profile and this can yield to
a nontrivial, multivalued flux-gradient relation. In particular, fractional diffusion operators
can give rise to “uphill transport.” By this we mean that, at specific regions of the space, the
flux has the same direction as the gradient.”

It is such an uphill transport that allows to balance the advection flux with the diffusive
flux even downstream of the shock, as we show in the following. We also note that for lab-
oratory plasmas uphill transport may have the amazing property of improving plasma and
energy confinement. This has been shown in several laboratory plasma toroidal experiments,
where particle density and/or temperature increase on the torus axis as the result of off-axis
fueling or heating. In particular, Luce et al. (1992) and Petty and Luce (1994) find that in the
DIII-D tokamak off-axis energy injection due to electron cyclotron heating leads to inward
energy transport and a strong central (on-axis) electron temperature peak. The central elec-
tron temperature is found to increase gradually with time, indicating that a transport related
mechanism is the origin of the peaked electron temperature profile (Petty and Luce 1994).
In the W7-AS stellarator, Stroth et al. (1999) find evidence for inward particle transport:
since this transport is observed in a current-free stellarator, it cannot be related to a toroidal
electric field causing E x B drift. An inward particle flux and a centrally peaked density
profile were also observed in the Tore Supra tokamak in a steady-state plasma lasting 4
minutes without toroidal electric field (Hoang et al. 2003). These experimental results have
been interpreted in terms of non-local transport associated with turbulence. In particular, van
Milligen et al. (2004) have shown by a probabilistic non-local transport model with two-side
off-axis injection that, when the particle step probability is Gaussian, a flat density profile
is obtained between the two injection sites; conversely, when the particle step probability
is a Lévy distribution, a peaked density profile is obtained in the center, between the two
injection sites. In practice, the central region quickly fills up with particles starting from the
injection sites and making the long steps allowed by the Lévy distribution.

It is worth noting that the breakdown of the standard Fourier’s law and/or Fick’s law
when the gradient scale and the mean free path become comparable was recognized in the
Eighties, and convolution integrals were proposed to express non local heat transport in the
presence of steep temperature gradients (Bell 1983; Luciani et al. 1983). (We may notice
that energetic particle densities around a shock wave are very likely to correspond to steep
gradients.) Still in the plasma fusion field, Ida et al. (2015) point out that to take into account
non locality, the heat flux g (r) should be given by

aT
q(r)=— / Kk (r,r")—dr' (2.34)
or’

where T is the temperature and r is the radial distance from the torus major radius, thus
using a non-local formulation of the Fourier law for the heat flux. A similar expression for
the electron flux in solar flares has been considered by Bian et al. (2017), who propose a
bi-exponential kernel «(|x — x’|) >~ exp(—|x — x’|/A(v)). Also, a similar, non local form
of Ficks’s law is considered by Miiller et al. (2023) to model the experimental results on
turbulent particle transport in the TJ-K stellarator.

A transport equation with fractional spatial derivatives may be obtained, for instance,
by considering a fractional Fick’s law for the flux J, where the standard gradient can be
substituted by a fractional derivative of order B < 1, i.e., in one dimension,

o f

J:_Kﬁa|x|ﬁ .

(2.35)
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Then, using the continuity equation, a fractional transport equation similar to Eq. (2.17),
with © = B + 1, is obtained. Several authors have considered the issue of a fractional Fick’s
law (Zanette 1998; Chaves 1998; Paradisi et al. 2001; Calvo et al. 2007). For particle trans-
port around a shock, we start from Eq. (2.20), we consider steady state, df/dt = 0, and
integrating with respect to x from —oo to x we obtain

Vif o0 0 (2.36)
—K = .
! “x|P
for the upstream region, x < 0, with 8 = u — 1; and
Vo f _Bf’f S 2.37)
—K = .
2 I alxlﬂ 0

for the downstream region, x > 0. In particular, Zimbardo et al. (2017) have shown that, if
the Riesz fractional derivative is changed for the Caputo fractional derivative, which is ap-
propriate to treat boundary value problems (del-Castillo-Negrete 2006), the upstream den-
sity profile can be described by Mittag-Leffler functions and far upstream the power-law
scaling (x — Viut)' ™ is recovered.

Turning to downstream, the red profile in Fig. 11 shows that the density is relatively flat
far downstream, but if we stay at a point x not too far from the shock the downstream density
profile is decreasing with x. Now, the evaluation of the fractional derivative involves regions
both to the left and to the right of x, and we can see that moving upstream on the left, a strong
density decrease is found which will contribute to positive values of 3% f/3|x|?. Thus, glob-
ally, the fractional derivative for x > 0 will be positive and the diffusive flux negative, that
is, uphill with respect to the density profile. This allows for the peak in the profile of f(x),
ie., Vo f > So, even when going from downstream towards the shock. An experimental val-
idation, using spacecraft data, of the presence of uphill transport downstream of shocks is
reserved for future work.

2.6 A Tempered Fractional Transport Theory

The theory reviewed in this subsection was developed to describe the interaction of energetic
particles with quasi-two-dimensional turbulence in the solar wind. Nearly incompressible
MHD turbulence theory (Zank and Matthaeus 1992, 1993; Zank et al. 2017), MHD simu-
lations (e.g., Shebalin et al. 1983; Dmitruk et al. 2004), and inner heliospheric observations
(Matthaeus et al. 1990; Bieber et al. 1996) suggested for a long time the existence of a domi-
nant, non-propagating quasi-two-dimensional (quasi-2D) turbulence component in the solar
wind containing coherent small-scale magnetic flux rope (SMFR) structures. In support of
this view, an unprecedented number of SMFRs were identified more recently in the inner he-
liosphere with especially the Grad-Shafranov method (Zheng and Hu 2018), but also using
the wavelet analysis and the Magnetic Helicity-PVI method (Zhao et al. 2020; Pecora et al.
2021). Furthermore, 2D MHD turbulence simulations featuring a sea of magnetic islands
perpendicular to the mean magnetic/guide field separated by abrupt boundaries in the form
of small-scale current sheets generate a probability distribution function (PDF) of the per-
pendicular magnetic field component increments that is statistically strongly non-Gaussian
with prominent power-law tails produced by intermittent large field component increments
at island boundaries (Greco et al. 2009). The PDF of the simulation by Greco et al. repro-
duced quite well the PDF of ACE spacecraft observations of perpendicular field component
increments at 1 AU. The non-Gaussian PDF of out-of-plane current densities of SMFRs
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identified in Wind data and reconstructed with the Grad-Shafranov method also agrees with
the PDF of the current densities of the 2D MHD turbulence simulation of Greco et al (see
Zheng and Hu (2018)). These strong-tailed PDFs provide additional support for a strong
presence of SMFRs separated by small-scale current sheets in the inner heliosphere. To this
it can be added that MHD turbulence simulations feature open meandering magnetic field
lines in between the closed SMFR structures (e.g., Servidio et al. 2011). Both simulations of
magnetic field-line wandering (Zimbardo et al. 2000) and data analysis of slow solar wind
magnetic turbulence (Bruno et al. 2004) suggest that the meandering field lines in between
SMEFRs are superdiffusive whereas the closed field lines of SMFRs can be considered as
subdiffusive.

Recent evidence of solar energetic particles (SEPs) being trapped between the boundaries
of two neighboring SMFRs was found close to the Sun in Parker Solar Probe data during
Orbit 5 between 0.2-0.45 AU (Pecora et al. 2021). SEP trapping by SMFRs was reported
previously (Ruffolo et al. 2003; Trenchi et al. 2013). This implies that SEPs quasi-trapped
in SMFRs are statistically undergoing subdiffusive transport in the perpendicular direction.
SEPs following the superdiffusive magnetic field lines in between SMFRs can be thought
of propagating superdiffusively across the mean magnetic field. Thus, perpendicular SEP
propagation can be viewed as a competition between subdiffusive and superdiffusive trans-
port where the net effect depends on the filling factor of quasi-2D turbulence by SMFR
structures. In a transport theory for anomalous SEP transport this competition can be cap-
tured by specifying the statistics of the SEP disturbed trajectories to correspond to the strong
non-Gaussian statistics associated with quasi-2D MHD turbulence in the solar wind, as dis-
cussed above. A useful way to model such statistics for the disturbed particle trajectories is
to specify a stable Lévy PDF that features a power-law tail (Ie Roux and Zank 2021).

To this it can be added that results of simulations indicate systematic energy gain of en-
ergetic particles while being trapped in contracting magnetic islands (Drake et al. 2006),
suggesting that energy gain could potentially be superdiffusive statistically if suprathermal
particles interact with numerous dynamic SMFR structures. This is confirmed by a number
of publications that reported superdiffusive spatial and momentum transport of energetic
particles when particle trajectories are traced in MHD turbulence simulation results contain-
ing SMFRs separated by small-scale current sheets (Isliker et al. 2017a,b, 2019; Nakanotani
et al. 2022).

However, anomalous energetic particle transport can be viewed as an intermediate time-
scale phenomenon, because in complex biological, financial, neutral and plasma fluid dy-
namical systems, anomalous diffusion crosses over into normal diffusion after a certain cor-
relation time (Ito and Miyazaki 2003; Vallaeys et al. 2017). Examples of such transitions in
the inner heliosphere are: (i) SEPs escaping from solar flare sites arriving early at 1 AU can
be thought of as superdiffusive, while those that arrive later are more diffusive (Fisk and Ax-
ford 1969), and (ii) simulations of energetic particle propagation in turbulence where the 2D
turbulence component dominates the slab component exhibits a transition of perpendicular
subdiffusion to normal perpendicular diffusion. There are reports of particle superdiffusion
transitioning into subdiffusion in magnetically confined plasmas (Cartea and Del-Castillo-
Negrete 2007), and in the case of energetic particle trajectories traced in MHD simulation
results featuring SMFRs separated by small-scale current sheets in the solar coronal plasma
(Isliker et al. 2019). It is important that a credible theory for anomalous energetic particle
transport includes a transition from anomalous transport during intermediate times toward a
diffusive or different anomalous transport regime at late times. This can be accomplished by
specifying an exponentially truncated Lévy PDF for the statistics of the disturbed particle
trajectories in response to interacting with intermittent quasi-2D turbulence as is discussed
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further below. This is supported by the fact that the best fit to the PDF of magnetic field
magnitude magnetic fluctuations in the slow solar wind was found to be an exponentially
truncated Lévy distribution that sensibly capture the upper limit in the size of the magnitude
fluctuations (Bruno et al. 2004).

le Roux and Zank (2021) showed how one can derive from first principles a fractional fo-
cused transport equation containing standard fractional derivatives to model the anomalous
diffusion of energetic particles interacting with intermittent quasi-2D turbulence containing
SMFRs and meandering field lines in between in the inner heliospheric supermagnetosonic
solar wind on the basis of the standard focused transport equation. This was achieved by
adjusting the closure approach of Sanchez et al. (2006), applied to fluid turbulence in fu-
sion plasmas, to this problem. Furthermore, le Roux (2022) converted the fractional focused
transport equation into fractional Parker and Gleeson-Axford transport equations based on
the expectation that particle pitch-angle distribution will become nearly isotropic when ener-
getic particles on longer time scales interact with numerous SMFRs and propagate distances
surpassing the correlation length of meandering field lines.

However, the anomalous transport theory of le Roux and Zank (2021) suffers from the
following shortcomings: (1) The asymptotic power law of a standard Lévy stable distribution
was specified in the derivation to model the non-Gaussian statistics of the disturbed ener-
getic particle trajectories in ordinary, momentum, and pitch-angle space generated when
energetic particles interact with intermittent quasi-2D turbulence. The problem is that the
second moment (variance) and higher moments of the Lévy distribution for the particle step
size are infinite, indicating over-efficient non-local transport that is scale-free. (2) The the-
ory does not naturally allow for a transition of anomalous transport to normal diffusion,
or to a different anomalous diffusion state. (3) Solutions of the fractional Parker transport
equation indicated a breakdown in the interplay between advection and anomalous diffusion
so that the competition between these two transport processes is not properly maintained at
late times. To address these shortcomings, the derivation of the fractional transport theory
of le Roux and Zank (2021) and le Roux (2022) is revisited. A brief outline of the derivation
is presented in which a key difference is that an exponentially truncated Lévy distribution
is specified to model the statistics of the disturbed particle trajectories. The outcome of the
derivation is a tempered fractional focused equation containing non-standard tempered frac-
tional derivatives presented below that addresses the above-mentioned concerns.

2.6.1 Derivation of a Tempered Fractional Kinetic Transport Theory from First
Principles - Key Aspects

To derive from first principles a kinetic transport theory to model the anomalous diffusion
of energetic particles interacting with intermittent quasi-2D turbulence, including a transi-
tion to a normal diffusion or different anomalous diffusion state, requires a number of key
elements:

1. Since quasi-2D turbulence contain intermittent, strong perpendicular magnetic field com-
ponent increments, as discussed above, strong disturbances are induced in, e.g., the per-
pendicular component § Vs p; & viud Byp;/ By of the particle velocity, where v is the par-
ticle speed, u is the cosine of the particle’s pitch angle, and § B, p; is the magnetic field
turbulence component in the 2D plane perpendicular to the guide/background magnetic
field By. Thus, the kinetic transport equation for anomalous transport is derived following
a nonlinear perturbation approach in which, e.g., the particle’s disturbed perpendicular
velocity component correlation function decays, as a consequence of the decay in the cor-
relation function of § By p; (8 Vap; o 8 Bop;) along the disturbed particle trajectory through
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quasi-2D turbulence (Lagrangian correlation function). In a traditional quasi-linear the-
ory, this correlation function is specified to decay instead along the undisturbed guiding
center trajectory (weak random wave turbulence). Furthermore, in the nonlinear deriva-
tion, the Lagrangian correlation functions are more complicated. E.g., the disturbed per-
pendicular particle velocity correlation function also includes the perpendicular gradient
of the ensemble-averaged particle distribution function along the disturbed transverse
guiding center trajectory to form a correlation function with a triple product ensemble
average. For comparison, in quasi-linear theory one finds the usual correlation function
with a double product ensemble average only referring to the correlation of the disturbed
perpendicular guiding center velocity. In le Roux and Zank (2021), based on the approach
of Sanchez et al. (2006), it is shown how this complication can be overcome by switching
to a Eulerian approach to deal with triple product ensemble averages. This approach is
also followed in this paper.

2. Non-Gaussian power-law statistics must be specified to model, e.g., the statistics of dis-
turbances in the perpendicular particle velocity in response to the non-Gaussian power-
law statistics associated with intermittent quasi-2D turbulence. For this purpose, the large
argument asymptotic of an exponentially truncated Lévy stable PDF is assumed for the
rescaled disturbed transverse particle velocity component & Vapi = 8Vapi At —H (Sanchez
et al. 2000), e.g., where H is the so-called Hurst index given by H = 8/« that refers to
the ratio of the fractional index S, linked to the tempered fractional time derivative, over
the fractional index «, connected to the tempered fractional spatial derivative, that both
appear in the transport term derived finally for tempered perpendicular anomalous diffu-
sion. The expression for the PDF is

P(8Vapi) = Agol e H0V20il /5Ty |1, (2.38)

where the fractional index 0 < o < 2, A, is a constant that depends on « given by

oa(l —a)
2I'(2 — ) cos(am /2)’

Ay = % '+ «)sin(ar/2) =

(2.39)
(Sanchez et al. 2006), oy, = (18Vapil®) = (18 Vapi %) (Teor)®/ (Teor )M, where (z.,,) is the
average time scale which energetic particles require before seeing decorrelated magnetic
fields when interacting with quasi-2D turbulence, and A~! is the characteristic perpen-
dicular particle velocity component value above which the power-law PDF decays expo-
nentially. The exponential rollover is the new element in the anomalous transport theory
that was not included in the previous version of the theory presented in le Roux and
Zank (2021). This new addition ensures that unphysically large disturbances in the per-
pendicular particle velocity components, e.g., are avoided, thus overcoming the problem
of infinite second or higher moments of the standard Lévy distribution that resulted in
scale-free non-local spatial transport in the previous version of the theory (le Roux and
Zank 2021). It is this exponential truncation that enables a transition of, e.g., the anoma-
lous perpendicular diffusion of energetic particle transport to more normal perpendicular
diffusion as the power-law statistics of the disturbed transverse particle velocities get
replaced by more Gaussian-like statistics beyond the critical scale A~!. This statistical
description is further elaborated in the theoretical derivation by specifying that the dis-
turbed perpendicular particle velocity component §V,p; = Ax;/At, where Ax; can be
interpreted as the perpendicular component of the particle step size if At = t.,,. Then,
the rescaled disturbed perpendicular particle velocity (not in units of particle velocity)
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becomes
8Vapi = Ax;/ At (2.40)

The purpose for the rescaling now becomes clear because, since (|Ax;|%) o« At*H for
general perpendicular anomalous transport, it follows that o, which closely related to
the anomalous perpendicular diffusion coefficient, is independent of At, as expected. In
the case of energetic particle interaction with the coherent SMFR component of quasi-2D
turbulence, one can introduce a simple scattering model. When particles propagate inside
coherent SMFRs structures, it is assumed that they have disturbed but coherent particle
trajectories. Particle scattering occurs when they propagate through the abrupt SMFR
boundaries characterized by strong discontinuities in the perpendicular magnetic compo-
nent increments, because of small-scale current sheets separating neighbouring SMFRs
(Greco et al. 2009). Accordingly, one can think of the particle waiting time (scattering
time) At as the trapping time in or escape time from SMFR structures, and the perpendic-
ular step size component Ax; as determined by the SMFR transverse crossing distance
which is approximately equal to the perpendicular size of SMFRs. Consequently, in the
derivation there occurs a separation of the original exponentially truncated Lévy PDF for
8Vsp; into an exponentially truncated Lévy PDF for the step size and an exponentially
truncated PDF for the waiting time that can be considered to be independent:

P(Ax;) = Age 1851/ Ax; |1,
P(A) = Ay_ge A0 /(AP (2.41)

In this aspect the theoretical development is similar to the classical continuous-time ran-
dom walk model for anomalous particle diffusion in which the step-size and waiting-time
PDFs are assumed to be independent (Montroll and Weiss 1965). Note that both PDFs
include an exponential truncation so that beyond a critical step size and waiting time
Gaussian-like statistics for the particle step size and Poisson-type statistics for the parti-
cle waiting time are gradually restored.

3. As a consequence of the strong energetic particle response to intermittent quasi-2D tur-
bulence, the perpendicular spatial scale over which the ensemble-averaged energetic par-
ticle distribution ( f) varies can be approximated to be equal to the quasi-2D turbulence
correlation length scale /,p in the transverse direction. This means that the perpendic-
ular gradient of (f) about a correlation length /5, removed from position x; deviates
significantly from the gradient at position x; so that

d(f) a(f) a(f)

——(x; — Ax;, t, p, )~ ——(x; —hp, t, p,
ax,-( Py L) ax,-( 205 b, Py ) F ox,

(Xi,t, p, 1), (2.42)

where p is the particle momentum and u is the cosine of the particle pitch angle. Thus,
spatial lags in (f), and more generally, lags in time, momentum, and pitch angle, must
be retained in this nonlinear approach and cannot be ignored as is done in standard quasi-
linear theory. Retaining these lags is a key element that enables modelling of anomalous
diffusion of energetic particles in terms of fractional derivatives in the transport theory
for anomalous diffusion. Consequently, in the derivation of the new transport equation for
tempered anomalous diffusion, the exponentially truncated Lévy distributions specified
initially in the derivation result finally in transport terms for anomalous diffusion featur-
ing tempered fractional derivatives containing non-local spatial, momentum, pitch-angle,
and memory effects of particle transport that are taken into account by integration. For
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example, for 1 < o < 2 there appears in the derived perpendicular anomalous diffusion
term a left Caputo tempered fractional derivative given by

C pa—1Ax
C D) (xist, pa )

e e A B f)
F(Z a)/ d(Ax l)(A el 3y, ( Xi — AXi 1, p, ), (2.43)

in which non-local transport effects are taken into account by integrating the perpen-
dicular gradient o(f)/dx; over the spatial interval x; — xo;. Note that the exponential
rollover in the exponentially truncated step-size Lévy distribution specified above fea-
tures in the tempered fractional derivative, thus ensuring that non-local transport effects
beyond a certain critical spatial scale A;l is ignored. As a consequence, anomalous per-
pendicular diffusion on intermediate spatial scales undergoes a transition to more normal
diffusion or a different anomalous diffusion state on large scale spatial scales (Cartea and
Del-Castillo-Negrete 2007; Vallaeys et al. 2017).

2.6.2 A Brief Outline of the Derivation

The derivation of the transport equation for tempered anomalous transport started with the
standard focused transport equation (Skilling 1975a) for the evolution of a nearly gyrotropic
energetic particle distribution (f)(x;,t, p, 1) as a function of particle position x;, time ¢,
momentum p (speed v), and cosine of pitch angle  given by

0D, DD [\ DU R\ 0L _ 0 (0t
T+ e+ () (), e e (A R) e

ot ? ox;
where the particle’s gyro-phase-averaged velocity in the fixed frame is expressed as
(Vidg =vub; + U;, (2.45)

the particle’s gyro-phase-averaged momentum rate of change in the solar wind flow frame
is given by

1/d 1 au; 1 aU; E;, 14dU;
_<_p> =—(1—p?)— — ~GBu*— DHbibj— u<q )bh (2.46)
p\dt], 2 ax; 2 0x; )4 v dt

and the associated gyro-phase-averaged p-rate of change in the solar wind frame is

d,LL ab 8U, BU qE[ 1dU,
s —1— —3ubib; 2t 2 i) b | 4
<dt> ( “)[axiJr“axi Woilig ™ (p vdz) ] 247)

In the focused transport equation, U; refers to the non-uniform solar wind flow velocity, p
is the cosine of the particle’s pitch angle, b; indicates the unit vector along the non-uniform
heliospheric magnetic field, E; is the electric field, and dU; /dt is the acceleration of the solar
wind flow velocity as seen following the flow. The focused transport equation also includes
a transport term for particle diffusion in p-space containing a diffusion coefficient D;ju that
models gyroresonant particle interactions with relatively small-scale parallel propagating
Alfvén waves (Schlickeiser 1989).

A quasi-linear theory type perturbation analysis was used to distinguish the response of
the energetic particle distribution to the large-scale solar wind flow and magnetic field on
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long spatial and time scales, and to the random flow and magnetic fields of non-propagating
quasi-2D turbulence containing SMFR structures with meandering field lines in between
on intermediate spatial and time scales. An important distinction between this perturbation
approach for non-propagating quasi-2D turbulence with nonlinear coherent SMFR struc-
tures and the standard perturbation approach for small amplitude propagating MHD waves
with random phases is that, while the large-scale average of the SMFR flow velocity over
numerous SMFRs is specified to be zero, this was not assumed to be necessarily the case
for the large-scale average of gradients in the SMFR velocity. This extension facilitates the
modeling of energetic particle acceleration during a situation where multiple SMFRs are
simultaneously contracting, such as expected during early-time magnetic reconnection at a
large-scale current sheet. Furthermore, E;b; refers to the parallel electric field (the compo-
nent of the electric field that is non-motional or non-ideal). However, on intermediate scales
(MHD scales) the motional electric field is typically considered to be the dominant electric
field component and one should think of the motional electric field components parallel and
perpendicular to the average/guide magnetic field in contracting and merging SMFRs to be
responsible for accelerating energetic particles (Dmitruk et al. 2004). In this theory, the tur-
bulent motional electric field in individual SMFRs —§U x §B parallel to the average/guide
field By, is used to model the effect of the “parallel” SMFR electric field on energetic par-
ticles on intermediate spatial and time scales (le Roux and Zank 2021) because both the
SMFR flow velocity §U and the twist component of the magnetic field §B are modelled
to exist predominantly in the 2D plane perpendicular to By (quasi-2D model for dynamic
SMEFRs).

Implementation of the perturbation analysis method, and the above-mentioned three key
elements needed for the development of a tempered anomalous transport theory, led to the
derivation of a tempered fractional focused transport equation discussed below, and tem-
pered fractional Parker and Gleeson-Axford transport equations as well (not shown), con-
taining tempered fractional derivatives for modeling the response of energetic particles to
intermittent quasi-2D turbulence (for more details of the derivation method, see le Roux and
Zank (2021) and le Roux (2022)).

2.6.3 The Tempered Fractional Focused Transport Equation

Compactly expressed, the tempered fractional focused transport equation for the evolution
of the average energetic particle distribution function ( f)(x;, t, p, i) is

a(f) 0 19 2| [dp dp
7+8_)ci([<‘/i>SW+<vi>2D]<‘f>)+?@(p [<E>SW+<E>2D] (f))
B du du
v ()., + (%)) )
_ 9 (1payoif)

— " a o a— o—
+0Dtl " |:3x¢_ (KJZ'D[/S’ ] (_"ii Dxiulyix + Xila DMIYM) <f>)

19 o 1 1
oz (PO (=0 4 D577) ()
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a a—1, a—1ay
g (DI (=i, o, 3 ) (f))} (2.48)

which is valid for 0 < ¢ <2 and 0 < 8 < 2. On the left-hand-side of the fractional transport
equation are the terms containing differential advective particle fluxes in ordinary, momen-
tum and in p-space, respectively. One can see the decomposition of the advective fluxes
into that generated by particle interaction with the background solar wind flow and magnetic
field (terms with the subscript “SW”) and the fluxes produced by particle interaction with
the mean quasi-2D turbulence flow, magnetic field, and motional electric field (terms with
subscript “2D”). The expressions for the advection velocities were derived from the basic
expressions for the advection velocities in the standard focused transport equation presented
above (for more information, see le Roux and Zank (2021)). These advective transport terms
have normal derivatives and are unchanged from those presented in the previous version of
the anomalous focused transport theory of le Roux and Zank (2021) that contain standard
fractional derivatives in the anomalous diffusion terms.

What is new are the anomalous diffusion terms on the right-hand-side that include tem-
pered fractional time, spatial, momentum, and p-derivatives whereas previously in le Roux
and Zank (2021) they contained normal fractional derivatives. For example, the anomalous

o . -1, o . N
momentum diffusion term include ,, D, *?  which is a left Riemann-Liouville tempered

fractional momentum derivative, and I,Dzb_ Y47 that is a right Riemann-Liouville tempered
fractional momentum derivative. All the fractional derivatives differ from the standard frac-
tional derivatives because they include an exponential rollover term as discussed above. It
should be noted that for 1 < o < 2, all the derivatives with index o — 1 were originally
derived as left and right Caputo tempered fractional derivatives that were transformed into
Riemann-Liouville fractional derivatives, and for 0 < « < 1 they are actually left and right
Riemann-Liouville tempered fractional integrals that were expressed as Riemann-Liouville
fractional derivatives to enable a more compact expression of the anomalous diffusion terms.
For more information about tempered fractional derivatives, see Li et al. (2019), for exam-
ple. It should be mentioned that there are no mixed-derivative terms for anomalous transport
on the right hand side of the transport equation. These terms have on purpose be ignored
because currently it is not clear how to derive them with the current approach. This is an
unsolved problem that needs to be addressed in future theoretical work.

With this extension of the anomalous transport theory, one can model naturally a tran-
sition from anomalous diffusion to more normal diffusion at later times (if the tempered
fractional time derivatives/integrals are neglected), or a transition to a different anomalous
diffusion state, as discussed above. It can be shown that when the fractional indices § — 1,
and o — 2, the tempered fractional time derivatives/integrals vanish by becoming one, while
the tempered fractional spatial, momentum, and p-derivatives/integrals become normal so
that normal diffusion terms are recovered.

The transport coefficients in the anomalous diffusion terms can be compactly expressed
as follows:

KPP = C(B, ) (18Vapil®) (Teor)*

d o
D =C (B, a)<‘a (d—“> ><rm,~>°'—f’,
I /Jap

d
Dy =C(ﬂ,a)<‘a(d—p>
t/ap

> (Teor)* P, (2.49)
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where the function C (8, ) is defined by

_ h(B, ) (1 —a)[(B)
CB,a)= reos@nD) (2.50)

In the expression for C(8, «), the function h(8, o) is unknown, but 2(8,«) — 1 in the
limit when o — 2 (normal spatial, momentum, and p-derivatives). The expressions for
(16 Vapi|*), (18(dp/dt),pl*), (|6(dp/dt)p|*), derived from the basic expressions for the
particle advection velocities in ordinary, ¢, and momentum space in the standard focused
transport presented above, can be found in Appendix A, Eqgs. (A9)-(A10) of le Roux (2024).
For more details about the derivation of these expressions, see Appendix A in le Roux et al.
(2018) and Appendix B in le Roux and Zank (2021). Furthermore, the expressions for the av-
erage energetic particle correlation time (t.,,), when related to particle trapping in SMFRs,
are presented in Appendix A of le Roux and Zank (2021). If particles are predominantly
following superdiffusive meandering field lines between SMFRs (Bruno et al. 2004), the
particle correlation time can be associated with particles surpassing a 2D turbulence correla-
tion length scale across the mean magnetic field (z.,.) =I./{|8 Vap;|*)!/?, where [, is the 2D
turbulence correlation scale length and the average perpendicular disturbed particle velocity
component {|§Vp;|?)!/? is given by expression (A10) in Appendix A of le Roux (2024) by
specifying o = 2. Note that normal diffusion coefficients can be recovered by letting 8 — 1,
and @ — 2 in the anomalous diffusion coefficient expressions, whereby C (8, ) — 1/2 be-
cause h(B,a) — 1.

2.6.4 Connection to Fractional Diffusion-Advection Equations in the Literature

By simplifying the fractional focused transport equation for the limiting case of one-
dimensional perpendicular spatial transport in the x-direction assuming spatially uniform
transport coefficients while neglecting momentum and pitch-angle variations, we get an
equation for particles undergoing tempered anomalous diffusion in a uniform external (pre-
scribed) solar wind flow velocity field given by

% + Uo,x% = oD, PP DI 4 DR (f), 2.51)
where Uy, is the solar wind flow velocity in the x-direction. Note that the solar wind ad-
vection term is normal whereas the perpendicular anomalous diffusion term includes both
a tempered fractional time and tempered fractional spatial derivatives. The equation has the
same form as Eq., (1.5) above with the difference that the fractional derivatives in Eq. (1.5)
are not tempered fractional derivatives. Therefore, the equation fits the categorization as
a more general version of the Galilei invariant fractional diffusion-advection equation dis-
cussed by Metzler and Klafter (2000) in the sense that the spatial derivatives are fractional
instead of normal and all the fractional derivatives are tempered instead of being standard
fractional derivatives.

The equation describes how the perpendicular spatial transport of energetic particles are
affected by quasi-2D turbulence, a low-frequency turbulence component advected with the
solar wind flow that contains SMFR structures (trapping centers) and superdiffusive me-
andering magnetic field lines between these structures, as discussed above. By specifying
the fractional time index 8 = o H < 1, one models tempered perpendicular subdiffusive
transport as a consequence of energetic particle trapping in SMFR structures (evidence for
energetic particle trapping in SMFRs can be found in observations discussed by Trenchi
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et al. (2013) and Pecora et al. (2021), e.g.), while specifying the fractional spatial index
1 < @ < 2 enables modeling of tempered perpendicular superdiffusion due to energetic par-
ticles following tempered superdiffusive meandering field lines in between SMFRs (Zim-
bardo et al. 2000; Bruno et al. 2004). This competition between tempered subdiffusive and
superdiffusive transport can be controlled. If tempered superdiffusion dominates tempered
subdiffusion, e.g., this can be modeled by setting 8 =aH < 1 and 1 < @ < 2 in such a way
that 1/2 < H < 1 (the standard superdiffusive range). As a side note, a simplified version
of this tempered fractional focused transport equation can be found in Baeumer and Meer-
schaert (2010) with the difference that in the equation of Baeumer and Meerschaert (2010)
there is not a tempered fractional time derivative attached to the anomalous diffusion term,
suggesting that the equation did not include particle trapping effects.

An interesting feature of this equation is that when B < 1, the tempered fractional time
derivative reduces the efficiency of the tempered anomalous diffusion term at late times,
an effect of particle trapping in SMFRs (this can be seen by applying dimensional analy-
sis to the anomalous diffusion term). Consequently, solar wind advection will increasingly
dominate tempered superdiffusion of energetic particles at late times. Thus, upstream of
a perpendicular shock the accelerated particle distribution will decay over an increasingly
short spatial scale with time until the distribution will abruptly cutoff upstream as the purely
advective transport limit is reached. It is only by removing SMFRs trapping effects by
specifying § = 1 that a steady-state balance between advection and tempered superdiffu-
sion can be accomplished upstream. It should be noted that the Galilei invariant fractional
diffusion-advection equation, which our fractional transport equation is an example of, has
been critized by Cairoli et al. (2018) as capable of producing unphysical (negative) so-
lutions for the distribution function. Furthermore, the underlying cause of the unexpected
advection-dominated late-time solution predicted by our fractional transport equation up-
stream of a perpendicular shock appears to be related to the fact that the tempered fractional
time derivative is present in the anomalous diffusion term but not in the solar wind advec-
tion term. As an alternative, Metzler and Klafter (2000) also discuss a Galilei-variant type
of fractional diffusion-advection equation based on a non-uniform external (prescribed) ve-
locity field that has the structure of a fractional Fokker-Planck equation in the literature
(e.g., Magdziarz and Weron 2007). In this case the fractional time derivative associated
with the diffusion term also appears in the advection term (see Eq. (1.4) and its discussion
above) which restores a sustained competition between advection and anomalous diffusion
upstream of the shock at late times. As shown in more detail in le Roux (2024), the tempered
fractional focused transport equation we derived can be converted by the method of addition
into a more general tempered version of the fractional Fokker-Planck equation typically dis-
cussed in the literature (e.g., Metzler and Klafter 2000; Magdziarz and Weron 2007). This
yields the tempered fractional focused transport equation

M = ODtl_ﬁ,M |:_(Tcor>lﬂ

at 0

(Tcur>17ﬂ 0 2 dp dp
B p? 5 (p |:<£>SW * <E>2D] <f)>
e (), (%)) )
(Teor) o 7 0+ ar |, "))

d
- {Vidsw + (Vidan] (f)
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0 2 a — " _
o (P (DI 4, D) ()

dxi1
19 2 n2D[B.a] a—1Ap a—1,4p
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By simplifying the equation for one-dimensional perpendicular spatial transport in the x-
direction assuming spatially uniform transport coefficients while neglecting particle mo-
mentum and pitch-angle variations, we get

ar (Teor) P10

2(f) _ Dl_,ﬂ,[_ Us ()

+i PP DO 4 DER(f >}. (2.53)

Thus, we reproduced the basic structure of the Galilean variant fractional diffusion-
advection or fractional Fokker-Plank equation presented by Metzler and Klafter (2000) in
the limit of a uniform external (prescribed) velocity field (see also Eq. (1.4) above). How-
ever, our transport equation is more general in the sense that the spatial derivatives are frac-
tional instead of normal and all the fractional derivatives are tempered instead of being
standard fractional derivatives.

By assuming B < 1 to invoke energetic particle trapping by SMFR structures, and apply-
ing dimensional analysis to the advection and anomalous diffusion terms, it is clear that both
these transport terms become increasingly inefficient at late times due to particle trapping,
but in such a way that the competition between these terms are not affected (both terms
have the same fractional time derivative). This should enable one to maintain a competition
between tempered solar wind advection and perpendicular anomalous diffusion upstream of
perpendicular shocks at late times to avoid total domination by solar wind advection at late
times that will result in a cutoff in the upstream particle distribution. However, the problem
with this version of the transport equation is that the diminished efficiency of solar wind
advection at late times implies that the SMFR trapping centers are stationary (see Metzler
and Klafter (2000) and the discussion of Eq. (1.4) above). This means that SMFRs are not
advected with the solar wind flow which is inconsistent with of SMFRs as part of a non-
propagating quasi-2D turbulence mode advected with the solar wind flow. On this basis one
has to conclude that the tempered fractional transport equation, as originally derived in a
Galilei invariant form with normal advection terms, is more suitable for modeling energetic
particle interaction with quasi-2D turbulence. Thus, one has to consider the possibility that
particle trapping in SMFRs upstream of the shock does indeed result in a growing absence
of energetic particles upstream as advection of particles to downstream increasingly domi-
nates in time. This implies that if an unusual low amount of energetic particles are observed
upstream of some heliospheric shock events, a possible explanation could be that there is a
significant presence of SMFRs upstream that result in particle trapping.

2.7 Summary of Section 2

After a brief exposition of sub- and superdiffusion, in general, the latter was discussed in the
context of shock acceleration employing both a propagator formalism for Levy walks and
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a fractional transport equation. The main differences between the cases of superdiffusive
and of standard (Gaussian) diffusive shock acceleration consist in (i) spatial power laws
upstream (as opposed to exponential profiles), (ii) the number density far downstream being
lower than that at the shock where a characteristic local peak is formed, and (iii) the energy
spectra of accelerated particles being harder than those obtained for the case of normal
diffusion. All of these findings are consistent with data obtained with various spacecraft.
Finally, it was sketched how a fractional transport equation can actually be derived from
first principles, thereby establishing a so-called tempered fractional transport theory.

3 Nonlinear Aspects of Particle Transport and Acceleration

When investigating the transport and acceleration of energetic particles it is very likely
to come across nonlinear concepts of diffusion. In the following there will be a short
overview of possible nonlinear description methods and their ramifications on the behaviour
of charged energetic particles. The nonlinearites will arise from the ambition to describe
both the transport of particles and the influences they have on the background medium they
traverse. A special focus will lie on the work done by Litvinenko et al. (2017), Litvinenko
et al. (2019), Walter et al. (2020) and Walter et al. (2022) where the diffusion coefficient
of the particles will have a dependence on the particles distribution functions gradient. This
model will first be applied to particle transport consisting of diffusion and advection and to
models of shock acceleration after that.

3.1 Gradient Connection and Diffusive Transport

As far back as Bell (1978) there were attempts to link the transport of energetic particles to
the collective behaviour of waves in the background plasma they traverse. These waves, that
on the one hand serve as the scattering centres of the diffusing particles are influenced by
said particles on the other hand.

Bell (1978) described this intertwined system with two differential equations, one trans-
port equation for the particle distribution f and the other one a wave equation for the energy
distribution of the MHD-waves F in the background plasma. The link between these two
properties would be realised through the diffusion coefficient D in the f-equation and the
growth-rates I' in the F-equation.

Years later Ptuskin et al. (2008) made simplifying assumptions to the growth and dissipa-
tion rates of the waves and ended up with a diffusion coefficient that depends on the particle
distribution functions gradient V f in the following form:

D~|VfI™ (3.1

with v = %; % representing exponential dependencies for two different dissipation rates,
V= % for moving magnetic mirrors and v = % for a Kolmogorov type of dissipation.

In Litvinenko et al. (2017) this Ansatz was generalized to arbitrary values of 0 < v < 1
to take into account different kinds of wave amplification and dissipation and it was applied

first to diffusive transport models. For example for a purely diffusive transport like:

o _ 8 ( “%) 52
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For this kind of transport Litvinenko et al. (2017) were able to apply similarity solutions and
provided a formula for the time evolution of the distribution function in the form of:

F=1TTT g (8) (3.4)
£ = xt X9 (3.5)
g= [au n % @—2v) " sfﬁi] (3.6)

with a, being a constant of integration.
These solutions show an anomalous scaling behaviour for the mean square displacement,
to be more precise it is:

(x2) ~ 1T (3.7)

A visualization of the nonlinear diffusive behaviour can be seen in Fig. 15. As explained
in Litvinenko et al. (2017) this corresponds to a superdiffusive behaviour. Furthermore, a
stationary solution could be found for a constant advection speed and a steady §-source. The
solution showed a power-law behaviour in the upwind domain of the system of the form

v—1

fr~xv (3.8)

Two exemplaric sketches can be seen in Fig. 16. This result is of special interest, because
data analysis on particles accelerated at interplanetary shocks show distributions, that resem-
ble power-laws as the ones above, see Fig. 17, which displays fits to power laws upstream
of shocks observed with the Ulysses spacecraft (Perri et al. 2022), and for more information
Perri and Zimbardo (2007), Perri and Zimbardo (2015), or Malkov et al. (2024) and Sect. 2
above. Interestingly, while the nonlinear diffusion produces upstream power laws similar to
those obtained for the case of anomalous superdiffusion, the characteristic peak at the shock
obtained for the latter case is absent for the former. This indicates that the ‘anonmalous’ be-
haviour in both cases is principally different. This can be understood from two facts. First,
in the nonlinear case the diffusion itself remains Gaussian, so that the acceleration process is
not changed fundamentally. Second, while in the superdiffusive case the power laws result
from a constant diffusion coefficient upstream, these power laws need a position-dependent
diffusion coefficient in the nonlinear case (Litvinenko et al. 2017; Malkov et al. 2024).

The concept of D = D (V f) was further expanded upon in Litvinenko et al. (2019) and
Walter et al. (2020). The first publication provided an approximation of a nonlinear diffusive
system with a non-time-constant source. The distribution function f was, thereby given in
the form of:

2
f=cle><p{—@}+cze><p{—g—2} (3.9)
X X
This allowed Litvinenko et al. (2019) to approximate solutions of diffusive transport of the
form:
af a [laf| ™" af
—=—1|=| = S()s 3.10
o1 ax(ax ax ) T G-10
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Fig. 15 Example of two diffusive processes using a nonlinear diffusion formulation. The left panel shows the

diffusive process for v = %, the right panel for v = % Both plots show the result for ¢+ = 0.001, 2, 4, 6, 12, 20.
Adopted from Litvinenko et al. (2017)
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Fig. 16 Plot of a diffusion advection system with nonlinear diffusion. The left panel shows the results for

V= %, the right panel for v = % The times show are ¢t = 0.001, 5, 10, 20, 40, 70, 100. Adopted from Litvi-
nenko et al. (2017)
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Fig. 17 Differential intensity of energetic electrons accelerated at corotating interaction regions as observed
by the Ulysses spacecraft in the upstream region. Left: 11. Oct. 1992, 234 keV, v = 0.60, middle: 22. Jan.
1993, 89 keV, v = 0.47, and right: 10. May 1993, 55 keV, v = 0.57. The panels show the data for these three
events (red symbols) along with the solutions of the nonlinear diffusion equation fitted to the data (blue lines).
For the data see, e.g., Perri et al. (2015)

In Fig. 18 there are results plotted for the source

t O0<t<l1
S(1) = Sy x 3.11
W=, 1<i<a (3-11)
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Fig. 18 Comparison of numerical results and analytical calculations for the nonlinearity parameter v = % at
different times ¢ for a source given by Eq. (3.11). Adopted from Litvinenko et al. (2019)
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Fig. 19 Comparison of numerical results and analytical calculations at the time ¢ = 1 for different nonlinear-
ity parameters v for a source giben by Eq. (3.12). Adopted from Litvinenko et al. (2019)

and in Fig. 19 for a source like
S(t) = Sot* (3.12)

The approaches of Litvinenko et al. (2017) and Litvinenko et al. (2019) however were
expanded upon by Walter et al. (2020) where a more general expansion technique that is
based on fundamental solutions was introduced and used to study diffusion-advection effects
for different forms of nonlinearity and geometries.

The core premise of the method presented was to expand the transport solution at ques-
tion into a series of equations by making the Ansatz as in Bender et al. (1989) and Bender
et al. (1991):

f=rfotvhi+vip (3.13)

Inserting this into a diffusion advection equation of the form

o Ly 0 (3
s tUs =5 (Dax> +0 (3.14)
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Fig. 20 Tllustration of the expansion-approximation technique for given parameter set at x = 0 (left) and
x =1 (right). All other parameters can be found in the respective panels. The source was assumed to have the

form Q (x,1) = (z - 12> 8 (x). Adopted from Walter et al. (2020)

with D ~ « |% and U being a constant advection velocity one ends up with a set of
equations that look like:

Lfo=0 (3.15)

_ afo 9% fo

(3 (T L (3 afo]\\ 2 /o
ﬁfz_"‘(ﬁ(%) ek (\ﬂ‘“‘(ﬁ))m
dfo 3 fi
—K<1+ln(§>>w 3.17)
Lfz= (3.18)
2
=0yl (3.19)

ot ax ax2

As can be seen, the equations have all the exact same general form with the differential
operator £ on the left hand side and a source on the right hand side that only depends on
lower orders of f. The solution to every single one of these equation can, therefore, be
obtained by a convolution of the right hand side with the fundamental solution I" of £ that
has the form:

= (3.20)

1 { u—Ug1
ex —
Vamkt P dict

Because the integral is usually not solvable via analytical means, it is necessary to solve
it numerically. Luckily this can be done by using very basic numerical schemes. This has
been done in Walter et al. (2020) a few examples can be seen in Fig. 20. Additionally Walter
et al. (2020) also looked at different formulations of nonlinear diffusion, e.g. a non-diverging
gradient dependence of the form:

d (3.21)

- np | 3L 1Y
A+ vt Bx‘
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In Walter et al. (2020) this system was discussed for n = 1 = k and the resulting operator
and set of equation read as follows:

Lfo=0 (3.22)
<1+ln Ix )82]40

L= (3.24)
2

o yd K (3.25)

ot ox 14X 0x2

The method could also be applied to non-gradient nonlinearities, in Walter et al. (2020)
the example given by Kath and Cohen (1982) for D ~ f" was discussed and could be
addressed in the same manner. More interesting for astrophysical purposes, however, was the
application of the method onto a spherical system. For this purpose the diffusion advection
equation was rewritten into:

o _ 10 (00
5_r28r< ar )+Q (.20

The set of equations that arises when D = « |g—’:|_v and f =Y, fiv' has the following
entries:

Liad fo=Q 3.27)
afo [\ 910 afo 3% fo
Loafi= ——mqg>5; Q+IQW))m2 (3.28)
Luafo=""" (3.29)
9 2« 3 9?2
Lrg=———7—~— K— (3.30)

ot r or ar?

By modifying results obtained by Webb and Gleeson (1977) it was possible to give a Greens
function and a Greens formula:

2 2
roo () (" +1)

G(r'nt—t)=——————x|exp{—— ¢t —exp{ — 3.31

( PN = { p{ 40—f>} p{ s-nf] o

fu(r ) == / dt' / dr'r'’>Q, (r', )G (r',rit —1') (3.32)

Exemplaric results can be seen in Fig. 21. Now that we have talked in depth about the gra-

dient nonlinearity and its effect on the transport of particles, we can now turn our attention
to the question of how such a nonlinearity influences diffusive acceleration processes.

3.2 Gradient Connection and Shock Acceleration

After establishing the general properties of nonlinear transport in the section above and the
references therein it is now time to turn the attention to the question of acceleration under

@ Springer



Open Issues in Non-Gaussian Transport and Acceleration Page 41 of 90 75
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Fig. 21 Illustration of the expansion-approximation technique for x = 1 and a source of the form

0(x,1)= (r - t2) 8 (r — 3). Adopted from Walter et al. (2020)

the influence of the nonlinear diffusion established. A first attempt to apply this kind of
diffusion onto shock acceleration in particular was made by Walter et al. (2022).
Although not much hard analytical progress could be made, one central point was shown

in a analytical calculation. The stationary shock spectrum, that arises when there is an in-
_3
finitely large acceleration time and that is given by elementary means as f ~ p Ui=%, with

U, being the upstream velocity and U, being the downstream velocity does not change for a
nonlinear diffusion coefficient of the form given by Ptuskin et al. (2008) and generalized by
e.g. Litvinenko et al. (2017). This was shown in a straightforward calculation in the same
manner as in Drury (1983) for the strictly linear case, during which the nonlinear modifica-
tions cancelled each other out.

However, given the reference time scaling given by:

3 P Kz)dp/
)= —— —+ =) — 3.33
<> UI—U2/p (Ul U.) p' 639

0

we can make a solid argument that the time-scaling should change, because the average
mean time to accelerate a particle from a starting momentum p, to momentum p is depen-
dent on the diffusion coefficients, that are now subject to change when formulated nonlinear.
More precisely, the acceleration time should get lower with decreasing diffusion coefficient.

Unfortunately there was no closed analytical solution available for a nonlinear shock
acceleration system, so in Walter et al. (2022) it was necessary to rely on numerical results.
Following will be a short overview of the used numerical setup before going into some of
the already obtained results.

The nonlinear diffusion coefficient used in Walter et al. (2022) was of the form

p=—"% (3.34)
14+ vk ‘

of
ax

and was applied to a simple shock model that was described by

af af af 14U df
L iU =— (D= |4+-—— 3.35
3t+U8x 3x< ox +3dx 3S+Q (3.35)
Ui+U, U —U
U= 1; E 12 2 tanh [—y (x — xy)] (3.36)
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105 L 105 .

p p

Fig. 22 Modified shock acceleration for v = % and v = % The times shown are ¢ = 10, 30, 100. Adopted

from Walter et al. (2022)
s=In <ﬁ> (3.37)
Po

with p, being the chosen reference momentum, U; and U, the upstream and downstream
velocities of the shock characterised by the shock ratio ¢ = Z—; The term f; describes the
adiabatic energy change caused by the change in velocity and Q was again a source that
injects particles monoenergetically at the shock, so:

Q=258 —r)d(s)H (). (3.38)

The velocity profile approximates a shock for growing values of y and gives an ideal
shock for y — oo. A couple of example plots can be found in Fig. 22. There the difference
in acceleration speed can be seen, as well as the fact, that the stationary solution remains the
same.

3.3 Summary of Section 3

In this section we gave an overview of a nonlinear diffusion approach. Said diffusion ap-
proach was inspired by considerations by Bell (1978) or Ptuskin et al. (2008), resulting in
a dependence of the diffusion coefficient on the spatial gradient of the energetic particles’
distribution function. The resulting nonlinear partial differential equations were addressed
by different mathematical techniques (e.g. Litvinenko et al. (2017), Litvinenko et al. (2019)
or Walter et al. (2020)) as well as numerical simulations (same citations + Walter et al.
(2022)). This nonlinear approach lead to anomalous features in the resulting particle distri-
butions. One could find power-law structures in the spatial distribution and nonlinear time
behaviours. Furthermore it was detected, that in the context of diffusive shock acceleration at
a planar shock the stationary shock spectrum is not affected by a nonlinear diffusion process.
However, the acceleration time scales are changed, when nonlinear diffusion is introduced.
Future possible expansions of the here presented studies is e.g. the application onto spherical
shocks.
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4 Field Line Random Walk and Particle Decoupling, Transition from
Subdiffusion to Normal Diffusion

4.1 Field Line Random Walk Theory

In field line random walk (FLRW) theory we describe the statistics of magnetic field lines
in magnetohydrodynamic (MHD) turbulence. The most important application is the theory
of perpendicular transport of energetic particles where it has been shown in the past that
the field line diffusion coefficient directly impacts the particle motion (see, e.g., Webb et al.
(2006), Shalchi (2010), Shalchi (2019), Shalchi (2020b), and Shalchi (2021b)).

Motivated by Voyager I measurements it is often concluded that the solar wind and the
very local interstellar medium are nearly incompressible (see Zank et al. (2019)). Therefore,
the total magnetic field can be written as

B (%) =8B, (¥)£ 4B, (X) 3 + Bo? (4.1)
and the corresponding magnetic field line equations are given by

8B, (¥ 8B, (X
X(x)dz and dy= y (%)
BO BO

dx = dz. 4.2)
In Egs. (4.1) and (4.2) we have used the constant mean magnetic field By. Since the magnetic
field components have to be evaluated along the field line, the problem of field line random
walk is nonlinear and, thus, there is no simple way to describe FLRW in the general case.
However, for slab turbulence, where by definition §B x) = §B (z), the theory of FLRW is
exact. A review of field line random walk theories was presented in Shalchi (2021a).

It is well-known that for short distances z — 0, we find the initial ballistic regime

§B?
((Ax)?)= —22 (4.3)
By
A running field line diffusion coefficient can be defined via

d
((Ax)?) (4.4)

1
dr (2) == 5 d_z

which can be used for diffusive as well as non-diffusive cases. If the field lines become
diffusive in the limit z — oo, we find

k= lim dp, (2) = const. “4.5)

For incompressible three-dimensional turbulence, the properties of magnetic field lines are
characterized by the Kubo number (see Kubo (1963))

€ 8B,
K=21-x

= . 4.
0. By (4.6)

In the latter formula, we have used the parallel and perpendicular correlation lengths of
the turbulence, respectively. In the context of solar wind turbulence one often assumes a
superposition of slab and two-dimensional modes (see Matthaeus et al. (1990)). Note, that
slab turbulence corresponds to K = 0 and two-dimensional turbulence to K = oo. In the
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following, we construct a field line diffusion coefficient by employing simple heuristic ar-
guments. The heuristic description of field line random walk was originally presented in
Shalchi (2021a) but a more detailed version can be found in Shalchi (2024).

We remember that there is always an initial ballistic regime in which the field line mean
square displacement is given by Eq. (4.3). In the considered regime the running field line
diffusion coefficient (4.4) is then

dp(2) = =3z @4.7)

corresponding to a linear increase with z. First, we consider the case of small Kubo numbers
corresponding to slab or slab-like turbulence. In this case there is only one scale and that is
the parallel correlation length £;. If we expect that field lines behave diffusively for z > ¢,
it follows from Eq. (4.7) that

§B?
ke =dp (2 =10)) =b—7 (4.8)
0
where we simply assumed that d; (z) is a continuous function of z. Exact analytical theory
predicts that for slab turbulence the diffusion coefficient is given by

L oB; L L (4.9)

Krp = L X400 :
B B

where we have used the parallel integral scale L. The form given by Eq. (4.9) is known as

quasi-linear field line diffusion coefficient. Obviously using the simple arguments provided

above gives us the correct scaling.

In the following, we construct a field line diffusion coefficient for the scenario of large
Kubo numbers. In this case we expect that there is again only one scale but this is now the
perpendicular correlation length £, . We expect the turnover from the ballistic regime to the
diffusive regime as soon as

((Ax)*)oc €. (4.10)

The latter condition simply means that field lines become diffusive as soon as the field line
spread is so large that they experience the transverse structure of the turbulence. Therefore,
we call the condition given by Eq. (4.10) the transverse complexity condition. In order to
construct the field line diffusion coefficient, we assume that this condition is satisfied at
z = L. Using this in Eqgs. (4.3) and (4.7) yields

) 8B, 8B3
& o —=L as well as k= —3Li. “4.11)
B B;

From the first equation, one can easily derive L = €, By/é B, telling us at which point along
the z-axis field line diffusion is achieved. This relation can be used in the second equation
to find

5B SB2 By, . B,
B ' BXsB. - B

KrL =

(4.12)
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Fig.23 Field line diffusion 104
coefficients versus the magnetic
field ratio 8% /B2 as obtained
from simulations performed for
incompressible isotropic
turbulence (crosses). The
diffusion coefficients are divided
by the bendover scale £,. The
dashed line represents the
quasi-linear scaling as given by
Eq. (4.9) and the solid line
corresponds to the nonlinear
scaling as given by Eq. (4.12)

1074 102 10° 102 10*
§B%/B}

which is usually called the nonlinear scaling. To summarize, we expect to find the quasi-
linear scaling (see Egs. (4.8) or (4.9)) for small Kubo number turbulence and the nonlinear
scaling (4.12) for large Kubo numbers.

Systematic analytical theories for FLRW have been developed in the past. Based on
Corrsin’s independence hypothesis (see Corrsin (1959)) and a diffusion approximation,
Matthaeus et al. (1995) derived

1 / 3 > /(FLki
kp=— | &’k Py (k) —————. (4.13)
FL Bg ( )kﬁ‘f' (KFLki)z

The latter equation has to be understood as a nonlinear equation for the field line diffusion
coefficient k. In Shalchi and Kourakis (2007a) the same assumptions have been made but
the diffusion approximation was dropped. As a consequence, the following equation was
found

2
j_zz ((Ax)2> = Big /d3k Py (/-é) cos (kuz) e7%<m"‘)2>ki. 4.14)

The latter equation can be solved analytically or numerically to obtain the field line mean
square displacement ((Ax)?) as a function of parallel position z. From this one can derive a
running diffusion coefficient via Eq. (4.4). Note, if we combine Eq. (4.14) with a diffusion
approximation of the form ((Ax)z) = 2« |z|, and after z-integrating the result, we find
Eq. (4.13). Thus, Eq. (4.14) can be understood as a generalization of Eq. (4.13). Further-
more, Eq. (4.14) can also handle non-diffusive cases of field line random walk (see, e.g.,
Shalchi and Kourakis (2007a) and Shalchi and Kourakis (2007¢)).
For large Kubo number turbulence, Eq. (4.13) predicts

8By 0B,
x{ 1
By By

K =Ly (4.15)

where we have used the ultra-scale Ly . Note, that this scaling agrees with the nonlinear
scaling (4.12) found by using simple heuristic arguments. In Fig. 23 we show an example
plot demonstrating the different regimes of field line random walk as obtained from numer-
ical simulations.
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4.2 Parallel Diffusion of Energetic Particles

Energetic particles interacting with magnetohydrodynamic turbulence experience transport
parallel with respect to the mean magnetic field. Parallel diffusion is a consequence of pitch-
angle scattering which is described by the coefficient

Dy (1) = /0 dt (e (1) (0)) (4.16)

where we have used the pitch-angle cosine u. A detailed review of parallel transport, pitch-
angle scattering, and nonlinear aspects of those processes can be found in Shalchi (2009).

The transport of energetic particles is described via partial differential equations. If we
consider transport in phase-space and care only about the parallel motion of the particles,
the simplest transport equation is (see, e.g., Shalchi (2009))

aF oF a oF
|: ] (4.17)

W‘FUH«B—Z:@ /L}im

where we have used the phase-space distribution function F = F'(u, z,t) and the (con-
served) particle speed v. Equation (4.17) corresponds to a Sturm-Liouville problem and de-
scribes a pitch-angle isotropization process. In the late-time limit, one finds a usual diffusion
equation (see again Shalchi (2009) for details)

oM M

SR gL 4.18
ar 072 (4.18)

where M = M (z, t) is the pitch-angle independent particle distribution function. Note, real
transport equations are more complicated (see, e.g., Parker’s transport equation as derived
in Parker (1965)). Furthermore, one finds for the parallel spatial diffusion coefficient used
in Eq. (4.18) the relation (see, e.g., Earl (1974))

p2 [ 1 — u2)?
w=—/ ap L= (4.19)
8 —1 Duu (/L)
The simplest approach to obtain the pitch-angle scattering coefficient is to employ quasi-
linear theory (see Jokipii (1966)). For a magnetostatic slab model, for instance, one finds
(see, e.g., Shalchi (2009))

7.[292 +00
Dyp= (1= N2)/ dky g (ky) [5 (vpky + Q) + 8 (vpky — 9)] (4.20)
0 —00

where we have used Dirac deltas and the gyro-frequency

_ 4B
mey’

Q 421

In the latter formula, we have used the positive or negative electric charge of the particle ¢,
its rest-mass m, the speed of light ¢, and the Lorentz factor y. The Larmor radius is defined
via R; = v/ although this is really the gyro radius at u = 0. Furthermore, the function
g‘[“b(k”) corresponds to the spectrum associated with the slab fluctuations. From Eq. (4.20)
one can see that particles with given v, u, and €2 interact only with specific parallel wave
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Fig.24 The pitch-angle diffusion 0.035
coefficient D, based on
quasi-linear theory (dotted line) 0.03} |
and second-order theory (solid P
line). The data is from Shalchi 0.025L 7 ]
(2005) and was obtained for slab
turbulence, a magnetic field ratio
of §B/By=0.25,and a
dimensionless rigidity of

R=Ry /¢ =0.0363

Dy /v

0015 & J

0.005 - ]

numbers k. This is called gyro-resonance. By considering Eq. (4.20), one can easily see
that

Dy (n=0)=0. 4.22)

Note, this result is a consequence of the quasi-linear approximation. In reality, particles
experience strong scattering at ;« = 0. This invalidity of quasi-linear theory is often called
the 90° scattering problem. However, this problem was already solved in Shalchi (2005) due
to the development of second-order quasi-linear theory (see Fig. 24 for an example plot).
Analytical forms of D, based on second-order theory have been derived in Shalchi et al.
(2009). Furthermore, the sharp resonance functions found in Eq. (4.20) are a consequence
of quasi-linear theory. In reality, a particle with given properties interacts with all wave
numbers. Therefore, the gyro-resonance picture strongly oversimplifies the mechanisms of
pitch-angle scattering.

Regardless of what the pitch-angle scattering coefficient D,,, is, the particle motion in the
parallel direction starts as ballistic motion. At later times diffusion is restored and parallel
transport is either described via the parallel diffusion coefficient « or the parallel mean free
path which is defined via

3
)‘H = ;K”. (423)

The running particle diffusion coefficients in parallel and perpendicular directions can be
defined via

1d

40 = 2 dr

(Az)?) and  d,.(f) = ((Ax)?), (4.24)

2dt<

respectively. A time-dependent formula for the parallel diffusion coefficient was obtained in
Shalchi (2006), namely

3k?
dy (1) =1y = - [1- ], 4.25)

The latter formula was derived from Eq. (4.17) by employing the so-called isotropic form
Dy, =(1- u?) D which was derived from second-order theory in Shalchi et al. (2009). The
parameter | used in Eq. (4.25) corresponds to the late-time parallel diffusion coefficient.
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0 "o 200 400 600 800 1000
Z2 t

Fig. 25 Shown is a particle orbit obtained from test-particle simulations in slab turbulence where the mag-
netic field ratio satisfies 5 B2 / Bg =1 and for the particle rigidity we have set R = Ry /¢ = 0.1. The left
panel shows magnetic field lines (red) and the particle trajectory (blue). The right panel shows the corre-
sponding pitch-angle cosine p versus time

In Fig. 25 we depict the particle motion in slab turbulence as obtained from test-particle
simulations. One can easily see that in reality pitch-angle scattering at «© = 0 is very strong
proving the invalidity of quasi-linear theory.

4.3 Perpendicular Diffusion of Energetic Particles

In the current section, we discuss particle transport across the mean magnetic field. Per-
pendicular transport can either be described by using simulations, heuristic arguments, or
analytical theory. In the following, we review each approach and later we compare obtained
results with each other.

4.3.1 Test-Particle Simulations

The most accurate description of perpendicular diffusion is achieved by employing test-
particle simulations (see, e.g., Qin et al. (2002b) and Qin et al. (2002a) for some early
work; see also Sect. 5.1.1). In this case we solve numerically the simplified Newton-Lorentz
equation (1.8) neglecting a large-scale electric field

-

—=4vx B () (4.26)

where we have used SI units. For the incompressible case, the magnetic field can be gener-
ated via (see, e.g., Tautz (2010) for more details)

N
8B (X)=25B Y A k), cos (12 P4 ﬂ,,) (4.27)
n=1

where we have used the polarization vector
—sing,

& =1 cos¢, |. (4.28)
0
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Fig.26 Shown is a particle orbit obtained from test-particle simulations in two-component turbulence where
the magnetic field ratio satisfies 5B / Bg = 1 and for the particle rigidity we have set R = Ry /¢ = 1.0. The
left panel shows magnetic field lines (red) and the particle trajectory (blue). The right panel shows the same
scenario but as a three-dimensional plot

What the vector I%, in Eq. (4.27) is depends on the considered turbulence model. For slab
turbulence, for instance, we would simply use k, = k,,Z where k, is the corresponding wave
number. For two-dimensional modes, on the other hand, we employ

o cos ¢n
ky=k, | sing, |. (4.29)
0

Above we have used the total turbulent magnetic field 8B, the spectrum A%(k,), and the
random numbers ¢, and B,. The parameter N in Eq. (4.27) corresponds to the number
of modes. Increasing this number improves numerical accuracy. However, one can usually
work with only N = 256. This is at least sufficient if slab or two-dimensional turbulence
is considered. The Newton-Lorentz equation (4.26) is then solved by using a numerical
integration method such as a Boris integrator (see Boris (1970)). After this step, one finds the
trajectories of the individual particles. From such orbits one can then compute the running
diffusion coefficients in the different directions of space. In order to do this, one needs a
huge number of particles such as 10* or even 10° for very accurate and smooth results. This
needs to be done by using parallel computing (e.g., using OpenMP in C++). In Figs. 25
and 26 the reader can find example orbits obtained from the simulations discussed above.

4.3.2 Heuristic Arguments

One can try to understand the basic physics of perpendicular transport by using simple
heuristic arguments (see Shalchi (2019)). First, we assume that particles follow magnetic
field lines. This is true for turbulence without transverse structure meaning slab turbulence.
Furthermore, we assume that the parallel motion is unperturbed meaning that it happens
with constant parallel velocity

z=vut with V) = v = const. (4.30)
If particles follow magnetic field lines and the field lines are diffusive, we can use

((A0)?) =260, 12l = 20 [l k. @31)
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From this we can read off the pitch-angle dependent perpendicular diffusion coefficient

D, () =v|ulkp- 4.32)

By averaging over all u, we find for the pitch-angle independent diffusion coefficient
Kl = _KFL (433)

and the perpendicular mean free path is in this case

}\.J_=§KJ_=§KFL. (434)
v 2
Characteristic for this result is that the perpendicular mean free path does not depend on
particle energy/rigidity. The formula above is called the Field Line Random Walk (FLRW)
limit because perpendicular transport is entirely controlled by the statistics of magnetic field
lines.
However, in reality we have strong pitch-angle scattering and, therefore, the parallel mo-
tion is not unperturbed but diffusive. If particles follow field lines, we can still use

((Ax)*) =2kp 12l (4.35)

If parallel transport is diffusive, we can estimate

|zl & v ((A2)?) = /2)1. (4.36)

Combining those two equations gives us

((Ax)?) ~ 26/ 2. 4.37)

A more systematic description of this type of transport yields (see, e.g., Webb et al. (2006)
and Shalchi and Kourakis (2007b))

((Ax)*) =4y, /K‘—'t. (4.38)
T

Equations (4.37) and (4.38) provide sub-diffusive transport of the form ((Ax)?) oc /1. We
conclude that parallel diffusion suppresses perpendicular transport to a sub-diffusive level.
For slab turbulence, compound sub-diffusion is the final state of perpendicular transport. In
Fig. 25 we show an example trajectory of a particle in slab turbulence. Clearly one can see
how the particle follows a single magnetic field line while experiencing strong changes of
the pitch-angle. However, if we consider turbulence with transverse complexity, particles
cannot follow field lines anymore. We assume that perpendicular diffusion is restored as
soon as particles experience the transverse structure of the turbulence. In Fig. 26 we show as
an example for such a scenario, magnetic field lines and a particle orbit for two-component
turbulence.

In the following, we employ heuristic arguments in order to construct the perpendicular
diffusion coefficient in turbulence with transverse structure. We assume that perpendicular
diffusion is restored as soon as particles satisfy the transverse complexity condition

((Ax)*)~2¢7. (4.39)
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Note, the factor 2 therein is arbitrary and could be omitted. Before condition (4.39) is satis-
fied, we have compound sub-diffusion and the corresponding running diffusion coefficient
is given by

K
d, (1)~ ik 2—2 (4.40)

which is obtained after combining Eqs. (4.24) and (4.37). To construct the late-time perpen-
dicular diffusion coefficient, we assume that diffusion is restored at time #; and, thus, we

find
K
Ay | =L 4.41
K| Krp 2td ( )

where we simply have assumed that d, (¢) is a continuous function of time. In order to find
the time 7;, we combine Eqs. (4.37) and (4.39) to obtain

Gl
g~ .
2
2K||KFL

(4.42)

The latter formula tells us how long it needs until normal diffusion is achieved. Equa-
tion (4.42) can be used in our formula for the diffusion coefficient (4.41) to find

2,2 2
[ K Kikr _ Kp

KL~ Kp 3 KFL = 2 K. (4.43)
Ly 1 1L

This result has some similarity with the result found by Rechester and Rosenbluth (1978)
and, thus, one could call this limit the CLRR (CollisionLess Rechester and Rosenbluth) limit
as originally suggested in Shalchi (2015b). Equation (4.43) can easily be written as

2
kKL _Kn
PR i

(4.44)
Ko 07

corresponding to a constant ratio of perpendicular and parallel diffusion coefficients. The
recovery of normal diffusion due to transverse complexity is sometimes called second diffu-
sion.

However, for weak pitch-angle scattering the above arguments are no longer valid be-
cause particles satisfy the transverse complexity condition before compound sub-diffusion
is established. In this case, the parallel motion is still unperturbed in the parallel direction
when the particles start to satisfy the transverse complexity condition and the perpendicular
diffusion coefficient should be similar compared to the FLRW limit as given by Egs. (4.33)
and (4.34). Furthermore, there could be an extreme scenario where particles follow ballistic
field lines while parallel transport is already diffusive. If the transverse complexity condition
is satisfied before particles start to interact with diffusive field lines, one finds the so-called
Sfluid limit

K 1) Bf

kL _ 9% (4.45)
K B§

Practically one finds CLRR and fluid limits for short parallel mean free paths and the FLRW
limit for long parallel mean free paths. Figure 27 shows as an example a comparison with
simulations. One can nicely see the turnover from CLRR to FLRW limits for an increasing
parallel mean free path.
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Fig. 27 The perpendicular mean free path versus the parallel mean free path for Goldreich-Sridhar turbu-
lence. The latter model was proposed in Goldreich and Sridhar (1995). Shown are the test-particle simulations
(black circles) performed by Sun and Jokipii (2011) as well as results obtained by employing the so-called
unified nonlinear transport theory of Shalchi (2010) which are represented by the red solid line. The black
dashed line corresponds to the CLRR limit given by Eq. (4.44) and the black dotted line corresponds to
the FLRW limit. The blue solid line was obtained by employing the heuristic composite formula as given
by Eq. (4.46). The field line diffusion coefficient is in this case krz, = 0.38¢. More details can be found in
Shalchi and Hussein (2015)

A composite formula containing FLRW and CLRR limits has been proposed in Shalchi
(2019). According to this formula the perpendicular mean free path can be estimated via

2
)»L 9ZL SKFL)\H
— & 1+ -1 . 4.46
e, 16x { 30 (¢.40)

For Ay — 0, the latter formula yields Eq. (4.44) and for A; — oo the FLRW limit as given
by Eq. (4.34). However, the fluid limit (4.45) is not contained in the composite formula.

The heuristic approach described above is based on the assumption of diffusive magnetic
field lines. However, those heuristic arguments can also be developed for the case of super-
diffusive field lines (see Shalchi (2020a)). Furthermore, the considerations presented above
are based on the assumption of zero gyro radii. The effects of a finite Larmor radius have
been discussed in Neuer and Spatschek (2006), Shalchi (2015a), Shalchi (2016), as well as
Qin and Shalchi (2016).

4.3.3 Analytical Theories

In the following, we shall describe an analytical theory that contains the complete physics
of perpendicular diffusion with the exception of finite Larmor radius effects. This approach
was originally developed in Shalchi (2021b) where the reader can find more mathematical
details. We start with the so-called Chapman-Kolmogorov equation (see Gardiner (1985) as
well as Webb et al. (2006))

+00

fLGyin) =/ dz fr (593 2) f @ 0). (4.47)

—00

@ Springer



Open Issues in Non-Gaussian Transport and Acceleration Page 53 of 90 75

Here the perpendicular particle distribution function f, (x, y;¢) is given as convolution in-
tegral of the field line distribution function f;; (x, y; z) and the parallel particle distribution
function f;(z; t). Note, that the formula above describes particles following magnetic field
lines and does not include the transverse complexity effect. The latter effect will be incor-
porated later. Considering the second moment of Eq. (4.47) gives us (see, e.g., Shalchi and
Kourakis (2007b))

—+o00

(Ax)?), (1) = / dz (A0)?) () fi (1) (4.48)

—0Q

where the subscript P emphasizes that the particle mean square displacement is considered.
The parallel distribution function therein can be replaced by a usual Fourier representation
of the form

“+o00 ”
fi@n= / dkj F (kj, 1) "1, (4.49)
—00
Using this in Eq. (4.48) yields
+o0 +00 i
((Ax)?), (1) = / dz ((Ax)?),, (2) / dk; F (k). 1) ™. (4.50)
—0o0 —00
For later considerations, it will be useful to rewrite this as
2 e 2
/ ’ /-
((ax)?%),, :_/ dk F (kj. 1)k|
—00
+o0 d2 e
x/ dz I:E<(Ax)2)n:| eIe (4.51)
—00

Therein we can use the field line random walk equation given by Eq. (4.14). Combining the
latter equation with a field line diffusion approximation allows us to write Eq. (4.14) as

d? 2 > 2
iz ((ax)y?), = B / d’k Py (k) cos (kyz) e~ rrill (4.52)
This can now directly be used in Eq. (4.51) to find
) 2 +00 5
((ax)?), 2_3_3/700 dkj F (kj.1) k|

- +oo 2 4t
x / d’k Py, (k) f dz cos (kyz) e <RI (4.53)

o]

In the following, we omit the subscript P because the remaining mean square displacement
is that of the particle and the field line mean square displacement no longer shows up in our
equation. The z-integral in Eq. (4.53) can be solved and we obtain

2 2 e ’ ’ =2
((ax) >:_B_§ - dky F (ky.1) k|

x / &k P (K) [Ry (B.K) + R (1) (4.54)
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where we have used the resonance functions

Y] Kkai
Ry (k, k) := (4.55)
+ ( H) (k” :l:k‘/‘)z + (KFLki)z

describing the coupling between particles and field lines.
The running diffusion coefficient, defined via Eq. (4.24), can also be written as (see
Taylor 1922; Green 1951; Kubo 1957, and Shalchi 2011)

dy(t)= /Tdr (ve (), (0)) . (4.56)
0

Note, in most articles the latter formula is used in the limit 1 — oo. However, Eq. (4.56)
is more general and can be employed for non-diffusive cases as well. It follows from
Egs. (4.56) and (4.24) that the second derivative of the mean square displacement is equal
to the velocity auto-correlation function

1 d* )
(v (0) =5 - ((ax)?). (4.57)

Therefore, in order to obtain this correlation function, we consider the second time-
derivative of Eq. (4.54) and find

(Ax)z)——i Tk d—zF(k/ )k ~*
T B ) Thart VR

x /d3k Poc (k) [Re (B.K) + R (%K) ] (4.58)

For the parallel distribution function in Fourier space we can use (see, e.g., Shalchi (2020b))

2
il

11
F (k1) = T [wie”" — w_e”'] (4.59)

where we have used the two parameters

v v\* 1 :

This result was derived from Eq. (4.17) by employing a two-dimensional subspace approxi-
mation. Alternatively, we can write Eq. (4.58) as

d2 5 1 +00 , ,
ﬁ((Ax) >=m/m dky & (kj. 1)

0

x / &k P (K) [Ry (K. K) + R (KoK ] .61)

where now

[wiet —w_e”']. (4.62)
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The result derived above has to be understood as a generalized compound sub-diffusion
approach where parallel transport is initially ballistic and becomes diffusive at later times.
The magnetic field lines have similar properties in the sense that they are ballistic for short
distances and become diffusive for larger distances. However, one important ingredient is
missing in Eq. (4.61), namely the fact that particles no longer follow field lines as soon as
the transverse complexity of the turbulence becomes important. We include the transverse
complexity effect via a Gaussian and finally find the following differential equation

d2 , 1 +o0 , ,
ﬁ((Ax) ):n_Bgf_m dky & (k. 1)

<Jaera@)r @x) er fr)Jeren e

Similar compared to the field line random walk equation (4.14), Eq. (4.63) corresponds to
a second-order differential equation. However, Eq. (4.63) provides the perpendicular mean
square displacement of particle orbits as a function of time 7. The approach outlined above
is called Field-Line-Particle-Decorrelation (FLPD) theory and was originally presented in
Shalchi (2021b).

The theory described above is not very tractable analytically. A strong simplification can
be achieved by using a diffusion approximation, meaning that we replace the particle mean
square displacement on the right-hand-side of Eq. (4.63) by ((Ax)?) = 2« t. To continue
we use this in Eq. (4.63) and time-integrate. After some algebra (see Shalchi (2021b) for
details) we find

v2 +00
Kl =—— / dk;
7 6n Bé oo I

« [k p ()[R (f.k) + & (E)]

1
X
v/Ay + 02k P/ GrkY) 4 ke kT

(4.64)

which we call diffusive FLPD theory. Equation (4.63), on the other hand, is called time-
dependent FLPD theory. One can show that for small Kubo number turbulence, Eq. (4.64)
becomes equal compared to the so-called Unified NonLinear Transport (UNLT) theory de-
veloped in Shalchi (2010). For large Kubo number turbulence, on the other hand, a different
result is obtained.

For the special case of two-dimensional turbulence, the components of the spectral tensor
are given by

N a8k Kk
Pun (K) =g (kL)T[(SW— ki] (4.65)

where n, m = x, y. All other tensor components are zero due to the fact that two-dimensional
modes are incompressible. For the spectrum Shalchi and Weinhorst (2009) suggested to use
the following form

(ki €p)?
[1+ (kp€1)?]

2D _ E 2
g k)= p D(s,q)éB°¢, (4.66)

(s+q)/2°
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Fig. 28 Shown is a comparison of simulations with different analytical theories for slab/2D turbulence. The
left panel shows the perpendicular mean free path versus the parallel mean free path and the right panel shows
the ratio A | /A| = k1 /|| versus the parallel mean free path. The solid lines correspond to the diffusive FLPD
results as given by Eq. (4.68) and the dots represent the test-particle simulations published in Arendt and
Shalchi (2020). The diamonds represent time-dependent FLPD theory as given by Eq. (4.63). For comparison
we have also shown the NLGC/UNLT results without correction factor (see Eq. (4.69)), meaning that we have
set a2 =1 (dotted lines). To obtain the visualized results the following parameter values have been used:
8B%/B} =1,y =, q=3,andaslab fraction of 20%

In the latter form we have used inertial and energy range spectral indexes s and ¢, respec-
tively. The function D(s, ¢g) is due to normalization

r(=t)
or (5541 (44)
More details can be found elsewhere such as in Shalchi and Weinhorst (2009).
Using Eq. (4.65) in (4.64) yields
T? [ g0 k1)
=— dk 4.68
LT3R /0 . (4.68)

ka‘( v/)\” +Klki +U/)\.H +I(J_ki

corresponding to diffusive FLPD theory for the case of two-dimensional turbulence. Ana-
lytical solutions of Eq. (4.68) have been discussed in Shalchi (2022).

Note, FLPD theory explicitly contains the field line diffusion coefficient x; coming from
the compound sub-diffusion phase of the transport. In the formal limit «, — 0, Eq. (4.68)
would simplify to

K| for Kk — 0. (4.69)

7.“}2 00 gzD(kJ_)
= oo | dki————>
3BO 0 U/)»H +Klkl

This agrees with the two-dimensional limit of UNLT theory and the nonlinear guiding cen-
ter theory (NLGC) developed by Matthaeus et al. (2003). However, the term with k. in
Eq. (4.68) significantly reduces the perpendicular diffusion coefficient and is, therefore, very
important and must not be neglected (see, e.g., Fig. 28 of the current paper). In Table 1 we
summarize the asymptotic limits contained in diffusive FLPD theory. For short parallel mean
free paths and large Kubo numbers we find that particle transport is a combination of CLRR
diffusion as given by Eq. (4.43) and the fluid limit given by Eq. (4.45) as demonstrated
systematically in Shalchi (2022). This is a highly nonlinear regime where magnetic field
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Table 1 Listed are the asymptotic limits contained in diffusive FLPD theory. The Kubo number is defined
via Eq. (4.6) and the parallel mean free path A| is an external parameter of the theory which needs to be
provided. Usually A is obtained from simulations. The /ybrid regime has to be understood as a mixture of
CLRR (CollisionLess Rechester and Rosenbluth) and fluid limits. The reduced nonlinear FLRW limit is given
by Eq. (4.72)

Parallel Mean Free Path Kubo Number Diffusive FLPD Theory

M/ <1 K «1 CLRR Limit

A/ >1 K«1 Classical FLRW Limit

My <1 K>1 Hybrid Regime

r/>1 K>1 Reduced Nonlinear FLRW Limit

lines show nonlinear behavior and perpendicular transport is strongly influenced by parallel
transport. For long parallel mean free paths and large Kubo numbers, on the other hand, we
find a reduced FLRW limit where the field lines are still in the highly nonlinear regime. This
limit can quickly be derived from Eq. (4.68). In the formal limit A; — oo, the latter formula
simplifies to

1)2 T

3 (UKFL/\/g + KL) Bg

Ky = / dk, g*P (k) ki ?. (4.70)
0

The second factor therein, together with the integral, corresponds to the two-dimensional
field line diffusion coefficient squared and, thus, we can write

U2 KI%L
Kl =———. 4.71)
3 UKFL/\/§+KL

The latter equation corresponds to a quadratic equation for x; which has a single physical
solution and that is

V5—1v v
TEKFL %0.7151(”‘ (472)

corresponding to a reduced field line random walk limit (compare with Eq. (4.33) of the
current paper). The two limits obtained for small Kubo numbers are as described by diffusive
UNLT theory as discussed in Shalchi (2015b) and Shalchi (2020b).

In Fig. 28 we show a comparison between different analytical theories and simulations
for two-component turbulence. In previous work there was only agreement between theories
and simulations if a correction factor, commonly called a2, was introduced and if this was
assumed to be a2 =1 /3. FLPD theory, on the other hand, agrees with simulations without
the need of this factor nor does the theory contain any other free parameter.

K| =

4.4 Solar Energetic Particles and Transition to Diffusion

Solar energetic particles (SEPs) have provided an interesting testbed for understanding
charged particle propagation in turbulent magnetic fields. As analyzed from the SEP ob-
servations, the parallel mean free path within the inner heliosphere is often considered to
have the so-called Palmer consensus range of values from 0.01 to 0.3 au (Palmer 1982),
with also considerably longer parallel mean free paths inferred (e.g. Torsti et al. 2004). As

@ Springer



75  Page 58 of 90 F. Effenberger et al.

most SEP events are observed with in situ instruments on spacecraft at distances less than
1 au, the transport of the observed SEPs, particularly the first-arriving SEPs is not necessar-
ily diffusive or ballistic, which complicates analysis of SEP events.

Until recently, SEP transport has mostly been considered from the perspective of trans-
port along the mean magnetic field, as the cross-field transport due to turbulence was con-
sidered negligible (e.g. Palmer 1982). This paradigm was challenged particularly by SEP
events that were observed simultaneously with multiple spacecraft at large heliolongitudinal
separation (e.g. Dresing et al. 2012). Models with the Fokker-Planck equation containing
diffusion in velocity space, and spatial guiding centre diffusion across the mean field, have
been extensively used to analyse the possible consequences of SEP transport in the inner he-
liosphere (e.g. Zhang et al. 2003; Droge et al. 2010; He et al. 2011; Qin et al. 2013; Strauss
and Fichtner 2015; Strauss et al. 2017).

4.4.1 Diffusion Description and First-Arriving Particles

The goal of analysis of SEP observations is often to deduce their source at or near the Sun,
which predicates the necessity to understand the arrival of the first particles to the in situ
instruments in the interplanetary space. However, spatial diffusion as a description is not
physical for the first particles arriving at a distance from their source. This can be seen by
inspecting the solution of a simple diffusion-convection equation for density n(x, z,1) of
particles propagating with velocity v along the z-axis while diffusing with diffusion coeffi-
cient k along x-axis,

on(x,z,t)  on(x,z,t)  9*n(x,z,1)
+v =K .
ot 0z ax2

(4.73)

The solution to this equation, for an impulsive injection ny(x, z, 1) = 6(¢)8(x)5(2), is given
as

no(0,z —vt,0) o/ Cher)

2Kt

As can be seen in Eq. (4.74), the velocity v of the particles only features in the distribution
along the z-axis. In the direction of spatial diffusion (here along the x-axis, normal to the
direction of convection), the solution is finite everywhere for any ¢ > 0O for any non-zero
diffusion coefficient «. This clearly violates causality, which, for the given initial conditions,
can be written as

nx,z,t)= (4.74)

n(x, 2,0 raya.,, =0 (4.75)

This causal limitation is outlined also in Chandrasekhar (1943), and reported in SEP simu-
lations by Strauss and Fichtner (2015).

The causality problem has been recently addressed by several authors. Pei et al. (2006),
Laitinen and Dalla (2019), Moradi and Li (2019) and Chhiber et al. (2021) analysed the
lengthening of the path due to field-line random walk, with the goal to understand the delay
caused by field-line random walk to the arrival of the first SEPs to the in-situ instruments
in the interplanetary space. van den Berg et al. (2021) and Strauss et al. (2023) used es-
sentially the same concept to derive a streaming-reduction factor for the streaming velocity.
Chhiber et al. (2021), van den Berg et al. (2021) and Strauss et al. (2023) arrive to the same
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solution for the effect of turbulence on the path length s or particle velocity v, compared to
undisturbed path length s¢ or vy, as

for §B?> « B2, with the free parameter a depending on turbulence geometry for Chhiber
et al. (2021) and considered as probability of the particle to follow the field line for Strauss
et al. (2023). Unlike the other three studies, Laitinen and Dalla (2019) considered the
random-walk as stochastic process, and derived the mean lengthening of the path as a mean
of Wiener process as

s ] 8B?
S0 =lta B 2’
where a = [0, 1] is a geometric factor.

While the studies discussed above have shown some success in estimating the effect of
field-line random walk on the first-arriving SEPs, it should be noted that the fundamental is-
sue posed by spatial diffusion remains: The solution of Eq. (4.74) fails to fulfill the condition
given by Eq. (4.75) for any non-zero v and k.

4.4.2 Decoupling of SEPs from Turbulent Field Lines

An important question for the SEP transport in the inner heliosphere is whether they have
had sufficient time to decouple from the random-walking field lines to become fully diffusive
with respect to the mean magnetic field direction. As discussed above, the parallel mean
free path of the SEPs can be a substantial fraction of the distance between the source and
observer. Thus, a significant portion of the particles may have not scattered considerably.
While the bulk properties of the particles might follow the diffusive behaviour, the first
SEPs to arrive to the observer may still be following the random-walking field lines, rather
than diffusing freely in space guided by the field-line random walk.

The behaviour of simulated particles analysed at fixed locations in space as opposed to
analysed as the bulk reveals interesting details on the physics of SEP propagation in turbulent
magnetic fields. Laitinen et al. (2013) analysed full-orbit simulated SEPs at 1 au from the
particle source Q =6(¢)8(x)8(y)8(z)8(1 — ), in magnetic field configuration

B(x,y,z)=Bo:+8B(x,y.2)

with the magnetic fluctuations Sé(x, v, z) defined as the often-used slab/2D composite
model of turbulence (e.g. Giacalone and Jokipii 1999). The variance of particles along x-
axis at z =1 au is shown in Fig. 29 with the black curve. As can be seen, the evolution of
the variance is characterised by a constant value for the first 10 hours, followed by a grad-
ual transition towards a linear trend consistent of diffusive evolution. The constant value
is at 02(z = lau) = 130ré, consistent to that of the variance of the random-walking field
lines, 0%, = 2kr1z, where kp; = 2.1 x 10"%cm?s~! was obtained from the magnetic field
configuration used in the simulations.

To compare the full-orbit simulations against diffusion-convection approach to particle
transport, Laitinen et al. (2013) solved the variance at 1 au for a Fokker-Planck equation with
pitch-angle and cross-field diffusion, with the diffusion coefficients obtained from the full-
orbit particle simulations. As can be seen with the dashed red curve in Fig. 29, the variance
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Fig. 29 Variance of particles along x-axis at z = 1 au, with z-axis along the background magnetic field,
and particle source Q = §(¢)8(x)8(y)8(z)8(1 — ). Black curve shows the variance obtained with full 3D
simulations, whereas the dashed red curve shows the variance obtained with Fokker-Planck equation. The
dash-dotted blue curve shows the variance consistent of diffusing population with initial Gaussian shape

Fig.30 The scheme for
analysing the decoupling of the
particles from their initial field
lines. The particles are injected at
a given location (x,, Yo, o), and
recorded when they next return to
the original coordinate z f =720
along the mean field, in
z-direction

obtained with the Fokker-Planck equation shows a continuous linear trend in variance from
the arrival of the first particles at ¢+ = lhr. Thus, the results of Laitinen et al. (2013) would
seem to indicate that the diffusion description is not a valid description for SEPs in the early
stages of an SEP event: rather, the SEPs, when arriving to 1 au, are still in the ballistic phase
of their propagation, propagating deterministically along the stochastically-random walking
field lines.

The second implication that can be drawn from the results of Laitinen et al. (2013) is the
long duration of nearly constant o, (z = lau) seen in Fig. 29. If we assume that the particles
arrive at 1 au along random-walking field lines, but also diffuse with respect to these field
lines, one would expect that the variance would be increasing linearly as

o.(z=1lau)® =2kr. 2+ 2k, t.

We have included this variance in Fig. 29 as the blue dash-dotted curve. As can be seen, the
blue curve clearly deviates from the variance obtained from the full-orbit simulations. This
deviation implies that the particles remain on their random-walking field lines for consider-
able time: only at long timescales can the cross-field propagation be considered diffusive.
The question of the decoupling of particles from random walking field lines was further
investigated in Laitinen and Dalla (2017), where the simulation setup, again using 3D full-
orbit test-particle simulations, allowed specifically to investigate the cross-field propagation
of particles from their original field line. In the scheme, depicted in Fig. 30, the cross-field
deviation of each particle from their original field line is recorded when the particle returns
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Fig.31 Deviation of 10 MeV
protons in turbulent magnetic
field. The larmor radius of the
protons is 0.13r. The white
symbols depict the median of
deviations within a time range,
and the error bars the upper and
lower quartiles. The trends at
short, intermediate and long
timescales are shown with solid
black curves

to the same location along the mean field, in the z-direction. In this way, a particle remaining
coupled to its original random-walking field-line would deviate maximum 2 Larmor radii
from its initial position.

Figure 31 depicts typical behaviour of the deviation in x-direction investigated in Laiti-
nen and Dalla (2017). The scatter-plot (red circles) shows the square of the deviations for a
simulation run of 10 MeV protons with § B2/ B> = 0.316 and slab fraction of 20%, as a func-
tion of a Larmor period 7},. The white symbols show the median deviations as a function of
time, with the error bars showing the upper and lower quartiles, and the purple dashed curve
shows the Larmor radius scale.

As can be seen, the evolution of the cross-field deviation of the particles can be divided
into three timescales. At short timescales, the median deviation increases slightly superdiffu-
sively, with Ax? oc x® where o varies between 1 and 2, depending on turbulence amplitude
(Laitinen and Dalla 2017). When the median deviation reaches the Larmor radius scales, at
t ~ 1), the parallel scattering time scale, the population begins to spread with increased su-
perdiffusivity, with o between 3 and 4, until at ¢ ~ 107 diffusive trend is reached (Laitinen
and Dalla 2017).

To understand when the delayed decoupling of particles from their field lines causes
the initially-wide, asymptotically diffusive SEP cross-field spread, as seen in Fig. 29, we
must uncover what causes the three-phase evolution of the cross-field deviation shown in
Fig. 31. Some recent research does provide suggestions for the reason of the uncovered
behaviour of the particle deviations. Fraschetti and Jokipii (2011) investigated how particles
propagate across the mean field due to stochastic drifts present in the fluctuating fields, as
opposed to following random-walking field lines. The stochastic drifts can be considered as
a mechanism that is responsible for the decoupling of particles from field lines. The trends
due to the stochastic drift mechanism on the cross-field deviation of particles are shown in
Fig. 32 with the magenta lines for isotropic (dashed curve) and slab-dominated (solid curve)
turbulence, along with the deviations measured in the simulations with 2D-dominated (20%
slab contribution, green symbols) and slab-dominated (99% slab contribution, blue symbols)
(Laitinen and Dalla 2017).

As can be seen in Fig. 32, the simulations replicate the sub-diffusive Fraschetti and
Jokipii (2011) slab trend well, whereas the 2D-dominated simulations show stronger ten-
dency to superdiffusion, somewhat inconsistent with the Fraschetti and Jokipii (2011) result.
However, the discrepancy may be caused by the use of different turbulence model (isotropic
in Fraschetti and Jokipii (2011) as opposed to slab/2D composite model in Laitinen and
Dalla (2017)).
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Fig.32 The deviation of 10 MeV protons in 2D-dominated (green) and slab-dominated (blue) turbulence, as
a function of the distance the particles have traveled. The dashed and solid magenta lines show the Fraschetti
and Jokipii (2011) solutions for diffusion due to stochastic drifts for isotropic and slab turbulence models, re-
spectively, and the dashed green and solid blue vertical lines the scale where neighbouring field lines separate
exponentially, as derived by Ruffolo et al. (2004). The vertical black line shows the Larmor radius scale

The next crucial phase is the superdiffusive spreading of particles, which indicates the
initiation of the decoupling of particles from their field lines. Laitinen and Dalla (2017) sim-
ulations suggested that the superdiffusive spreading starts when the median deviation of the
particles reaches the particle Larmor radius scale. It could be thought then that the separation
requires the particle to effectively drift away from its initial field line. The timescale for this
separation then would be related to the slightly superdiffusive increase of the deviation dur-
ing the first phase. This timescale concept is similar in heuristics as that suggested by Bieber
and Matthaeus (1997), and also the suggestions where the relevant lengthscale would be the
correlation scale as in Eq. (4.42). However the latter works relate the timescale to fieldline
random walk, whereas the Laitinen and Dalla (2017) work suggest dependence only on the
Larmor radius scale.

Another possible explanation for the decoupling comes from the similarity of the onset
timescale of the superdiffusive phase with the parallel scattering timescale in 2D-dominated
turbulence, reported by Laitinen and Dalla (2017). If we consider the parallel scattering as
distinct “events”, it could be thought that the particle’s gyrocentre is scattered as well as the
particles velocity along the magnetic field. However, scattering cannot be the sole reason
for the decoupling of the particles from their field lines: in the simulation scheme used by
Laitinen and Dalla (2017), all recorded particles scattered back, as per design. The scat-
tering timescale, however, does imply a timescale where large changes in the (pitch-angle
-dependent) gyroradius of the particles take place, which may in it self imply larger probabil-
ity for the particle to decouple from its initial field line. As a caveat for the potential signifi-
cance of the parallel scattering timescale, it should be noted that Laitinen and Dalla (2017)
report much longer decoupling timescale in slab-dominated turbulence, of order 207;.

The decoupling could also be explained to be caused by the separation of the fieldlines
themselves. Ruffolo et al. (2004) investigated the rate at which two neighbouring field lines
separate. They found that neighbouring field lines separate initially slowly, until at length
scales

Jsi
1= fa
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where £, is the turbulence correlation scale and f;; the slab fraction of the turbulence
(in terms of turbulence variance), the field lines separate exponentially to reach the long-
distance limit that is consistent with field-line random walk.

We show ¢, for the 2D- and slab-dominated cases in Fig. 32 with the dashed green
and solid blue vertical curves, respectively. As can be seen, the slab ¢, coincides well with
turnover to super-diffusive spreading seen in the simulations (blue symbols). However, £,
doesn’t seem to be consistent with the 2D simulated case (green symbols).

The final, time-asymptotic phase of the evolution of the cross-field deviation of the parti-
cles to diffusive trend, is more readily understandable. Whatever the process that decouples
the particle from its original field line, at timescale 7, will take place again at that timescale,
however stochastically, and this stochasticity will give rise to diffusive behaviour akin to that
of the field lines.

4.5 Summary of Section 4

Over the years we have developed a more complete understanding of the physics of per-
pendicular transport. There is overall good agreement between simulations, heuristic argu-
ments, and analytical theory (see, e.g., Figs. 27 and 28). This is in particular the case for
two-component turbulence which is often used to approximate solar wind turbulence. Time-
dependent FLPD theory contains initial ballistic, intermediate sub-diffusive, as well as final
diffusive regimes. When normal diffusion is established, the analytical form of the perpen-
dicular diffusion coefficient depends on the parallel mean free paths as well as the Kubo
number (see Table 1 for more details).

Significant progress has been achieved in the theory of particle transport across the
mean magnetic field (see Shalchi 2020b for a review, but also Shalchi 2021b). This con-
cerns heuristic arguments as well as systematic analytical theory. Furthermore, detailed test-
particle simulations can be performed for realistic turbulence models. FLPD theory shows
remarkable agreement with simulations for the slab/2D model. Of course, the question arises
whether FLPD theory is always correct and accurate. Furthermore, FLPD theory contains
the field line diffusion coefficient (see, e.g., Egs. (4.55), (4.63), and (4.64)). To date, it is
unclear which field line diffusion coefficient has to be used for slab/2D turbulence. Is it the
total diffusion coefficient found in this type of turbulence model or is it the field line diffu-
sion coefficient associated with the two-dimensional modes? This problem does not occur
in three-dimensional single mode turbulence where there is only one field line diffusion
coefficient.

Although we presented, in the context of SEPs, some ideas on what can contribute to
the decoupling of particles from their field lines, we do not have a complete understanding
of how to model the initial phases of an SEP event. Laitinen et al. (2016) modelled the
SEP transport as diffusion from random-walking paths instead of the mean field. While this
produces a reasonable estimate for the process, it ignores the initial slow phase of the particle
decoupling from the random-walking field lines. An improvement could be to consider a
timescale, a finite “memory” for the particles of their past path. However, whether such a
model would be mathematically tractable is a wholly different issue.

5 Insights from Full-Orbit Test Particle Simulations in Synthetic and
MHD Turbulence

Understanding the influence of plasma turbulence on the propagation of fast charged parti-
cles, such as cosmic rays, is a fundamental challenge for heliophysics and astrophysics. As
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already indicated in the previous chapters, studies of full-orbit particle tracing in synthetic
or MHD turbulence can inform the transport regimes and coefficients of charged particle
transport, which is offten assumed to be diffusive. However, turbulence that exhibits non-
Gaussian and non-local structures may also lead to non-diffusive transport behaviour. In
this chapter, we will summarize some of the challenges associated with the full-orbit ap-
proach in synthetic turbulence and discuss features that arise when non-Gaussian structures
are considered.

Cosmic ray (CR) transport characteristics depend on the efficiency and mechanism of
their scattering in turbulent magnetic-fields. The correlation length ¢ of the turbulent cascade
(Batchelor 1953) with energy spectrum P (k) introduces several distinct transport regimes.
CRs with r, >> £ undergo scattering by small angles of the order ~ £/r, leading to their
diffusion coefficient scaling as k o< E 2 (Subedi et al. 2017), as observed in numerical sim-
ulations and laboratory experiments (Chen et al. 2020). We do not have a complete under-
standing of CR transport in the regime r, < £, as the nature of the pitch-angle scattering
mechanism is complex, with theories including “extrinsic” (cascading) and “intrinsic” (gen-
erated in kinetic instabilities) turbulence (see, e.g. Kempski and Quataert (2022) and Hop-
kins et al. (2022) for recent overviews). Observations of this regime suggest, however, that
ko E% o rg with 0.3 <8 < 0.5 (see Becker Tjus and Merten (2020) for a review).

Initially, Alfvénic turbulence was favored to explain these observations. However, subse-
quent studies argued for inefficient gyroresonance scattering in this scenario due to damp-
ing (Skilling 1975b; Hopkins et al. 2022), intermittency (Shukurov et al. 2017) and scale-
dependent anisotropy (see, e.g., Goldreich and Sridhar 1995; Chandran 2000; Lithwick and
Goldreich 2001; Cho and Vishniac 2000; Maron and Goldreich 2001; Cho and Lazarian
2003; Boldyrev 2006; Mason et al. 2006 and Schekochihin 2022 for a review), making fast
MHD modes more attractive (Yan and Lazarian 2002) because they are believed to have an
isotropic cascade (Cho and Lazarian 2002). Assuming an undamped, isotropic turbulent cas-
cade, quasi-linear theory (QLT; Jokipii 1966) relates the parallel energy spectrum P (k) o k\JI/
to the CR diffusion coefficients scaling as k oc E>~7, consistent with observations in case
of Kolmogorov (y = 5/3; Kolmogorov 1941) and Iroshnikov-Kraichnan (y = 3/2; Irosh-
nikov 1964; Kraichnan 1965) turbulence. The underlying assumption of QLT is that the
mean free path A ~ «/c ~ ry/f(ry) is determined by the fraction of the turbulent power
located at gyroresonant scales, f(ry) = f;f/rg dkP(k)/B? < 1. In contrast to the approach
adopted in QLT, CR pitch-angle changes could be introduced intermittently at sharp field
bends with large curvature (Lemoine 2023; Kempski et al. 2023; Malara et al. 2023). In this
context, f(ry) < 1 is determined by the volume-filling fraction of sharp field bends capable
of scattering CRs, which requires additional characterization of the turbulent magnetic field
beyond just the energy spectrum P (k), such as the distribution of field line curvature. An
even more efficient scattering mechanism is postulated in the theory of Bohm diffusion, with
mean free paths of the order of the gyroradii, assuming a maximum volume-filling fraction
f =1 of scatter centers. Because of its small mean free paths and efficiency in isotropizing
particles, this type of transport is often employed in acceleration models (Bell 2004; Blasi
2013; Brunetti and Jones 2014). It is important to note that acceleration models have limited
predictability without a proper understanding of diffusion characteristics.

In addition to the impact of fluctuations on resonant scales, large-scale fluctuations,
where most of the turbulent energy is stored, shape magnetic-field lines and large-scale mag-
netic mirrors that contribute to diffusivity (Felice and Kulsrud 2001; Beresnyak et al. 2011;
Barreto-Mota et al. 2025). Large-scale fluctuations also introduce localized roughly ordered
field lines, extending the applicability of QLT scaling results to the context of isotropic
turbulence without a global guide field (Giacalone and Jokipii 1999; Subedi et al. 2017;
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Dundovic et al. 2020; Reichherzer et al. 2022b; Kuhlen et al. 2022; Pezzi and Blasi 2023).
Furthermore, in high-beta plasmas, kinetic instabilities grow thermal Larmor-scale magnetic
fluctuations that introduce another small-angle scattering transport regime. In galaxy clus-
ters, this may affect CRs up to TeV energies (Reichherzer et al. 2025; Ewart et al. 2024).

5.1 Issues with Current Full-Orbit Synthetic Models

Integrating particle trajectories through magnetic fields by solving the equation of motion
can be achieved efficiently with various different numerical schemes. It has been shown that
the statistical transport properties, such as the diffusion coefficient, converge for different
schemes towards small step sizes for a given magnetic field snapshot.

While the numerical integration schemes are robust, there are various challenges in mod-
elling realistic astrophysical turbulence. Most synthetic fields used in the astrophysical com-
munity are characterized by only the following few key properties.

1. The root mean squared strength 6 B = 4/ (Séz(?)). Typical values are § B ~ 1 uG for the
interstellar medium (ISM) and intracluster medium (ICM) (Govoni et al. 2017).

2. The distribution of magnetic energy E(k), typically defined by a power-law in Fourier
space, i.e.

SB? — k%!
Ety= 5 pe @~ Dl (5.1)
& 11— (kmax/kmin)a7
between the injection wavenumber ki, = 27/l and the disspiation scale kp,x =
21/ Imax- The correlation length indicates the scale over which the magnetic field varies
and is defined as (Harari et al. 2015),

87‘[2 o0 dk lmax a—1 1— (lmin lmax)o(
8B? )y k 2 a 1= (nin/Imax)®

Typical values are [,x ~ 10 pc and /i, ~ 100 kpc in the ISM and ICM (Kunz et al.
2022) respectively. In the heliosphere, typical values for /,,,x will be of the order of the
solar radius or smaller.

3. Different models and geometries of turbulence are employed in the theoretical and nu-
merical modelling of astrophysical systems. Geometries range from one-dimensional
(1D) to three-dimensional (3D) structures, with diverse theoretical frameworks like those
developed by Kolmogorov, Kraichnan, Goldreich & Sridhar providing insights into their
characteristics.

4. In astrophysical studies of CRs in synthetic turbulence, the probability density function
(PDF) of turbulence is often assumed to be Gaussian without intermittency. Recent stud-
ies showed that intermittency is an important ingredient for realistic CR transport.

(5.2)

Cc

These properties comes with challenges that are discussed below.
5.1.1 Achieving Large Inertial Ranges

Realistic modelling of astrophysical turbulence over a wide range of wavelengths is crucial
for studying regimes in astrophysical environments. Since current magnetohydrodynamic
and particle-in-cell simulations only allow for limited energy ranges, synthetic magneto-
static turbulence models are often employed in astrophysical models (Mertsch 2020, see
also Sect. 4.3.1).
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The generation of synthetic magnetic turbulence with these characteristics used for CR
studies is performed in the literature via (nested) grid and grid-less methods.

Grid Method The turbulent magnetic field vectors 8 B(F) are stored on a discrete grid with
N3 grid points (in 3D) with spacing s, and a total grid box side length of N -s,. The sampling
theorem constraints the fluctuations that fit into the grid box

lmin = 255 ’ lmax <N-ss. (53)

Thus, the inertial range is severely limited by the number of grid points N3 that can be stored
in the memory: I/ lmin < N.

Nested-Grids Method To create larger inertial ranges of the turbulence cascade, nested grids
are proposed in Giacinti et al. (2012). Individual grids with different dynamical ranges lnin i
— Imax,; are combined to construct a larger dynamical range. In this approach, § B; of each
small interval between /; and /;,, is defined as

lol—l _ lc{—l

88’2 _ (SBZ max,i minl.i ) (54)
v = lnin

Continuation (usually periodically) of the individual grid boxes populates the entire spatial
simulation volume with synthetic turbulence. An example of this is shown in Fig. 33.

Grid methods have the advantage of only interpolating the magnetic field at a desired
location in each simulation step due to prior initialization on a discrete grid. This leads to
fast calculation of particle trajectories but comes with the disadvantage that interpolation
violates the divergence freedom of the magnetic field. Additionally, grids must be continued
to prescribe the magnetic field in the entire simulation volume, causing the magnetic field
structure to repeat itself on scales dictated by individual box sizes. This can result in numer-
ical artefacts, which can be minimized by choosing smaller dynamical ranges than allowed
by the sampling theorem and introducing a padding factor fp,,q (Mertsch 2020). Specifically,
2 frad Ss S Imin and Imax S N 85/ faa- The grid sizes and fluctuation ranges of individual parts
of the turbulence cascade are constrained by memory size and the padding factor.

Gridless Method Gridless methods sum over predefined plane waves at any arbitrary posi-
tion 7 via

N-1
8B(7)=Re (Z By e”‘"‘;> , (5.5)

n=0

where the wavevectors are denoted by k,. Instead of precomputing and storing the turbulence
on a discrete grid, the magnetic field vector can be computed at an arbitrary particle position
r via

8B() =25B Y E,A, cos (kn i, -F+,3n), (5.6)

n=1

with amplitudes A, determined by the turbulence power spectrum as well as uniformly
distributed phase factors 8, [0, 27 [, unit wavevectors k,,, polarizations &, satisfying k,, - §, =
0. By analyzing the turbulence’s statistical properties and CR transport characteristics for
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Fig. 33 Energy spectrum of combined turbulence and example magnetic-field slice plots in the simulation
space of each part of the turbulent cascade. Superposition of the small slice plots of the periodically continued
(boxes are separated by white bars) subgrids results in the large slice plot of the total field with a large inertial
range. For visual purposes, the inertial range is chosen to be small with /;max / [min = 2 for each subgrid. The
padding factor fpaq = 2 results in only each third box being identical

different modes, Schlegel et al. (2020) conclude that 10 log-spaced wavemode decades of
inertial range are sufficient.

We proceed with comparing the different approaches to generate large inertial ranges.
To avoid issues with periodic continuation of tiny boxes and potential interpolation issues
within the largest fields, we choose gridless turbulence at large and small scales. Within
the central part of the inertial range, we use either gridless turbulence or nested grids. Fig-
ure 34 compares the structure functions S, for both models using different values for the
wave modes and the padding. Panels a) and b) show the deviation from the theoretically
expected structure function for Kolmogorov turbulence using the complete gridless and the
combination of nested-grids and gridless turbulence, respectively. The analysis in the lower
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Fig. 34 Structure functions S, of different realizations and parameter combinations including panels a) and
b) that show the deviation from theory prediction for Kolmogorov turbulence

panels reveals convergence towards theory with an increasing number of wave modes and
large padding of nested grids.

5.1.2 Intermittency

Studying trajectories of particles in static snapshots of MHD-generated turbulence re-
veals anomalous transport properties, notably in disagreement with results obtained for the
random-phase turbulence model underlying QLT (Shukurov et al. 2017; Liibke et al. 2024),
such as superdiffusive transport in coherent structures and subdiffusion due to confinement
in large-scale magnetic mirrors. The role of coherent structures in fast particle transport is
discussed by Shukurov et al. (2017) and superdiffusive behavior is investigated by Hu et al.
(2022). The role of magnetic mirrors in MHD turbulence is mentioned in Beresnyak et al.
(2011) and further discussed by Lazarian and Xu (2021) and Zhang and Xu (2023), however
a conclusive understanding of the role of magnetic mirrors in anomalous particle transport
remains to be achieved, which is in part certainly due to the complicated nature of turbulent
structures at work. Further, it was recently pointed out by Lemoine (2023) and Kempski
et al. (2023) that scattering occurs mainly due to sharp fieldline bends, which exhibit a
distribution different from the usually employed models for magnetic turbulence. How CR
transport is shaped by coherent structures and intermittent scattering in a turbulent dynamo
without a mean field was recently explored by Liibke et al. (2025).

These properties are illustrated in Fig. 35 and noticeably affect the time-dependent trans-
port behavior, as shown in Fig. 36, where particles in MHD turbulence exhibit an extended
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Fig. 35 Example trajectory of a charged particle with rg/ly = 0.004 in isotropic MHD turbulence. The
trajectory is color-coded by its instantaneous pitch-angle cosine i = cos 6. Notable are three distinct modes
of transport: extensive fieldline wandering with mean free paths ~ O(lp), sudden localized scattering events
due to sharp magnetic fieldline bends, and localized confinement in magnetic bottles (highlighted in the inset)
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Fig. 36 Comparing the running mean squared displacements of different models for synthetic turbulence at
three different particle gyroradii rg. The red line indicates when the mean squared displacement crosses the
size of the computational box with periodic boundaries. The MHD case is characterized by a pronounced
bump due to superdiffusion along coherent structures, which dominates at early times, followed by transient
subdiffusion due to long mirror confinement, before finally setting in diffusive equilibrium. Simple coherent
structures introduced by the LM method reproduce this behavior somewhat at small particle gyroradii, and
simple intermittent fields produced by the CC method closely resembles the well-known Gaussian RP method
with only slightly increased diffusion

superdiffusive phase, followed by a transient subdiffusive phase, especially for low energy
particles and small gyroradii, before settling in asymptotic diffusive behavior, which results
from particles running repeatedly over the same periodic simulation box. Asymptotic diffu-
sion coefficients obtained from MHD turbulence and several synthetic models, including the
usual Gaussian random phases model, are shown in Fig. 37, which substantiates the overem-
phasis of random scattering in synthetic models. Note that these results account for differ-
ences in the spectra by also comparing the respective randomized-phase fields as shown in
Liibke et al. (2024). The super- and subdiffusive transport characteristics can potentially be
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Fig. 37 Converged diffusion coefficients for charged test particles in different models for magnetic turbu-
lence. Particles diffuse the fastest in MHD turbulence due to the presence of extended coherent structures,
and the slowest in standard random phases (RP) turbulence. Including intermittency via a continuous cascade
(CC) and simple coherent structures by Lagrangian mapping (LM) does not change the diffusion coefficients
significantly from the RP case. Only at low r a slight enhancement is noticeable

described with modelling approaches discussed in Chap. 2. In this section we will discuss
the shortcommings of the usually employed Gaussian synthetic turbulence fields and discuss
the role of intermittency, i.e. broken scale invariance.

The vector field given by Eq. (5.5) approximates magnetic turbulence as a superposition
of plane waves with random phases and a prescribed phenomenological power spectrum. It
is essentially a Gaussian random field, which exhibits statistical self-similarity within the
inertial range (i.e. statistical quantities such as averages of fluctuations (f (5 B,)) at scale r
are scale-invariant). Despite being only a crude representation of realistic magnetic turbu-
lence, it enjoys wide-spread recognition due to its conceptual simplicity (see Sect. 4 and,
e.g., Giacalone and Jokipii 1999; Casse et al. 2001; Kulsrud 2020). On the other hand, one
can invoke intermittency of magnetic turbulence, i.e. broken scale-invariance of statistical
quantities caused by a locally non-uniform energy dissipation rate, which leads to the forma-
tion of coherent structures (e.g. vortex tubes in Navier-Stokes turbulence or current sheets in
MHD turbulence, see, e.g., Frisch 1995; Grauer et al. 1994). Intermittency can be assessed
through the scaling behavior of the structure functions of the field

>\ P
s,,(r):<'(1§(2+7)—1§(2)) ; >cxr4v, (5.7)

where linear scaling ¢, = H p indicates scale-invariance and nonlinear (i.e. anomalous)
scaling ¢, = H p + ¢(p) indicates intermittency.* Such anomalous behavior is not only
observed in simulations (e.g. Wan et al. 2016; Zhdankin et al. 2016), but also ubiquitously
in the solar wind (e.g. Bruno and Carbone 2013; Chen et al. 2012; Sorriso-Valvo et al. 2017;
Telloni et al. 2021; Roberts et al. 2022; Gomes et al. 2023).

While a Gaussian random field is uniquely defined by its mean and covariance functions,
and thus is easy to synthesize, an intermittent random field has in principle infinitely many
degrees of freedom, and thus finding a realistic and useful heuristic to guide and assess the
construction of such a field is not a trivial task. Accordingly, there are several approaches
found in the literature, some dealing with pure fluid turbulence (Juneja et al. 1994; Rosales

4For simplicity our discussion focuses on the longitudinal structure functions, i.e. the moments of the field
fluctuations along the displacement vector 7. See, e.g., Germaschewski and Grauer (1999) for the role of
perpendicular structure functions and Mallet et al. (2016) for field-aligned structure functions.
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and Meneveau 2006, 2008; Chevillard et al. 2010; Pereira et al. 2016; Liibke et al. 2023;
Li et al. 2024) and others focusing on magnetic turbulence (Subedi et al. 2014; Pucci et al.
2016; Malara et al. 2016; Durrive et al. 2020, 2022; Liibke et al. 2024; Maci et al. 2024).

As an example, we briefly present the considerations that led to the development of the
synthetic field presented in Liibke et al. (2024).

1. Most of the above mentioned references utilize a discrete or continuous cascade algo-
rithm, which mimics how energy density is inhomogeneously distributed while cascading
down a hierarchy of scales, as described by a variety of phenomenological models of tur-
bulent intermittency based on multiplicative cascades (see also Frisch (1995), Chap. 8).
A convenient choice is a log-normal distribution for the energy dissipation rate according
to Kolmogorov (1962), which can be expressed in terms of a continuous wavelet cascade
(Muzy 2019).

2. This cascade algorithm can be embedded in a three-dimensional, vector-valued contin-
uous wavelet transform to yield a divergence-free and intermittent vector field with the
desired spectral properties, named the “continuous cascade” (CC) model (see Fig. 38b
for an example). This model also fulfills the prescribed anomalous scaling of structure
functions (see Fig. 39).

3. However, the CC field clearly lacks the intricate coherent structures and fast diffusion
of test particles observed in MHD turbulence. This prompts the idea, inspired by Subedi
et al. (2014), to generate two fields alongside each other, representing respectively the
flow and magnetic field from MHD turbulence. Further, pressure-less Lagrangian map-
ping (LM) of grid points at each scale during the scale-by-scale generation of the CC
fields is taken into account (originally due to Rosales and Meneveau (2006) in the con-
text of fluid turbulence). In contrast to previous works, the cascade enhances the La-
grangian mapping, leading to strongly pronounced shock-like coherent structures with a
Burgers-like scaling (see Figs. 38c and 39).

Despite the inclusion of intermittency and the successful generation of pronounced co-
herent structures, the CC and LM models achieve no substantial improvement in the trans-
port of charged test particles towards the results from MHD, as shown in Figs. 36 and 37.
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Fig.39 Scaling exponents of structure functions Sp, (r) ~ 4P of models for magnetic turbulence. The random
phases (RP) field exhibits simple self-similar scaling akin to Kolmogorov (1941), the continuous cascade
(CC) field realizes the log-normal model by Kolmogorov (1962), which provides for p < 8 a good fit to
MHD turbulence (see also Grauer et al. (1994)), and the Lagrangian map (LM) model resembles Burger’s
turbulence with a constant scaling exponent (see, e.g., Bec and Khanin (2007) for an exposition)

This strongly suggests that the intermittency given by the structure function scaling is not
sufficient information to reproduce the true complexity of magnetic turbulence. Instead, one
needs to go beyond simple two-point statistics (such as the structure functions), and take ge-
ometric and topological properties into account when constructing synthetic fields. A useful
geometric property is the fieldline curvature distribution, as utilized by Liibke et al. (2024),
whereas topological tools such as persistence diagrams, Betti numbers and Minkowski func-
tionals were employed by Makarenko et al. (2018b,a) and Henderson et al. (2019). A useful
synthetic field for CR transport and modulation studies should also include scale-dependent
anisotropy according to Goldreich and Sridhar (1995) and Boldyrev (2006), Mason et al.
(2006).

5.1.3 Convergence of Diffusion Coefficient in Box-Based Simulations

The transport of CRs in turbulence undergoes several different regimes in time as shown
in Fig. 40, where forced MHD simulations® are used from Li et al. (2008). The initial bal-
listic phase leads to a linear increase of (Ax>(¢))/t with time and trajectory length. The
gyromotion for low-energy CRs leads to deviation from this behaviour, as CRs return to the
origin of the plane perpendicular to the local mean field, thus reducing the isotropic diffu-
sion coefficient (blue lines in Fig. 40 for /iy,j 2 0.011.). This effect becomes significant in the
perpendicular component of the diffusion coefficient of CRs in turbulence with a stronger
mean field (Reichherzer et al. 2022a; Kuhlen et al. 2022). Figure 41 shows the anisotropic
spatial displacement of CRs in a magnetic field with turbulence and a large-scale mean field.

Long-time diffusive behaviour emerges when CR travel over multiple €., thus averaging
the local field structure. Figure 40 illustrates differences in the time needed for the running
diffusion coefficients to converge, with shortest times for r, ~ £, and the need for signifi-
cantly more time for low and high CR energies to reach steady state. Convergence in these
cases appears only on scales much larger than the MHD turbulence boxes. This should be
taken with care though, because in a realistic setting the structure of the magnetic field can
probably not be viewed as a column of ideal turbulence cubes, nor should the average of a

Savailable from: http://turbulence.pha.jhu.edu/Forced_MHD_turbulence.aspx.
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Fig. 40 Running diffusion coefficients of CRs with different energy in forced isotropic MHD turbulence
(taken from the Johns Hopkins Turbulence Database; JHTDB)
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particle running multiple times over the same box be equated with the average of a particle
running over multiple £, in a more realistic heterogeneous environment.

5.2 The Complications of Pitch-Angle Scattering
For most parts of this review, only unbounded spatial diffusion has been discussed, where the

diffusive behaviour is classified in terms of the time dependence of the MSD as in Eq. (2).
Pitch-angle scattering (see Sect. 4.2), however, is unique in the sense that the pitch-cosine
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is bounded, i.e. i € [—1; 1], implying that the pitch-angle MSD {(Au)?) cannot be larger
than 4. Full-orbit simulations do not only show the pitch-angle MSD saturating due to being
bounded (something investigated extensively by Tautz et al. 2013; Tautz 2013), but also that
the MSD oscillates initially (see, e.g., Kaiser et al. 1978; Tautz et al. 2013; Riordan and
Pe’er 2019; van den Berg et al. 2024). This complicates the application of Eq. (2) to calcu-
late a running diffusion coefficient for pitch-angle scattering from simulations: the running
pitch-angle diffusion coefficient 1) will oscillate for short enough time scales due to the
deterministic behaviour being decorrelated by pitch-angle diffusion, while it 2) will always
show a +~! behaviour for long enough times due to the saturation of the pitch-angle MSD
(Tautz et al. 2013; Riordan and Pe’er 2019). Riordan and Pe’er (2019) show that the limited
time interval when the running pitch-angle diffusion coefficient might be constant disappears
under certain conditions: this happens, for example, when the turbulence strength increases
and the MSD saturates quickly, yielding a practical problem for determining the pitch-angle
diffusion coefficient from full-orbit simulations (see also the discussions and examples of
van den Berg et al. 2024).

It is clear from this that the same criteria for identifying anomalous diffusion cannot be
applied to pitch-angle scattering. It is therefore necessary to raise the question: how should
anomalous diffusion be defined for pitch-angle scattering? In a more general context, it could
be asked: how should anomalous diffusion be defined in a bounded domain? Since anoma-
lous diffusion is associated with non-Gaussian statistics (as discussed after Eq. (2)), it might
be possible to search for such probability distribution functions in the pitch-angle scattering
time. Perri and Zimbardo (2012b), for example, calculate the pitch-angle scattering time ex-
pected from the resonance condition of QLT (see the discussion in Sect. 4.2) from observed
magnetic field strengths and variances measured before a shock. Four events all showed
scattering times with a Gaussian core transitioning to a power-law probability distribution.
In another example, Perri et al. (2019) define the scattering time from full-orbit simulations
as the time when the pitch-cosine changes sign (note that Pucci et al. 2016, requires two
sign inversions) or when the pitch-angle changes by some predefined value. Power-law dis-
tributed scattering times are found for both of these definitions, with the power-law exponent
being dependent on the definition of the scattering time. Such definitions of the pitch-angle
scattering time are fairly ad hoc and therefore does not give a rigorous definition of anoma-
lous diffusion on a bounded domain (i.e., it is, e.g., not clear if the QLT scattering time
is a good estimate of the scattering time, given the theoretical limitations of QLT and the
physical picture of the particle experiencing the total magnetic field without truly resonating
with only a specific wavelength of the turbulence). Related to this is the finding of Tautz
et al. (2013) that the probability distribution of pitch-cosine changes deviates from a Gaus-
sian distribution at late times, although it is not clear if this is inherently due to signatures
of anomalous diffusion or simply the relaxation of the probability distribution to a uniform
distribution due to the saturation of |Au|.

Zimbardo and Perri (2020) show that the temporal evolution of the pitch-angle distri-
bution function from a delta injection, will be different between normal and anomalous
diffusion, with anomalous diffusion having a distribution function that has a more intricate
dependence on pitch-cosine and taking longer to relax to an isotropic distribution. When
considering the pitch-angle distribution function observed in situ, there is always the un-
certainty coming from the limited angular resolution of the instrument and the additional
transport processes influencing the transport of the observed particles (e.g., focusing or con-
tinuous injection). It is, of course, much easier to construct the pitch-angle distribution func-
tion from full-orbit simulations. Perhaps better suited for identifying anomalous pitch-angle
scattering, is then either the pitch-angle distribution or the pitch-angle correlation function.
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Zimbardo and Perri (2020) additionally show that power-law scattering times could lead
to a pitch-angle correlation function decaying as a power-law and not an exponential for
isotropic pitch-angle scattering. The simulation results of Casse et al. (2001) and Fraschetti
and Giacalone (2012) show for weak turbulence strengths that the pitch-angle correlation
function has some oscillations due to deterministic behaviour before an exponential decor-
relation. Fraschetti and Giacalone (2012) show in the presence of higher turbulence levels
that the correlation function might show some initial exponential decay, but that there might
then be an increase in the correlation followed by a decorrelation that is much slower than
exponential. Overall, it is clear that more work, both theoretical and numerical, is needed
when considering anomalous transport on the pitch-angle level.

5.3 Summary of Section 5

Numerically generated turbulent magnetic fields enable a deeper understanding of the trans-
port properties of charged energetic particles in space plasmas. Integrating particle trajecto-
ries through magnetic fields is efficiently achieved using various numerical schemes, which
robustly converge for different step sizes. However, modeling realistic astrophysical tur-
bulence presents several challenges. Typically, synthetic fields in astrophysical studies are
characterized by the root mean squared strength, the magnetic energy distribution defined
by a power-law in Fourier space, different turbulence geometries, and an often assumed
Gaussian probability density function for turbulence.

A major challenge is achieving large inertial ranges in synthetic turbulence models due
to limitations in current simulations. Methods to address this are the grid and nested-grid
methods. The grid method stores magnetic field vectors on a discrete grid, but it is con-
strained by memory and can introduce numerical artifacts. The nested-grid method uses
multiple grids with different dynamic ranges to create larger inertial ranges, but also faces
limitations. Gridless methods offer an alternative by summing predefined plane waves at
any arbitrary position, potentially overcoming some limitations of grid methods. However,
achieving realistic statistical properties and CR transport characteristics remains challeng-
ing. Recent studies suggest combining gridless and nested-grid methods for better results.

Intermittency poses additional challenges. It can be addressed by generating synthetic
fields with multiplicative cascades to represent the non-uniform energy dissipation rate seen
in turbulence. However, synthetic models still struggle to match the anomalous diffusion
behavior observed in MHD simulations, indicating the need for more accurate geometric
and topological modeling of coherent structures.

Additionally, incorporating a pitch-angle description adds another layer of complex-
ity. In homogeneous and isotropic turbulence, pitch-angle scattering is typically modeled
with a diffusion coefficient that depends on the particle’s velocity and the turbulence spec-
trum. However, realistic turbulence often exhibits anisotropies and inhomogeneities, which
complicates the pitch-angle diffusion process. Advanced models must consider these varia-
tions in pitch-angle scattering to accurately simulate CR transport. The resonance condition,
which depends on the particle’s gyro-radius and the turbulence wave spectrum, plays a sig-
nificant role in pitch-angle diffusion. Yet, in current synthetic models, this aspect is often
oversimplified, leading to discrepancies in predicting CR behavior compared to more de-
tailed MHD simulations.

In conclusion, while current synthetic models provide valuable insights, they require
further refinement to accurately replicate the complexity of astrophysical turbulence and
its effects on cosmic ray transport. Future efforts should focus on enhancing the realism
of these models by incorporating detailed statistical, geometric, and topological properties
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of turbulence and improving the representation of pitch-angle scattering processes while
exploring regimes of non-Gaussian diffusion.

6 Summary and Open Questions

This review explored the anomalous transport and acceleration of charged energetic particles
in space and astrophysical plasmas, highlighting the deviations from traditional Gaussian
diffusion models. The key points that were discussed included:

(1) Non-Gaussian Transport Models. Superdiffusion is characterized by the mean
square displacement growing superlinearly with time, while subdiffusion grows sublin-
early. These phenomena are contrasted with normal Gaussian diffusion, where displacement
grows linearly with time. Models based on fractional diffusion-advection equations and non-
Gaussian stochastic processes can be used to describe these features on a phenomenological
level. Superdiffusive shock acceleration shows distinct spatial and energy spectra differences
compared to normal diffusion, with power-law spatial profiles that exhibit harder energy
spectra compared to standard diffusive shock acceleration.

(2) Nonlinear Diffusion Approaches. The nonlinear diffusion approach ties the diffu-
sion coefficient to the spatial gradient of the particle distribution function. This leads to
complex particle distributions, including power-law structures and nonlinear temporal be-
haviors. Although nonlinear diffusion does not alter the stationary shock spectrum it can
significantly affect acceleration timescales and thus impact the results for transient and non-
stationary shocks.

(3) Field Line Random Walk and Perpendicular Transport. Significant advances have
been made in understanding perpendicular transport through simulations, heuristic argu-
ments, and analytical theories. Time-dependent field-line-particle-decorrelation theory ac-
curately describes initial ballistic, intermediate sub-diffusive, and final diffusive regimes.
Despite progress, uncertainties remain, particularly in modeling the initial phases of solar
energetic particle events and the appropriate field-line diffusion coefficients for different
turbulence models.

(4) Numerical Full Orbit Simulations in Synthetic and MHD Turbulence. Simulat-
ing particle trajectories in turbulent magnetic fields reveals the complexity of their trans-
port properties. Various numerical schemes efficiently integrate particle trajectories, but the
primary challenge is to model realistic astrophysical turbulence. Current methods to con-
struct synthetic turbulence, including grid and nested-grid techniques, have limitations in
representing large inertial ranges. Combining these methods with gridless approaches shows
promise, but challenges remain to match the diffusion behavior seen in MHD simulations.
This is in part connected to aspects of intermittency and pitch-angle scattering. Addressing
the non-uniform energy dissipation and structures in turbulence connected to intermittency
and incorporating pitch-angle descriptions add complexity that, however, is characteristic
of realistic turbulence. Anisotropies and inhomogeneities further complicate the pitch-angle
diffusion process and resonance conditions.

Given the title of this review, we also conclude with a short list of open questions and
new aspects that should be addressed in future work.

1. What are the consequences of employing Levy walks, Levy flights, and tempered Levy
flights for the transport and the acceleration of energetic particles?

Since the form of the transport equation and, e.g., the resulting shock-accelerated en-

ergy spectra appear to depend on the choice of the Levy process used to describe the
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anomalous scattering of the particles, it must be clarified whether one of the three men-
tioned processes is physically preferable for a given physical system or even in general.

2. Does a generalized Ito lemma also exist for the case of Levy walks and tempered Levy
flights?

So far, the equivalence of a ‘fully fractional’ transport equation, i.e. one containing
both a fractional diffusion and a fractional advection, to a system of stochastic differential
equations has been established for the case of Levy flights but not for Levy walks and
not for tempered Levy flights.

3. How can a fractional advection be realized in a space- or astrophysical system?

A fractional advection is usually associated with particle traps not being maintened by
the considered flow but externally. It should be clarified how such external traps, which
imply a Galilei-variant behaviour, can be realized in a given system.

4. In what way is the anomalous transport obtained on the basis of nonlinear transport
equations different from that resulting from fractional transport equations and why does
it occur?

While, for example, the accelerated spectra obtained with nonlinear transport equa-
tions are the same as for the linear case, the resulting spatial scalings exhibit an anoma-
lous behaviour, i.e. power-laws rather than exponentials.

5. Which turbulence characteristics lead to anomalous transport and why so, and what
defines the temporal evolution characterized by an initial ballistic/superdiffusive, an in-
termediate subdiffusive, and an eventually Gaussian diffusive phase?

The turbulence is affecting particle transport directly via scattering and indirectly via
the transport of field lines to which the particles are attached to some degree. Two aspects
remain unclear for various cases, so far: first, the dependence of the field line diffusion
coefficient on the turbulence (in the sense that it is unclear which field line diffusion
coefficient has to be used for slab/2D turbulence) and, second, what exactly may cause
a decoupling of particles from ‘their’ field lines. Furthermore, while initial approaches
exist, the consequences of intermittency as a result of structures like vortices and current
sheets have to be explored quantitatively.

6. What is a correct and efficient way to describe turbulence synthetically, i.e. not as a result
from MHD modelling but rather by prescribing the turbulent fluctuations directly?

More work is required to shed light on which properties of a magnetic field, like cur-
vature or mirror structures, have to be incorporated in a synthetic generation of turbulence
such that the latter resembles more realistically MHD turbulence and, thus, turbulence in
real physical systems.

One can be optimistic that the next few years will witness progress regarding all of the
above questions. In other words: we are living in an exciting time of growing understanding
of the origin and consequences of anomalous transport and acceleration of charged energetic
particles in space and astrophysical plasmas.
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