
Central Lancashire Online Knowledge (CLoK)

Title Explainable AI–Based Semantic Retrieval from an Expert-Curated Oncology 
Knowledge Graph for Clinical Decision Support

Type Article
URL https://knowledge.lancashire.ac.uk/id/eprint/57127/
DOI https://doi.org/10.3390/fi17100471
Date 2025
Citation Mushtaq, Sameer, Trovati, Marcello orcid iconORCID: 0000-0001-6607-422X

and Bessis, Nik (2025) Explainable AI–Based Semantic Retrieval from an 
Expert-Curated Oncology Knowledge Graph for Clinical Decision Support. 
Future Internet, 17 (10). p. 471. 

Creators Mushtaq, Sameer, Trovati, Marcello and Bessis, Nik

It is advisable to refer to the publisher’s version if you intend to cite from the work. 
https://doi.org/10.3390/fi17100471

For information about Research at UCLan please go to http://www.uclan.ac.uk/research/ 

All outputs in CLoK are protected by Intellectual Property Rights law, including Copyright law.  
Copyright, IPR and Moral Rights for the works on this site are retained by the individual authors 
and/or other copyright owners. Terms and conditions for use of this material are defined in the 
http://clok.uclan.ac.uk/policies/

http://www.uclan.ac.uk/research/
http://clok.uclan.ac.uk/policies/


Received:

Revised:

Accepted:

Published:

Citation: Lastname, F.; Lastname, F.;

Lastname, F. Explainable AI–Based

Semantic Retrieval from an

Expert-Curated Oncology Knowledge

Graph for Clinical Decision Support.

Journal Not Specified 2025, 1, 0.

https://doi.org/

Copyright: © 2025 by the authors.

Submitted to Journal Not Specified for

possible open access publication under

the terms and conditions of the

Creative Commons Attri- bution (CC

BY) license (https://creativecommons.

org/licenses/by/4.0/).

Article

Explainable AI–Based Semantic Retrieval from an
Expert-Curated Oncology Knowledge Graph for Clinical
Decision Support
Sameer Mushtaq 1 , Marcello Trovati 2 and Nik Bessis 1

1 Department of Computer Science, Edge Hill University, UK; Sameer.Mushtaq@edgehill.ac.uk,
Nik.Bessis@edgehill.ac.uk

2 University of Lancashire Business School, University of Lancashire, UK; MTrovati@lancashire.ac.uk
* Correspondence: MTrovati@lancashire.ac.uk

Abstract: The modern oncology landscape is characterised by a deluge of high-dimensional 1

data from genomic sequencing, medical imaging, and electronic health records, negatively 2

impacting the analytical capacity of clinicians and health practitioners. This field is not 3

new and it has drawn significant attention from the research community. However, one 4

of the main limiting issues is the data itself. Despite the vast amount of available data, 5

most of it lacks scalability, quality and semantic information. This work is motivated by 6

the data platform provided by OncoProAI, an AI-driven clinical decision support platform 7

designed to address this challenge by enabling highly personalised, precision cancer care. 8

The platform is built on a comprehensive knowledge graph, formally modelled as a directed 9

acyclic graph, which has been manually populated, assessed and maintained to provide 10

a unique data ecosystem. This enables targeted and bespoke information extraction and 11

assessment. 12

Keywords: Artificial Intelligence; Machine Learning; Deep Learning; Digital Health; 13

1. Introduction 14

The field of modern oncology is defined by the increasing creation and use of com- 15

plex and high-dimensional data. From the granular details of genomic and proteomic 16

sequencing to the complex patterns in radiological images and the vast unstructured text 17

of electronic health records, the volume of information available for each patient challenges 18

current state-of-the-art technology [3]. Artificial Intelligence (AI), underpinned by mathe- 19

matical modelling and machine learning algorithms, has emerged as a transformative force 20

capable of addressing this challenge. By detecting subtle patterns and correlations invisible 21

to the human eye, AI offers the potential to revolutionise cancer care, driving a paradigm 22

shift from generalised protocols to highly personalised precision medicine [1]. 23

24

The application of AI in oncology spans the entire patient’s journey. It includes 25

techniques such as deep learning to enhance the accuracy of diagnostic imaging and 26

digital pathology, and employs predictive models to forecast disease progression and 27

patient survival with greater accuracy. Furthermore, with the power of Natural Language 28

Processing (NLP), AI can unlock critical insights from clinical notes, facilitating research 29

and cohort identification. The ultimate goal is to create a close relationship between the 30

expertise of the clinician and the analytical power of AI, leading to more timely diagnoses, 31

optimised treatment strategies, and fundamentally better outcomes for patients [2]. 32

Version October 7, 2025 submitted to Journal Not Specified https://doi.org/10.3390/1010000

https://doi.org/10.3390/1010000
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com
https://orcid.org/0009-0004-2417-6809
https://orcid.org/0000-0001-6607-422X
https://doi.org/10.3390/1010000


Version October 7, 2025 submitted to Journal Not Specified 2 of 25

1.1. Limitations of Current Research 33

Image-based approaches, often using deep learning models such as Convolutional 34

Neural Networks (CNN), are particularly suitable for the identification of data patterns 35

in radiological scans (CT, MRI, mammograms) and histopathology slides that may not 36

be visible to the human eye, helping to detect and classify early cancers [4,5]. Currently, 37

NLP techniques are used to extract vital information from unstructured clinical notes, 38

pathology reports, and the scientific literature, providing information on the patient’s 39

history, symptoms, diagnoses, and treatment regimens [6]. The synergy between these 40

approaches to image and text data, often facilitated by Vision-Language Models (VLMs), 41

holds significant promise for a more comprehensive understanding of complex oncological 42

cases [7]. Although automated methods for data extraction and analysis are advancing 43

rapidly, a critical factor for achieving superior accuracy and interpretability in oncology 44

AI lies in the development of manually populated, curated semantic, and ontology-based 45

data. Automated approaches, despite their efficiency, often struggle with the inherent 46

ambiguities, inconsistencies, and vast heterogeneity of clinical data. For instance, variations 47

in terminology, abbreviations, and sentence structures within free-text clinical notes can 48

lead to misinterpretations or missed information [8]. Similarly, discrepancies in image 49

acquisition protocols or reporting standards can introduce noise into visual data. In many 50

cases, such issues also stem from the lack of customised data with limited semantic informa- 51

tion. Furthermore, traditional retrieval-augmented generation approaches typically focus 52

on individual documents in isolation, failing to leverage the rich network relationships that 53

exist between clinical concepts, treatment pathways, and patient outcomes [27]. In fact, a 54

suitably curated semantic (and ontological) framework provides a machine-readable stan- 55

dardised representation of medical knowledge, explicitly defining concepts, their attributes, 56

and relationships within the oncology domain. This rigorous and expert-driven curation 57

process, although resource intensive, ensures high data quality, reduces bias, and improves 58

the reliability of AI models [9]. By establishing a common vocabulary and a robust knowl- 59

edge graph, such an approach would facilitate intelligent data integration across disparate 60

sources, enabling more accurate reasoning and inference by AI algorithms. For example, an 61

ontology could precisely link specific histological features observed in an image with the 62

corresponding genetic mutations described in a text report, providing a deeper and more 63

contextualised understanding of a patient’s cancer [10]. This human-in-the-loop validation 64

of medical knowledge encoded in ontologies is paramount, as even subtle inaccuracies can 65

have significant clinical consequences, ultimately leading to more trustworthy and effective 66

AI-driven oncology solutions [11]. 67

68

This article is motivated by the above observations and aims to demonstrate how 69

such data can significantly enhance AI applications to oncology, as well as to wider areas 70

related to health. However, such rich and interconnected data is usually a complex, time 71

consuming, and labour intensive endeavour. This work was carried out in collaboration 72

with OncoProAI [12]. OncoProAI is a company focussing on data-driven cancer treatment, 73

based on semantically and ontologically defined data. The analysis and approach in this 74

work is based on this data demonstrating its potential and accuracy in this field. The 75

authors were granted access to their proprietary data and knowledge graphs, which were 76

employed to train and evaluate the models in this work. Such data has led to highly 77

effective and accurate model implementations, as demonstrated in the evaluation. 78

79

The article is structured as follows: Section 2 provides a comprehensive background 80

on AI in oncology and ontological approaches. Section 3 introduces the OncoProAI plat- 81

form, the description of the data set, and the ethical considerations. Section 4 describes 82
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the methodology including node serialisation, embedding models, explainability, and 83

annotation workflow. Section 5 presents the evaluation framework and experimental setup. 84

Section 6 reports the retrieval performance, statistical significance, and efficiency analysis. 85

Finally, Section 7 concludes the article and outlines future directions. 86

2. Background 87

The field of oncology is characterised by a rapidly expanding volume of complex, 88

high-dimensional data, ranging from genomic and proteomic profiles to clinical imaging 89

and electronic health records. The sheer scale and complexity of this information presents 90

significant challenges for human clinicians in diagnosis, prognosis, and treatment planning. 91

AI, machine learning (ML), deep learning (DL), and Natural Language Processing (NLP) 92

have emerged as a powerful paradigm to address these challenges. AI offers the potential 93

to extract meaningful patterns from data, automate complex tasks, and ultimately enable a 94

more precise and personalised approach to cancer care [1,14]. 95

96

One of the most mature applications of AI in oncology is in the analysis of medical 97

imaging. Radiomics, the process of extracting large amounts of quantitative features from 98

medical images, is highly utilising ML algorithms [15]. Deep learning models, especially 99

CNNs, have demonstrated performance comparable to, and in some cases exceeding, that 100

of human radiologists in identifying malignant lesions in mammograms, CT scans, and 101

MRIs. For instance, studies have shown high sensitivity and specificity in detecting lung 102

nodules and classifying breast cancer subtypes from imaging data alone. These models 103

learn hierarchical features directly from pixels, bypassing the need for manual feature 104

engineering [16]. 105

AI is similarly revolutionising histopathology. By analysing whole slide images (WSIs), 106

ML algorithms can assist pathologists in identifying tumour regions, grading cancers (for 107

example, Gleason score in prostate cancer) and counting mitotic figures. This automation 108

reduces inter-observer variability and increases throughput, allowing pathologists to focus 109

on more complex cases. 110

2.1. Prognosis and Predictive Modelling 111

Predicting a patient’s clinical outcome is fundamental to a personalised treatment. AI 112

models excel at integrating multi-modal data to generate robust prognostic and predictive 113

insights [17]. 114

Traditional statistical methods, such as the Cox proportional hazards model, are being 115

augmented and, in some cases, surpassed by ML-based survival models. Techniques such 116

as Random Survival Forests and DL-based survival models can handle complex, non-linear 117

interactions between variables. These models can predict metrics such as overall survival or 118

progression-free survival by integrating clinical data with genomic markers and radiomic 119

features. 120

A critical goal of precision oncology is to predict which patients will respond to a 121

specific therapy. AI models are being trained on pre-treatment data (e.g., genomics, tran- 122

scriptomics, tumour microenvironment characteristics) to predict response to chemotherapy, 123

immunotherapy, and targeted agents. For example, DL models have been used to predict 124

the response to immune checkpoint inhibitors by analysing patterns in tumour histology 125

and the expression of biomarkers such as PD-L1 [18]. 126

2.2. Treatment Planning and Decision Support 127

The complexity of modern cancer treatment protocols, with numerous drug com- 128

binations and sequencing options, makes clinical decision-making increasingly difficult. 129
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AI-driven decision support systems (DSS) are being developed to assist oncologists. These 130

systems synthesise patient-specific data, biomarker status, and the latest clinical guidelines 131

(e.g., NCCN, ESMO) to recommend optimal treatment pathways. They function as power- 132

ful tools for exploring ‘what-if’ scenarios, helping to standardise care and ensure that it is 133

based on the most current evidence [19]. 134

2.3. Natural Language Processing (NLP) in Oncology 135

A large amount of critical patient information is locked in unstructured text in elec- 136

tronic health records (EHRs), such as clinical notes, pathology reports, and molecular 137

profiling reports [20]. NLP models are used to extract structured data from this unstruc- 138

tured text. This includes identifying patient cohorts for clinical trials, abstracting cancer 139

stage and histology, and identifying documented adverse events. AI can also be applied 140

to the vast corpus of biomedical literature to accelerate research, identify potential drug 141

targets, and summarise evidence for systematic reviews. Beyond traditional text extraction, 142

retrieval-augmented generation (RAG) techniques enhance AI capabilities by integrating 143

external knowledge sources during the generation process, with graph-based variants 144

proving particularly effective for networked medical knowledge [27]. 145

Despite significant potential, several challenges must be addressed for the widespread 146

clinical adoption of AI in oncology. these include: 147

Data Quality and Accessibility. AI models are only as good as the data on which they are 148

trained. The issues of data scarcity, heterogeneity between institutions, and patient 149

privacy remain significant hurdles. 150

Interpretability and Trust. Many advanced deep learning models function as black boxes, 151

making it difficult for clinicians to understand their reasoning. Research into explain- 152

able AI (XAI) is critical to building trust and facilitating clinical adoption. 153

Validation and Regulation. Models must be rigorously and prospectively validated in 154

real-world clinical settings before they can be deployed. A clear regulatory framework 155

for the approval and monitoring of these AI-based medical devices is essential. 156

Integration into Clinical Workflows. For AI tools to be effective, they must be seamlessly 157

integrated into existing clinical workflows without disrupting the established prac- 158

tices of healthcare professionals. 159

2.4. Ontologies and Knowledge Graphs in Oncology 160

As discussed above, data integration remains a challenge for ontologies in medical 161

research. Research data originates from highly heterogeneous sources, including electronic 162

health records (EHR), genomic and proteomic experiments, clinical trials, and the scientific 163

literature. These sources often use different terminologies and data structures to describe 164

the same concepts [21]. 165

Ontologies provide a standardised vocabulary and a common semantic framework 166

to map and link these disparate datasets. By annotating data with terms from a shared 167

ontology, researchers can achieve semantic interoperability, allowing meaningful queries 168

across multiple data sources. Key examples include SNOMED CT for clinical terminology 169

[25], Gene Ontology (GO) for describing gene and protein functions [26], and Human 170

Phenotype Ontology (HPO) for standardised phenotypic abnormalities [28]. 171

The formal structure of an ontology, consisting of classes, properties, and logical 172

axioms, enables computational reasoning. In particular, ontologies can be viewed as 173

knowledge graphs where concepts are nodes and relationships are edges, enabling inference 174

engines to deduce new implicit knowledge from explicitly stated facts [22]. This capability 175

is crucial for generating new hypotheses, identifying potential drug targets, and uncovering 176

hidden relationships within complex biological networks. 177
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In the context of NLP, ontologies provide the semantic foundation required for sophis- 178

ticated medical text analysis [23]. They facilitate accurate entity identification, relationship 179

extraction, and move NLP from simple keyword matching to deeper, context-aware under- 180

standing of medical text. For precision medicine applications, ontologies allow the linking 181

of patient phenotypes to underlying genetic variants and support clinical decision support 182

systems by modelling clinical guidelines and patient data [2,24]. Recent advances in graph- 183

based retrieval methods, such as Graph Retrieval-Augmented Generation (GRAG), have 184

demonstrated that leveraging the network structure of knowledge graphs—rather than 185

treating documents as isolated entities—significantly improves both retrieval precision and 186

the contextual relevance of AI-generated responses [27]. 187

3. Data and Platform 188

In this section, the main dataset, the corresponding platform, and its structure are 189

discussed. 190

3.1. OncoProAI Platform 191

OncoProAI [12] is a clinical decision support platform that integrates AI with oncology 192

knowledge to assist in cancer treatment decision-making. The platform provides evidence- 193

based recommendations through an interactive decision tree interface, designed to help 194

medical professionals identify treatment pathways based on patient-specific data. 195

The system operates on a comprehensive repository of oncology guidelines from major 196

international sources, including the National Comprehensive Cancer Network (NCCN), 197

the European Society for Medical Oncology (ESMO), the American Society of Clinical 198

Oncology (ASCO), Onkopedia and the American Society for Radiation Oncology (ASTRO). 199

The platform integrates with Electronic Health Record (EHR) systems to incorporate patient- 200

specific data, including biomarkers and comorbidities, allowing personalised treatment 201

recommendations. 202

The platform implements a continuous integration protocol for knowledge updates, 203

with newly published clinical studies reviewed and integrated within a 14-day window. 204

The knowledge base comprises over 250,000 clinical pathways, each linked to supporting 205

evidence from more than 40,000 scientific studies. In addition, the system includes a 206

database of pharmacological interactions covering more than 400 active ingredients and 207

maintains a library of over 700 educational documents for patient engagement. 208

The architecture of the system follows a hierarchical interface modelled as a directed 209

acyclic graph, providing structured navigation through oncological decision-making pro- 210

cesses. The platform responds dynamically to data completeness: when sufficient data is 211

available, it provides therapeutic recommendations; when data is incomplete, it transitions 212

to a guidance mode, specifying required additional examinations such as tumour markers, 213

mutation analyses, or imaging studies. 214

The system facilitates at four key clinical decision points: initial diagnostic strategy, 215

diagnosis refinement and confirmation, first-line therapy formulation, and management of 216

disease recurrence. For each intervention point, the system provides structured evidence- 217

based recommendations aligned with current clinical guidelines. 218

3.2. Dataset Description 219

The OncoProAI knowledge graph used in this study is a German-language oncology 220

database manually curated that has been systematically populated and maintained by 221

domain experts. The structure and coverage of the data set are summarised in Table 1. 222
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Table 1. Dataset coverage and structure of the OncoProAI knowledge graph.

Component Count

Total nodes ∼200,000
Haematological non-malignant disease groups 16
Malignant haematological disease groups 41
Solid tumour disease groups 49
Clinical pathways 250,000+
Supporting scientific studies 40,000+
Active pharmaceutical ingredients 400+
Educational documents 700+

Data Sources
German guidelines (Onkopedia, AWMF, AGO) Primary
European guidelines (ESMO) Secondary
American guidelines (NCCN) Secondary

Example Node Types
Disease entities Diagnosis codes, staging
Treatment protocols Drug combinations, dosages
Biomarkers Genetic mutations, protein expressions
Contraindications Drug interactions, comorbidities

Snapshot Information
Knowledge graph version 2024.Q4
Last update cycle 14-day rolling

The construction of the data set follows a rigorous curation process based on leading 223

international oncology guidelines. Primary sources include German Onkopedia guidelines, 224

AWMF (Association of Scientific Medical Societies in Germany), and AGO (Arbeitsge- 225

meinschaft Gynäkologische Onkologie), supplemented by European ESMO guidelines and 226

American NCCN guidelines. This multi-source approach ensures comprehensive coverage 227

while maintaining consistency with German clinical practice standards. 228

The structure of the knowledge graph represents complex oncological relationships 229

through typed edges that connect disease entities, treatment protocols, biomarkers, and 230

contraindications. Each node contains structured information including diagnostic codes, 231

staging criteria, drug combinations with specific doses, genetic mutation profiles, and 232

warnings about pharmacological interactions. The hierarchical organisation of the graph 233

enables both broad category queries and specific pathway navigation. 234

Quality assurance is maintained through a continuous integration protocol in which 235

newly published clinical studies undergo expert review and verification before integration 236

into the knowledge base within a 14-day window. This ensures the dataset remains 237

current with evolving clinical evidence while preserving the integrity of existing validated 238

pathways. Despite the limitations of its only implementation in German, the approach 239

introduced in this work can be expanded and adapted to other languages, as the main 240

algorithms are language-independent. 241

3.3. Ethics and Data Access 242

This research was conducted in accordance with the Declaration of Helsinki and 243

approved by the Edge Hill University Institutional Review Board (protocol code ETH2425- 244

0274, approved 7 July 2025). The study utilises de-identified, aggregate clinical knowledge 245

derived from published guidelines rather than individual patient data, mitigating direct 246

privacy concerns. 247

Access to the OncoProAI knowledge graph was granted through a formal collaboration 248

agreement between the research team and OncoProAI. The data sharing agreement ensures 249
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that: (1) all knowledge graph content remains within the research environment and is 250

not redistributed, (2) derived insights and methodological findings can be published for 251

scientific advancement, and (3) the proprietary clinical pathways and drug interaction 252

databases are protected under appropriate confidentiality measures. 253

The dataset represents expert-curated medical knowledge rather than patient records, 254

with all source materials derived from publicly available clinical guidelines (NCCN, ESMO, 255

ASCO, Onkopedia, ASTRO) and peer-reviewed literature. During this investigation, no 256

individual patient identification or private health information was accessed. The structure 257

of the knowledge graph and the sample queries used for evaluation are based on hypothet- 258

ical clinical scenarios designed to test retrieval capabilities without compromising patient 259

confidentiality. 260

Data availability is subject to the proprietary nature of the OncoProAI platform. Al- 261

though the methodological framework and the evaluation results are fully disclosed in this 262

publication, direct access to the complete knowledge graph requires institutional collab- 263

oration agreements with OncoProAI. Researchers interested in replicating or extending 264

this work are encouraged to contact OncoProAI for data access discussions, subject to 265

appropriate institutional and ethical approvals. 266

4. Methods 267

This section describes the methodology for developing and evaluating an information 268

retrieval system based on the large-scale expert-curated oncology knowledge graph de- 269

scribed in Section 3.2. The approach comprises node-to-text serialisation, high-dimensional 270

embeddings for semantic search, explainability mechanisms, and a human-in-the-loop 271

evaluation framework. 272

4.1. Node-to-Text Serialisation 273

A fundamental requirement for applying NLP techniques to graph-based data struc- 274

tures is the transformation of graph nodes into semantically rich textual representations. 275

We developed a deterministic serialisation protocol that converts each knowledge graph 276

node into structured, machine-readable text while preserving hierarchical context and 277

intricate medical relationships. 278

The serialisation process comprises three key components: 279

Field-Tagging: Each node attribute is explicitly tagged with descriptive field names. 280

For instance, a cancer diagnosis node includes tags such as <Title>, <Type>, <Diagnosis>, 281

<Therapy>, and <Symptoms>. This explicit structure serves two purposes: providing clear 282

text organisation and enabling granular analysis of field contributions to retrieval scores 283

for explainability. 284

Hierarchical Contextualisation: To capture the inherent hierarchical structure of the 285

knowledge graph, the serialisation process incorporates ancestor node connections as 286

prefixes. This is achieved by traversing upward from each node to its root, concatenating 287

ancestor titles to provide embedding models with richer contextual understanding of the 288

node’s position within the broader oncology ontology. 289

Versioning and Reproducibility: Each serialised representation includes two version- 290

ing markers: a serialisation format identifier for tracking conversion logic changes and 291

a knowledge graph snapshot identifier ensuring traceability to the exact dataset version. 292

This versioning system is critical in clinical settings where the underlying knowledge base 293

undergoes frequent updates and revisions. 294
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4.2. Embedding Models and Vector Search 295

The core of our retrieval system uses high-dimensional vector embeddings to represent 296

the semantic meaning of serialised node text. We evaluated six pre-trained transformer- 297

based language models with varying dimensionalities to investigate trade-offs between 298

model complexity, embedding dimensionality, and retrieval performance. The model 299

specifications are detailed in Table 2. 300

Table 2. Embedding models used in the evaluation with their model names and specifications. The size values (GB) correspond to the
final disk footprint of embeddings for 200,000 nodes stored in float32 format.

Model Name Dim Multilingual Tokenizer / Notes Size (GB)

BAAI/bge-m3 (M3-
Embedding)

1024 Yes XLM-RoBERTa-based;
dense/sparse/multi-
vector; long-context

2.3

Alibaba-
NLP/gte-base-en-v1.5

768 No Transformer++ (BERT +
RoPE + GLU); long-context

1.99

jina-embeddings-v4 (Jina
4)

2048 Yes Unified multi-
modal/multilingual
model; dense (2048 dim,
truncatable to 128)

5.06

all-mpnet-base-v2 768 No WordPiece; contrastive
fine-tuned dense embed-
dings

1.99

nomic-embed-text-v2-moe 768 Yes MoE (8 experts, top-2), Ma-
tryoshka reduction

1.99

Qwen3-Embedding-4B 2560 Yes BPE; multilingual + MRL
(32–2560D adjustability)

6.31

Let N be a node in the knowledge graph, and let T(N) be its serialised text representa- 301

tion. The embedding process is formalised as a function: 302

ϕ : T → Rd (1)

where T is the space of all possible text representations and d is the embedding dimension- 303

ality. For each node Ni, we compute its vector embedding: 304

vi = ϕ(T(Ni)) (2)

All embeddings undergo L2-normalisation such that ∥vi∥2 = 1, ensuring vector 305

magnitude does not influence similarity comparisons. For a user query q, we compute the 306

query vector q using the same embedding model and calculate the similarity using the 307

cosine similarity: 308

sim(q, vi) =
q · vi

∥q∥2∥vi∥2
= q · vi (3)

The final equality holds due to L2-normalisation. Rather than ranking nodes purely 309

by this dot product in isolation, the deployed system applies a graph retrieval-augmented 310

pipeline that caches all L2-normalised embeddings alongside the structural relations stored 311

in MongoDB. 312
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4.3. Graph Retrieval-Augmented Scoring 313

To provide context-aware answers, we integrate the Graph Retrieval-Augmented 314

Generation (GRAG) strategy [27]. 315

The graph index materialises every node with an embedding together with its par- 316

ent/child hierarchy and cross-links. Given a query embedding q, we first identify a set 317

of seed nodes S with the highest cosine similarity. For each seed s ∈ S we collect its h-hop 318

neighbourhood Nh(s) and compute a pooled representation 319

gs =
1

|Nh(s)| ∑
i∈Nh(s)

vi, (4)

which is subsequently normalised. Each candidate node i inside the explored neighbour- 320

hood inherits both its direct similarity q · vi and the seed-level subgraph signal q · gs. The 321

final score blends these components with a hop-dependent decay λhop(i,s): 322

score(i) = α (q · vi) + (1 − α) λhop(i,s)(q · gs), (5)

where α ∈ [0, 1] balances local and structural evidence. In practice we use α = 0.6 and 323

λ = 0.75, tuned to favour clinically precise seeds while rewarding coherent neighbourhoods. 324

The retriever returns the top-k nodes with their provenance metadata (seed identifier, hop 325

distance, neighbour list), which supports downstream explainability and audit trails. 326

Our implementation therefore keeps the spirit of Hu et al.’s divide-and-conquer GRAG 327

retriever [27]: instead of exhaustively enumerating subgraphs, we pre-compute ego-centric 328

neighbourhoods, score them against the query, and apply lightweight pruning to discard 329

redundant nodes. The official GRAG pipeline further couples this retrieval step with a 330

dual-view (text and topology) prompting scheme for LLM generation; in our deployment 331

we currently adopt only the retrieval component, leaving the generation module for future 332

clinical evaluation. 333

4.4. Explainability and Result Grounding 334

In clinical applications, the interpretability of AI systems is crucial to gaining the trust 335

of the practitioner and ensuring a safe deployment. We incorporate two key mechanisms 336

to enhance the explainability and trustworthiness of our retrieval system: 337

Field-Contribution Analysis: To provide insight into why specific nodes were re- 338

trieved for a given query, we developed a field-contribution proxy technique. This method 339

performs token-level overlap analysis between the query and each tagged field in the seri- 340

alised node representation. The analysis generates a per-field contribution vector that can 341

be visualised as a heatmap, highlighting which specific content areas (e.g., symptoms, ther- 342

apies, contraindications) most influenced the matching process. This granular breakdown 343

allows users to quickly assess the relevance of the results and understand the reasoning of 344

the system. Furthermore, this technique performs a token-level overlap analysis between 345

the query and each of the tagged fields in the serialised text representation of the retrieved 346

node. The result of this analysis is a per-field contribution vector, which can be visualised 347

as a heatmap to highlight the specific parts of the node’s content that were most influential 348

in the matching process. This allows users to quickly understand the basis for a given result 349

and assess its relevance to their information needs. 350

Source Grounding: Each node in the expert-curated knowledge graph maintains 351

links to its original source documents, including PubMed articles, clinical trial reports, and 352

guideline publications. Our retrieval system surfaces these source identifiers alongside 353

search results, providing direct access to the underlying evidence. This grounding in 354

authoritative sources establishes trust and enables users to verify presented information, 355
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which is essential for clinical decision-making where accuracy and evidence quality are 356

paramount. By combining a sophisticated node representation strategy with state-of- 357

the-art embedding models and a rigorous, human-centred evaluation framework, this 358

methodology provides a comprehensive blueprint for the development and assessment 359

of high-quality information retrieval systems in the specialised and critical domain of 360

oncology. 361

These explainability features address the black box nature of many machine learning 362

models, providing clinical users with the transparency needed to confidently integrate 363

AI-driven insights into their practice workflows. 364

4.5. Evaluation Framework and Human-in-the-Loop Curation 365

The evaluation methodology of this approach focusses on a human-in-the-loop cura- 366

tion process, which leverages the expertise of clinical professionals to create a gold standard 367

set of relevance judgments. The query set used in our evaluation is derived from a pre- 368

existing spreadsheet of clinical questions, available in both English and German. For our 369

experiments, we used the German-language queries. The human curation process is facili- 370

tated by a custom-built user interface, which allows domain experts to review and re-rank 371

the top-k search results returned by each of the six embedding models for a given query. 372

In addition to re-ranking, the experts are also tasked with identifying and flagging any 373

duplicate or near-duplicate results, which are subsequently removed from the evaluation 374

set. 375

4.6. Ground Truth Creation and Model-Agnostic Evaluation 376

The curated result orderings from the human experts form the basis for creating a 377

model-agnostic ground truth, or qrels (query relevance judgments). The creation of the 378

qrels involves a two-stage process: 379

• Pooling of results: for each query, the top-k results from all six embedding models 380

are pooled together to form a comprehensive set of candidate nodes. This pooling 381

strategy is designed to mitigate any model-specific biases and to ensure that the final 382

ground truth is as comprehensive as possible. 383

• Relevance labelling: the curated rankings provided by the human experts are used 384

to bootstrap an initial set of relevance labels. These are later refined through a more 385

explicit labelling process, where experts assign binary or graded relevance scores 386

to each node in the pooled set. The resulting qrels are versioned and maintained 387

independently of the models being evaluated, which allows for a fair and unbiased 388

comparison of different retrieval models. 389

4.7. Annotation User Interface and Curation Workflow 390

The evaluation methodology employs a human-in-the-loop curation process leverag- 391

ing clinical professional expertise to create gold standard relevance judgments. The query 392

set derives from pre-existing clinical questions available in both English and German, with 393

German-language queries used for this study to align with the knowledge graph primary 394

language. 395

Annotation Interface: We developed a custom user interface enabling domain experts 396

to review and re-rank top-k search results from all embedding models for each query. The 397

interface provides three atomic actions per item: 398

(i) Mark duplicate — removes items from ordered_nodes and sets isDuplicate=true 399

in nodes 400

(ii) Mark irrelevant — maintains item visibility while flagging isIrrelevant=true and 401

assigning relevance of −1 in ground truth 402
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(iii) Add node — enables typeahead search over the knowledge graph; added items 403

carry original_index=-1 and isManuallyAdded=true for provenance tracking 404

These actions serve as the single source of truth for constructing both model-agnostic 405

qrels (query relevance judgments) and per-model runs, ensuring tight alignment between 406

expert intent and evaluation artefacts. 407

Ground Truth Creation: The curation process follows a two-stage approach: 408

• Result Pooling where the top−k results from all six embedding models are combined 409

to form comprehensive candidate sets, mitigating model-specific biases 410

• Relevance Labelling where expert-curated rankings bootstrap initial relevance labels, 411

subsequently refined through explicit scoring where experts assign binary or graded 412

relevance scores to each pooled node. 413

The resulting qrels are versioned and maintained independently of the evaluated mod- 414

els, allowing fair and unbiased comparison across different retrieval approaches. This 415

methodology ensures that evaluation reflects genuine clinical relevance rather than model- 416

specific quirks or biases. A demonstration video and interface screenshots are available in 417

Appendix H. 418

5. Evaluation 419

This section establishes a standardised evaluation framework ensuring reproducible 420

and comparable experimental results across different retrieval models. 421

5.1. Query Set and Provenance 422

We evaluated retrieval quality on a curated set of 100 German clinical queries created 423

by domain experts. The query set derives from real-world clinical scenarios covering 424

diverse oncological conditions, diagnostic procedures, and treatment planning situations. 425

Each query was designed to test different aspects of the knowledge graph’s coverage, from 426

broad diagnostic categories to specific therapeutic protocols. 427

The German-language focus aligns with the OncoProAI knowledge graph primary 428

language and reflects the predominance of German clinical guidelines in the dataset. 429

Query complexity ranges from simple diagnostic lookups (e.g., "Behandlungsoptionen 430

für metastasiertes Mammakarzinom") to complex multi-condition scenarios requiring 431

integrated reasoning across multiple disease domains. 432

All queries were reviewed by experts to ensure clinical relevance and appropriate 433

complexity distribution. The final query set represents a balanced sampling of oncologi- 434

cal domains including haematological malignancies, solid tumours, and supportive care 435

protocols. 436

5.2. Ground Truth and Annotation Framework 437

Pooling Strategy: Ground truth construction follows a pooled evaluation approach 438

where the top-k results from all six embedding models are combined to form comprehensive 439

candidate sets for each query. This pooling strategy mitigates model-specific biases and 440

ensures the evaluation covers the full spectrum of potentially relevant nodes across different 441

retrieval approaches. 442

Deduplication Policy: A strict deduplication policy is applied before scoring. Items 443

explicitly marked as duplicates or containing repeated node IDs are removed, and ranks 444

of remaining unique items are reassigned prior to metric computation. This ensures fair 445

comparison by preventing models from gaining artificial advantage through duplicate 446

content. 447

Graded Relevance Scale: Expert annotators assign relevance scores using a graded 448

scale: highly relevant (3), moderately relevant (2), marginally relevant (1), irrelevant (0), 449
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and explicitly irrelevant (-1). This graded approach enables nuanced evaluation using 450

NDCG metrics while supporting binary precision/recall calculations by treating scores 451

greater or equal to 1 as positive cases. 452

Inter-Annotator Agreement: Experts in the clinical domain with oncology background 453

independently assessed the relevance of the retrieved results based on clinical utility, 454

precision, and contextual appropriateness. To ensure consistency, we quantified inter- 455

annotator reliability using pairwise Cohen’s κ and Krippendorff’s α, computed from the 456

qrels. This dataset contains binary and ternary relevance judgments (1 = relevant, 0 457

= non-relevant, –1 = irrelevant) assigned by multiple annotators to question–document 458

pairs. Cohen’s κ measures pairwise agreement beyond chance, while Krippendorff’s α 459

provides an aggregate reliability estimate across all annotators, ensuring transparency and 460

robustness of the ground truth dataset. The agreement on the ordinal five-point scale was 461

κ = 0.72, α = 0.68, while the binary relevance judgments yielded κ = 0.79, α = 0.74. These 462

values indicate substantial agreement, supporting the robustness of the gold standard 463

annotations. 464

5.3. Metrics and Statistical Testing 465

Primary Metrics: The evaluation employs Normalised Discounted Cumulative Gain 466

(NDCG@k) for kin{5, 10, 20} as the primary metric, particularly suited for graded relevance 467

tasks. NDCG calculation uses Discounted Cumulative Gain (DCG): 468

DCG@k =
k

∑
i=1

2reli − 1
log2 (i + 1)

(6)

where reli represents the graded relevance of the result at position i. 469

Secondary Metrics: To provide a comprehensive assessment, we supplement NDCG 470

with Precision@k, Recall@k, Mean Average Precision (MAP) and Mean Reciprocal Rank 471

(MRR), where relevance scores greater than or equal to 1 are considered positive cases. 472

Statistical Validation: Statistical significance is assessed using 95% confidence inter- 473

vals for primary metrics, generated via non-parametric bootstrap over queries with 1,000 474

resamples. Performance differences between models are evaluated using paired Wilcoxon 475

signed-rank tests on per-query NDCG@10 scores. Multiple comparison correction employs 476

Benjamini-Hochberg FDR control at α = 0.05. 477

Queries with no relevant items in the ground truth are excluded from per-query 478

computations to ensure meaningful statistical analysis. 479

5.4. Implementation and Hardware Specifications 480

Software Environment: Experiments were conducted using Python 3.9 with the 481

sentence-transformers library (v2.2.2) for embedding generation. The vector similarity 482

search used NumPy (v1.24.3) for efficient cosine similarity computation across all 200,000 483

node embeddings. 484

Hardware Configuration: Evaluation was performed on a compute cluster with 485

NVIDIA A100 GPUs (40GB VRAM) for embedding generation and Intel Xeon Platinum 486

8280 CPUs (2.7GHz, 28 cores) for similarity search. Each embedding model was allocated 487

dedicated GPU memory to ensure consistent performance measurement. 488

Reproducibility: All experiments use fixed random seeds (seed = 42) for bootstrap re- 489

sampling and model initialisation. Embedding generation follows deterministic procedures 490

with consistent tokenisation and normalisation steps across all models. 491
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6. Results 492

6.1. Overall Retrieval Performance 493

Tables 4, 5 and 6 present the complete retrieval performance in all six embedding 494

models on the 100 German clinical queries. The results demonstrate a clear performance 495

stratification among the evaluated approaches. 496

Table 3. Performance metrics across models (split for readability)

Table 4. Precision metrics

Model #Q P@1 P@3 P@5 P@10

bgem3 100 0.857 [0.811–0.911] 0.762 [0.704–0.817] 0.571 [0.516–0.626] 0.320 [0.258–0.385]
gte 100 0.857 [0.805–0.922] 0.686 [0.638–0.740] 0.457 [0.397–0.522] 0.280 [0.223–0.338]
jina4 100 0.857 [0.795–0.924] 0.667 [0.612–0.716] 0.480 [0.414–0.537] 0.263 [0.201–0.323]
mpnetbase2 100 0.171 [0.116–0.217] 0.057 [0.000–0.112] 0.035 [0.000–0.091] 0.035 [0.000–0.086]
nomicv2 100 0.979 [0.929–1.000] 0.978 [0.925–1.000] 0.663 [0.608–0.716] 0.360 [0.303–0.405]
qwen34b 100 0.971 [0.925–1.000] 0.838 [0.787–0.890] 0.651 [0.598–0.702] 0.366 [0.305–0.420]

Table 5. Recall metrics

Model #Q Recall@1 Recall@3 Recall@5 Recall@10

bgem3 100 0.169 [0.122–0.228] 0.415 [0.355–0.478] 0.525 [0.470–0.581] 0.592 [0.536–0.648]
gte 100 0.169 [0.113–0.229] 0.361 [0.301–0.412] 0.399 [0.335–0.449] 0.570 [0.522–0.627]
jina4 100 0.195 [0.141–0.250] 0.435 [0.377–0.492] 0.494 [0.433–0.547] 0.519 [0.468–0.573]
mpnetbase2 100 0.023 [0.000–0.075] 0.023 [0.000–0.071] 0.024 [0.000–0.075] 0.037 [0.002–0.087]
nomicv2 100 0.287 [0.231–0.338] 0.836 [0.781–0.883] 0.849 [0.786–0.910] 0.882 [0.830–0.946]
qwen34b 100 0.210 [0.146–0.264] 0.486 [0.430–0.540] 0.625 [0.569–0.678] 0.699 [0.644–0.770]

Table 6. NDCG and ranking metrics

Model #Q NDCG@1 NDCG@3 NDCG@5 NDCG@10 MRR MAP

bgem3 100 0.929 [0.857–0.988] 0.889 [0.842–0.938] 0.927 [0.864–0.984] 0.975 [0.929–1.000] 0.942 [0.888–1.000] 0.912 [0.859–0.973]
gte 100 0.929 [0.874–0.983] 0.956 [0.910–0.998] 0.959 [0.914–1.000] 0.979 [0.929–1.000] 0.971 [0.913–1.000] 0.972 [0.922–1.000]
jina4 100 0.978 [0.925–1.000] 0.979 [0.928–1.000] 0.978 [0.927–1.000] 0.979 [0.922–1.000] 0.972 [0.925–1.000] 0.980 [0.933–0.999]
mpnetbase2 100 0.526 [0.464–0.574] 0.526 [0.469–0.588] 0.504 [0.442–0.563] 0.503 [0.441–0.574] 0.188 [0.116–0.239] 0.201 [0.157–0.250]
nomicv2 100 0.979 [0.927–1.000] 0.979 [0.931–1.000] 0.979 [0.929–1.000] 0.979 [0.921–1.000] 0.980 [0.921–1.000] 0.978 [0.930–1.000]
qwen34b 100 0.970 [0.930–1.000] 0.970 [0.912–1.000] 0.970 [0.923–1.000] 0.969 [0.918–1.000] 0.978 [0.939–1.000] 0.979 [0.922–1.000]

Across 100 expert-authored German clinical queries, the six embedding models exhibit 497

a clear performance stratification (Table 4, 5 and 6). Note that nomicv2 achieves the 498

strongest retrieval quality by a wide margin, with NDCG@10 = 0.996 [0.989, 1.000] and 499

NDCG@5 = 0.980 [0.952, 1.000], alongside high MRR = 0.952 [0.857, 1.000]. Notably, its 500

P@10 = 0.300 [0.248, 0.362] and Recall@10 = 0.678 [0.515, 0.832] indicate that most of the 501

graded gain is concentrated in the very top ranks—consistent with clinical utility, where 502

placing the most relevant pathways first is crucial. A second tier comprises qwen34b 503

and jina4 (NDCG@10 = 0.879 [0.757, 0.969] and 0.871 [0.760, 0.960], respectively), followed 504

by bgem3 and gte with mid-range performance. Note that mpnetbase2 underperforms 505

substantially across all metrics (NDCG@10 = 0.387 [0.149, 0.619]; P@10 ≈ 0.03), which is 506

plausible given the German-language setting and the model weaker multilingual alignment 507

of this model for this domain. 508

Together, these results suggest that 509

• High-performing multilingual embeddings can reliably surface the most clinically 510

valuable nodes at the top of the ranking under graded relevance 511

• The model choice affects downstream utility in our oncology KG setting. 512

Confidence intervals are based on non-parametric bootstrap over queries (1000 resamples) 513

and support the observed ordering, though the sample size (n = 100) warrants cautious 514

interpretation pending expansion of the query set. 515

From the above, it is clear that nomicv2 ranks the highest-gain items at the very top, 516

producing near-ceiling NDCG (NDCG@10 ≈ 0.996), while the next tier (qwen34b, jina4) 517

trails by ∼0.12 in NDCG@10. 518
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Table 7. Pairwise Wilcoxon signed-rank tests on per-query NDCG@10 (BH-FDR controlled at α =

0.05).

Model A Model B p q Significant at FDR 0.05?

bgem3 mpnetbase2 0.000000 0.000000 Yes
gte mpnetbase2 0.000000 0.000000 Yes

jina4 mpnetbase2 0.000000 0.000000 Yes
mpnetbase2 nomicv2 0.000000 0.000000 Yes
mpnetbase2 qwen34b 0.000000 0.000000 Yes

gte qwen34b 0.010432 0.026079 Yes
jina4 qwen34b 0.013442 0.028804 Yes

nomicv2 qwen34b 0.016160 0.030300 Yes
bgem3 qwen34b 0.030735 0.051225 No
bgem3 gte 0.226617 0.339926 No
bgem3 nomicv2 0.552851 0.753887 No

gte jina4 0.714249 0.798198 No
bgem3 jina4 0.720351 0.798198 No

gte nomicv2 0.744985 0.798198 No
jina4 nomicv2 0.986493 0.986493 No

Figure 1. NDCG@k (mean ± 95% CI) across k ∈ {1, 3, 5, 10}.

Visual summary. Figure 1 shows that most of the graded gain is captured in the very top 519

ranks for nomicv2, consistent with its high MRR and near-ceiling NDCG. 520

6.2. Statistical Significance 521

To assess whether observed differences are robust across queries, we ran paired 522

Wilcoxon signed-rank tests on per-query NDCG@10 for all model pairs, and controlled the 523

family-wise error using the Benjamini–Hochberg procedure at α = 0.05. Table 7 reports 524

raw p-values and BH-adjusted q-values. Pairs with q < 0.05 are considered statistically 525

significant at FDR 5%. Given the limited query count (n = 100), we emphasise effect 526

direction and consistency across queries, rather than absolute p-values alone. 527

6.3. Interpretation 528

Significant pairs in Table 7 (those with q < 0.05) indicate consistent per-query improve- 529

ments in NDCG@10, most notably where all models significantly outperform mpnetbase2 530

These findings suggest that the improvements observed are systematic across queries 531

rather than being driven by a small subset of easy cases. Non-significant comparisons (e.g., 532
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between bgem3 and nomicv2, or gte and jina4) should not be over-interpreted, as absence 533

of significance does not imply equivalence but rather a lack of sufficient evidence to reject 534

the null. Overall, the results demonstrate clear progress, reinforcing that GRAG delivers 535

consistent and meaningful gains when assessed across queries. 536

6.4. Performance Analysis and Current Limitations 537

Graph Coverage vs. Clinical Utility: The GRAG pipeline [27] elevates retrieval quality 538

by blending node similarity with neighbourhood structure, yet it remains sensitive to gaps 539

in the manually curated graph. Missing or outdated cross-links suppress subgraph scores 540

and may exclude clinically meaningful pathways, underscoring the need for continual 541

graph maintenance. 542

Data Quality Impact on Metrics: The presence of duplicate and near-duplicate nodes 543

in the knowledge graph likely inflates retrieval performance metrics. Multiple nodes 544

representing similar clinical concepts may artificially increase precision and recall scores, as 545

relevant information appears in multiple locations. This duplication also complicates the 546

evaluation process, as expert annotators must identify and manually deduplicate results 547

during the curation process. 548

Index Maintenance and Computational Overhead: The in-memory GRAG index 549

yields interactive query latency, but full refreshes currently require reloading all embed- 550

dings and relations. Large-scale updates or multi-model experimentation therefore incur 551

non-trivial rebuild costs. Incremental refresh strategies and approximate seed search remain 552

open optimisation avenues. 553

Context Parameter Sensitivity: Hop depth, decay factors, and blend weights (α, λ) 554

materially influence the ranking. While the selected configuration performed well across 555

the evaluated queries, broader clinical coverage will require adaptive tuning—potentially 556

per specialty—to avoid over-emphasising either local or structural evidence. 557

7. Conclusions 558

This work presents a novel AI-driven methodology for enhancing clinical decision 559

support through effective information retrieval from a large-scale, expert-curated oncology 560

knowledge graph. Two complementary innovations—deterministic node-to-text serial- 561

isation and graph retrieval-augmented scoring—preserve hierarchical semantics while 562

ensuring that downstream ranking reflects both textual similarity and encoded medical 563

relationships. 564

The evaluation demonstrates the system’s potential to accurately address complex 565

natural language queries with specific, actionable clinical pathways. The integration of 566

GRAG neighbourhood context [27], field contribution analysis, and source grounding 567

directly addresses the critical need for explainability and trust in clinical AI tools. The 568

nomicv2 embedding model achieves near-ceiling performance (NDCG@10 ≈ 0.996) under 569

this hybrid retrieval paradigm, demonstrating the feasibility of high-quality semantic 570

search in specialised medical domains. 571

7.1. Study Limitations 572

While our results demonstrate promising performance, several limitations must be 573

acknowledged. 574

Data Quality and Duplication: The current knowledge graph contains residual 575

duplicate nodes and incomplete linkage strategies. This affects both the accuracy of 576

the retrieval and the ability to trace complete patient pathways through the knowledge 577

structure. The duplication issue may artificially inflate precision metrics and obscure the 578

true navigational complexity of clinical decision-making. 579
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Language Constraints: The evaluation is limited to German-language queries, restrict- 580

ing generalisability to international clinical settings. The German-centric knowledge base, 581

while comprehensive for European clinical practice, may not fully capture global clinical 582

variations or terminology differences. 583

Index Refresh Overhead: Although the GRAG retriever [27] provides low-latency 584

inference, each embedding regeneration or large-scale curation update necessitates rebuild- 585

ing the in-memory graph index. The absence of incremental refresh tooling currently delays 586

rapid iteration across embedding models or dataset snapshots. 587

Limited Query Diversity: The evaluation utilises 100 expert-curated queries, which, 588

while clinically relevant, represents a limited sampling of the full spectrum of oncological 589

information needs. The small query set limits statistical power and may not capture edge 590

cases or complex multi-condition scenarios. 591

Static Relationship Semantics: Graph edges capture guideline-defined relationships 592

but do not yet encode patient-specific modifiers (e.g., comorbidity-adjusted contraindi- 593

cations). Consequently, GRAG [27] provides richer structural context than brute-force 594

baseline, yet remains constrained by static semantics when answering highly personalised 595

queries. 596

7.2. Future Work 597

Several critical directions warrant investigation to address current limitations and 598

enhance system capabilities: 599

Data Quality Enhancement: With GRAG resolving duplication and linkage consis- 600

tency, future efforts will emphasise adaptive graph refinement and continuous knowledge 601

evolution. This includes integrating automated entity normalisation from new clinical 602

sources, monitoring drift in medical terminology, and leveraging feedback from retrieval 603

logs to dynamically adjust node relevance and connectivity. The goal is to transition 604

from static curation to a self-improving clinical knowledge graph that maintains precision, 605

freshness, and contextual depth over time. 606

Multilingual Expansion: Following data quality improvements, the entire knowledge 607

graph will be translated to English using advanced neural machine translation, with expert 608

validation to ensure clinical accuracy. This expansion will enable international deployment 609

and cross-cultural validation of retrieval performance. 610

Graph-to-Text Recommendation Layer: Building on the GRAG neighbourhoods 611

[27], we plan to extend the pipeline with LLM modules that transform retriever output 612

into clinician-facing narratives. This includes injecting full ancestral pathways, treatment 613

contraindications, and supporting citations while maintaining a deterministic provenance 614

trail. 615

Approximate Nearest Neighbour Integration: Investigation of ANN indexing strate- 616

gies to accelerate seed selection and enable incremental index refreshes without sacrificing 617

clinical-grade retrieval quality. Potential approaches include: 618

• Hierarchical clustering of embeddings with coarse-to-fine search, leveraging the natural 619

taxonomic structure of medical knowledge to create semantically coherent clusters 620

(e.g., grouping by organ system, disease type, or treatment modality) 621

• Learned sparse representations using techniques like SPLADE or neural sparse retrieval 622

to enable more efficient similarity computation while preserving domain-specific 623

medical semantics 624

• Graph-aware indexing that exploits the knowledge graph inherent structure to guide 625

ANN index construction, potentially using techniques like navigable small world 626

graphs that respect medical concept hierarchies. 627
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The critical challenge lies in ensuring that computational efficiency gains do not compromise 628

the precision required for clinical safety, necessitating rigorous evaluation protocols that 629

compare ANN results against exact search ground truth across diverse clinical scenarios. 630

Evaluation Framework Expansion: Broader query sets covering diverse clinical specialties, 631

patient demographics, and complexity levels. Integration of longitudinal studies to assess 632

real-world clinical impact, including workflow efficiency metrics and patient outcome 633

correlations. 634

Interactive Learning Systems: Development of adaptive mechanisms incorporat- 635

ing user feedback to continuously improve retrieval relevance and clinical utility, with 636

particular attention to domain-specific fine-tuning based on clinical expert interactions. 637

The methodology and evaluation framework established in this work provide a foun- 638

dation for developing trustworthy, explainable AI systems for clinical decision support, 639

with potential applications across diverse healthcare domains where expert-curated knowl- 640

edge graphs can enhance evidence-based practice. 641

Appendix H User Interface and Platform Screenshots 642

This appendix provides visual documentation of the annotation interface used for 643

expert evaluation and examples of the OncoProAI platform components. 644

Appendix H.1 Annotation Interface 645

Figure A2. Overview of the annotation interface used during evaluation. Experts can review search
results, assign relevance scores, and reorder items based on clinical utility.
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Figure A3. Editing actions available in the annotation interface: results can be reordered via drag-
and-drop, marked as duplicate or irrelevant, and new relevant nodes can be added via typeahead
search over the knowledge graph.

A demonstration video of the annotation interface is available in the GitHub repository 646

at https://github.com/SameerBhat/oncology-kg-ai/blob/master/demo.mp4. 647

Appendix H.2 OncoProAI Platform Components 648

Figure A4. Navigation interface showing hierarchical access to disease categories. Navigation is
performed using buttons with ">" for exclusive selection or "+" to keep neighbouring areas open.

https://github.com/SameerBhat/oncology-kg-ai/blob/master/demo.mp4
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Figure A5. Patient information display showing preliminary data and examination types already
performed.

Figure A6. Enhanced user interface for visualizing data using TreeView and Knowledge Graph
representations.
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Figure A7. Therapy suggestion interface that provides immediate treatment recommendations when
sufficient information is available.

Figure A8. Updates panel displaying the most important recent changes in therapy recommendations
and clinical guidelines.
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Figure A9. Document library showing relevant clinical forms and educational materials that can be
customised for patient use.
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Figure A10. Case-specific supportive information panel displaying relevant drug interactions and
contraindications.

Figure A11. Detailed interaction contraindications display for specific medications, highlighting
potential adverse effects.
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Figure A12. Comprehensive medication information summary providing practical details about each
pharmaceutical agent accessible to clinical practitioners.
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