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Abstract: The modern oncology landscape is characterised by a deluge of high-dimensional
data from genomic sequencing, medical imaging, and electronic health records, negatively
impacting the analytical capacity of clinicians and health practitioners. This field is not
new and it has drawn significant attention from the research community. However, one
of the main limiting issues is the data itself. Despite the vast amount of available data,
most of it lacks scalability, quality and semantic information. This work is motivated by
the data platform provided by OncoProAl, an Al-driven clinical decision support platform
designed to address this challenge by enabling highly personalised, precision cancer care.
The platform is built on a comprehensive knowledge graph, formally modelled as a directed
acyclic graph, which has been manually populated, assessed and maintained to provide
a unique data ecosystem. This enables targeted and bespoke information extraction and
assessment.

Keywords: Artificial Intelligence; Machine Learning; Deep Learning; Digital Health;

1. Introduction

The field of modern oncology is defined by the increasing creation and use of com-
plex and high-dimensional data. From the granular details of genomic and proteomic
sequencing to the complex patterns in radiological images and the vast unstructured text
of electronic health records, the volume of information available for each patient challenges
current state-of-the-art technology [3]. Artificial Intelligence (AI), underpinned by mathe-
matical modelling and machine learning algorithms, has emerged as a transformative force
capable of addressing this challenge. By detecting subtle patterns and correlations invisible
to the human eye, Al offers the potential to revolutionise cancer care, driving a paradigm
shift from generalised protocols to highly personalised precision medicine [1].

The application of Al in oncology spans the entire patient’s journey. It includes
techniques such as deep learning to enhance the accuracy of diagnostic imaging and
digital pathology, and employs predictive models to forecast disease progression and
patient survival with greater accuracy. Furthermore, with the power of Natural Language
Processing (NLP), Al can unlock critical insights from clinical notes, facilitating research
and cohort identification. The ultimate goal is to create a close relationship between the
expertise of the clinician and the analytical power of Al, leading to more timely diagnoses,
optimised treatment strategies, and fundamentally better outcomes for patients [2].
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1.1. Limitations of Current Research 33

Image-based approaches, often using deep learning models such as Convolutional s
Neural Networks (CNN), are particularly suitable for the identification of data patterns s
in radiological scans (CT, MRI, mammograms) and histopathology slides that may not s
be visible to the human eye, helping to detect and classify early cancers [4,5]. Currently, =
NLP techniques are used to extract vital information from unstructured clinical notes,
pathology reports, and the scientific literature, providing information on the patient’s s
history, symptoms, diagnoses, and treatment regimens [6]. The synergy between these 4
approaches to image and text data, often facilitated by Vision-Language Models (VLMs),
holds significant promise for a more comprehensive understanding of complex oncological
cases [7]. Although automated methods for data extraction and analysis are advancing
rapidly, a critical factor for achieving superior accuracy and interpretability in oncology 4
Al lies in the development of manually populated, curated semantic, and ontology-based s
data. Automated approaches, despite their efficiency, often struggle with the inherent 4
ambiguities, inconsistencies, and vast heterogeneity of clinical data. For instance, variations  «
in terminology, abbreviations, and sentence structures within free-text clinical notes can 4
lead to misinterpretations or missed information [8]. Similarly, discrepancies in image 4
acquisition protocols or reporting standards can introduce noise into visual data. In many s
cases, such issues also stem from the lack of customised data with limited semantic informa- =
tion. Furthermore, traditional retrieval-augmented generation approaches typically focus =
on individual documents in isolation, failing to leverage the rich network relationships that s
exist between clinical concepts, treatment pathways, and patient outcomes [27]. In fact,a s
suitably curated semantic (and ontological) framework provides a machine-readable stan-  ss
dardised representation of medical knowledge, explicitly defining concepts, their attributes, s
and relationships within the oncology domain. This rigorous and expert-driven curation s
process, although resource intensive, ensures high data quality, reduces bias, and improves s
the reliability of Al models [9]. By establishing a common vocabulary and a robust knowl- s
edge graph, such an approach would facilitate intelligent data integration across disparate e
sources, enabling more accurate reasoning and inference by Al algorithms. For example,an &
ontology could precisely link specific histological features observed in an image with the
corresponding genetic mutations described in a text report, providing a deeper and more e
contextualised understanding of a patient’s cancer [10]. This human-in-the-loop validation e
of medical knowledge encoded in ontologies is paramount, as even subtle inaccuracies can &
have significant clinical consequences, ultimately leading to more trustworthy and effective s
Al-driven oncology solutions [11]. o7

68

This article is motivated by the above observations and aims to demonstrate how &
such data can significantly enhance Al applications to oncology, as well as to wider areas 7
related to health. However, such rich and interconnected data is usually a complex, time =
consuming, and labour intensive endeavour. This work was carried out in collaboration 7
with OncoProAI [12]. OncoProAl is a company focussing on data-driven cancer treatment,
based on semantically and ontologically defined data. The analysis and approach in this 7
work is based on this data demonstrating its potential and accuracy in this field. The
authors were granted access to their proprietary data and knowledge graphs, which were
employed to train and evaluate the models in this work. Such data has led to highly
effective and accurate model implementations, as demonstrated in the evaluation. 78

79

The article is structured as follows: Section 2 provides a comprehensive background s
on Al in oncology and ontological approaches. Section 3 introduces the OncoProAl plat- &
form, the description of the data set, and the ethical considerations. Section 4 describes e
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the methodology including node serialisation, embedding models, explainability, and e
annotation workflow. Section 5 presents the evaluation framework and experimental setup. &
Section 6 reports the retrieval performance, statistical significance, and efficiency analysis. &
Finally, Section 7 concludes the article and outlines future directions. 8

2. Background o

The field of oncology is characterised by a rapidly expanding volume of complex, &
high-dimensional data, ranging from genomic and proteomic profiles to clinical imaging &
and electronic health records. The sheer scale and complexity of this information presents s
significant challenges for human clinicians in diagnosis, prognosis, and treatment planning. o
Al machine learning (ML), deep learning (DL), and Natural Language Processing (NLP) o
have emerged as a powerful paradigm to address these challenges. Al offers the potential o
to extract meaningful patterns from data, automate complex tasks, and ultimately enablea o
more precise and personalised approach to cancer care [1,14]. %

96

One of the most mature applications of Al in oncology is in the analysis of medical o
imaging. Radiomics, the process of extracting large amounts of quantitative features from s
medical images, is highly utilising ML algorithms [15]. Deep learning models, especially o
CNNs, have demonstrated performance comparable to, and in some cases exceeding, that 10
of human radiologists in identifying malignant lesions in mammograms, CT scans, and 1
MRIs. For instance, studies have shown high sensitivity and specificity in detecting lung 12
nodules and classifying breast cancer subtypes from imaging data alone. These models 10
learn hierarchical features directly from pixels, bypassing the need for manual feature 10
engineering [16]. 105

Al is similarly revolutionising histopathology. By analysing whole slide images (WSIs), 10
ML algorithms can assist pathologists in identifying tumour regions, grading cancers (for 1
example, Gleason score in prostate cancer) and counting mitotic figures. This automation 10
reduces inter-observer variability and increases throughput, allowing pathologists to focus 10
on more complex cases. 110

2.1. Prognosis and Predictive Modelling 1

Predicting a patient’s clinical outcome is fundamental to a personalised treatment. Al 1
models excel at integrating multi-modal data to generate robust prognostic and predictive 13
insights [17]. 114

Traditional statistical methods, such as the Cox proportional hazards model, are being 15
augmented and, in some cases, surpassed by ML-based survival models. Techniques such 1
as Random Survival Forests and DL-based survival models can handle complex, non-linear 17
interactions between variables. These models can predict metrics such as overall survival or 1
progression-free survival by integrating clinical data with genomic markers and radiomic 19
features. 120

A critical goal of precision oncology is to predict which patients will respond toa 1z
specific therapy. Al models are being trained on pre-treatment data (e.g., genomics, tran- 1
scriptomics, tumour microenvironment characteristics) to predict response to chemotherapy, 1
immunotherapy, and targeted agents. For example, DL models have been used to predict 1
the response to immune checkpoint inhibitors by analysing patterns in tumour histology 1
and the expression of biomarkers such as PD-L1 [18]. 126

2.2. Treatment Planning and Decision Support 127

The complexity of modern cancer treatment protocols, with numerous drug com- 1
binations and sequencing options, makes clinical decision-making increasingly difficult. 12
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Al-driven decision support systems (DSS) are being developed to assist oncologists. These
systems synthesise patient-specific data, biomarker status, and the latest clinical guidelines
(e.g., NCCN, ESMO) to recommend optimal treatment pathways. They function as power-
ful tools for exploring ‘what-if’ scenarios, helping to standardise care and ensure that it is
based on the most current evidence [19].

2.3. Natural Language Processing (NLP) in Oncology

A large amount of critical patient information is locked in unstructured text in elec-
tronic health records (EHRs), such as clinical notes, pathology reports, and molecular
profiling reports [20]. NLP models are used to extract structured data from this unstruc-
tured text. This includes identifying patient cohorts for clinical trials, abstracting cancer
stage and histology, and identifying documented adverse events. Al can also be applied
to the vast corpus of biomedical literature to accelerate research, identify potential drug
targets, and summarise evidence for systematic reviews. Beyond traditional text extraction,
retrieval-augmented generation (RAG) techniques enhance Al capabilities by integrating
external knowledge sources during the generation process, with graph-based variants
proving particularly effective for networked medical knowledge [27].

Despite significant potential, several challenges must be addressed for the widespread
clinical adoption of Al in oncology. these include:

Data Quality and Accessibility. Al models are only as good as the data on which they are
trained. The issues of data scarcity, heterogeneity between institutions, and patient
privacy remain significant hurdles.

Interpretability and Trust. Many advanced deep learning models function as black boxes,
making it difficult for clinicians to understand their reasoning. Research into explain-
able AI (XAI) is critical to building trust and facilitating clinical adoption.

Validation and Regulation. Models must be rigorously and prospectively validated in
real-world clinical settings before they can be deployed. A clear regulatory framework
for the approval and monitoring of these Al-based medical devices is essential.

Integration into Clinical Workflows. For Al tools to be effective, they must be seamlessly
integrated into existing clinical workflows without disrupting the established prac-
tices of healthcare professionals.

2.4. Ontologies and Knowledge Graphs in Oncology

As discussed above, data integration remains a challenge for ontologies in medical
research. Research data originates from highly heterogeneous sources, including electronic
health records (EHR), genomic and proteomic experiments, clinical trials, and the scientific
literature. These sources often use different terminologies and data structures to describe
the same concepts [21].

Ontologies provide a standardised vocabulary and a common semantic framework
to map and link these disparate datasets. By annotating data with terms from a shared
ontology, researchers can achieve semantic interoperability, allowing meaningful queries
across multiple data sources. Key examples include SNOMED CT for clinical terminology
[25], Gene Ontology (GO) for describing gene and protein functions [26], and Human
Phenotype Ontology (HPO) for standardised phenotypic abnormalities [28].

The formal structure of an ontology, consisting of classes, properties, and logical
axioms, enables computational reasoning. In particular, ontologies can be viewed as
knowledge graphs where concepts are nodes and relationships are edges, enabling inference
engines to deduce new implicit knowledge from explicitly stated facts [22]. This capability
is crucial for generating new hypotheses, identifying potential drug targets, and uncovering
hidden relationships within complex biological networks.
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In the context of NLP, ontologies provide the semantic foundation required for sophis- 1=
ticated medical text analysis [23]. They facilitate accurate entity identification, relationship 17
extraction, and move NLP from simple keyword matching to deeper, context-aware under- 1z
standing of medical text. For precision medicine applications, ontologies allow the linking 1
of patient phenotypes to underlying genetic variants and support clinical decision support e
systems by modelling clinical guidelines and patient data [2,24]. Recent advances in graph- e
based retrieval methods, such as Graph Retrieval-Augmented Generation (GRAG), have 1
demonstrated that leveraging the network structure of knowledge graphs—rather than 1
treating documents as isolated entities—significantly improves both retrieval precision and 1

the contextual relevance of Al-generated responses [27]. 187
3. Data and Platform 18

In this section, the main dataset, the corresponding platform, and its structure are 1
discussed. 190
3.1. OncoProAl Platform 191

OncoProAI [12] is a clinical decision support platform that integrates Al with oncology 1
knowledge to assist in cancer treatment decision-making. The platform provides evidence- 10
based recommendations through an interactive decision tree interface, designed to help 1.
medical professionals identify treatment pathways based on patient-specific data. 195

The system operates on a comprehensive repository of oncology guidelines from major 196
international sources, including the National Comprehensive Cancer Network (NCCN), 1o
the European Society for Medical Oncology (ESMO), the American Society of Clinical 19
Oncology (ASCO), Onkopedia and the American Society for Radiation Oncology (ASTRO). 19
The platform integrates with Electronic Health Record (EHR) systems to incorporate patient- 200
specific data, including biomarkers and comorbidities, allowing personalised treatment 2
recommendations. 202

The platform implements a continuous integration protocol for knowledge updates, 20
with newly published clinical studies reviewed and integrated within a 14-day window. 20
The knowledge base comprises over 250,000 clinical pathways, each linked to supporting 2
evidence from more than 40,000 scientific studies. In addition, the system includes a s
database of pharmacological interactions covering more than 400 active ingredients and 207
maintains a library of over 700 educational documents for patient engagement. 208

The architecture of the system follows a hierarchical interface modelled as a directed 20
acyclic graph, providing structured navigation through oncological decision-making pro- 2w
cesses. The platform responds dynamically to data completeness: when sufficient datais 2n
available, it provides therapeutic recommendations; when data is incomplete, it transitions 2
to a guidance mode, specifying required additional examinations such as tumour markers, 2
mutation analyses, or imaging studies. 214

The system facilitates at four key clinical decision points: initial diagnostic strategy, s
diagnosis refinement and confirmation, first-line therapy formulation, and management of 2
disease recurrence. For each intervention point, the system provides structured evidence- =7
based recommendations aligned with current clinical guidelines. 218

3.2. Dataset Description 219

The OncoProAl knowledge graph used in this study is a German-language oncology 20
database manually curated that has been systematically populated and maintained by 2z
domain experts. The structure and coverage of the data set are summarised in Table 1. 22
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Table 1. Dataset coverage and structure of the OncoProAI knowledge graph.

Component Count
Total nodes ~200,000
Haematological non-malignant disease groups 16
Malignant haematological disease groups 41
Solid tumour disease groups 49
Clinical pathways 250,000+
Supporting scientific studies 40,000+
Active pharmaceutical ingredients 400+
Educational documents 700+

Data Sources

German guidelines (Onkopedia, AWME, AGO) Primary
European guidelines (ESMO) Secondary
American guidelines (NCCN) Secondary
Example Node Types

Disease entities Diagnosis codes, staging
Treatment protocols Drug combinations, dosages
Biomarkers Genetic mutations, protein expressions
Contraindications Drug interactions, comorbidities
Snapshot Information

Knowledge graph version 2024.Q4
Last update cycle 14-day rolling

The construction of the data set follows a rigorous curation process based on leading 23
international oncology guidelines. Primary sources include German Onkopedia guidelines, 2
AWMF (Association of Scientific Medical Societies in Germany), and AGO (Arbeitsge- 2
meinschaft Gyndkologische Onkologie), supplemented by European ESMO guidelines and 2
American NCCN guidelines. This multi-source approach ensures comprehensive coverage 2
while maintaining consistency with German clinical practice standards. 28

The structure of the knowledge graph represents complex oncological relationships 2
through typed edges that connect disease entities, treatment protocols, biomarkers, and 2
contraindications. Each node contains structured information including diagnostic codes, 2
staging criteria, drug combinations with specific doses, genetic mutation profiles, and 2
warnings about pharmacological interactions. The hierarchical organisation of the graph 2
enables both broad category queries and specific pathway navigation. 234

Quality assurance is maintained through a continuous integration protocol in which 2
newly published clinical studies undergo expert review and verification before integration 2
into the knowledge base within a 14-day window. This ensures the dataset remains 2
current with evolving clinical evidence while preserving the integrity of existing validated 2
pathways. Despite the limitations of its only implementation in German, the approach 2
introduced in this work can be expanded and adapted to other languages, as the main 20
algorithms are language-independent. 241

3.3. Ethics and Data Access 242

This research was conducted in accordance with the Declaration of Helsinki and 2
approved by the Edge Hill University Institutional Review Board (protocol code ETH2425- 2
0274, approved 7 July 2025). The study utilises de-identified, aggregate clinical knowledge 2
derived from published guidelines rather than individual patient data, mitigating direct 2
privacy concerns. 247

Access to the OncoProAl knowledge graph was granted through a formal collaboration s
agreement between the research team and OncoProAl. The data sharing agreement ensures 2
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that: (1) all knowledge graph content remains within the research environment and is
not redistributed, (2) derived insights and methodological findings can be published for
scientific advancement, and (3) the proprietary clinical pathways and drug interaction
databases are protected under appropriate confidentiality measures.

The dataset represents expert-curated medical knowledge rather than patient records,
with all source materials derived from publicly available clinical guidelines (NCCN, ESMO,
ASCO, Onkopedia, ASTRO) and peer-reviewed literature. During this investigation, no
individual patient identification or private health information was accessed. The structure
of the knowledge graph and the sample queries used for evaluation are based on hypothet-
ical clinical scenarios designed to test retrieval capabilities without compromising patient
confidentiality.

Data availability is subject to the proprietary nature of the OncoProAl platform. Al-
though the methodological framework and the evaluation results are fully disclosed in this
publication, direct access to the complete knowledge graph requires institutional collab-
oration agreements with OncoProAl. Researchers interested in replicating or extending
this work are encouraged to contact OncoProAl for data access discussions, subject to
appropriate institutional and ethical approvals.

4. Methods

This section describes the methodology for developing and evaluating an information
retrieval system based on the large-scale expert-curated oncology knowledge graph de-
scribed in Section 3.2. The approach comprises node-to-text serialisation, high-dimensional
embeddings for semantic search, explainability mechanisms, and a human-in-the-loop
evaluation framework.

4.1. Node-to-Text Serialisation

A fundamental requirement for applying NLP techniques to graph-based data struc-
tures is the transformation of graph nodes into semantically rich textual representations.
We developed a deterministic serialisation protocol that converts each knowledge graph
node into structured, machine-readable text while preserving hierarchical context and
intricate medical relationships.

The serialisation process comprises three key components:

Field-Tagging: Each node attribute is explicitly tagged with descriptive field names.
For instance, a cancer diagnosis node includes tags such as <Title>, <Type>, <Diagnosis>,
<Therapy>, and <Symptoms>. This explicit structure serves two purposes: providing clear
text organisation and enabling granular analysis of field contributions to retrieval scores
for explainability.

Hierarchical Contextualisation: To capture the inherent hierarchical structure of the
knowledge graph, the serialisation process incorporates ancestor node connections as
prefixes. This is achieved by traversing upward from each node to its root, concatenating
ancestor titles to provide embedding models with richer contextual understanding of the
node’s position within the broader oncology ontology.

Versioning and Reproducibility: Each serialised representation includes two version-
ing markers: a serialisation format identifier for tracking conversion logic changes and
a knowledge graph snapshot identifier ensuring traceability to the exact dataset version.
This versioning system is critical in clinical settings where the underlying knowledge base
undergoes frequent updates and revisions.
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4.2. Embedding Models and Vector Search 205

The core of our retrieval system uses high-dimensional vector embeddings to represent 20
the semantic meaning of serialised node text. We evaluated six pre-trained transformer- 2o
based language models with varying dimensionalities to investigate trade-offs between 2
model complexity, embedding dimensionality, and retrieval performance. The model 2
specifications are detailed in Table 2. 300

Table 2. Embedding models used in the evaluation with their model names and specifications. The size values (GB) correspo:
final disk footprint of embeddings for 200,000 nodes stored in float32 format.

Model Name Dim Multilingual Tokenizer / Notes Size (GB)
BAAI/bge-m3 (M3- 1024 Yes XLM-RoBERTa-based; 2.3
Embedding) dense/sparse/multi-

vector; long-context
Alibaba- 768 No Transformer++ (BERT + 1.99
NLP/gte-base-en-v1.5 RoPE + GLU); long-context
jina-embeddings-v4 (Jina 2048 Yes Unified multi- 5.06
4) modal/multilingual

model; dense (2048 dim,
truncatable to 128)

all-mpnet-base-v2 768 No WordPiece;  contrastive 1.99
fine-tuned dense embed-
dings

nomic-embed-text-v2-moe 768 Yes MOoE (8 experts, top-2), Ma- 1.99
tryoshka reduction

Qwen3-Embedding-4B 2560 Yes BPE; multilingual + MRL 6.31

(32-2560D adjustability)

Let N be a node in the knowledge graph, and let T(N) be its serialised text representa- s

tion. The embedding process is formalised as a function: 302
¢:T - RA 1)

where 7T is the space of all possible text representations and 4 is the embedding dimension- s

ality. For each node N;, we compute its vector embedding: 304
vi = ¢(T(N;)) 2)

All embeddings undergo L2-normalisation such that ||v;|| = 1, ensuring vector s
magnitude does not influence similarity comparisons. For a user query g, we compute the 0
query vector q using the same embedding model and calculate the similarity using the s
cosine similarity: 308

: q-Vvi
@) = vz ~ 9 @

The final equality holds due to L2-normalisation. Rather than ranking nodes purely o
by this dot product in isolation, the deployed system applies a graph retrieval-augmented  sw
pipeline that caches all L2-normalised embeddings alongside the structural relations stored  su

in MongoDB. 312
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4.3. Graph Retrieval-Augmented Scoring 313

To provide context-aware answers, we integrate the Graph Retrieval-Augmented i
Generation (GRAG) strategy [27]. ais
The graph index materialises every node with an embedding together with its par- s
ent/child hierarchy and cross-links. Given a query embedding q, we first identify a set s
of seed nodes S with the highest cosine similarity. For each seed s € S we collect its h-hop  =s

neighbourhood N, (s) and compute a pooled representation 319
= LV @
e VAT ir
|Nh (S)| ieN;(s)

which is subsequently normalised. Each candidate node i inside the explored neighbour- s
hood inherits both its direct similarity q - v; and the seed-level subgraph signal q - gs. The sz
final score blends these components with a hop-dependent decay AMoP(s). a2

score(i) =a(q-v;)+ (1 —a) AhOP(i'S)(q - 8s), (5)

where a € [0, 1] balances local and structural evidence. In practice we use & = 0.6 and sz
A = 0.75, tuned to favour clinically precise seeds while rewarding coherent neighbourhoods. s
The retriever returns the top-k nodes with their provenance metadata (seed identifier, hop s
distance, neighbour list), which supports downstream explainability and audit trails. 326

Our implementation therefore keeps the spirit of Hu et al.’s divide-and-conquer GRAG s
retriever [27]: instead of exhaustively enumerating subgraphs, we pre-compute ego-centric s
neighbourhoods, score them against the query, and apply lightweight pruning to discard s
redundant nodes. The official GRAG pipeline further couples this retrieval step witha s
dual-view (text and topology) prompting scheme for LLM generation; in our deployment  sa
we currently adopt only the retrieval component, leaving the generation module for future x
clinical evaluation. 333

4.4. Explainability and Result Grounding 334

In clinical applications, the interpretability of Al systems is crucial to gaining the trust s
of the practitioner and ensuring a safe deployment. We incorporate two key mechanisms s
to enhance the explainability and trustworthiness of our retrieval system: 337

Field-Contribution Analysis: To provide insight into why specific nodes were re- s
trieved for a given query, we developed a field-contribution proxy technique. This method s
performs token-level overlap analysis between the query and each tagged field in the seri- o
alised node representation. The analysis generates a per-field contribution vector that can  sa
be visualised as a heatmap, highlighting which specific content areas (e.g., symptoms, ther- s«
apies, contraindications) most influenced the matching process. This granular breakdown s
allows users to quickly assess the relevance of the results and understand the reasoning of s
the system. Furthermore, this technique performs a token-level overlap analysis between s
the query and each of the tagged fields in the serialised text representation of the retrieved s
node. The result of this analysis is a per-field contribution vector, which can be visualised s«
as a heatmap to highlight the specific parts of the node’s content that were most influential s
in the matching process. This allows users to quickly understand the basis for a given result s
and assess its relevance to their information needs. 350

Source Grounding: Each node in the expert-curated knowledge graph maintains s
links to its original source documents, including PubMed articles, clinical trial reports, and s
guideline publications. Our retrieval system surfaces these source identifiers alongside s
search results, providing direct access to the underlying evidence. This grounding in  ss
authoritative sources establishes trust and enables users to verify presented information, s
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which is essential for clinical decision-making where accuracy and evidence quality are
paramount. By combining a sophisticated node representation strategy with state-of-
the-art embedding models and a rigorous, human-centred evaluation framework, this
methodology provides a comprehensive blueprint for the development and assessment
of high-quality information retrieval systems in the specialised and critical domain of
oncology.

These explainability features address the black box nature of many machine learning
models, providing clinical users with the transparency needed to confidently integrate
Al-driven insights into their practice workflows.

4.5. Evaluation Framework and Human-in-the-Loop Curation

The evaluation methodology of this approach focusses on a human-in-the-loop cura-
tion process, which leverages the expertise of clinical professionals to create a gold standard
set of relevance judgments. The query set used in our evaluation is derived from a pre-
existing spreadsheet of clinical questions, available in both English and German. For our
experiments, we used the German-language queries. The human curation process is facili-
tated by a custom-built user interface, which allows domain experts to review and re-rank
the top-k search results returned by each of the six embedding models for a given query.
In addition to re-ranking, the experts are also tasked with identifying and flagging any
duplicate or near-duplicate results, which are subsequently removed from the evaluation
set.

4.6. Ground Truth Creation and Model-Agnostic Evaluation

The curated result orderings from the human experts form the basis for creating a
model-agnostic ground truth, or grels (query relevance judgments). The creation of the
grels involves a two-stage process:

*  Pooling of results: for each query, the top-k results from all six embedding models
are pooled together to form a comprehensive set of candidate nodes. This pooling
strategy is designed to mitigate any model-specific biases and to ensure that the final
ground truth is as comprehensive as possible.

*  Relevance labelling: the curated rankings provided by the human experts are used
to bootstrap an initial set of relevance labels. These are later refined through a more
explicit labelling process, where experts assign binary or graded relevance scores
to each node in the pooled set. The resulting qrels are versioned and maintained
independently of the models being evaluated, which allows for a fair and unbiased
comparison of different retrieval models.

4.7. Annotation User Interface and Curation Workflow

The evaluation methodology employs a human-in-the-loop curation process leverag-
ing clinical professional expertise to create gold standard relevance judgments. The query
set derives from pre-existing clinical questions available in both English and German, with
German-language queries used for this study to align with the knowledge graph primary
language.

Annotation Interface: We developed a custom user interface enabling domain experts
to review and re-rank top-k search results from all embedding models for each query. The
interface provides three atomic actions per item:

(1) Mark duplicate — removes items from ordered_nodes and sets isDuplicate=true
in nodes
(if) Mark irrelevant — maintains item visibility while flagging isIrrelevant=true and

assigning relevance of —1 in ground truth
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(i) Add node — enables typeahead search over the knowledge graph; added items
carry original_index=-1 and isManuallyAdded=true for provenance tracking

These actions serve as the single source of truth for constructing both model-agnostic
grels (query relevance judgments) and per-model runs, ensuring tight alignment between
expert intent and evaluation artefacts.

Ground Truth Creation: The curation process follows a two-stage approach:

®  Result Pooling where the top—k results from all six embedding models are combined
to form comprehensive candidate sets, mitigating model-specific biases

*  Relevance Labelling where expert-curated rankings bootstrap initial relevance labels,
subsequently refined through explicit scoring where experts assign binary or graded
relevance scores to each pooled node.

The resulting grels are versioned and maintained independently of the evaluated mod-
els, allowing fair and unbiased comparison across different retrieval approaches. This
methodology ensures that evaluation reflects genuine clinical relevance rather than model-
specific quirks or biases. A demonstration video and interface screenshots are available in
Appendix H.

5. Evaluation

This section establishes a standardised evaluation framework ensuring reproducible
and comparable experimental results across different retrieval models.

5.1. Query Set and Provenance

We evaluated retrieval quality on a curated set of 100 German clinical queries created
by domain experts. The query set derives from real-world clinical scenarios covering
diverse oncological conditions, diagnostic procedures, and treatment planning situations.
Each query was designed to test different aspects of the knowledge graph'’s coverage, from
broad diagnostic categories to specific therapeutic protocols.

The German-language focus aligns with the OncoProAl knowledge graph primary
language and reflects the predominance of German clinical guidelines in the dataset.
Query complexity ranges from simple diagnostic lookups (e.g., "Behandlungsoptionen
fiir metastasiertes Mammakarzinom") to complex multi-condition scenarios requiring
integrated reasoning across multiple disease domains.

All queries were reviewed by experts to ensure clinical relevance and appropriate
complexity distribution. The final query set represents a balanced sampling of oncologi-
cal domains including haematological malignancies, solid tumours, and supportive care
protocols.

5.2. Ground Truth and Annotation Framework

Pooling Strategy: Ground truth construction follows a pooled evaluation approach
where the top-k results from all six embedding models are combined to form comprehensive
candidate sets for each query. This pooling strategy mitigates model-specific biases and
ensures the evaluation covers the full spectrum of potentially relevant nodes across different
retrieval approaches.

Deduplication Policy: A strict deduplication policy is applied before scoring. Items
explicitly marked as duplicates or containing repeated node IDs are removed, and ranks
of remaining unique items are reassigned prior to metric computation. This ensures fair
comparison by preventing models from gaining artificial advantage through duplicate
content.

Graded Relevance Scale: Expert annotators assign relevance scores using a graded
scale: highly relevant (3), moderately relevant (2), marginally relevant (1), irrelevant (0),
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and explicitly irrelevant (-1). This graded approach enables nuanced evaluation using
NDCG metrics while supporting binary precision/recall calculations by treating scores
greater or equal to 1 as positive cases.

Inter-Annotator Agreement: Experts in the clinical domain with oncology background
independently assessed the relevance of the retrieved results based on clinical utility,
precision, and contextual appropriateness. To ensure consistency, we quantified inter-
annotator reliability using pairwise Cohen’s x and Krippendorff’s «, computed from the
grels. This dataset contains binary and ternary relevance judgments (1 = relevant, 0
=non-relevant, -1 = irrelevant) assigned by multiple annotators to question-document
pairs. Cohen’s ¥ measures pairwise agreement beyond chance, while Krippendorft’s «
provides an aggregate reliability estimate across all annotators, ensuring transparency and
robustness of the ground truth dataset. The agreement on the ordinal five-point scale was
x =0.72, « = 0.68, while the binary relevance judgments yielded x = 0.79, a« = 0.74. These
values indicate substantial agreement, supporting the robustness of the gold standard
annotations.

5.3. Metrics and Statistical Testing

Primary Metrics: The evaluation employs Normalised Discounted Cumulative Gain
(NDCGe@XK) for kin{5,10,20} as the primary metric, particularly suited for graded relevance
tasks. NDCG calculation uses Discounted Cumulative Gain (DCG):

k orel; _ 1

DCG@k =Y
i=1

= log, (i+1) ©

where rel; represents the graded relevance of the result at position i.

Secondary Metrics: To provide a comprehensive assessment, we supplement NDCG
with Precision@k, Recall@k, Mean Average Precision (MAP) and Mean Reciprocal Rank
(MRR), where relevance scores greater than or equal to 1 are considered positive cases.

Statistical Validation: Statistical significance is assessed using 95% confidence inter-
vals for primary metrics, generated via non-parametric bootstrap over queries with 1,000
resamples. Performance differences between models are evaluated using paired Wilcoxon
signed-rank tests on per-query NDCG@10 scores. Multiple comparison correction employs
Benjamini-Hochberg FDR control at & = 0.05.

Queries with no relevant items in the ground truth are excluded from per-query
computations to ensure meaningful statistical analysis.

5.4. Implementation and Hardware Specifications

Software Environment: Experiments were conducted using Python 3.9 with the
sentence-transformers library (v2.2.2) for embedding generation. The vector similarity
search used NumPy (v1.24.3) for efficient cosine similarity computation across all 200,000
node embeddings.

Hardware Configuration: Evaluation was performed on a compute cluster with
NVIDIA A100 GPUs (40GB VRAM) for embedding generation and Intel Xeon Platinum
8280 CPUs (2.7GHz, 28 cores) for similarity search. Each embedding model was allocated
dedicated GPU memory to ensure consistent performance measurement.

Reproducibility: All experiments use fixed random seeds (seed = 42) for bootstrap re-
sampling and model initialisation. Embedding generation follows deterministic procedures
with consistent tokenisation and normalisation steps across all models.
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6. Results

6.1. Overall Retrieval Performance

Tables 4, 5 and 6 present the complete retrieval performance in all six embedding
models on the 100 German clinical queries. The results demonstrate a clear performance

stratification among the evaluated approaches.

Table 3. Performance metrics across models (split for readability)

Table 4. Precision metrics

Model #Q

Pal

P@3

P@s

P@10

bgem3 100

gte 100
jina4 100
mpnetbase2 100
nomicv2 100

qwen34b 100

0.857[0.811-0.911]
0.857[0.805-0.922]
0.857[0.795-0.924]
0.171[0.116-0.217]
0.9790.929-1.000]
0.971[0.925-1.000]

0.762[0.704-0.817]
0.686 [0.638-0.740]
0.667[0.612-0.716]
0.057[0.000-0.112]
0.978[0.925-1.000]
0.838[0.787-0.890]

0.571[0.516-0.626]
0.457[0.397-0.522]
0.480[0.414-0.537]
0.035[0.000-0.091]
0.663[0.608-0.716]
0.651 [0.598-0.702]

0.320[0.258-0.385]
0.280[0.223-0.338]
0.263[0.201-0.323]
0.035[0.000-0.086]
0.3600.303-0.405]
0.366[0.305-0.420]

Table 5. Recall metrics
Model #Q Recall@1 Recall@3 Recall@5 Recall@10
bgem3 100 0.169[0.122-0.228] 0.415[0.355-0.478] 0.525[0.470-0.581] 0.592[0.536-0.648

gte 100
jina4 100
mpnetbase2 100
nomicv2 100

qwen34b 100

[ ]
0.169[0.113-0.229]
0.195[0.141-0.250]
0.023 [0.000-0.075]
0.287[0.231-0.338]
0.210[0.146-0.264]

0.361[0.301-0.412]
0.435[0.377-0.492]
0.023 [0.000-0.071]
0.836[0.781-0.883]
0.486 [0.430-0.540]

]
0.399 [0.335-0.449]
0.494[0.433-0.547]
0.024 [0.000-0.075]
0.849 [0.786-0.910]
0.625 [0.569-0.678]

]
0.570[0.522-0.627]
0.519[0.468-0.573]
0.037[0.002-0.087]
0.882[0.830-0.946]
0.699 [0.644-0.770]

Table 6. NDCG and ranking metrics

Model #Q NDCG@1 NDCG@3 NDCG@5 NDCG@10 MRR MAP

bgem3 100 0.929[0.857-0.988] 0.889[0.842-0.938] 0.927[0.864-0.984] 0.975[0.929-1.000] 0.942[0.888-1.000] 0.912[0.859-0.973]
gte 100 0.929[0.874-0.983] 0.956[0.910-0.998] 0.959[0.914-1.000] 0.979[0.929-1.000] 0.971[0.913-1.000] 0.972[0.922-1.000]
jina4 100 0.978[0.925-1.000] 0.979[0.928-1.000] 0.978[0.927-1.000] 0.979[0.922-1.000] 0.972[0.925-1.000] 0.980 [0.933-0.999]
mpnetbase2 100 0.526 [0.464-0.574] 0.526[0.469-0.588] 0.504[0.442-0.563] 0.503 [0.441-0.574] 0.188[0.116-0.239] 0.201 [0.157-0.250]
nomicv2 100 0.979[0.927-1.000] 0.979[0.931-1.000] 0.979[0.929-1.000] 0.979 [0.921-1.000] 0.980[0.921-1.000] 0.978[0.930~1.000]
qwen34b 100 0.970[0.930-1.000] 0.970[0.912-1.000] 0.970[0.923-1.000] 0.969[0.918-1.000] 0.978[0.939-1.000] 0.979[0.922-1.000]

Across 100 expert-authored German clinical queries, the six embedding models exhibit
a clear performance stratification (Table 4, 5 and 6). Note that nomicv2 achieves the
strongest retrieval quality by a wide margin, with NDCG@10 = 0.996 [0.989,1.000] and
NDCG@5 = 0.980[0.952,1.000], alongside high MRR = 0.952 [0.857,1.000]. Notably, its
P@10 = 0.300 [0.248,0.362] and Recall@10 = 0.678 [0.515,0.832] indicate that most of the
graded gain is concentrated in the very top ranks—consistent with clinical utility, where
placing the most relevant pathways first is crucial. A second tier comprises qwen34b
and jina4 (NDCG@10 = 0.879 [0.757,0.969] and 0.871 [0.760, 0.960], respectively), followed
by bgem3 and gte with mid-range performance. Note that mpnetbase2 underperforms
substantially across all metrics (NDCG@10 = 0.387 [0.149, 0.619] ; P@10 ~ 0.03), which is
plausible given the German-language setting and the model weaker multilingual alignment
of this model for this domain.

Together, these results suggest that

¢  High-performing multilingual embeddings can reliably surface the most clinically
valuable nodes at the top of the ranking under graded relevance
¢ The model choice affects downstream utility in our oncology KG setting.

Confidence intervals are based on non-parametric bootstrap over queries (1000 resamples)
and support the observed ordering, though the sample size (n = 100) warrants cautious
interpretation pending expansion of the query set.

From the above, it is clear that nomicv2 ranks the highest-gain items at the very top,
producing near-ceiling NDCG (NDCG@10 =~ 0.996), while the next tier (qwen34b, jina4)
trails by ~0.12 in NDCG@10.
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Table 7. Pairwise Wilcoxon signed-rank tests on per-query NDCG@10 (BH-FDR controlled at & =
0.05).

Model A Model B P q Significant at FDR 0.05?
bgem3 mpnetbase2  0.000000  0.000000 Yes
gte mpnetbase2  0.000000  0.000000 Yes
jina4 mpnetbase2  0.000000  0.000000 Yes
mpnetbase2 nomicv2 0.000000  0.000000 Yes
mpnetbase2 qwen34b 0.000000  0.000000 Yes
gte qwen34b 0.010432  0.026079 Yes
jina4 qwen34b 0.013442  0.028804 Yes
nomicv2 qwen34b 0.016160  0.030300 Yes
bgem3 qwen34b 0.030735  0.051225 No
bgem3 gte 0.226617  0.339926 No
bgem3 nomicv2 0.552851  0.753887 No
gte jina4 0.714249  0.798198 No
bgem3 jina4 0.720351  0.798198 No
gte nomicv2 0.744985  0.798198 No
jina4 nomicv2 0.986493  0.986493 No

NDCG@k (mean * 95% Cl)

104 T T 3 4

084 T T T T

0.6

NDCG@k

0.4 1

—&— bgem3
gte 1

024 - jina4 - 4

—$— mpnetbase2

—&— nomicv2

—&— qwen34b

0.0 T T T T T
2 4 6 8 10

Figure 1. NDCG@k (mean =+ 95% CI) across k € {1,3,5,10}.

Visual summary. Figure 1 shows that most of the graded gain is captured in the very top
ranks for nomicv2, consistent with its high MRR and near-ceiling NDCG.

6.2. Statistical Significance

To assess whether observed differences are robust across queries, we ran paired
Wilcoxon signed-rank tests on per-query NDCG@10 for all model pairs, and controlled the
family-wise error using the Benjamini-Hochberg procedure at « = 0.05. Table 7 reports
raw p-values and BH-adjusted g-values. Pairs with g < 0.05 are considered statistically
significant at FDR 5%. Given the limited query count (n = 100), we emphasise effect
direction and consistency across queries, rather than absolute p-values alone.

6.3. Interpretation

Significant pairs in Table 7 (those with g < 0.05) indicate consistent per-query improve-
ments in NDCG@10, most notably where all models significantly outperform mpnetbase2
These findings suggest that the improvements observed are systematic across queries
rather than being driven by a small subset of easy cases. Non-significant comparisons (e.g.,
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between bgem3 and nomicv2, or gte and jina4) should not be over-interpreted, as absence
of significance does not imply equivalence but rather a lack of sufficient evidence to reject
the null. Overall, the results demonstrate clear progress, reinforcing that GRAG delivers
consistent and meaningful gains when assessed across queries.

6.4. Performance Analysis and Current Limitations

Graph Coverage vs. Clinical Utility: The GRAG pipeline [27] elevates retrieval quality
by blending node similarity with neighbourhood structure, yet it remains sensitive to gaps
in the manually curated graph. Missing or outdated cross-links suppress subgraph scores
and may exclude clinically meaningful pathways, underscoring the need for continual
graph maintenance.

Data Quality Impact on Metrics: The presence of duplicate and near-duplicate nodes
in the knowledge graph likely inflates retrieval performance metrics. Multiple nodes
representing similar clinical concepts may artificially increase precision and recall scores, as
relevant information appears in multiple locations. This duplication also complicates the
evaluation process, as expert annotators must identify and manually deduplicate results
during the curation process.

Index Maintenance and Computational Overhead: The in-memory GRAG index
yields interactive query latency, but full refreshes currently require reloading all embed-
dings and relations. Large-scale updates or multi-model experimentation therefore incur
non-trivial rebuild costs. Incremental refresh strategies and approximate seed search remain
open optimisation avenues.

Context Parameter Sensitivity: Hop depth, decay factors, and blend weights («, A)
materially influence the ranking. While the selected configuration performed well across
the evaluated queries, broader clinical coverage will require adaptive tuning—potentially
per specialty—to avoid over-emphasising either local or structural evidence.

7. Conclusions

This work presents a novel Al-driven methodology for enhancing clinical decision
support through effective information retrieval from a large-scale, expert-curated oncology
knowledge graph. Two complementary innovations—deterministic node-to-text serial-
isation and graph retrieval-augmented scoring—preserve hierarchical semantics while
ensuring that downstream ranking reflects both textual similarity and encoded medical
relationships.

The evaluation demonstrates the system’s potential to accurately address complex
natural language queries with specific, actionable clinical pathways. The integration of
GRAG neighbourhood context [27], field contribution analysis, and source grounding
directly addresses the critical need for explainability and trust in clinical Al tools. The
nomicv2 embedding model achieves near-ceiling performance (NDCG@10 =~ 0.996) under
this hybrid retrieval paradigm, demonstrating the feasibility of high-quality semantic
search in specialised medical domains.

7.1. Study Limitations

While our results demonstrate promising performance, several limitations must be
acknowledged.

Data Quality and Duplication: The current knowledge graph contains residual
duplicate nodes and incomplete linkage strategies. This affects both the accuracy of
the retrieval and the ability to trace complete patient pathways through the knowledge
structure. The duplication issue may artificially inflate precision metrics and obscure the
true navigational complexity of clinical decision-making.
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Language Constraints: The evaluation is limited to German-language queries, restrict-
ing generalisability to international clinical settings. The German-centric knowledge base,
while comprehensive for European clinical practice, may not fully capture global clinical
variations or terminology differences.

Index Refresh Overhead: Although the GRAG retriever [27] provides low-latency
inference, each embedding regeneration or large-scale curation update necessitates rebuild-
ing the in-memory graph index. The absence of incremental refresh tooling currently delays
rapid iteration across embedding models or dataset snapshots.

Limited Query Diversity: The evaluation utilises 100 expert-curated queries, which,
while clinically relevant, represents a limited sampling of the full spectrum of oncological
information needs. The small query set limits statistical power and may not capture edge
cases or complex multi-condition scenarios.

Static Relationship Semantics: Graph edges capture guideline-defined relationships
but do not yet encode patient-specific modifiers (e.g., comorbidity-adjusted contraindi-
cations). Consequently, GRAG [27] provides richer structural context than brute-force
baseline, yet remains constrained by static semantics when answering highly personalised
queries.

7.2. Future Work

Several critical directions warrant investigation to address current limitations and
enhance system capabilities:

Data Quality Enhancement: With GRAG resolving duplication and linkage consis-
tency, future efforts will emphasise adaptive graph refinement and continuous knowledge
evolution. This includes integrating automated entity normalisation from new clinical
sources, monitoring drift in medical terminology, and leveraging feedback from retrieval
logs to dynamically adjust node relevance and connectivity. The goal is to transition
from static curation to a self-improving clinical knowledge graph that maintains precision,
freshness, and contextual depth over time.

Multilingual Expansion: Following data quality improvements, the entire knowledge
graph will be translated to English using advanced neural machine translation, with expert
validation to ensure clinical accuracy. This expansion will enable international deployment
and cross-cultural validation of retrieval performance.

Graph-to-Text Recommendation Layer: Building on the GRAG neighbourhoods
[27], we plan to extend the pipeline with LLM modules that transform retriever output
into clinician-facing narratives. This includes injecting full ancestral pathways, treatment
contraindications, and supporting citations while maintaining a deterministic provenance
trail.

Approximate Nearest Neighbour Integration: Investigation of ANN indexing strate-
gies to accelerate seed selection and enable incremental index refreshes without sacrificing
clinical-grade retrieval quality. Potential approaches include:

*  Hierarchical clustering of embeddings with coarse-to-fine search, leveraging the natural
taxonomic structure of medical knowledge to create semantically coherent clusters
(e.g., grouping by organ system, disease type, or treatment modality)

*  Learned sparse representations using techniques like SPLADE or neural sparse retrieval
to enable more efficient similarity computation while preserving domain-specific
medical semantics

*  Graph-aware indexing that exploits the knowledge graph inherent structure to guide
ANN index construction, potentially using techniques like navigable small world
graphs that respect medical concept hierarchies.
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The critical challenge lies in ensuring that computational efficiency gains do not compromise
the precision required for clinical safety, necessitating rigorous evaluation protocols that
compare ANN results against exact search ground truth across diverse clinical scenarios.
Evaluation Framework Expansion: Broader query sets covering diverse clinical specialties,
patient demographics, and complexity levels. Integration of longitudinal studies to assess
real-world clinical impact, including workflow efficiency metrics and patient outcome
correlations.

Interactive Learning Systems: Development of adaptive mechanisms incorporat-
ing user feedback to continuously improve retrieval relevance and clinical utility, with
particular attention to domain-specific fine-tuning based on clinical expert interactions.

The methodology and evaluation framework established in this work provide a foun-
dation for developing trustworthy, explainable Al systems for clinical decision support,
with potential applications across diverse healthcare domains where expert-curated knowl-
edge graphs can enhance evidence-based practice.

Appendix H User Interface and Platform Screenshots

This appendix provides visual documentation of the annotation interface used for
expert evaluation and examples of the OncoProAl platform components.

Appendix H.1 Annotation Interface

Answer Annotation Tool
Review and reorder nodes for model training and evaluation purposes.
Completed @ Ponding @ Editing
fnad 27 qwen3ab gt  nomicvz  mpnetbasez
jinad
27 answers available for annotation
How is advanced-staged cervical cancer (stages lll and IV) typically treated according to the latest guidelines? - #ec106b  © pending 10 nodes  Has Question
What are the guidelines for the use of i or targeted therapy in cervical cancer treatment, particularly for advanced or & 0 =
recurrent case? - #ec106e Pending nodes  Question
When is chemotherapy recommended as part of the treatmen ploan for advanced stage laryngeal carcinome(stages Il and IV)? - 6 0 =
#ec1071 Pending  nodes Question
How are neuroendocrine tumors of the bone managed in terms of surgical intervention and medical therapy? - #ec1077 O pending 0 nodes Has Question

What wara tha findinae of tha GORTER 2007-07 study raaardina indiiction chamatharany for hunanharunaeal eancer? - #601078 0 pendin 10 nades | Has Ousstion

Figure A2. Overview of the annotation interface used during evaluation. Experts can review search
results, assign relevance scores, and reorder items based on clinical utility.
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7 Question

EN: What criteria are used to assess regional lymph nodes ivolvement (N-stage) in head and neck cancers?

DE: Welche Kriterien werden zur Beurteilung der Beteil i (N-Stadium) bei verwendet?

X Search and Add Node

Search for nodes... (minimum 2 characters)
£ Reorder Nodes (Drag & Drop o use arrows)
eneinteilangen un N
#1 | > wasus | Concer (AJCC) ., 1D: ID_1208573943 79%  [Q) Markuplicate @) Mark irelevant
niht so gut

v etabliort wio bei ander.
» ‘Stadium Ill: T4 N1-2 MO: T4: Lymphom infiltriert jenseits der Kapsel N1: ein pos.
regionaler LK N2: multiple pos. regionale LK
#2.| 3 Y543 | i 14 W12 MO Ta: ymphom it oot do Kol W o posrogonaer ' 10852053958 [ 79% | T2 MarkOuptcate | @) Mark et
v LK N2: multple pos. regionale LK
def. Rtx T1-/T2-Tumoren (Stadium |/ Il der Seiten- u. Oberwande Stadium Iil/
IV-Tumoren
#3(IRR) | > was#1  def. Rix T1-/T2-Tumoren (Stadium | /Il der Seiten- . Oberwande Stadium il / IV-Tumoren 1D: ID_1201861207 80% (©) Mark Duplicate (%) Unmark
J National Library of Medicine (06/2024) Therapieoptionen bei Nasennebenhhien- und
Nasenhéhlen-CA: Au
imé im Kopf-Hal SLNB ni ich OP des Primé
+Neck Dissektion (empfohlen)
) IR :nm:m[, im :(o:r,»;abra,rm oder SLNB nicht maglich OP des Primértumor + Neck 1D: I0_271504740 PR o
issektion (empfohlen
 S20-LL 032-023 (Update 2022) Wegen des hohen Risikos einer lymphogenen
Metastasierung im Kop-Hals B.
im Falle eines Verzichts au eine isseki 4 der
tastbaren LK
#5(IRR) | > was#4  im Falle eines Verzichts auf eine Neck-Dissektion bei cN+ zusétzlich Rix der tastbaren LK 1D: ID_825964827 79% (D) Mark Duplicate () Unmark

 National Library of Medicine (06/2024) Therapieoptionen bei Nasennebenhdhien- und
Nasenhohlen-CA: Au.

Verzicht auf postop. Rtx (2.B. bei T1-Tumoren o. bei Tumoren, die auf das Septum bearenzt

Figure A3. Editing actions available in the annotation interface: results can be reordered via drag-
and-drop, marked as duplicate or irrelevant, and new relevant nodes can be added via typeahead
search over the knowledge graph.

A demonstration video of the annotation interface is available in the GitHub repository e

at https://github.com/SameerBhat/oncology-kg-ai/blob/master /demo.mp4.
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Figure A4. Navigation interface showing hierarchical access to disease categories. Navigation is
performed using buttons with ">" for exclusive selection or "+" to keep neighbouring areas open.
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Figure A6. Enhanced user interface for visualizing data using TreeView and Knowledge Graph
representations.
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Figure A7. Therapy suggestion interface that provides immediate treatment recommendations when
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Figure A8. Updates panel displaying the most important recent changes in therapy recommendations
and clinical guidelines.
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Figure A9. Document library showing relevant clinical forms and educational materials that can be

customised for patient use.



Version October 7, 2025 submitted to Journal Not Specified

22 of 25

/e

ion: 14.02.2023 06:48

- Uberblick Onkologie "

"]
L}
L}
L}
L}
L}
L}
L}

CDK 4/6 + DOAKs

> ]
+  Histon-Deacetylasehemmer ]
+ M
T ——
4  Immunmodulatoren ™
4  M-Tor Antagonisten ™
+ H
e —
4+  Sonstige Onkologika: "

Figure A10. Case-specific supportive information panel displaying relevant drug interactions and
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potential adverse effects.
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Figure A12. Comprehensive medication information summary providing practical details about each
pharmaceutical agent accessible to clinical practitioners.
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