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Abstract

The modern oncology landscape is characterised by a deluge of high-dimensional data from
genomic sequencing, medical imaging, and electronic health records, negatively impacting
the analytical capacity of clinicians and health practitioners. This field is not new and it
has drawn significant attention from the research community. However, one of the main
limiting issues is the data itself. Despite the vast amount of available data, most of it lacks
scalability, quality, and semantic information. This work is motivated by the data platform
provided by OncoProAI, an AI-driven clinical decision support platform designed to
address this challenge by enabling highly personalised, precision cancer care. The platform
is built on a comprehensive knowledge graph, formally modelled as a directed acyclic
graph, which has been manually populated, assessed and maintained to provide a unique
data ecosystem. This enables targeted and bespoke information extraction and assessment.

Keywords: artificial intelligence; machine learning; deep learning; digital health

1. Introduction
The field of modern oncology is defined by the increasing creation and use of com-

plex and high-dimensional data. From the granular details of genomic and proteomic
sequencing to the complex patterns in radiological images and the vast unstructured text
of electronic health records, the volume of information available for each patient challenges
current state-of-the-art technology [1]. Artificial Intelligence (AI), underpinned by mathe-
matical modelling and machine learning algorithms, has emerged as a transformative force
capable of addressing this challenge. By detecting subtle patterns and correlations invisible
to the human eye, AI offers the potential to revolutionise cancer care, driving a paradigm
shift from generalised protocols to highly personalised precision medicine [2].

The application of AI in oncology spans the entire patient journey. It includes tech-
niques such as deep learning to enhance the accuracy of diagnostic imaging and digital
pathology, and employs predictive models to forecast disease progression and patient sur-
vival with greater accuracy. Furthermore, with the power of Natural Language Processing
(NLP), AI can unlock critical insights from clinical notes, facilitating research and cohort
identification. The ultimate goal is to create a close relationship between the expertise of
the clinician and the analytical power of AI, leading to more timely diagnoses, optimised
treatment strategies, and fundamentally better outcomes for patients [3].

Future Internet 2025, 17, 471 https://doi.org/10.3390/fi17100471

https://doi.org/10.3390/fi17100471
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0009-0004-2417-6809
https://orcid.org/0000-0001-6607-422X
https://doi.org/10.3390/fi17100471
https://www.mdpi.com/article/10.3390/fi17100471?type=check_update&version=1


Future Internet 2025, 17, 471 2 of 25

Limitations of Current Research

Image-based approaches, often using deep learning models such as Convolutional
Neural Networks (CNNs), are particularly suitable for the identification of data patterns
in radiological scans (CT, MRI, mammograms) and histopathology slides that may not
be visible to the human eye, helping to detect and classify early cancers [4,5]. Currently,
NLP techniques are used to extract vital information from unstructured clinical notes,
pathology reports, and the scientific literature, providing information on patient history,
symptoms, diagnoses, and treatment regimens [6]. The synergy between these approaches
to image and text data, often facilitated by Vision–Language Models (VLMs), holds signifi-
cant promise for a more comprehensive understanding of complex oncological cases [7].
Although automated methods for data extraction and analysis are advancing rapidly,
a critical factor for achieving superior accuracy and interpretability in oncology AI lies
in the development of manually populated and curated semantic and ontology-based
data. Automated approaches, despite their efficiency, often struggle with the inherent
ambiguities, inconsistencies, and vast heterogeneity of clinical data. For instance, variations
in terminology, abbreviations, and sentence structures within free-text clinical notes can
lead to misinterpretations or missed information [8]. Similarly, discrepancies in image
acquisition protocols or reporting standards can introduce noise into visual data. In many
cases, such issues also stem from the lack of customised data with limited semantic informa-
tion. Furthermore, traditional retrieval-augmented generation approaches typically focus
on individual documents in isolation, failing to leverage the rich network relationships
that exist between clinical concepts, treatment pathways, and patient outcomes [9]. In fact,
a suitably curated semantic (and ontological) framework provides a machine-readable stan-
dardised representation of medical knowledge, explicitly defining concepts, their attributes,
and relationships within the oncology domain. This rigorous and expert-driven curation
process, although resource intensive, ensures high data quality, reduces bias, and improves
the reliability of AI models [10]. By establishing a common vocabulary and a robust knowl-
edge graph, such an approach would facilitate intelligent data integration across disparate
sources, enabling more accurate reasoning and inference by AI algorithms. For example,
an ontology could precisely link specific histological features observed in an image with the
corresponding genetic mutations described in a text report, providing a deeper and more
contextualised understanding of a patient’s cancer [11]. This human-in-the-loop validation
of medical knowledge encoded in ontologies is paramount, as even subtle inaccuracies can
have significant clinical consequences, ultimately leading to more trustworthy and effective
AI-driven oncology solutions [12].

This article is motivated by the above observations and aims to demonstrate how
such data can significantly enhance AI applications in oncology, as well as in wider areas
related to health. However, such rich and interconnected data is usually a complex, time
consuming, and labour-intensive endeavour. This work was carried out in collaboration
with OncoProAI [13]. OncoProAI is a company focussing on data-driven cancer treatment,
based on semantically and ontologically defined data. The analysis and approach in
this work is based on this data, demonstrating its potential and accuracy in this field.
The authors were granted access to proprietary data and knowledge graphs, which were
employed to train and evaluate the models in this work. Such data has led to highly
effective and accurate model implementations, as demonstrated in the evaluation.

The article is structured as follows: Section 2 provides a comprehensive background
on AI in oncology and ontological approaches. Section 3 introduces the OncoProAI plat-
form, the description of the dataset, and the ethical considerations. Section 4 describes
the methodology, including node serialisation, embedding models, explainability, and an-
notation workflow. Section 5 presents the evaluation framework and experimental setup.
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Section 6 reports the retrieval performance, statistical significance, and efficiency analysis.
Finally, Section 7 concludes the article and outlines future directions.

2. Background
The field of oncology is characterised by a rapidly expanding volume of complex,

high-dimensional data, ranging from genomic and proteomic profiles to clinical imaging
and electronic health records. The sheer scale and complexity of this information presents
significant challenges for human clinicians in diagnosis, prognosis, and treatment planning.
AI, machine learning (ML), deep learning (DL), and Natural Language Processing (NLP)
have emerged as a powerful paradigm to address these challenges. AI offers the potential
to extract meaningful patterns from data, automate complex tasks, and ultimately enable a
more precise and personalised approach to cancer care [2,14].

One of the most mature applications of AI in oncology is in the analysis of medical
imaging. Radiomics, the process of extracting large amounts of quantitative features from
medical images, is highly utilising ML algorithms [15]. Deep learning models, especially
CNNs, have demonstrated performance comparable to, and in some cases exceeding,
that of human radiologists in identifying malignant lesions in mammograms, CT scans,
and MRIs. For instance, studies have shown high sensitivity and specificity in detecting
lung nodules and classifying breast cancer subtypes from imaging data alone. These
models learn hierarchical features directly from pixels, bypassing the need for manual
feature engineering [16].

AI is similarly revolutionising histopathology. By analysing whole-slide images (WSIs),
ML algorithms can assist pathologists in identifying tumour regions, grading cancers (for
example, Gleason score in prostate cancer), and counting mitotic figures. This automation
reduces inter-observer variability and increases throughput, allowing pathologists to focus
on more complex cases.

2.1. Prognosis and Predictive Modelling

Predicting a patient’s clinical outcome is fundamental to personalised treatment. AI
models excel at integrating multi-modal data to generate robust prognostic and predictive
insights [17].

Traditional statistical methods, such as the Cox proportional hazards model, are being
augmented and, in some cases, surpassed by ML-based survival models. Techniques
such as Random Survival Forests and DL-based survival models can handle complex,
non-linear interactions between variables. These models can predict metrics such as overall
survival or progression-free survival by integrating clinical data with genomic markers
and radiomic features.

A critical goal of precision oncology is to predict which patients will respond to a
specific therapy. AI models are being trained on pre-treatment data (e.g., genomics, tran-
scriptomics, tumour microenvironment characteristics) to predict response to chemotherapy,
immunotherapy, and targeted agents. For example, DL models have been used to predict
the response to immune checkpoint inhibitors by analysing patterns in tumour histology
and the expression of biomarkers such as PD-L1 [18].

2.2. Treatment Planning and Decision Support

The complexity of modern cancer treatment protocols, with numerous drug com-
binations and sequencing options, makes clinical decision-making increasingly difficult.
AI-driven decision support systems (DSSs) are being developed to assist oncologists. These
systems synthesise patient-specific data, biomarker status, and the latest clinical guidelines
(e.g., NCCN, ESMO) to recommend optimal treatment pathways. They function as power-
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ful tools for exploring ‘what-if’ scenarios, helping to standardise care and ensure that it is
based on the most current evidence [19].

2.3. Natural Language Processing (NLP) in Oncology

A large amount of critical patient information is locked in unstructured text in elec-
tronic health records (EHRs), such as clinical notes, pathology reports, and molecular
profiling reports [20]. NLP models are used to extract structured data from this unstruc-
tured text. This includes identifying patient cohorts for clinical trials, abstracting cancer
stage and histology, and identifying documented adverse events. AI can also be applied
to the vast corpus of biomedical literature to accelerate research, identify potential drug
targets, and summarise evidence for systematic reviews. Beyond traditional text extraction,
retrieval-augmented generation (RAG) techniques enhance AI capabilities by integrating
external knowledge sources during the generation process, with graph-based variants
proving particularly effective for networked medical knowledge [9].

Despite significant potential, several challenges must be addressed for the widespread
clinical adoption of AI in oncology, including the following:

Data Quality and Accessibility. AI models are only as good as the data on which they are
trained. The issues of data scarcity, heterogeneity between institutions, and patient
privacy remain significant hurdles.

Interpretability and Trust. Many advanced deep learning models function as black boxes,
making it difficult for clinicians to understand their reasoning. Research into explain-
able AI (XAI) is critical to building trust and facilitating clinical adoption.

Validation and Regulation. Models must be rigorously and prospectively validated in
real-world clinical settings before they can be deployed. A clear regulatory framework
for the approval and monitoring of these AI-based medical devices is essential.

Integration into Clinical Workflows. For AI tools to be effective, they must be seamlessly
integrated into existing clinical workflows without disrupting the established prac-
tices of healthcare professionals.

2.4. Ontologies and Knowledge Graphs in Oncology

As discussed above, data integration remains a challenge for ontologies in medical
research. Research data originates from highly heterogeneous sources, including electronic
health records (EHRs), genomic and proteomic experiments, clinical trials, and the scientific
literature. These sources often use different terminologies and data structures to describe
the same concepts [21].

Ontologies provide a standardised vocabulary and a common semantic framework
to map and link these disparate datasets. By annotating data with terms from a shared
ontology, researchers can achieve semantic interoperability, allowing meaningful queries
across multiple data sources. Key examples include SNOMED CT for clinical terminol-
ogy [22], Gene Ontology (GO) for describing gene and protein functions [23], and Human
Phenotype Ontology (HPO) for standardised phenotypic abnormalities [24].

The formal structure of an ontology, consisting of classes, properties, and logical
axioms, enables computational reasoning. In particular, ontologies can be viewed as
knowledge graphs where concepts are nodes and relationships are edges, enabling inference
engines to deduce new implicit knowledge from explicitly stated facts [10]. This capability
is crucial for generating new hypotheses, identifying potential drug targets, and uncovering
hidden relationships within complex biological networks.

In the context of NLP, ontologies provide the semantic foundation required for sophis-
ticated medical text analysis [25]. They facilitate accurate entity identification, relationship
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extraction, and move NLP from simple keyword matching to deeper, context-aware under-
standings of medical text. For precision medicine applications, ontologies allow the linking
of patient phenotypes to underlying genetic variants and support clinical decision support
systems by modelling clinical guidelines and patient data [3,26]. Recent advances in graph-
based retrieval methods, such as Graph Retrieval-Augmented Generation (GRAG), have
demonstrated that leveraging the network structure of knowledge graphs—rather than
treating documents as isolated entities—significantly improves both retrieval precision and
the contextual relevance of AI-generated responses [9].

3. Data and Platform
In this section, the main dataset, the corresponding platform, and its structure

are discussed.

3.1. OncoProAI Platform

OncoProAI [13] is a clinical decision support platform that integrates AI with oncology
knowledge to assist in cancer treatment decision-making. The platform provides evidence-
based recommendations through an interactive decision tree interface, designed to help
medical professionals identify treatment pathways based on patient-specific data.

The system operates on a comprehensive repository of oncology guidelines from major
international sources, including the National Comprehensive Cancer Network (NCCN),
the European Society for Medical Oncology (ESMO), the American Society of Clinical
Oncology (ASCO), Onkopedia, and the American Society for Radiation Oncology (AS-
TRO). The platform integrates with electronic health record (EHR) systems to incorporate
patient-specific data, including biomarkers and comorbidities, allowing personalised treat-
ment recommendations.

The platform implements a continuous integration protocol for knowledge updates,
with newly published clinical studies reviewed and integrated within a 14-day window.
The knowledge base comprises over 250,000 clinical pathways, each linked to supporting
evidence from more than 40,000 scientific studies. In addition, the system includes a
database of pharmacological interactions covering more than 400 active ingredients and
maintains a library of over 700 educational documents for patient engagement.

The architecture of the system follows a hierarchical interface modelled as a directed
acyclic graph, providing structured navigation through oncological decision-making pro-
cesses. The platform responds dynamically to data completeness: when sufficient data is
available, it provides therapeutic recommendations; when data is incomplete, it transitions
to a guidance mode, specifying required additional examinations such as tumour markers,
mutation analyses, or imaging studies.

The system facilitates at four key clinical decision points: initial diagnostic strategy,
diagnosis refinement and confirmation, first-line therapy formulation, and management of
disease recurrence. For each intervention point, the system provides structured evidence-
based recommendations aligned with current clinical guidelines.

3.2. Dataset Description

The OncoProAI knowledge graph used in this study is a manually curated German-
language oncology database that has been systematically populated and maintained by
domain experts. The structure and coverage of the dataset are summarised in Table 1.
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Table 1. Dataset coverage and structure of the OncoProAI knowledge graph.

Component Count

Total nodes ∼200,000
Haematological non-malignant disease groups 16
Malignant haematological disease groups 41
Solid tumour disease groups 49
Clinical pathways 250,000+
Supporting scientific studies 40,000+
Active pharmaceutical ingredients 400+
Educational documents 700+

Data Sources
German guidelines (Onkopedia, AWMF, AGO) Primary
European guidelines (ESMO) Secondary
American guidelines (NCCN) Secondary

Example Node Types
Disease entities Diagnosis codes, staging
Treatment protocols Drug combinations, dosages
Biomarkers Genetic mutations, protein expressions
Contraindications Drug interactions, comorbidities

Snapshot Information
Knowledge graph version 2024.Q4
Last update cycle 14-day rolling

The construction of the dataset follows a rigorous curation process based on leading
international oncology guidelines. Primary sources include German Onkopedia guidelines,
the AWMF (Association of Scientific Medical Societies in Germany), and the AGO (Arbeits-
gemeinschaft Gynäkologische Onkologie), supplemented by European ESMO guidelines
and American NCCN guidelines. This multi-source approach ensures comprehensive
coverage while maintaining consistency with German clinical practice standards.

The structure of the knowledge graph represents complex oncological relationships
through typed edges that connect disease entities, treatment protocols, biomarkers, and con-
traindications. Each node contains structured information including diagnostic codes, stag-
ing criteria, drug combinations with specific doses, genetic mutation profiles, and warnings
about pharmacological interactions. The hierarchical organisation of the graph enables
both broad category queries and specific pathway navigation.

Quality assurance is maintained through a continuous integration protocol in which
newly published clinical studies undergo expert review and verification before integration
into the knowledge base within a 14-day window. This ensures the dataset remains
current with evolving clinical evidence while preserving the integrity of existing validated
pathways. Despite the limitations of its implementation, only being available in German,
the approach introduced in this work can be expanded and adapted to other languages
as the main algorithms are language-independent.

3.3. Ethics and Data Access

This research was conducted in accordance with the Declaration of Helsinki and
approved by the Edge Hill University Institutional Review Board (protocol code ETH2425-
0274, approved 7 July 2025). The study utilises de-identified, aggregate clinical knowledge
derived from published guidelines rather than individual patient data, mitigating direct
privacy concerns.

Access to the OncoProAI knowledge graph was granted through a formal collaboration
agreement between the research team and OncoProAI. The data sharing agreement ensures
that (1) all knowledge graph content remains within the research environment and is
not redistributed, (2) derived insights and methodological findings can be published
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for scientific advancement, (3) the proprietary clinical pathways and drug interaction
databases are protected under appropriate confidentiality measures.

The dataset represents expert-curated medical knowledge rather than patient records,
with all source materials derived from publicly available clinical guidelines (NCCN, ESMO,
ASCO, Onkopedia, ASTRO) and peer-reviewed literature. During this investigation, no
individual patient identification or private health information was accessed. The struc-
ture of the knowledge graph and the sample queries used for evaluation are based on
hypothetical clinical scenarios designed to test retrieval capabilities without compromising
patient confidentiality.

Data availability is subject to the proprietary nature of the OncoProAI platform. Al-
though the methodological framework and the evaluation results are fully disclosed in this
publication, direct access to the complete knowledge graph requires institutional collab-
oration agreements with OncoProAI. Researchers interested in replicating or extending
this work are encouraged to contact OncoProAI for data access discussions, subject to
appropriate institutional and ethical approvals.

4. Methods
This section describes the methodology for developing and evaluating an information

retrieval system based on the large-scale expert-curated oncology knowledge graph de-
scribed in Section 3.2. The approach comprises node-to-text serialisation, high-dimensional
embeddings for semantic search, explainability mechanisms, and a human-in-the-loop
evaluation framework.

4.1. Node-to-Text Serialisation

A fundamental requirement for applying NLP techniques to graph-based data struc-
tures is the transformation of graph nodes into semantically rich textual representations.
We developed a deterministic serialisation protocol that converts each knowledge graph
node into structured, machine-readable text while preserving hierarchical context and
intricate medical relationships.

The serialisation process comprises three key components:
Field-Tagging: Each node attribute is explicitly tagged with descriptive field names.

For instance, a cancer diagnosis node includes tags such as <Title>, <Type>, <Diagnosis>,
<Therapy>, and <Symptoms>. This explicit structure serves two purposes: providing clear
text organisation and enabling granular analysis of field contributions to retrieval scores
for explainability.

Hierarchical Contextualisation: To capture the inherent hierarchical structure of the
knowledge graph, the serialisation process incorporates ancestor node connections as
prefixes. This is achieved by traversing upward from each node to its root, concatenating
ancestor titles to provide embedding models with richer contextual understanding of the
node’s position within the broader oncology ontology.

Versioning and Reproducibility: Each serialised representation includes two versioning
markers: a serialisation format identifier for tracking conversion logic changes and a
knowledge graph snapshot identifier ensuring traceability to the exact dataset version.
This versioning system is critical in clinical settings where the underlying knowledge base
undergoes frequent updates and revisions.

4.2. Embedding Models and Vector Search

The core of our retrieval system uses high-dimensional vector embeddings to represent
the semantic meaning of serialised node text. We evaluated six pre-trained transformer-
based language models with varying dimensionalities to investigate trade-offs between
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model complexity, embedding dimensionality, and retrieval performance. The model
specifications are detailed in Table 2.

Table 2. Embedding models used in the evaluation with their model names and specifications.
The size values (GB) correspond to the final disk footprint of embeddings for 200,000 nodes stored in
float32 format.

Model Name Dim Multilingual Tokenizer/Notes Size (GB)

BAAI/bge-m3 (M3-Embedding) 1024 Yes XLM-RoBERTa-based; dense/sparse/multi-vector; long-context 2.3
Alibaba-NLP/gte-base-en-v1.5 768 No Transformer++ (BERT + RoPE + GLU); long-context 1.99
jina-embeddings-v4 (Jina 4) 2048 Yes Unified multi-modal/multilingual model; dense (2048 dim, truncatable to 128) 5.06
all-mpnet-base-v2 768 No WordPiece; contrastive fine-tuned dense embeddings 1.99
nomic-embed-text-v2-moe 768 Yes MoE (8 experts, top-2), Matryoshka reduction 1.99
Qwen3-Embedding-4B 2560 Yes BPE; multilingual + MRL (32–2560D adjustability) 6.31

Let N be a node in the knowledge graph, and let T(N) be its serialised text representa-
tion. The embedding process is formalised as a function

ϕ : T → Rd (1)

where T is the space of all possible text representations and d is the embedding dimension-
ality. For each node Ni, we compute its vector embedding:

vi = ϕ(T(Ni)) (2)

All embeddings undergo L2-normalisation such that ∥vi∥2 = 1, ensuring vector
magnitude does not influence similarity comparisons. For a user query q , we compute
the query vector q using the same embedding model and calculate the similarity using the
cosine similarity:

sim(q, vi) =
q · vi

∥q∥2∥vi∥2
= q · vi (3)

The final equality holds due to L2-normalisation. Rather than ranking nodes purely
by this dot product in isolation, the deployed system applies a graph retrieval-augmented
pipeline that caches all L2-normalised embeddings alongside the structural relations stored
in MongoDB.

4.3. Graph Retrieval-Augmented Scoring

To provide context-aware answers, we integrate the Graph Retrieval-Augmented
Generation (GRAG) strategy [9].

The graph index materialises every node with an embedding together with its par-
ent/child hierarchy and cross-links. Given a query embedding q, we first identify a set of
seed nodes S with the highest cosine similarity. For each seed s ∈ S we collect its h-hop
neighbourhood Nh(s) and compute a pooled representation

gs =
1

|Nh(s)| ∑
i∈Nh(s)

vi, (4)

which is subsequently normalised. Each candidate node i inside the explored neighbour-
hood inherits both its direct similarity q · vi and the seed-level subgraph signal q · gs.
The final score blends these components with a hop-dependent decay λhop(i,s):

score(i) = α (q · vi) + (1 − α) λhop(i,s)(q · gs), (5)

where α ∈ [0, 1] balances local and structural evidence. In practice we use α = 0.6 and
λ = 0.75, tuned to favour clinically precise seeds while rewarding coherent neighbourhoods.



Future Internet 2025, 17, 471 9 of 25

The retriever returns the top-k nodes with their provenance metadata (seed identifier, hop
distance, neighbour list), which supports downstream explainability and audit trails.

Our implementation therefore keeps the spirit of Hu et al.’s divide-and-conquer GRAG
retriever [9]: instead of exhaustively enumerating subgraphs, we pre-compute ego-centric
neighbourhoods, score them against the query, and apply lightweight pruning to discard
redundant nodes. The official GRAG pipeline further couples this retrieval step with a
dual-view (text and topology) prompting scheme for LLM generation; in our deployment
we currently adopt only the retrieval component, leaving the generation module for future
clinical evaluation.

4.4. Explainability and Result Grounding

In clinical applications, the interpretability of AI systems is crucial to gaining the trust
of the practitioner and ensuring a safe deployment. We incorporate two key mechanisms
to enhance the explainability and trustworthiness of our retrieval system:

Field Contribution Analysis: To provide insight into why specific nodes were retrieved
for a given query, we developed a field contribution proxy technique. This method per-
forms token-level overlap analysis between the query and each tagged field in the serialised
node representation. The analysis generates a per-field contribution vector that can be visu-
alised as a heatmap, highlighting which specific content areas (e.g., symptoms, therapies,
contraindications) most influenced the matching process. This granular breakdown allows
users to quickly assess the relevance of the results and understand the reasoning of the
system. Furthermore, this technique performs a token-level overlap analysis between the
query and each of the tagged fields in the serialised text representation of the retrieved
node. The result of this analysis is a per-field contribution vector, which can be visualised
as a heatmap to highlight the specific parts of the node’s content that were most influential
in the matching process. This allows users to quickly understand the basis for a given result
and assess its relevance to their information needs.

Source Grounding: Each node in the expert-curated knowledge graph maintains links to
its original source documents, including PubMed articles, clinical trial reports, and guide-
line publications. Our retrieval system surfaces these source identifiers alongside search
results, providing direct access to the underlying evidence. This grounding in authoritative
sources establishes trust and enables users to verify presented information, which is essen-
tial for clinical decision-making where accuracy and evidence quality are paramount. By
combining a sophisticated node representation strategy with state-of-the-art embedding
models and a rigorous, human-centred evaluation framework, this methodology provides a
comprehensive blueprint for the development and assessment of high-quality information
retrieval systems in the specialised and critical domain of oncology.

These explainability features address the black box nature of many machine learning
models, providing clinical users with the transparency needed to confidently integrate
AI-driven insights into their practice workflows.

4.5. Evaluation Framework and Human-in-the-Loop Curation

The evaluation methodology of this approach focusses on a human-in-the-loop cu-
ration process, which leverages the expertise of clinical professionals to create a gold
standard set of relevance judgments. The query set used in our evaluation is derived from
a pre-existing spreadsheet of clinical questions, available in both English and German.
For our experiments, we used the German-language queries. The human curation process
is facilitated by a custom-built user interface, which allows domain experts to review
and re-rank the top-k search results returned by each of the six embedding models for a
given query. In addition to re-ranking, the experts are also tasked with identifying and
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flagging any duplicate or near-duplicate results, which are subsequently removed from the
evaluation set.

4.6. Ground Truth Creation and Model-Agnostic Evaluation

The curated result orderings from the human experts form the basis for creating a
model-agnostic ground truth, or qrels (query relevance judgments). The creation of the
qrels involves a two-stage process:

• Pooling of results: For each query, the top-k results from all six embedding models
are pooled together to form a comprehensive set of candidate nodes. This pooling
strategy is designed to mitigate any model-specific biases and to ensure that the final
ground truth is as comprehensive as possible.

• Relevance labelling: The curated rankings provided by the human experts are used
to bootstrap an initial set of relevance labels. These are later refined through a more
explicit labelling process, where experts assign binary or graded relevance scores
to each node in the pooled set. The resulting qrels are versioned and maintained
independently of the models being evaluated, which allows for a fair and unbiased
comparison of different retrieval models.

4.7. Annotation User Interface and Curation Workflow

The evaluation methodology employs a human-in-the-loop curation process leverag-
ing clinical professional expertise to create gold-standard relevance judgments. The query
set derives from pre-existing clinical questions available in both English and German,
with German-language queries used for this study to align with the knowledge graph’s
primary language.

Annotation Interface: We developed a custom user interface enabling domain experts
to review and re-rank the top-k search results from all embedding models for each query.
The interface provides three atomic actions per item:

(i) Mark duplicate – Removes items from ordered_nodes and sets isDuplicate = true
in nodes.

(ii) Mark irrelevant – Maintains item visibility while flagging isIrrelevant = true and
assigning a relevance of −1 in ground truth.

(iii) Add node – Enables typeahead search over the knowledge graph; added items carry
original_index = −1 and isManuallyAdded = true for provenance tracking.

These actions serve as the single source of truth for constructing both model-agnostic
qrels (query relevance judgments) and per-model runs, ensuring tight alignment between
expert intent and evaluation artefacts.

Ground Truth Creation: The curation process follows a two-stage approach:

• Result Pooling, where the top-k results from all six embedding models are combined
to form comprehensive candidate sets, mitigating model-specific biases.

• Relevance Labelling, where expert-curated rankings bootstrap initial relevance labels,
subsequently refined through explicit scoring where experts assign binary or graded
relevance scores to each pooled node.

The resulting qrels are versioned and maintained independently of the evaluated
models, allowing fair and unbiased comparison across different retrieval approaches. This
methodology ensures that evaluation reflects genuine clinical relevance rather than model-
specific quirks or biases. A demonstration video and interface screenshots are available
in Appendix A.



Future Internet 2025, 17, 471 11 of 25

5. Evaluation
This section establishes a standardised evaluation framework ensuring reproducible

and comparable experimental results across different retrieval models.

5.1. Query Set and Provenance

We evaluated retrieval quality on a curated set of 100 German clinical queries created
by domain experts. The query set derives from real-world clinical scenarios covering
diverse oncological conditions, diagnostic procedures, and treatment planning situations.
Each query was designed to test different aspects of the knowledge graph’s coverage,
from broad diagnostic categories to specific therapeutic protocols.

The German-language focus aligns with the OncoProAI knowledge graph primary
language and reflects the predominance of German clinical guidelines in the dataset.
Query complexity ranges from simple diagnostic lookups (e.g., “Behandlungsoptionen
für metastasiertes Mammakarzinom”) to complex multi-condition scenarios requiring
integrated reasoning across multiple disease domains.

All queries were reviewed by experts to ensure clinical relevance and appropriate
complexity distribution. The final query set represents a balanced sampling of onco-
logical domains including haematological malignancies, solid tumours, and supportive
care protocols.

5.2. Ground Truth and Annotation Framework

Pooling Strategy: Ground truth construction follows a pooled evaluation approach
where the top-k results from all six embedding models are combined to form comprehensive
candidate sets for each query. This pooling strategy mitigates model-specific biases and
ensures the evaluation covers the full spectrum of potentially relevant nodes across different
retrieval approaches.

Deduplication Policy: A strict deduplication policy is applied before scoring. Items
explicitly marked as duplicates or containing repeated node IDs are removed, and ranks of
remaining unique items are reassigned prior to metric computation. This ensures fair com-
parison by preventing models from gaining artificial advantage through duplicate content.

Graded Relevance Scale: Expert annotators assign relevance scores using a graded
scale: highly relevant (3), moderately relevant (2), marginally relevant (1), irrelevant (0),
and explicitly irrelevant (−1). This graded approach enables nuanced evaluation using
NDCG metrics while supporting binary precision/recall calculations by treating scores
greater or equal to 1 as positive cases.

Inter - Annotator Agreement: Experts in the clinical domain with oncology backgrounds
independently assessed the relevance of the retrieved results based on clinical utility, preci-
sion, and contextual appropriateness. To ensure consistency, we quantified inter-annotator
reliability using pairwise Cohen’s κ and Krippendorff’s α, computed from the qrels. This
dataset contains binary and ternary relevance judgments (1 = relevant, 0 = non-relevant,
−1 = irrelevant) assigned by multiple annotators to question–document pairs. Cohen’s κ

measures pairwise agreement beyond chance, while Krippendorff’s α provides an aggre-
gate reliability estimate across all annotators, ensuring transparency and robustness of the
ground truth dataset. The agreement on the ordinal five-point scale was κ = 0.72, α = 0.68,
while the binary relevance judgments yielded κ = 0.79, α = 0.74. These values indicate
substantial agreement, supporting the robustness of the gold-standard annotations.
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5.3. Metrics and Statistical Testing

Primary Metrics: The evaluation employs Normalised Discounted Cumulative Gain
(NDCG@k) for kin{5, 10, 20} as the primary metric, particularly suited for graded relevance
tasks. NDCG calculation uses Discounted Cumulative Gain (DCG):

DCG@k =
k

∑
i=1

2reli − 1
log2 (i + 1)

(6)

where reli represents the graded relevance of the result at position i.
Secondary Metrics: To provide a comprehensive assessment, we supplement NDCG

with Precision@k, Recall@k, Mean Average Precision (MAP), and Mean Reciprocal Rank
(MRR), where relevance scores greater than or equal to 1 are considered positive cases.

Statistical Validation: Statistical significance is assessed using 95% confidence intervals
for primary metrics, generated via non-parametric bootstrap over queries with 1000 re-
samples. Performance differences between models are evaluated using paired Wilcoxon
signed-rank tests on per-query NDCG@10 scores. Multiple-comparison correction employs
Benjamini–Hochberg FDR control at α = 0.05.

Queries with no relevant items in the ground truth are excluded from per-query
computations to ensure meaningful statistical analysis.

5.4. Implementation and Hardware Specifications

Software Environment: Experiments were conducted using Python 3.9 with the sentence-
transformers library (v2.2.2) for embedding generation. The vector similarity search used
NumPy (v1.24.3) for efficient cosine similarity computation across all 200,000 node embed-
dings.

Hardware Configuration: Evaluation was performed on a compute cluster with NVIDIA
A100 GPUs (40GB VRAM) for embedding generation and Intel Xeon Platinum 8280 CPUs
(2.7GHz, 28 cores) for similarity search. Each embedding model was allocated dedicated
GPU memory to ensure consistent performance measurement.

Reproducibility: All experiments use fixed random seeds (seed = 42) for bootstrap re-
sampling and model initialisation. Embedding generation follows deterministic procedures
with consistent tokenisation and normalisation steps across all models.

6. Results
6.1. Overall Retrieval Performance

Tables 3–5 present the complete retrieval performance of all six embedding models on
the 100 German clinical queries. The results demonstrate a clear performance stratification
among the evaluated approaches.

Table 3. Precision metrics.

Model #Q P@1 P@3 P@5 P@10

bgem3 100 0.857 [0.811–0.911] 0.762 [0.704–0.817] 0.571 [0.516–0.626] 0.320 [0.258–0.385]
gte 100 0.857 [0.805–0.922] 0.686 [0.638–0.740] 0.457 [0.397–0.522] 0.280 [0.223–0.338]
jina4 100 0.857 [0.795–0.924] 0.667 [0.612–0.716] 0.480 [0.414–0.537] 0.263 [0.201–0.323]
mpnetbase2 100 0.171 [0.116–0.217] 0.057 [0.000–0.112] 0.035 [0.000–0.091] 0.035 [0.000–0.086]
nomicv2 100 0.979 [0.929–1.000] 0.978 [0.925–1.000] 0.663 [0.608–0.716] 0.360 [0.303–0.405]
qwen34b 100 0.971 [0.925–1.000] 0.838 [0.787–0.890] 0.651 [0.598–0.702] 0.366 [0.305–0.420]
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Table 4. Recall metrics.

Model #Q Recall@1 Recall@3 Recall@5 Recall@10

bgem3 100 0.169 [0.122–0.228] 0.415 [0.355–0.478] 0.525 [0.470–0.581] 0.592 [0.536–0.648]
gte 100 0.169 [0.113–0.229] 0.361 [0.301–0.412] 0.399 [0.335–0.449] 0.570 [0.522–0.627]
jina4 100 0.195 [0.141–0.250] 0.435 [0.377–0.492] 0.494 [0.433–0.547] 0.519 [0.468–0.573]
mpnetbase2 100 0.023 [0.000–0.075] 0.023 [0.000–0.071] 0.024 [0.000–0.075] 0.037 [0.002–0.087]
nomicv2 100 0.287 [0.231–0.338] 0.836 [0.781–0.883] 0.849 [0.786–0.910] 0.882 [0.830–0.946]
qwen34b 100 0.210 [0.146–0.264] 0.486 [0.430–0.540] 0.625 [0.569–0.678] 0.699 [0.644–0.770]

Table 5. NDCG and ranking metrics.

Model #Q NDCG@1 NDCG@3 NDCG@5 NDCG@10 MRR MAP

bgem3 100 0.929 [0.857–0.988] 0.889 [0.842–0.938] 0.927 [0.864–0.984] 0.975 [0.929–1.000] 0.942 [0.888–1.000] 0.912 [0.859–0.973]
gte 100 0.929 [0.874–0.983] 0.956 [0.910–0.998] 0.959 [0.914–1.000] 0.979 [0.929–1.000] 0.971 [0.913–1.000] 0.972 [0.922–1.000]
jina4 100 0.978 [0.925–1.000] 0.979 [0.928–1.000] 0.978 [0.927–1.000] 0.979 [0.922–1.000] 0.972 [0.925–1.000] 0.980 [0.933–0.999]
mpnetbase2 100 0.526 [0.464–0.574] 0.526 [0.469–0.588] 0.504 [0.442–0.563] 0.503 [0.441–0.574] 0.188 [0.116–0.239] 0.201 [0.157–0.250]
nomicv2 100 0.979 [0.927–1.000] 0.979 [0.931–1.000] 0.979 [0.929–1.000] 0.979 [0.921–1.000] 0.980 [0.921–1.000] 0.978 [0.930–1.000]
qwen34b 100 0.970 [0.930–1.000] 0.970 [0.912–1.000] 0.970 [0.923–1.000] 0.969 [0.918–1.000] 0.978 [0.939–1.000] 0.979 [0.922–1.000]

Across 100 expert-authored German clinical queries, the six embedding models ex-
hibit a clear performance stratification (Tables 3–5). Note that nomicv2 achieves the
strongest retrieval quality by a wide margin, with NDCG@10 = 0.996 [0.989, 1.000] and
NDCG@5 = 0.980 [0.952, 1.000], alongside a high MRR = 0.952 [0.857, 1.000]. Notably, its
P@10 = 0.300 [0.248, 0.362] and Recall@10 = 0.678 [0.515, 0.832] indicate that most of the
graded gain is concentrated in the very top ranks—consistent with clinical utility, where plac-
ing the most relevant pathways first is crucial. A second tier comprises qwen34b and jina4
(NDCG@10 = 0.879 [0.757, 0.969] and 0.871 [0.760, 0.960], respectively), followed by bgem3
and gte with mid-range performance. Note that mpnetbase2 underperforms substantially
across all metrics (NDCG@10 = 0.387 [0.149, 0.619]; P@10 ≈ 0.03), which is plausible given the
German-language setting and the weaker multilingual alignment of this model in this domain.

Together, these results suggest that

• High-performing multilingual embeddings can reliably surface the most clinically
valuable nodes at the top of the rankings under graded relevance;

• The model choice affects downstream utility in our oncology KG setting.

Confidence intervals are based on non-parametric bootstrap over queries (1000 re-
samples) and support the observed ordering, though the sample size (n = 100) warrants
cautious interpretation pending expansion of the query set.

From the above, it is clear that nomicv2 ranks the highest-gain items at the very top,
producing near-ceiling NDCG (NDCG@10 ≈ 0.996), while the next tier (qwen34b, jina4)
trails by ∼0.12 in NDCG@10.

Visual Summary

Figure 1 shows that most of the graded gain is captured in the very top ranks for
nomicv2, consistent with its high MRR and near-ceiling NDCG.
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Figure 1. NDCG@k (mean ± 95% CI) across k ∈ {1, 3, 5, 10}.

6.2. Statistical Significance

To assess whether observed differences are robust across queries, we ran paired
Wilcoxon signed-rank tests on per-query NDCG@10 for all model pairs, and controlled the
family-wise error using the Benjamini–Hochberg procedure at α = 0.05. Table 6 reports
raw p-values and BH-adjusted q-values. Pairs with q < 0.05 are considered statistically
significant at FDR 5%. Given the limited query count (n = 100), we emphasise effect
direction and consistency across queries, rather than absolute p-values alone.

Table 6. Pairwise Wilcoxon signed-rank tests on per-query NDCG@10 (BH-FDR controlled at
α = 0.05).

Model A Model B p q Significant at FDR 0.05?

bgem3 mpnetbase2 0.000000 0.000000 Yes
gte mpnetbase2 0.000000 0.000000 Yes

jina4 mpnetbase2 0.000000 0.000000 Yes
mpnetbase2 nomicv2 0.000000 0.000000 Yes
mpnetbase2 qwen34b 0.000000 0.000000 Yes

gte qwen34b 0.010432 0.026079 Yes
jina4 qwen34b 0.013442 0.028804 Yes

nomicv2 qwen34b 0.016160 0.030300 Yes
bgem3 qwen34b 0.030735 0.051225 No
bgem3 gte 0.226617 0.339926 No
bgem3 nomicv2 0.552851 0.753887 No

gte jina4 0.714249 0.798198 No
bgem3 jina4 0.720351 0.798198 No

gte nomicv2 0.744985 0.798198 No
jina4 nomicv2 0.986493 0.986493 No

6.3. Interpretation

Significant pairs in Table 6 (those with q < 0.05) indicate consistent per-query improve-
ments in NDCG@10, most notably where all models significantly outperform mpnetbase2
These findings suggest that the improvements observed are systematic across queries
rather than being driven by a small subset of easy cases. Non-significant comparisons (e.g.,
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between bgem3 and nomicv2, or gte and jina4) should not be over-interpreted, as absence
of significance does not imply equivalence but rather a lack of sufficient evidence to reject
the null. Overall, the results demonstrate clear progress, reinforcing that GRAG delivers
consistent and meaningful gains when assessed across queries.

6.4. Performance Analysis and Current Limitations

Graph Coverage vs. Clinical Utility: The GRAG pipeline [9] elevates retrieval quality by
blending node similarity with neighbourhood structure, yet it remains sensitive to gaps
in the manually curated graph. Missing or outdated cross-links suppress subgraph scores
and may exclude clinically meaningful pathways, underscoring the need for continual
graph maintenance.

Data Quality Impact on Metrics: The presence of duplicate and near-duplicate nodes
in the knowledge graph likely inflates retrieval performance metrics. Multiple nodes
representing similar clinical concepts may artificially increase precision and recall scores,
as relevant information appears in multiple locations. This duplication also complicates the
evaluation process, as expert annotators must identify and manually deduplicate results
during the curation process.

Index Maintenance and Computational Overhead: The in-memory GRAG index yields
interactive query latency, but full refreshes currently require reloading all embeddings and
relations. Large-scale updates or multi-model experimentation therefore incur non-trivial
rebuild costs. Incremental refresh strategies and approximate seed search remain open
optimisation avenues.

Context Parameter Sensitivity: Hop depth, decay factors, and blend weights (α, λ)
materially influence the ranking. While the selected configuration performed well across
the evaluated queries, broader clinical coverage will require adaptive tuning—potentially
per specialty—to avoid over-emphasising either local or structural evidence.

7. Conclusions
This work presents a novel AI-driven methodology for enhancing clinical decision

support through effective information retrieval from a large-scale, expert-curated oncology
knowledge graph. Two complementary innovations—deterministic node-to-text serial-
isation and graph retrieval-augmented scoring—preserve hierarchical semantics while
ensuring that downstream ranking reflects both textual similarity and encoded medi-
cal relationships.

The evaluation demonstrates the system’s potential to accurately address complex nat-
ural language queries with specific, actionable clinical pathways. The integration of GRAG
neighbourhood context [9], field contribution analysis, and source grounding directly
addresses the critical need for explainability and trust in clinical AI tools. The nomicv2
embedding model achieves near-ceiling performance (NDCG@10 ≈ 0.996) under this hy-
brid retrieval paradigm, demonstrating the feasibility of high-quality semantic search in
specialised medical domains.

7.1. Study Limitations

While our results demonstrate promising performance, several limitations must be
acknowledged.

Data Quality and Duplication: The current knowledge graph contains residual duplicate
nodes and incomplete linkage strategies. This affects both the accuracy of the retrieval and
the ability to trace complete patient pathways through the knowledge structure. The du-
plication issue may artificially inflate precision metrics and obscure the true navigational
complexity of clinical decision-making.
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Language Constraints: The evaluation is limited to German-language queries, restricting
generalisability to international clinical settings. The German-centric knowledge base,
while comprehensive for European clinical practice, may not fully capture global clinical
variations or terminology differences.

Index Refresh Overhead: Although the GRAG retriever [9] provides low-latency infer-
ence, each embedding regeneration or large-scale curation update necessitates rebuilding
the in-memory graph index. The absence of incremental refresh tooling currently delays
rapid iteration across embedding models or dataset snapshots.

Limited Query Diversity: The evaluation utilises 100 expert-curated queries, which,
while clinically relevant, represents a limited sampling of the full spectrum of oncological
information needs. The small query set limits statistical power and may not capture edge
cases or complex multi-condition scenarios.

Static Relationship Semantics: Graph edges capture guideline-defined relationships but
do not yet encode patient-specific modifiers (e.g., comorbidity-adjusted contraindications).
Consequently, GRAG [9] provides richer structural context than brute-force baseline, yet
remains constrained by static semantics when answering highly personalised queries.

7.2. Future Work

Several critical directions warrant investigation to address current limitations and
enhance system capabilities:

Data Quality Enhancement: With GRAG resolving duplication and linkage consistency,
future efforts will emphasise adaptive graph refinement and continuous knowledge evolu-
tion. This includes integrating automated entity normalisation from new clinical sources,
monitoring drift in medical terminology, and leveraging feedback from retrieval logs to
dynamically adjust node relevance and connectivity. The goal is to transition from static
curation to a self-improving clinical knowledge graph that maintains precision, freshness,
and contextual depth over time.

Multilingual Expansion: Following data quality improvements, the entire knowledge
graph will be translated to English using advanced neural machine translation, with expert
validation to ensure clinical accuracy. This expansion will enable international deployment
and cross-cultural validation of retrieval performance.

Graph-to-Text Recommendation Layer: Building on the GRAG neighbourhoods [9], we
plan to extend the pipeline with LLM modules that transform retriever output into clinician-
facing narratives. This includes injecting full ancestral pathways, treatment contraindica-
tions, and supporting citations while maintaining a deterministic provenance trail.

Approximate Nearest Neighbour Integration: Investigation of ANN indexing strategies
to accelerate seed selection and enable incremental index refreshes without sacrificing
clinical-grade retrieval quality. Potential approaches include the following:

• Hierarchical clustering of embeddings with coarse-to-fine search, leveraging the natu-
ral taxonomic structure of medical knowledge to create semantically coherent clusters
(e.g., grouping by organ system, disease type, or treatment modality).

• Learned sparse representations using techniques like SPLADE or neural sparse re-
trieval to enable more efficient similarity computation while preserving domain-
specific medical semantics.

• Graph-aware indexing that exploits the knowledge graph’s inherent structure to guide
ANN index construction, potentially using techniques like navigable small world
graphs that respect medical concept hierarchies.

The critical challenge lies in ensuring that computational efficiency gains do not
compromise the precision required for clinical safety, necessitating rigorous evaluation
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protocols that compare ANN results against exact search ground truth across diverse
clinical scenarios.

Evaluation Framework Expansion: Broader query sets covering diverse clinical specialties,
patient demographics, and complexity levels, and the integration of longitudinal studies
to assess real-world clinical impact, including workflow efficiency metrics and patient
outcome correlations.

Interactive Learning Systems: Development of adaptive mechanisms incorporating user
feedback to continuously improve retrieval relevance and clinical utility, with particular
attention to domain-specific fine-tuning based on clinical expert interactions.

The methodology and evaluation framework established in this work provide a foun-
dation for developing trustworthy, explainable AI systems for clinical decision support,
with potential applications across diverse healthcare domains where expert-curated knowl-
edge graphs can enhance evidence-based practice.
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Appendix A. User Interface and Platform Screenshots
This appendix provides visual documentation of the annotation interface used for

expert evaluation and examples of the OncoProAI platform components. The OncoProAI
is based on German, which is reflected in the platform output. However, all the terms in
German refer to medical terminology, which is remarkably similar to English. Therefore,
the authors believe it should not pose any problem.
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Appendix A.1. Annotation Interface

Figure A1. Overview of the annotation interface used during evaluation. Experts can review search
results, assign relevance scores, and reorder items based on clinical utility.

Figure A2. Editing actions available in the annotation interface: results can be reordered via drag-
and-drop and marked as duplicate or irrelevant. New relevant nodes can be added via typeahead
search over the knowledge graph.
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A demonstration video of the annotation interface is available in the GitHub repository [27].

Appendix A.2. OncoProAI Platform Components

Figure A3. Navigation interface showing hierarchical access to disease categories. Navigation is
performed using buttons with “>” for exclusive selection or “+” to keep neighbouring areas open.

Figure A4. Patient information display showing preliminary data and examination types already
performed.
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Figure A5. Enhanced user interface for visualizing data using TreeView and knowledge graph
representations.

Figure A6. Therapy suggestion interface that provides immediate treatment recommendations when
sufficient information is available.
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Figure A7. Updates panel displaying the most important recent changes in therapy recommendations
and clinical guidelines.

Figure A8. Document library showing relevant clinical forms and educational materials that can be
customised for patient use.
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Figure A9. Case-specific supportive information panel displaying relevant drug interactions and
contraindications.

Figure A10. Detailed interaction contraindications display for specific medications, highlighting
potential adverse effects.
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Figure A11. Comprehensive medication information summary providing practical details about each
pharmaceutical agent accessible to clinical practitioners.
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