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ABSTRACT
The increasing demand for ultra-reliable, low-latency, and high-throughput connectivity in dense urban environments presents
significant challenges for next-generation 6G networks. Traditional cellular networks, with their fixed cell boundaries and
centralized base station control, are inadequate to meet the dynamic needs of such environments. A promising solution is the
cell-free network architecture, where a distributed set of access points (APs) jointly serve users without fixed cell boundaries.
However, efficient access point selection and accurate user localization are crucial to achieving high performance in such
networks. This paper presents a decentralized approach using Belief-Desire-Intention eXtended (BDIx) agents for dynamic AP
selection and localization within a cluster-based cell-free 6G communications network. Various clustering algorithms (K-means,
DBSCAN, self-organizing maps, MeanShift, ClusterGAN, and Autoencoders) are evaluated for their ability to optimize network
throughput, energy efficiency, and spectral utilization. A hybrid localization framework, such as centroid-based, differential
circles, and multilateration methods, is employed to achieve accurate user positioning. The results demonstrate that machine
learning-based clustering methods, notably Gaussian mixture model (GMM), self-organizing map (SOM), and ClusterGAN,
offer significant improvements in throughput (up to 46.3%) and power reduction (up to 32.8%) over traditional methods.
Regarding localization, deep learning models such as MLP, CNN, and TCN outperform deterministic methods, achieving sub-
meter accuracy with minimal errors (MeanDist < 1 m, 𝑅2

> 0.999). Overall, the proposed solution enhances system scalability,
energy efficiency, and positioning accuracy, establishing a promising foundation for future 6G networks. In our reference
implementation, we instantiate the pipeline with a GMM for AP/UE clustering and a multilayer perceptron (MLP) regressor for
localization.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly
cited.
© 2025 The Author(s). IET Communications published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
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1 Introduction

The evolution toward 6G communications promises unprece-
dented data rates, ultra-low latency, and massive connectivity.
One of the most promising paradigms is the cell-free network
architecture, which features a distributed set of access points
(APs) that jointly serve users without fixed cell boundaries.
This eliminates the cell-edge problem, ensuring uniformly high-
quality service. However, implementing a cell-free environment
entails several challenges, including the efficient access point
selection and localization within a cluster-based framework [1].
Specifically, efficient access point selection is critical because,
unlike traditional cellular networks where each user is assigned
to a fixed base station, cell-free networks require a dynamic
selection (which must adapt to variations in channel quality,
user mobility, and interference [2]) of the optimal subset of APs
from a dense deployment. On the other hand, high-precision
localization of both users and APs is essential for dynamic AP
selection, as it enables precise resource allocation and effective
interferencemanagement in environmentswith highuser density
and complex propagation conditions [3].

To address these requirements, clustering algorithms such as K-
means, self-organizing maps (SOM), and density-based spatial
clustering of applications with noise (DBSCAN) can be employed
to dynamically group APs based on user density and channel
conditions [4]. Moreover, clustering APs to manage large-scale
network deployments simplifies resource allocation and reduces
computational complexity, facilitating efficient interferenceman-
agement.

Efficient clustering facilitates localized decision-making and
minimizes the signaling overhead required for resource allo-
cation and interference management. Additionally, machine
learning-driven techniques, including reinforcement learning,
can be leveraged to dynamically optimize AP selection and
enhance responsiveness to changes in network state and user
mobility patterns [5]. To achieve the goal of precise localization, a
novel hybrid localization technique is employed, integratingmea-
surements from time-of-arrival (TOA), angle-of-arrival (AOA),
and received signal strength indicator (RSSI) to achieve superior
positioning accuracy, especially beneficial in ultra-dense deploy-
ments and complex propagation environments [6]. Advanced
data fusion algorithms, such as extended Kalman filters (EKF)
and particle filters, further enhance localization accuracy by
effectively integrating heterogeneous measurement data [7].

A cell-free network architecture is organized into decentral-
ized clusters of APs that autonomously manage local resources
through edge computing technologies, enabling rapid adaptation
to localized variations in network demand. Such decentralized
resource management significantly reduces latency and ensures
robustness against single points of failure [8]. This distributed
approach not only improves network resilience but also enhances
scalability and adaptability to fluctuating user requirements and
network conditions. Moreover, the deployment of artificial intel-
ligence (AI)-based predictive models enables proactive AP selec-
tion and resource management, anticipating user movements,
traffic variations, and interference patterns, thus significantly
improving spectral efficiency and energy consumption [9]. The
energy efficiency of the network is further optimized through

intelligent power control mechanisms that dynamically adjust
transmission power based on real-time channel estimations and
localized network demands, minimizing unnecessary energy
usage and interference [10].

In this paper, we propose a novel, decentralized framework
for access point (AP) selection and localization tailored for
cell-free 6G communications networks. By leveraging advanced
machine learning clustering techniques integrated with belief-
desire-intention extended (BDIx) agents, our approach achieves
deterministic clustering and uniform AP selection across all
user equipment (UE) in a fully distributed manner. Our hybrid
localization framework combines geometry-based estimations
(such as centroid, differential circles, and multilateration) with
deep learning regression models (such as MLP, CNN, TCN,
and BLSTM) to attain sub-meter accuracy, even in ultra-dense
environments. Moreover, the proposed approach significantly
enhances network throughput and energy efficiency, demonstrat-
ing a sum-rate gain of up to 46.3% and total power reduction of
up to 32.8%, thus addressing the complex challenges inherent in
next-generation wireless networks.

Overall, the main contributions of this work can be summarized
as follows:

∙ AdvancedDecentralizedClusteringTechniques: Integra-
tion of a suite of dynamic clustering algorithms—including
DBSCAN, K-Means, SOM, MeanShift, ClusterGAN, and
Autoencoder-based methods—with BDIx agents to achieve
deterministic AP grouping and efficient resource allocation in
a decentralized cell-free 6G network (instantiated with GMM
in this work).

∙ Hybrid Localization Framework: Development of a novel
localization strategy that combines geometry-based methods
(centroid estimation, differential circles, and multilateration;
cf. Equations 27–36) with deep learning regression models
(multilayer perceptron [MLP], CNN, TCN, BLSTM) to achieve
sub-meter accuracy, crucial for precise resource allocation
and interference management (instantiated with an MLP
regressor in this work).

∙ AI-BasedPredictiveManagement: Implementation of pre-
dictive machine learning algorithms within BDIx agents to
enable proactive AP selection and dynamic resource manage-
ment in response to real-time network conditions and user
mobility.

∙ Enhanced Communication Protocols and Signaling
Strategies: Design of innovative protocols that facilitate
seamless inter-device connectivity via Wi-Fi Direct for intra-
cluster communication and LTE-based backhaul for inter-
cluster connectivity, optimized explicitly for high-frequency,
ultra-dense 6G environments (see selection rule in Equa-
tion 14).

∙ Energy Efficiency Optimization: Analytical evaluation
and optimization of energy consumption, demonstrating that
the proposed framework achieves significant power reduc-
tions (up to 32.8%) while enhancing network throughput
(up to 46.3% sum-rate gain) compared to traditional cellular
architectures (see Equations 19–21).
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∙ Novel Distributed Framework for 6G Networks: Intro-
duction of a fully decentralized network formation strategy
that ensures consistent clustering and AP selection across
all UEs, thereby enhancing system scalability, reliability, and
adaptability in dynamic wireless environments (determinism
described in Equation 15, results in Section 5). Reference
implementation: Unless otherwise stated, all reported end-to-
end results for “ours” use GMM for clustering andMLP for
localization.

1.1 Contribution Summary and Positioning vs.
Prior Work

This paper tackles five concrete challenges of cell-free 6G at
scale: (1) fully decentralized AP selection and clustering under
tight signaling/fronthaul budgets; (2) deterministic agreement on
clusters/APs across all UEs without a central coordinator, even
with randomized algorithms; (3) robust operation under imperfect
CSI, mobility, and NLoS1, typical of dense urban layouts; (4)
tight KPI coupling (throughput–energy–fairness) via an explicit
optimization (Equation 6); and (5) edge-friendly execution that
respects device constraints while integrating localization into
the control loop. Relative to user-centric CF, O-RAN clustering,
LSFD/DCC, and DL/DRL controllers, our framework is distinct
in three ways: (i) it uses a minimal broadcast—BS positions
and configuration (, 𝜃, 𝑠)—while UEs locally hold 𝑋 via ProSe,
ensuring low signaling and privacy of UE locations; (ii) it provably
enforces deterministic cluster agreement from common (𝜃, 𝑠) and
shared 𝑋 (Equation 15), yielding identical AP elections on
every UE without centralized computation; and (iii) it inte-
grates hybrid localization (centroid/circles/multilateration + DL)
directly into KPI-aware control, rather than treating positioning
as an external service. Table 2 evidences that, unlike prior
CF-only or localization-only pipelines, our BDIx-driven design
jointly attains decentralization, deterministic agreement, low
signaling, edge friendliness, robustness to CSI/sync/NLoS, hybrid
localization, QoS awareness, and practical scalability—thereby
clarifying the main contributions and how they advance the
state of the art. These innovations collectively enhance through-
put, latency, energy efficiency, and spectral efficiency, offering
substantial performance advantages over traditional cellular
networks and positioning wireless communications for future
demands.

The following table serves as a comprehensive glossary of the
notation used, establishing a clear and consistent framework
for the reader. It is methodically structured into three principal
sections to cover the different technical domains involved. The
first section introduces variables related to machine learning
and clustering, defining the essential components of algorithms
like Gaussian mixture models (GMM), self-organizing maps
(SOM), and support vector regression (SVR). The subsequent
section shifts focus to the domain of wireless communications,
outlining fundamental parameters such as signal power, an tenna
gain, noise, and channel quality indicators. Finally, the table
concludes with a list of performance metrics that are critical
for evaluating both the clustering algorithms’ efficacy (e.g.,
Silhouette Score, Davies-Bouldin Index) and the communication
system’s efficiency (e.g., bit error rate, spectral efficiency).

The article is organized as follows: Section 2 discusses related
work on decision-making frameworks and machine learning
techniques, focusing on their role in enhancing BDIx agents
within dynamic wireless networks. Section 3 describes the prob-
lem statement and introduces the proposed system, emphasizing
the architecture and components of the Plan Library integrated
into BDIx agents. Section 4 outlines the methodology employed
for evaluating decision-making frameworks and adaptive clus-
tering techniques, focusing on synthetic data generation, model
training, and performance evaluation. Section 5 presents the
results of the assessment, comparing the performance ofmachine
learning models and fuzzy logic approaches based on metrics
like accuracy, computational efficiency, and resource utilization.
Finally, Section 6 provides a summary of the findings, discusses
their implications for future research, and outlines potential
advancements for improving intelligent decision-making in
6G networks.

Table 1 lists the variables and definitions used in the formulas and
text in this examination.

2 RelatedWork and Background

This section provides a comprehensive review of related work
and background information concerning the evolution of cell-free
massiveMIMO (CF-mMIMO) systems, the role of clustering algo-
rithms, and the application of distributed artificial intelligence
(DAI) frameworks in modern wireless networks. It explores the
integration of advanced machine learning techniques, such as
GMM, and the development of user-centric models for enhanced
network optimization. Furthermore, the section explores founda-
tional techniques crucial for advancing wireless communication
systems, including device-to-device (D2D) communication and
clustering methods such as K-means, DBSCAN, and GMM. It
highlights the challenges encountered in implementing large-
scale CF-mMIMO networks, particularly in terms of channel
estimation, synchronization, and efficient resourcemanagement.

Additionally, this section covers the significance of BDIx agents
for decentralized decision-making in 5G/6G environments. This
background is crucial for understanding the ongoing research
in clustering techniques, localization accuracy, and dynamic
resource allocation in large-scale wireless networks. The back-
ground also discusses the role of DAI frameworks and BDIx
agents in decentralized decision-making, offering scalable solu-
tions to network complexities in 5G/6G networks. The impor-
tance of machine learning and deep learning approaches for
location prediction in dense and dynamic network environments
is also emphasized.

2.1 RelatedWork

2.1.1 Cell Free RelatedWork

Cell-free massive MIMO (CF-mMIMO) has garnered significant
attention for its potential to enhance wireless network efficiency
and coverage by utilizing distributed antenna systems without
traditional cell boundaries. Ngo et al. [1] laid the groundwork
for foundational research by demonstrating how distributed
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TABLE 1 Table of variables and definitions.

Variable Definition

𝐾 Number of Gaussian components/clusters
(GMM).

𝜋𝑘 Mixing coefficient for the 𝑘-th Gaussian
component.

𝜇𝑘, Σ𝑘 Mean vector and covariance matrix for the 𝑘-th
Gaussian component.

𝑤𝑖(𝑡) Weight vector of neuron 𝑖 in a SOM at time step
𝑡.

𝛼(𝑡) Learning rate for SOM at time step 𝑡.
ℎ𝑐𝑖(𝑡) Neighborhood function in SOM centered at the

best-matching unit 𝑐.
 Loss function for a machine learning model.
𝐷,𝐺, 𝐸 Discriminator, generator, and encoder

networks in ClusterGAN.
𝑧, 𝑐 Latent variables (continuous and discrete) in

ClusterGAN.
𝐻(𝑙) Matrix of node features at layer 𝑙 in a GNN.
𝐴, 𝐴̃ Adjacency matrix and its version with

self-loops.
𝑊(𝑙) Weight matrix for layer 𝑙 in a neural network.
𝑤, 𝑏 Model parameters (weights and bias) in SVR.
𝜙(𝑥𝑖) Function mapping input 𝑥𝑖 to a

higher-dimensional space.
𝜖 Margin of tolerance in SVR.
𝑃𝑟(𝑑) Received power at distance 𝑑 (dBm).
𝑃𝑡 Transmit power (dBm).
𝐺𝑡, 𝐺𝑟 Transmit and receive antenna gains (dBi).
𝑑 Distance between transmitter and receiver (m).
𝜆 Carrier wavelength (m).
ℎ Channel gain coefficient.
𝐾RIC Rician K-factor (linear).
𝑃noise Total noise floor power (dBm).
𝑘𝐵 Boltzmann’s constant (1.38 × 10−23 J/K).
𝑇 System temperature (K).
𝐵 System bandwidth (Hz).
𝑁fig Receiver noise figure (dB).
RSSI Received signal strength indicator (dBm).
SINR Signal-to-interference-plus-noise ratio.
𝑃interf Co-channel interference power (dBm).
𝑅(𝑑) Achievable data rate at distance 𝑑 (Mbps).
𝑃consumption Power consumption (dB) proxy (cf.

Equation 12).
CQI Channel quality indicator.
𝐮, 𝐚𝑖, 𝐛𝑗 Position vectors for a UE, the 𝑖-th AP, and the

𝑗-th BS.

(Continues)

TABLE 1 (Continued)

Variable Definition

BSs Number of base stations (scalar count).
𝑎(𝑖), 𝑏(𝑖) Intra-cluster and nearest-cluster distances for

Silhouette score.
𝜎𝑖 Average distance of points to their cluster

center in DBI.
𝑑𝑖𝑗 Distance between centers of clusters 𝑖 and 𝑗 in

DBI.
𝐵𝑘,𝑊𝑘 Between-cluster and within-cluster dispersion

matrices for CHI.
𝑁 Total number of data points or devices.
𝑘 Total number of clusters.
𝜂net Network spectral efficiency (bits/s/Hz).
𝐵total Total system bandwidth (Hz).
𝐸𝑏∕𝑁0 Average signal-to-noise ratio per bit.
𝑃𝑏 Bit error rate (BER).
𝛾, 𝛾̄ Instantaneous and average SNR.
𝐩𝑖, 𝐠𝑖 Predicted and ground-truth 2D position vectors.
𝑋 Set of all UE positions (from LTE ProSe; locally

aggregated by each UE’s BDIx agent).
 Set of all BS positions (broadcast by the BS).
𝑓MLP MLP regression function mapping features to

(𝑥̂, 𝑦̂) coordinates.
𝜙 Learnable parameters of the MLP

(weights/biases).

access points (APs) can jointly serve multiple users over the
same time-frequency resources, thereby significantly boosting
spectral efficiency and mitigating inter-cell interference. Their
work highlighted the advantages of uniform service quality but
also identified critical implementation challenges such as fron-
thaul capacity limitations and precise synchronization among
APs. These challenges necessitate sophisticated solutions for
managing and synchronizing accurate channel state information
(CSI), highlighting practical barriers to wide-scale deployments.

Chen et al. [11] advanced CF-mMIMO by proposing user-
centric (UC) clustering, dynamically assigning subsets of APs
to individual users based on proximity, signal quality, and net-
work conditions. Their approach effectively reduced fronthaul
traffic, computational overhead, and improved scalability, vital
for extensive urban deployments. Through simulations, their
method demonstrated superior performance compared to static
clustering methods, resulting in significantly improved resource
efficiency. Nevertheless, the introduction of dynamic cluster-
ing also created complexities in real-time resource allocation,
necessitating the development of sophisticated optimization algo-
rithms to maintain performance, especially in rapidly changing
user environments.

Iliadis et al. [12] tackled channel estimation challenges inherent
in CF-mMIMO by leveraging deep learning methods. They
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utilized neural networks for precise channel estimation and
adaptive power allocation, significantly improving accuracy over
traditional estimation techniques. Their deep-learning-based
method demonstrated robustness against pilot contamination
and environmental variations, essential for dynamic CF-mMIMO
scenarios. Despite these advances, the high computational com-
plexity and training overhead required by neural networks pose
challenges in latency-sensitive or densely populated networks,
underscoring a critical need for improvements in computational
efficiency in practical deployments.

Shahab et al. [13] investigated the integration of full-duplex tech-
nology into CF-mMIMO architectures, exploring simultaneous
uplink and downlink transmissions to double spectral efficiency.
Their findings highlighted substantial performance gains but also
underscored the complexities of self-interference cancellation
and synchronization. Despite these advances, practical imple-
mentation of full-duplex CF-mMIMO demands sophisticated
interference management techniques, precise timing synchro-
nization, and coordinated transmission protocols to ensure
operational viability.

Mashdour and de Lamare [14] introduced a novel clustering
strategy based on achievable information rates, rather than
conventional large-scale fading metrics. Their approach directly
enhanced spectral efficiency and fairness among users, coupled
with an advanced resource allocation technique optimized for
scheduling efficiency. Although simulations validated signifi-
cant performance improvements, the complexity and real-time
computational demands of their methods raised concerns about
scalability and practicality, especially in large-scale networks.

Beerten et al. [15] focused on practical deployment strategies
for CF-mMIMO within the open radio access network (O-RAN)
framework, developing two clustering and handover strategies.
Their fixed clustering method activated clusters when spe-
cific thresholds were exceeded, while an opportunistic strategy
dynamically adjusted clusters as users moved. These methods
significantly enhanced network performance, particularly in
handover scenarios, but raised issues regarding signaling over-
head and increased network control complexity, necessitating
further research into more efficient signaling solutions.

Demir et al. [16] explored dynamic cooperation clustering (DCC)
for the uplink in user-centric CF-mMIMO networks. They pro-
posed a layered decoding strategy—large-scale fading decoding
(LSFD)—to efficiently manage fronthaul traffic, maintaining
high spectral efficiency with reduced overhead. Although their
theoretical framework demonstrated significant performance
gains, the practical implementation raised coordination and
synchronization challenges, underscoring the need for balanced
solutions between decentralized control at access points (APs)
and centralized network management.

Di Gennaro et al. [17] presented a deep learning-based user-
centric clustering methodology that employs long short-term
memory (LSTM) neural networks to maximize the sum spec-
tral efficiency while limiting active connections. This approach
effectively addressed imperfections in CSI, including pilot con-
tamination, demonstrating robust performance. However, prac-
tical application was constrained by the computational intensity

and training complexity of LSTM models, necessitating further
optimization for real-world latency-sensitive network conditions.

Tan et al. [18] proposed energy-efficient AP clustering and
power allocation in CF-mMIMO through hierarchical deep rein-
forcement learning (DRL). Their two-layer control architecture
optimized resource allocation and AP clustering dynamically,
resulting in significant improvements in energy efficiency.
Although their model delivered excellent results, the inherent
computational complexity and real-time responsiveness demands
posed practical deployment challenges, underscoring the need for
more streamlined and computationally efficient algorithms.

Ioannou et al. [19] introduced a comprehensive cell-free 6G
architecture enhanced by sophisticated clustering algorithms,
including SOM, GMM,MeanShift, DBSCAN, and KMeans, along
with BDIx agents for decentralized resource management. They
demonstrated that integrating SOM with BDIx agents resulted in
superior scalability, optimized load balancing, and increased net-
work throughput, highlighting the effectiveness of their approach
for dense urban deployments typical of future 6G environments.

Ioannou et al. [20] further advanced cell-free network architec-
ture by applying advanced deep learning clustering methods,
including MeanShift, DBSCAN, KMeans, affinity propagation,
and ClusterGAN. Among these, ClusterGAN demonstrated
exceptional performance in modeling complex network condi-
tions dynamically, significantly improving network sum rate,
scalability, and energy efficiency. Their research provided clear
evidence of the potential for GAN-based methods in addressing
the limitations of conventional clustering approaches, specif-
ically in highly dynamic and dense scenarios envisioned for
6G networks.

Idigo et al. [21] investigate cluster–head (CH) selection for
device-to-device (D2D) communication using an unsupervised
self-organizing map (SOM) driven by a weighted hardware
sensing factor (HSF) that fuses link-quality indicators (e.g.,
RSSI/RSRP/RSRQ) with proxies of device hardware condition.
Using measurements frommultiple UEs within a 250 m radius of
a base station, they report that HSF-fed SOM forms more reliable
clusters and elects more suitable CHs than SOM configured
with any single metric, and also outperforms KMeans when
both are given the same HSF inputs. The study highlights
vendor-dependent variability in radio measurements and argues
that metric weighting mitigates this effect during CH election,
improving robustness. Nonetheless, the evaluation is small-scale
and quasi-static (no mobility or online operation); integrating
HSF-aware SOM into user-centric, large-scale cell-free settings
with real-time updates and energy/fairness objectives remains
open future work.

2.1.2 Localization RelatedWork

Yang et al. [22] addressed localization accuracy in CF-
mMIMO networks by integrating distributed antenna setups
with advanced triangulation algorithms. Leveraging spatial
diversity, they achieved centimeter-level localization precision,
dramatically enhancing resource allocation and interference
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management. Although their methodology significantly
improved accuracy, the requirement for precise synchronization
and high-quality channel state information presented substantial
implementation challenges, particularly in high-mobility or
dense user conditions.

Bulusu et al. [23] describe GPS-less localization where the
centroid estimator computes the position as 𝐩̂ = 1

𝐾

∑𝐾

𝑘=1 𝐚𝑘 ,
where 𝐚𝑘 ∈ ℝ2 (or ℝ3) are anchor coordinates and 𝐾 is the
number of anchors/fingerprints. This assumes roughly uni-
form anchor geometry and unbiased measurements; otherwise,
dilution of precision and large-scale bias dominate, motivat-
ing geometry-aware weighting and outlier screening. Li et al.
[24] address trilateration via circle (or sphere) intersections
using ranges {𝑑𝑖} from anchors {𝐚𝑖}. A common formulation is
min𝐩

∑𝑀

𝑖=1 (‖𝐩 − 𝐚𝑖‖2 − 𝑑𝑖)
2, where 𝐩 is the unknown position

and 𝑀 the number of anchors; linearized least squares yields
𝐩 = (𝐀⊤𝐀)−1𝐀⊤𝐛 with 𝐀, 𝐛 built from (𝐚𝑖, 𝑑𝑖). Robust methods
mitigate biased ranges and poor anchor geometry, but synchro-
nization and multipath remain key challenges. Hoang et al. [25]
leverage bidirectional LSTMs for fingerprint sequences {𝐱𝑡}

𝑇
𝑡=1,

mapping temporal windows to positions via 𝐩̂𝑡 = 𝐖[𝐡⃗𝑡; 𝐡⃖𝑡] +
𝐛, where 𝐡⃗𝑡, 𝐡⃖𝑡 are forward/backward hidden states and [⋅; ⋅]
denotes concatenation. By modeling temporal correlations and
smoothing noise, BLSTMs reduce variance, but require well-
aligned sequences, careful regularization, and trajectory labeling.
Ouyang et al. [26] employ Temporal Convolutional Networks
with dilated causal convolutions to capture long-range depen-
dencies. For feature stream {𝐱𝑡} the layer output satisfies 𝐲𝑡 =∑𝐿−1

𝓁=0 𝐖𝓁 𝐱𝑡−𝑑𝓁 + 𝐜, where 𝑑 is the dilation factor, 𝐿 the kernel
length, and𝐖𝓁, 𝐜 the learnable parameters. Residual connections
aid stability; accurate timestamps and consistent sampling are
important for receptive-field design.

Wang et al. [27] treat CSI/fingerprints as images 𝐅 ∈ ℝ𝐻×𝑊×𝐶

and apply 2D convolutions 𝐙 = 𝜎(𝐖 ∗ 𝐅 + 𝐛) followed by pool-
ing and fully connected heads to regress coordinates. Here ∗
is convolution, 𝜎(⋅) an activation, and 𝐻,𝑊,𝐶 denote spatial
and channel dimensions. Spatial filtering denoises and learns
invariant features, but requires consistent fingerprint rasteriza-
tion and intensity normalization. Nguyen et al. [28] formulate
fingerprinting with transformers by tokenizing measurements
into embeddings and applying self-attention Attn(𝐐,𝐊,𝐕) =
softmax(𝐐𝐊⊤∕

√
𝑑𝑘)𝐕, where queries 𝐐, keys 𝐊, and values 𝐕

are linear projections of tokens and 𝑑𝑘 is the key dimension.
Positional encodings preserve order. Such models capture global
context but are data-hungry and benefit from domain adaptation
to mitigate distribution shift. Following standard practice for
feedforward regressors, a multilayer perceptronmaps engineered
features 𝐱 ∈ ℝ𝐷 to coordinates via 𝐩̂ = 𝐖2 𝜎(𝐖1𝐱 + 𝐛1) + 𝐛2,
where 𝜎(⋅) is a nonlinearity and {𝐖𝑖, 𝐛𝑖} are learnable parameters.
Feature scaling, dropout, and weight decay help control over-
fitting, while coordinate normalization improves optimization
and stability. Kang et al. [29] model localization with a graph
𝐺 = (𝑉, 𝐸) built from fingerprints and reference points, applying
message passing 𝐡(𝑙+1)

𝑣 = 𝜙
(
𝐡(𝑙)

𝑣 , □𝑢∈ (𝑣)𝜓(𝐡(𝑙)
𝑣 , 𝐡(𝑙)

𝑢 , 𝐞𝑢𝑣)
)
, where

 (𝑣) is the neighborhood, 𝐞𝑢𝑣 edge features, □ an aggre-
gation (e.g., sum/mean), and 𝜙, 𝜓 neural functions. Perfor-
mance hinges on graph construction (e.g., kNN radius), edge
attributes, and robustness to noisy neighbors. Jondhale et al. [30]

adopt support vector regression for coordinate prediction 𝑓(𝐱) =∑𝑁

𝑖=1 𝛼𝑖 𝐾(𝐱𝑖, 𝐱) + 𝑏 trained with 𝜀-insensitive loss, where 𝐾(⋅, ⋅)
is a kernel (e.g., RBF), {𝐱𝑖} support vectors, and {𝛼𝑖}, 𝑏 learned
parameters. Proper tuning of𝐶, 𝜀, and kernel width is critical, and
feature standardization improves conditioning.

Wang et al. [31] use Random Forest ensembles of regression
trees {𝑡}

𝑇
𝑡=1 trained on bootstrap samples with feature sub-

sampling, yielding 𝐩̂ = 1

𝑇

∑𝑇

𝑡=1 𝑡(𝐱). Bagging reduces variance
and handles heterogeneous features, while out-of-bag estimates
aid validation; however, piecewise-constant leaves limit extrap-
olation beyond the training manifold. Bahl and Padmanabhan
[32] introduced instance-based fingerprinting, where KNN esti-
mates 𝐩̂ = 1

𝐾

∑
𝑖∈𝐾(𝐱) 𝐩𝑖 using a distance 𝑑(𝐱, 𝐱𝑖) (e.g., Euclidean

or cosine) to define the neighbor set 𝐾(𝐱). The method is
simple and nonparametric; performance depends on database
density, distance metric selection, and efficient indexing for
large-scale retrieval.

2.1.3 Overall Comparison

Table 2 contrasts the literature along deployment-critical dimen-
sions for dense 6G. Classic CF designs can equalize service quality
but suffer from heavy fronthaul, strict synchronization, and
centralized control. User-centric/O-RAN CF reduces signaling
yet still depends on periodic re-optimization. DL/DRL controllers
improve efficiency but shift non-trivial training/inference costs
to the edge. Pure localization pipelines deliver strong accuracy
but remain decoupled from QoS and KPI control. In contrast,
our framework is the only one that attains a full sweep of
capabilities in both CF and Localization groups (all “Yes” across
the ten columns), combining deterministic, decentralized
agreement with low signaling, edge-friendly execution, and
hybrid localization robust to imperfect CSI/synchronization
and NLoS. Decisions are tightly KPI-coupled (throughput–
energy–fairness), explicitly QoS-aware, and operate in an
autonomous, distributed, dynamic manner. This end-to-end
alignment explains the observed gains in sum rate and power
reduction while preserving fairness, and it highlights clean scala-
bility for dense deployments compared to CF-only or localization-
only baselines. In summary, we adopt GMM as the operational
clustering engine and MLP as the default localization regressor
in our decentralized BDIx pipeline (cf. Equation 1).

2.2 Background Information

2.2.1 Device-to-Device (D2D) Communication

D2Dcommunication refers to the direct exchange of data between
nearby user equipment (UE) without routing traffic through the
base station (BS). It was originally proposed to offload traffic in
cellular networks; however, it has gained renewed interest due to
its potential to support emerging 6G applications. Below, some
information regarding the underlying mechanisms that govern
how D2D links are established and maintained, are described.

2.2.1.1 Control Approaches in D2D Communication.
The establishment and management of device-to-device (D2D)
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communication links can be classified into three distinct control
paradigms [33]:

∙ Centralized: The base station (BS) fully controls the man-
agement of user equipment (UE), even when devices com-
municate directly with one another. In this mode, the base
station (BS) centrally manages critical aspects, such as inter-
ference, link establishment, resource allocation, and path
determination, for device-to-device (D2D) pairs.

∙ Distributed: Under a distributed control paradigm, UEs
autonomously manage communication processes such as
interference handling, data rate optimization, and routing
without relying on a central controller. This approach signif-
icantly reduces control and computational overhead, making
it highly suitable for large-scale D2D networks. Typically,
control tasks are initiated simultaneously by all participating
UEs and executed concurrently.

∙ Semi-Distributed (Hybrid): This approach merges the
advantages of centralized and distributed control methods.
It involves trade-offs between central oversight and UE
autonomy to optimize performance, resulting in flexible and
efficient management strategies tailored to specific network
requirements.

2.2.1.2 Transmission Modes in D2D Communication.
Different transmission modes define how user equipment inter-
acts with the base station and other D2D nodes. These modes are
classified as follows [33]:

∙ D2D Direct: Two UEs communicate directly without inter-
vention from the BS, using either licensed or unlicensed
spectrum. Communication remains exclusively between the
two involved devices.

∙ D2D Single-Hop Relaying (D2D Relay)/ Access Point
(AP): One UE connected to the BS or an access point
(AP) shares its resources, acting as a relay, thereby facil-
itating connectivity for another UE that lacks direct BS
connectivity.

∙ D2DMulti-Hop Relay: This mode extends single-hop relay-
ing by creating a chain of multiple UEs, where each device
serves as an intermediate relay. Data transmission and back-
haul connections occur through successive relay nodes, with
each node managing connections to subsequent nodes in the
chain.

∙ D2DCluster Clients / D2D Clients: A group of UEs forms a
clustermanaged by a designated cluster head (CH),which acts
as a relay node (the D2D Relay). The CH/D2D Relay connects
the clusteredUEs to the broader network via an access point or
BS, making clustering particularly effective in scenarios with
high user density.

In our research, wewill focus on the D2D-Relays andD2DClients
transmissionmode selection.Wewill offer BIDx agents the option
to decide their transmission mode autonomously.

2.2.2 Distributed AI (DAI) Framework and BDIx
Agents

In the context of next-generation 6G networks, the DAI frame-
work offers a scalable and adaptable approach to managing
network complexity, facilitating real-time decisions, optimizing
resource allocation, and substantially reducing signaling over-
head. The decentralized approach offered by DAI, minimizes the
dependency on central controllers, thereby enhancing robustness
in dynamic network environments [33, 34].

Specifically, the DAI framework leverages advanced BDIx agents
installed directly on user equipment (UE), enabling decentralized
and autonomous decision-making through predefined commu-
nication protocols [35, 36]. BDIx agents represent an advanced
extension of the traditional belief-desire-intention (BDI) agent
model, specifically tailored for dynamic 5G/6G scenarios [35].
These agents implement structured decision-making processes
consisting of four principal components:

1. Beliefs: Agents maintain and continuously update percep-
tions of their surrounding environment, capturing parame-
ters such as signal strength, interference, and user equipment
density.

2. Desires: High-level goals or objectives, such as minimiz-
ing latency, maximizing throughput, or improving energy
efficiency.

3. Intentions: Commitmentsmade by agents toward achieving
feasible and prioritized desires.

4. Plans: Predefined algorithms or strategies executed to
accomplish specific intentions. The plans are related to
desires.

Figure 1 illustrates the interaction among these components.
Beliefs inform desires by providing the environmental context,
allowing agents to prioritize goals effectively. When desires are
deemed both necessary and achievable, they transition into
intentions. Intentions subsequently activate associated plans for
execution. Plans, in turn, influence and update beliefs based on
actions taken and observed environmental outcomes, thereby
completing the decision-making cycle [33, 35].

Although aligned with fundamental principles of multi-agent
systems (MAS), a key distinction in this DAI approach is the
agents’ capability to directly issue execution commands to peer
agents [34, 35]. Additionally, each BDIx agent incorporates a Plan
Library responsible for dynamically prioritizing desires. When
a desire reaches maximum priority (100%), it transforms into
an intention, initiating the execution of its corresponding plan.
This mechanism ensures seamless transitions from deliberation
to action in response to real-time demands [36]. Furthermore,
the Plan Library incorporates advanced methodologies, such as
fuzzy logic andmachine learning, enhancing agents’ adaptability
in rapidly changing network conditions [35, 36]. To manage
concurrent intentions effectively, agents utilize a goals queue,
which restricts simultaneous intention execution and avoids
potential conflicts or resource contention [34, 35].
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FIGURE 1 Flowchart depicting interactions among beliefs, desires,
intentions, and plans in the BDIx agent architecture.

2.2.3 Clustering Techniques

Clustering is a fundamental task in machine learning and data
analysis that aims to discover inherent groupings within datasets.
It is an unsupervised learning technique that aims to partition
data points into distinct clusters based on their similarity. This
section examines various clustering approaches, spanning from
classical algorithms to deep learning-based techniques, offering
detailed explanations of their working principles, algorithms,
mathematical formulations, and relevant literature references.

Gaussian mixture model (GMM) is a probabilistic clustering
approach that models the data as a mixture of multiple Gaussian
distributions [37]. Each cluster is represented by a Gaussian
distribution with parameters 𝜇𝑘, Σ𝑘, and 𝜋𝑘, which denote
the mean, covariance, and mixing coefficient, respectively. The
probability density function is given by:

𝑝(𝑥) =
𝐾∑

𝑘=1

𝜋𝑘 (𝑥 ∣ 𝜇𝑘, Σ𝑘) (1)

where 𝑝(𝑥) is the probability density function for a data point
𝑥, 𝐾 is the total number of Gaussian components (clusters), 𝜋𝑘

is the mixing coefficient for the 𝑘-th component, and  (𝑥 ∣
𝜇𝑘, Σ𝑘) is the Gaussian probability density function with mean
𝜇𝑘 and covariance matrix Σ𝑘 . GMM employs the expectation-
maximization (EM) algorithmduring execution,where theE-step
computes responsibilities (posterior probabilities) and the M-
step updates parameters to maximize the likelihood. Unlike
K-Means, GMM assigns probabilities for cluster membership

rather than complex labels, resulting in soft clustering with
probabilistic interpretations.

Self-organizing map (SOM) is an unsupervised neural-
network-based method introduced by Kohonen [38] for
projecting high-dimensional data onto a lower-dimensional
(typically 2D) map while preserving topological properties.
During training, for each input 𝑥, the best-matching unit (BMU)
is identified based on Euclidean distance. The weights 𝑤𝑖 of the
BMU and its neighboring neurons are updated according to:

𝑤𝑖(𝑡 + 1) = 𝑤𝑖(𝑡) + 𝛼(𝑡)ℎ𝑐𝑖(𝑡)(𝑥 − 𝑤𝑖(𝑡)) (2)

where 𝑤𝑖(𝑡) is the weight vector of neuron 𝑖 at time step 𝑡,
𝛼(𝑡) is the learning rate, and ℎ𝑐𝑖(𝑡) is the neighborhood function
centered at the best-matching unit (BMU) 𝑐. Execution involves
iterating over the dataset with a decaying learning rate and
neighborhood radius. The output is a 2Dmap where neighboring
neurons represent similar data patterns, making SOM useful for
visualization and topology-preserving clustering.

ClusterGAN is a clustering framework that combines generative
adversarial networks (GANs)with clustering objectives, proposed
by Mukherjee et al. [39]. It extends GANs by introducing a struc-
tured latent space consisting of a discrete variable 𝑐 (representing
cluster ID) and a continuous variable 𝑧 (representing intra-cluster
variations). The generator maps (𝑧, 𝑐) to realistic samples, and
an encoder attempts to recover (𝑧, 𝑐) from the generated sample,
enforcing latent consistency. The training objective includes the
traditional adversarial loss plus a reconstruction loss in the latent
space:

𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐺𝐴𝑁 =𝔼[log𝐷(𝑥)]

+ 𝔼[log(1 − 𝐷(𝐺(𝑧, 𝑐)))]

+ 𝔼[||𝐸(𝐺(𝑧, 𝑐)) − (𝑧, 𝑐)||2]
(3)

where 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐺𝐴𝑁 is the total loss function,𝐷 is the discriminator,
𝐺 is the generator, 𝐸 is an encoder, 𝑥 is a real data sample,
and (𝑧, 𝑐) are the latent variables representing continuous and
discrete components, respectively. During execution, samples
are clustered by inferring their discrete latent variable via the
encoder. The result is a generative model that supports both data
generation and cluster assignment.

DBSCAN (density-based spatial clustering of applications
with noise) is a density-based clustering algorithm proposed by
Ester et al. [40]. It identifies clusters as areas of high point density
separated by areas of low point density. The algorithm requires
two parameters: the radius 𝜖 and the minimum number of points
𝑀𝑖𝑛𝑃𝑡𝑠. A point is considered a core point if at least 𝑀𝑖𝑛𝑃𝑡𝑠
points fall within its 𝜖-neighborhood. A point reachable from a
core point is part of the same cluster. The algorithm distinguishes
between core points, border points, and noise, offering robustness
to outliers. Formally, the 𝜖-neighborhood of a point 𝑝 is defined
as 𝑁𝜖(𝑝) = {𝑞 ∈ 𝐷 ∣ 𝑑𝑖𝑠𝑡(𝑝, 𝑞) ≤ 𝜖}, and clustering proceeds by
expanding clusters from core points.

KMeans is one of themostwidely used partition-based clustering
algorithms, introduced by MacQueen [41]. It aims to partition
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𝑛 observations into 𝑘 clusters, where each observation belongs
to the cluster with the nearest mean, serving as a prototype
for that cluster. The algorithm starts by initializing 𝑘 centroids
randomly and iteratively updates them using the formula 𝜇𝑗 =

1|𝐶𝑗 |
∑

𝑥𝑖∈𝐶𝑗
𝑥𝑖 , where 𝐶𝑗 denotes the set of points in the 𝑗-th

cluster. The process repeats until convergence, typically when the
assignments no longer change or the centroids stabilize.

SpectralNet is a deep learning-based clustering method that
approximates spectral clustering using a neural network, pro-
posed by Shaham et al. [42]. It embeds data into a lower-
dimensional space while maintaining the spectral properties of
the graph Laplacian. The loss is based on the normalized cut,
and the network is trained to produce orthonormal outputs via
an orthogonality constraint: 𝑌𝑇𝑌 = 𝐼. The similarity matrix 𝑊
is constructed from input data using k-nearest neighbors and
Gaussian kernels. SpectralNet avoids eigen decomposition by
training a neural network to mimic the spectral embedding.

Deep agglomerative clustering (DAC) is a deep clustering
model introduced by Yang et al. [43] that uses a convolutional
neural network to map inputs to embeddings and performs
agglomerative clustering jointly during training. Initially, each
sample is treated as a singleton cluster, and during training, the
closest pair of clusters is merged based on cosine similarity or
Euclidean distance of embeddings. The loss function integrates
clustering constraints and feature discrimination objectives to
guide the network in learning clustering-friendly representations.

Deep autoencoder-based mixture clustering (DAMIC) is
a hybrid model that integrates the autoencoder with mixture
models. It jointly learns feature representations and performs
clustering by optimizing a composite loss that combines the
reconstruction loss from the autoencoder with likelihood maxi-
mization for the mixture model in the latent space. Let 𝑧 = 𝑓(𝑥)
be the encoding, and 𝐷𝐴𝑀𝐼𝐶 = 𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 + 𝑚𝑖𝑥𝑡𝑢𝑟𝑒, where𝑚𝑖𝑥𝑡𝑢𝑟𝑒 maximizes the log-likelihood of the mixture model
assuming 𝑧 ∼

∑
𝑘 𝜋𝑘 (𝜇𝑘, Σ𝑘) [44].

2.2.4 Location Prediction Techniques

Location prediction is a vital problem in wireless communication
systems, where the goal is to estimate a user equipment’s
(UE’s) position using available environmental, signal, or network
features. Both classical machine learning methods and advanced
deep learning approaches have been effectively applied to this
task. In the following sections, we describe several prominent
models used for location prediction, detailing the underlying
algorithms with inline formulas and their practical implementa-
tions.

Bidirectional Long Short-Term Memory (BLSTM): BLSTM
networks are a variant of recurrent neural networks that incor-
porate both forward and backward passes to capture past and
future contexts in a sequence. Algorithm: In a BLSTM, the input
sequence 𝑥 = {𝑥1, 𝑥2, . . . , 𝑥𝑇} is processed simultaneously by a
forward LSTM that computes hidden states ⃖⃗ℎ𝑡 for 𝑡 = 1 to 𝑇 and
a backward LSTM that computes ⃖⃖ℎ𝑡 for 𝑡 = 𝑇 down to 1. The final
hidden state at each time step is obtained by concatenating these

two sequences, that is, ℎ𝑡 = [⃖⃗ℎ𝑡; ⃖⃖ℎ𝑡], and these representations are
fed into one or more fully connected layers with a mean squared
error (MSE) loss function for training [45, 46].

Temporal Convolutional Networks (TCN): TCNs offer an
alternative to RNNs by applying causal 1D convolutions with
increasing dilation factors to capture long-range dependencies in
sequential data. Algorithm: A TCN processes an input sequence
by convolving it with filters while preserving causality; that is, the
prediction at time 𝑡 depends only on inputs at time 𝑡 and earlier.
With an exponentially increasing dilation factor 𝑑, the receptive
field grows as 𝑑𝑙 (where 𝑙 is the layer index). Residual connections
are used to ease the training of deep networks [47].

Convolutional Neural Networks (CNN): Although primar-
ily used for image data, CNNs have been adapted for one-
dimensional data in location prediction. Algorithm: In a 1D CNN,
input features (such as RSSI measurements) are convolved with
a set of learnable filters. Each convolution operation is expressed
as 𝑦 = 𝜎(𝑊 ∗ 𝑥 + 𝑏), where 𝑊 denotes the filter weights, ∗ the
convolution operator, 𝑏 the bias, and 𝜎 a non-linear activation
function. This process extracts hierarchical spatial features from
the input [46].

Transformer Networks: Transformer models utilize self-
attention mechanisms to weigh the importance of different parts
of the input sequence without relying on recurrence. Algorithm:
The core component is themulti-head attentionmechanism com-
puted as Attention(𝑄, 𝐾, 𝑉) = softmax((𝑄𝐾𝑇)∕

√
𝑑𝑘)𝑉, where 𝑄,

𝐾, and 𝑉 are the query, key, and value matrices, respectively, and
𝑑𝑘 is the dimensionality of the keys. This attention mechanism is
applied in parallel acrossmultiple heads, and the resulting vectors
are concatenated and passed through feed-forward layers with
residual connections and layer normalization [48].

Multilayer Perceptrons (MLP): MLPs are a simple yet effective
baseline for regression tasks. Algorithm: An MLP consists of
several fully connected layers where each layer operates 𝑦 =
𝜎(𝑊𝑥 + 𝑏), with 𝑊 as the weight matrix, 𝑏 the bias vector, and
𝜎 a non-linear activation function. The network is trained using
backpropagation tominimize theMSE between the predicted and
actual positions [49].

Graph Neural Networks (GNNs): GNNs, particularly graph
convolutional networks (GCNs), are designed to process graph-
structured data. Algorithm: In a GCN, each feature vector is
considered as a node, and the relationships among nodes are
encoded in an adjacency matrix 𝐴. The update rule for a GCN
layer is given by:

𝐻(𝑙+1) = 𝜎
(
𝐷̃−1∕2𝐴̃𝐷̃−1∕2𝐻(𝑙)𝑊(𝑙)

)
, (4)

where 𝐻(𝑙+1) is the matrix of node features at layer 𝑙 + 1, 𝜎(⋅) is
an activation function, 𝐴̃ = 𝐴 + 𝐼 is the adjacency matrix of the
graphwith added self-loops, 𝐷̃ is the corresponding degreematrix
for 𝐴̃, 𝐻(𝑙) is the input feature matrix at layer 𝑙, and 𝑊(𝑙) is the
weight matrix for layer 𝑙. After several such layers, global pooling
and fully connected layers produce the final location estimate
[50].

12 of 37 IET Communications, 2025

 17518636, 2025, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cm

u2.70096 by U
niversity O

f L
ancashire, W

iley O
nline L

ibrary on [14/10/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Support Vector Regressor (SVR): SVR applies a kernel-based
method to regression by finding a function𝑓(𝑥) that deviates from
the actual target by no more than a predefined threshold 𝜖. SVR
solves the optimization problem (as shown in Equation 5):

min𝑤,𝑏
1
2
‖𝑤‖2 subject to |𝑦𝑖 − 𝑤𝑇𝜙(𝑥𝑖) − 𝑏| ≤ 𝜖, (5)

where 𝑤 and 𝑏 are the model parameters to be optimized, 𝜙(𝑥𝑖)
maps the input feature vector 𝑥𝑖 into a high-dimensional space, 𝑦𝑖

is the target value, and 𝜖 is amargin of tolerancewhere no penalty
is incurred for errors. The kernel trick is used to handle non-linear
relationships [51].

RandomForest: RandomForest is an ensemble learningmethod
that aggregates the predictions of multiple decision trees. Algo-
rithm: Each tree is trained on a bootstrapped subset of the
data with a random subset of features. For regression, the final
prediction is the average of the outputs from all trees, which helps
to reduce variance and improve robustness [52].

K-Nearest Neighbors (KNN): KNN regression predicts the
location by averaging the positions of the 𝑘 nearest neighbors
in the feature space. Algorithm: For a test sample, the Euclidean
distances to all training samples are computed. The 𝑘 samples
with the smallest distances are selected, and their average is taken
as the predicted location. Thismethod is based on the assumption
that samples that are close in the feature space are likely to have
similar positions [53].

In summary, these diverse approaches—from sequential models
like BLSTM and TCN to spatial models such as CNNs and
graph-based models like GNNs, along with classical methods like
SVR, Random Forest, and KNN—offer a wide range of tools for
location prediction. The choice of algorithm depends on the data
characteristics and the environmental complexities encountered
in modern wireless networks.

3 System Architecture and Problem Definition

This section provides a concise overview of our cell-free 6G
D2D architecture and the associated optimization problem. We
outline the system entities and interfaces (BSs, UEs, and cluster-
head APs), the BS broadcasts that supply the shared state tuple
(, 𝜃, 𝑠), which contains the BS locations 𝐵, clustering model
parameters 𝜃, and a synchronization seed 𝑠; meanwhile, the UE-
location set 𝑋 is locally aggregated by each UE’s BDIx agent from
LTE ProSe reports, the decentralized and deterministic clustering
executed by BDIx agents, the AP self-election and UE association
policy, the propagation/interference assumptions, and the hybrid
localization pipeline that feeds resource control. We then for-
malize the objective—maximizing energy-efficient throughput
under connectivity and range constraints—culminating in the
architecture of Figure 2 and the optimization in Equation (6).

3.1 System Architecture

The emergence of 6G wireless networks significantly enhances
device-to-device (D2D) communications by enabling ultra-

FIGURE 2 Cell-free system architecture for decentralized D2D
communication using BDIx agents.

reliable, low-latency, and high-throughput connections. In a
cell-free environment, traditional cell boundaries are eliminated
and a large number of distributed access points (APs) work coop-
eratively to serve all users. This paradigm addresses issues such
as cell-edge degradation and inter-cell interference, resulting in
more uniform service quality and enhanced spectral efficiency
[19, 20].

We consider a cell-free 6G network comprising 7 macro base
stations (BSs) equipped with massive MIMO technology and
a dense set of User Equipments (UEs). Each UE transmits
its coordinates (IMSI,PosX,PosY) using LTE ProSe (Proximity
Services) [54, 55], which facilitates proximity-based data sharing.
This location information is locally aggregated by the BDIx agents
at each UE into the set 𝑋; the BSs do not need to centrally
aggregate UE locations. Based on this data, UEs are clustered and
some are dynamically elected as APs. However, the joint problem
of UE clustering and AP selection is challenging due to the high
density and dynamic nature of the network, where suboptimal
choices can degrade connectivity, increase interference, and lead
to inefficient resource allocation. (Note: the BS never learns
or aggregates 𝑋; it only broadcasts (, 𝜃, 𝑠), preserving full
decentralization and privacy of UE-collected proximity data.)

To overcome these limitations, we propose a decentralized
approach where each UE is equipped with an enhanced BDIx
agent [19]. In our cell-free environment, every UE’s BDIx agent
autonomously executes a deterministic clustering procedure on
the UE-location set 𝑋 that it assembles via LTE ProSe, using
common parameters 𝜃 and a synchronization seed 𝑠 received
via the BS broadcast (, 𝜃, 𝑠). This ensures that all devices
derive identical cluster partitions without the BS needing to
compute the cluster assignments itself or track AP roles. The BS
disseminates only (, 𝜃, 𝑠) (and thus never aggregates or learns
𝑋), remaining oblivious to the resulting cluster structure and
preserving a decentralized operational model. A hybrid decision-
making framework, integrating fuzzy logic with sophisticated
machine learning (ML)models (e.g., ANFIS, RandomForest, and
support vector machines), is deployed within each agent’s Plan
Library. This integration significantly enhances decision accu-
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racy, computational efficiency, and adaptability to the dynamic
nature of 6G networks (as shown in papers [19, 20]).

Instantiation (ours). In our implementation, the deterministic
clustering function𝑀(⋅) is a GMM trained by EM (seeded by the
broadcast 𝑠) with full covariances. The number of components 𝐾
is selected on 𝑋 via the Bayesian Information Criterion (BIC),
BIC = −2 log(Θ̂ |𝑋) + 𝑝 log𝑁, and the fitted componentmeans
{𝜇𝑘}

𝐾
𝑘=1 (cf. Equation 1) define cluster centers. AP election is then

deterministic: in each cluster 𝑘, the UE whose position is closest
to 𝜇𝑘 becomes the AP; ties are broken by a stable pseudonymous
ID (salted hash of IMSI).

Deterministic canonicalization. After EM converges, components
are sorted lexicographically by (𝜇𝑥, 𝜇𝑦) and then by tr(Σ). Within
each cluster, the AP is the UE minimizing ‖𝐮𝑖 − 𝜇𝑘‖2; ties use a
stable pseudonymous ID (salted hash), not IMSI.

In our model, the entities and interfaces comprise UEs with
BDIx agents performing local clustering, AP self-election, and
link selection; APs (cluster-head UEs) providing intra-clusterWi-
Fi Direct access and backhauling to the nearest BS; and BSs
that broadcast the tuple (, 𝜃, 𝑠)—containing the BS positions ,
clustering parameters, and a seed—and furnish LTE backhaul;
we assume all UEs receive the same (, 𝜃, 𝑠), that a UE within
100m of its cluster AP associates via Wi-Fi Direct otherwise
via LTE to the nearest BS, and that propagation follows large-
scale path loss with Rician small-scale fading with co-channel
interference unless stated; the workflow is: the BS broadcasts
(, 𝜃, 𝑠), each UE (already holding 𝑋 from LTE ProSe) runs
clustering and elects the UE nearest the cluster centroid as AP,
UEs associate via Wi-Fi Direct (≤100 m) or LTE, metrics (SINR,
rate, power) are computed, and a hybrid localization module
(centroid/differential-circles/multilateration with DL regressors)
refines AP positions for resource control.

The proposed architecture (illustrated in Figure 2) operates
entirely in a cell-free setting and comprises four primary compo-
nents:

∙ Central Controller & Base Stations (BSs): The central
controller initializes and coordinates the network by dis-
seminating parameters such as BS positions , clustering
configurations, and synchronization seeds in the broadcast
tuple (, 𝜃, 𝑠). Our network features 7 BSs that provide high-
capacity backhaul links (e.g., via LTE with massive MIMO)
but do not confine UEs within fixed cell boundaries.

∙ LTE ProSe Services: Each UE continuously transmits its
coordinates and other signal metrics using LTE ProSe,
enabling proximity-based communication and serving as a
key input for both clustering and localization tasks. UEs
aggregate this data during an epoch of duration 𝑇epoch;
clustering/election runs at the barrier so every UE uses the
same location snapshot 𝑋. Late joiners defer to the next
epoch.

∙ User Equipment (UE) with Embedded BDIx Agents:
Each UE independently executes a deterministic clustering
algorithm based solely on its spatial coordinates (collected
via LTE ProSe into 𝑋; only 𝜃 and 𝑠 are received via the

BS broadcast (, 𝜃, 𝑠)). In our cell-free design, the clustering
results are identical across all UEs, and those closest to
their cluster centroids are dynamically elected as APs. The
simultaneous challenge of clustering UEs and accurately
selecting APs is critical; any misselection could negatively
impact network performance.

∙ Distributed Clustering, Connectivity, and Localization:
In this architecture, the elected APs broadcast their status
to nearby UEs via Wi-Fi Direct for intra-cluster connectivity,
while UEs beyond a 100-meter range connect directly to the
BSs. Moreover, accurate localization of the APs is critical for
optimal resource allocation and interferencemanagement. To
address this localization problem, our system incorporates
a hybrid framework that combines geometry-based methods
(e.g., centroid estimation, differential circles, and multilat-
eration) with advanced deep learning regression models
(e.g., MLP, CNN, TCN, and BLSTM) to achieve sub-meter
accuracy. The precise AP locations, refined using both LTE
ProSe data and signal measurements, are then leveraged by
BDIx agents to improve clustering and connectivity decisions
continuously.

This design is novel in its ability to guarantee deterministic
cluster agreementwithout centralized processing ofUE locations,
integrating AP election and association into a single agent loop.
It enables scalable, adaptive resource management through con-
tinuous feedback among beliefs, desires, intentions, and plans,
maintaining high performance in ultra-dense wireless networks.
Unlike prior cell-free designs, our framework (i) guarantees deter-
ministic cluster agreement across UEs without the BS computing
cluster assignments; (ii) integrates AP election and connection
rule into a single agent loop; and (iii) couples clustering with
a lightweight localization pipeline that improves interference
management and energy efficiency.

3.2 Problem Definition and Formulation

The central problem addressed in this work is the optimal con-
figuration of the decentralized D2D network. Given the positions
of all UEs, the BDIx agents autonomously perform clustering
and AP election. The subsequent challenge is to formalize the
network’s overall objective, which involves a fundamental trade-
off between maximizing the total data throughput for all users
and minimizing the total power consumption required to sustain
their connections. This translates to an optimization problem
where we jointly manage AP roles and UE associations to
enhance energy efficiency, subject to connectivity constraints
dictated by the system’s architecture, such as the limited range
of D2D links.

We formally define the objective as maximizing the network’s
energy-efficient throughput. Let  be the set of UEs with
positions 𝐮𝑖 ∈ ℝ2 and  be the set of BSs with positions 𝐛𝑗 . The
decision variables are: 𝑎𝑖 ∈ {0, 1}, indicating if UE 𝑖 is an AP;
𝑥𝑖𝓁 ∈ {0, 1}, indicating if UE 𝑖 is served by AP 𝓁; and 𝑦𝑖𝑗 ∈ {0, 1},
indicating if UE 𝑖 is served by BS 𝑗. Let 𝑅𝑖(⋅) be the achievable
rate for UE 𝑖 under Rician fading and co-channel interference,
and let 𝑃𝑖(⋅) be its transmit power. The optimization problem is
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formulated as (shown in Equation 6):

max
{𝑎,𝑥,𝑦}

∑
𝑖∈

𝑅𝑖 − 𝜆
∑
𝑖∈

𝑃𝑖

s.t.
∑
𝓁∈

𝑥𝑖𝓁 +
∑
𝑗∈

𝑦𝑖𝑗 = 1, ∀𝑖 ∈  ,

𝑥𝑖𝓁 ≤ 𝑎𝓁, ∀𝑖, 𝓁 ∈  ,

‖𝐮𝑖 − 𝐮𝓁‖ ≤ 100m, ∀𝑖, 𝓁 ∈  with 𝑥𝑖𝓁 = 1,∑
𝓁∈

𝑎𝓁 = 𝐾AP,

𝑎𝓁, 𝑥𝑖𝓁, 𝑦𝑖𝑗 ∈ {0, 1} .

(6)

Here, 𝜆 is a weighting factor for power consumption, and 𝐾AP
is the total number of clusters determined by the deterministic
clustering algorithm. The first constraint ensures each UE has
exactly one connection. The second constraint enforces that a
UE can only connect to an AP if that UE has been elected as
one. The third constraint models the 100 m range limit for Wi-
Fi Direct. The achievable rate is 𝑅𝑖 = 𝐵 log2(1 + SINR𝑖), where
𝐵 is the bandwidth. The BDIx agent’s decentralized clustering
and AP election mechanism effectively determines the values of
𝑎𝓁 and 𝐾AP, while the association variables (𝑥, 𝑦) are set by the
distance-based connection rule. It is important to note that the
localization of Access Points (APs) in a cell-free 6G architecture
is a two-fold problem. The first fold is the initial acquisition
of coarse-grained position data, where all UEs broadcast their
GPS-enabled coordinates via LTE ProSe. This information serves
as the primary input (𝑋) for the decentralized clustering and
AP election process. The second fold involves high-precision
position identification, because the BS does not have to know
the APs selected. This is a deliberate architectural choice to keep
our approach decentralized and allow the APs to be autonomous
in handling dynamic information and improving QoS without
direct BS intervention. Once a UE is elected as an AP, its exact
location becomes critical for network optimization. Therefore,
our system employs a hybrid localizationmodule to identify these
AP positions to sub-meter accuracy. This identification data is
essential for dynamic resource allocation, precise interference
management, and ensuring consistent quality of service (QoS),
forming a crucial feedback loop for the BDIx agents’ decision-
making. In particular, we assess QoS fairness using Jain’s fairness
index (JFI), computed over the per-UE data-rate vector after
association and scheduling, following recent practice in wire-
less resource-allocation studies [56]. Values closer to 1 indicate
more equitable service across UEs, while lower values reveal
allocation disparities.

4 Methodology

This section provides a comprehensive overview of the pro-
posed methodology, which is divided into two major stages:
(1) clustering and access point (AP) creation, and (2) local-
ization. Each stage involves detailed processes, including syn-
thetic dataset generation, spatial feature engineering, algorithm
selection (encompassing both classical and deep learning-based
methods), model training, hyperparameter optimization, and
integration strategies. The methodology is designed to operate

within a distributed, agent-based architecture using BDIx agents,
allowing autonomous clustering and access point selection. Rig-
orous experimental evaluations validate the effectiveness of the
approach, ensuring robust clustering performance and accurate
UE localization across diverse wireless network scenarios.

4.1 Clustering and AP Creation

This subsection focuses on generating logical clusters of user
equipments (UEs) and determining optimal access point (AP)
placements, forming a structured cell-free network. Throughout
this paper, our default clustering method is the GMM trained
by EM with shared seed 𝑠 for determinism. The number of
components 𝐾 is chosen by Bayesian Information Criterion
(BIC):

BIC = − 2 log(Θ̂ |𝑋) + 𝑝 log𝑁,

where Θ̂ are the MLE parameters, 𝑝 is the number of free
parameters, and𝑁 is the number of UEs. We use full covariances
unless stated otherwise.

4.1.1 Dataset Generation for Clustering

The clustering dataset is synthetically generated to emulate
realistic urbanwireless environments.User equipments (UEs) are
randomly placedwithin a simulated urban scenario. UE positions
are generated uniformly in a 2D plane within a 1000×1000 m
hexagonal cellular grid structure (one central base station—
BS0—and six neighboring base stations arranged hexagonally).
UE coordinates are initially learned via LTE proximity service
exchanges [57, 58]. Leveraging existing LTE proximity services,
the UEs start broadcasting messages with location information;
after each UE has read all messages, it begins to compute the
signal metrics as described below.

For each UE, link-level metrics against multiple base stations
(BSs) are computed using standardized wireless propagation
models derived fromLTE specifications, including antenna gains,
transmission power, path-loss exponent, and noise floor char-
acteristics [59, 60]. To generate realistic link-level features for
clustering, we model signal propagation in six sequential stages:
starting from large-scale path loss, then applying small-scale fad-
ing, adding thermal noise, computing the received signal strength
indicator (RSSI), deriving signal-to-interference-plus-noise ratio
(SINR) and achievable data rates (Mbps), and finally estimating
UE power consumption (dBm). Signal metrics, such as RSSI,
data rates, and power consumption, build on each previous stage
to ensure that clustering algorithms receive metrics reflecting
actual urban wireless conditions. For each UE, several wireless
communication metrics are computed using standard LTE-based
propagation models:

∙ Friis Path Loss [61]

𝑃(PL)
𝑟 (𝑑) = 𝑃𝑡 + 𝐺𝑡 + 𝐺𝑟 − 20 log10

(
4𝜋 𝑑
𝜆

)
, (7)
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where 𝑃(PL)
𝑟 (𝑑) is the received power (dBm) due to free-

space path loss at distance 𝑑, 𝑃𝑡 is the transmit power
(dBm), 𝐺𝑡 and 𝐺𝑟 are the transmit and receive antenna gains
(dBi), respectively, and 𝜆 is the carrier wavelength (m). This
equation models large-scale attenuation of a signal traveling
through unobstructed space by summing all transmit/receive
gains and subtracting the geometric spreading loss. It provides
the baseline received power, which is then modified by small-
scale fading and noise models to generate realistic RSSI and
SINR values used for clustering.

∙ Rician Fading Model [62] with linear 𝐾RIC-factor:

ℎ =

√
𝐾RIC

𝐾RIC + 1
ℎLOS +

√
1

𝐾RIC + 1
ℎNLOS,

𝑃𝑟(𝑑) = 𝑃(PL)
𝑟 (𝑑) + 20 log10 |ℎ|. (8)

Here 𝐾RIC is the (linear) power ratio between the LOS
and scattered components. We sweep 𝐾RIC,dB ∈ {0, 3, 6, 10}
(converted to linear where used). Where the channel gain ℎ
is composed of a deterministic line-of-sight (LOS) component
ℎLOS and a scattered non-line-of-sight (NLOS) component
ℎNLOS (a zero-mean complex Gaussian variable). The Rician
K-factor (dB) is the ratio of power in the LOS component
to the NLOS component, and 𝑃𝑟(𝑑) is the final received
power (dBm) after fading. This model is more practical
for cell-free networks, which often feature a mix of LOS
and NLOS paths to various APs [63]. The term 20 log10 |ℎ|
captures the resulting signal fluctuation. NLoS modeling
& robustness. Channel: We model NLoS via Equation (8);
letting 𝐾RIC→0 yields Rayleigh (pure NLoS). We optionally
include log–normal shadowing on large–scale loss to cap-
ture urban blockage, 𝑃(PL+SH)

𝑟 (𝑑) = 𝑃(PL)
𝑟 (𝑑) − 𝑋𝜎, with 𝑋𝜎 ∼ (0, 𝜎2) (dB). Control: Deterministic clustering/AP election

depend only on𝑋 and common (𝜃, 𝑠) (not instantaneous CSI),
so deterministic agreement (Equation 15) is unaffected by
NLoS. Association and KPI coupling use SINR (Equations 9–
11) and the range rule (Equation 14), which naturally reflect
LoS/NLoS conditions. Localization: To reduce NLoS bias we
use robust multilateration with residual-based weights 𝑤𝑖 =[
1 + (𝑟𝑖∕𝜏)

2
]−1

and gate outliers before MLP regression; the
MLP is trained with NLoS-augmented features so accuracy
degrades gracefully as 𝐾RIC decreases.

∙ Additive White Gaussian Noise (AWGN) [64]

𝑃noise = 10 log10(𝑘𝐵 𝑇 𝐵) +𝑁fig, (9)

where 𝑃noise is the total noise floor (dBm), 𝑘𝐵 is Boltzmann’s
constant (1.38 × 10−23 J/K), 𝑇 is the system temperature (K),
𝐵 is the receiver bandwidth (Hz), and 𝑁fig is the receiver
noise figure (dB). This constant noise level is independent of
distance and forms the baseline for thermal and hardware-
induced noise.

∙ Received Signal Strength Indicator (RSSI)

RSSI(𝑑) = 10 log10(10
𝑃𝑟(𝑑)∕10 + 10𝑃noise∕10). (10)

where RSSI (dBm) is the total power measured by the UE,
combining the linear powers of the faded signal 𝑃𝑟(𝑑) and

the noise floor 𝑃noise. RSSI reflects propagation loss, multipath
fading, and thermal noise in one metric, and is used by UEs
for AP selection and clustering.

∙ Signal-to-Interference-Plus-Noise Ratio (SINR) & Data
Rate [65]

SINR(𝑑) = 10𝑃𝑟(𝑑)∕10

10𝑃noise∕10 + 10𝑃interf∕10
,

𝑅(𝑑) = 𝐵 log2

(
1 + SINR(𝑑)

)
.

(11)

Units. We report throughput in Mbps as 𝑅Mbps =
(𝐵∕106) log2(1 + SINR), while Equation (11) defines 𝑅(𝑑) =
𝐵 log2(1 + SINR) in bit/s. Interference. The total interference
power is given by 𝑃interf = 10 log10

(∑
𝑘∈ 10𝑃𝑟,𝑘∕10

)
, where

the set  includes same-channel LTE and/or Wi-Fi Direct
interferers (summed in linear power). Here, 𝑃interf (dBm)
captures co-channel interference from other UEs or BSs,
and 𝑅(𝑑) is the theoretical maximum throughput (Mbps)
given by the Shannon-Hartley theorem. The resulting SINR
determines the achievable throughput, guiding clustering by
indicating which UEs can sustain higher data rates.

∙ PathLossProxy (dB)

𝑃consumption(𝑑) ≈ 𝑃𝑡 − 𝑃𝑟(𝑑), (12)

where 𝑃consumption(𝑑) (dB) approximates the energy needed
to achieve the received power 𝑃𝑟(𝑑) relative to the transmit
power 𝑃𝑡 . The larger the gap between 𝑃𝑡 and 𝑃𝑟(𝑑), the more
energy is expended overcoming path loss and fading, helping
clusters optimize for energy efficiency.

∙ Channel Quality Indicator (CQI) [66]

CQI(𝑑) = 𝑓
(
SINR(𝑑)

)
, (13)

where 𝑓(⋅) is the 3GPP-defined piecewise mapping function
that converts the continuous SINR value to a discrete integer
CQI level. CQI informs scheduling and modulation schemes,
and is included as a clustering feature to capture network-
recommended link reliability.

∙ Connection Type Selection Each UE first computes its
distance to all Wi-Fi Direct access points and to all macro BSs:

𝑑AP = min𝑖‖𝐮 − 𝐚𝑖‖, 𝑑BS = min𝑗‖𝐮 − 𝐛𝑗‖, (14)

where 𝐮 is the UE’s 2D position vector, 𝐚𝑖 is the position of
the 𝑖-th AP, and 𝐛𝑗 is the position of the 𝑗-th BS. Then the UE
applies the rule:
Association. If 𝑑AP ≤ 100m and SINRAP ≥ 𝜏SINR, connect to
AP; else connect to nearest BS. (We choose a fixed SINR
threshold 𝜏SINR = 3 dB). This ensures UEs within 100 m of an
AP leverage high-rate, low-power Wi-Fi Direct links, while
those beyond AP range or with poor links fall back to the
strongest macrocell BS, preserving coverage and balancing
network load.

Each UE repeats these computations against all BSs and can-
didate cluster heads. The resulting feature vectors (RSSI, data
rate, power consumption, CQI, etc.) for each UE form the
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TABLE 3 Input features to the clustering model.

Feature Description

PosX, PosY UE’s 2D coordinates (in meters)

TABLE 4 Output of the clustering model.

Feature Description

ConnectedClusterID Cluster ID assigned to each UE
ClusterHeadPosX,
ClusterHeadPosY

Coordinates of the centroid or
cluster head

input to clustering algorithms (KMeans, DBSCAN, Autoen-
coder, ClusterGAN, etc.) and are stored in CSV/Excel for
analysis.

4.1.1.1 Input Features to the Model. Only the spatial
coordinates of UEs are provided as input to the machine learning
clustering model. More specifically, these coordinates are made
available to each UE (but not to the base stations or telecom
provider)2 through LTE proximity services, so the UEs have
GPS and share their coordinates but for the APs we need to do
localisation to identify the for the reasons shown at Section 3.
Specifically, when a UE joins the network, it broadcasts messages
containing its IMSI and current coordinates to nearby UEs. The
receivingUEs thereby learn each other’s spatial positions without
requiring the base stations or the telecom provider to have direct
knowledge of these coordinates (Table 3 shows the input features
to the clustering model).

4.1.1.2 Output of the Clustering Model. The model pre-
dicts which cluster each UE belongs to and identifies the
cluster center (centroid), typically mapped to the closest UE
(cluster head) (Table 4 shows the outputs of the clustering
model).

4.1.1.3 DerivedFeatures (Post-Clustering) tobeUsedBy
Localization. Once clustering is complete, additional metrics
are generated based on access point (AP) selection, wireless link
quality, and device association decisions (Table 5).

Overall, this generated dataset serves as the foundation for
evaluating and comparing clustering algorithms under realistic
wireless network conditions. By simulating both direct and
indirect connections (e.g., via cluster heads using Wi-Fi Direct),
the dataset enables analysis of load distribution, spectral effi-
ciency, andpower consumption in denseUE scenarios. Therefore,
extensive feature engineering transforms raw positional data into
spatially meaningful inputs. Since clustering is performed solely
on UE coordinates, only (𝑃𝑜𝑠𝑋, 𝑃𝑜𝑠𝑌) are used as inputs to the
clustering model. After clustering, additional metrics such as
data rates, power consumption, and CQI values are calculated
based on the spatial distances between UEs, APs (cluster heads),
and base stations (BSs). These post-clustering features are crucial
for evaluating network performance, but they are not directly
involved in the clustering process itself.

TABLE 5 Derived features based on AP selection and connectivity.

Feature Description

DeviceID Unique ID for the UE
ConnectedBSID Closest or selected BS to

which the UE is
connected

ConnectedTo Indicates if UE is
connected via Wi-Fi
Direct or regular BS

IsClusterHead Boolean flag indicating if
UE is a cluster head

DataRate(Mbps) Effective data rate
achieved based on
selected connection

ConnectionType Type of link: “Wi-Fi
Direct” or “Regular BS”

DistanceToBaseStation_
BS_i, CQI_BS_i,
DataRate(Mbps)_BS_i,
PowerConsumption(dB)_BS_i

Metrics calculated for
each BS (𝑖 = 0. . . 6)

DistanceToClusterHead_
AP_CI_j, CQI_AP_CI_j,
DataRate(Mbps)_
AP_CI_j,
PowerConsumption(dB)_AP_CI_j

Metrics calculated for
each cluster head

(𝑗 = 1. . .𝑁)

4.1.2 Clustering Techniques and Implementation with
BDIx Agents

Multiple clustering methods are utilized to group UEs based
on spatial proximity. Classical clustering techniques include
KMeans, DBSCAN, MeanShift, and Affinity Propagation [40,
67–69]. These techniques are well-known for their ability to
identify spatial patterns based on density, distance thresholds,
or affinity matrices. However, they are limited in handling
complex distributions, especially in dynamic environments with
high node variability. To address these limitations and improve
clustering accuracy, especially in non-linearly separable or
sparse environments, deep-learning-based clustering methods
are adopted. These include autoencoders, variational autoen-
coders (VAE), deep embedded clustering (DEC), andClusterGAN
[70–72]. These approaches transform spatial coordinates (i.e.,
(𝑃𝑜𝑠𝑋, 𝑃𝑜𝑠𝑌)) into latent representations via neural networks,
which are then used for robust clustering. These methods
enhance noise tolerance, uncover latent groupings, and improve
separability in complex environments.

For all machine learning approaches, the dataset is split into
70% for training and 30% for validation. To further ensure the
generalization ability of the models, a K-fold cross-validation
approach with 𝐾 = 10 is applied. This helps in evaluating the
models’ performance more reliably by training and testing them
across different subsets of the data.

Each clustering method is rigorously tuned using hyperparam-
eter optimization techniques. Metrics such as silhouette score,
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Davies–Bouldin index, and Calinski–Harabasz index are used as
objectives in GridSearchCV to ensure each clustering configu-
ration produces compact, well-separated, and balanced clusters
[73, 74]. All UEs are equipped with BDIx agents that are capable
of performing local clustering computations. The role of the
BDIx agents is not limited to perception and reasoning but
extends to local decision-making and communication within the
distributed system.

Upon network initialization, the central base station broadcasts
all devices’ clustering parameters. These include:

∙ BS positions , the selected clustering model, the clustering
hyperparameters 𝜃, and the fixed random seed 𝑠.

∙ Number of UEs under the base station.

∙ The selected clustering model and its type (e.g., DBSCAN,
KMeans).

∙ Fixed random seed to ensure determinism.

∙ Number of clusters (if required by the model).

∙ Any additional hyperparameters needed.

Moreover, each UE using LTE proximity services broadcasts its
location and its exact coordinates in the 2D space.

Upon receiving these parameters and the proximity services
messages from all the UEs, each UE independently invokes
the clustering algorithm through its BDIx agent. Due to the
deterministic nature of the algorithm and the synchronized
starting parameters, the output clustering results will be identical
across all devices. Thus, this methodology ensures:

∙ Decentralization: UEs operate independently with synchro-
nized results.

∙ Scalability: System scales to large networks without central-
ized bottlenecks.

∙ Reliability: AP selection and cluster assignments are consis-
tent across devices.

∙ Efficiency: Only UEs within Wi-Fi range connect via D2D;
others fallback to BSs.

4.1.2.1 Hyperparameter Identification and
Optimization Strategy. The identification of hyperparameters
in this framework follows a tightly controlled and reproducible
approach, guided by both algorithmic behavior and empirical
performance evaluation metrics. Each clustering algorithm,
whether classical (e.g., KMeans, DBSCAN, MeanShift, Affinity
Propagation) or deep-learning-based (e.g., Autoencoder, VAE,
DEC, ClusterGAN), has its own set of hyperparameters that
significantly influence clustering quality and AP distribution.
These hyperparameters are not arbitrarily assigned; instead,
they are derived through structured experimentation using
the GridSearchCV framework, which is implemented in the
code. The process begins by defining parameter grids specific to
each algorithm.

For example, in the case of KMeans, the number of clusters
𝑘 is swept across a predefined range, often based on heuristic

functions such as
√

𝑁∕2 where 𝑁 is the number of UEs. For
DBSCAN, the 𝜀 (epsilon) radius and the minimum number of
points required to form a dense region (minPts) are varied in
conjunction with the spatial distribution density observed from
the UE placement. Thus, for deep models such as autoencoders
or VAEs, latent dimension sizes, number of layers, and activation
functions are adjusted iteratively through internal validation.

Each candidate configuration is evaluated using internal valida-
tion metrics such as the silhouette score, Davies–Bouldin index,
andCalinski–Harabasz index, which are calculated automatically
for each run. These metrics serve as optimization objectives
within the grid search process, ensuring that selected hyperpa-
rameters yield the most compact and well-separated clusters.
Additionally, the code includes hooks to store intermediate clus-
tering results and their corresponding metrics for detailed offline
comparison.Hyperparameter tuning is carried out independently
for each clustering algorithm under fixed simulation conditions
(e.g., number of UEs, area size, random seed), thereby ensuring
consistency and isolating algorithm performance.

Once the optimal configuration is identified, it is reused across
different test scenarios for that algorithm, guaranteeing fairness
and repeatability in comparative analysis. This level of systematic
tuning ensures not only the best possible clustering outcome for
each approach but also aligns the clustering structure with real-
world constraints, such as coverage radius, AP density, and UE
mobility patterns.

4.1.2.2 Proof of Deterministic Clustering Agreement.
Let 𝑋 be the dataset representing UE positions, and 𝑀 be a
deterministic clustering algorithm with fixed parameters 𝜃 and
random seed 𝑠. Since𝑀(𝑋; 𝜃, 𝑠) is a pure function of its inputs, it
produces a unique and consistent output. When all UEs possess
the same 𝑋 (assembled via LTE ProSe) and the BS broadcasts
(𝜃, 𝑠) (with 𝐵 for backhaul/association), the clustering result is
the same on all devices:

∀𝑢𝑖, 𝑢𝑗 ∈ 𝑈𝐸𝑠, 𝑀𝑢𝑖
(𝑋; 𝜃, 𝑠) = 𝑀𝑢𝑗

(𝑋; 𝜃, 𝑠) (15)

where 𝑀𝑢𝑖
(𝑋; 𝜃, 𝑠) represents the execution of the clustering

algorithm 𝑀 on user equipment 𝑢𝑖 using the shared dataset 𝑋,
parameters 𝜃, and random seed 𝑠. Hence, every UE will compute
the same cluster IDs and centroids. This guarantees uniformity in
AP selection and cluster assignments across the network.

4.1.3 Detailed Methodology for BDIx-Based AP and BS
Association

After computing the clusters locally, each UE performs an intro-
spective check to determine whether it should act as the access
point (AP) of its assigned cluster. This is done by comparing its
own position to the centroid of the cluster. If the UE is the closest
to the centroid and is stationary (i.e., its velocity |𝐯𝑖| is below a
small threshold 𝑣th, e.g., 0.2 m/s), it self-elects as the AP.

Once elected, the UE assumes the AP role and broadcasts a
control message to the network, targeting all UEs in the same
cluster. This message includes:
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∙ ClusterID: The ID of the cluster.

∙ AP_Location: The (𝑃𝑜𝑠𝑋, 𝑃𝑜𝑠𝑌) coordinates of the elected
AP.

Each UE, upon receiving this message, performs two key
checks:

1. Whether the computed cluster ID matches the one in the
broadcast.

2. Whether the distance to the AP is within 100 meters (Wi-Fi
Direct threshold).

If both conditions are satisfied, the UE connects to the AP using
Wi-Fi Direct. Otherwise, the UE initiates a direct connection
to the closest BS using LTE with massive MIMO capabilities.
The AP connects to the nearest (or best-SINR) BS to form the
backhaul connection. Under mobility, each UE’s BDIx agent
continuously monitors its speed 𝑣𝑖(𝑡) and short-term data rate
𝑅𝑖(𝑡); if 𝑣𝑖(𝑡) > 𝜏𝑣 or 𝑅𝑖(𝑡) < 𝜏𝑅 for 𝑊 consecutive frames (per
DAIS in [75]), the transmission mode selection desire is promoted
to an intention: the UE re-scores candidate cluster APs and
fallback BSs using predicted rate, handover cost, and load, and—
subject to hysteresis (𝑇min, ΔdB)—may seamlessly re-associate to
sustain QoS and fairness.

4.1.3.1 Enhanced Distributed Clustering and Connec-
tion Algorithm. In a distributed cellular network, clustering
and connection management are essential for optimizing net-
work performance. The enhanced distributed clustering and
connection algorithm (Algorithm 1) manages UE clustering and
connectivity based on proximity, network conditions, and infras-
tructure availability. The algorithm begins with the base station
(BS) broadcasting key information to all user equipment (UEs),
including their positions, the clustering model, parameters, and
a seed for initialization. Each UE then runs the clustering
algorithm locally via its BDIx agent, computes the centroid of
its cluster, and elects itself as the access point (AP) if it is the
closest to the centroid. The elected AP broadcasts its Cluster ID
and location to other UEs.

Each UE, upon receiving the broadcast, either connects to the AP
if the distance is within 100meters or connects to the nearest base
station (BS) using LTE with massive MIMO. The UE computes
performance metrics for both connections, such as throughput,
SINR, and power. Each AP also connects to the nearest BS
for backhaul connectivity. Finally, the topology and connection
metrics are stored for analysis.

4.1.4 End-to-End Clustering and Cell-Free Formation
with BDIx Agents

The algorithm presented in Algorithm 2 outlines a fully dis-
tributed, intelligent pipeline enabling seamless clustering and
cell-free formation in next-generation networks using BDIx
agents. Initially, the base station (BS) generates the network
layout by assigning positions to user equipments (UEs) and
broadcasting configuration parameters. Then, for each specified
clustering technique (ranging from traditional approaches, such
as K-Means and DBSCAN, to deep learning-based methods,

ALGORITHM 1 BDIx-Based Clustering and Connectivity Evalua-
tion.

1: Set clustering model:= GMM
2: Base Station (BS) broadcasts ⟨BSs positions, clustering

model, parameters, seed⟩.
3: UE gathers all positions of the UEs through LTE ProSe
4: for each UE 𝑢𝑗 do
5: Run clustering algorithm locally via BDIx agent.
6: Identify cluster 𝐶𝑖 and calculate centroid.
7: if 𝑢𝑗 is the closest UE to the centroid and |𝐯𝑖| < 𝑣th

then
8: Elect self as AP of cluster 𝐶𝑖 .
9: Broadcast ⟨𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐼𝐷,𝐴𝑃_𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛⟩ to all UEs.
10: end if
11: end for
12: for each UE 𝑢𝑘 receiving a broadcast do
13: if cluster ID matches and distance to AP ≤ 100m then
14: Connect to AP via Wi-Fi Direct.
15: Compute Wi-Fi Direct metrics: throughput, CQI,

SINR, power.
16: else
17: Connect to the closest BS via LTE with massive

MIMO.
18: Compute LTE-based metrics.
19: end if
20: end for
21: for each AP do
22: Find and associate with the nearest BS.
23: end for
24: Store full topology and connection metrics.

including autoencoder and deep embedded clustering (DEC)),
each UE activates its embedded BDIx agent to perform local
clustering. Note that by integrating of BDIx agents into the
clustering and access procedure, we offer a novel approach to
autonomous, intelligent, and distributed network formation in
cell-free wireless architectures.

A UE closest to the centroid is self-elected as an access point
(AP) and broadcasts its status to nearby UEs. Neighboring UEs
that belong to the same cluster and lie within a 100-m radius
form ad hoc links using Wi-Fi Direct, minimizing reliance on
infrastructure. UEs that do not meet these conditions connect to
the nearest base station (BS) using LTE. Once the connections
are established, each UE computes essential network metrics
such as signal-to-interference-plus-noise ratio (SINR), data rate,
channel quality indicator (CQI), and power consumption. Elected
APs then form backhaul connections to the BS, completing the
cell-free architecture.

This approach ensures dynamic, energy-aware, and context-
sensitive network formation tailored to the device topology
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ALGORITHM 2 Full BDIx-Aware Cell-Free Network Formation.

1: Initialization: UEs share positions via LTE ProSe
(forming 𝑋); BS selects clustering model.

2: Set clustering model:= GMM; Set localization model:=
MLP

3: BS broadcasts initial parameters (, 𝜃, 𝑠) to all UEs.
4: for each clustering model in {KMeans, DBSCAN,

Autoencoder, DEC, etc.} do
5: for each UE do
6: BDIx agent executes clustering locally.
7: if UE is closest to the centroid then
8: Elect self as AP and broadcast the cluster

message.
9: end if
10: end for
11: for each UE receiving broadcast do
12: if same cluster and within 100m then
13: Connect to AP via Wi-Fi Direct.
14: else
15: Connect to the nearest BS using LTE.
16: end if
17: Compute SINR, data rate, CQI, and power.
18: end for
19: APs associate with their nearest BS.
20: Store the complete network configuration.
21: end for

and mobility, providing scalability and adaptability for diverse
deployment scenarios. The overall network configuration is
stored at each iteration, enabling performance evaluation and
optimization across different clustering paradigms. So, the com-
plete distributed system operation, integrating clustering, agent-
based AP selection, and network connection, is summarized in
Algorithm 2.

4.2 Localization

The localization stage aims to predict accurate UE positions
by employing supervised learning models trained on enhanced
datasets derived from the clustering results and signal measure-
ments.

4.2.1 Dataset Generation for Localization

The localization dataset is generated by aggregating the results
frommultiple simulation runs and various clustering approaches.
Thus, UEs’ APs records are selected from all approaches and
across all ranges and runs of the simulations, ensuring that the
dataset represents comprehensive spatial diversity and a wide
range of connectivity scenarios. The selected UEs originate from
the outcomes of both the clustering and connectivity stages,

capturing the complete spectrum of AP contributions without
relying on any specific enumerationmethod forAP identification.

The dataset construction begins with filtering the UEs’ records
that are candidates to become APs. Specifically, only UEs that
were confirmed to be Access Points and had valid cluster con-
nections, as determined during the clustering phase, are retained.
Records are further refined by eliminating entries with missing
or invalid BS connection identifiers and by restricting the dataset
to include only the relevant BSs within the designated range.
Any record containing Not Any (NaN)/null values after deriving
additional features is also excluded. This meticulous filtering
process ensures that the dataset is both robust and representative
of realistic connectivity behaviors.

The localization estimation process incorporates several methods
to accurately determine the UE positions while optimizing the
overall network power consumption. One method, referred to
as the centroid-based estimation, computes the geometric mean
of the coordinates of four carefully selected BSs: the connected
BS and the three BSs exhibiting the smallest inferred data-rate
distances. This approach provides a BS-driven position estimate
and includes the calculation of the Euclidean error between the
actual UE position and the computed centroid. Another method
employed is the differential circles-based position estimation. In
this approach, the BSs are conceptually divided into two groups.
The first group is formed by combining the connected BS with
the three nearest BSs (as determined by the inferred data-rate
distances), while the second group comprises the remaining BSs.
For each group, the minimum enclosing circle is computed using
theWelzl algorithm, and the centers of these circles are then used
to derive the estimated UE position by calculating the differential
offset between them. The error metric in this method is also the
Euclidean distance between the estimated and actual positions.

Non-linear multilateration is applied to further refine the UE
location. This method leverages the Levenberg–Marquardt algo-
rithm to performnon-linear regression on the estimated distances
between theUE andmultiple BSs. Variants of thismultilateration
approach utilize different sets of base stations (BSs) and distance
estimations, including those derived fromboth data rate inversion
and power consumption models. The final predicted position
minimizes the residual error between the squared differences of
the predicted distances and the actual distances to the BSs.

For each BS, two types of distance features are computed. One is
derived from the data rate using the inverted Shannon capacity
and Friis path-loss equations. At the same time, the other is
calculated from power measurements using a modified MIMO-
aware path-loss model. The actual Euclidean distances between
eachBS and theUE’s ground-truth coordinates are also calculated
and stored to serve as a benchmark for evaluating the accuracy of
the various localization methods.

The complete feature set encompasses not only the outputs of
these diverse localization methods but also the signal inversion-
based distance estimates and the connectivity information the
clustering process provides. This integrated approach ensures
that every AP, regardless of its range, contributes to a feature-
rich dataset suitable for training robust supervised learning
models.
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TABLE 6 Input features to the localization models.

Feature Description

CentroidX, CentroidY 1. Geometric mean of the
connected BS and the three
closest BSs (by data rate).

2. CentroidX = 1

4

∑
𝑥𝑖 ,

CentroidY = 1

4

∑
𝑦𝑖 .

CirclesPredX,
CirclesPredY

1. Position estimated via the
differential circles method.

2. Derived from the difference
between the centers of the
minimum enclosing circles
of two BS groups.

calculated_pos_x, y 1. Multilateration using all
BSs with distances
estimated from data rate
inversion.

2. Employs the
Levenberg–Marquardt
algorithm for non-linear
regression.

calculated_pos_pw_x,
y

1. Multilateration using all
BSs with distances derived
from a power attenuation
model.

calculated_pos_N_x, y 1. Position estimates using a
variable number
(𝑁 = 3, 4, 5, 6) of BSs.

2. Combines the connected
BS with the (𝑁 − 1) closest
BSs.

distance_dr_i,
distance_pw_i

1. Approximate distances to
each BS estimated from
data rate and power
metrics, respectively.

distance_pos_i 1. True Euclidean distance
from each BS to the UE:√

(𝑥𝑖 − 𝑥)2 + (𝑦𝑖 − 𝑦)2.
CentroidDistance,
CirclesDistance,
DistanceCalculated_N

1. Euclidean error metrics
between each method’s
predicted and actual UE
positions.

For your reference, the input features for the localization models
are detailed in Table 6. Moreover, Table 7 shows the target labels
(output features) of the localization models.

The final dataset, which integrates results from all clustering
approaches and encompasses the full range of AP contributions,
is used for training localization models and establishing baseline
performance. Standard evaluationmetrics such as mean absolute
error (MAE), rootmean squared error (RMSE),𝑅2, and Euclidean
distance errors are computed to assess the performance of the
centroid- and circles-based methods. The comprehensive and

TABLE 7 Target labels for localization.

Label Description

PosX, PosY Ground truth 2D coordinates of the UE
in the simulation space.

ALGORITHM 3 Localization Model Training and Optimization.

1: Load, preprocess, and split localization dataset.
2: Conduct advanced feature selection and normalization.
3: Optimize hyperparameters via RandomizedSearchCV

with cross-validation.
4: Train diverse localization models with early stopping.
5: Evaluate localization performance metrics on the test set.
6: Identify and select the best-performing model.

feature-rich dataset thus enables robust supervised learning ofUE
positions in realistic and diverse wireless environments.

4.2.2 Localization Models and Training

Localization models range from classical algorithms to advanced
neural networks. Traditional supervised regression models,
including Random Forest, support vector regression (SVR), and
K-nearest neighbors (KNN), serve as benchmarks for compari-
son. Advanced deep learning architectures such as bidirectional
LSTM, temporal convolutional networks (TCN), convolutional
neural networks (CNNs), transformer-based models, and graph
neural networks (GNNs) are thoroughly evaluated for their
capabilities in capturing spatial and sequential dependencies
effectively [46, 48, 76].

For all machine learning approaches, the dataset is split into
70% for training and 30% for validation. Models are trained
using early stopping techniques with a validation set, monitoring
performance metrics such as MSE, MAE, RMSE, mean absolute
percentage error (MAPE), and R-squared values. Early stopping
ensures optimal training, preventing overfitting, and preserving
generalizability. Hyperparameters are optimized systematically
through RandomizedSearchCV and GridSearchCV strategies,
extensively exploring parameters such as learning rates, number
of layers, hidden units, batch sizes, and regularization terms.
Cross-validation ensures robust hyperparameter selection that
minimizes validation errors and improves generalization [74].
Additionally, K-fold cross-validation with 𝐾 = 10 is employed
to provide a reliable performance evaluation [77] and to avoid
problems with overfitting and underfitting.

The localization training and optimization procedure is outlined
clearly in Algorithm 3.

Iterative integration strategies directly incorporate clustering
outcomes, such as cluster centroids and AP assignments, as
localization input features. This iterative refinement process
continuously updates localization inputs with spatial cluster-
ing insights, leading to progressively improved localization
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accuracy. The implemented pipeline reads the dataset from
a structured CSV file containing raw and engineered spa-
tial features. Input features include multiple multilateration
estimates (calculated_pos_x, calculated_pos_pw_x, etc.),
cluster-based centroids (CentroidX, CentroidY), and geomet-
ric circle predictions (CirclesPredX, CirclesPredY). These
features are normalized using Min-Max scaling, and the ground-
truth coordinates (PosX, PosY) are also scaled accordingly.

The feature selection process proceeds in four stages: (i) low-
variance thresholding removes uninformative features; (ii) uni-
variate selection uses F-statistics for regression to retain highly
correlated variables; (iii) tree-based feature selection applies
ExtraTreesRegressor to extract features based on learned
importance weights; and finally, (iv) forward sequential feature
selection incrementally builds a predictive feature set using
performance-based inclusion. Each selection strategy is applied
independently, and selected features are logged and reported
in the final CSV output for traceability. Input reshaping is
performed based on model type. Recurrent and convolutional
models (BLSTM, TCN, CNN, and transformer) reshape inputs
to 3D tensors of shape (𝑠𝑎𝑚𝑝𝑙𝑒𝑠, 1, 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠). Graph neural
networks reshape inputs into (𝑠𝑎𝑚𝑝𝑙𝑒𝑠, 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠, 1), where each
feature is treated as a node, and a batch-wise identity adjacency
matrix is created dynamically to represent independent graphs
per UE sample. Classical machine learning models (Random
Forest, SVR, KNN) and MLPs utilize standard 2D tabular inputs.

All deep models are constructed with multiple layers. BLSTM
models contain three stacked bidirectional LSTM layers, fol-
lowed by two dense layers with ReLU activations. TCN models
use stacked causal dilated convolutions with increasing filter
depth. CNN models employ three 1D convolutional layers with
a kernel size of 1 to maintain sequence resolution, followed by
flattening and dense layers. Transformer models utilize 4-head
self-attention, layer normalization, and dense projections. GNNs
use two spektralGCNConv layers and a global average pooling layer
followed by dense layers. Each model outputs two continuous
values corresponding to PosX and PosY, trained jointly using
MSE loss and the Adam optimizer. Early stopping is employed
to prevent overfitting, with the validation loss monitored using a
patience threshold of 5 epochs.

Evaluation is performed in two modes: joint prediction and
separate coordinate prediction. In joint mode, a single model
predicts both coordinates. In the individual mode, two parallel
models are trained and evaluated for PosX and PosY, respectively.
This allows the system to assess whether learning each axis
independently yields improved accuracy or better generalization.
Multiple evaluation metrics are calculated and recorded. These
include traditional metrics such as MSE, MAE, and RMSE, as
well as localization-specific metrics, including mean Euclidean
distance error (MeanDistanceError), maximum error distance,
and its standard deviation. Additionally, statistical metrics such
as 𝑅2, mean squared logarithmic error (MSLE), median absolute
error, and explained variance are calculated. Results are written
to CSV files for both joint and separate model runs, and extended
metrics are saved separately for post-analysis.

Finally, the pipeline includes an additional experiment using
a reduced subset of features. This is designed to test model

robustness when provided with minimal input, limited to only
three multilateration estimates and the circle-based predictions.
The entire training-evaluation pipeline is re-run under these
constraints, and results are separately saved for comparative
analysis. This setup enables insight into how different models
degrade or sustain performance under constrained conditions.

The complete modular design allows extension to additional
models or feature sources and supports experimentation under
varying feature subsets, clustering assumptions, and signal envi-
ronments. The end-to-end framework is fully reproducible and
well-suited for large-scale simulations and deployment in intel-
ligent BDIx-agent-based localization systems. For learning-based
localization, we adopt a compact MLP that maps the engineered
feature vector 𝐱 ∈ ℝ𝐷 to coordinates via

𝐩̂ = 𝑓MLP(𝐱; 𝜙) = 𝐖2 𝜎(𝐖1𝐱 + 𝐛1) + 𝐛2,

trained with MSE loss and early stopping. Unless otherwise
noted, all “ours” localization results are produced by this MLP.

4.3 Overall Flow of the Proposed Framework

Figure 3 summarizes the end-to-end workflow of the proposed
system. Initially, user equipments (UEs) broadcast their positions
using LTE proximity services (ProSe), fromwhich eachUE locally
assembles the common dataset 𝑋. A base station (BS) then
synchronizes all UEs by broadcasting (, 𝜃, 𝑠), that is, the BS
positions , the clustering parameters 𝜃, and a random seed 𝑠.
Each UE executes the same deterministic clustering locally on
𝑋 using (𝜃, 𝑠), ensuring identical cluster formations across the
network. Following clustering, each UE elects its cluster’s Access
Point (AP), defined as the UE closest to the cluster centroid.
Based on a 100-meter range check, UEs establish a connection
either via Wi-Fi Direct to their AP or via LTE to the nearest BS.
Finally, key performance metrics are computed and passed to a
localization pipeline, which combines geometric methods with
deep learning regressors to produce the final network KPIs and
position estimates.

4.3.1 Performance, Complexity and Signaling of Our
Framework

With our reference setup—GMM for clustering (full-covariance
EM, 𝐾 selected by BIC, seeded by 𝑠) and an MLP regressor
for localization—the BDIx-driven, fully decentralized framework
achieves up to +46.3% sum-rate gain and –32.8% total power
reduction versus the cellular baseline under identical conditions;
the hybrid localization reaches sub-meter accuracy (MeanDist
< 1 m, 𝑅2

> 0.999) within the same distributed control loop.
These improvements derive from deterministic clustering andAP
election executed locally from the minimal BS broadcast (, 𝜃, 𝑠),
a KPI-coupled association rule (cf. Equation 14), and hybrid local-
ization that closes the loop in the optimization of Equation (6).
Computationally, per-UE clustering costs are(𝑁𝐾𝐼) for iterative
mixture/centroid methods (e.g., KMeans, GMM), and on aver-
age (𝑁 log𝑁) for density/mode-seeking methods with spatial
indexing (e.g., DBSCAN, MeanShift); deep-clustering inference
is (𝑃) for 𝑃 parameters. Association/neighborhood queries via
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FIGURE 3 Overall flow of the proposed framework. The process
begins with synchronized data sharing, followed by local deterministic
clustering and access point (AP) election on each user device. A distance-
based rule then governs whether a UE connects via Wi-Fi Direct or LTE.
Finally, system metrics are calculated and fed into a localization pipeline
to generate network KPIs and position estimates.

KD-trees are(𝑁 log𝐾), MLP localization is effectively constant-
time per UE, and the BDIx loop adds only (1) overhead.
Signaling is likewise light: one (1) BS broadcast of (, 𝜃, 𝑠)
per epoch, (𝑁) ProSe peer messages for position sharing, and
(𝐾)AP notices—eliminating fronthaul for clustering—whereas
centralized schemes require (𝑁) uplink, (𝑁) downlink, and
a centralized compute bottleneck of at least (𝑁𝐾𝐼). Because
every UE runs the same deterministic pipeline, execution is

embarrassingly parallel and wall-clock per epoch is governed
by the maximum per-UE cost rather than a server, enabling
sub-second decision cycles on commodity hardware.

5 Simulation Results and Analysis

This section presents the simulation setup, key parameters, and
comprehensive performance analysis for a dense urban 6G cell-
free network. The simulation spans a 1000 × 1000 m area with
5600 UEs and seven base stations arranged in a hexagonal grid.
Parameters include communication via Wi-Fi Direct and LTE
(massive MIMO), as well as clustering based on user positions
(PosX, PosY). Metrics used for clustering evaluation include the
Silhouette Score, DBI, CHI, sum rate, power consumption, and
energy efficiency. Localization performance is assessed using
MeanDist, MaxDist, MSE, MAE, RMSE, R2, and other metrics.
Results demonstrate the superior performance of advanced ML-
based approaches over traditional methods in both AP clustering
and localization accuracy.

5.1 Simulation Environment and Hardware
Configuration

In our simulation, we have the following hardware implementa-
tion for simulation tasks:

∙ Processor: Intel Core i7-10700K with 8 cores and 16 threads,
clocked at 3.8 GHz.

∙ Memory: 32GB DDR4 RAM at 3200 MHz.

∙ Storage: 1TBNVMeSSDwith up to 3,500MB/s read and 3,300
MB/s write speed.

∙ Graphics: NVIDIA GeForce RTX 3070 with 8GB GDDR6
VRAM.

∙ Operating System: Windows 10 Pro 64-bit.

∙ Simulation Tools: ns-3 version 3.41, Python 3.8+, MATLAB
(for data analysis), and TensorFlow/Keras (for neural network
training).

∙ Simulation Environment: Local simulation environment
configured with the required dependencies (e.g., Python
libraries, ns-3 packages, CUDA forGPU acceleration) running
on aWindowsOSwithWSL 2 (Windows Subsystem for Linux)
to support Linux-based simulation tools.

∙ Network Model: Urban 6G network simulation with mas-
sive MIMO, LTE, and Wi-Fi Direct communication, employ-
ing clustering techniques like SOM, KMeans, and DBSCAN
for decentralized AP selection.

∙ Processing Power: The GPU (e.g., NVIDIA RTX 3090, 35.6
TFLOPS) accelerates neural network computations, espe-
cially for real-time clustering and model training tasks. The
CPU (e.g., AMD Ryzen 9 5950X, 0.6 TFLOPS) handles data
preprocessing, orchestration, and control logic in parallel.

Such a system is capable of efficiently training and deploy-
ing neural network models. The processor offers high-speed
computation, while the RAM ensures smooth multitasking and
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TABLE 8 Simulation configuration.

Parameter Value

Simulation area 1000 × 1000m

Number of UEs 100–5600 (step of 500 per run)
UE range 0–1000 m
Number of base stations
(BSs)

7 (hexagonal grid)

Massive MIMO antennas Up to 64 per BS
Communication types Wi-Fi Direct, LTE
LTE carrier frequency 2 GHz
Wi-Fi direct frequency 5 GHz
Clustering features PosX, PosY, RSSI, SINR
Clustering models KMeans, DBSCAN, SOM,

GMM, AffinityPropagation,
SpectralClustering,

ClusterGAN, VaDE, DAC,
DAMIC

Noise model AWGN; thermal noise density
≈ −174dBm/Hz; noise floor
= −174 + 10 log10(𝐵Hz) +𝑁fig

dBm
Signal metrics RSSI, CQI, SINR, throughput
Localization inputs Derived from clustering

structure
Path loss exponent 3.5 (3GPP UMi)
Fading model Rician (𝐾RIC,dB = 10)
TX power 24 dBm (260 mW)
TX antenna gain 40 dBi (BS), 2 dBi (UE)
RX antenna gain 2 dBi (UE)
Shadowing (log–normal) 𝜎 =6–8 dB (urban micro)
Fading model - Rician
𝐾RIC sweep

𝐾RIC,dB ∈ {0, 3, 6, 10}
(NLoS → LoS)

Assoc. threshold 𝜏SINR = 3 dB
Bandwidth 𝐵 20 MHz

data processing—the rapid storage guarantees fast data access
speeds, which are essential when training large dataset models.
The GPU accelerates neural network computations and caters
to demanding visual applications. The simulation environment
enables seamless integration of tools, ensuring efficient execution
of simulation tasks, including network modeling, clustering,
and localization.

5.2 Simulation Parameters

The network simulates an ultra-dense 6G urban deployment,
utilizing a central base station and six neighboring stations
arranged in a hexagonal grid. The simulation parameters are
provided in Table 8. UEs utilize BDIx agents to perform decen-
tralized clustering and access point (AP) selection. Signal metrics
and connectivity models are derived from LTE and WiFi-Direct

standards, including additive white Gaussian noise (AWGN),
the Rician fading model, path loss, and Doppler effects. AWGN
is employed to simulate thermal and background noise in the
receiver chain [64], while the Rician fading model—which
generalizes the Rayleigh model by including a line-of-sight
(LOS) component—is used to capture more realistic propagation
conditions found in cell-free networks where UEsmay have clear
paths to some APs [63, 78]. The UE range varies between 0 m and
1000 m, and the system includes a massive MIMO configuration
with up to 64 antennas at the base stations. Additionally, Wi-Fi
Direct is used for short-range communications, with a maximum
distance of 100 m for AP selection.

5.3 Cluster Results

5.3.1 Evaluation Metrics

To evaluate the effectiveness of clustering for AP selection in a
decentralized cell-free 6G network, we adopted the following key
metrics:

∙ Silhouette Score [73]: The silhouette score measures how
similar an object is to its cluster compared to other clusters.
The formula is:

Silhouette score = 𝑏(𝑖) − 𝑎(𝑖)

max(𝑎(𝑖), 𝑏(𝑖))
(16)

where 𝑎(𝑖) is the average distance from the 𝑖-th point to other
points in the same cluster, and 𝑏(𝑖) is the minimum average
distance from the 𝑖-th point to points in a different cluster. A
value close to 1 indicates well-separated clusters [73].

∙ Davies–Bouldin Index (DBI) [79]: The Davies–Bouldin
index quantifies the average similarity ratio of each cluster
with the cluster that is most similar to it. The formula is:

DBI = 1
𝑁

𝑁∑
𝑖=1

max
𝑖≠𝑗

(
𝜎𝑖 + 𝜎𝑗

𝑑𝑖𝑗

)
(17)

where 𝑁 is the number of clusters, 𝜎𝑖 is the average distance
of all points in cluster 𝑖 to its centroid, and 𝑑𝑖𝑗 is the distance
between the centroids of clusters 𝑖 and 𝑗. Lower values
indicate better clustering with compact and well-separated
clusters [79].

∙ Calinski–Harabasz Index (CHI) [80]: The Calinski–
Harabasz index measures the ratio of between-cluster
dispersion to within-cluster dispersion. The formula is:

CHI =
Tr(𝐵𝑘)

Tr(𝑊𝑘)
⋅
𝑁 − 𝑘
𝑘 − 1

(18)

where Tr(𝐵𝑘) is the trace of the between-cluster dispersion
matrix, Tr(𝑊𝑘) is the trace of the within-cluster dispersion
matrix, 𝑁 is the total number of data points, and 𝑘 is the
number of clusters. Higher values indicate more compact and
well-separated clusters [80].

∙ Sum Rate (Mbps): The sum rate is the cumulative data rate
supported by the network, representing the total throughput
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TABLE 9 Clustering quality metrics.

Approach Silhouette score DBI CHI

GMM (ours) 0.4357 0.7619 5690.03
SOM [20, 21] 0.4064 0.7805 5585.76
KMeans [20, 83] 0.3802 0.8325 5196.99
ClusterGAN [20] 0.3694 0.9412 4856.14
SpectralNet 0.3439 0.9227 4117.51
DAC 0.2474 1.5095 2470.51
DAMIC 0.2433 1.2817 2797.13

across all devices. The sum rate can be computed as:

𝑅sum =
∑
𝑖∈

𝑅𝑖, 𝑅𝑖 = 𝐵 log2(1 + SINR𝑖). (19)

where 𝑅𝑖 is the data rate for the 𝑖-th device and | | is the total
number of devices. Higher values represent better network
throughput.

∙ Total Power Consumption (dBm): The total power con-
sumption reflects the energy consumed by the network for
data transmission. It can be calculated as:

Total Power =
𝑁∑
𝑖=1

𝑃𝑖 (20)

where 𝑃𝑖 is the power consumption for the 𝑖-th device. It
is measured in dBm (decibels relative to one milliwatt), and
lower aggregate values indicate more efficient energy use.

∙ Energy Efficiency (Mbps/dBm) [81]: Energy efficiency is
the ratio of throughput to power consumption, representing
the efficiency of communication in terms of energy use. The
formula is:

EE =
∑

𝑖 𝑅𝑖∑
𝑖 𝑃UE,𝑖

[bit/J]. (21)

where the sum rate and total power are as defined previously.
Higher values indicate more efficient networks with better
performance per unit of power consumed [81].

∙ Jain’s Fairness Index (JFI) [82]: JFI quantifies how evenly
a resource is distributed across users in terms of quality of
service. Using per-UE data rates, it is defined as:

JFI =
(
∑

𝑖 𝑅𝑖)
2

| |∑𝑖 𝑅
2
𝑖

, (22)

where 𝑅𝑖 is the data rate of the 𝑖-th UE and | | the number of
UEs; values near 1 indicate equitable allocations.

5.3.2 Examination and Analysis of the Cluster
Examinations

5.3.2.1 Clustering Quality Evaluation:. Table 9 presents a
comprehensive evaluation of clustering quality using the Silhou-
ette Score, Davies-Bouldin Index (DBI), and Calinski-Harabasz

FIGURE 4 Comparison of sum rate (Mbps) across clustering meth-
ods. The figure shows the significant improvements in throughput
achieved by advanced clustering techniques compared to the traditional
baseline (calculated in our simulation).

Index (CHI). These metrics collectively assess the geometric
properties of the clusters: a higher Silhouette Score indicates
that objects are well-matched to their own cluster and poorly
matched to neighboring clusters; a lower DBI signifies better
clustering by measuring the ratio of within-cluster scatter to
between-cluster separation; and a higher CHI rewards dense,
well-separated clusters. GMM achieved the highest Silhouette
Score (0.4357), the lowest DBI (0.7619), and the highest CHI
(5690.03), indicating superior clustering characterized by com-
pactness and clear separation between clusters. The success of
GMM can be attributed to its probabilistic nature, which allows
it to model non-spherical user distributions and provide soft
assignments, offering a more flexible and realistic representation
of user groups in a wireless environment compared to rigid-
boundary methods. The self-organizing map (SOM) followed
closely, demonstrating robust scores (Silhouette: 0.4064, DBI:
0.7805, CHI: 5585.76). KMeans and ClusterGAN also demon-
strated strong clustering performance, whereas DAC, DAMIC,
and SpectralNet exhibited moderate to lower clustering effective-
ness, suggesting they formed less distinct or more overlapping
user groups, which can lead to suboptimal resource allocation in
downstream network tasks.

5.3.2.2 SumRate, Spectral Efficiency and Bit Error Rate
Performance:. Figure 4 illustrates the sum rate (in Mbps)
achieved by each clustering approach compared to the tradi-
tional baseline of 653,965.87 Mbps (note that this traditional
baseline was measured in our simulation when only BSs are
used). When reporting data rates in Mbps, the calculation
is 𝑅(Mbps) = (𝐵∕106) log2(1 + SINR). This comparison directly
links the abstract quality of clusters from Table 9 to a tangible
network performance outcome. Notably, GMM, SOM, and Clus-
terGAN deliver significant throughput improvements of up to
46.3%, demonstrating the strength of approaches that effectively
capture the underlying data characteristics and structure. The
observed throughput gains indicate that the enhanced cluster
definitions provided by these methods translate into more effi-
cient data aggregation and transmission across the network.
Specifically, well-separated and compact clusters enable more
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effective interferencemanagement and spatial reuse of frequency
resources, allowing multiple users to communicate simultane-
ously with minimal mutual degradation, which directly boosts
the aggregate network throughput.

Moreover, the performance of DAC, which achieves around
a 38.5% improvement, reinforces the notion that even deep
learning-based methods, despite the increased complexity in fea-
ture representation, contribute substantially to system through-
put. Traditional methods like K-Means, with an improvement
of around 38.2%, further underscore the critical role that effec-
tive clustering plays in mitigating interference and optimizing
resource allocation in cell-free networks. Overall, the results sug-
gest that advanced clustering strategies are crucial in improving
the sum rate performance, a key indicator of network capacity
and overall system efficiency.

Spectral Efficiency and Bit-Error-Rate Analysis: To provide
a more comprehensive and holistic picture of the network’s
performance, this section introduces and analyzes two key met-
rics that operate at different layers of the communication stack:
spectral efficiency (SE) and the bit-error-rate (BER). SE is
a crucial network-level metric that measures how efficiently the
finite radio spectrum resource is utilized to deliver data to all
users. In contrast, BER is a fundamental physical-layer metric
that quantifies the raw reliability and quality of the individual
data links. Evaluating both provides a complete understanding of
systemperformance, from the efficiency of resourcemanagement
down to the robustness of the underlying wireless connections.

Spectral Efficiency (SE): Spectral efficiency (often denoted
as 𝜂 or 𝜂) is a fundamental performance indicator in wireless
communications, defined as the net data rate (information rate)
that can be transmitted over a given bandwidth. It is typically
measured in units of bits per second per Hertz, or (bits/s)/Hz.
Intuitively, it answers the question: ”How much data can we
pack into a given slice of the radio spectrum?” In an era where
spectrum is a scarce and valuable commodity, maximizing SE
is a primary goal of modern wireless system design. The sum
spectral efficiency of the entire network, which aggregates the
performance across all users, is given by the following expression:

𝜂net =
∑𝑁

𝑖=1 𝑅𝑖

𝐵total
(23)

where 𝜂net is the total network spectral efficiency, 𝑅𝑖 represents
the achievable data rate for user 𝑖,𝑁 is the total number of active
users, and𝐵total is the total systembandwidth shared among them.
The data rate 𝑅𝑖 for each user is not arbitrary; it is fundamentally
determined by the Shannon–Hartley theorem,which links capac-
ity to the signal-to-interference-plus-noise ratio (SINR). Effective
user clustering directly impacts SINR by intelligently grouping
users to minimize inter-cluster interference, thereby boosting
individual data rates 𝑅𝑖 and, consequently, the overall sum SE.

The sum spectral efficiency serves as our primary figure of merit
for quantitatively comparing the effectiveness of the various
clustering algorithms under investigation. Since all clustering
methodologies in our study are evaluated under the identical
constraint of the same total bandwidth (𝐵total), the total SE
becomes directly proportional to the sum rate (

∑
𝑅𝑖). This

creates a fair and direct basis for comparison: any percentage
improvement observed in the sum rate corresponds to an iden-
tical percentage improvement in the sum spectral efficiency.
This allows us to clearly attribute performance gains to the
superiority of one clustering approach over another in managing
network resources.

To quantify these gains, we first establish a baseline performance
level, denoted as 𝜂base. This baseline represents the total spectral
efficiency achieved by a traditional, non-optimized, or simplistic
approach under the same network conditions and for the same
total bandwidth 𝐵total. For a new, advanced approach that yields
an SE improvement ofΔ (expressed in percent) over this baseline,
the absolute total SE for that approach can be calculated as:

𝜂(approach)
net = 𝜂base

(
1 + Δ

100

)
, (24)

where 𝜂(approach)
net is the spectral efficiency for a specific clustering

approach, 𝜂base is the baseline spectral efficiency, and Δ is the
percentage improvement. Table 10 summarizes the results of our
comparative analysis. It lists the percentage SE improvement for
each clustering algorithm, the corresponding total SE expressed
as a multiple of the baseline 𝜂base for easy interpretation, and,
to ground our findings in the broader literature, an exemplar
mobile-network clustering reference for each approachwhere avail-
able. These references point to existing research where similar
algorithms have been applied to related problems in wireless
networking, such as device-to-device (D2D) communications,
cell-free massive MIMO, or coordinated multi-point (CoMP)
systems. If no suitably analogous reference was found in the
literature for a specific algorithm, the entry is left blank.

Spectral-Efficiency Gain vs. Existing Techniques: Because
all methods are evaluated under the same total bandwidth,
𝐵total, the definition of network spectral efficiency in Equa-
tion (23) together with the sum-rate expression implies a
one-to-one mapping between improvements in sum rate and
improvements in 𝜂net. Consequently, the best-performing clus-
terers in our cell-free pipeline—GMM, SOM, and ClusterGAN—
deliver a +45.6% to +46.3% gain in spectral efficiency over
the traditional BS-only baseline. Deep agglomerative clustering
(DAC) achieves +38.5%, while classical KMeans yields +38.2%.
Spectral/autoencoder-mixture baselines (SpectralNet/DAMIC)
provide +37.7% to +38.0%. In other words, our top approaches
improve 𝜂net by +7.6 to +8.1 percentage points over strong
classical/deep baselines (KMeans, DAMIC/SpectralNet) and by
+7.1 percentage points over DAC, with gains persisting up to
the densest setting (5600 UEs). The complete breakdown is
summarized in Table 10.

Bit-Error-Rate (BER)Performance: TheBER is a fundamental
measure of performance at the physical layer, representing the
rate at which errors occur in a stream of transmitted data. It is
defined as the number of bit errors divided by the total number
of transferred bits. A lower BER indicates a more reliable link,
which is essential for any communication system to function
correctly. While SE tells us about the quantity of data being sent,
BER tells us about its quality. This section provides a theoretical
foundation by examining the BER performance for common
modulation schemes under two canonical channel models: the
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TABLE 10 Spectral efficiency results with mobile-network clustering exemplars (when available).

Approach SE improvement (%) Total SE (bits/s/Hz) Mobile-network clustering approach

GMM (ours) 46.3 1.463 𝜂base

SOM [19, 21] 45.6 1.456 𝜂base D2D cluster-head selection via SOM [21]
ClusterGAN [20] 46.1 1.461 𝜂base

DAC 38.5 1.385 𝜂base

KMeans [20, 83] 38.2 1.382 𝜂base Cell-free mMIMO–NOMA user clustering (k-means++) [83]
SpectralNet 37.7 1.377 𝜂base CoMP BS/TP clustering (survey) [84]
DAMIC 38.0 1.380 𝜂base

idealized additive white Gaussian noise (AWGN) channel and the
more practical Rician fading channel, which is advocated for cell-
free networks due to the likely presence of line-of-sight (LOS)
paths [63].

For an AWGN channel, which models a scenario where the only
impairment is a statistically predictable thermal noise, the BER
for simple modulation schemes like binary phase shift keying
(BPSK) or quadrature phase shift keying (QPSK) is given by:

𝑃AWGN
𝑏 = 𝑄

⎛⎜⎜⎝
√

2
𝐸𝑏

𝑁0

⎞⎟⎟⎠ (25)

where 𝑃AWGN
𝑏 is the bit error rate for an AWGN channel, 𝐸𝑏∕𝑁0

is the average signal-to-noise ratio (SNR) per bit, and 𝑄(⋅) is
the Gaussian Q-function, representing the tail probability of the
standard normal distribution.

In contrast, a Rician fading channel models an environment
with a dominant LOS path alongside richmultipath components.
Performance is characterized by the Rician K-factor, the ratio
of power in the LOS path to the power in the scattered paths.
The average BER is found by averaging the AWGN BER over the
Rician fading distribution [78]:

𝑃Rician
𝑏 = ∫

∞

0

𝑄(
√

2𝛾)𝑓𝛾(𝛾)𝑑𝛾, (26)

where 𝑃Rician
𝑏 is the bit error rate for a Rician channel, 𝛾 is the

instantaneous SNR, and 𝑓𝛾(𝛾) is its probability density function,

given by 𝑓𝛾(𝛾) =
𝐾+1

𝛾̄
exp

(
−𝐾 − (𝐾 + 1)

𝛾

𝛾̄

)
𝐼0

(
2

√
𝐾(𝐾+1)𝛾

𝛾̄

)
,

with 𝛾̄ being the average SNR (𝐸𝑏∕𝑁0), 𝐾 the Rician factor, and
𝐼0(⋅) the modified Bessel function of the first kind.

Figure 5 plots these theoretical curves, providing a stark visual
comparison between the two channel models. The AWGN curve
exhibits a steep “waterfall” characteristic, where a small increase
in SNR leads to a dramatic reduction in BER. The Rician curve,
plotted for a typical K-factor of 10 dB, is much closer to the
AWGN performance than a pure Rayleigh channel would be, but
still shows a performance penalty due to fading. As K increases
(stronger LOS), the Rician curve approaches the AWGN curve.
This analysis highlights the critical importance of robust system
design, including techniques like diversity, channel coding, and

FIGURE 5 Bit error rate (BER) vs. average SNR per bit for different
modulation schemes over AWGN and Rician fading channels (K= 10 dB).

intelligent resource management (as explored in our clustering
work), to overcome channel impairments in realistic mobile
communication scenarios.

5.3.2.3 Total Power Consumption Analysis:. Figure 6
presents the total aggregated power consumption (in dBm) for
the different clustering approaches in comparison with the
traditional method, which registers a total power consumption
of 482,050.73 dBm. The data reveal that methods such as Cluster-
GAN, SOM, and GMM achieve power consumption reductions of
up to 32.8%, highlighting a strong correlation between effective
clustering and energy efficiency. These reductions in power
consumption are crucial in cell-free network deployments, where
energy efficiency directly impacts operational costs and environ-
mental sustainability. The reduction is achieved by optimizing the
spatial distribution of APs and minimizing unnecessary interfer-
ence, which in turn allows for lower transmission power without
compromising on service quality. More specifically, intelligent
clustering ensures that users are predominantly served by their
closest APs, minimizing path loss and thus reducing the required
transmission power to achieve a target SINR. Furthermore,
by creating well-defined, spatially isolated clusters, the system
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FIGURE 6 Total power consumption (dBm) per clusteringmethod.
This figure illustrates the power savings achieved by the clustering
approaches compared to the traditional baseline (calculated in our
simulation).

facilitates coordinated beamforming and power control within
each cluster, leading to a significant decrease in the overall energy
required for interference mitigation. The results demonstrate
that while achieving high throughput, these advanced methods
do not sacrifice energy efficiency; instead, they provide a bal-
anced optimization that benefits both network performance and
energy management.

5.3.3 Discussion of Clustering Results

The analysis of clustering approaches is underpinned by a
dual perspective that encompasses both performance metrics—
specifically, the sum rate improvement and power reduction—
and network deployment considerations, as revealed by the
number of access points (APs) employed. This comprehensive
examination of these dimensions offers critical insights into
the efficacy and scalability of the various clustering methods
within a cell-free 6G network framework. Furthermore, the
role of distributed computation and decision-making through
BDIx agents augments this perspective by enabling decentralized
intelligence at each user equipment (UE). This ensures real-
time adaptation to evolving network conditions, greater resilience
against single points of failure, and more efficient resource allo-
cation, collectively reinforcing the value of advanced clustering in
large-scale, dynamic 6G deployments.

Table 11 presents the performance results, showing that the
clustering approaches achieve notable improvements in both sum
rate and power reduction. The methods based on probabilistic
and generative frameworks, such as GMM, SOM [19], and
ClusterGAN [20], achieve a sum-rate gain of up to 46.3% and total
power reduction of up to 32.8%. The exceptional performance of
these approaches can be primarily attributed to their inherent
ability to model complex data distributions and capture intricate
patterns within the network data. For example, GMM leverages
probabilistic modeling to assign clusters with a high degree
of precision, thereby minimizing inter-cluster interference and
optimizing energy efficiency.

TABLE 11 Performance summary with machine learning-based
insights.

Approach
Sum rate

improvement (%)
Power

reduction (%)

GMM 46.3 32.0
SOM 45.6 32.4
ClusterGAN 46.1 32.8
DAC 38.5 22.9
KMeans 38.2 27.8
SpectralNet 37.7 25.4
DAMIC 38.0 23.5

In contrast, SOM employs a topological mapping strategy that
preserves spatial relationships among data points, ensuring that
the resulting clusters are both well-separated and spatially coher-
ent. Similarly, ClusterGAN employs a generative adversarial
framework to capture the underlying data structure robustly,
resulting in enhanced cluster definition and improved through-
put and energy efficiency metrics. In contrast, the deep adaptive
clustering method, DAC, learns hierarchical feature representa-
tions to dynamically optimize cluster formation, although it may
introduce some data dispersion due to its complex feature extrac-
tion process. Traditional clustering methods, such as K-Means,
rely on distance-based iterative optimization to form compact
clusters efficiently but are sometimes prone to converging to
local minima in complex scenarios. SpectralNet, which employs
spectral embedding to leverage graph connectivity, is effective
in distinguishing clusters; however, it can be less robust when
clusters overlap densely. Finally, the autoencoder-based approach
DAMIC captures nonlinear patterns within the data, although
the potential for reconstruction noise may result in less distinct
cluster boundaries.

Together, these diverse methodologies demonstrate a range of
strengths and trade-offs that contribute to their overall perfor-
mance in next-generation cell-free network environments. Note
that in our previous paper [19], SOM performed slightly better
than GMM; however, the number of UEs we investigated is 1000.
In this evaluation, SOM performs better than GMM under 1000.
However, in our final examination, we compared each approach
with the run of 5600 UEs to examine which one performs better
than all others in a very dense network.

In parallel with these performance metrics, the network deploy-
ment strategy is critically evaluated through the number of
APs employed by each approach, as summarized in Table 12.
The number of APs directly reflects the granularity of network
segmentation and influences the operational complexity and
resource allocation within the network. For instance, the deploy-
ment of 11 APs in the case of GMM suggests a highly granular
segmentation that, while potentially more complex to manage,
significantly contributes to the observed energy efficiency and
throughput gains. In contrast, SOM’s use of only 4 APs indicates
a more compact clustering strategy that emphasizes spatial
coherence and reduced deployment costs, making it particularly
suitable for environments with spatial constraints. ClusterGAN’s
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TABLE 12 Number of access points (APs) per approach.

Approach Number of APs

GMM 11
SOM 4
ClusterGAN 5
KMeans 6
SpectralNet 5
DAC 5
DAMIC 5

moderate use of 5 APs strikes an effective balance between robust
cluster formation and efficient resource utilization, demonstrat-
ing adaptability to varying network conditions.

Furthermore, the performance of more traditional clustering
methods, such as K-Means and SpectralNet, which deploy 6 and
5 APs, respectively, highlights the challenges inherent in iterative
optimization and spectral embedding techniques, particularly
when handling overlapping clusters and the risk of converging to
localminima. Similarly, the deep learning-based approachesDAC
and DAMIC, both of which use 5 APs, illustrate the complexity
involved in capturing nonlinear feature representations; here, a
trade-off emerges between the depth of feature extraction and the
clarity of cluster delineation.

In summary, the integration of high-throughput improvements,
significant power consumption reductions, and strategic AP
deployment underscores the advantages of advanced machine
learning-based clustering methods in next-generation cell-free
networks. The combination of probabilistic, topological, and
generative frameworks not only optimizes cluster formation
but also ensures an operational balance between performance
and resource efficiency. This comprehensive understanding of
the interplay between performance and deployment metrics
provides valuable insights for future research and practical
implementations in the evolving landscape of 6G network design.

Note that across the 𝐾RIC,dB∈{0, 3, 6, 10} sweep, throughput and
energy efficiency degrade monotonically with decreasing 𝐾RIC
as expected, while deterministic clustering agreement (Equa-
tion 15) and stable connectivity via Equation (14) are preserved,
confirming robust operation under NLoS.

5.3.3.1 Traditional vs. Cell-Free Approach:. Figure 7
illustrates the performance trends comparing the traditional and
cell-free approaches. In this figure, both the sum rate (in Mbps)
and the power consumption (in dBm) are plotted against the run
index, which may represent varying network loads, time steps, or
iteration counts. The dual metrics provide a comprehensive view
of the system’s behavior under different operational conditions.
As observed in the figure, the traditional approach begins with
a sum rate of approximately 11,390 Mbps at a run index of 100,
steadily increasing to around 653,966 Mbps at a run index of
5600. In contrast, the cell-free approach consistently outperforms
the traditional baseline, starting at approximately 16,286 Mbps
and reaching nearly 954,147 Mbps by the highest run index.

This growing throughput disparity highlights the effectiveness of
the cell-free strategy in dynamically clustering users to reduce
interference and optimize data transmission, resulting in more
substantial gains as the system scales.

In parallel, the total power consumption trends reveal that the
traditional method experiences an increase from roughly 8704
dBm at run index 100 to approximately 482,051 dBm at run index
5600. The cell-free approach, however, maintains lower total
power consumption, starting at around 7372 dBm and climbing
to only about 327,846 dBm over the same range. The consistently
lower power usage indicates that the cell-free method enhances
throughput and achieves significant energy savings. This balance
between high performance and energy efficiency makes the cell-
free solution particularly attractive for next-generation network
deployments where both aspects are critical.

Fairness (Jain’s Index) Comparison: We also assess quality
of service (QoS) using Jain’s fairness index (JFI), computed

over per-UE throughputs as JFI =
(∑𝑁

𝑖=1 𝑅𝑖

)2

𝑁
∑𝑁

𝑖=1 𝑅2
𝑖

[56]. Across all

run indices, the cell-free approach exhibits consistently higher
fairness: JFIcell-free = 0.95 ± 0.02 (range 0.92–0.97), whereas the
traditional setup yields JFItrad = 0.84 ± 0.04 (range 0.78–0.88). At
the densest setting (run index 5600), the gap is most pronounced,
with JFIcell-free ≈ 0.96 vs. JFItrad ≈ 0.81. These results indicate
that beyond improving sum rate and reducing power, the cell-
free design also distributes resources more uniformly among
users—that is, it achieves higher QoS fairness as the network
scales.

5.4 Localization Results

5.4.1 Evaluation Metrics

To thoroughly assess the localization performance, we employed
a comprehensive set of metrics that capture both the average
error and the distribution of errors between the predicted and
true positions. Thesemetrics are widely used in localization tasks
and are crucial for evaluating the precision and reliability of the
models. The following metrics were used:

∙ Mean Distance Error (MeanDist): The mean distance
error is the average Euclidean distance between the predicted
and ground-truth positions. It is calculated by averaging the
Euclidean distance between each predicted position𝐩𝑖 and the
corresponding true position 𝐠𝑖 . The formula is:

MeanDist = 1
𝑁

𝑁∑
𝑖=1

‖‖‖𝐩𝑖 − 𝐩̂𝑖
‖‖‖2

. (27)

where 𝑁 is the total number of test samples, 𝐩𝑖 = (𝑝𝑥𝑖, 𝑝𝑦𝑖) is
the predicted position vector, and 𝐠𝑖 = (𝑔𝑥𝑖, 𝑔𝑦𝑖) is the ground-
truth position vector. The MeanDist provides an average
measure of localization accuracy [85].

∙ Maximum Distance Error (MaxDist): The maximum dis-
tance error represents the largest observed Euclidean distance
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FIGURE 7 Performance trends for traditional vs. cell-free approaches showing both sum rate (Mbps) and power consumption (dBm) as functions
of the run index.

between predicted and true positions. It is computed as:

MaxDist =
𝑁

max
𝑖=1

‖𝐩𝑖 − 𝐠𝑖‖2 (28)

where 𝑁 is the total number of samples, 𝐩𝑖 is the predicted
position, and 𝐠𝑖 is the true position. This metric gives insight
into the worst-case error in the localization task [86].

∙ StandardDeviation (StdDist): The standard deviationmea-
sures the spread of the localization errors. It is calculated as:

StdDist =

√√√√ 1
𝑁

𝑁∑
𝑖=1

(‖𝐩𝑖 − 𝐠𝑖‖2 −MeanDist)2 (29)

where 𝑁 is the number of samples, 𝐩𝑖 and 𝐠𝑖 are predicted
and true positions, and MeanDist is the average Euclidean
distance. The StdDist helps to assess model consistency by
quantifying the variance in localization errors [87].

∙ Mean Squared Error (MSE): The mean squared error is the
average of the squared differences between the predicted and
true positions. It is given by:

MSE = 1
𝑁

𝑁∑
𝑖=1

(‖𝐩𝑖 − 𝐠𝑖‖2
2

)
(30)

where 𝑁, 𝐩𝑖 , and 𝐠𝑖 are as defined previously. The MSE
penalizes large errors more than smaller ones and is a
commonly used metric in regression tasks [88].

∙ Mean Absolute Error (MAE): The mean absolute error
represents the average of the absolute differences between the
predicted and true positions. It is calculated as:

MAE = 1
𝑁

𝑁∑
𝑖=1

‖𝐩𝑖 − 𝐠𝑖‖1 (31)

where ‖ ⋅ ‖1 is the Manhattan distance. MAE provides a
straightforward measure of the average error magnitude
without exaggerating large errors [89].

∙ Root Mean Squared Error (RMSE): The RMSE is the
square root of the MSE, providing a metric that indicates the
typical magnitude of errors. It is formulated as:

RMSE =

√√√√ 1
𝑁

𝑁∑
𝑖=1

(‖𝐩𝑖 − 𝐠𝑖‖2
2

)
(32)

where the variables are as defined before. RMSE iswidely used
due to its interpretation in the same units as the original data
and its sensitivity to significant errors [90].

∙ R-squared (R2): The R-squared value measures the propor-
tion of the variance in the true positions explained by the
model. It is computed as:

𝑅2 = 1 −
∑𝑁

𝑖=1

(‖𝐩𝑖 − 𝐠𝑖‖2
2

)∑𝑁

𝑖=1

(‖𝐠𝑖 − 𝐠̄‖2
2

) (33)

where 𝐠̄ is the mean of the true position vectors. R-squared
values close to 1 indicate that the model explains most of the
variance [91].

∙ Mean Squared Log Error (MSLE): The MSLE is helpful
when the data contains values with large ranges. It is calcu-
lated by applying a logarithmic transformation to the error
terms:

MSLE = 1
𝑁

𝑁∑
𝑖=1

(log(𝐩𝑖 + 1) − log(𝐠𝑖 + 1))
2 (34)

where the variables are as previously defined. This metric
captures relative differences between predictions and true
values, especially for minor errors in extensive data ranges
[92].

∙ MedianAbsoluteError (MedianAE): Themedian absolute
error is the median of the absolute errors, making it less
sensitive to outliers. It is calculated as:

MedianAE = median
(||𝐩𝑖 − 𝐠𝑖

||) (35)
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TABLE 13 Summary of key localization results.

Method MeanDist (m) RMSE 𝑹𝟐

Centroid 435.49 336.18 −0.430
Circles (trilateration) 2028.63 1452.16 −25.470
Multilateration (avg) ∼150–300 ∼200–400 ∼0.1–0.6
MLP (ours) 0.97 0.81 0.99999

where the median is taken over all absolute errors. This
metric is often preferred when data contains extreme values
or outliers that would otherwise affect the mean [93].

∙ Explained Variance: The explained variance metric evalu-
ates how much of the total variance in the true positions is
captured by the predicted positions. It is calculated as:

EV = 1 −
Var(𝑦 − 𝑦̂)

Var(𝑦)
. (36)

where Var(⋅) denotes the variance. A higher explained vari-
ance indicates that the model has captured a greater portion
of the true variability in the position [94].

These metrics enable us to compare both classical deterministic
methods and advanced machine learning (ML) models within
a unified framework, providing a clear view of localization
performance across various methods.

5.4.2 Examination and Analysis of the Localization
Examinations

Table 13 provides a summary of key localization results to
back the sub-meter accuracy claims, comparing deterministic
methodswith the top-performingMLP regressor. Amore detailed
breakdown is provided in Table 14.

The results reveal a stark contrast between the deterministic
and ML-based localization methods. The deterministic methods
(Centroid and Circles) yield very high errors. The Centroid
method, for instance, has a mean distance error of 435.49 m and
a maximum error of 835.38 m. More critically, it has a negative R2

value (–0.43) and negligible explained variance, which indicates
that it fails to account for the complex propagation characteristics
in a dense network environment [60]. The high standard devi-
ation in distance error (‘StdDist‘ of 190.72 m) further highlights
its unreliability, showing that its performance is not only poor
on average but also highly inconsistent. This is expected, as
the Centroid method’s simplicity—averaging the coordinates of
detecting access points—completely ignores signal properties
like path loss and shadowing. The differential circles method
performs even worse, with a mean error exceeding 2000 m and
an 𝑅2 value of –25.47. This catastrophic failure is attributable to
the method’s reliance on trilateration principles, which assume
a direct, line-of-sight (LoS) relationship between signal strength
and distance. In dense, complex environments, non-line-of-sight
(NLoS) propagation and multipath fading render such assump-
tions invalid, leading to wildly inaccurate distance estimates and
consequently, enormous localization errors. TA
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In contrast,ML-basedmethods dramatically improve localization
accuracy. Among these, the MLPmodel is the top performer with
a mean error of only 0.97 m and near-perfect 𝑅2 (0.99999) and
explained variance (0.99999). Its superiority is further empha-
sized by the exceptionally low standard deviation (0.62 m)
and median absolute error (0.46 m), signifying not only high
accuracy but also remarkable precision and consistency. The
MLP’s success demonstrates its powerful capability as a universal
function approximator, effectively modeling the intricate, non-
linear relationship between the high-dimensional input features
and the user’s physical coordinates. Similarly, the CNN, TCN, and
BLSTM models also yield errors in the sub-10 m range with R2

values approaching 1, demonstrating their ability to effectively
learn the non-linear mappings from input features to spatial
positions [46]. The CNN, with the second-best ‘MeanDist‘ of 2.13
m and a very low ‘MaxDist‘ of 5.51 m, likely excels by interpreting
the input signals as a spatial pattern, extracting hierarchical
features that are robust to minor fluctuations. The TCN and
BLSTM, designed for sequential data, also perform strongly,
suggesting they successfully capture latent dependencies within
the input feature vector.

On the other hand, the transformer and GNN models under-
perform in this task. The transformer model has a mean error
of 366.29 m and a low 𝑅2 value (0.07309), suggesting that its
attention mechanism, although powerful in many domains [48],
may require further tuning or more domain-specific modifica-
tions for localization. Its global self-attention mechanism might
be capturing spurious correlations across the input features
or failing to prioritize the most spatially informative signals,
leading to poor generalization. The extremely high MSLE of
1.12876 is particularly telling, indicating a significant issue with
predicting smaller-valued coordinates accurately. Similarly, the
GNN model exhibits a mean error of 231.58 m with an 𝑅2 of
0.54484, which is significantly worse than the top-performing
ML models. This suggests that the defined graph structure may
not have been optimal for representing the spatial relationships
between network entities, or that themessage-passing framework
was insufficient to aggregate the relevant localization information
effectively fromneighboring nodes. Classical regressionmethods,
such as SVR, RandomForest, and KNN, provide intermediate
performance; for example, SVR achieves a mean error of 61.55
m, while RandomForest and KNN perform better, yet still lag
behind the best deep learning models. It is critical to note
the trade-off with RandomForest and KNN. While their mean
errors are impressively low (5.32 m and 10.41 m, respectively),
their maximum errors are disproportionately high (94.06 m and
97.06 m). This indicates a lack of robustness; they are prone to
occasional but severe prediction failures. Their median absolute
error of approximately zero suggests they are highly accurate for
the majority of test cases that are similar to the training data, but
they fail to generalize well to less common or outlier scenarios,
making them unreliable for mission-critical applications.

Overall, these findings underscore the importance of leveraging
advanced, data-driven techniques for localization in cell-free 6G
networks. The superior performance of the MLP, CNN, TCN,
and BLSTM models highlights the potential of deep learning in
capturing the inherent non-linearities of wireless signal propa-
gation and user distribution [49]. These models demonstrate a
crucial combination of high average accuracy (low ‘MeanDist‘,

FIGURE 8 Mean distance error for deterministic and ML-based
localization methods.

‘MAE‘), predictive reliability (near-1 ‘R2‘), and performance
consistency (low ‘StdDist‘, ‘MaxDist‘) that is essential for next-
generation communication systems. Meanwhile, the limitations
observed in the deterministic methods confirm that classical
geometric approaches are inadequate for the high precision
required inmodern, ultra-dense network scenarios. Furthermore,
the mixed results within the ML category itself reveal that
architectural choices are non-trivial; while some complex models
like transformers and GNNs underperformed, a well-tuned,
relatively simple MLP provided the best results, emphasizing
the importance of model suitability for the specific problem
domain.

Figure 8 provides a bar chart that visually compares the
mean distance errors across all methods, clearly delineating
the performance gap between deterministic approaches and
ML-based models.

5.4.3 Discussion of Localization Results

The drastic improvement in localization performance achieved
by using ML-based models over deterministic methods under-
scores the necessity of incorporating data-driven techniques in
modern wireless networks. Deterministic approaches such as the
Centroid and Circles methods are limited by their inability to
capture the non-linear signal propagation effects and the complex
spatial distribution of user equipment [60]. In contrast, deep
learning models (MLP, CNN, TCN, and BLSTM) effectively learn
these relationships, achieving sub-10 m accuracy. However, the
underperformance of the Transformer andGNNmodels indicates
that not all advanced architectures are equally suited to the
task without careful tuning. These results are consistent with
the literature, which shows that deep neural networks excel in
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regression tasks involving non-linear data [46, 49]. At the same
time, attention-based and graph-based models may require more
specialized configurations [48, 76].

5.5 Evaluation Conclusions

In our BDIx-agent framework instantiated withGMM for cluster-
ing and anMLP regressor for localization, the evaluation demon-
strates substantial gains in efficiency, accuracy, and fairness for
cell-free 6G deployments.

5.5.1 Clustering Performance (GMM)

∙ Throughput&Power. TheGMM-driven clustering yields up
to a 46.3% increase in sum rate and a 32.8% reduction in total
power consumption by forming interference-aware, compact
clusters that improve SINR and resource allocation.

∙ Spectral Efficiency. Sum-rate gains translate to >45%
spectral-efficiency improvement, indicating more effective
spectrum use under dense loading.

∙ Fairness. The cell-free, GMM-based design improves QoS
uniformity across UEs: JFIcell-free = 𝟎.𝟗𝟓 ± 𝟎.𝟎𝟐 versus
JFItrad = 𝟎.𝟖𝟒 ± 𝟎.𝟎𝟒, evidencing a more equitable resource
distribution at scale.

∙ Link Robustness. By reducing co-channel overlap, GMM
clustering indirectly supports lower BER inRician channels—
highlighting the value of topology-aligned, probabilistic
grouping.

5.5.2 Localization Performance (MLP)

∙ Sub-Meter Accuracy. The MLP regressor achieves a mean
distance error of 0.97mwith𝑅2

> 0.999, capturing the non-
linear mapping from radio/geometry-derived features to UE
coordinates.

∙ Deterministic Baselines Fall Short. Geometry-only meth-
ods (centroid, differential circles/trilateration) exhibit large
errors (>400m) in dense, NLoS-prone settings, underscoring
the need for learning-based inference.

∙ Reliability. The MLP delivers low variance and tight worst-
case tails, providing the consistency required for mission-
critical 6G services.

Overall. A fully decentralized BDIx pipeline built on GMM
(clustering/AP election) and MLP (localization) raises
throughput, cuts power, improves fairness, and attains sub-
meter positioning—enabling KPI-aware, real-time control where
stronger clustering amplifies network performance and precise
positioning drives smarter resource management.

5.5.3 Optimization and Fronthaul Compute

Our BDIx pipeline—instantiated with GMM for clustering/AP
election and an MLP regressor for localization—realizes the

KPI-coupled objective in Equation (6) and thereby explains the
observed gains. The optimization manifests through: (i) model-
order selection via BIC, which chooses the right number of GMM
components and avoids both over- and under-segmentation; (ii)
deterministic AP election at the GMM component means with a
shared seed, which enforces Equation (15), stabilizes associations,
and reduces interference; and (iii) sub-meter MLP localization
(high𝑅2), which tightens distance and link-budget estimates used
in the rate/power terms. By sweeping the scalarization weight 𝜆,
we trace a Pareto frontier and, at the operating point reported in
Section 5, obtain+𝟒𝟔.𝟑% sum-rate and−𝟑𝟐.𝟖% total power versus
the cellular baseline, with fairness improved to JFI = 0.95 ±
0.02. The system supports dense environments without stressing
fronthaul or compute because fronthaul is minimized by design:
the BS sends only a small broadcast (, 𝜃, 𝑠); UE coordinates are
exchanged peer-to-peer via LTE ProSe (not over fronthaul); and
AP notices are short, local control messages—no UE-location
database, raw CSI, or central cluster maps are uploaded. Com-
putation is embarrassingly parallel and light: GMM-EM scales
as (𝑁𝐾𝐼) with 𝐷=2 and modest 𝐾, AP election/association
is near-linear in 𝐾 (or log𝐾 with spatial indexing), and MLP
inference is a tiny forward pass; further, we use event-triggered
re-clustering, timescale separation (slow clustering/AP election,
fast link adaptation), model compression/quantization on UEs,
O–RAN–friendly controlwhere only (𝜃, 𝜆) are tuned infrequently,
and aggregate (not raw) telemetry when network-wide visibility
is needed. Consequently, wall-clock per epoch is bounded by
the slowest UE rather than a central server, and the fronthaul
footprint remains essentially constant-size per epoch, enabling
operation at thousands of UEs while preserving the reported
rate–power–fairness gains.

6 Conclusions and Future Work

This paper presented a novel approach for access point selection
and localization within a decentralized, cluster-based realization
of device-to-device (D2D) communications in cell-free 6G net-
works. Leveraging BDIx agents, we demonstrated how clustering
techniques—ranging from classical algorithms like KMeans and
DBSCAN to deep-learning-based models such as ClusterGAN
and Autoencoders—can dynamically form decentralized clusters
and elect access points (APs) with minimal signaling overhead
and high spatial efficiency. The integration of Wi-Fi direct for
intra-cluster connectivity and LTE-based backhaul for inter-
cluster communication ensures both scalability and reliability
in ultra-dense deployments. Our simulation results confirmed
that advanced clustering methods significantly improve through-
put, energy efficiency, and spectral utilization when compared
to traditional base station-centric approaches. In parallel, the
proposed localization framework, enhanced with a diverse set
of signal-derived features and trained on rich datasets, achieved
sub-meter accuracy using models like MLP, CNN, and TCN,
far surpassing deterministic baselines. This dual-stage pipeline
establishes a comprehensive, distributed approach for next-
generation wireless access and localization. Additionally, the
incorporation of BDIx agents further extends this pipeline’s
distributed intelligence, enabling autonomous decision-making
at the node level and enhancing both scalability and adaptability
in highly dynamic 6G environments.
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Future work will focus on several key directions. First, we plan
to incorporate real-world mobility traces and a resource-block-
based OFDMA data rate model that considers the fading effects,
enabling amore realistic assessment of clustering and localization
robustness under dynamic conditions. Second, the introduction
of reinforcement learning (RL) and multi-agent reinforcement
learning (MARL) into the BDIx framework will be explored to
enable adaptive decision-making and self-improving behaviors in
agents. Third, we will extend our architecture to support uplink
optimization and traffic-aware AP selection strategies, consid-
ering application-layer quality of service (QoS) requirements.
Finally, we aim to prototype this system using programmable
testbeds (e.g., OpenAirInterface or srsRAN) to evaluate practical
performance and latency in realistic settings. The integration
of distributed intelligence, clustering, and localization presented
in this work lays the foundation for scalable, context-aware,
and energy-efficient communication systems in the emerging
6G landscape. In addition, we will: (c) study multi-antenna
UEs by extending from single-antenna to 𝑁𝑟 ∈{1, 2, 3, 4} receive
antennas per UE (and scalable BS/AP arrays), integrating linear
MRT/MRC, ZF, and MMSE beamforming into the BDIx pipeline
and quantifying the impact on sum rate, energy efficiency, and
fairness; (d) report per-UE spectral efficiency 𝜂𝑖 explicitly
for both uplink and downlink and benchmark it against [1–4],
which report up to ∼256 bits/s/Hz per UE when both BS and
UE have 512 antennas, thereby isolating the contributions of
array size, processing choice, and training/CSI overhead to the
observed gap; and (6) strengthen simulations via parameter
sweeps, adding systematic explorations over the number of
BS/AP antennas, UE antennas, pilot length/quality, fading (e.g.,
Rician 𝐾RIC), mobility, and linear processing (MRT/MRC, ZF,
MMSE), with results reported as per-UE 𝜂𝑖 (UL/DL) CDFs, sum
rate, energy efficiency, Jain’s fairness, and AP load balance.
Moreover, we will rigorously revisit the prevailing assumption
that RB sharing necessarily improves total system sum rate by
formulating an interference-aware OFDMA/NOMA allocation
with joint RB–power–scheduling optimization, characterizing
regimes where sharing degrades throughput or fairness, and
embedding BDIx policies that adaptively toggle between sharing
and strict orthogonalization.
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Endnotes
1NLoS support. Yes—our framework is NLoS–tolerant by construction:
(i) the channel model in Equation (8) sweeps the Rician 𝐾RIC-factor
down to 𝐾RIC → 0 (Rayleigh), covering pure NLoS; (ii) clustering &
AP election operate on shared UE positions 𝑋 (ProSe) with common
(𝜃, 𝑠) and are thus CSI-agnostic, preserving deterministic agreement
(Equation 15); (iii) association and KPI optimization absorb NLoS
through SINR (Equations 8–11) and the fallback rule in Equation (14);
and (iv) the hybrid localization uses geometry+MLP with robust
weighting/outlier screening to mitigate NLoS-biased ranges. Practically,
the system degrades gracefully as 𝐾RIC decreases and remains fully
functional under NLoS.

2The reason that the BS and telecom do not participate in the LTE ProSe
messages reading is due to power consumption restrictions.
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