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Abstract
Cerebral small vessel disease (CSVD) contributes substantially to ischemic stroke and vascular cognitive
impairment but remains difficult to detect with conventional diagnostics. Recent advances in artificial
intelligence (AI), including machine learning (ML) and deep learning (DL), have improved neuroimaging
analysis, early risk stratification, and clinical decision support in CSVD-related stroke, while raising
questions about generalizability, interpretability, and ethics.

This review aims to narratively synthesize how AI supports neuroimaging analysis, early detection, clinical
decision-making, and prognostication in stroke with an emphasis on CSVD, and to summarize limitations,
bias, and implementation challenges.

This narrative review synthesized evidence from 122 studies. AI showed strong performance across stroke
care with an emphasis on CSVD: intracerebral hemorrhage (ICH) detection on noncontrast CT (sensitivity =
93%, specificity = 92%); 18-25-minute reductions in door-to-needle time; superior prediction of 90-day
disability versus clinician assessment (89% vs. 72%); reduced inter-rater variability for white matter
hyperintensities (WMHs) segmentation; ~94% accuracy for enlarged perivascular spaces (EPVS)
classification on MRI; and faster team notification and time-to-treatment, with mixed evidence for
improved 90-day functional independence. However, performance was weaker in older and diabetic cohorts,
underscoring limited generalizability, scarce prospective validation, and risks of bias.

AI augments stroke care across imaging-based diagnosis, risk stratification, and rehabilitation, with growing
utility in CSVD. Translation into routine care requires robust external validation, bias mitigation, model
interpretability, and clear governance around safety, liability, and cost.

Categories: Neurology, Radiology, Healthcare Technology
Keywords: artificial intelligence, cerebral small vessel disease, convolutional neural networks, deep learning,
diagnosis, machine learning, neuroimaging, stroke, white matter hyperintensities

Introduction And Background
Stroke refers to the rapid onset of clinical symptoms due to brain function impairment, lasting for more than
24 hours or leading to death, with no clear cause other than a vascular origin [1]. In 2017, stroke ranked as
the second leading cause of death worldwide and the third leading cause of combined death and disability
[2]. Delays in treatment worsen stroke outcomes. Each minute without reperfusion destroys about 1.9
million neurons, 14 billion synapses, and ~12 km (7.5 miles) of myelinated fibers; every hour of untreated
ischemia ages the brain by roughly three and a half years [3].

Cerebral small vessel disease (CSVD) encompasses a variety of clinical, imaging, and pathological conditions
resulting from different causes that impact the brain's small arteries, venules, and capillaries. It represents
the pathological effects of small vessel dysfunction on brain tissue. The term "small cerebral vessels"
includes small arteries (100-400 μm in diameter), arterioles (40-100 μm in diameter), capillaries, venules,
and small veins. CSVD is responsible for 25% of all strokes and plays an even greater role in recurrent
strokes, with an incidence as high as 50%. Furthermore, it contributes to 45% of dementia cases [4]. Timely
clinical assessment, symptom recognition, and accurate imaging are vital for effectively managing
cerebrovascular disease and prioritizing patients who may require urgent, life-saving interventions like
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revascularization [5].

During the development of artificial intelligence (AI) technology in recent years, a number of AI models
have been created that can enhance patient care at every level, from prehospital diagnosis to rehabilitation.
AI methods such as deep learning (DL) and convolutional neural networks (CNNs) have demonstrated
significant promise in the analysis of stroke images, classification of imaging findings, and etiologic
inference where applicable, and in assisting physicians in making quicker decisions that could lead to better
results [6].

With the increasing burden of cerebrovascular disease, AI models have made more paramount advances in
complex neurological disorders by automating complex tasks in an effective, timely manner, aiding
physicians in making critical decisions in less time [7]. Uses of AI and machine learning (ML) models in
cerebrovascular disease are largely focused on imaging modalities. RapidAI and Viz.ai are examples of
commercial software AI tools that are used in ischemic and hemorrhagic strokes [5]. While these tools
primarily target large-vessel occlusion triage, they illustrate end-to-end deployment features such as
regulatory clearance, workflow integration, and monitoring, which are directly transferable to AI
applications in CSVD. AI algorithms were created to analyze imaging data in stroke cases and help identify
which patients would benefit from a thrombectomy or from thrombolysis, reducing the average diagnostic
time by radiology teams and resulting in better patient outcomes [7]. Moreover, telestroke has been
emphasized in literature as one of the domains of care where AI may improve remote stroke assessment and
predict patient outcomes [8]. AI models are also used to augment human decision-making by analyzing large
amounts of data and trying to identify patterns that may be overlooked or ignored by traditional statistical
analysis [9]. Examples of these AI models include the “Hemorrhage After Thrombolysis” (HAT) score, the
“Safe Implementation of Treatments in Stroke Symptomatic Intracerebral Hemorrhage" (SITS-SICH) score,
and the “Stroke Prognostication using Age and National Institutes of Health Stroke Scale-100" (SPAN-100)
[10]. Despite advances in AI applications for stroke care, significant limitations remain, particularly
regarding generalizability and clinical applicability. Many studies lack diversity in patient populations and
stroke subtypes, with a notable disproportion between anterior and posterior circulation occlusions [11].

This review evaluates the clinical significance and limitations of current advances in AI for stroke diagnosis
and management. By examining cutting-edge approaches and their integration into clinical practice, the
review illustrates both the transformative potential of AI and the critical gaps that remain to be addressed.
As these technologies evolve, their application across diagnostic and therapeutic pathways holds substantial
promise for improving patient outcomes and reducing the global burden of cerebrovascular disease.

Review
Methods
We have conducted a narrative review using the literature extracted from PubMed up until January 2025. The
search mostly resulted in review articles, systematic reviews, meta-analyses, randomized controlled trials
(RCTs), and textbook publications. The keywords used in our search were as follows: ((AI[Title] OR artificial
intelligence[Title] OR machine learning[Title]) AND (cerebrovascular[Title] OR stroke[Title])) AND
(use[Title] OR diagno*[Title] OR asses*[Title] OR predic*[Title]).

Results came back with a total of 390 publications. We initially screened titles and abstracts for relevance,
followed by the application of predefined inclusion and exclusion criteria, which resulted in the selection of
clinically salient and methodologically informative studies. Accordingly, we included articles discussing AI
or ML tools applied to clinical practice, imaging modalities, electronic devices, or biomarkers within the
context of cerebrovascular disease. To ensure methodological rigor, we prioritized studies with robust
designs (e.g., prospective cohorts, large sample sizes, and external validation), as well as those introducing
novel algorithms with clear benchmarking against established methods. Our objective is to synthesize AI
applications with a primary emphasis on CSVD hallmarks and related biomarkers, while using non-CSVD
stroke tools only as brief comparators for implementation maturity.

Inclusion Criteria

Study designs: Review articles, systematic reviews, meta-analyses, RCTs, and textbooks (for
definition/background purposes only), written in English.

Publication date range: Including studies from 2015 to 2025.

Topic relevance: AI use related to CSVD, including any of the following domains: imaging markers, clinical,
biomarker, or genetic/omics data. Studies on cerebrovascular disease without an explicit CSVD linkage were
excluded. Single-domain studies (e.g., biomarker-only) were eligible if the domain was evaluated in relation
to CSVD.

Data outcome relevance: Performance metrics of ML programs used in electronic device technologies and
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tools that assess, diagnose, or predict cerebrovascular disease.

Exclusion Criteria

Exclusion criteria included the following: (1) non-English publications; (2) non-relevant diseases, such as
Parkinson's, epilepsy, heart disease, or other non-relevant conditions; (3) irrelevant uses, such as AI use at a
hospital management or administration level.

After removing duplicates, we screened titles and abstracts for relevance to CSVD and the English language.
Potentially eligible articles underwent full-text assessment against predefined inclusion/exclusion criteria
(e.g., non-CSVD diseases, administrative/non-clinical AI uses, non-AI focus, and non-English studies).
Screening was performed independently by two reviewers; disagreements and borderline cases were
adjudicated in Rayyan (Cambridge, MA) by a six-author panel via discussion and majority vote. In total, 122
studies were retained for qualitative synthesis. We then conducted a narrative analysis of their effectiveness
and limitations. To mitigate publication bias, we applied predefined selection criteria, dual independent
screening, and multi-reviewer adjudication. As this is a narrative synthesis across heterogeneous designs, a
PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagram was not
performed; instead, we emphasize conceptual breadth, clinical context, and methodological limitations.

Results
A total of 122 studies, including 11 RCTs, 23 systematic reviews, and nine meta-analyses, met the inclusion
criteria to evaluate the potential and limitations of AI in cerebrovascular disease. In addition to highlighting
important dangers and gaps in clinical validation, the findings show how AI might improve diagnostic
accuracy, streamline workflows, and predict outcomes in situations, including acute stroke and
CSVD. Across CSVD hallmarks, AI systems demonstrated improved segmentation and grading performance
with potential for standardized burden assessment.

Acute Ischemic Stroke: Triage and Imaging

AI systems have successfully reduced time-sensitive delays in acute stroke therapy. In multicenter trials, DL
models reported a pooled sensitivity of 93% (95% CI: 89-96%) and a specificity of 92% (88-95%)
for intracerebral hemorrhage (ICH) detection on noncontrast CT [12]. Commercial AI triage platforms
increased reperfusion rates in ischemic stroke by cutting door-to-needle times by 18 to 25 minutes [13].
Prehospital ML methods fared better than clinical measures like RACE for large vessel occlusion (LVO)
detection, with an area under the curve (AUC) of 0.89-0.93 vs. 0.75-0.82. Prognostic accuracy was also
improved by AI; integrated imaging-clinical models predicted three-month post-stroke impairment
(modified Rankin Scale (mRS) ≥3) with 89% accuracy, compared to 72% for clinician assessment alone [14].
The AI sensitivity for LVO detection decreased to 82% (77-86%) in individuals over 80 years, and diabetics
had lower calibration accuracy (Brier score: 0.21 vs. 0.13 in non-diabetics), according to subgroup analyses
that revealed performance disparities [15]. These results demonstrate that to reduce biases in retrospective
datasets, population-specific algorithm training is required. Most models were trained on single-center
cohorts with limited external validation, which may inflate performance at deployment.

CSVD: Imaging Biomarkers and Prognosis

AI models have been used to predict outcomes in CSVD (e.g., lacunar stroke) and to estimate risk using
biomarkers (e.g., neutrophil activation markers) [16]. ML techniques have demonstrated significant
potential in the identification, assessment, and prediction of CSVD. AI models, such as CNN-based models,
emerge as powerful tools to overcome the inherent limitations of traditional diagnostic methods like MRI,
which rely on human interpretation and are prone to biases and subjectivity [17]. AI-based algorithms have
been employed to automate the segmentation and classification of white matter hyperintensities (WMHs)
and to stratify the severity of CSVD. For instance, Lambert et al. [18] used an automated algorithm to assess
the severity of WMHs, while González-Castro et al. [19] developed an automatic scheme to classify enlarged
perivascular spaces (EPVS) on MRI, reporting 94% accuracy (95% when compared to human
approaches). CNN achieved a Dice score of 0.88-0.92 for WMHs segmentation [20]. ML models using
neutrophil activation biomarkers predicted lacunar stroke recurrence risk (HR: 1.28; 95% CI: 1.12-1.46) [19].
Although these developments encourage earlier intervention in CSVD, validation across a range of
populations is still required because geriatric and multiethnic groups are underrepresented in training
datasets [21,22]. However, geriatric and multi-ethnic cohorts remain under-represented, limiting
generalizability.

Prognostication and Treatment Selection

AI's clinical utility in treatment selection is further highlighted by its incorporation into new treatments. ML
models (AUC: 0.91; 95% CI: 0.87-0.94) outperformed clinical scores (AUC: 0.76) for predicting post-
thrombolysis hemorrhagic transformation [23]. In a pre/post implementation study of an AI triage platform
for LVO, median time to neuroendovascular team notification decreased (25.0 vs. 40.0 minutes; p = 0.01),
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while 90-day functional independence (mRS ≤ 2) was numerically higher (33.3% vs. 22.2%) but not
statistically significant (p = 0.52) [24].

Bias, Generalizability, and Validation Gaps

The diagnostic accuracy of AI models is heavily influenced by the quality and reliability of training data
annotations, significantly so in medical imaging. Two key issues are the "black-box" nature of some models
and dataset shift/spectrum bias from historical training data, which can inflate apparent performance.
Across studies, performance tended to dip in earlier-stage disease and in resource-limited settings, with
more false-positive alerts reported in some deployments; small, single-center datasets, heterogeneous
pipelines, and limited external validation further constrain generalizability [25]. Concerns regarding the
generalizability of AI models are raised by the fact that only 33% of them have been verified in populations
outside of stroke centers [26]. Prospective multicenter trials, explainable frameworks, and calibrated
reporting are needed for reliable deployment.

Discussion
AI in CSVD-Related Stroke

CSVD is an umbrella term for a wide array of underlying causes and mechanisms affecting the perforating
cerebral arterioles, venules, and capillaries. Presentations can range anywhere from being completely
asymptomatic to focal neurological deficits (strokes: hemorrhagic and ischemic presentations), to global
neurological dysfunctions and dementia. In fact, about one-fifth of ischemic strokes and about 45% of
dementias can be attributed to CSVD. CSVDs are also associated with an increased risk of stroke recurrence
by more than 50%. Masses affected by this significant public health problem usually end with cognitive
decline, motor dysfunction, and even psychiatric disorders. CSVDs are also found to deleteriously impact the
post-stroke recovery period due to their interference with the reorganization of brain networks, thereby
leading to inferior functional outcome [27]. They are also known to trigger a cascade of events that involves
the extension of the lesion to secondary locations [28]. CSVD is associated with increased risk of stroke-
associated pneumonia after intracerebral hemorrhage, irrespective of the volume. This was identified by
Zhang et al. (2024) using a logistic regression model [29]. A wide spectrum of genetic causes has been
implicated in the development of CSVD, including Fabry disease and CADASIL, CARASIL, MELAS, COL4A1,
and TREX1 mutations.

Polygenic risk scores (PRS) using the linkage disequilibrium-predicted (LDpred) algorithm and PRS-CS,
which incorporates a Bayesian regression framework and applies continuous shrinkage to single-nucleotide
polymorphism (SNP) effect sizes, rely on linear regression with summary statistics from genome-wide
association studies (GWAS) and genetic meta-analyses. These approaches represent AI-based models to
detect possible genetic causes underlying CSVD. The shared genetic architecture of WMHs and
cardiovascular traits, including systolic blood pressure (SBP), diastolic blood pressure (DBP), lifetime
smoking index, myocardial infarction (MI), and risk of venous thromboembolism (VTE), as well as the
polygenic mechanisms of cardiovascular traits and CSVD, demonstrated through PRS association studies
and linkage disequilibrium score regression, have contributed significantly to genetically based precision
medicine. Pathway-specific PRS, using a variety of complex algorithms, help detect both known and novel
etiologies, and certain PRS (e.g., from the endothelial cell apoptosis pathway), when combined with clinical
features, can predict post-ischemic stroke mortality. The use of ML algorithms to integrate pathway-specific
PRS with outcome prediction models may further enhance predictive performance [30].

Yim et al. (2021) [31] established that the diagnosis of Fabry disease is associated with significant challenges
due to the asymptomatic nature of non-classical cases, limited access to advanced imaging in remote
centers, and clinicians’ difficulty in reaching accurate diagnoses because of nonspecific findings and limited
disease-specific expertise. Models predicting left ventricular thickness, 12-lead ECG, and late gadolinium
enhancement (LGE) can help address these issues. Gervas-Arruga et al. (2024) [32] developed an in silico
ML-based program, which, when combined with clinical features, facilitated the early detection of
biomarkers indicating vascular and neural damage in Fabry disease.

Another model, which used fiber evanescent wave spectroscopy bolstered by ML, identified it to be a more
economical method for screening for early diagnosis and monitoring [33]. Montella et al. (2024) [34] used a
DL based model to predict the brain age and established that Fabry disease is associated with older
appearing brains and brain predicted age difference as a disease severity marker. Endothelial dysfunction
and loss in integrity of the blood-brain barrier (BBB) due to hemodynamic changes, including loss in the
auto-regulation of cerebral blood flow with ageing and elevated pulsatility in the cerebral arterioles due to
stiffening of blood vessels, is one of the most important underlying pathophysiology of CSVD. Other
contributors include inflammation with leukocyte infiltration and oxidative damage due to excessive
reactive oxygen species (ROS) formation.

In pursuit of suitable biomarkers to identify patients with CSVD and predict the underlying etiology,
markers of endothelial dysfunction (ICAM1, VCAM1, CD62E, CD62P), markers of inflammation and
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neutrophil chemotaxis (myeloperoxidase (MPO) and calprotectin), and markers establishing the role of
platelets (CXCL4 and 7) were included. ML models were developed to further establish the role of these in
detecting and predicting CSVD. In the linear regression-based learning algorithm, the combination of MRI
and patient characteristics was considered superior in predicting over the enzyme-linked immunosorbent
assay (ELISA) biomarkers, and MPO and CXCL4 were considered predictors (>80% specificity; <40%
sensitivity. A decision tree-based random forest model, on the other hand, established that the levels of
these biomarkers are important in determining the cutoff value (MPO, low-density lipoprotein, CXCL4, MPO
DNA S100A8/A9) of 100% sensitivity, defective in differentiating between controls and cohorts [35].
Another study produced a neural network model to appropriately segment deep medullary veins and
establish them to be one of the pathologies underlying CSVD. Oxidative damage was a possible underlying
mechanism of the damage caused in CSVD. AI can be used to detect the levels using wearable devices,
classify, and predict the oxidative stress [36].

MRI is the most sensitive modality used to diagnose CSVD. The STRIVE 2 guidelines state that a
combination of any of the following eight features observed on MRI is associated with the diagnosis: recent
small subcortical infarcts, lacunae of presumed vascular origin, WMHs, EPVS, cerebral microbleeds (CMBs),
cortical superficial siderosis, brain atrophy, and cortical cerebral microinfarct. Hu et al. (2024) [4]
emphasized the fact that the use of AI, especially convoluted neural networks, in identifying these lesions is
beneficial in enhancing the diagnostic accuracy and understanding of the disease. These models included
efficient segmentation, followed by analysis of the images. Li et al. (2025) [37] developed DDEvENeT, which
included an amalgamation of DL and ensemble strategies that proved to be superior to the existing models
for segmentation and parcellation, contributing significantly to early and more efficient diagnosis. Pantoni
et al. (2019) [38] established the role of cerebral white matter fractal dimension (FD) and cortical gray matter
FD from high-resolution T1-weighted images using an ML model based on LASSO (least absolute shrinkage
and selection operator) regression. The database used included standard and advanced neuroimaging
features. White matter FD complexity decrease coincides with worsening cognitive impairment. CMBs are a
diagnostic imaging marker for CSVD, which occurs because of intravascular hemosiderin deposition, and are
associated with cognitive impairment, including memory and executive dysfunction. The location of
CMBs can provide insight into the underlying etiology. Deep brain CMBs are typically associated with
hypertension, while lobar CMBs are more suggestive of cerebral amyloid angiopathy (CAA). Therefore, it is
of great prognostic and diagnostic significance if we could map the location and quantify the CMBs. A
variety of ML algorithms have been developed to assist with this arduous and tedious process of manually
detecting CMBs. A 50% sensitivity was achieved by Seghier using an automated segmentation method, while
the radial symmetry transform method by Kuijf et al. (2012) [39] increased it to 71.2%. Further improvement
in the model came in through Bian et al. (2013) [40], increasing the sensitivity to 88.4% by proposing a 2D
fast radial symmetrical transformation. Manual feature extraction was added to further enhance the results
by Chen et al. (2019) [41]. All these models used susceptibility weighted imaging (SWI) MRI and required
manual checks. Xia et al. (2023) [42] came up with a two-stage parameter-free DL model to
spontaneously identify CMBs on quantitative susceptibility mapping (QSM) (more exact quantification of
CMBs and the capability to ascertain CMBs from calcifications) with a combined sensitivity of 88.9% and
false positives per subject of 2.87. It also included identifying the precise location of the microbleeds as per
the microbleeds anatomical rating system, with a sensitivity of 85% for nine brain regions. Wu et al. (2023)
[43] emphasized the use of a masked region-based convolutional neural network (R-CNN), an end-to-end
algorithm, and CMBs segmentation masks, which ensured a lesser scope for error and effectiveness in
detecting and classifying CMBs based on the etiopathology (arteriolosclerosis (aSVD), cerebral amyloid
angiopathy (CAA), cerebral autosomal dominant arteriopathy with subcortical infarcts and
leukoencephalopathy (CADASIL)). This showed greater efficacy than the neurologist group and also
eliminated the requirement for further diagnostic tests like biopsies and genetic testing to confirm the
diagnosis, proving to be more cost-effective. Lu et al. (2022) [44] developed a nonlinear learning algorithm
using HYDRA, a semi supervised ML program for a combination of binary classification and grouping
together of sub populations and managed to classify CSVD into three types, each distinctive in terms of the
variation in the cerebral blood flow (CBF) patterns and also in terms of gender and proportion of various
imaging findings (Table 1), CSVD burden, and possible risk factors and clinical manifestations to ensure a
more patient specific diagnosis and treatment.
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Type Type 1 Type 2 Type 3

Gender Male > Female Female > Male Male > Female

CBF
Decrease: Left temporal lobe.
Increase: Right parietal and occipital
lobes

Decrease: Right hemisphere of
the brain. Increase: Left cerebrum

Decrease: Posterior part of the brain.
Increase: Anterior part of the brain

Lacunae and
PVWMH

Lesser possibility Higher possibility Higher possibility

Risk factor controls
that are most
beneficial

Smoking Blood pressure Smoking and blood pressure

Other - -
CBF was negatively associated with
total CSVD burden

TABLE 1: Summary of CSVD subtypes based on the HYDRA (Heterogeneity through
Discriminative Analysis) algorithm.
Source: [44].

CSVD: cerebral small vessel disease; CBF: cerebral blood flow; PVWMH: periventricular white matter hyperintensities.

Different cardiovascular risk factors presented with varied locations and morphologies of WMHs, as
established by Keller et al. (2022) using a linear regression model [45]. Another 3D DL model was developed
for grading the severity of perivascular spaces for the prognosis of CSVD by Williamson et al. [46].

Li et al. (2022) came up with an end-to-end 3D convolutional network to detect branch points in vessels
[47]. Hsieh et al. (2019) developed a CNN to detect CSVD, identify the exact coordinates of the block, predict
the area it would affect, and the likelihood of future stroke. Also, a 3D MRI is synthesized that would aid
doctors in making a more accurate and earlier diagnosis [48]. A convolutional network-based model was
developed to ensure visibility of more distal arteries in the late dynamic phases, which was found to be of
prime importance in diagnosis in people with decreased blood flow [49]. Shahid et al. (2024) [28] used a 3D
CNN model to allow detection of CSVD at an early stage (stage 1), which is usually asymptomatic, to reduce
the burden of morbidity and mortality associated with the same and reduce the risk of future complications
[28].

A lot of these models did not provide a method for continued monitoring of the lesions, which is essential,
considering the progressive nature of CSVD. An AI-assisted compressed sensing to detect and follow static
lacunae lesions was found to be time efficient with better quality images for the follow-up on CSVD [50].
Another associated drawback was the differentiation of lesions that appear like the above findings. Few
models have been developed that could assist with the same. Rashid et al. (2021) [51] developed a DL model
for differentiating CMBs and iron bleeds in MRI. Kim et al. (2024) [52] used an automated magnetic
resonance measurement to establish a differential diagnosis between CSF1R-related leukoencephalopathy
and subcortical ischemic vascular dementia caused by CSVD based on WMHs thickness and cortical thinning
[52].

Predicting the Development of CSVD and Disease Severity

Lambert et al. (2015) [18] found a distinct anatomical variant of cortical atrophy and thinning that can be
equated with the disease severity, which was found to be noticeably different from that seen in ageing (more
prominent changes bilaterally in the dorsolateral prefrontal, parietal, and posterosuperior temporal vortices;
ageing: occipital and sensorimotor). The volume of WMHs in the MRI was postulated to be a quantitative
measure of the disease severity, establishing an affiliation between the white and grey matter using a
Gaussian process model regression, a probabilistic linear regression technique [18]. One study developed a
linear regression and ML predictive models to establish the role of small vessel disease burden (measured
using total CSVD score: lacunae, micro bleeds, basal ganglion EPVS, and WMHs (periventricular > deep) in
predicting the functional outcome and risk of acute ischemic stroke (AIS), which brought out superior
results when compared to prediction using regular clinical data (extreme gradient boost model was the most
efficacious) [53].

Gibson et al. (2024) [54] developed a CNN to quantify WMHs and predict disease severity [54,55]. DS GAN is
a DL model that was used to derive fractional anisotropy and mean diffusivity from MRI T1 imaging rather
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than from the more sensitive diffusion tracer imaging, to ensure quicker prediction of the dementia risk in
CSVD. It was found to be a better predictor than WMH volume and produced results that were analogous to
the ground truth [56].

A possible link between temporal variations in dynamic functional connectivity (DFC) and the development
of CSVD was studied by Chen et al. (2024) [57], which included the analysis of alterations in mean dwell
times, fractional windows, and transitions using a sliding window approach and k-means clustering. This
opened up a new marker to predict CSVD. Further research in longitudinal extensions can help in predicting
the progression of disease.

Zee et al. (2021) [58] conducted a study that emphasized an ML model to localize the WMHs based on MRI
images of retinal vessels as an inexpensive and effective screening tool to predict the possible outcome and
the probable symptomatology [58]. Another study conducted by Cho et al. (2022) [59] established fundus
photographs as capable of partially predicting WMHs [59]. Yang et al. (2024) [60] came up with a combined
risk stratification model, which included ML and MRI to predict stroke within three years in patients with
CSVD [60].

AI-assisted models for gait analysis (Ready Go Motor Evaluation System) and eye tracking (Eye Know
assessment system) have been postulated to be good screening tools for predicting the cognitive decline in
patients with CSVD.

Eye tracking (low anti-saccade accuracy), gait (lower step speed, shorter length, longer stance time, longer
swing, larger step width, gait asymmetry), slower bilateral stride, and left swing velocities (worse cognition)
overcome the language barriers. However, we still need to develop systems that can combine both and
extend domain-specific cognitive decline [61].

Zhu et al. (2022) [62] incorporated an intelligent algorithm to analyze electroencephalograms to study CVSD
associated with cognitive impairment. Not only did this AI-based model detect the vascular cognitive
impairment with no dementia (VCIND) and vascular dementia (VD), but it also predicted the progression of
VCIND to dementia (background changes with abnormal waves with dementia and only background changes
with no dementia) [62].

Despite being a newer area of research, various models have been proposed to assist in screening, prediction,
diagnosis, and prognosis of CSVD. Also, establishing the possible etiology and complications of CSVD has
also seen some contribution from the field of ML. Predicting the exact locations of the lesions has also
helped in incorporating newer treatment modalities. Therapies like photobiomodulation (transcranial
intranasal via oral cavity), which can target specific areas of the brain, can now be extended to the therapy
of CSVD, which promotes self-repair of the brain by stimulating brain-derived neurotrophic factor (BDNF)
synthesis and synaptogenesis [44]. Overall, it has helped in a more patient-specific diagnosis and therefore
precise care, which ensured effective utilization of the resources and better outcomes. There are still a few
areas where improvements can ensure even better outcomes in the future. First, a lot of the models involved
had a smaller sample size or were restricted to a specific group (race, age, etc.), which made it difficult to
establish the reliability of the results in the wider population. Second, there have been extensive efforts
made to identify and quantify the imaging modalities; however, this needs to be further extended to follow
up on these lesions, considering the nature of CSVD lesions to keep progressing. Third, a more holistic
approach toward integration of imaging markers, clinical features, molecular and protein level studies, and
ensure more specific and reliable results [43]. Fourth, more advanced AI models, including transfer
learning and human-in-the-loop learning, can further ensure effectiveness. Wen et al. (2023)
[63] established functional near-infrared spectroscopy and diffusion correlation spectroscopy to be a more
holistic evaluation of cerebrovascular disease and associated psychiatric illness. Fifth, a lot of the latest
information has come to notice regarding CSVD and DL models that can be extended for detecting these.
Yan et al. (2024) [64] identified the thalamic covariance network as a prominent biomarker to detect early
cognitive decline in patients with CSVD [64]. Raposo et al. (2021) [65] considered the peak width of
skeletonized mean diffusivity as a marker for cognitive decline and structural disruption in CAA [65].

AI in the Diagnosis of Ischemic Stroke

One of the crucial aspects of ischemic stroke diagnosis is identifying the occlusion of the vessel that is
responsible for the stroke, as it is crucial in determining the severity of the stroke and selecting appropriate
treatment (e.g., thrombolysis and thrombectomy). So, one of the main applications of AI-based technologies
is to detect LVO. Multiple AI technologies, such as Viz LVO, RAPID LVO, CINA, HALO, and Brainomix [17,66],
have developed algorithms that can detect LVO from CT angiography (CTA). One of the first FDA-cleared
CNN-based tools is Viz.ai, which reported an AUC of 0.91, sensitivity of 70%, specificity of 90%, accuracy of
90%, and a negative predictive value (NPV) of 79-99% for LVO detection on CTA [67-69]. RAPID LVO reported
an NPV of 97-99%, sensitivity of 87%, and specificity of 94% [70,71]. Prehospital ML models for LVO triage
demonstrate variable accuracy compared with the Rapid Arterial Occlusion Evaluation (RACE) scale, with
prospective external validation remaining limited [11].
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Another important aspect in the diagnosis of stroke is calculating the Alberta Stroke Program Early CT Score
(ASPECTS) score. ASPECTS is a 10-point standardized scoring system on noncontrast CT that evaluates the
middle cerebral artery (MCA) territory and plays a role in determining stroke severity, rapid triage, guidance
regarding the type of treatment (thrombolysis vs. thrombectomy), and predicts clinical outcome (high
chances of hemorrhagic transformation vs. less chances post tPA). Several AI-based software, such as RAPID
ASPECTS [72,73] and Brainomix [74], can calculate the ASPECTS score. The ASPECTS score calculated by
RAPID ASPECTS correlates well with neuroradiologist scoring [75-77].

In addition to the above factors, another critical imaging tool in the diagnosis of stroke is CT perfusion. CT
perfusion quantifies ischemic core and penumbra, quantitative measurement of cerebral blood flow (CBF),
cerebral blood volume (CBV), and mean transit time (MTT). These determine the decision regarding
treatments (thrombolysis vs. thrombectomy). AI-based software such as RAPID-CTP, Vitrea CT, and
FastStroke/CT perfusion 4D can generate perfusion maps, estimate infarct volume, and distinguish between
salvageable and unsalvageable brain tissue. The AI-based tool RAPID-CTP shows a strong correlation with
reference MRI reads, including diffusion-weighted imaging (DWI) and fluid-attenuated inversion recovery
(FLAIR) [78,79]. A similar technology, i.e., FastStroke/CT perfusion 4D, can calculate infarct volumes and
assess collateral perfusion [80,81].

AI in the Diagnosis of Hemorrhagic Stroke

Hemorrhagic stroke carries the burden of high mortality and morbidity with significant fatality rates.
Multiple AI-based FDA-approved software are developed to diagnose ICH, such as BriefCase [82], RAPID-
ICH, and Viz ICH [83]. Across studies, RAPID-ICH shows high NPV and variable positive predictive value
(PPV), with sensitivity typically at ~92-96% and specificity at ~84-99.5%, depending on cohort, prevalence,
and software version. These tools can identify the hemorrhage anatomical location, hematoma-expansion
risk, and hematoma volume [84]. These algorithms support emergent ICH care by expediting detection and
hematoma volumetry, enabling timelier neurosurgical planning and intervention. Notably, the evidence is
mostly single-center and retrospective; PPV swings with prevalence, and false positives drive alert fatigue.
Routine use should await multicenter, prospective trials demonstrating outcome gains, with external
validation, calibration, and subgroup reporting.

Therapeutic Decision Support and Workflow Impact

AI tools help in prioritizing patients who require immediate treatment. Considering the narrow therapeutic
window of stroke, early recognition is critical. However, identifying stroke in acute settings remains
challenging, and any delay or missed opportunity for intervention not only increases healthcare costs but
also significantly contributes to higher patient mortality [13].

With AI’s innovative potential, imaging interpretation is enhanced. Other than streamlining stroke
diagnoses, AI is now capable of revascularization treatment outcome predictions, thus significantly
improving patient selection for initial endovascular treatments. This reduces mortality and disability rates
associated with acute ischemic stroke [6]. Several studies reported 18-25-minute door-to-needle reductions
with AI-assisted triage [71,85,86].

There is still a shortage of AI tools in deciding patient eligibility for thrombectomy. Current research posits
that AI can accurately derive extents of endovascular therapy eligibility through analyzing factors of clinical
angiographic progress and complications following such treatments. However, AI’s long-term effectiveness
in management and outcome forecasting remains limited. In a systematic review and meta-analysis of 16
studies evaluating 19 models to assess AI’s ability to predict 90-day functional, successful reperfusion, and
hemorrhagic transformation, while ML and DL models have shown promise in accurately predicting post-
treatment outcomes for LVO strokes, they are unable to consistently outperform traditional prognostic
scoring systems. Findings show many models were developed using small datasets, lacking robust external
validations and an elevated risk of bias. Hence, highlighting a necessity for further research into ML
applications to enhance future decision-making [87].

Use of AI in early detection of complications like reperfusion injury/post-thrombolysis intracranial
hemorrhage with the help of perfusion and diffusion imaging, and residual clot analysis, which might
require additional thrombectomy. Prevalent algorithms of AI tools used in detecting complications post-
thrombolysis, such as intracranial hemorrhage, include logistic regression (LR), support vector machine
(SVM), and random forest (RF), with gradient boosting (GB). While having surpassed traditional scoring
methods in their advanced versions, where clinical and imaging data have been combined, these algorithms
have shown better predictive performance, a critical factor for decision-making. This reduces mortality and
disability rates associated with acute ischemic stroke [6,88].

In telestroke, AI boosts diagnostic imaging analysis and interpretations through the application of ML
algorithms, allowing the prediction of three-month prognoses and the course of patient recovery post stroke
in hospitals. Additionally, AI models are being adopted into decision support systems to assess initial
clinical presentations of patients and extract relevant clinical information from electronic systems [13]. AI

 

2025 Al Askar et al. Cureus 17(9): e93376. DOI 10.7759/cureus.93376 8 of 22

javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)


can extract structured data from electronic health records (EHRs) to support decision-making; the real-world
outcome benefit remains unproven. In other words, AI can provide crucial decision-making support and
streamline care in addition to enhancing workflow and alleviating clinical care provider burnout during
urgent critical cerebrovascular emergencies [8]. Most evidence is pre/post or single-center and confounded
by concurrent workflow changes. Prospective multicenter trials with outcome endpoints and cost-
effectiveness analyses are needed before routine adoption.

AI in Post-stroke Rehabilitation: Motor, Aphasia, Mental Health, and Cognitive Function

Natural recovery post stroke has always been subpar, rendering it necessary to provide immediate attention
to the development of tools for post stroke rehabilitation. AI has shown promise to be an effective and
secure option in post-stroke rehabilitation, and with the additional benefits of reduced manpower
requirement, accessibility, and the ease of its application, it has proven to be more effective than the
conventional methods over the majority of the scales [89].

AI in Rehabilitation of Motor Deficits

A lack of established criteria and procedures for ensuring precise outcome prediction, as per the kind of
motor deficit, has paved the path for using AI-assisted technologies for pose and position estimation and
custom hand grip measurement over the conventional methods for better uniformity and patient-specific
outcomes [90]. Algorithms for real-time dynamic gesture recognition and models to assess the degree of
bend and muscle strength in the patient, which then assist in completing the motion and providing
appropriate support, have been tried out and found to be effective; however, certain safety concerns still
exist regarding the extent of control over the robotic arm and the cumbersome equipment that patients have
to wear. Further research is to ensure analysis of more complex variables and develop superior models to
completely reproduce a human’s approach, and then be upgraded to ensure more appropriate, safe, and
practical solutions as necessary. Evidence of AI-based algorithms’ ability to assess the results of the
rehabilitation and ensure a more standardized approach remains preliminary. Utilizing a deep convolutional
generative adversarial network model to generate artificial electroencephalography (EEG) data with
established validity to overcome the scarcity of EEG data has shown promising results in bolstering the
rehabilitation technologies, like the motor imagery brain computer interface [91]. Using DL techniques to
analyze the complex data from wearable devices can ensure more reliable and superior activity recognition
for better rehabilitation measures [92]. Abnormal neural oscillatory patterns during post-stroke periods can
be assessed by BrainQ, an ML-based model that uses motor-related spectral features from EEG,
magnetoencephalography (MEG), and electromyography (EMG). It uses low-frequency electromagnetic
fields to alter the abnormal oscillations, which have proven to be more effective and safer than the
traditional methods. Another model is by IpsiHand Upper Extremity Rehabilitation System, which leverages
the use of an EEG electrode headset to identify neural activity of the intent to move from the undamaged
areas of the brain and then utilizes that to induce motor activity. More extensive research on the same can
ensure an at-home rehabilitation service post stroke, ensuring greater feasibility and functionality, and
therefore ease the tedious process [66]. When compared with passive robot hand training, AI and EMG-
integrated robot hand-assisted training produced superior outcomes with respect to the upper extremity
(UE) motor function, amount of use, and spasticity [93].

Enabling the involvement of people with disabilities in recreational activities can ensure better recovery and
outcomes and enhance the feeling of normalcy. One such attempt involved the use of AI-based technology
in video games, which used adaptable algorithms to provide a full range of motion when the gamer is unable
to do so, adjusting the difficulty level as per the performance, rendering them winnable and engaging and
also provide appropriate rewards in terms of applause or messages after a win for a sense of success to
promote the mental well-being of the patient. These models still need to be worked on by evaluating their
efficacy in patients over 60 years old and developing more advanced algorithms to detect even minimal
voluntary movements [94].

AI in Aphasia

AI has proven to be of extreme help in diagnosing the type of aphasia, along with assessment of severity and
rehabilitation. A combination of speech signal processing, speech recognition and transcription, and speech
analysis has been used in AI-assisted models to streamline and simplify the tedious process. Speech signal
processing using CNN and recurrent neural networks helped in detecting non-fluent and fluent aphasia,
respectively. To overcome the language barrier, attempts to convert speech spectrograms into time-
frequency images, which can serve as training data for ML models, have also been conducted. DL-assisted
speech recognition models depicted an accuracy of 98.1% in diagnosing aphasia as opposed to the classical
software, which had an accuracy rate of just 70%. Integrating the clinical data with imaging analysis and
EEG data has helped with classifying and identifying subtler forms of aphasia with more accuracy and
precision. AI models have proven to be more effective in the treatment and rehabilitation of aphasia-
affected patients because of their dynamic nature and the capability to readily evaluate and attain necessary
feedback (self-directed rehabilitation training) to ensure a more precise treatment and rehabilitation plan.
Virtual therapists (e.g., virtual therapists for aphasia treatment and oral reading for language in aphasia) use
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ML models to simulate real-life experiences and guide the patients through the exercises, which have shown
at par and at times more positive outcomes when compared to those of human therapists. These are not
without their limitations. More precise models need to be developed for a more fine-grained understanding
of language. They fall short in addressing the emotional and social aspects of the treatment, so a
combination of human and AI models would result in superior outcomes [95].

AI in Detecting Signs of Post-stroke Adverse Mental Outcomes

About 30% of post-stroke people end up with depression, with another 20% ending up with anxiety. A
higher mortality rate and subpar recovery have also been observed in these patients. Oei et al. (2023)
developed an ML model to predict the risk of these adverse mental outcomes, which produced an accuracy of
74%. This facilitates early intervention and prevention [96]. AI-based models can be developed to predict the
probability of patients’ suicidal tendencies in post-stroke care based on psychological features and to
appropriately classify them into high and low risk to ensure earlier intervention and better prevention
strategies [97].

Longitudinal studies on the same can further support the reliability of these models when incorporated into
real-life settings [96]. The models can further include the imaging and clinical aspects of stroke to ensure a
more complete prediction of suicidal tendencies [97].

AI in Cognitive Rehabilitation

The cognitive functions can be judged based on four elements: judgment, memory, attention span, and quick
responsiveness. Interactive games have been developed, aided with AI technology, to develop a user-
friendly interface, using recurrent neural networks (RNN) to develop AI models to adjust the difficulty levels
to provide an interactive experience, which showed better improvements in the cognitive function, more
motivation on the part of the participants, and thereby better outcomes [98].

NeuroAIreh@b is one such ML-based program that coordinates the field of neurophysiology with clinical
assessment to develop feasible, beneficial, and adaptable means of cognitive neurorehabilitation. This was
tried out in a set of post patients with stroke, and promising results were attained. However, the validity and
the reliability of the program need to be assessed by a randomized control trial, and the dataset used for
training was that of Alzheimer’s dementia, which varies from the cognitive abnormalities post stroke, which
also needs to be taken into consideration. The addition of virtual reality (VR) models to the same can ensure
a more personalized experience [99].

Despite the promising results of AI in neurorehabilitation, it is of utmost importance that we realize that
these models can supplement but not replace human discretion and expertise, and the ethical considerations
regarding data privacy and patient autonomy must also be considered to ensure safe, beneficial, and
responsible use of AI in healthcare [100].

AI in Remote Healthcare for Stroke

Telemedicine and remote wearables are of utmost importance to ensure that healthcare is accessible in the
most remote of locations, especially in areas with low physician-to-patient ratios. A pandemic situation like
COVID-19 has further emphasized the need for these facilities to ensure continued care for the patients
[101,102]. This becomes even more valuable in diseases like stroke, wherein appropriate diagnosis and early
intervention, and the prolonged requirement for follow-up, are of prime importance. Combining AI models
with telestroke is something that can ease the process for both the patients and clinicians by ensuring
earlier, quicker, and more accurate diagnosis, reducing delays, ensuring organized workflow, and reducing
the burden on the healthcare provider [8]. Large language model-based ML programs can overcome the
language barriers and ensure a more effective diagnosis at the dispatcher level, analyze the health data by
incorporating AI in emergency medical services systems, along with real-life global positioning system
(GPS) data of emergency vehicles. Image-based DL models in camera-equipped ambulances can ensure early
identification of stroke [103]. Real-time monitoring of risk factors in telemedicine facilities using AI for
predicting stroke, and close monitoring of physical activity, blood pressure, and heart health to prevent
complications and ensure better recovery is noted. This approach ensures timely and personalized risk
assessment of stroke, thereby allowing interventions to be tailored accordingly [102]. Using AI-based models
to track movements from simple videos can ensure more widespread motor assessment and advanced tele-
rehabilitation strategies [104].

AI-assisted wearable devices can ensure more continuous and real-time tracking of various risk factors of
stroke and provide better prediction of the same, in contrast to the traditional methods of screening, which
involve regular hospital visits. Currently, wearable devices are in use for continuous ECG and blood pressure
monitoring, recording heart rate and physical activity, and detecting atrial fibrillation and sleep patterns.
Wearable sensors ensure a real-time feedback loop to develop personalized rehabilitation plans and
adaptable models as per the requirements and progress of the patient [102].
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A hydrogel-based optical waveguide stretchable (HOWS) sensor, which integrated sensing, wireless
transmission, and AI for monitoring the hand and joint movement, was found to be effective in early
diagnosis and rehabilitation monitoring in patients with stroke [105]. Chae et al. came up with a web-based
upper limb home rehabilitation system using ML and smartwatch models, which showed better functional
recovery in the Wolf Motor Function test and ROM of flexion and internal rotation in chronic stroke
survivors with an accuracy of 86.5% to 100% along with a decreased dropout rate and better mental outcome
[101].

The convenience and the limitless potential of these devices make them attractive options, but they are not
devoid of drawbacks. The reliability of the data is still under question, as the data obtained are highly
dependent upon the user's compliance with the instructions, which need not always be accurate, and so is
the variability of the sensors used in various wearables. Overcoming this would require coherence and more
standardized guidelines in terms of findability, accessibility, interoperability, and reuse (FAIR) of the
devices that must be developed interoperability, which is integrating the data from other wearables with
other clinical data available, which can further enhance the viability. Extending and ensuring the use of
these devices to all groups of people in terms of race, gender, social standing, etc., is important to ensure a
more complete dataset for drawing conclusions [106].

The privacy of this data is also under question. Increased dependence on these devices has led to decreased
healthcare checkups and other traditional practices. It needs to be understood that these devices must just
supplement and not replace more traditional healthcare practices. The expensive nature of these devices has
shed some light on the accessibility of these devices and the equity in healthcare. Making these devices
available to all and ensuring greater access to the data and the interpretation tools can ensure greater
transparency and trust in the feasibility of these devices among the masses [106].

The limited battery life and power consumption are also a matter of concern. More energy-friendly models
need to be developed [107].

Application of AI in Preventive Medicine of Stroke

Preventive medicine plays a key role in stroke prevention. Preventive medicine in stroke involves
understanding, identifying risk factors, risk stratification, early detection, and implementing targeted
preventive strategies. Risk factors of stroke can be categorized into non-modifiable risk factors, such as
genetics, and modifiable risk factors, such as hypertension, diabetes mellitus, and atrial fibrillation. By
recognizing risk factors, individuals at high risk can take preventive measures to reduce the likelihood of
stroke. AI transforms stroke prevention by enhancing and detecting risk factors, risk stratification,
generating AI-based predictive models, and tailoring strategies accordingly for prevention [108].

Role of AI in Non-modifiable Risk Factors

The standard risk factors of stroke are age, total cholesterol, low-density lipoprotein, hypertension, diabetes
mellitus, and many other factors. Yet, they cannot efficiently foresee events like a stroke in the future [108].
Hence, other biomarkers, such as genetic variations, have been identified to provide insights into stroke
pathogenesis. Primarily, two types of genetic variations, i.e., monogenetic and polygenetic variations, can
cause stroke. Monogenetic (Mendelian inheritance) is less common. A few common examples of
monogenetic abrasions that result in stroke are CADASIL (NOTCH-3 gene) [109] and CARASIL (HTRA1)
[110]. Most of the strokes are polygenetic with multiple genetic variations. Hence, GWAS is conducted to
identify the genetic variations and the calculated PRS [111]. PRS has the potential to predict stroke and risk
stratification of stroke as well [112].

AI-based algorithms can generate PRS scores better than traditional methods [113]. Traditional PRS-
generating methods are more linear, and AI-based PRS algorithms are nonlinear (reducing the
dimensionality of extensive genomic datasets) and make it more precise and accurate. Also, the ability of AI-
based algorithms to handle vast datasets from biobanks, GWAS, and multiomics data and to integrate
multiomics data (genomic, transcriptomic, epigenomic) improves the scalability and efficiency of PRS
calculations [114]. As a result, AI-based PRS calculators have the potential to accurately predict stroke in
comparison with traditional methods [115].

Some modifiable risk factors of stroke include hypertension, diabetes mellitus, cholesterol, and atrial
fibrillation, which result in blood vessel damage, atherosclerosis, and stroke. Early detection and continuous
monitoring of these risk factors can reduce stroke incidence through timely intervention. AI-based models
can continuously monitor and gather real-time data, which can detect these modifiable risk factors early and
reduce the incidence of stroke. They can also give predictive analysis about stroke and identify high-risk
individuals for proactive interventions. An important modifiable risk factor in stroke pathogenesis is
hypertension. Therefore, significant advancements in AI have led to the innovation of various wearable
devices, such as smart watches, wrist bands, finger monitors, and skin-compatible sensors. These devices are
integrated with AI-based models, which work with the principles of the photoplethysmography method
[116]. These smart devices are integrated with the smartphone. There are multiple benefits of these smart
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devices, such as continuous real-time monitoring of blood pressure, which can be saved for long-term
tracking and shared with physicians [117], and alerts the user if the blood pressure is above the physiological
values, which gives an opportunity to get an early intervention if required.

Another important risk factor for stroke is diabetes mellitus. Large glucose fluctuations can impact stroke
outcomes. Hyperglycemia worsens stroke outcomes such as increased infarct size, blood-brain barrier
disruption, and higher chances of hemorrhagic transformation [118]. Therefore, continuous glucose
monitoring allows early detection and treatment of hyperglycemia by adjusting insulin. Most devices can
continuously monitor glucose by either invasive methods, such as placement of a subcutaneous sensor, or
noninvasive methods, such as infrared rays/spectroscopy [119]. Integrating AI in continuous glucose
monitoring (CGM) systems gives continuous, real-time data, which can be shared with physicians. It can also
help in timely interventions if required, such as altering insulin dose and eventually improving patient
outcomes [120].

Another significant risk factor is atrial fibrillation, which is responsible for cardioembolic stroke. Early
detection of atrial fibrillation can be achieved with continuous ECG monitoring, which can detect irregular
heart rhythms. AI-based models can detect atrial fibrillation either by photoplethysmography (PPG) or
single-lead ECG [121]. In comparison with traditional methods, it can monitor an extended amount of time,
which increases the chance of detecting abnormal rhythm [122]. Another study on the use of AI models in
predicting abnormal ECG in atrial fibrillation showed excellent results with a recall of 81%, specificity of
78%, F1 score of 75%, and overall accuracy of 78% [123].

AI-based models can analyze complex datasets and identify age and modifiable and non-modifiable risk
factors, and give a score that can predict stroke risk. This helps to mitigate the prevention strategies.
PRERISK is a predictive model developed based on ML and can predict stroke recurrence. The AUC of early
recurrence was 0.76, late recurrence was 0.6, and long-term recurrence was 0.71 [124].

Technical and Practical Considerations in Clinical Deployment of AI in Stroke

The preference of CNN over traditional ML methods has demonstrated various advantages in stroke
diagnosis through imaging. CNN can identify subtle findings and intricate details of stroke patterns from the
imaging modalities like CT and MRI, which eliminates the need for manual intervention, which most of the
ML models rely on. Also, the ability of CNNs to detect hierarchical patterns (lines, edges, textures, tumors)
in complex datasets has been a breakthrough in medical imaging analysis [125,126].

The CNN can manage complex 2D/3D data and segment ischemic lesions in stroke in comparison with
traditional ML models, which are essential for planning the treatment [127]. Additionally, CNN can localize
the location of the lesion (spatial hierarchy) and spatial relationships, which are also crucial to predict stroke
outcomes [128]. The sensitivity of CNN in predicting stroke is 93-96.5% while ML models like support vector
regression (SVR) can never reach that level of accuracy, as they cannot manage complex tasks [129].

CNNs are versatile and adaptable, and can learn from large pre-trained models, whereas ML models are not
adaptable and cannot leverage pre-trained datasets, which require building the model from the beginning
[130]. Although CNNs might require large datasets, which can be challenging, they outperform traditional
ML models in handling complex datasets, in identifying structural and spatial hierarchical patterns, and in
providing accurate stroke predictions across various clinical scenarios of stroke.

Transfer Learning

Transfer learning is a method in which an AI model is chosen that is already trained in large datasets
(medical/non-medical) and fine-tuned to a different task, such as stroke diagnosis. In 2018, Chilamkurthy et
al. used pre-trained CNN models, such as the ResNet model, which was fine-tuned to detect intracranial
hemorrhages on CT scans [131]. Transfer learning in stroke diagnosis leverages fast learning and has less
computational cost instead of training the models from scratch, although a key challenge can be a domain
shift.

Model Interpretability

When a particular AI model predicts a stroke, and there is no explanation, it is called a "BLACK BOX" issue.
This leads to a lack of trust and accountability. Explaining the ability of the AI model is extremely important
for clinicians to trust and justify the decision made by it. The more transparent AI models are about their
decision-making, the more clinicians will trust the model and adopt it in clinical practice [132]. AI can
clearly demonstrate the decision-making process and can ensure adherence to regulatory standards [133].
Explainable AI helps in identifying errors and the reasons for errors, which can help in improving the models
[132].

Various methods are used in generating saliency maps and heat maps, such as GRAD-CAM, guided

 

2025 Al Askar et al. Cureus 17(9): e93376. DOI 10.7759/cureus.93376 12 of 22

javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)


propagation, SHAP, and LIME. These maps highlight the regions responsible for the decision-making
process. Grad-CAM and back propagation are visualization techniques [134], which are specifically used in
CNN-based models by highlighting the areas for decision-making, whereas SHAP and LIME explain which
pixels or image features played a role in the prediction of stroke of any model [135,136].

Even if it is explainable, AI techniques can be computationally intensive. It is important to enhance trust
among clinicians, to comply with regulations, and to enhance patient safety.

AI Model Calibration

AI model calibration is a process where the raw data output given by ML models is adjusted by techniques,
such as Platt scaling and isotonic regression. This process is done to ensure the output reflects the true
clinical scenario instead of overestimating/underestimating the predictability of stroke. Platt scaling uses
logistic regression, which is a parametric calibration technique that assumes the sigmoid relationship for
calibration and predominantly uses ML models like SVM [137]. Isotonic regression is more flexible and uses
non-parametric calibration techniques and shows superior performance compared with Platt scaling [125].

Calibrated models are more dependable in stroke prediction and hence more useful clinically in decision-
making. The calibrated models perform better in stroke prediction, which prevents the need to retrain the
models [138]. Calibrated AI models for stroke prediction significantly enhance stroke diagnosis, thereby
improving patient outcomes.

Integration of AI Into Real-Time Clinical Workflows

Multiple AI-driven solutions such as RapidAI, Brainomix, and Viz.ai have been developed and integrated
into real-time clinical workflows for the assessment of stroke [67]. These tools assist in intracranial
hemorrhage detection, LVO detection, ischemic core and penumbra assessment, and ASPECTS scoring.
Although primarily designed for acute stroke rather than CSVD, they serve as implementation benchmarks,
illustrating regulatory clearance, picture archiving and communication system (PACS)/workflow integration,
and post-deployment monitoring, which are directly informative for CSVD-focused AI applications.

Integration of AI models into the clinical workflow is a critical aspect of successful deployment. These AI
tools, which are developed for stroke diagnoses, are first integrated with PACS, so whenever a brain scan is
done for stroke, the images are automatically pushed into the AI system. The analysis of the scan is done by
the AI system in parallel to the routine care. Once the analysis is done, pop-up alerts appear on the
workstations of both the treating neurologists and radiologists. Radiologists and neurologists can view the
AI-generated report and hasten the decision-making even before a formal report is issued [139]. Despite the
promising role of AI in stroke diagnosis, there are many challenges in adopting it in real-life clinical
scenarios.

Technical Challenges

Integrating an AI system in clinical workflow requires a compatible PACS system, high-speed internet,
DICOM compatibility, and vigilant data security measures. Also, the large DICOM files would be transferred
without any time delay from PACS to the AI server or cloud-based processing. If it is not optimized, the
latency over a few minutes can nullify the benefits of AI in stroke diagnosis [136].

Regulatory Challenges

The clearance of AI models has been for static versions, but there is no clear mechanism on how to regulate
continuously learning models. A post-market surveillance of AI models is required, which requires
collaboration between AI vendors, users, and regulators, which can be challenging.

Ethical Challenges

Real-world deployment requires clear accountability, explainability, bias audits, and calibrated outputs
suited to local prevalence and imaging protocols. Privacy-preserving training (e.g., federated learning) and
post-market monitoring can reduce risk while maintaining clinical performance.

Financial Challenges

Integration of AI in clinical workflow is expensive to maintain the systems, such as cloud-based systems,
requiring a supportive team, cybersecurity tools, etc., which can be a financial challenge for the hospitals.

There are quite a handful of challenges present to integrate AI tools into clinical workflow; the positive
outcomes the tools bring about in stroke workflow, such as detection of hemorrhages and ischemia in
minutes, and accelerating treatment pathways, outweigh the challenges. If the challenges are managed, AI
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has the capacity to transform acute stroke management, improving patient outcomes.

Limitations of AI in Stroke

ML and DL models require high volumes of sample data for them to perform with high precision and limited
errors [140]. A large amount of data is also essential for the models to be validated. Unavailability of a large
volume of standardized datasets with high-quality images, high-quality clinical information, and follow-up
data is a challenge in applications of AI in stroke. Many public datasets should be made available. Public
data sharing challenges can cause a breach in data sharing and compromise privacy protection. To overcome
this, a novel ML method called federated learning is being developed, wherein it sets up a global model with
a central server and distributes it to all participating devices. This model also ensures less data leakage and
good data privacy protection by limiting the data in the local device and sending it back to the central server
without transmitting the actual data [141-144].

Interpretability, Transparency, and Challenges of AI Models

Many ML models function as “BLACK BOX”. They generate predictions without showing how input features
drive those outputs, reducing transparency and clinician trust in AI-based decision-making [145].

Ethically, deployment should ensure informed consent, privacy-by-design (e.g., de-identified storage and
role-based access), transparency about model scope/limits, a clinician override, subgroup fairness checks
(e.g., older adults/diabetes), and post-deployment monitoring (e.g., drift alerts and audit logs), especially
when using home/wearable data.

Adopting explainable techniques (e.g., saliency/Grad-CAM heatmaps for CTA/non-contrast CT and SHAP for
clinical/tabular models) and calibrated probabilities with pre-specified decision thresholds, together with
versioning and audit trails, prospectively evaluate whether explanations actually improve clinical decisions.
How to overcome the limitation: development of explainable ML algorithms in the stroke workflow, which
explains the performance of the algorithms and incorporates trust among the clinicians to adopt them in the
clinical workflow.

Challenges to Incorporating AI in the Clinical Workflow

Real-world stroke diagnosis often relies on the integration of diverse data sources, such as a combination of
patient history in EHRs, neuroimaging in PACS, radiology information system (RIS), clinical biomarkers in
laboratory data, and genetic profiles. Many existing AI models are limited by their reliance on a single data
type, such as MRI or CT scans. These make comprehensive assessments of a presentation of cerebrovascular
disease difficult and cause disruptions to already existing routine practices [146]. To overcome the
limitation, developing robust algorithms with high predictive performance, and close attention has to be
given to how to integrate the algorithms in the existing clinical workflow seamlessly, without interrupting
the existing system.

Due to the black box nature of AI algorithms, the rationale behind the predictions and the suggestions made
by the algorithm remains foggy, as well as the lack of familiarity with the technological aspects of the same,
because of which the reliability and the trust of the clinicians over these algorithms remain debatable. Also,
the legal implications of a deleterious outcome due to an algorithm prediction, which usually still falls on the
physician in charge, further make it difficult to depend on this algorithm entirely [147].

Incorporation of “Applied AI” topics in the medical student curriculum and the use of AI-driven devices to
deliver clinical knowledge are being researched. Continuous training programs, including conferences and
hands-on workshops, can instill a sense of trust in the AI systems among the clinicians and ensure seamless
integration of this technology in the clinical decision-making system [147]. This training, given in line with
the implementation of the technology, was found to be useful. At times, patient empowerment regarding
self-care and remote monitoring devices must also be done. However, the time factor in an already hectic
profession still needs to be addressed with user-friendly and time-saving interfaces [148]. The inherent bias
in AI algorithms, per se, in the training data or the basic design of the algorithm can lead to fallacious
outcomes. Assiduous data collection and regular data updating, auditing the algorithm, and developing ML
algorithms that are “fairness aware” can help overcome this obstacle [147].

The clinicians can consider these systems a threat to their autonomy, and inherent in it is the resistance to
change [147]. Also, there is the added fear that extensive dependence on these AI-based predictions can
reduce the volume and depth of knowledge the future doctors possess [148]. Understanding the specific
requirements of the clinician and the settings around him and developing a tailored interface can ensure a
better integration of these technologies into the clinical settings [147].

Standardized data formats, seamless interoperability, and strong and appropriate data governance
frameworks are necessary for the implementation of AI into the EHRs, medical devices, and clinical settings
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[147]. To ensure this, a collective and combined effort on the part of the clinicians, technology experts (data
scientists and engineers), and the governing bodies is required to develop algorithms and systems best
suited for the clinical setting in picture [147]. In addition, there is a necessity for a quantitative assessment
of the effects (clinical and organizational) and the qualitative assessment of the experience of the clinicians
and patients incorporated with its evaluation and valuation to ensure better feedback and improvements.
The future must also be kept in mind, and continuous and zealous attempts have to be made to adapt these
systems to changing times [148].

Data Bias Concerns

The performance of the ML algorithms is heavily based on the quality and diversity of datasets. Hence, if the
datasets lack a robust inclusion of a diverse sample of population demographics, balanced cases, low-quality
data, and non-standardized annotations, the model’s accuracy and reliability will suffer.

One of the major challenges in current AI-driven stroke diagnosis is the inherent class imbalance in existing
AI training datasets. Since ischemic strokes are more common than hemorrhagic strokes, ischemic strokes
are disproportionately overrepresented compared to other strokes. Consequently, this imbalance negatively
impacts the ML algorithms, predictive accuracy, thus increasing false-negative rates for underrepresented
stroke types. Training sets require balanced sample distributions.

High-quality training data are paramount to improve and ensure consistent accuracy of DL algorithms. The
accuracy of AI models is also heavily influenced by the quality of annotations provided for training data,
particularly in medical imaging. Fundamentally, three dimensions are considered in the construction of the
training data. Firstly, the training setting for the algorithm, when raw CT or MRI is used for learning.
Secondly, the validation set for the algorithm's hyperparameter tuning, where the best parameters are used
to fine-tune models. Lastly, the testing set for algorithm performance evaluation, i.e., the usage of
completely unseen data to evaluate the AI model’s final performance. A good ratio, for example, a
recommended ratio of 70%, 10%, and 20% for training, validation, and testing, respectively, is needed, or
there would be an overlap at patient level (a repetition and data leakage across training and test sets), which
consequently generates a false high performance accuracy during testing, but poor performance in real-
world clinical settings and new patients. The sources of the acquisition of these data, division methods, and
accordance, as well as data allocation ratio, are also paramount.

Automated and AI-assisted validation tools of the annotation process are increasingly deployed. These
include AI-powered second readers, hybrid annotation (AI suggestion with expert correction), and
automated consistency checks (triggered alarms for second reviews by human annotators in case of AI-
reported inconsistencies). Current annotations, however, can be assisted by ML tools. Today, the gold
standard for medical image labeling is manual annotation by experienced radiologists.

To enhance the robustness of AI model training, datasets should be large and enriched with a broader
spectrum of cases. Proper documentation and standardized coding, such as using the International
Classification of Diseases (ICD-10), is crucial for ensuring consistency in data preprocessing and model
training. The dataset for training should also include annotations from expert radiologists, according to
standardized protocols, to assist in developing the model’s predictive accuracy and ability to identify
complex patterns and relationships.

Cost-Effectiveness of Algorithms

Integrating AI algorithms into the clinical workflow of stroke can be expensive as it requires huge licensing
fees, technical support expenses, continuous model update charges, the expense related to integration of
the algorithm into the workflow, and training expenses [149]. By adopting open-source AI models, which can
reduce the licensing fees, or a provision in which public and private institutes collaborate, the expenses can
be shared. More research should be done on developing AI algorithms that are robust yet flexible,
interoperable across various workflows, and easier to optimize, which can help in mitigating the costs.

Regulatory Concerns

AI-based stroke algorithms face challenges related to ethical and legal concerns, as the AI tools fail to
manage legal risks and accountability. Development of robust AI algorithms and a blueprint of policies
should be implemented. This requires collaboration of healthcare professionals, policymakers, and AI
developers to develop a framework that can create a more ethically and legally compliant and transparent
system [149].

Future directions and recommendations
Multimodal Data and Feature Engineering

Develop fusion DL models that combine neuroimaging with clinical/EHR and genetic data. Use feature-
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extraction pipelines for both structured fields (labs, medications, diagnoses) and unstructured notes via
natural language processing (NLP), e.g., derive vital-sign trends and extract symptoms/diagnoses from
reports to build comprehensive patient profiles. Evaluate workflows that integrate imaging features with
blood biomarkers (e.g., CRP, interleukins, and endothelial dysfunction markers) for earlier risk stratification.

Data Quality and Labeling

Mitigate class imbalance with SMOTE (Synthetic Minority Over-sampling Technique), judicious
undersampling, and class-balanced/focal loss. Ensure proportional coverage of ischemic/hemorrhagic
phenotypes and severity strata and broad population diversity (age, sex, ethnicity, comorbidity, geography,
care settings). Use standardized annotation with adjudication and report inter-rater reliability (Cohen’s κ-
weighted for ordinal scales and intraclass correlation coefficient (ICC) (2,1) for continuous measures).

Study Design and Reporting

Train/evaluate with patient-level, leakage-free splits (ideally, temporal or site-held-out). Require external,
multi-site validation; report calibration (reliability plots/Brier) and decision-curve/net-benefit with pre-
specified thresholds tied to the task (e.g., LVO triage, ICH detection, and WMH/EPVS/CMB quantification).
Provide subgroup performance (older adults, diabetes, multi-ethnic cohorts).

Privacy-Preserving Collaboration

Use federated/secure multi-site learning and stress-test domain shift across scanners and protocols.

Deployment and Governance

Implement bias/fairness audits, post-deployment drift monitoring, versioning, and audit trails, and
maintain a clinician-in-the-loop with override. Assess workflow fit (PACS/EHR) and cost-effectiveness
alongside clinical endpoints to justify adoption.

Limitations
This is a narrative synthesis based on a single database (PubMed) and English-only publications (2015-
2025). We did not perform a PRISMA-guided meta-analysis because of substantial heterogeneity in study
designs, populations, imaging protocols, reference standards, and outcome definitions; therefore, cross-
study performance comparisons should be interpreted with caution. Although we used predefined
inclusion/exclusion criteria, dual independent screening, and multi-reviewer adjudication in Rayyan,
selection and publication bias may persist, and grey literature or non-indexed reports were not
systematically included. Reported metrics occasionally come from vendor-developed tools, which may
introduce reporting bias. Finally, the field is evolving rapidly; newer studies released after our search
window may not be captured.

Conclusions
AI now spans stroke prevention, diagnosis, treatment selection, and rehabilitation, with growing utility for
CSVD (e.g., automated WMH/EPVS/CMB quantification and risk stratification). While evidence supports
gains in triage speed and diagnostic consistency, broad clinical adoption requires high-quality, standardized
data, external and calibrated validation, clear governance (accountability, safety, privacy), and cost-
conscious integration into workflows. With these safeguards, AI can contribute to better, more timely stroke
care.
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