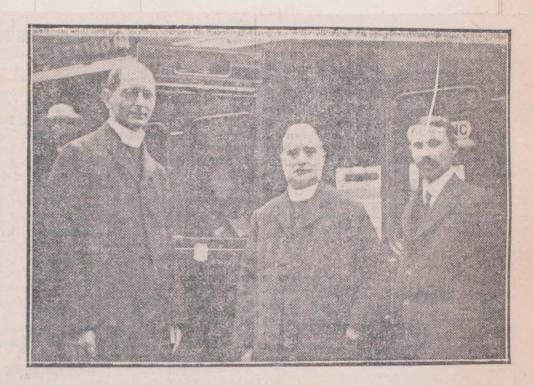

A B D E THE EXPEDITION F TO HERNOSAND, SWEDEN G TO OBSERVE THE TOTAL ECLIPSE OF THE SUN II I 1917, AUG. 21 G.J.GIBBS. J K and 1927 JUNE 29 at PRESTON L M N 0 P Q R S T


Father O'Connor.

Yesterday Father Cortie, F.R.A.S., and Father O'Connor, of Stonyhurst Observatory, and Mr. G. J. Gibbs, F.R.A.S., of Preston, left Blackburn for Hull, where later in the day they sailed for Hernosand, Sweden, on behalf of the Royal Astronomical Society to make observations of the solar eclipse of August 21.

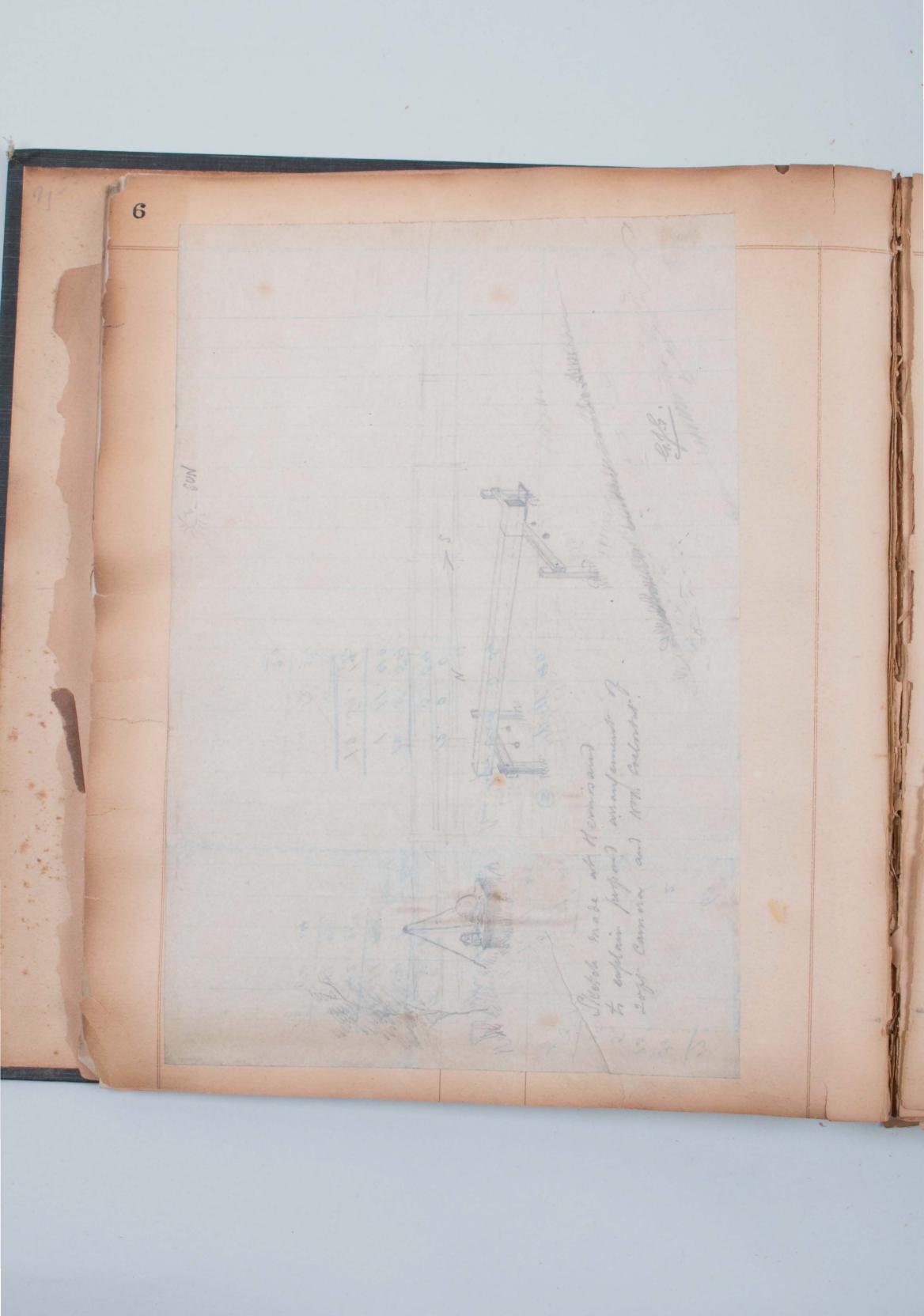
[Bueby.]

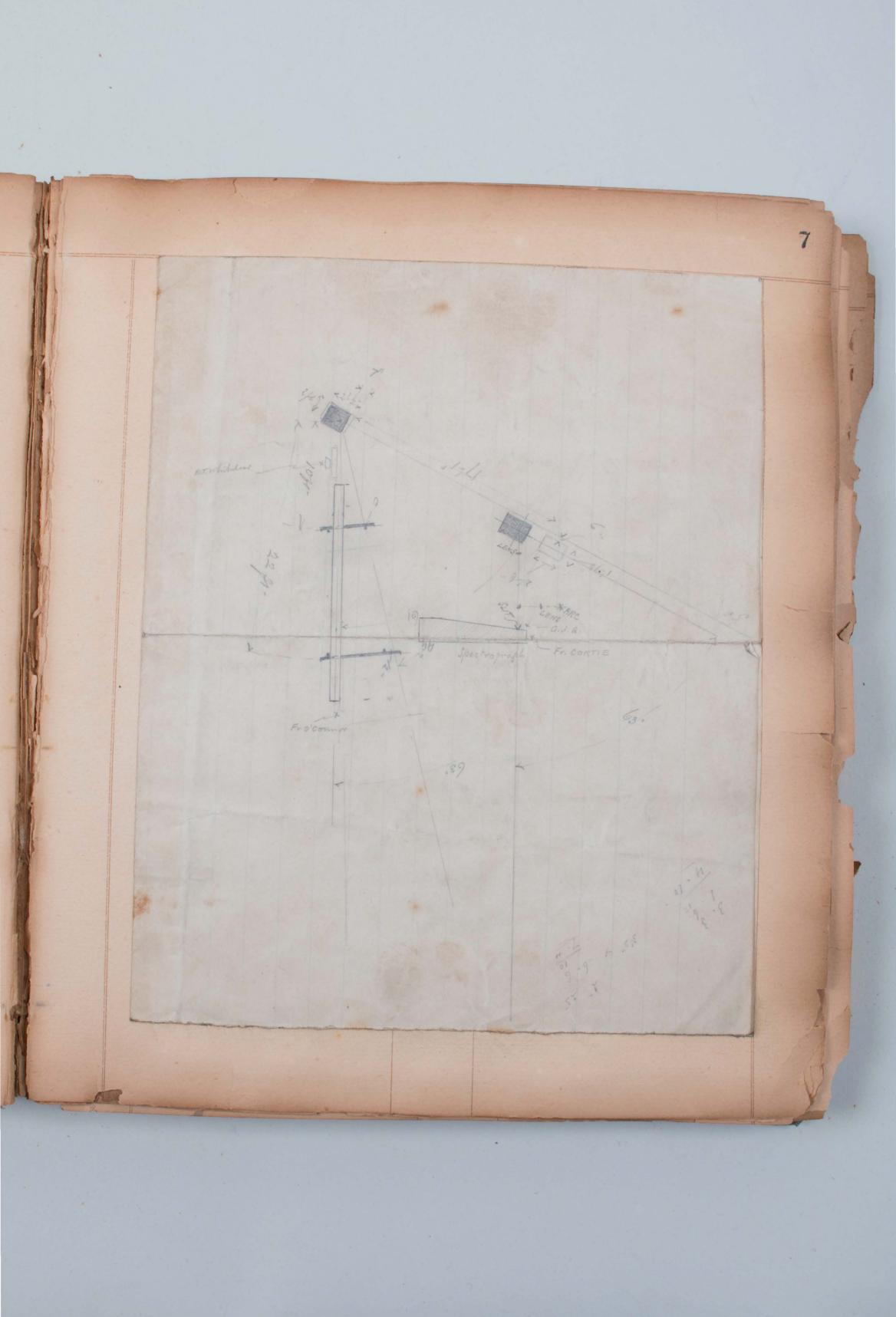
mined first shot - forgot to I have stile,

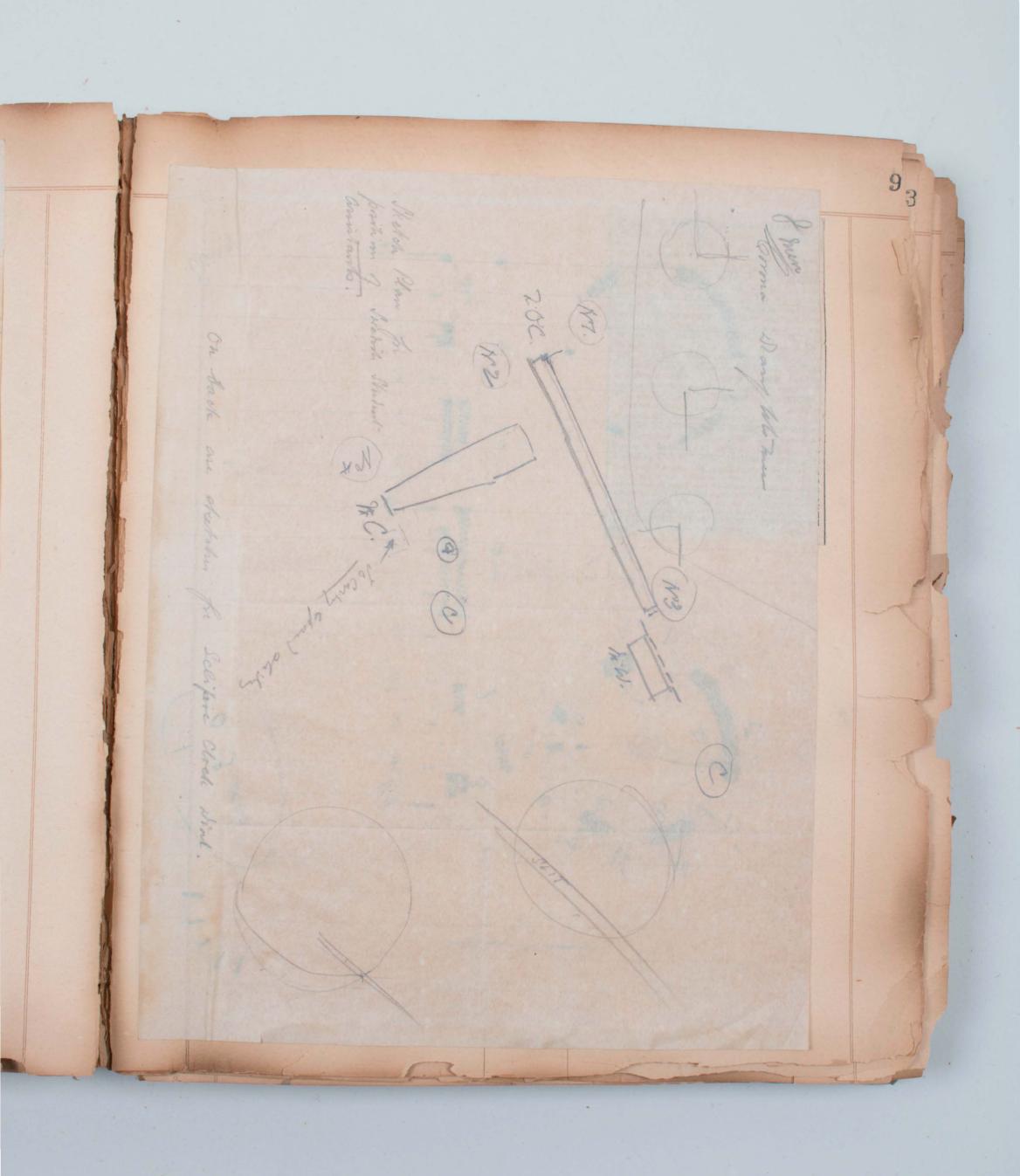
5

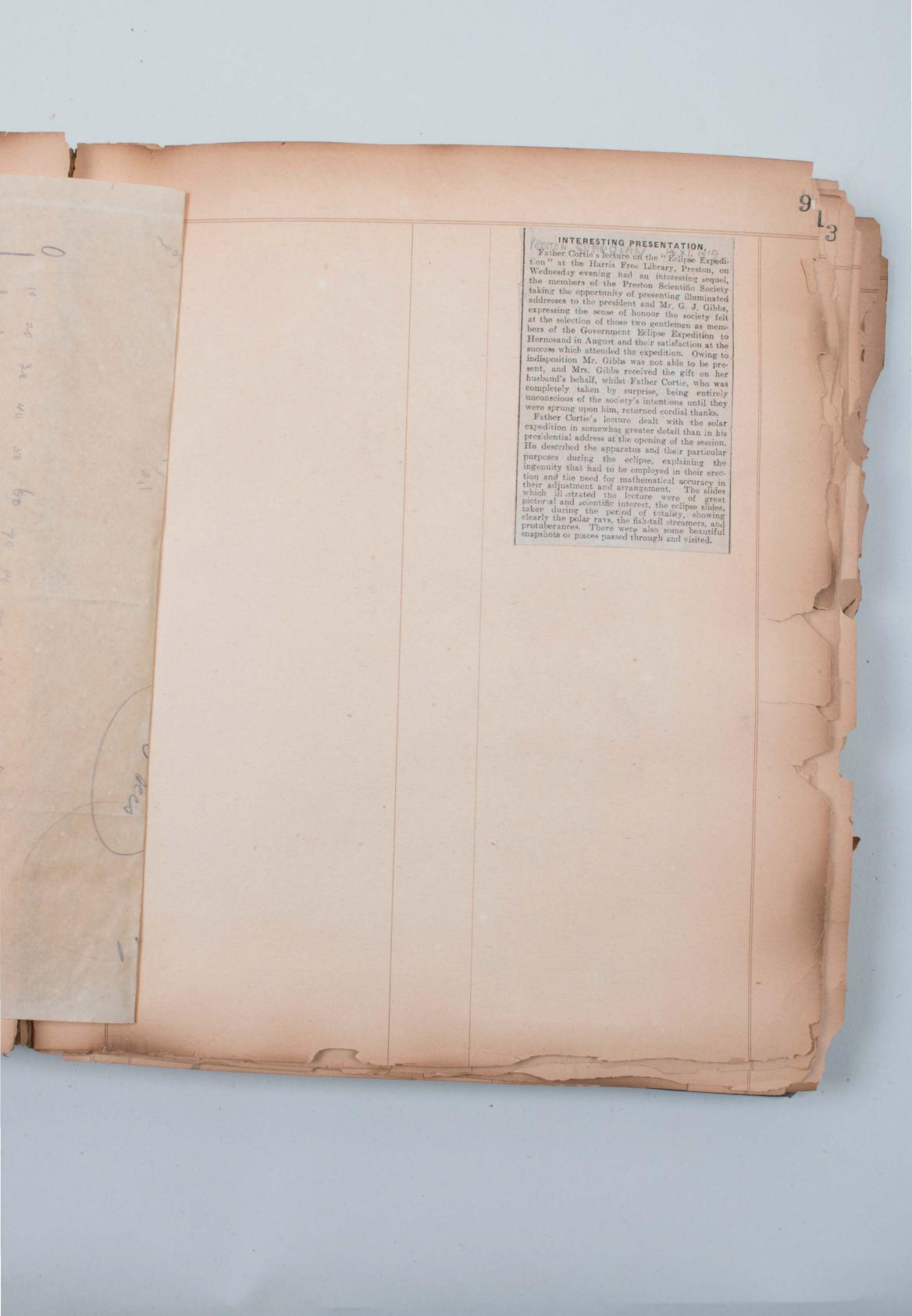
Left to right: Father O'Connors Father Costie, F.R.A.S., and Mr G. J Gibbs, F.R.A.S.

Fathers Cortie and O'Connor, of Stonyhurst Observatory, and Mr Gibbs, of Preston, met at Blackburn yesterday, and entrained at 1.50 for Hull, from which port later in the day they sailed for Hernösand, in Sweden. Along with Mr Whitelaw, of Birkdale, they form the Royal Astronomical Society's representatives to take observations of the total solar eclipse on August 21. They go out to pay especial attention to the corona, and are going to take direct photographs of the corona and of the spectrum of the corona, with special regard to the red and yellow regions. Father Cortie is the president of the Preston Scientific Society, and Mr Gibbs the chairman of the astronomical and physical section of the same body. Father O'Connor is well known in Blackburn, and Mr Whitelaw is a prominent member of the Southport learned societies.


Northern Daily Telepaper 1914.11:29






Heminsand auf 1914

8 Meeting. Let Slot Inapo of Cusps. Inapo of emps. & Black DRAW.

Drawn of pecs. exp.

Set Shit rapo of Compo. P.P.C. de de 40 9 William William Britania Pet.

DAGENS NYHETER Torsdagen den 20 Augusti 1914

Den totala solförmörkelsen i morgon.

Englands expedition: Ingenjör White-lew, prof. O'Connor, prof. Cortie och ingenjör Gibbs.

I morgon inträffar den bebådade solförmörkelsen, århundradets största förutsedda celesta evenemang. Total

förutsedda celesta evenemang. Total framträder förmörkelsen i vårt land endast inom ett 17 mil brett bälte över Jämtland, södra Ångermanland, hela Medelpad och norra Hälsingland. Men den partiella förmörkelsen, som omfattar cirka 97 hundradelar av soldiametern, är synlig i hela Sverge. I Stockholm börjar förmörkelsen 8 minuter över 12 och slutar kl. 2.28 e. m.

Den planerade turisttrafiken till orter inom totalitetszonen har naturligtvis måst inställas under denna upprörda tid. Men de svenska vetenskapliga expeditionerna äro på sina poster och ha fått fyra utländska expeditioner i sällskap. Inom de svenska har i sista stund till följd av mobiliseringen måst företas en hel del personalförändringar. Endast en expedition, med Fiskebäckskil som förläggningsort och magnetiska fenomen som ningsort och magnetiska fenomen som studieuppgift, har måst inställas.

Den största stationen är professor Hasselbergs vid Sollefteå, vars uppgift är att huvudsakligen genom fotografering studera solens gashöljen. Kamerans objektiv har en brännvidd av 20 meter. Det jättelika instrumenexpedition.

Professor Wulf, ledare av en holländsk expedition. tet är placerat mellan två tillhörande paviljonger. Assistenterna äro prof. Jäderin, d:r Larsén och instrument-makare Rosén från Uppsala.

UTLÄNDSKA VETENSKAPSMÄN HIT ATT STUDERA SOLFÖRMÖRKELSEN

T. v. engelska expeditionens deltagare, t. h. två holländska astronomer. Båda expeditionerna ha etablerat sig vid Härnösand.

VECKO - JOURNALEN

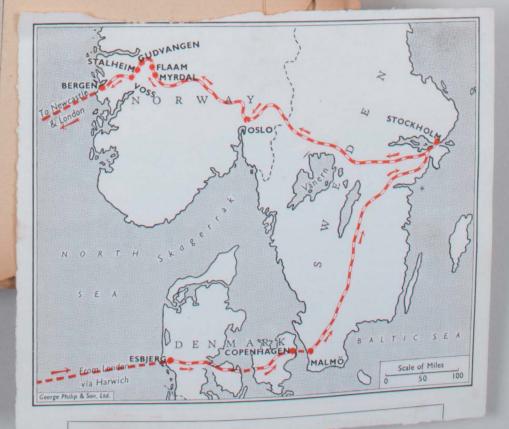
Nr. 34 3

SÖNDAGEN DEN 23 AUGUSTI. 191.

En mil från Sollefteå, vid Långsele, är professor Bohlins expedition i verksamhet. Dess uppgift har blivit studiet av koronans yttredelar. Inomsamma socken, vid Forsse, skall prof. Bergstrands expedition studera solljusets intensitet i olika skikt av koronan och har för ändamålet lånat Uppsalauniversitetets stora triplett-instrument.

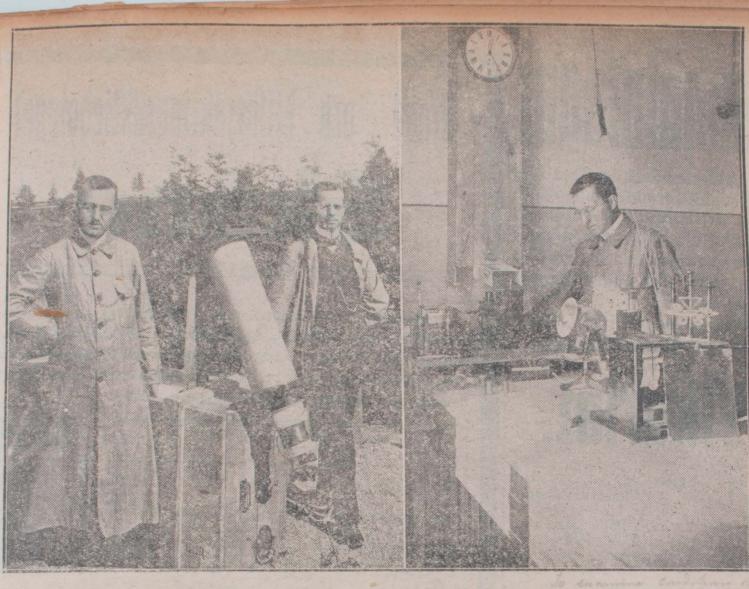
Den fjärde svenska expeditionen har uppfört sin anläggning vid Strömstad i Jämtland under ledning av prof. Charlier från Lund samt d:r Zeipel. Dit har också kommit en tysk expedition, som redan anlagt en station vid Riga och vid krigsutbrottet måste kvarlämna sina instrument där.

Hernösand har emellertid blivit samlingsplatsen för de utländska expeditioner som av kriget föranletts att söka sig till Sverge i stället för att upprätta stationer i Ryssland. Där ligga nämligen en engelsk och två holländska expeditioner, fullt rustade med instrument.


Den engelska expeditionen, som officiellt utsänts av regeringen, ledes av professor Cortie från Stonyhurst College. Den har uppställt sina instrument på Tekniska skolans gård och kommer att uteslutande fotografera solens spektrum samt koronan. Den har till granne på gården den ena holländska expeditionen, ledd av prof. Wulf, och bland assistenterna räknande en spanjor, Louis Rodes från Cortoza. Denna expedition kommer att


syssla med förmörkelsens tidsbestämningar samt fotografering av koronan. Den andra holländska expeditionen har utsänts från universitetet i Utrecht och ledes av professor van der Bildt. Dess uppgift är att med kamera och andra instrument studera solstrålningen.

Råder mulen väderlek i morgon fåvarken vetenskapsmännen eller vi andra dödliga se mycket av det celesta skådespelet. Man kommer då endast att få uppleva en skymningsstund mitt på dagen och tycka att himlavalvet är avsevärt nedsänkt. Och inom djuroch fågelvärlden blir det en stämning å la yttersta dagen.


Råder däremot vackert väder med klar luft, utvecklas över totalitetens zon ett praktfullt och intressant skådespel, av vilket man även i bältets närhet kan iaktta en hel del. Den mest effektfulla anblicken erbjuder solens korona, strålkransen kring den mörka månskivan, och vid molnighet kan det inträffa att molnens färg erbjuder vackra och starka effekter.

En egendomlig anblick erbjudes även av de planeter och fixstjärnor som befinna sig intill månskivan och som plötsligt bli synliga vid totalitetens inträffande. Denna gång kommer den klart lysande stjärnan Regulus inom koronans strålkrets på ett avstånd av endast två soldiametrar från månens kant. Man bör även kunna se Merkurius med blotta ögat eller med en svag kikare, vilket är sällsynt här i Sverge.

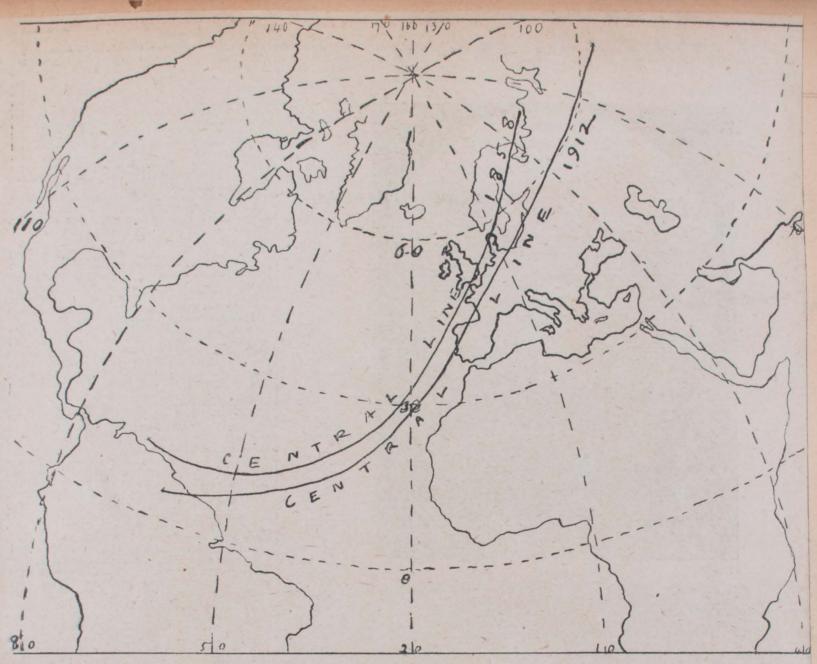
Den Wulf-Rodéska expeditionen.

Bilden till vänster är tagen i bersån å Tekniska skolans plan Till vänster synes professor **Wulf** och till höger professor Rodés.

Bilden till höger visar professor Wulf vid sina instrument i en af salarna å Tekniska skolans nedre botten.

tenskapsmännen ha, utom hvad vi

Hernösands-Posten har lyc- venså ha de förklarat sig mycket be- ute i Europa, torde deras resa ej bli kats förvärfva ofvanstående fotogra- låtna med det stora tillmötesgående, en vanlig turistfärd, utan säkerligen


De af dem, som ännu ej afrest, förut meddelat, uttalat sin stora gläd- lämna i dagarna vår stad för att be- där i lugn och ro få bearbeta de je öfver de goda resultat, som vun- ge sig till respektive hemorter. Under resultat de vunnit under förmörkelsen nits vid studiet af förmörkelsen. Af- | de krigiska förhållanden, som nu råda | här i fredags...

fier från solförmörkelsen i Hernösom visats dem af alla de Hernösand. Samtliga de här ofvan afbildade vegon beröring. till sina respektive hemländer och

STONYHURST AND THE ECLIPSE.

The announcement has already been made that Fathers Cortie (president of the Preston Scientific Society) and O'Connor will be in charge of one of the official parties which will shortly proone of the official parties which will shortly proceed to Russia to view and make scientific observations in connection with the total eclipse of the sun on August 21st. The Stonyhurst party will be stationed at Kiev, and it is hoped to be able to obtain important results. Some of the instruments required for the eclipse operations are being erected on an experimental stage at Stonyhurst Observatory, and Father Cortic is finding the advice and assistance of Mr. G. J. Gibbs (chairman of the Astronomical Physical Section of the Preston Scientific Society) of great value in the engineering difficulties that have been encountered. To view the total eclipse of the sun to be observed at Hernosand, in Sweden, on August 21st, the astronomers who form the official eclipse expedition sent by the Joint Permanent Eclipse Committee of the Royal and Royal Astronomical Societies, will sail from Hull on Tuesday. These consist of Father Cortie, of the Stonyhurst College Observatory, who is in charge of the expedition, and will be accompanied, among others, by Mr. G. J. Gibbs, chairman of the Astronomical Section of the Preston Literary and Scientific Society. Mr. Gibbs was Head Boy of the Bedford Modern School some years ago, and is son of Mr. George Gibbs, Victoria-road, Bedford. The program appointed for the astronomers is to take direct photographs of the sun's corona, during totality, on a large scale to show details in the lower corona, and on a smaller scale to obtain the full extension, if possible, of the filmy streamers which constitute the outer corona. They will also endeavour to obtain the spectrum of the corona from the red to the green, and of the envelopes that immediately surround the sun.

Comparisons of Central Lines of Eclipses, March, 1858, and April, 1912.

It is interesting to note that we are now entering on a series of repetitions, after a triple Saros, of some of the most famous eclipses. The Eclipse of 1914 is the counterpart of that of July, 1860, at which the corona was first photographed. The lines of totality are parallel, though that of the 1860 eclipse passed considerably to the south-west, traversing that fortunate country in the matter of eclipses, Spain. The parallelism of the eclipse of this month with the eclipse of March, 1858 is even more striking, and I have made a sketch of the two lines, to illustrate the triple Saros.

The eclipse of 1858 was the last central eclipse visible in England, the line passing about 100 or less miles north-west of London. Like the present eclipse, it was only annular; but I see from the Nautical Almanac of that year that there was just a possibility that it would be total for a short space off Madeira. The mid-totality of the eclipse of this month takes place nearly in the same spot; but in this case there is no doubt that the total zone will extend for several hundred miles on each side of it.

I have questioned a good many people on the subject; but I have only found one non-astronomical person who has any recollection of the 1858 eclipse, and he only saw the partial phase. It would be interesting to read the reminiscences of any present correspondent of "Ours" who

It would be interesting to read the reminiscences of any present correspondent of "Ours" who was on the central line. Patrick H. Hepburn.

Dr W. G. H. Moll, Lector aan de Rijks Universiteit.

Ultrecht,

J. van der Bilt Observator voor de Stervenkunde Id Rijks-Universiteit te Utrecht Van Limburg Sterumplein 1

TO-MORROW'S ECLIPSE.

(FROM A CORRESPONDENT.)

As the moon passes from west to east across the sun to-morrow the central line of the shadow strikes the earth in the polar regions of North America, traverses Greenland and penetrates into Europe by the Scandinavian peninsula, crossing from Mosjöen, on the west coast of Norway, to Hernösand, on the east coast of Sweden. Thence it passes over the Aland Isles in the Baltic Sea, and enters Russia near the city of Riga. Pursuing its course in that country, it traverses the cities of Minsk, Kieff, and Feodosia, in which observations will be taken.

The central line of totality will then cross the Black Sea and reach Asia Minor, near the city of Trebizond, whence it will pursue its way into Persia, where the eclipse will be observed by engineer officers of the British Survey. The breadth of the section of the shadow-cone cut by the earth during this passage will be about 100 miles.

It had been arranged by the Eclipse Committee of the Royal and Royal Astronomical Societies that Father Cortie, of the Stonyhurst College Observatory, and president of the Manchester Astronomical Society, with his colleague, Father E. O'Connor, should form part of the official expedition to Kiev. Accordingly an application was made to the Russian Government through the British Foreign Office by the President and Council of the Royal Society that these two Stonyhurst astronomers should be admitted in their

scientific capacity into Russia. But the Russian Foreign Office refused even a reiterated application of the British Foreign Office, on the plea that the law excluding gentlemen who are Jesuits from Russia is categorical. In this respect Jesuits are on the same plane as Jews and gipsies. This entailed a division of the party of observers, and Father Cortie is to set up an eclipse station at Hernösand, in Sweden, accompanied by Father O'Connor, Mr. E. T. Whitelow, of Birkdale, past-president of the Manchester Astronomical Society, and Mr. G. J. Gibbs, the curator of the Preston Corporation Observatory. The greatest possible courtesy has been extended to the lead of tended to the leader of this expedition by the Swedish astronomers, in particular by Professor B. Hasselberg, of Stockholm, who will himself conduct an official expedition, also to Hernösand. Dr. Charlier, too, the director of the observatory at Lund, sent a kindly invitation to the British official party to accompany his expedition to Strömsund.

The main object of an expedition to observe a total eclipse of the sun is to obtain a photographic record of the form and dimensions of that wonderful crown of glory, or corona as it is called, which suddenly bursts into view when the moon just covers the sun; for the form of this solar envelope, extending millions of miles into space, changes sympathetically with the variations in the number and size of the spots on the sun. Even more important, as bearing more intimately upon problems concerning solar and terrestrial physics and the ultimate constitution of matter, is the cbservation of the constituents of the sun's corona by means of its spectrum.

What is this mysterious "coronium" which so far has eluded the grasp of chemists and physicists in terrestrial laboratories? Is it a primeval form of matter from which the substances known to us have been evolved? Before we can attempt to begin to answer such questions we must obtain a more adequate knowledge than we yet possess of its spectrum. We know it is rich in ultra-violet radiations. Accordingly the Greenwich observers will employ a photographic spectroscope in which the optical parts, prisms and lenses, are wholly of quartz. So far we know hardly anything about the spectrum of this substance in the red and yellow parts of the spectrum.

Father Cortie will employ a spectrograph of the Littrow form, having a focal length of 98 inches, with which he will attempt, in the 2 minutes and 10 seconds of totality, to photograph the spectrum in the red, orange, yellow, and green, or from wave-length 6,800 to wave-length 4,800. This instrument was designed in conjunction with Professor Fowler, and its construction in the laboratory at South Kensington was superintended by Professor Fowler.

For the direct photographing of the corona the expedition will utilise a 4in. Grubb lens with a focal length of about 19ft., kindly lent by the Council of the Royal Irish Academy. A lens of long focal length gives large images at the primary focus, and hence the detail of the regions of the corona immediately surrounding the sun can be photographed. Lenses of shorter focal lengths give smaller but brighter images. Hence it is possible to photograph the filmy extensions of the corona, even to two or three solar diameters from the sun's limb.

Are such rays the stream lines along which the sun's influence—operative in magnetic stones on earth, which reflectively by means of earth currents sometimes affect even our telegraph and tramway services—is conveyed, in the form of electrons, to ionise our upper atmosphere? For the photography of the coronal extentions the eclipse party will employ two lenses, one a Dallmeyer portrait lens of 4in, aperture and 30in. focal length, and a Ross portrait lens of 12in. focus. But in order to photograph the coronal extensions a comparatively long exposure is required. Hence the inner layers are much over-exposed, and it becomes difficult to trace the connection, if any, between the rays of the lower part of the corona and the streamers of the outer corona. Hitherto a series of graduated exposures had to be taken, thus curtailing the time necessary for a long exposure on the faint coronal extensions. Acting upon a suggestion of the late Mr. Thorp, of Manchester, whose loss to local astronomy is greatly deplored, the expedition to Hernösand will use plates bathed in a solution which will render them immune from over-exposure.

A large partial eclipse will be visible in England about midday to-morrow; at Manchester, at the time of the greatest phase, about seven-tenths of the sun's diameter will be obscured.

THE ECLIPSE EXPEDITION IN SWEDEN.

PREPARING FOR THE DAY.

BY THE REV. A. L. CORTIE.

HERNÖSAND (SWEDEN), AUGUST 16. The town of Hernösand is situated mostly on a small island, the port lying on the strait which separates it from the mainland. Part of the town, including the residential suburbs charmingly placed among pine woods on undulating hills, is on the mainland. Two bridges spanning the strait connect the two portions of the town. The port is a great centre of the timber trade, and large piles of timber are stacked in the yards surrounding the open sound to the north, by which vessels enter the port. In the distance beyond the north sound are ranges of mountains clad with the prevalent pine trees. The atmosphere is of transparent purity, but the surrounding hills are conducive to the formation of clouds. During the two weeks we have been here not a day has passed

without some portion of it being cloudy.
Owing to the kind offices of Professor B. Hasselberg, of Stockholm, and to the courtesy and kindness of the Rector, Dr. Thaw, the expedition has been fortunate in securing an excellent site for the eclipse instruments at the Technical School, which is situated on rising ground on the outskirts of that portion of the town which is on the island. Not only have we the site but the liberty to employ all the resources of the well-appointed Technical School, including workshops and photographic dark room. The only restraint on our perfect liberty is that, in common with all other foreigners in the town, we have to report ourselves daily to

the police

Favoured by fine weather, we began the erection of the instruments the day after our arrival, which was on August 4. There are two coclostats, one of 16 inches diameter, which feeds with light three photographic telescopes for photographing the corona, besides a telescope, conveniently placed on the long camera of 20 feet focus, to project an image of the sun upon a disc. This disc is carefully divided into degrees, and by its use the angle subtended at the centre by the two cusps on the partially eclipsed sun can be observed as the moon advances towards the total phase. These observations give the intervals of time still remaining before totality. With the 20ft. coronagraph, which is under the charge of Father O'Connor, six exposures are proposed of varying durations from two to twenty-five seconds. The two other coronagraphs will be employed to photograph the extensions of the solar corona on specially bathed plates e which do not solarise even with considerable exposures. These two coronagraphs are under the charge of Mr. Whitelow.

For spectroscopic work we have a very fine instrument especially built for this aclipse and occasion. It will be worked by Father Cortie and Mr. Gibbs. Let me record whence the different parts of the instrument have been gathered together. First there is an a contract the contract the contract the contract that the contract the contract the contract that the cont 8-inch coelostat built by Grubb, which has been kindly lent by the Royal Irish Academy. The lens, of 5 inches aperture and 7 feet focal length, which forms the image of the sun on the slit, comes from Stonyhurst. The slit belongs to the Royal Astronomical Society. The beam of light from the slit meets a diagonal prism from the Imperial College of Science, South Kensington, which turns the light through a right angle and projects it on a 6in. lens of 98 inches focal length from the Royal Observatory, Greenwich. The parallelised beam of light filling the lens is now refracted and dispersed by a large glass prism of 7 inches edge and 42 degrees; and the coloured band is projected on to a $6\frac{1}{2}$ inches flat mirror. These two pieces of apparatus belong to the Joint Permanent Eclipse Committee of the Royal and Royal Astronomical Societies. The beam of light is reflected by the mirror, passes on its return journey through the prism and lens, and forms an image of the spectrum at the mouth of a tube, where is fitted a repeating back which can be loaded with plate holders belonging to the Solar Physics Observatory, Cambridge. With this instrument it is proposed to photograph in the red, yellow, and green portions of the spectrum the spectra of the cusps before totality, the so-called "flash" spectrum a few seconds before totality, and the coronal spectrum during totality. The town electrical engineer, Herr Helenius, is also arranging to furnish us with current, so that it may perhaps be possible to put a companion spectrum of the iron are on all the plates, if we are so fortunate as to secure success

There are two other expeditions practically at Hernösand; one in fact is with us at the Technical School. This consists of Father Wulf, and Father Rodés from the College of St. Ignatius, Valkenburg, in Holland. Their object is to obtain the exact times of the beginning and end of totality by means of a photo-electric cell. Quite close to Hernösand also is another expedition from Holland, consisting of Dr. Molle and Mr. Van der Bilt from Utrecht. Their object is to get direct measurements of the radiation from the corona by means of delicate apparatus containing a very sensitive thermopile.

A few miles further north of Solloftea is Professor B. Hasselberg, from Stockholm, whose main equipment consists of a huge coronograph nearly 66 feet long. His object is to obtain large-scale direct photographs of the corona and streamers. Given fine weather these various expeditions ought to yield results of great value and scientific

[We published on Saturday a telegram from Father Cortie, despatched from Hernösand on Friday, stating that the weather on the day of the eclipse was perfect, and that all the operations were successful.]

PRESTON SCIENTIFIC SOCIETY.

The vitality of the Preston Scientific Society on reaching its majority was indicated on Wednesday evening by the large attendance and the gratifying reports presented at the 21st annual meeting. The society might very well dispense with much of the formal part of the proceedings at these annual gatherings, but what

it would do without the cheery presence of Father Cortie it is hard to conceive. Both in his references to the eclipse expedition and in his presidential address Father Cortie contributed features of outstanding interest. In connection with the former he paid a tribute to the excellent work of the charman of the Physical and Astronomical Section, Mr. Gibbs, who has recently been operated upon for appendicitis, and, it is gratifying to state, is on the high road to recovery.

and, it is gratifying to state, is on the high road to recovery.

It was originally arranged that the Government expedition of which Father Cortie had charge should proceed to Kieff, but a difficulty arose owing to the objection of the Russian Government to 'Jesuits, equally with gypsies and Jews.' Application was made for special permits through Sir Edward Grey and the British Ambassador, whilst the Russian Ambassador promised to do his best having regard to the special circumstances, but the necessary papers were refused, and the members of the expedition were forced in July to rearrange their plans. Hernösand, in Sweden, was chosen as the fresh objective, and as matters turned out this was most fortunate, for whilst in Russia the observers were troubled with clouds Father Cortie and his colleagues at Hernösand were favoured with ideal conditions.

Referring to the services of Mr. Gibbs, Father

ideal conditions.

Referring to the services of Mr. Gibbs, Father Cortie said: "Owing to the expedition having to be got up rapidly, and the arrangements made at the last moment, I doubt whether we should have got ready in time but for the scientific ability and engineering skill of Mr. Gibbs, who took charge of the erecting arrangements, whilst I took off mv hat and coat and worked occasionally as a common labourer." The expedition received every possible assistance from the authorities in Sweden, but before they left they found a strong anti-British feeling springing up owing to the lies circulated by Woolff's Agency.

ECLIPSE OF AUGUST, 1914—FAMOUS ECLIPSES.

[299.]—Mr. T. L. Robins (392, p. 213) asks for particulars as to positions in Norway where the eclipse of Aug. 20-21, 1914, will be total. I send a map showing the line of totality across Norway. plotted from the data given in the Nautical Almanac. The only towns near the central line are Hernosand, on the coast, and Solleftea, inland, at both of which totality will last for over two minutes. Both places are most conveniently reached from Stockholm, either by rail or by water. The river journey from Hernosand to Solleftea is said to be very beautiful. Other routes are via Christiania and Trondhjem. [299.]--Mr. T. L. Robins (392, p. 213) asks for

SCIENTIFIC SOCIETY.—ANNUAL MEETING,

MEETING,

The 21st annual meeting of the Preston Scientific Society was held at the society's rooms, Fisherfate, on Wednesday evening, Fr. Cortie, S.J., presiding over a large attendance.

The annual report, presented by Mr. F. Chadderton, showed that the membership had increased from 410 to 468, and there was a balance in hand on the accounts of £5 9s. 8d. The lectures during the last session were of an exceedingly high order. All the sections had carried on their systematic and regular meetings, and had been well attended. There had been three excellent exhibitions, one promoted by the astronomical and physical section in conjunction with the microscopical section, another by the literary section, and the other by the photographic section, whilst the society had had its doors open for papers, lectures, and exhibitions on 92 occabions during the session. The photographic section had exhibited at the Alliance Exhibition and at the Anglo-American Exposition in London.

"It is a matter for pardonable pride for this

and at the Anglo-American Exposition in London.

"It is a matter for pardonable pride for this society," the report proceeded, "that out of the four members of the Government Solar Eclipse Expedition to Hermasand, Sweden, we should have had the signal and unique honour of furnishing two representatives in the persons of our esteemed president, Fr. Cortie, and the chairman of the astronomical and physical section, Mr. Gibbs. We desire to congratulate them most heartily upon their well-earned distinction, and to extend to them a heartfelt welcome home again." (Hear, hear.)

Sectional reports, all showing progress and

Sectional reports, all showing progress and good work accomplished, were presented, the literary section by Mr. D. Abbatt, microscopical and natural history section by Mr. John Abbott, photographic section by Mr. W. Cragg, and the astronomical and physical section by Mr. Ainsworth.

Fr. Cortie was re-elected president.

ECLIPSE OF THE SUN.

To-morrow's eclipse of the sun is an important event in astronomical circles, and elaborate

To-morrow's eclipse of the sun is an important event in astronomical circles, and elaborate arrangements have been made for observing and recording results along the track of totality, which will be about 100 miles broad, crossing Europe from the north-west coast of Norway to the Crimea, and coming to an end in Persia. In Sweden the central line goes from Alsteno to Haydanger, near Hernosand. It enters Russia about 16 miles north-east of Riga.

A large partial eclipse will be seen in Great Britain. In this district it will commence a few minutes before 11 a.m., reach its maximum at 12 5, when about seven-tneths of the sun's diameter will be covered by the moon, and end at 1 15. One of the official eclipse expeditions is accompanied by well-known astronomers, these being Father Cortie, of Stonyhurst, who is in charge; Father O'Connor, of Stonyhurst; Mr. G. J. Gibbs, of Preston; and Mr. E. T. Whitelow, Birkdale.

Total eclipses are rare at any one given locality on the earth's surface. The last one visible in England took place on May 22nd, 1724, and there will not be another until June 29th, 1927, when a barely total eclipse (totality only lasting slightly under three-quarters of a minute) will be seen soon after sunrise in the northern counties situated near the Scottish border. After that there will not be a similar event until August 1th, 1999, when a total eclipse will just be visible in the "delectable duchy" near Land's End.

73

LETTERS TO THE EDITOR.

[We do not hold ourselves responsible for the opinions of our Correspondents. The Editor respectfully requests that all communications should be drawn up as briefly as possible.]

All communications should be addressed to the Editor of the English Mechanic, Effingham House, 1, Arundelstreet, Strand, London, W.C.

** In order to facilitate reference, Correspondents, when speaking of any letter previously inserted, will oblige by mentioning the number of the letter, as well as the page on which it appears.

"I would have everyone write what he knows, and asmuch as he knows, but no more; and that not in this only, but in all other subjects: For such a person may have some particular knowledge and experience of the nature of such a person or such a fountain, that as to other things, knows no more than what everybody does, and yet, to keep a clutter with this little pittance of his, will undertake to write the whole body of physicks; a vice from whence great inconveniences derive their original."

—Montaigne's Essays.

THE TOTAL SOLAR ECLIPSE: OTHER MEMBERS OF ITS FAMILY—MAGNETIC CHARTS—THE EQUATION OF TIME—TIDAL FRICTION—LEAST ACTION—THE HATCHET PLANIMETER—AN ASTRONOMICAL SCARE—CHANGE IN THE STAFF AT GREENWICH.

[68.]—The day when this is published wilk be the day of the Total Solar Eclipse, and to the uncertainty of weather conditions usual on such occasions is added the uncertainty about the location and preparedness of the observers, and the amount of accurate astronomical information that will be obtained from the phenomenon is a very unknown quantity. This is being written on August 15, and the last information received from Major Hills and Professor Fowler, who form the expedition sent by the Joint Eclipse Committee of the Royal Society and Royal Astronomical Societies, came from Copenhagen about a week ago. A message which we got in a rather indirect way about a fortnight earlier said that they proposed to go to Riga and make what observations they could. The later message stated that their objective was St. Petersburg, the idea, no doubt, being to get in touch with the Russian astronomers at Poulkova, who are especially friendly and amiable men. St. Petersburg and the totheir relative positions at the beginning of the centres of the sun and moon return very nearly to their relative positions at the beginning of the totheir relative positions at the beginning of the cycle, so that, in general, any eclipse is succeeded by another, eighteen years afterwards, ten or eleven days later in the calendar, according as there are five or four leap-years in the interval, and this series of eclipses is called a "family." The third of a day is important. If the period was an exact integral number of days,

THE RECENT SOLAR ECLIPSE—THE FIELD ROUND & LYRÆ—PARALLAX CORRECTIONS FOR SEXTANT OBSERVATIONS—THE LARGE SUNSPOT—THE RHABDOLOGICAL ABACUS—FERGUSSON'S PERCENTAGE TRIGONOMETRY—HAGEN'S ATLAS OF VARIABLE STARS—THE "ASTRONOMISCHE NACHRICHTEN."

[188.]—The two members of the staff of the Royal Observatory who went to Minsk to observe the Total Solar Eclipse returned to England via Stockholm and the North Sea on September 7, after a not very protracted journey considering the circumstances. The greatest risk they ran appears to have been from a mine not far from the English coast, which did its cowardly work and destroyed a fishing-boat within two hours of the time they were in its neighbourhod. They—Messrs. Jones and Davidson—left their instruments at the Poulkova Observatory, to be forwarded when times are less warlike, bringing with them the photographs which form the result of their expedition; their companion, Mr. Hepburn, returned a few days earlier. As is not unusual, the weather predictions have been completely falsified; but, to use a rather trite Irishism, I think it may be said generally about eclipses that the weather was not what it was expected to be, and no one thought it would be. On this occasion the prediction said that Norway and Sweden would be the worst places, and that the weather chances would improve going southward along the line; but, as a matter of fact, the weather appears to have been perfect for eclipse observing on both sides of the Scandinavian peninsula, very good at Riga, where Dr. Backlund of Poulkova was stationed; sufficiently good at Minsk and very bad at Kieff and in the Crimea. At Minsk the run of the weather on the days of the eclipse gave some cause for anxiety, for though it was generally fine, clouds gathered daily in the afternoon about the time of the eclipse; but on the eventful day it happened that though the cloudbank was present, there was a large area of clear sky through which the eclipse was seen. Professor Campbell, of Lick, was at Kieff; but here it was completely cloudy, and he saw nothing. At Theodosia, in the Crimea, the observing party from the Cambridge University Observatory, and Dr. Perrine, from Cordoba, were similarly disappointed. It is curious how local these conditions were. At Theodosia

AN EVENTFUL VOYAGE.

Mr. F. T. Whitelow, F.R.A.S., of Birk-dale, who was one of the British Expedition to Hernosand, Sweden, to witness the solar eclipse on August 21st, lectured before the members of the Southport Society of Natural Science—of which he is past president—on the results of that expedition on Thursday evening, at the Temperance Institute. Apart from the scientific knowledge which is contained the lecture was interesting from the fact that many of their plans were upset on account of the war; but fortunately these did not affect the actual observation, only the curtailment of projected holiday jaunts in and about that interesting country. The British expedition was divided into two parts, and as it happened the other section which was to have observed the phenomenon in Russia was unable to do so because of the war. Dr. F. J. Baildon (president) occupied the chair, and there was a good

attendance. At the outset of his lecture Mr. Wh.telow explained what a solar eclipse was, and why it was needful to go so far from home to see it. The best places to see the eclipse that took place on the date given was on a curved line starting in the North of Norway, passing through Northern Sweden, across the Baltic, through Russia and the Crimea, and thence on into Persia. Accordingly expeditions from different countries were organised to transport their instruments and erect them at different stations on that line. Seeing the duration of the total eclipse was only about two minutes, proceeded the Lecturer, and a great number of different observations were required, the principle of division of labour was carried out, and to each expedition was allotted certain definite lines of work. In England there is a permanent committee appointed by the Royal Society and Royal Astronomical Society to manage the work of eclipse observation, and they in the first instance arranged for a single expedition to Kiev, in Southern Russia. Now an eclipse expedition without a veteran eclipse observer like their friend and honorary member, Father Cortie, was unthinkable, and as he and his assistant, Father O'Connor, were Jesuits, and Jesuits were prevented by law from entering Russia, a difficulty arose. Through diplomatic channels en-deavours were made to get a relaxation of this law on this occasion. At first it was refused, then reconsidered-judicial matters like armies moved slowly in Russia, but they moved,—and finally, when it was too late to be of any service, permission was given. They had great reason to be thankful for the slowness of sian movements-it led to the expedition being split into two parties, each with somewhat different programmes of work. Professor Fowler, the secretary of the Royal Astronomical Society, along with then Major, and now Colonel Hill, its president, and their assistants, were appointed to go to Kiev, to the Russian station, while Fathers Cortic and O'Connor were sent to Hernosand, a little place in the northern portion of the Baltic, some 250 miles north of Stockholm.

A LANCASHIRE EXPEDITION.

He (the Lecturer) and Mr. Gibbs, the chairman of the Astronomical Section of the Preston Science Society, went with them as helpers—so that the expedition was recruited entirely from Lancashire. Father Cortie was leader of the party; Father O'Connor was the mathematician, and worked the large coronograph; Mr. Gibbs was the engineer directing the navvy work and the preparation of the founda-tions and support for the instruments, and aided Father Cortie at the spectrographs; while he had charge of two small coronographs, undertook the test exposures for determining the best focus of the corono-graphs, served indifferently as interpreter as errand boy to do any shopping-(laughter)—and general factorum. They left Hull and the world all at peace on July 28th, arriving at Gothenburg early on July 30th, and the same night they reached Stockholm by train. Although they had been informed that they would have a wireless installation provided on the ground, he thought it well to take a reliable chronometer, and this turned out a lucky provision, since, owing to the political state of affairs, all wireless telegraphy was forbidden before they reached their destination, and they were practically dependant on their own resources for getting and keeping accurate time. As they had a considerable amount of work to do in the way of preparing and adjusting their instruments, they spent as little time as possible in Stockholm on their outward journey—their idea was to have a little holiday there on their way home, and to return from Stockholm to Gothen-burg in a leisurely fashion along the canals and great inland lakes of Sweden. They did have a short trip among the beautiful scenery, thanks to Father Johneyer, a colleague of Father Cortie, and on their return to Stockholm in the evening they found they were entering stirring times. The main square, near the Opera House, was crowded with people reading the telegrams posted outside the offices of the principal newspapers. They learned that owing to the interruption of the railway traffic no English or German newspapers had arrived for some days; no mails had come in, and consequently none of them received letters they were expecting from home. The wildest rumours were affoat, and the British Minister was advising all tourists to return home as quickly as possible. As for themselves, he saw no present necessity for them interrupting their work, and arranged to communicate with them if he thought it advisable to "git"—in which case he advised them to cross the frontier and make for the Norwegian coast. The next morning the Swedish papers contained news of the proclamation of war by Germany against Russia, and the proclamation of neutrality of Sweden and the proclamation of the embargo on the export of foodstuffs was posted in the town. A party of seven Russian tourists in their hotel who had been intending returning home via Germany were wondering how they were going to get home, as all steamers from Finnish and Russian ports were held up in Stock At 11 a.m. on Sunday, holm harbour. August 1st, they sailed for Hernosand. As fellow-passengers they had two astronomers from Holland, Professors Wolff and Rodes. They called them there Dutchmen, although, as a matter of fact, one was a German and the other a Spaniard. They,

like themselves, were going to Hernosand to observe the eclipse, and their chief topic of conversation was naturally what was likely to be the fate of those expeditions that were going to Russia. During the night, when they were off the Aland Islands, they heard distant booming noises, and when they arrived at Sundsvall in the afternoon were informed that news had come by telephone that there had been a running fight between two German cruisers and a Swedish cruiser, which had been driven into a Finnish port. Later they learned that was not correct, but that the noise came from the destination of a harbour on the Finnish coast by the Russian commandant, who had misunderstood a telephonic order-and had blown up all the harbour works to prevent the Germans making use of them. Splendid arrangements had been made for them at Hernosand on the grounds of the excellent technical school, in an elevated position above the town. The school itself, a fine establishment, was placed at their disposal because the school holidays were on. Several professors also assisted them.

AN INDIGNANT AMERICAN LADY.

In their hotel shortly after their arrival they found a party of American tourists, who had just come in by steamer. They had left Stockholm for Riga before the latter port was closed, but were stopped by a German torpedo boat, and ordered to change their course for Finland. On their arrival there they found war de-

clared and all traffic stopped, and their Consul directed them to get away to the nearest Swedish port, which happened to be Hernosand. One American lady was very voluble at the indignity they had been subjected to. "Fancy," she said, "we United States citizens had guns pointed at us." (Laughter.) Although Sweden was neutral, they found the war was almost as bad for her as actual hostilities. The army was mobilised to defend her neutrality, and owing to lack of men the great industries were wholly or partly stopped. Armed sentries were at every landing place and on many roads. They had to register and report themselves daily at the chief police station. Personally, they received at the hands of the Swedes the greatest kindness and assistance everywhere, and they left their counbry with very grateful memories. Politically, they found the atmosphere to be rather anti-Russian than pro-German. Hernosand is very near Finland, with which country there was frequent communication, and the history of what Finland had suffered at the hands of Russia explained their attitude, and the could not understand English civilisation allying itself with what they called Russian barbarism. Perhaps if he had foreseen what was going to happen in Belgium he would have told them what he thought of German culture. But, as a matter of fact, until quite near the end of their three weeks stay in Hernosand they were cut off from news from England, and only by telegraph could he and his wife communicate with each other. All the news and telegrams in the local papers were from Berlin. Nothing or merely a few second-hand scraps of belated English news appeared. A reporter connected with a local paper, who came occasionally to interview him for copy about their eclipse work, frankly explained the reason, which was that they got Berlin telegrams for nothing, and they had to pay for English telegrams, "besides," said the reporter with half a spile, "we are assured that the Berlin telegrams are all true." (Laughter.) Between meals, which were many and heavy and at unusual hours in Sweden, they spent their time setting up and adjusting the vinstruments. Some of the senior students of the school who lived in the town volunteered their help. Some

of them could draw very well, so in case of mishap with photographic operations Father Cortie took four of them in hand and drilled them to make rapid freehand drawings of the sun's surroundings, giving each a single gradient to attend to, and very well they did their work. When their sketches were subsequently completed they formed an excellent record of the naked eye over the phenomenon. On the day of the eclipse a brilliantly clear sky was overhead, and not a trace of cloud was to be seen. A considerable number of the people of Hernosand came up to the ground to see the eclipse. Expecting that, they took the precaution of roping off themselves and their instruments so as not to be disturbed by intruders. The people behaved very well. Some of the students and teachers of the school went among them from the moment when the second whistle was blown (ten minutes before totality) to be good enough to preserve perfect silence—which they did, they could hear their clocks tick. (Applause.) He was not very favourably situated for seeing the cclipse. To work his own instruments he had his back turned to the sun, but during one long exposure he had about 30 seconds during which he could turn round and look through an opera glass.

A MAGNIFICENT SPECTACLE.

As a spectacle it was magnificent and well worth the long journey to see. But mere visual observations were not what they had gone for. He proceeded by the aid of lantern views to show the instruments used and the results. In connection with the latter he explained the technicalities of the exposure, the size and length of the lens, the focus, and a hundred things of interest to photographers and astronomers and scientists in general. Proceeding, he asked why and what was the good of that work, and replied that that was the last question a scientific investigator dreamed cultur of asking or answering. It was sufficient for him to know that he was extending the bounds of human knowledge and it was for others to put the increased knowledge, which he placed at the service of the world, to what superior people were pleased to describe as practical use Sooner or later every scrap of increased knowledge became in some way or other useful to the common uses and needs of humanity. He instanced the story of Radium, of Helium, and radio-activity. The Lecturer went on to tell of how they fared after the eclipse proper. They first developed and dried their negatives, and then considered ways of getting home. There was a state of war between Germany and England, the whole of the coast traffic in Sweden was in a state of chaos. The coast lighthouses had been extinguished, and some of the sounds they would have to pass through were mined. They had had a letter from Professor Fowler from Copenhagen, telling them that the other expedition to Kiev had been abandoned, after being shut up in Riga for a week without letters or telegrams, and no chance of getting into the interior of Russia, as the railways were exclusively occupied with military transport. They left their larger instruments in Riga with a shipping firm, with instructions to despatch them to Stockholm for them to dispose of. Fortunately, Pro-fessor Fowler and Col. Hill were able to get through by a steamer to Copenhagen. Col. Hill was recalled for military duty, and managed to catch the last steamer which sailed for Harwich, and Professor Fowler, with the smaller instruments, got back to London via Gothenburg, Norway,

and Newcastle. They wondered what their fate would be. On August 25th they were fortunate to get a steamer, as the coast lights had been just re-established, and at their first place of call they had a telegram from the British Minister in Stockholm saying the captain of the steamer had come in to say he dare not bring their colleagues' instruments from Riga, as Germany had declared telescopes to be contraband of war. (Laughter.) About seven hours from Stockholm they were met by an armed pilot boat, which

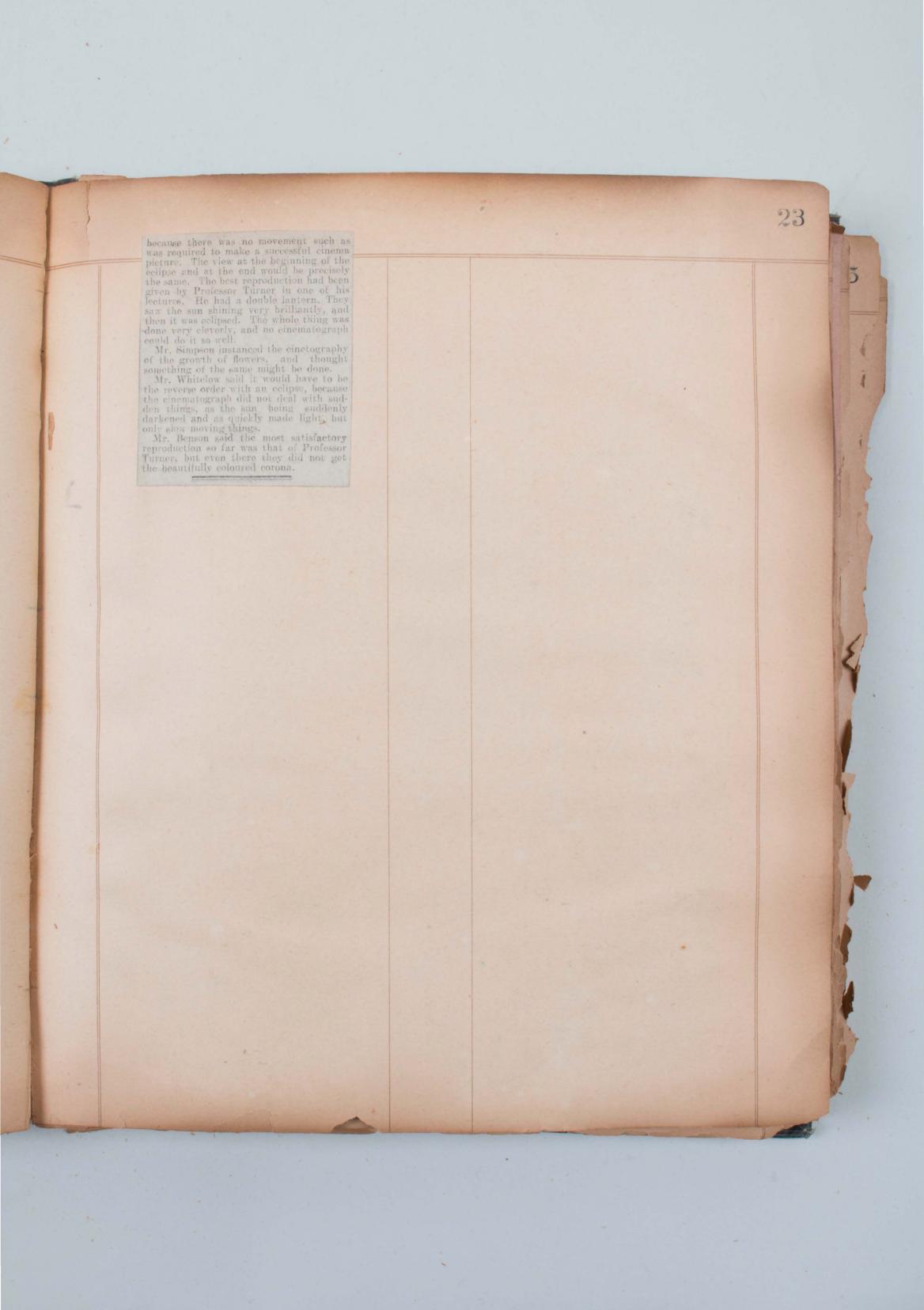
CONDUCTED THEM THROUGH THE FIRST MINE FIELD

they met, and nearer Stockholm the same duty was performed by a torpedo boat, as though they wanted to touch their mines. (Laughter.) On their arrival they interviewed the British Minister, and were pleased to see in the Embassy English papers as late as August 20th. On the advice of the Minister they abandoned their return tickets via Gothenburg, as their return tickets via Gothenburg, as mines were laid in the path of steamers from Gothenburg to Hull, and several vessels had been destroyed by them. also abandoned their intended holiday jaunt, and on Friday, August 28th, they started on the long railway journey across Sweden to Christiana, and thence by the famous mountainous railway over the famous mountainous railway over the backbone of Norway to Bergen. Here they caught the steamer in which they had fortunately secured their berths by wire before leaving Stockholm—otherwise they would have had to wait for some other opportunity of getting home on account of the crowd of people waiting to account of the crowd of people waiting to cross. They left Bergen by the Norwegian mail boat on Saturday evening (August 29th) for Newcastle. The last piece of news they received just as they left was a telegram telling of the naval fight in the Bight of Heligoland. About 6.30 on the Sunday morning the steamer stopped, and they went on deck to see what was the matter, and found a British cruiser standing near them. A boat brought some officers on board, who entered the captain's cabin, and examined the ship's tain's cabin, and examined the snip's papers. The middy in charge of the boat, who remained on deck, asked if they had any newspapers, as they had had none for nearly ten days. A rapid collection of all the newspapers on board was made, and he tied them up and dropped them into the boat. They agreed among themselves that the object of the visit was a raid for newspapers—(laughter)—but they soon found it was rather more serious than that. This was the first Norwegian boat that had been stopped, and the captain quietly told a few of them that a German

boat of some kind had been sighted within fifty miles of the Tyne, and it was strongly suspected that mines had been laid on the route from Bergen to Newcastle. The captain was advised to make for Peterhead, where he would be met again, and advised what course to take. About 3 o'clock they noticed smoke on the horizon, and soon made out a warship of some kind following them at full speed. In three-quarters of an hour it came abreast. Without either vessel stopping signals were exchanged with what turned out to be a British cruiser, much bigger than the first they had seen. Their wireless apparatus was taken down, evidently in response to signals from the warship, which then turned with marvellous rapidity, almost in its own length it seemed, and steamed back at full speed. In 25 minutes the

cruiser and its smoke had entirely disappeared. They learned that the lighthouses on the Scottish coast were extinguished, that torpedo boats here and there were doing lightship service, and they were to steam down as allows. they were to steam down as close as possible to the Scottish coast until off Berwick, that the Tyne was closed to all vessels in the night, and they could not enter until 8 o'clock next morning. Nobody said very much, but they noticed things. Those members of the crew who were not on the night watch did not go to sleep in the fore part of the ship, but curled themselves up aft in corners and under seats. They also noticed that the lifeboats, instead of being slung in the usual positions, were lying loose on the bridge and the decks, and that their oars were tied with cords to the rowlocks; that they contained water barrels and tins of biscuits, and he dared say that some of them wondered what it would be like to have to scramble in the dark after a seat in one of those boats. Torpedo boat destroyers and small steamers of different kinds seemed remarkably plentiful during the night. About six o'clock next morning they anchored in quite a crowd of ships of various south auticle the Countries. ships of various sorts outside the Tyne, and were boarded by a pilot from an armed pilot boat. As they carried the mails they were given first turn in. All passengers were ordered to be locked below-a precaution, no doubt, to prevent anyone learning the way into the Tyne. Anyhow, they arrived at Newcastle Quay without mishap, landed on what an old lady once described as dear old "terra cotta-(laughter)-and were able to despatch telegrams to their friends, advising them of their safe return. (Applause.)

SUGGESTED CINEMA SUBJECT.


The President thought they would all desire to congratulate Mr. Whitelow on the successful termination of his visit to Sweden. They did not pass formal votes of thanks to their own members, but he was sure the members desired him to thank Mr. Whitelow for the very delightful lecture.

Mr. D. E. Benson added his tribute, and said the lecture was all the more interesting because he happened to have seen a similar phenomenon. They were possibly better off, because he believed they were entitled to three and a half minutes. Their calculation went wrong, and he thought they got three and a quarter minutes—(laughter)—and they had a very exciting time. He must congratulate Mr. Whitelow on the success he had achieved in the photographs. (Applause.) The photographing, to his mind, was comparatively simple work, but the thing that pleased him most was the experiments he made with those plates they could not over-expose. The extension of the corona he showed there was really astonishing for a corona of that type. But no lantern slide or photograph he had ever seen could convey that beauty of a solar eclipse. They saw the sun, and suddenly it disappeared, and they had the corona of that pearly green light flashed out. It was one of the most beautiful sights they ever saw in their lives.

Mr. D. K. Simpson asked the Lecturer

Mr. D. K. Simpson asked the Lecturer if the cinematograph had ever been tried in photographing the corona.

Mr. Whitelow said there was no advantage to be gained by the cinematograph,

Solförmörkelsen.

Gårdagens stora evenemang — den totala solförmörkelsen — blef tack vare ett utomordentligt gynnsamt väder, att skådespel af oförgätlig prakt

och storslagenhet.

Den stora bemärkelsedagen ingick med strålande solsken och blef äfven i fortsättningen hvad den från början lofvat. Det blef en af dessa strålande klara höstdagar, som med sin högblå, kyliga luft och sin sällsamt betagande friskhet göra alla människor till soldyrkare. Det var, som om solen just nu, då den för några korta minuter skulle försvinna ur vår åsyn, ville visa sig i all sin glans

Under hela tiden förmörkelsen vaoch öfverväldigande majestät. rade var himlen alldeles klar. Inte ens den allra minsta molnslöja skymde solen; och de magnetiska stormar, man fruktat skulle störande inverka på iakttagelserna, uteblefvo all-

deles.

«Vi ha haft det mest idealiska observationsväder man kan tänka sig — förklarade de i Hernösand församlade vetenskapsmännen samfälligt för en af Hernösands-Postens medarbetare, omedelbart efter förmörkelsen. Och alla förklarade med en mun, att allt har gått efter deras mest sangviniska beräkningar. Ingen solförmörkelse, som någon af dem hittills varit med om, hade varit så lyckad som denna.

Naturligtvis är det ännu omöjligt att få några närmare underrättelser om de olika observationernas förlopp. Först om veckor eller månader säga vetenskapsmännen sig själfva kunna värdesätta resultaten af de nu

gjorda iakttagelserna.

För solförmörkelsens studerande ha icke mindre än åtta svenska och utländska expeditioner varit placerade på dylika trakter af Norrland. Enligt hvad Hernösands-Posten erfarit, har man vid samtliga stationer gjort synnerligen värdefulla observationer och öfverallt har man uttalat sin tillfredsställelse med de vunna resultaten.

1 Hernösand

hade — som vi förut omnämnt — förlagts tre utländska vetenskapliga expeditioner, af hvilka två, en engelsk och en holländsk, förlagts vid Tekniska elementarskolan samt den tredje, en holländsk, ute vid Villa Sörby.

För att ordentligt kunna utnyttja de två minuter, för hvilkas skull respektive vetenskapsmän anträdt sin långa och besvärliga resa, hade dessa bedt att få vara fullständigt i fred med sina instrument, hvarför åtgärder vidtagits för detta ändamål. Sålunda hade man inhägnat området ofvanför Tekniska elementarskolan, där de båda expeditionernas olika instrument uppställts, och vid Villa Sörby hade militär utkommenderats för att hålla allmänheten på vederbörligt afstånd.

Trots det större delen af de främlingar, som anmält sin afsikt att resa hit för att åse det exceptionella evenemanget, till följd af kriget uteblifvit, var det synnerligen stora folkmassor, som vid tiden för förmörkelsen voro i rörelse här i Hernösand. Utanför de båda experimentalfälten samt uppe på Vårdkasberget samlades massor af skådelystna, hvilka till fullo fingo sitt lystmäte af det storslagna skådespelet.

Emellertid nårmade sig klockan 12. Några minuter härefter se vi genom våra sotade glas en liten nära nog omärklig skäring - en svart punkt i solskifvans öfre kant. Den växer och växer och redan efter cirka 30 minuter har mer än halfva soldiametern försvunnit för våra blickar. Nu börjar också en märkbar förändring märkas i traktens utseende. En stilla skugga sändes ut öfver nejden. Genom glasen se vi, att solen allt mer och mer förmörkas och hur den genom våra tittglas numera blott ter sig som en smal halfmåne, som för hvarje minut blir allt mindre och mindre. Himlens färg går allt mer och mer i blått och vattnets yta mörknar. Det börjar blåsa en ganska kylig vind. Och skymningen faller. Människornas ansikten se spökligt bleka ut i den underliga belysningen.

Till slut återstår så blott en liten, liten lysande strimma af solen. Och så, precis kl. 1,12, går det ett dämpadt sorl genom skaran. Den sista glimten är försvunnen.

Det har blifvit höstkväll. Och däruppe på himlen ser man nu i stället för solen — coronan, som brinner med ett sken af blåaktig art.

Den totala förmörkelsen har emellertid inte försatt oss i något ogenomträngligt mörker. Det är väl coronan och ljuset från de icke förmörkade delarna af vår planet, som sörjt för, att det inte blifvit alldeles mörkt. I få underbara oförgängliga minuter varade den totala förmörkelsen — minuter som man säkerligen aldrig skall glömma. Det är tyst och stilla. Dagrar och skuggor växla. Stjärnorna börja skönjas. En efter en blänka de fram, försvinna och synas åter. En kall vind far fram öfver platsen och temperaturen, som från att kl. 12,25 ha varit 18 grader i skuggan, har kl. 1 sjuntit till 13 1/2.

kit till 13 1/2. Öfver staden råder en förtrollande skymning. Den sveper in staden i en underlig dager, kall och mystisk, i hvilken alla föremål få overkliga och fantastiska former. Hela staden är som ett feeri, till hvars dämpade färger och stämning endast finna en ringa motsvarighet i en eller annan sagomålning af en mästares hand. Allt ljud förstummas i detta skymningens hemlighetsfulla ögonblick. Man hör ingenting. Det är som om staden för en flyktig sekund upphörde att andas och man lyssnar begärligt på oändlighetens

tysta hviskning.

Så med ens lyser en strålande strimma åter fram, just när vi som bäst voro på väg att glömma bort, att ekliptikan fordom hade en högt lysande brännpunkt kallad Solen. Man ryckes åter till verkligheten. Ett välsignadt solsken väller åter ner öfver staden, och lyser med ett förklaradt skimmer öfver onda och goda. Med kisande och ovana pupiller skåda man åter upp mot den klara himmelsglansen. Folkmassorna skingras. Och så är förmörkelsen ett minne blott...

Effe.

De vetenskapliga observationerna.

Intervjuer med vetenskapsmännen.

Det var med glädje man i går morse konstaterade, att vädret skulle blifva det allra bästa för solförmörkelsens observerande. Och det blef allt bättre och bättre, ju mera tiden led, och då stunden för förmörkelsen nalkades, var hela himlen fri från moln, högblå och klar.

Särskildt glada voro vetenskapsmännen — de hade länge gått och varit oroliga för att vädret ej skulle bli så bra, att det tilläte några observationer. Och nu, nu hade de det bästa de kunde önska sig.

Det var med en nervös noggrannhet de före förmörkelsen undersökte sina apparater för att se, om allt fungerade som det skulle. Var kameran riktigt inriktad? Var kikaren rätt ställd? Ingenting är väl i olag? Medan de så för tionde eller tjugonde gången öfversågo allt, nalkades det stora ögonblicket mer och mer. Det hvilade öfver vetenskapsmännen en mycket nervös stämning. Nu skulle lönen för alla deras ansträngningar komma, nu skulle iakttagelser göras, hvilka skulle ge dem ett namn, kanske ett odödligt. Nu skulle vetenskapen riktas med nya rön.

Och allt, allt gick bra. Ingenting mankerade, utan alla instrument, alra redskap fungerade till största belåtenhet. Så sade åtminstone samtliga de i Hernösand varande vetenskapsmännen, hvilka intervjuats af Hernösands Posten. Samtliga lämnade med största tillmötesgående de af vår medarbetare blegärda upplysningarna. Visserligen gingo intervjuerna en och annan gång litet trögt, då naturligtvis språket lade sitt hinder i vägen, men allt gick bra.

Den engelska expeditionen.

Ledaren för den engelska expeditionen, professor Cortie, formligen strålade af belåtenhet, då allt gått mycket bra. It's all right. Very successfull, most successfull« och andra superlativa uttryck räcka knappast till för honom att förklara den ovanliga tur han och hans expedition har haft. - Jag har, sade han, varit med i tvänne solförmörkelseexpeditioner förut, år 1905 i Spanien och år 1911 å Fidschiöarna, men de gynnades icke af lika fint väder som denna, och ändå gjordes där mycket goda observationer. Hur bra skola då ej observationerna i dag ha lyckats, då vädret varit så härligt! Och professorn strålar ånyo af förtjusning och glädje.

Professor C. meddelade vidare, att coronan, d. v. s. den pärlemoskiftande strålkrans, vi vid totaliteten i går sågo omgifva den solen förmörkande månen, är mycket oregelbunden till formen och växlar från den ena förmörkelsen till den andra. Astronomerna skilja därför på maximumcorona, medelcorona och minimumcorona. Den, vi sågo i går, var medelstor. Coronans strålar aftaga hastigt i ljusstyrka, så att de på en solradies afstånd från solskifvan lysa med ett 64 gånger svagare sken än

densamma.

De stjärnor, som vid förmörkelsen syntes i solens närhet voro Mercurius och Venus. Regulus var det däremot ingen af vetenskapsmännen som hade kunnat observera.

Några närmare detaljer om observationernas resultat kunde professor C. ännu ej lämna, och det tar, sade han, en lång tid för honom att få alla utarbetade. Denna förmörkelse hade gifvit honom arbete för ett helt år framåt. Och professorn skyndade åter till sina instrument, för att se till, att ingenting förstördes vid nedpackningen.

Den Wulf-Rodéska expeditionen.

Å Tekniska elementarskolan arbetade utom den engelska expeditionen äfven, som förut nämnts, en holländsk. Denna bestod af professor Theodor Wulf, Valkenburg, Holland, och professor Luis Rodés, S. J., Kortora, Spanien.

Professor W. var, också han, mycke glad öfver de lyckade observationerna. «Alles ist ganz ausgezeichnet« förklarade han. Allt hade gått efter beräkning och så bra man kunde vänta. Hans observationer gingo ut på att beräkna när totaliteten började och slutade. Han hade genom en alldeles ny, fotografisk metod och med nykonstruerade instrument beräknat

tiden synnerligen noga.

Han hade från början ämnat att medelst trådlös telegrat från Eiffeltornet i Paris få veta den exakta tiden. Genom kriget hade detta omöjliggjorts, men han hade i stället fått den exakta tiden från Stockholm. Visserligen kunde det hända, att denna ej var fullt korrekt, men felen kunde knappast uppgå till mera än någon bråkdel af en sekund. Detta skulle han också kontrollera senare, så att ett eventuellt tidsfel skulle blifva rättadt.

Vid dessa observationer begagnade han sig af ett ljuskänsligt papper, på hvilket automatiskt uppritades kurvor, utvisande när totaliteten började och slutade. Med ett triumferande leende visade han H. P:s medarbetare den fotografi, som tagits under förmörkelsen. Äfven en ickle flackman kunde lätt, efter att ha tagit reda på, när fotograferingen började, beräkna när den totala förmörkelsen började, huru länge den varade och när den slutade.

Professor Rodés förklarade, att allt varit «grossartig« och «wun-

derschön« och sade, att «alles var sehr gut gelungen«.

Han hade tagit en hel mängd fotografier under förmörkelsen. Bl. a. hade han tagit två fotografier af exronan under den totala förmörkelsen, samt en strax före o. en strax efter totaliteten. De flesta fotografierna hade han tagit under den partiella förmörkelsen. Då han, när intervjuen gjordes, ännu ej framkallat några af plåtarna, kunde han ej säga, om de blifvit goda eller ej, men han hade ingen som helst anledning att befara, det de skulle på något sätt misslyckats, då omständigheterna varit de allra gynnsammaste.

Medelst en teadolit, ett slags

vinkelmätningsinstrument, som hufvudsakligen består af en vridbar tub, försedd med ett hårkors, och en kronometer hade han iakttagit, att den totala förmörkelsen, som enligt beräkning i Hernösand skulle ha börjat klockan 1 timme 12 minuter och 46,7 sek., i stället hade börjat något senare eller 1 t. 12 min.o ch 54 sek. Då det är omöjligt att riktigt exakt bestämma tiden, klommer professor R. att jämföra sina observationer med dem, som i går gjordes af de öfriga vetenskapsmännen i Hernösand. För att få allt tillförlitligt tages medeltalet af de olika tiderna.

Han hade också iakttagit, att temperaturen under förmörkelsen i skluggan sjunkit med ungefär 4 grader. För öfrigt var han mycket glad öfver, att ingen vind blåst under förmörkelsen och att atmosfären varit så ovanligt lugn. Detta hade inverkat synnerligen fördelaktigt på observerandet af det ovanliga fenomenet. Intet af de känsliga instrument, han använde bade varit utsatt för den allre vände bade varit utsatt för den allre

vände, hade varit utsatt för den allra minsta darrning eller skakning, något som var af mycket stor betydelse för uppnående af ett godt resultat.

Professor R. beklagade mycket, att på grund af de nu pågående krigen en hel mängd planerade vetenskapliga expeditioner till olika delar af världen måst inställas. Vetenskapen hade härigenom, framhöll han, lidit mycket stora förluster. Dock hoppades han, att de utomordentligt gynnsamma förhållanden, som varit rådande under observationstiden, skulle bidraga till att resultatet ändå blefve det bästa möjliga. Han framhöll som bevis på, att tiden användts väl, att endast vid tekniska skolan icke mindre än sex kameror varit i oafbruten verksamhet.

Professor Rodés, hvilken, som förut omtalats, är anställd vid Observatorio del Ebro i Kortosa, afreser icke dit, utan till Holland, där han vistats de två senaste åren och där han önskar stanna ännu ett år. I Holland ämnar han bearbeta de observationer, han gjorde här i går.

Den Moll-Biltska expeditionen.

Ute å Villa Sörby vajade i går den holländska flaggan till tecken på, att tvänne holländska vetenskapsmän då voro «herrar på täppan«, nämligen de af H.-P. förut omtalade d:r W. J. H. Moll, lektor der Physik an die Universität Utrecht och hans medhjälpare professor J. Van der Bilt, observator vid observatoriet i Utrecht.

D:r Moll, som vid vår intervju med honom i förgår var mycket ängslig och orolig, då vädret såg mycket hotande ut, var i dag synnerligen förtjust. «Alles ist sehr gut gelungen, absolut gelungen« försäkrade också han och gaf sin förtjusning luft kraftord sådana som «prachtvoll« och

«wunderschön«

Denna expedition hade lyckats medelst en monokromatisk strålmätare, konstruerad af d:r Moll, mäta strål ningsintensiteten under förmörkelsen. De hade medelst en «Thermosäule«, d. v. s. thermospelare, samt ett för ändamålet af d:r Moll efter månadslångt arbete särskildt klonstrueradt ljusfilter, «Farbenfilter«, hvar femte sekund mätt strålningen. Dessa filter voro s. k. monokromatische Flüssigkeitsfiltern. Hvarje filter är en cm. tjockt och innehåller en vätska inom glasväggar - af d:r Moll framställd. De genomsläppa endast det slags strålar, som önskas. Första och andra filtret äro infrarröda, det tredje rödt, det fjärde grönt, femte blått och det sjätte ultraviolett. Apparaten regi-strerar automatiskt strålningen.

Professor Bilt hade under förmörkelsen ett mycket ansträngande och kräfvande arbete. Med ledning af en kronometer öppnade och slöt han hvar femte sekund under mer än två timmars tid. Orörlig satt han vid stativet med blicken skarpt fäst på kronometern. När temperaturen sjönk fick en af de få närvarande lägga öfver honom en ulster, han själf hade ej tid ens att resa sig från stolen.

Medelst en kronograf mättes samtidigt koronans strålning. Denna koronograf var delvis gjord i - Hernösand. Af en eller annan orsak hade de båda vetenskapsmännen ej fört med sig en tub, som var nödvändig för en del af deras experiment. Häröfver voro de nästan otröstliga, då de ej visste hur de skulle bära sig åt för att få en ny. Efter deras ritningar lyckades det emellertid plåtslagaren Alvén härstädes att tillverka en tub, som var till deras fulla ble-

låtenhet.

I ett särskildt uppbyggdt träskjul hade de båda vetenskapsmännen en mängd instrument inrymda. För observationerna var det af största vikt, att temperaturen i detta skulle vara så jämn som möjligt, och det hade också genom särskilda anordningar lyckats dem att få den full konstant. Bland de många instrumenten i detta skjul märktes särskildt en af d:r Moll konstruerad, mycket känslig och snabbt och noggrant registrerande galvanometer, hvilken vid observationerna varit af stor nytta.

Det var med ett triumferande leende d:r M. visade oss ett papper hvarpå en hel del kurvor voro uppritade. En icke «förstå-sig-påare« kan naturligtvis icke vttra sig om deras värde, men de båda vetenskapsmännen försäkrade, att det var första gången, som deras metod att upprita koronor på det sätt, de gjort. De väntade sig för öfrigt ett mycket stort utbyte af sin expedition. Men mycket arbete vore kvar, innan allt var fär-

Ett par småsaker från deras observationer äro att anteckna:

Under förmörkelsen hände det inte bättre, än att en skruf lossnade å det instrument, vid hvilket prof. Van der Bilt satt. Denne såg det, men kunde på inga villkor lämna sin plats, ty då hade allt gått om intet. Då ingrep källarmästare Jönsson, hvilken biträdde som assistent, och klarade det hela. De båda vetenskapsmännen försäkrade, att hr J. vore född till vetenskapsman!

Då observationerna utfördes, voro fyra poliser beordrade att hålla noggrann vakt, så att ingen obehörig

skulle slippa dit.

Professor Hasselbergs expedition.

I Sollefteå utförde professor Hasselberg sina observationer. Han hade, som bekant, först ämnat sig till Hernösand, men han ändrade sig. Hvarför? Jo, «på grund af Hernö-sands farliga läge under nuvarande förhållanden, som inträdt genom kriget!« - Det är bokstafligen sannt!

Hvad hans observationer beträffar, lyckades de utmärkt, enligt hvad han har förklarat för Hernösands-Posten. Han hade fotograferat solkoronan med en stor kamera och hyste de bästa förhoppningar om resultatet.

Ja, detta sade vetenskapsmännen. Och alla voro, som sagdt, mycket glada öfver de lyckade resultaten. Vi äro förvissade om, att deras glädje delas af alla.

C.-M. L-g.

Observationerna från Navigationsskolan. 4

Då gårdagen inleddes med klar himmel och strålande solsken, var det säkert mången som frågade sig:skall detta härliga väder fortfara till tiden

för solförmörkelsen?

Visserligen hade de närmast föregående dagarnas meteorologiska observationer visat sannolikhet för vackert väder, men så här sent lidet på sommaren är vädret ostadigt och öfvergången från klar till mulen himmel kan ske på en kort stund. Emellertid voro vädrets makter blida och först inemot slutet af förmörkelsen mellan kl. 2 och 1/2 3 dansade lätta l molnslöjor öfver solskifvan. De expeditioner, som med stort besvär ta-

git sig upp i dessa trakter och haft långa förberedelser, ha sålunda haft lön för sin möda. Vetenskapsmännen äro också i allmänhet särdeles belåtna med sina observationsresultat

Mycket folk var på benen i går middag för att skåda det sällsynta fenomenet. Då det närmade sig tiden för totalitetens början, voro allas blickar riktade mot solen. Först in-emot halfva tidsförloppet mellan första och andra kontakten kunde man varseblifva någon nämnvärd minskning af solljuset. Luften syntes blifva grådisig och dyster och isynnerhet under totaliteten antogo träden en egendomlig färg. Om man, då hela solskifvan lyser, iakttager de ljusa fläckar, som bildas på marken i ett träds skugga och som bildas af det genom löfverket genomträngande solljuset, så ha fläckarna något oval form, men då solen är partiellt förmörkad, antaga fläckarna former af utskurna elipser, vända samma väg som den lysande delen af solskifvan. Detta märkvärdiga fenomen kunde man i går lätt iakttaga. «Flygan-de skuggor«, hvilka likt horisontala eller snedt gående krusiga band jaga efter hvarandra, kunde däremot ej upptäckas.

Då solljuset försvunnit, kunde man se alla de större stjärnorna, något ost och syd varseblef man planeten Venus

En vacker anblick erbjöd den pärlemoglänsande coronan och den närmast solen omgifvande kromosfären. Det skönjdes attiden senare eruptioner äga rum, protuberanser, som, jehuru mycket små i förhållande till solens storlek, i verkligheten ha en höd som räknas i 100,000-tals kilometer.

Beräkningarna för kontakterna med solskifvan, slå ofta något fel, hvarför man bemödar sig om att iakttaga tiderna för dessa mycket noga. Detta kan ske tämligen bra med simpla hjälpmedel. Från navigationsskolan har den lifligt intresserade föreståndaren, löjtnant C. W. Pettersson, benäget meddelat oss de tider, som observerades där, jämte några andra iakttagelser.

Första kontakten (den svåraste att passa) förlorades. Andra kontakten ägde rum kl. 1.12.58, tredje 1.15.7 och den sista 2.21.27. Alltså inträffade den totala förmörkelsen något senare än beräknadt var, dock med reservation för någon sekunds fel i tidsbestämningen. En på solskifvan belägen, tämligen stor fläck, passerades af skuggan första gången 12.24. 21. och andra gången 1.33.30. Kl. 12 var vindstyrkan 1 enligt Beauforts skala, vinden sydlig. Små cumulimoln i WNW. Kl. ½ 3 vindens riktning densamma, styrka 2. Himlen var ungefär till sju fiondelar molnbe-

I öfrigt gjordes följande meteorologiska i akttagelser:

Kl.	Barom stånd	Vidfäs- tad ter- mom.	Psykometer	
			torra term.	våta term.
11 f. m.	763,5	+ 17,5	+ 14,6	+ 11,4
12 t. 4 m. em.	763,s	+ 18,6	+ 15,2	+ 11,5
1 t 13 "	763,s	+ 18,6	+ 13,0	+ 10,8
2 t. 2 ,	762,8	+ 18,8	+ 15,6	+ 11,8

För iakttagande af kontakterna betjänade man sig i navigationsskolan af en tämligen stark tub, försedd med skymglas, hvilken riktades mot solens spegelbild i en artificiell horisont.

I Långsele.

Professorerna Bohlin och Bergstrand ha — enligt telegram till H.-P. — lyckats synnerligen väl med samtliga observationer. De ha förklarat sig vara mycket belåtna med det goda vädret, som varit det bästa tänkbara.

I Häggdånger

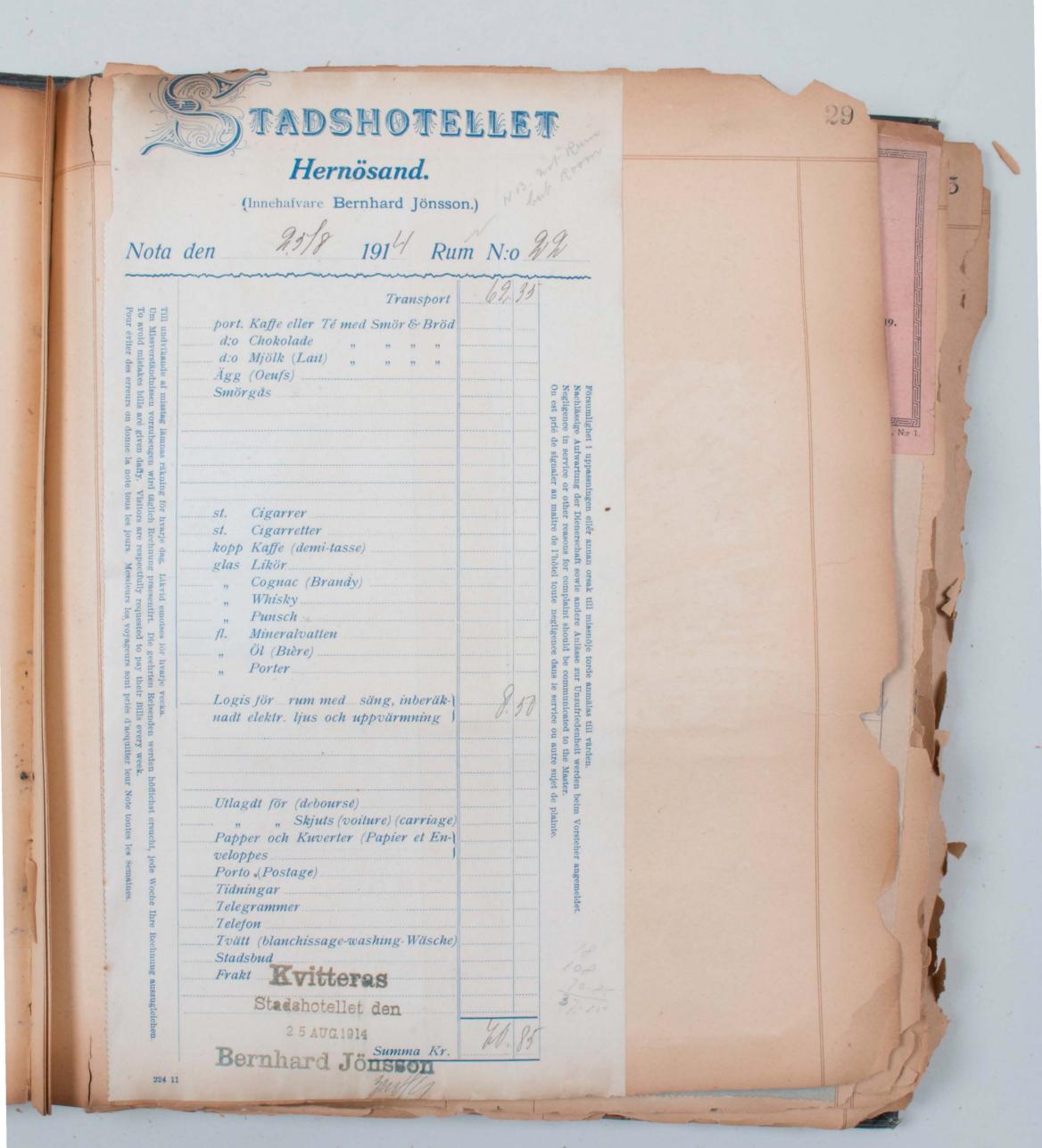
voro alla — enligt meddelande till H.-P. — synnerligen intresserade af förmörkelsen. På hvarje gård syntes människor, som betraktade det ovanliga skådespelet. Särskildt voro de i orten förlagda landstormsmännen mycket intresserade.

I Strömsund

hade tre af de svenska expeditionerna slagit sig ned under ledning af professor Charlyer, observatorn E. H. von Zeipel och d:r B. R. Rolf samt två utländska med 14 vetenskapsmän.

Enligt meddelande till H.-P. från nämnda expeditioner ha observationerna äfven där gynnats af det bästa väder.

I Sundsvall


kunde den totala solförmörkelsen i går iakttagas under synnerligen gynnsamma förhållanden.

Vid tiden för förmörkelsens början var himlen så godt som alldeles molnfri och förblef så ända till förmörkelsen kommit ett stycke på återgång.

Allt under det förmörkelsen skred framåt sjönk temperaturen rätt väsentligt. I det ögonblick den blef total voro åtskilliga stjärnor synliga för blotta ögat. Belysningen var då så stark som vid tiden för gatubelysningens tändande och i åtskilliga affärslokaler tändes det elektriska ljuset under de minuter det erfordrades

Det säregna fenomenet följdes öfverallt med största intresse — meddelas H.-P.

PERSONAL SERVICE AND PARTY OF THE PERSON OF

Engelsk Officiel Expedition Instrument.

Hernösand, Sverige.

Ny expressiinje

Ny expressinje

(Kapt. John Abrahamsen).

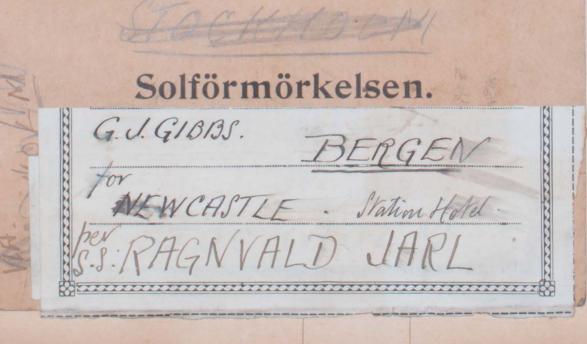
Elegant! Snabb! Utmärkt restauration!

Trafikerar från och med den 21 maj under hela sommaren routen

Stockholm-Sundsvall-Luleå

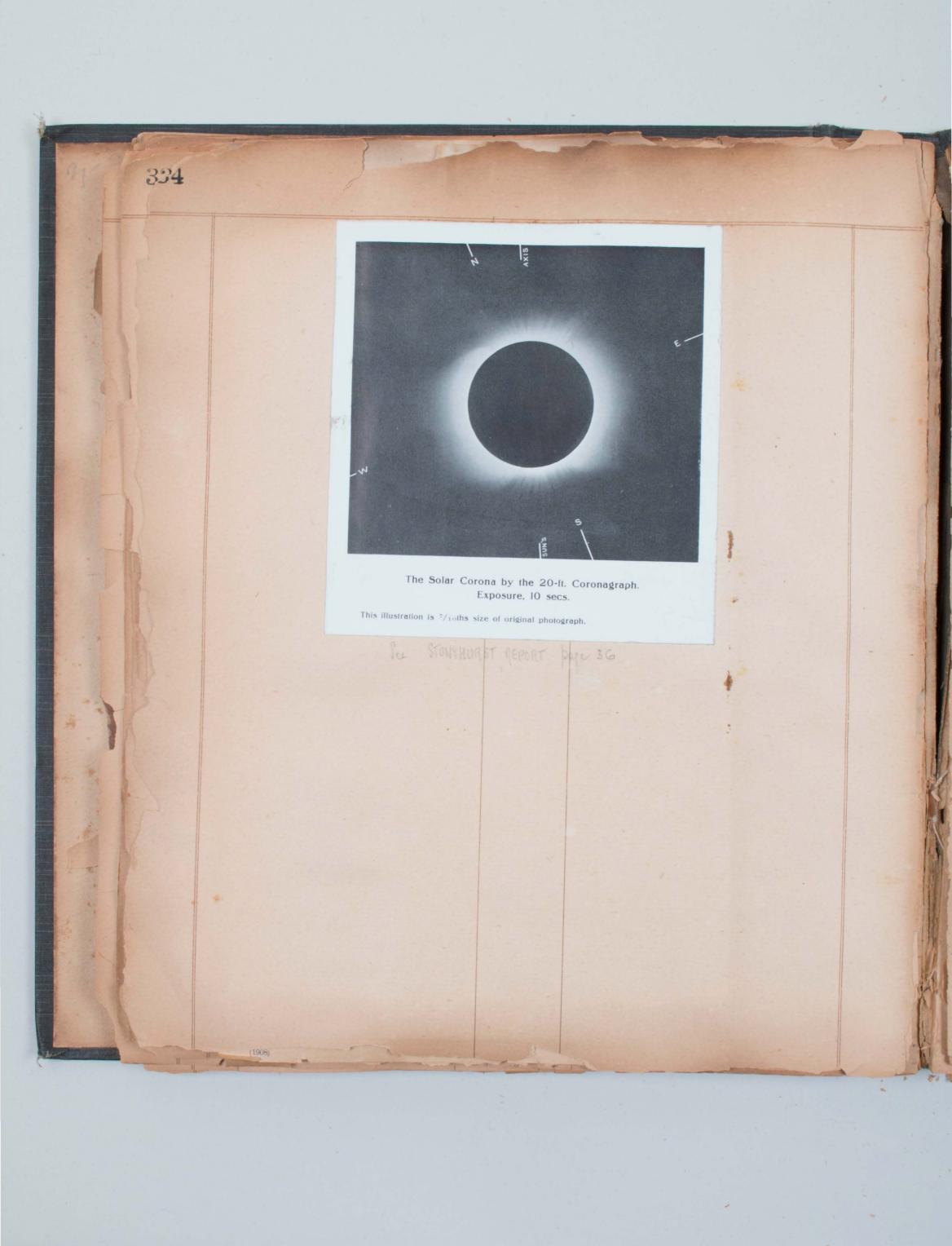
samt vice versa enligt följande turlista:

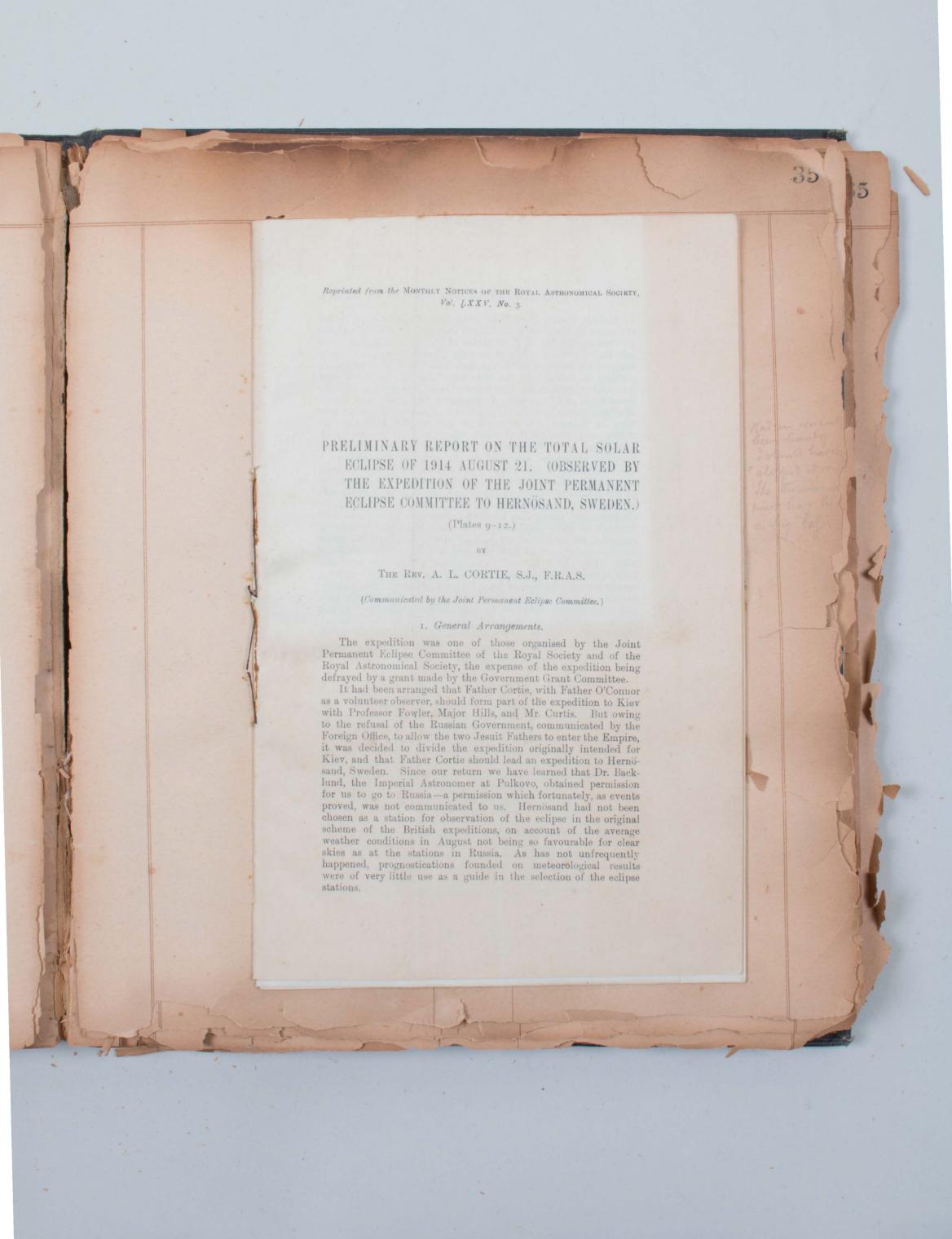
. . . kl. 12 midd. Från Luleå lörd. kl. 5,30 em. Från Stockholm torsd.

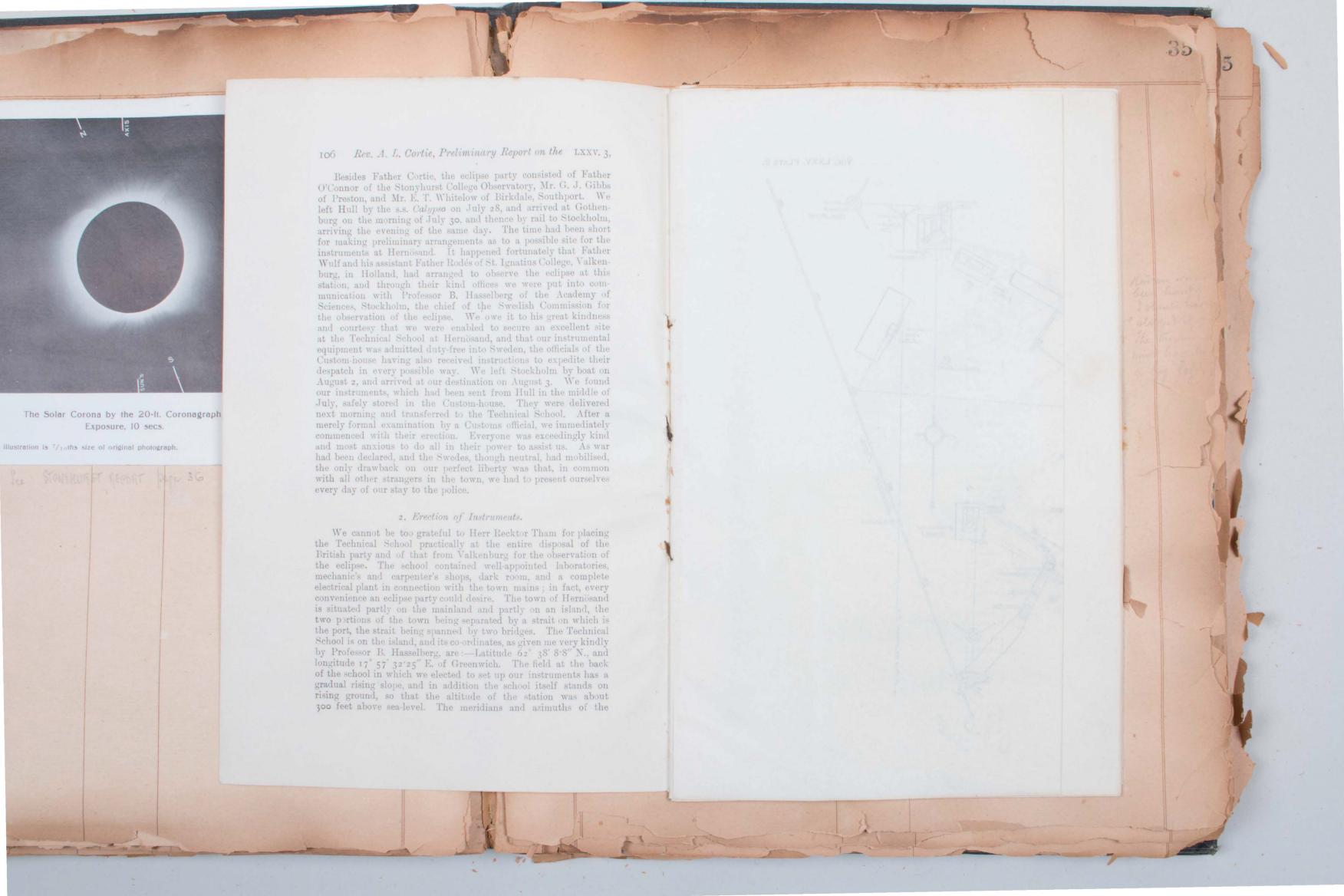

OBS.! Hela resan Sthlm-Luleå tager endast c:a 43 timmar i anspråk. Ångaren står i god anslutning till flera andra linjer, exempelvis:

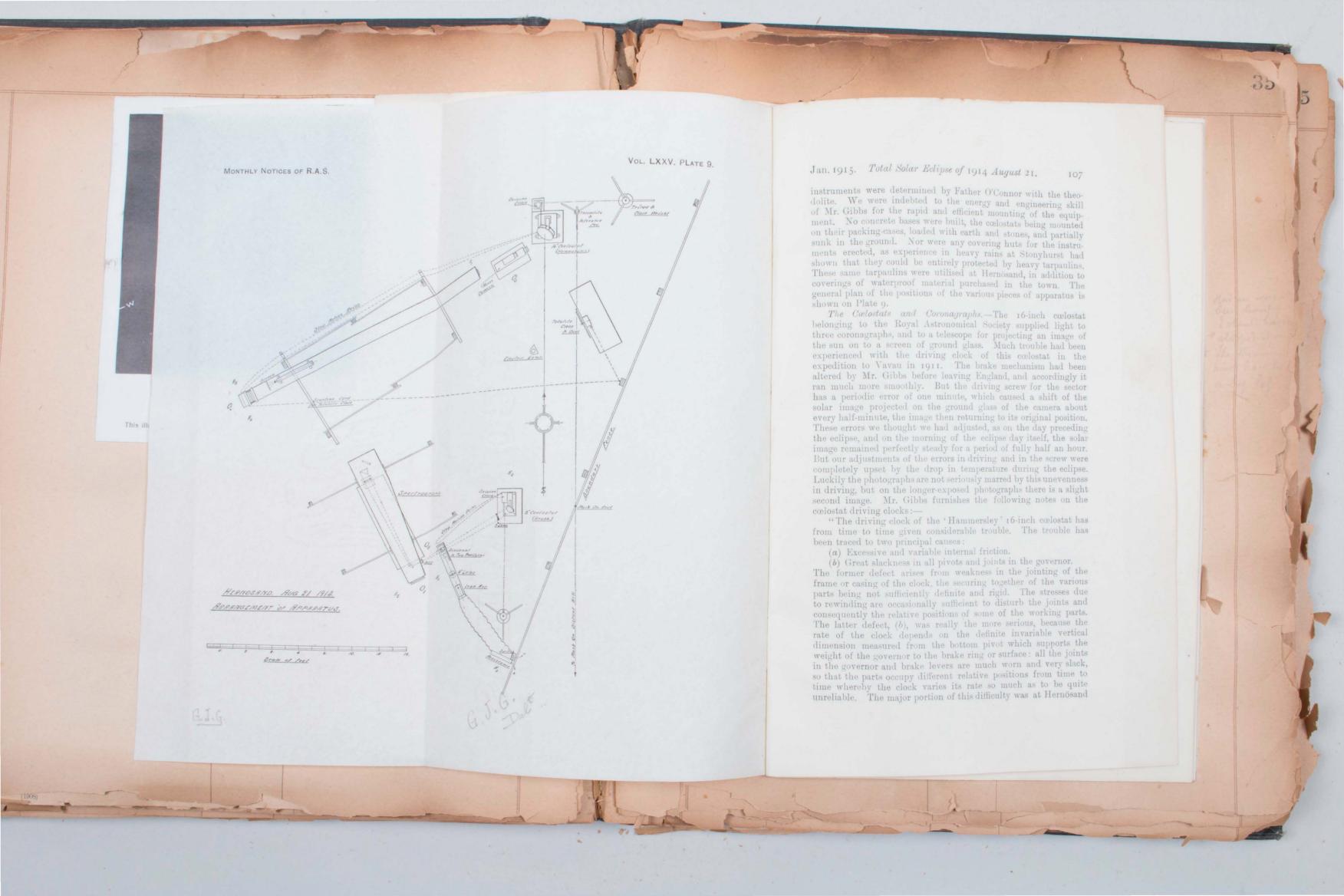
i *Luleå* med ångare till och från hamnarne norr därom i *Sundsvall* med ång. Carl v. Linné från och till Wasa i *Stockholm* med expressång. Nya Westerbotten (bästa lägenhet för besök vid Baltiska Utställningen i Malmö).

1914

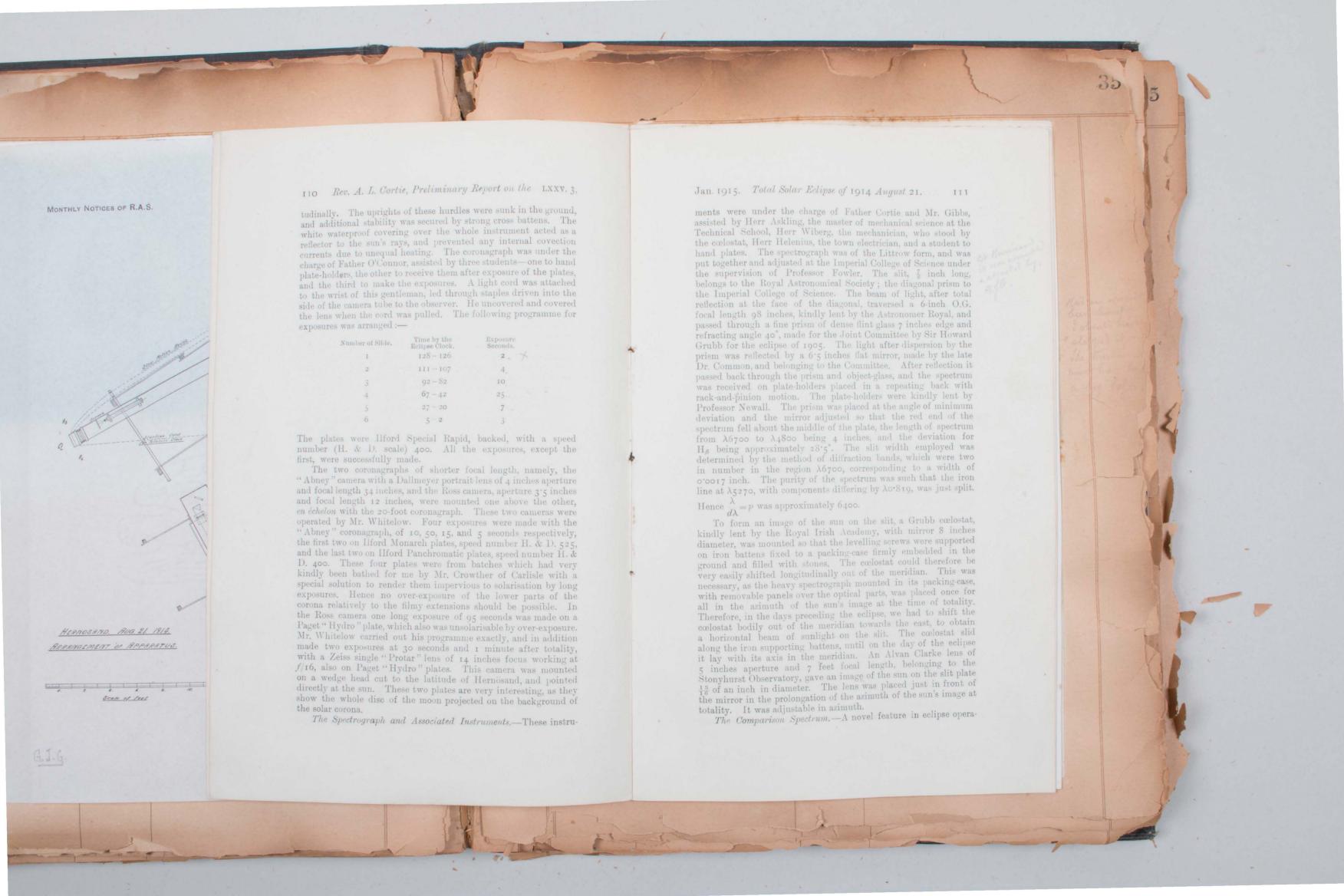

Stockholms Rederiaktiebolag SVEA.

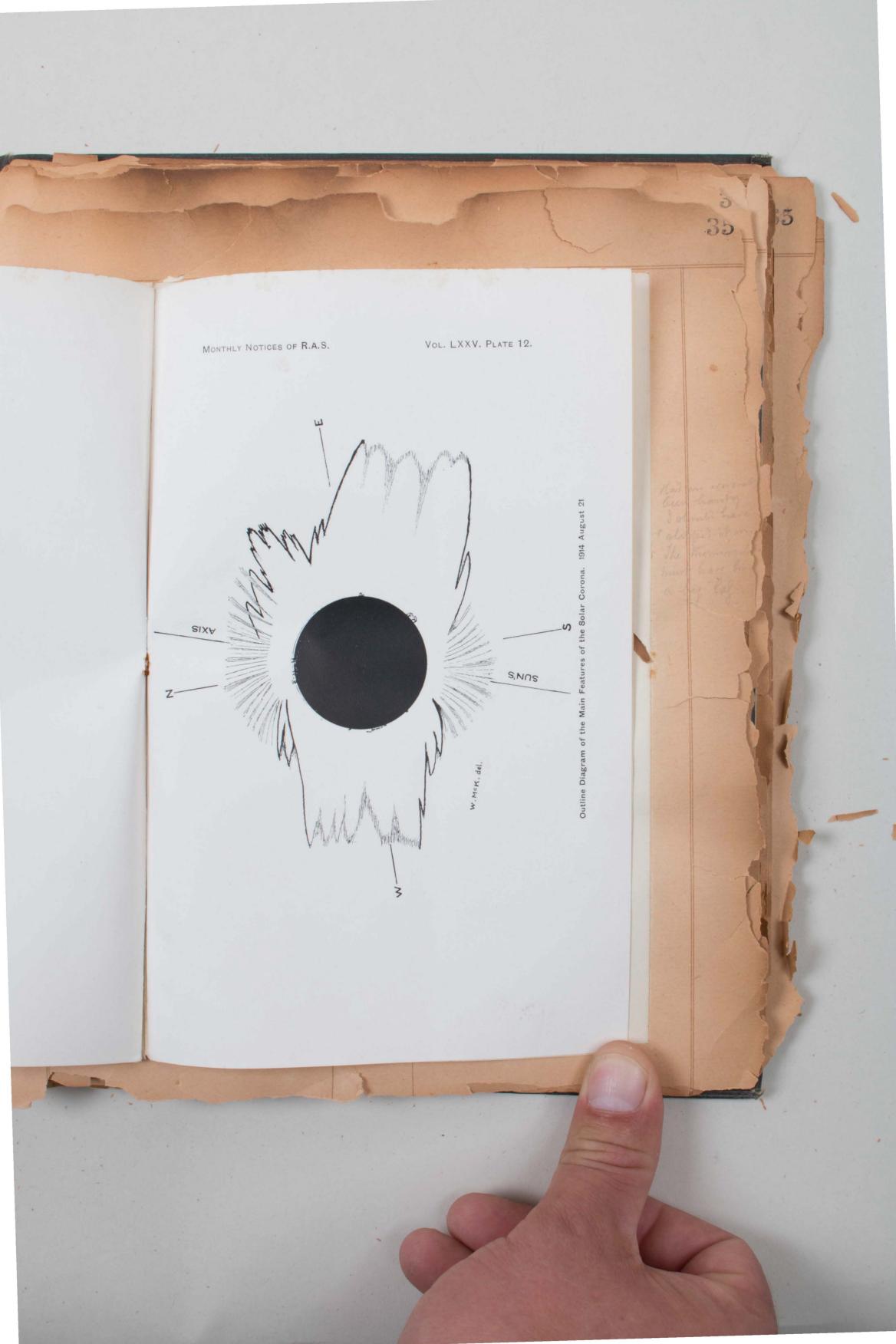


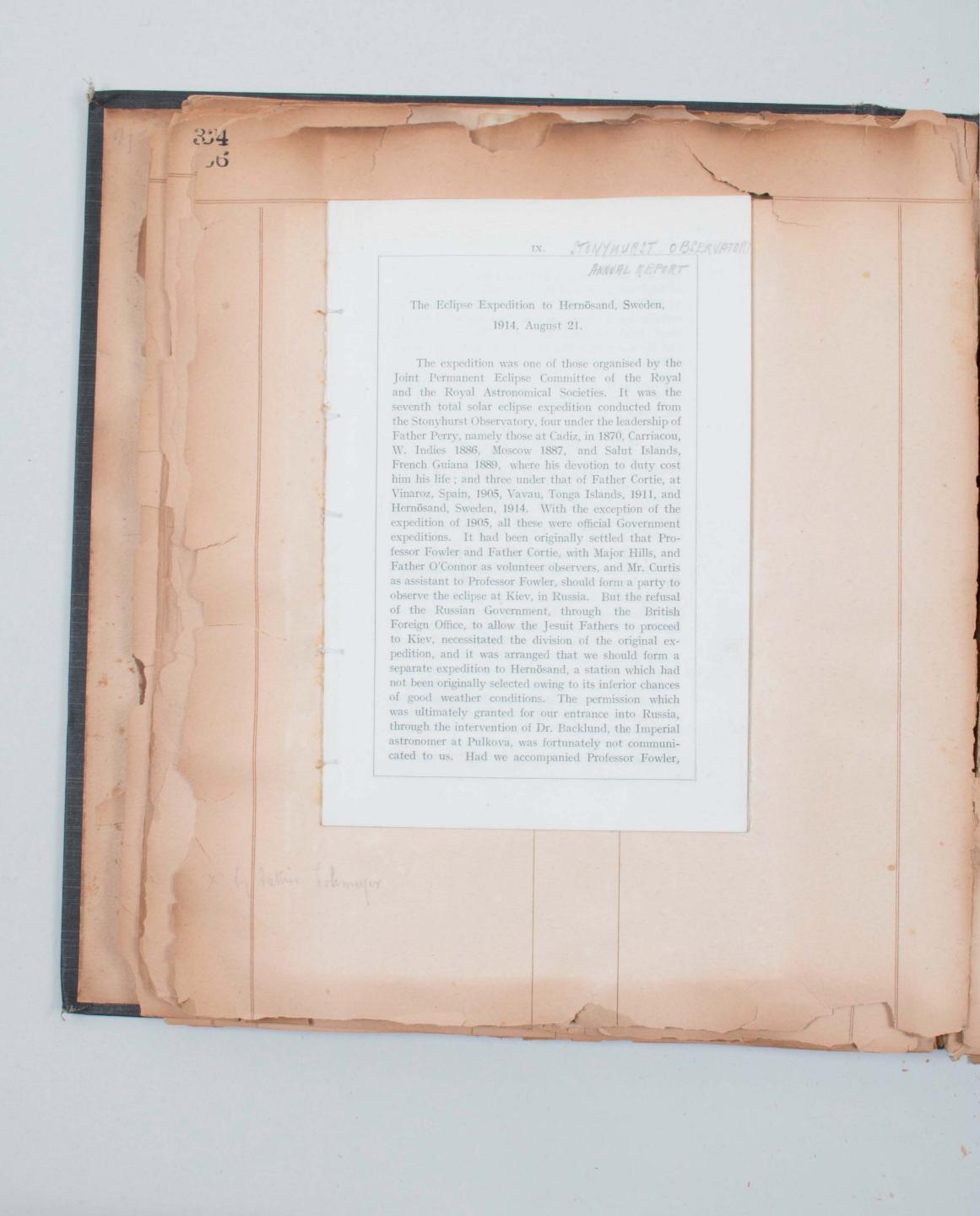




8.38 a.m. Friting Stockholi * 10.27 p.m. 11. 0 Mm. Sat. Berlo 1. o. Pm Sal heren 4. open Sunoy" 2 Pail Book - 2 Receipt on page 3 151.10 Book Raphond jail () SIGNAL given by BRITISH CRUISER (4 p.m. 31. VIII. 1914) to "RAGNVALD JARL plue & white




108 Rev. A. L. Cortie, Preliminary Report on the LXXV. 3. Jan. 1915. Total Solar Eclipse of 1914 August 21. 109 MONTHLY NOTICES OF R.A.S. obviated by the temporary elimination of those parts of the brake mechanism which were most slack in the joints. efficient. A rough calculation of the power may be made as "At Hernösand, after having succeeded in getting the clock follows: -A weight of 20 lbs. falling 3 ft, in 20 minutes will to maintain a fairly steady speed, the image of the sun on the drive a clock and colostat mirror, the rate of power expenditure ground-glass screen of the 20-feet camera was found to be unsteady, in this case being 3 ft.-lbs. per minute. It is therefore obvious that a very small motor and battery would suffice. The battery wandering at intervals from the position occupied for the greater portion of the time. This wandering was traced to a defect in the would probably consist of, say, half a dozen small accumulators, and the motor would be geared to the colostat polar axis through large tangent screw driving the colostat polar axis. Observation a train of worm gears. The observer would control the motor of the movements of the image disclosed a large temporary disfrom his position at any distance by means of a starter and speedturbance at intervals of one minute, with a smaller temporary controller. He would also have by him a speed indicator. The disturbance exactly midway between the larger disturbances. It space occupied during transport and the total weight would be was found that the tangent screw driving the collostat made one considerably less than that of a clock-driving equipment with its turn per minute. Careful adjustment to eliminate end-play of weights and tripod for supporting them. The charging of the the screw failed to cure the trouble, which was finally attributed battery would probably be a matter of no difficulty under any to some defect of the screw itself, probably a bend. The negatives conditions of actual service, and in any case the total running time Nos. 2, 3, and 4 show the effect of these temporary disturbances. of the motor (practices included) in the field would probably be "The driving clock of the 'Grubb' coelostat also gave some well within the capacity of the battery without recharging trouble. Inside the barrel of this clock is provided a maintaining "In case great refinement of speed regulation and checking were gear, but without means for lubricating the internal parts. In deemed necessary, then a speed-checking device could easily be consequence, and during the afternoon of August 20, immediately arranged on the following lines:—A dial is provided round which preceding the day of the eclipse, this clock refused to turn at a finger travels. The finger is driven at a known rate by pendulumall. Quite a long and tedious examination was necessary before controlled clockwork. The dial is driven at the same rate from the trouble was traced to the interior of the barrel. The amount some convenient part of the colostat driving gear when that gear of time expended in getting these clocks to work properly was is running at the normal speed. Thus the observer would have a seriously detrimental to the work of the expedition. The advancrotating dial and a rotating finger in view, and so long as the motor ing or retarding of the coelostat mirrors by means of slow-motion speed corresponded accurately to the pendulum rate there would gear and endless cords or reins is by no means satisfactory, because be no relative motion of the finger and moving dial, and departure it requires the use of both hands on the part of the observer. on the part of the motor from the speed as determined by the In the case of the 'Hammersley' coelostat the slow-motion pendulum would be promptly signalled to the observer by a change apparatus consisted of a secondary screw and sector operated by in the position of the finger in relation to the dial, which would be means of the endless cord quite independently of the clock-drive, provided with marks or divisions for the purpose. which was therefore not disturbed by the working of the slow-The lens of the 20-foot coronagraph is 4 inches in aperture, motion gear, and there was no fault to be found in this respect. and was made by Sir Howard Grubb for the eclipse of 1900, for On the other hand, in the case of the 'Grubb' coelostat, the slowthe Royal Irish Academy. It has been very kindly lent to me by motion mechanism, being of the 'mouse-wheel' form, is an the Council of the Academy—to whom I desire to tender my sincere integral part of the main driving gear and the 'back-lash' enthanks-for the eclipses of 1905, 1911, and the present eclipse. Exact focussing of the lens was secured by photographs of the tailed much lost motion, which, moreover, was very unequal in the two directions. Any working of this gear for the purpose fine sun-spot on the sun on the days preceding the eclipse. The sharpest image of the sun corresponded with a diameter of the of adjusting the 'hour angle' of the mirror disturbed the drive. image of 21 inches. The camera tube, made under Mr. Gibbs' "When any adjustment of this mirror amounting to, say, one-HERNOSAND. AUG. 21. 1914. supervision, was constructed of well-seasoned wooden planks in fifth of a degree was necessary, it was found better for the observer convenient sections, blackened on the inside, which could be to go to the clock, throw the mouse-wheels out of gear, and make BRARNGEMENT OF APPRARTUS. screwed together and held in position by cross battens over the an approximate adjustment by hand, after which the mouse-wheels joints. The lengths for the top and bottom of the camera tube had to be replaced in gear before returning to position at the far end of the reins, whence the final adjustment had to be completed. were flanged, the sides being screwed into the flanges. It was extremely rigid. A camera bellows with rack-and-pinion motion "It is therefore suggested that for such short runs as are 0 2 4 6 8 10 was fitted at the end of the tube, carrying plate-holders 10 x 8 inches. required for eclipse work an electric motor drive would give the Scale of feet In order to secure adjustment of the camera in the azimuth of the most satisfactory results. sun's image on the days preceding the eclipse, the tube was mounted "The power required is very small indeed, and small electroon stout wooden hurdles, so that it could be moved bodily longimotors are now made to be very reliable and quite reasonably


Jan. 1915. Total Solar Eclipse of 1914 August 21. 114 Rev. A. L. Cortie, Preliminary Report on the LXXV. 3. MONTHLY NOTICES OF R.A.S. number of showers of rain, though there was no day of continuous and dark sky was superb. Such views as we could take in the intervals of exposures showed a long fish-tail streamer on the rain. The barometric height was very constant, about 29'5 inches, and all these types of weather conditions accompanied the same western side of the sun, a brilliant streamer N.E., a shorter and less brilliant streamer S.E., and between them a long equatorial direction of the wind and the same height of barometer. But on August 9 a beautifully clear sky had accompanied a S.E. wind. ray, but much fainter than either. No one seems to have seen the On the evening of August 20 the wind again changed to that prominence in the S.E. quadrant which is such a marked feature quarter, with a slight rise in the barometer. A beautiful night on the photographic plates. Nor were the polar rays very marked heralded the absolutely perfect weather conditions for the day of visually. The general impression from visual observations was that the west side of the corona was of the minimum type, while the the eclipse, although clouds formed in the afternoon, about an hour after the eclipse was over. In general the atmosphere at east side was of an intermediate type when the streamers begin to Hernösand was very translucent. open out polewards. During totality the planet Mercury shone Several drills had been held each morning, commencing on brilliantly to the N.W. of the sun, and the planet Venus low down on the S.E. The eclipse was a very bright one. About 20 minutes August 18, the observers being drilled separately at each instrument and then all together. Seven students of the Technical before totality a decidedly cold wind blew from the S.E. The School under the direction of Herr Askling assisted us, in addition total drop in temperature during the eclipse was 7°.4F. to Herr Wiberg and Herr Helenius, whose duties have already The plates were all developed and the instruments packed on August 21 and 22. We took the first boat possible from Hernőbeen mentioned. Three of these students, with Herr Askling. made a composite drawing of the corona, on specially prepared sand to Stockholm, which, however, did not leave until August 25; and, passing safely through two Swedish mine-fields between Sundscards, on which concentric circles had been drawn round a dark disc representing the moon, at successive radial distances apart of val and Stockholm, under the escort of armed vessels, we arrived 1 a lunar diameter for the first diameter and 1 for the second. safely at the Swedish capital on the afternoon of August 27. During the drills they made sketches from a drawing of the corona There his Excellency the British Minister, Sir Esmé Howard, of 1901, each taking one quadrant only. very kindly took charge of our instruments on account of the war, and subsequently transmitted them to the British Vice-Consul at page 2, Nautical Almanac Circular No. 20, based on the path of Bergen, who secured their safe transit across the North Sea to Hull. We left Stockholm on August 28 by rail for Bergen, whence the moon's shadow as published by Dr. Crommelin in the Journal of the British Astronomical Association for January 1914. This we started next day on board a Norwegian steamer for Newcastle. Warned twice by British cruisers, which were patrolling the North path was plotted on the Swedish General Staff Maps for Hernösand, and gave the distance of our station at the Technical Sea, we were enabled to avoid a German mine-field some distance from the mouth of the Tyne, by making for the north of Scotland School from the central line of total eclipse as 3.9 miles. The and coming down the coast. Finally we entered the Tyne on the duration of totality under these circumstances was reckoned to be early morning of August 31, escorted by torpedo boats. 129'5 seconds. It was actually about 4 seconds less. A goodly number of spectators assembled in the field about one hour before totality, and watched the progress of the eclipse 4. Summary of Results. through darkened glasses. To prevent any inadvertent intrusion Five large-scale photographs of the corona were secured which we roped off a large enclosure round the instruments. The show much fine detail. Also four photographs were taken with spectators were extremely quiet, and no trouble was experienced the Abney coronagraph, and one with the Ross lens, by Mr. Whitefrom their presence. At 10 minutes before totality, as observed on low, which show the extension of the coronal streamers further than the projected image of the partially eclipsed sun on the groundwas observed with the naked eye by the Swedish students who glass screen by the method of cusps, Father O'Connor blew three made the composite drawing on the graduated chart. The blasts on a whistle. At the signal the observers and their HERNOSAND. AUG. 21. 1914. drawing is in excellent accord with the main features as photoassistants stood to their stations, and the collostat clocks were graphed; but whereas the greatest extent of the corona on the ARRANGEMENT OF APPARATUS. wound up. At 5 minutes before totality, at the signal of two drawing is 11 lunar diameter, the 10-seconds photograph taken blasts on the whistle, the lamps were lit and the slides drawn. with the Abney coronagraph shows the extension in the S.E. At 10 seconds nominally, but in reality at 12 seconds before streamer to have been fully 2 diameters. Both photograph and totality, one blast was blown, the signal for exposures on the drawing agree in showing a double curvature in this streamer. It 0. 2 4. 6 8. "flash" spectrum. At the signal "Go," the string was pulled first bends upward, and then downward, until it terminates almost which released the mechanism of the eclipse clock, and the exposures with the coronagraphs were started. in a point. The eclipse is interesting as having occurred at a period when The naked-eye view of the corona in a perfectly transparent

Jan. 1915. Total Solar Eclipse of 1914 August 21. The lines, though sharp, are difficult to measure on account of their faintness. The most prominent line in this region is λ 6374'3, occurring in the third band. Other bands are :-4. $5118^{\circ}1$ two lines. 5. $5315^{\circ}3$ four lines. $5302^{\circ}7$ This last band covers the region of the well-known green coronal radiation. It is present, but extremely faint. There are also probably lines about the following wave-lengths: -5662, 5588, 5544, 5512, 5476, 5227, and 4997, though all these numbers are subject to revision. Seeing that the slit length was $\frac{7}{8}$ inch, and the arc spectrum occupied $\frac{1}{10}$ -inch, even if the slit had been placed quite tangentially to the moon's limb about 4 inch would have been covered by the corona on each side of the iron arc. The fact that the coronal bands are separated from the iron arc spectrum indicates that the slit was just inside the image of the moon, and that the outlying portions on each side covered the region of the lower parts of the streamers, but not the lower corona or upper chromosphere. The image of the moon was slightly out of centre on the slit, and just above the central horizontal line. Stonyhurst College Observatory: 1914 December 28. PRINTED BY NEILL AND CO., LTD., EDINBURGH.

XI.

with him we should have had to abandon our expedition at Riga, on account of the impossibility of proceeding to Kiev, owing to the incidence of the war and the mobilization of troops, and had we reached Kiev, we should have shared the ill-fortune of Professor Campbell and the party from the Lick Observatory, on account

Owing to the kind offices of Professor B. Hasselberg, of the Academy of Sciences at Stockholm, the chief of the Swedish Commission for the observation of the eclipse, and the exceeding courtesy of Herr Rektor Tham, we secured an excellent site at Hernösand in a field at the back of the Technical School. The school buildings, containing physical laboratories, mechanics' and carpenter's shops, dark room, and a complete electrical plant was placed unreservedly at our disposal. Our instruments were also expedited through the Customs House after merely formal inspection.

A considerable amount of time had been expended by the staff of the observatory in the remote preparations for the eclipse, and two coelostats and a long focus and short focus camera had been set up and adjusted in the observatory grounds. The party ultimately consisted of Father Cortie, Father O'Connor, Mr. G. J. Gibbs, of Preston, and Mr. E. T. Whitelow, of Birkdale, a great benefactor of the observatory. We left Hull on July 28th, arrived at Gothenburg on July 30th, and at Stockholm the same evening. There we were welcomed by Father Wulf and Father Rodés, who were proceeding to Hernösand on an expedition from St. Ignatius' College, Valkenburg. We journeyed together from Stockholm by boat, leaving on the morning of August 2nd, and arriving at Hernösand on the afternoon of the

following day. We at once commenced with the erection of the instruments, the determination of the meridians and azimuths being made by theodolite by Father O'Connor. We were fortunate in having with us so skilled an engineer as Mr. Gibbs, who undertook the whole charge of setting up the instruments. The co-ordinates of the station chosen are latitude 62°, 38' 8.8" N., and longitude 17°, 57' 32.25" E. of Greenwich, as determined by an officer of the Swedish survey staff at the request of Professor Hasselberg.

Our instrumental equipment included a 16-inch cœlostat, belonging to the Royal Astronomical Society, and an 8-inch "Grubb" coelostat, kindly lent by the Royal Irish Academy. These two instruments gave much trouble in adjustment for smooth running, especially so the former, but all the difficulties were successfully overcome by Mr. Gibbs. The details of the erection of the instruments are fully described in the preliminary report of the Eclipse Expedition communicated to the Royal Astronomical Society (Monthly Notices R.A.S., Vol. LXXV., No. 3., January, 1915.) The 16-inch coelostat supplied light to three coronagraphs, and a horizontal telescope for projecting an enlarged image of the sun on to a circularly graduated screen of ground glass. To obtain large scale pictures of the corona, $2\frac{1}{8}$ inch to the solar diameter, we employed a 4-inch photographic lens, also kindly lent by the Royal Irish Academy, having a focal length of 20 feet. This was mounted in a strongly built wooden camera in sections, designed by Mr. Gibbs. The camera bellows carried plateholders 10 × 8 inches. Six exposures were made on the corona of 2, 4, 10, 25, 7, 3 seconds duration, and five of these were most successful. For photographing the

extension of the filmy streamers of the corona we employed two cameras, one with a 4-inch Dallmeyer lens, focal length 34 inches, the "Abney" camera used so frequently in former eclipse expeditions, and a Ross lens 3.5 inches aperture and 12 inches focal length, belonging to Mr. Whitelow. These two cameras were mounted one on top of the other, and in front of the 20-foot camera. Four exposures were made of 10, 50, 15, and 5 seconds with the "Abney" camera, and one long exposure of 95 seconds with the Ross lens. These exposures were made on plates especially bathed to render them impervious to solarization, so as to obtain the inner as well as the outer corona. In addition to these cameras, Mr. Whitelow had mounted on a wedgehead cut to the latitude of Hernösand, a Zeiss lens of 14 inches focus, with which he successfully photographed the moon projected on the corona, 30 seconds, and one minute after totality. The function of the 3 inch Cooke telescope, mounted on top of the long camera, was to enable Father O'Connor to give signals, 10 minutes, 5 minutes, and 10 seconds before totality, by observation on the graduated glass screen of the angles subtended by the cusps of the moon at the centre of the sun's projected image.

The 8-inch coelostat was employed to supply light to a 5-inch Alvan Clarke lens, focal length seven feet, which threw an image of the sun on the slit plate of the spectrograph. This spectrograph was designed in conjunction with Professor Fowler, and was constructed under his supervision at the Imperial College of Science, South Kensington. It was probably the most powerful slit spectrograph so far used in eclipse observations, and gave an exceedingly bright spectrum, covering

about 4 inches between λ 6700 and λ 4800. It was of the Littrow type. The slit belongs to the Royal Astronomical Society, the diagonal prism to the Imperial College of Science, the O.G. to the Greenwich Observatory, the mirror to the Joint Permanent Committee, and the plate-holders to the Cambridge Observatory. The constants of the instrument were:—

Length of slit, $\frac{7}{8}$ -inch.

Width of slit, ·0017-inch.

Aperture of O.G., 6 inches.

Focal length of O.G., 98 inches.

Edge of prism, 7 inches.

Refracting angle of prism, 40°.

Deviation of prism at Hβ, 28·5°.

Diameter of plane mirror, 6·5-inches.

Purity of the spectrum, 6400.

A novel feature in eclipse expeditions was the placing of a comparison iron-arc spectrum on the plate exposed for the spectrum of the corona during the eclipse. Through the kindness of Herr Helenius, the town electrician, long leads were conveyed from the electric mains of the Technical School, and connected through a variable resistance, with an arc having solid iron pointed poles. The pressure was 110 volts and the current 12 amperes. By means of a single lens and a diagonal the image of the arc was formed on the slit. The diagonal could be pushed forwards and backwards by means of a slotted groove. The lens was adjusted so that the solid angle of the beam of light from the arc formed on the slit was equal to that also subtended by the O.G. from the slit. This adjustment is necessary in order to fill the O.G. with light from the arc. A zinc

334

shield with a horizontal slot, $\frac{1}{10}$ inch wide, was employed to cover the slit plate during the exposure on the corona. The slot covered the position of the dark image of the moon. The slit had been placed almost tangential to the limb of the sun on the E. side. The exposure had been in progress about 40 seconds on the corona, when the slotted shield was placed in position, the diagonal pushed forward, and the arc was struck. An exposure of four seconds was given to the arc, the diagonal was pushed back, the slotted shield removed, and the exposure was continued on the coronal spectrum until the end of totality. Wratten and Wainwright's Orthochromatic B plates were used, so that the red end of the coronal spectrum might be photographed. The operations connected with the photographing of the arc spectrum took about 20 seconds.

Drills commenced on Monday, August 17th, and we were assisted by seven students of the Technical School, under the direction of Herr Askling, the master of mechanical science. Four of these students were trained to make a composite drawing of the corona, each taking one quadrant, on graduated discs. They practised on a drawing of the corona of 1901.

Had the eclipse occurred on any other day during our stay at Hernösand, except one, August 9th, we should have been baulked by clouds. A persistent N.W. wind was accompanied by a considerable amount of cloud. Otherwise the atmosphere was of extraordinary transparency. On the evening of August 20th the wind shifted to the S.E., and brought with it a beautiful clear sky, though clouds appeared about one hour after the eclipse was over. A considerable number of

spectators assembled in the field, and watched the progress of the partial phase through dark glasses. To prevent any inadvertent intrusion we roped off an enclosure for the instruments. At 10 minutes before totality, as indicated by the cusps on the ground glass screen, Father O'Connor blew three blasts on a whistle. The observers and their assistants stood to their stations, the clocks were wound up, and lamps were lit. At this time the illumination of the distant mountains was weird but beautiful. The temperature was decidedly colder, with a cold rush of wind from the S.E. The total drop of temperature during the eclipse was 7.4° F. At five minutes before totality, at the signal of two blasts on the whistle, the slides were drawn, and silence was called. At ten seconds nominally, but really at twelve seconds before totality, a single blast was the warning for exposures on the "flash" spectrum. At the signal "Go," when totality was reached, Father O'Connor pulled a cord, releasing the mechanism of the eclipse clock, the hand of which commenced to make a circuit of a two-foot dial in the computed duration of totality—129 seconds. It really was 125 seconds. The whole scene was most impressive, the silence being only broken by the clicking of the camera slides. The sight of the corona in a perfectly pure sky was indeed magnificent. On the W. of the eclipsed sun was a long fishtail streamer, while on the E. there were bright winged streamers, a very bright one N.E., a larger, though less bright one, S.E., and a faint bayonet-like streamer of great length almost on the equator. To the N.W. blazed the planet Mercury, while Venus was shining brightly on the E. horizon.

As we were uncertain when a boat might come from the north to take us homewards, we commenced the dis-

Continuing the curvature of these two streamers and the bright filament as projected, on to the sun's disk. they meet near the large sun-spot at position heliographic longitude 67° 12', latitude 18° 18' on the day of the eclipse. Plotting five points on each of these bright rays, and taking the centre of the spot itself as a sixth point, it appears by an application of Pascal's theorem, that each set of five points with the spot lie upon a conic section. It is highly probable, therefore, that these bright rays are the projections on a plane of streamers of particles emanating from the spot, for three projected conics meet near the spot. Similarly the bright rays which were selected from the sheaf on the N.E. are projections of conic sections meeting near the spot, so that this feature may also be reasonably attributed to the action of the large sun-spot.

The spectrum of the corona photographed on each side of the spectrum of the iron-arc, though extremely weak, is yet measurable. It appears to be unique. In the first place, although the corona was a bright one, the characteristic coronal radiation at w.l. 5303 is only just discernable on the plate. This result agrees with that obtained by other observers. Secondly the intenser radiations are in the red end of the spectrum, and other observers have called attention to a bright radiation at w.l. 6374. This line is well marked on the negative, but it is not an isolated radiation. It occurs as a strong member of a band, or fluting, there being also two other well marked flutings in the red. The wavelengths of their terminal lines are as follows:-

1. 6643·9 Three Lines. 2. 6530·9 Six Lines. 6502·8

3. 6384·3 Seven Lines.

XIX.

The line 6374.3 is probably the most prominent of all the lines. Two other bands occur at:

4. 5118·1 Two Lines. 5. 5315·3 Four Lines. 5302·7

this last band covering the well-known green coronal radiation. All the lines in these bands are sharp, though very faint. There are also probably lines about the following wave-lengths: 5662, 5588, 5544, 5512, 5476, 5227, and 4997, though all these numbers are subject to revision. The general character of the coronal spectrum as photographed is undoubtedly that of a series of bands, or flutings. From a study of the position of the slit relatively to the corona, it appears that the spectrum is not that of the upper chromosphere, nor of the lower corona, but of the roots of the streamers on the E. side of the sun.

Astronomical.—All the fine nights up to July have been employed in experimental work with the transit instrument in preparation for the rectification of our Longtitude by the radio-telegraphic time signals from the Paris Observatory, via the Eiffel Tower.

The instrument is a very old one, and has a very extraordinary fault. When the middle wire in the focal plane is set to zero of collimation by the South collimator, it is found to be completely wrong by the North collimator. I can account for this only on the supposition of a considerable pivot inequality, together with an indenture on one of the faces of one of the V supports, so that in one position of the axle one of the pivots rests in a lateral hollow, while in the reversed position the hollow is avoided. The result of this is an azimuthal error, appearing as a collimation error. But a large number of

Continuing the curvature of these two streamers and the bright filament as projected, on to the sun's disk, they meet near the large sun-spot at position heliographic longitude 67° 12', latitude 18° 18' on the day of the eclipse. Plotting five points on each of these bright rays, and taking the centre of the spot itself as a sixth point, it appears by an application of Pascal's theorem, that each set of five points with the spot lie upon a conic section. It is highly probable, therefore, that these bright rays are the projections on a plane of streamers of particles emanating from the spot, for three projected conics meet near the spot. Similarly the bright rays which were selected from the sheaf on the N.E. are projections of conic sections meeting near the spot, so that this feature may also be reasonably attributed to the action of the large sun-spot.

The spectrum of the corona photographed on each side of the spectrum of the iron-arc, though extremely weak, is yet measurable. It appears to be unique. In the first place, although the corona was a bright one, the characteristic coronal radiation at w.l. 5303 is only just discernable on the plate. This result agrees with that obtained by other observers. Secondly the intenser radiations are in the red end of the spectrum, and other observers have called attention to a bright radiation at w.l. 6374. This line is well marked on the negative, but it is not an isolated radiation. It occurs as a strong member of a band, or fluting, there being also two other well marked flutings in the red. The wavelengths of their terminal lines are as follows:—

The line 6374·3 is probably the most prominent of all the lines. Two other bands occur at:

this last band covering the well-known green coronal radiation. All the lines in these bands are sharp, though very faint. There are also probably lines about the following wave-lengths: 5662, 5588, 5544, 5512, 5476, 5227, and 4997, though all these numbers are subject to revision. The general character of the coronal spectrum as photographed is undoubtedly that of a series of bands, or flutings. From a study of the position of the slit relatively to the corona, it appears that the spectrum is not that of the upper chromosphere, nor of the lower corona, but of the roots of the streamers on the E. side of the sun.

Astronomical.—All the fine nights up to July have been employed in experimental work with the transit instrument in preparation for the rectification of our Longtitude by the radio-telegraphic time signals from the Paris Observatory, via the Eiffel Tower.

The instrument is a very old one, and has a very extraordinary fault. When the middle wire in the focal plane is set to zero of collimation by the South collimator, it is found to be completely wrong by the North collimator. I can account for this only on the supposition of a considerable pivot inequality, together with an indenture on one of the faces of one of the V supports, so that in one position of the axle one of the pivots rests in a lateral hollow, while in the reversed position the hollow is avoided. The result of this is an azimuthal error, appearing as a collimation error. But a large number of

Reprinted from the Monthly Notices of the Royal Astronomical Society, Vol. LXXV. No. 6. THE SUN-SPOT AND THE SOLAR CORONA OF 1914 AUGUST 21. BY THE REV. A. L. CORTIE, S.J.

The Eclipse Expedition to Hernösand, Sweden, 1914, August 21.

The expedition was one of those organised by th int Permanent Eclipse Committee of the Roys d the Royal Astronomical Societies. It was th venth total solar eclipse expedition conducted from ather Perry, namely those at Cadiz, in 1870, Carriaco . Indies 1886, Moscow 1887, and Salut Island ench Guiana 1889, where his devotion to duty co m his life; and three under that of Father Cortie, naroz, Spain, 1905, Vavau, Tonga Islands, 1911, ai ernösand, Sweden, 1914. With the exception of t pedition of 1905, all these were official Governme peditions. It had been originally settled that Pr sor Fowler and Father Cortie, with Major Hills, a ther O'Connor as volunteer observers, and Mr. Cur assistant to Professor Fowler, should form a party serve the eclipse at Kiev, in Russia. But the refu the Russian Government, through the Briti reign Office, to allow the Jesuit Fathers to proce Kiev, necessitated the division of the original (lition, and it was arranged that we should form arate expedition to Hernösand, a station which b been originally selected owing to its inferior chan good weather conditions. The permission wh ultimately granted for our entrance into Rus ough the intervention of Dr. Backlund, the Impe onomer at Pulkova, was fortunately not commu d to us. Had we accompanied Professor Fow

The Sun-spot and the Solar Corona of 1914 August 21. By the Rev. A. L. Cortie, S.J.

1. In former papers (Monthly Notices, R.A.S., Ixxiii. pp. 431-436, pp. 539-543) evidence has been furnished to show that regions of long-continued sun-spot activity were associated, in four cases, with bundles of divergent streamers in the solar corona. The following table gives a summary of the results so far attained, to which are added those connected with the present investigation.

Disturbed Area of Sun-spots. Mean Longitude. Mean Latitude. Duration. 1893 Apr. 16 1893 Jan. 16- Nov. 16 49'3 to 14'9 - 7'5 to -13'1 1898 Jan. 22 1898 Jan. 19- July 29 132'7 ,, 117'8 - 8'8 ,, -13'7 1905 Aug. 30 1905 May 11- July 7 72'0 ,, 52'3 -12'4 ,, -18'5 1908 Jan. 3 1907 May 5-1908 Jan. 8 258.7 ,, 240.3 + 4.9 ,, + 9.1 1914 Aug. 21 1914 Mar. 30- Nov. 14 71'4 ,, 56'3 +27'7 ,, +17'2

In the four cases so far discussed the regions of solar activity happened to be situated near to the Sun's limb on the dates of total eclipse. It is not claimed that the treatment was exhaustive, as there may well have been other streamers connected with regions of spot-activity which were not placed in these more favourable positions for investigation. In particular, in the case of the eclipse of 1893 April 16, Professor Schaeberle has discussed (Contributions from the Lick Observatory, No. 4) several other regions of activity, situated on the Sun's disc, which were presumably connected with streamers in the Sun's corona.

2. The Sun-spot.—The sun-spot which crossed the Sun's disc August 13-26 was the largest spot which had appeared in the new cycle of spot-activity. Its position on August 21 was longitude 67° 18′, north latitude 18° 18′. We must go back to 1910 October to find any spot approaching it in size. When it appeared on the limb on August 13, it was a regular spot of Type IV., the preliminary stages of its life-history having been passed on the invisible hemisphere of the Sun. It attained a disc-area of 6.5 units $(\frac{1}{5000})$ of the visible hemisphere), and was the largest spot of the year. Through the kindness of Professor Hale, Professor Frost, and Professor Newall, I have been supplied with spectroheliograms of the spot and the accompanying flocculi in hydrogen and calcium radiations, from the Mount Wilson, Yerkes, and and Kodaikánal Observatories. And besides the Stonyhurst series of drawings, through the kind offices of the Astronomer Royal I have at my disposal a fine series of photographs of the spot and the surrounding faculæ obtained at Greenwich. The area of faculæ and flocculi surrounding the spot is of great extent. The hydrogen flocculi cover a region from longitude 69'9 to 54'7, and Apr. 1915. The Sun-spot and the Solar Corona of 1914. 497

from latitude + 27.1 to + 16.3. In this area of hydrogen flocculi there is, at longitude 59'3 and latitude +21'9, on the Mount Wilson spectroheliogram of August 21, and less markedly in that of August 22, a dark patch which evidently marks the position of the following spot of the group, when it passed through the twospot stage, or Type II. of its life-history on the invisible hemisphere of the Sun. It will be interesting to ascertain whether this portion of the mass of flocculi exhibited an opposite polarity to that of the spot itself in the magnetic field.

The bright calcium flocculi, as shown on the spectroheliograms from Kodaikánal and Yerkes, are of much greater extent than the hydrogen flocculi. The limits of longitude are approximately 70° to 52° to, and of latitude from + 28° 5 to + 15° 4. The dark patch in the hydrogen flocculi, already alluded to; is well shown both in the Yerkes and Kodaikanal spectroheliograms, in calcium light, of August 22.

The sun-spot of 1914 August 21 was not an isolated disturbance, but one of a series of disturbances in the same locality on the Sun. Not only was it the largest spot of the new cycle and of the year, but it occurred in that region of the Sun which was first disturbed at the advent of the new cycle, and was most disturbed during the year. Confining ourselves to the limits of longitude and latitude of the flocculi accompanying the spot of August 21, we find that the same region was disturbed from March 30 to November 15, intermittently, by five spot-groups, four of which were among the most important disturbances of the year. The date March 30 also, and the group that then appeared on the E limb, marks the beginning of the recrudescence of spot-activity, for the first three months of 1914 were almost as barren of sun-spots as the year of absolute minimum 1913. The following table gives the mean positions of these spot-groups from the Stonyhurst drawings :-

No.		Mean Heliographic.	
	Date.	Longitude.	Latitude.
I	1914. Mar. 30-Apr. 11	71.4	27°7
2	Apr. 27-May 2	56.3	26.1
3	Aug. 13-Aug. 26	66.5	19.0
4	Sept. 10-Sept. 22	65.3	17'2
5	Nov. 7-Nov. 15	69.3	23.3

The groups 1, 3, 4, 5 were the more important groups.

3. If any connection existed between the streamers of the corona of 1914 August 21 and a disturbed spot-region, all the evidence of the life-histories of the spots pointed to the particular region occupied by the large spot of the same date. It is also worthy of note that the total solar eclipse of 1914 is one of the very few that have been observed when the spot-activity was beginning to increase. The mean daily area of spots for 1914 from the Stonyhurst drawings was o'82. That for 1913 was only o'04,

The expedition was one of those organised by th Joint Permanent Eclipse Committee of the Roy and the Royal Astronomical Societies. It was the the Stonyhurst Observatory, four under the leadership Father Perry, namely those at Cadiz, in 1870, Carriaco W. Indies 1886, Moscow 1887, and Salut Island French Guiana 1889, where his devotion to duty co him his life; and three under that of Father Cortie, Vinaroz, Spain, 1905, Vavau, Tonga Islands, 1911, a Hernösand, Sweden, 1914. With the exception of t expedition of 1905, all these were official Government expeditions. It had been originally settled that P fessor Fowler and Father Cortie, with Major Hills, a Father O'Connor as volunteer observers, and Mr. Cur as assistant to Professor Fowler, should form a party observe the eclipse at Kiev, in Russia. But the refu of the Russian Government, through the Brit Foreign Office, to allow the Jesuit Fathers to proce to Kiev, necessitated the division of the original pedition, and it was arranged that we should form separate expedition to Hernösand, a station which l not been originally selected owing to its inferior chan of good weather conditions. The permission wh was ultimately granted for our entrance into Rus through the intervention of Dr. Backlund, the Impe astronomer at Pulkova, was fortunately not commi cated to us. Had we accompanied Professor Fow 500 Rev. A. L. Cortie, The Sun-spot and the LXXV.6,

the centre of the spot, the point O, can be altered within limits without disturbing the collinearity of the points of intersection of opposite sides of the hexagon. This is due to the fact that the angles of the hexagon are very acute or very obtuse. But the limits through which O can be shifted lie within the region of the flocculi, so that it is true to say that the streamer emanates from the region of the spot, though not necessarily from the spot itself.

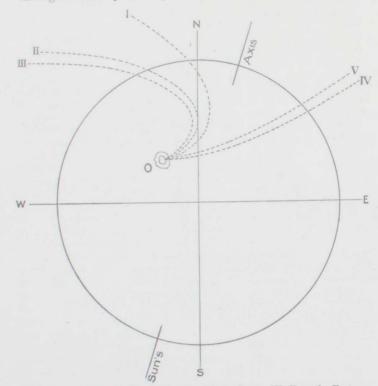


Fig. 2.—Curves I., II., III. on the West; Curves IV, V on the East; O is the spot.

The very bright streamer in the N.E. quadrant points almost directly at the spot. It is only necessary to give the directions of the bright ribs a slight curvature to lead them directly through the spot. But this renders the solution still less rigid than in the preceding cases. It is possible to shift the position of the centre of the spot considerably without altering the collinearity of the three points of intersection of opposite sides of the hexagon. But even in this case the directions of the rays pass through the region of disturbances connected with the spot.

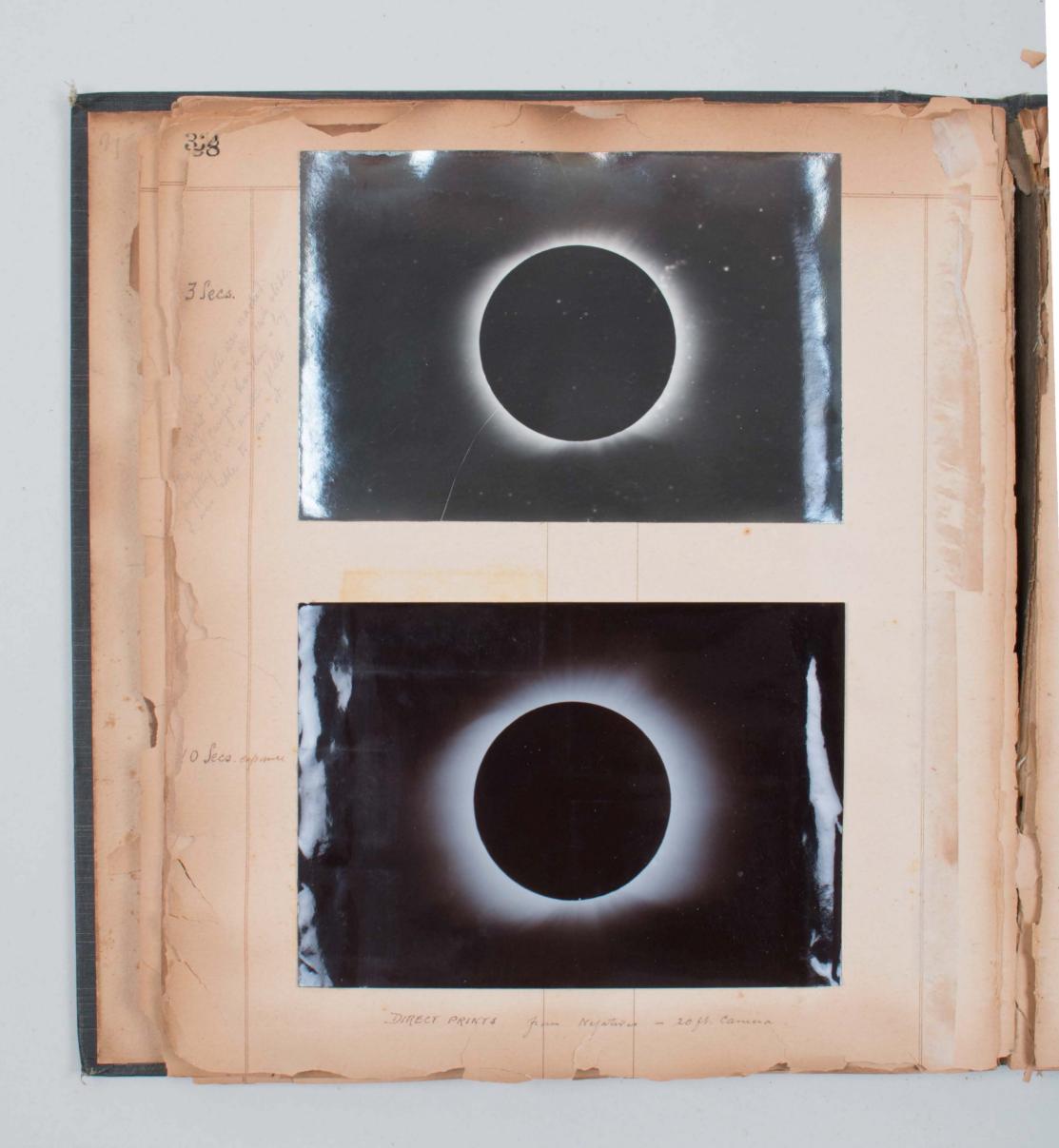
We may for convenience (fig. 2) number the curves in the

Apr. 1915. Solar Corona of 1914 August 21.

SOI

order of decreasing value of P.A. Applying the geometrical process of reciprocation, and effecting a graphical solution, curve I. is a very elongated eclipse, curves II. and III. are hyperbolæ, and curves IV. and V., being nearly straight lines, are the projections in all probability of conics seen almost edgewise. Since these five curves intersect one another in the region of the spot, it is highly probable that the disturbed region of the Sun's surface, which included the sun-spot of 1914 August 21, was the seat of the emanation of widely divergent streamers, represented in projection by the five conics discussed above.

This result, combined with those established for the eclipses of 1893, 1898, 1905, and 1908, lends additional weight to the opinion that the mode of propagation of matter from a centre of disturbance on the Sun, which may be supposed to be operative in the production of terrestrial magnetic storms, is in the form of divergent streamers, and not in that of a single discharge, on the analogy of a stream of cathode rays.


5. The following table gives a summary of a comparison of the spotted state of the Sun, and the terrestrial magnetic phenomena for the years 1912-14, from the Stonyhurst records:—

	Mean Daily.		Number of Magnetic Disturbances.	
Year,	Spot-Area.	Declination Range.	Moderate.	Greater.
1912	0*22	8'1	18	1
1913	0'04	9.7	23	1
1914	0.82	10.5	25	3

Two of the three greater magnetic storms of 1914, which occurred on April 5-6, accompanied the first transit of the Sun's disc of the area which, as described above, was intermittently disturbed from March 30 to November 15, and contained the large spot of August 21. They marked, too, the beginning of activity of a new solar cycle. Moderate magnetic disturbances were also probably connected with the same region on April 1, June 25, 26, 27, and November 11. The third greater magnetic storm of 1914, that of September 27, accompanied the transit of an active spot-group across the Sun's disc, September 24-October 2. This spot was situated upon almost exactly the same parallel of latitude as the spot-region discussed above, and removed from it just about 180° in longitude, that is, diametrically opposite to the former spot-region. As will be gathered from the table, the general revival of magnetic activity preceded that of sun-spot activity. It commenced in the year of absolute sun-spot minimum.

Stonyhurst College Observatory, 1915 April 6.

PRINTED IN GREAT BRITAIN BY NEILL AND CO., LTD., EDINBURGH.

DIRECT PRII from the cracket negas 20 11 Camera PRINTS from hi Whitelow's negatives Ditto - exposures have minetially after completion of totality. The corna is that partially bisible

35 ER SKETCHES & PHOTOGRAPHS Retriced photograph of a drawing entritived at the Royal Institution handon W. MCK. del

SOLAR CORONA THERWOSAND AUG. 21. 1919 photographs and photohis G. J. G. 211. tobality BIG

The BRITISH GOVERNMENT ECLIPSE EXPEDITION TO HERNOSAND. SWEDEN.

By the REV. A. L. CORTIE, S.J., F.R.A.S., Chief of the Expedition.

Owing to the refusal of the Russian Government to relax the law which excludes Jesuits from Russia, it was impossible for Father Cortie and Father O'Connor to proceed, as had been arranged, to Kiev, as part of the official expedition of the Joint Permanent Eclipse Committee of the Royal and Royal Astronomical Societies. The expedition had to be divided, and Father Cortie was commissioned to lead a party to Hernösand, in Sweden, at which place the prospective weather conditions were not so favourable as at the Russian stations. Besides Father O'Connor, he was accompanied by Mr. G. J. Gibbs, of Preston, and Mr. E. T. Whitelow, of Birkdale, so that the expedition was wholly composed of astronomers from Lancashire.

The expedition left Hull by the s.s. Calypso, on the evening of July 28th, and after a rough passage arrived at Gothenburg on the morning of the 30th. Travelling by the train leaving Gothenburg at midday, Stockholm was reached on the night of the same day, and so we were enabled to celebrate the feast of St. Ignatius with the mission of German Jesuits established in that city. There, too, we met Father Wulf and Father Rodés, from the College of St. Ignatius, at Valkenburg, in Holland, who were also proceeding to Hernösand on an expedition from that College. The German Fathers at Stockholm extended the most courteous hospitality not only to their brother Jesuits, but also to the lay members of the British Expedition, and on the afternoon of the same day Father Lohmeyer conducted us on a delightful trip on the fiords in the environs of Stockholm. After official calls on the Bishop, the British Minister, the director of the observatory, and Professor B. Hasselberg, who it is seen the projection telescope. When instru-

the morning of August 2nd, and reached our destination on the afternoon of August 3rd. Through the courtesy of the Swedish astronomers all difficulties with regard to the Customs examination of our instruments had been smoothed over, so we were able the very next day to commence the erection of our instrumental outfit.

The objects aimed at by the expedition were to obtain direct photographs of the sun's corona during totality, and also to photograph its spectrum in the red, yellow, and green regions of the spectrum. For the direct photography of the corona we had three cameras, of varying focal lengths, as instruments of long focal length would give large images showing the details principally in the lower portions of the corona, and those of shorter focal length would, by furnishing smaller and brighter images, be calculated to show the extension of the filmy network of streamers that constitute the solar crown of glory. Our largest camera had a lens of four inches aperture, belonging to the Royal Irish Academy, and a tube 20 feet long. Next in order was a camera with a lens of four inches and focal length 30 inches, and lastly one belonging to Mr. Whitelow, with lens of 3½ inches aperture and focal length only 12 inches. These were mounted horizontally en echelon, and were supplied with light by a 16 inch mirror, driven by clockwork. On the top of the tube of the long camera was placed a telescope to project an image of the sun on to a plate of ground glass, so as to fit a graduated circle. This enabled Father O'Connor to tell us when the eclipse was ten minutes, five minutes, and ten seconds from totality, as he had calculated beforehand the crescent of the sun that would be left unobscured at these precise times. Two of the accompanying illustrations show the large mirror and the battery of cameras. Mr. Whitelow (5) is sitting by the two cameras of shorter focal length, and he has besides another camera on a tripod stand pointed at the sun, with which to make observations before and after totality. Father O'Connor (1) is seen at the end of the had made all preliminary arrangements for our ments are thus used horizontally to receive light reception at Hernösand, we left Stockholm on from a rotating mirror, they must point exactly

[No. 196, OCTOBER, 1914.]

Father O'Connor. A very fine spectrograph had been especially put together with parts of instruments belonging to the Joint Permanent Committee, the Royal Irish Academy, The Royal Astronomical Society, the Imperial College of Science, the observatories of Greenwich, Cambridge, and Stonyhurst, for photographing the spectrum of the corona. It was devised by Father Cortie, in conjunction with Professor Fowler, of South Kensington. Though a beautiful instrument, it was probably somewhat too powerful for the photography of the faint coronal spectrum. We need not enter minutely into technical details, but the essential optical parts of the spectroscope were a large prism of seven inches edge and angle 40°, a mirror 6½ inches in diameter, and a lens six inches in diameter, and 98 inches focal length. In our illustrations subjoined Father Cortie (3) is seen at the camera end of the instrument, and in another (4) Mr. Gibbs is shown with what we irreverently called his "timber yard." For, in addition to the spectrum of the corona, we arranged to throw the arc spectrum of iron on the spectroscope slit, for the sake of obtaining well-known fiducial points instruments in a large lecture room facing due south; totality of the corona. The town electrician,

to the position of sunrise for the day of observation. the British expedition had the site of their instru-This adjustment, and in fact most of the hands of these arrangements to the good offices of Professor B. Hasselberg, of Stockholm, the chief of the Swedish Eclipse Commission.

The town of Hernösand is situated mostly on a small island, the port lying on the strait which separates it from the mainland. Part of the town, including the residential suburbs, charmingly placed among pine woods on undulating hills, is on the mainland. Two bridges spanning the strait connect the two portions of the town. The port is a great centre of the timber trade, and large piles of timber are stacked in the yards surrounding the open sound to the north, by which vessels enter the port. A link with home and Lancashire was the presence of a steamer loading with wood pulp for the docks at Preston. In the distance beyond the north sound are ranges of mountains clad with the prevalent pine trees. The atmosphere is of transparent purity, but the surrounding hills are conducive to the formation of clouds. During the days preceding the eclipse, although the weather was generally beautifully fine, there was, with the exception of only one day, a very considerable amount of cloud, and that generally about eclipse for measurement, during the actual eclipse. The time. On the evening of August 20th the wind, which electric leads were laid down by the town electrician, had blown almost consistently from the northwho also supplied a set of resistance coils. The west, changed its direction to south-east, and a iron arc, lens, and diagonal prism, were set up in beautiful starlight night gave promise of a succeeding the "timber yard." Mr. Gibbs was the engineer | fine day. In the event, the morning of the eclipse to the expedition, and in a very few days he was perfectly cloudless. A goodly number of spechad the instruments mounted solidly, utilising tators turned up, in their best clothes to the field we the packing cases loaded with stones as foundations. occupied at the back of the Technical School, about We were assisted in the eclipse operations by 11 a.m., and watched the partial phases of the seven students of the Technical School, by Herr | eclipse through dark glasses. Unlike the crowd Askling, the master of mechanical science, by the which surrounded our site in Spain, in August, town electrician, Herr Helenius, and by the me- 1905, they were quite undemonstrative, but highly chanic of the institute. Drills commenced on polite and much pleased. To prevent any possible Monday, August 17th, and were continued every inadvertent intrusion we roped off the instruments day. Through the courtesy of Herr Rektor Tham, the in a large enclosure. Three students of the Technical Technical School, with well-equipped laboratories, School assisted Father O'Connor at the 20-foot dark room, and mechanics and carpenters' shops, coronagraph, one other took plates from me at had been placed almost entirely at the disposal of the spectrograph, and four others devoted themthe two expeditions. Father Wulf placed his seves to making a composite drawing during

Herr Helenius, stood by the switch for the iron- had been quite a bright one, much brighter than arc, the school mechanician by the eight inch those I had observed in Spain, in 1905, and in the cœlostat, and Herr Askling had to cover and uncover Tonga Islands, in 1911. The same afternoon, which, Mr. Gibbs placed the image of the corona on the slit, and also the image of the iron-arc at the proper England, on account of the war, and I commenced

As totality advanced it became perceptibly colder, blew three blasts on a whistle, and we stood to our about 90 seconds, which shows an extension of the stations, the clocks were wound up, and Herr corona of over two solar diameters. The large scale Askling called "silence" in Swedish. Two blasts | photographs show much detail, very fine polar rays, was the signal for the five minutes interval before and fine prominences. On the plate the longest totality, by which time a murky darkness had exposed of this series is an object close to the moon's spread over the whole landscape, the effects limb, which looks very much like a comet. In on the distant mountains being very beautiful. addition the whole outline of the moon is distinctly One blast at ten seconds before totality was the projected on the sun's corona on photographs taken signal for commencing operations with the spectro- by Mr. Whitelow, 30 seconds and one minute after graph. "Go," cried Father O'Connor, and as he totality. The spectrum of the corona shows several pulled a string releasing the mechanism, the big finger lines, and the spectra of the cups will require of the eclipse clock (4) constructed by Mr. Gibbs detailed study. commenced to move over the dial. When I had put By Sunday morning, August 23rd, we were ready in the second plate-holder for the spectrum of the to take the first boat for Stockholm, which should corona, which was to be a long exposure, I looked up. | come from the north. We could not get away until No other word but magnificent can adequately des- Tuesday, and at once experienced a dense fog at cribe the sight of the totally eclipsed sun in a cloud- sea. We were safely piloted through two Swedish less sky. On the western limb was a long fish-tail | mine fields by armoured vessels, and arrived at streamer, extending about two solar diameters, on Stockholm on the Wednesday afternoon with our the Eastern limb one long streamer, N.E. another precious instruments and plates. The British shorter streamer, S.E. and yet a third, longer but less luminous than the other two, extending straight out like a bayonet, equatorially. To the N.W. above the sun glowed the planet Mercury, while Venus was brilliantly shining low down on the eastern horizon. In the middle of my long exposure the iron-arc was switched on, a diagonal prism was rapidly placed in position and a suitable aperture 23rd. We left Bergen by a Norwegian steamer, over the slit of the spectrograph by Mr. Gibbs, bound for Newcastle, on Saturday afternoon. and a four seconds exposure made. Off went the | Early on Sunday morning we were stopped by a arc and diagonal, the exposure on the corona was British cruiser and warned of the existence of continued until just before the end of totality, which | floating mines, laid down by the Germans, some-

the slit of the spectrograph at the proper moments. by the way, was cloudy, we packed nearly all the instruments, as we were anxious to get back to time during totality. Father Cortie made the ex- the development of the plates. The packing was completed next day, and Mr. Gibbs and myself finished the development of the plates. We have a drop of temperature of about 7°F. taking place, five excellent large scale photographs of the corona, with a cold wind which suddenly arose in the S.E. four of smaller scale to show the extensions, and one At ten minutes before totality Father O'Connor of still smaller scale, exposed by Mr. Whitelow, for

Minister most kindly took charge of the instruments to forward them to England on a favourable opportunity, and we were able, after making necessary calls on the Swedish astronomers, who had done so much for us, in securing us a site and freedom from customs duties on the instruments, to leave Stockholm for Bergen by train on Friday morning, August lasted 2 mins. 5 secs. I shut up the slide, out came where off the mouth of the Tyne, well out to sea. the brilliant star-like edge of the sun. The eclipse | Accordingly the lifeboats having been got ready,

No. 196, OCTOBER. 1914.]

we changed our course for the north of Scotland, and came down the coast. A second cruiser overhauled us in the course of the afternoon to make sure that we knew of the danger ahead. "My word," remarked an American on board, " but the North Sea is patrolled thorough by your cruisers. Finally, early on Monday morning, we were escorted to the mouth of the Tyne by three torpedo boats. An exciting and adventurous passage.

Although the Swedes at Hernösand were most kind and helpful to the expedition during our whole stay, and we cannot be too thankful in particular to Herr Rektor Tham, who practically handed over his Technical School to us for our use, yet we could not help noticing that the tone of the papers grew more and more pro-German and anti-British. This is largely due to the Swedish distrust of Russia, as Finland was once a portion of Sweden, a distrust fomented by the lying reports about the progress of the war furnished to the Swedish press by the notorious Woolf's Agency. The refusal of the | Sergeant Hill's been teaching men to use their bayonets; Russian Government to admit us was a blessing in Major Pearse is officer to twice five hundred pets: disguise. The other wing of our intended expedition | Spencer, Jackie Petre, too, will teach the Germans why to Kiev, under Professor Fowler, got as far as Riga, Englishmen refuse to run, but aren't afraid to fly. but, being unable to proceed, the expedition was abandoned. At Kiev itself, where a party of India and Australia are both a fairish way, sun was obscured by clouds. The Greenwich Sammy Lynch, our great full-back, is moving to the astronomers at Minsk observed the eclipse successfully, but in a clouded sky. At Feodosia, in the Crimea, where the Cambridge Observatory party, | Griffin's down at Devonport; at Sandhurst not a few, under Professor Newall, erected their instruments, Gethin, Cuffey, Kennedy, and Geoff O'Donoghue; clouds again rendered observations impossible. Geoffrey darlin', here's to you, and many a lucky shot May we not attribute our extraordinary good luck to And the same to Gerald Leigh Malines McElligótt! St. Bridget, of Sweden, to whom the four Fathers made a novena in preparation for the eclipse.

INDIFFERENCE.

He's neither glad nor sorry-like a dog at his father's wake.—Joyce. English as we speak it in Geoff and Edmund Callaghan, we're thinking of you all-

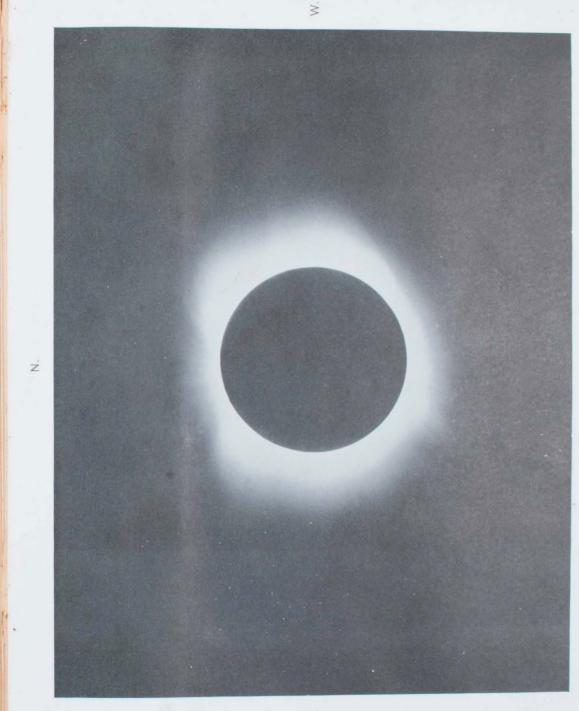
"TIPPERARY" AT STONYHURST.

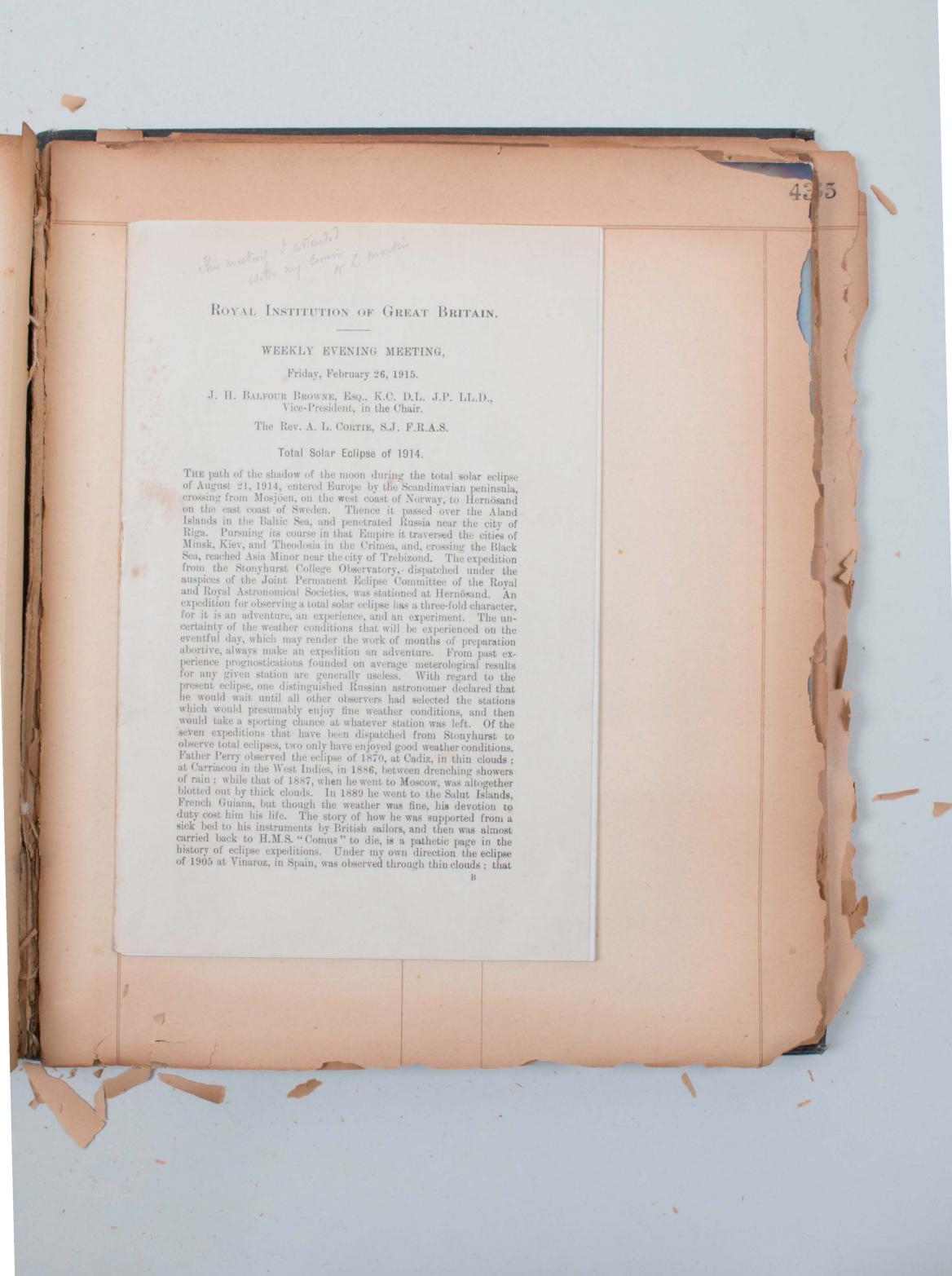
The following is the local version of "Tipperary," alluded to on page 983, as having been sung at the concert of October 7th :-

Englishmen and Irishmen a-fighting go to-day, Scotsmen too, and Welshmen too, and everyone is gay Every school has sent them, but we'll find among the

English, Irish, Scots and Welsh are there from Stony-

It's a long way that leads to Berlin, It's a rough way, we know; It's a long way that leads to Berlin, So good-bye, Dick and Billy, Farewell, Loo and Claire;

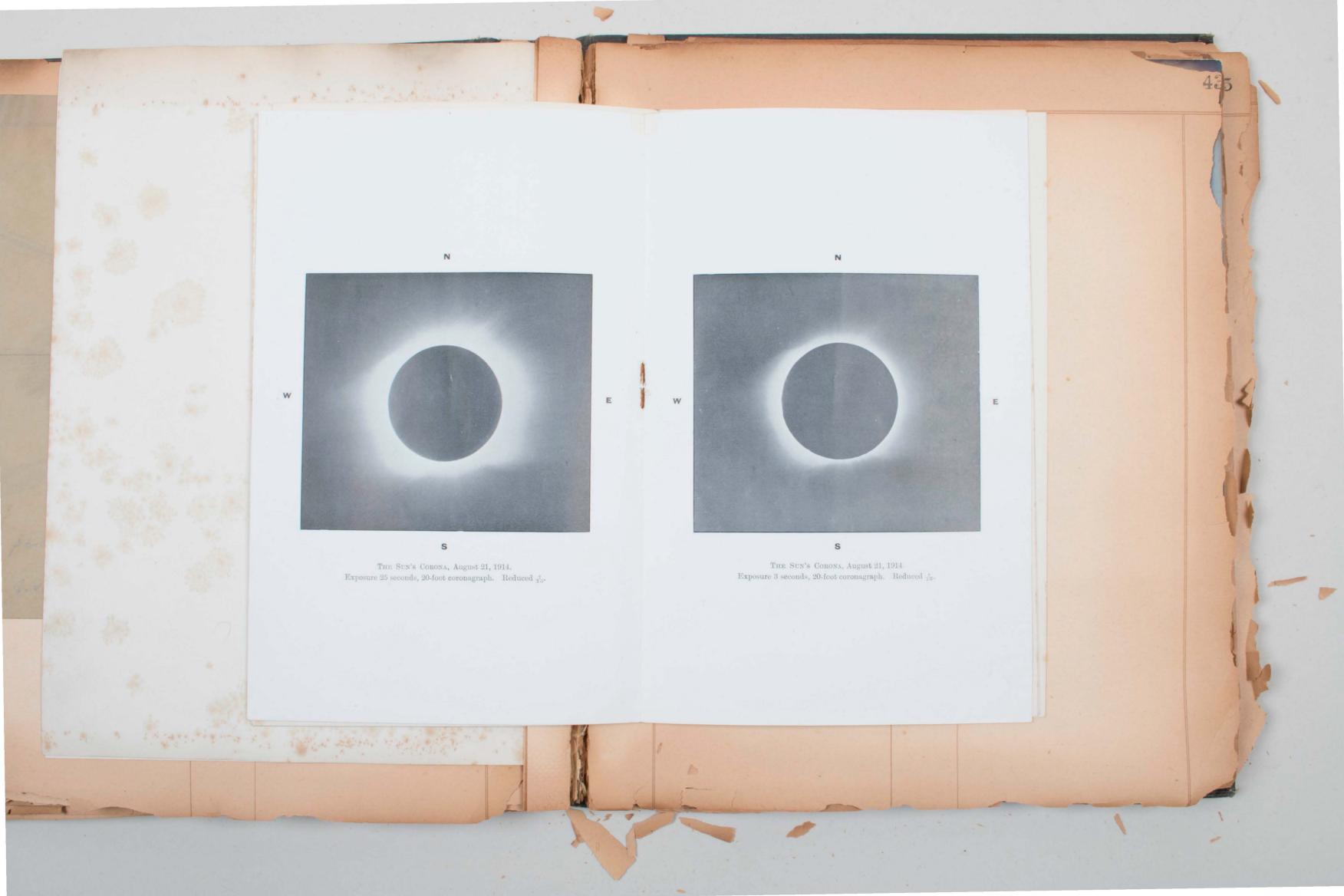

American astronomers, under Professor Campbell, But India sends us Constable, Australia sends McGahey of the Lick Observatory, was stationed, the eclipsed Back from New York Archer-Shee has come to bear the

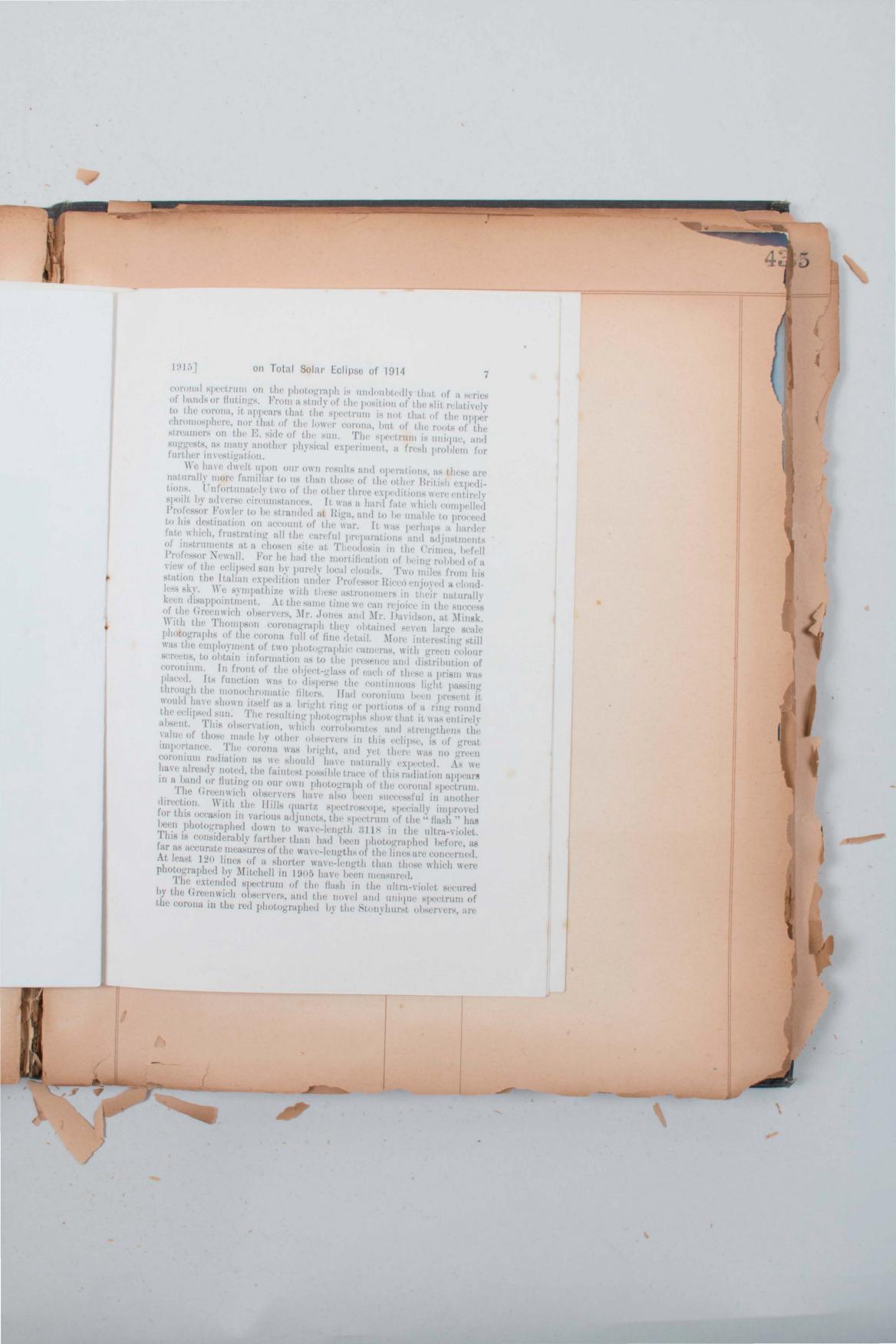

Thornton up to Greenock with the Scottish Rifle goes, Trappes is down at Plymouth till he's told to face the

Makepeace with the Terriers is out for making war,

Many, many more, and sure we've not forgotten you, Riley, Thwaites, Filose and ffrench, and Hoper-Dixon,

And of you, dear Maurice, you, who were the first to fall.





11

which the spot was the centre? We have a single large spot on the sun surrounded by a larger area of faculæ, and doubtless a still larger area of flocculi, and an incohative stage of the transition from a "minimum" to the "intermediate" type.



Fig. 1.—A, B, C, D, E, are five points on a bright ray at position angle 356°. O is the centre of the spot. The small circles which are collinear are the intersections of the opposite sides of the hexagon.

Mons. F. Henroteau, a Belgian astronomer from the Royal Observatory at Uccle, Brussels, a refugee at Stonyhurst, suggested the application of Pascal's theorem in pure geometry, to ascertain whether there was any connexion between the streamers named and the spot. His constructions were made from measures taken on an enlarged positive of the corona, six inches to the moon's diameter. In fig. 1, A, B, C, D, E, are five points accurately measured on the single bright ray at position angle 356°, and O is the centre of the large spot. The lines O C, C A, A B, B E, E D, D O form a hexagon. The intersections of the directions of the opposite pairs of sides O C, B E; C A, E D; A B, D O are in a straight line. Hence a conic

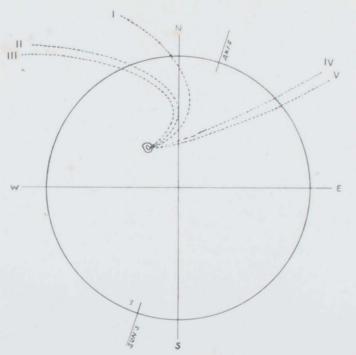
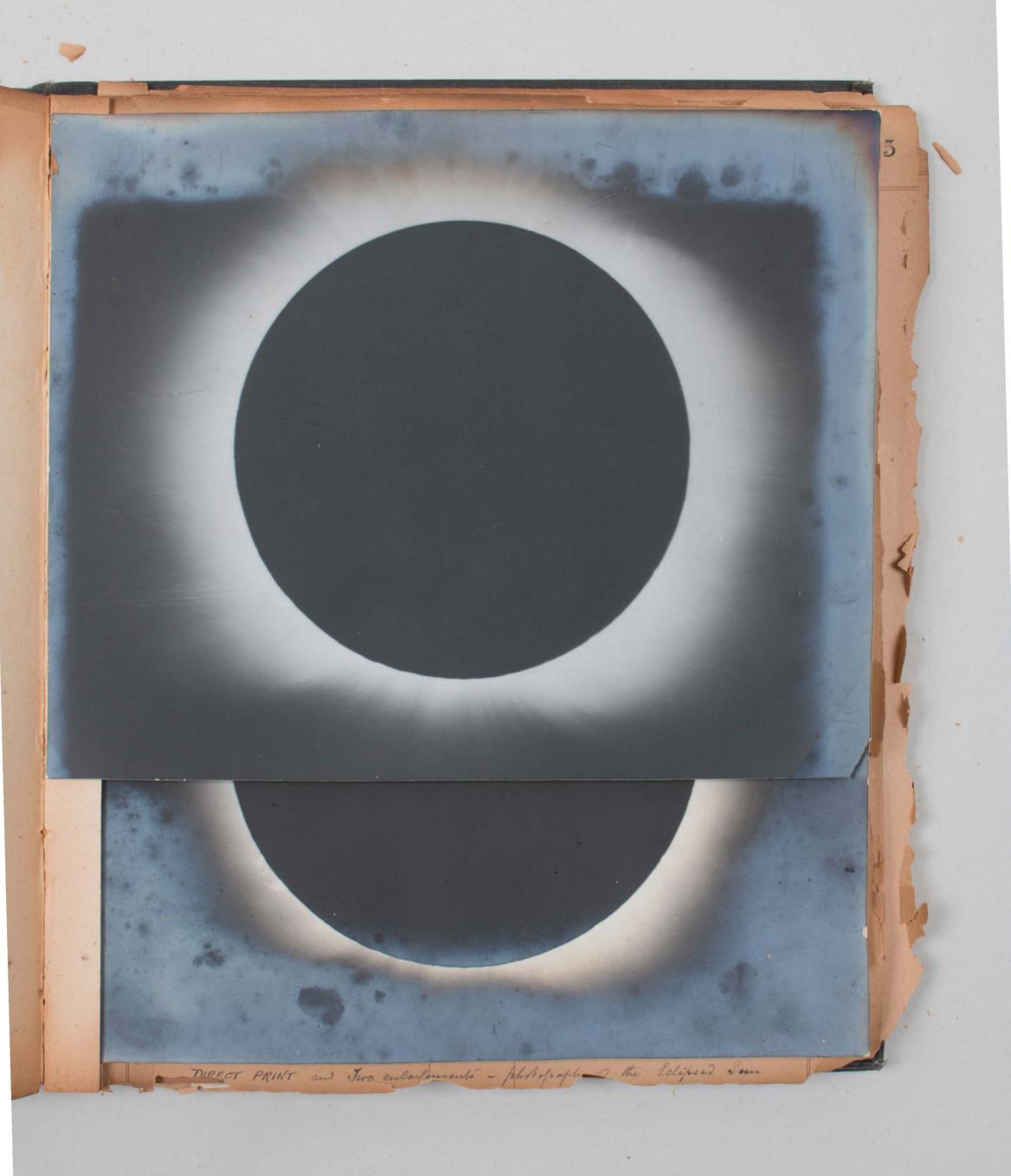



Fig. 2.—Curves I, II, III, on the West. Curves IV, V, on the East. O is the spot.

passes through the five points measured on the ray and the sun-spot. Applying the geometrical process of reciprocation and making a graphical solution, it is found that the projected conic is a very elongated ellipse. Treating by the same method the bright edges of the N.W. streamers, it is found that the projected conics certainly come from the area immediately surrounding the spot, and probably from the spot itself. The geometrical solution in these cases is not so rigid,

the Baltie

HERNOSAND WEN from the window of my soom

The Dance

One of the small "ownibus" Neamon Which ply on the rivers.

The Dame

The same

Sunset over the mainland taken from a high point on the island of Hemsaul.

Lunch. E.T. H. Fr.C. Fr &C. all ready for the Eclipse Good Bye. 1 Ken askling Rector Tham Ehristrania - Bergen

In the early evening of the twenty eighth of July our party of four paner from the Humber on board the " Calopse" bound for & Gothenburg in Sweden. a beautiful exeming and smooth water seemed to promise a pleasant passage across the with lea whilst the peaciful aspect of the first fort of Have fare no hint of the tenible disaster which was about I involve the nation. & Before the night was for alvanced a stom broke over the food ship and for some twenty home or more the lively more photoing & willing of the bessel were responsible for many bacant places at the table at meal times. Daylight of the second morning at sea dictored a more compatable state of affairs and the night of land in the distance was bridence that the boyage was nearly ended. Fresenthy the venel smules the the hast hostily point of Denmark) The lowby lying land was a long way If but we could dicerce a late lighthamere and of the larger building: toward the north the work bound crast live of howay could be seen. The storm and a delightful said of a few hour brought us to the the estimacy of the Gota Elf up which we sailed I the gray which we were to land; perhaps the most

(1)

a beautifu

while the

was shown

and for

talme

the vine

most striking feature of interest was the large humber of motor brats in use, back of Me sizes from \$ the smallest in which the crew of one man was at the same time steerman and enfineer to sends large enough to early home red of ton of carfo and to take the per sea. Our attention was very some fully occupied with the business of chains finiting and claiming our loffage the customs officials, as own as they learned What was the object of our journey, very constantly and promptly parent our fave us free passage which was indeed very necessary because, on my to the late animal of the stramer, there was some danger of our mining the train & Stockholm train and enpren trains in Swelen are few and for between. We consted ourselves and our belongings with two "taxis" and the driver were unjet to make their best speed to the sail way atalian. The roads over which we pursued were very had very uneven surfaces and our driver appeared to recognise only one speed limit and that was the when it they could attain, the cars bounced about and tolled like ohips in a rough sea or that we were Jully occupied in Kuping omselves and our possession in some and of order. Presently we grant omselves ougely Computating wittle? in the have for Stretholm with a journey of mine home before us.

2

The hairs in Suster are well appointed and very compotable

The second class compartments are food enough for anybody,

wh

250

who

losing with operious seals well upholobered and & there the · lufgafe racks show what can be done in that direction they are brown and strong neither so they display that abourt lefend mitte which luffage saches are decreted in this country: if the racks are not strong enough is Every any hand baffage which is likely to be put on them why not en ale them strong everyte! The hair jonney from Gothenburg to Strechliston fare us a ford foretarte of Swetish seening: river in sock bound beto, lakes of prosent water and pred extent, small patches of arable land, homes built of word and supported on rough stone formation walls sand frestor of trees and willright interminable forests of of pine and birch. The worden houses, usually painted in bright white is in bright elm five telightful trockes to the lands cape and appear to be very comportable the methods of construction would fall a long way that of the requirements of our byrelaxors to bye laws in this country but it is very louteful whether they are any the worse for that. Being constructed of word they are of course liable to Heir serious fires entailing danger and swift destinction: they and are usually arranged, even in the towns, or as to have

9

have quite considerable spaces around them which spaces are occupied with by trees with the sends that how the book the smaller towns book have like worth with house homes seather amount them.

The railways are usually orighe line" with passing places at the stations and or for as our limited experience for went me found that the express stopped at nearly all stations.

Stockholm

that solver in when he stockholm was very impressive, larkoners had solve in when he arrived out the train problemly lemented from a termed and was disclosing to no wide expanses of water ownounded by optendedly lighted threated and crossed by mapripresent bridges the brittianney a hearty astornished as as the reflections of the incommerable lamps denced on the waves. Whother by day is by supply Stockholm is one of the most heartiful cities in the world its principal brillarily, the Knop Palace, the Partiament Home, the museums of face traffer trook the body waters, waters busy with craft of all sorte and viges playing from prints to print or from part to part, almost all being painted white and therefore adding britliand trooks to views aheaty most impressive. The happie to mi

ECLIPSE OF THE NOVEMBER 29, 1919. 65 In the early evening of the teventy eighth of July our party of four paner from the Humber on board the "Calopore" bound for & Gothenbury in Sweden. a beautiful evening and smooth water seemed to promise a pleasant passage across the with lea whilet the peaciful aspect of the first port of Hure fare no hint of the tenible disaster which was about a nightun far ohije and for p 7 Bran packing & willing of Oh cant a single thread and damps places at the Me proof. The torsion offeet is second mon small; go hoist causing an u state of affairs Was With all best wishes & bridence that Amas Blessings the vend nothing point of Do Hours Amterdy long way If but Wingreaves o I the large bound crast which had and any and a delight

56 found from Stadelisten and hayoly you are feeling the STONYHURST COLLEGE, makepus I feel for all you rebound yle our stremms Ly: 2. 1914. ar sumented faligues. J I present and like BLACKBURN. Canual Agrees to you have ben hi Lish. a the way to tornadorium. tendy has very livinely sunt I hope that by hew you are set 2 shills mad by tto I am new this the old when of the Parker Soundipi STONYHURST COLLEGE, ony much stayed to you your ben down, and I will Oct 16.1914. who haid in a close, BLACKBURN. In Sign.

56 he we very theird myseld. and I cauld have a bode as have also dealined you films a. L. bortie. 1.3 them. Factor o' borum foris Low on swill the clothing wishelled ye has a luca lemin to current the success of 8yoo dilin. I do ret land shald like to see you I shall have done Madan? In wir powerly mil the worth to to is begun the and of culd I am me whin if possible. of fan.

relien time stide of which & have duplicates or which I shall not in corporate with my lectione. But Men is one stide I particularly want, which is us away three sent, and that is of the arrises that chared us, build you add to my obligations by letting we have a shide of What conser by Henreday went? Testerday I book the precious negatives to Westelow on I he heid made rechniciones for stide freezences and enlayments also

from the plates. His desirating was
bey interesting.

To day Dentement's new houre

come and I have that we shall

have get the electric wistablation

fruithed unities and we delay.

For Newall is very desapposited

at feeding a cloud over the

seen at Heodoia. He thin he

our plating apples excellent.

Your very sincerely

a. L. boottie. I,

STONYHURST COLLEGE,
BLACKBURN.

Lys! 2. 1914.

hear hus Libbs.

I presume that like

myself you are feeling the

rebound after over stremmes

formy from Stretcholm and

are sumewhat faligued. I

cannot syrver to you have

grateful I feel for all you

PARCELS WHALLEY WHALL
PARCELS WHALL
PARCELS

STONYHURST COLLEGE,
BLACKBURN.

Oct 30.1914.

blear hur Gibbs.

The Stonghunt Magazine

was usined last might and

I hasten to send you a copy.

There is much in it besides

(the account of our eclypse

Apredition which at least to

his is interestly interesting

especially in the news of the

war as the action mentioned

STONYHURST COLLEGE
BLACKBURN.

Mw 17.1914.

hear hr. Sibb.

Thank you for your foodness his sending me the slow-waters wol, and for the trusto you took over it. I am delighted to hear that you are about once hum. You wend take care of yourself and not wends things at first.

The deriver, R.a.s. club was held

nothing about the eclipse at the meeting. We shall have probably a fourt discussion meeting of the R.A. and R.a.S, on the e dyin, and their ph Greenenth is not bound by this rule 2 the Committee, they will deper publication of Their results until the foint muting. Transparancis of our lay scale photopaples were on heir in the library R. a. S. and were beg much admined.

We by till one that our platifights
are the best of all, hlistilar
certainly worked hand at the
transparances.

Jo-day I receive I the
horses of being inisted to
lecture at the Royal
Lecture at the Royal
Lestitution on the eclipse.

Jake care of yourself.

Then dest regards to how bibls.

I cannot tell you have would
I appropriated the Keinelly
feeling which formystach
The presentation of the Memorated astronty

an even old pupil. I feet on you and having and guilt frond of the splendish lish in impete or it is possible the sample of the summing of the summing in the orients and young and the summing in the summy and the summing in the summy and the summy and summy the summy and summy the summ

P.S. I have our tos his where he has been to good at 15. 993. He would have has been to start and must have suite has shirt I start and must be the soul of my bedue the foundary humbers I the bedue. I the bedue.

STONYHURST COLLECE,
BLACKBURN.

The 17. 1914.

hear his 244.

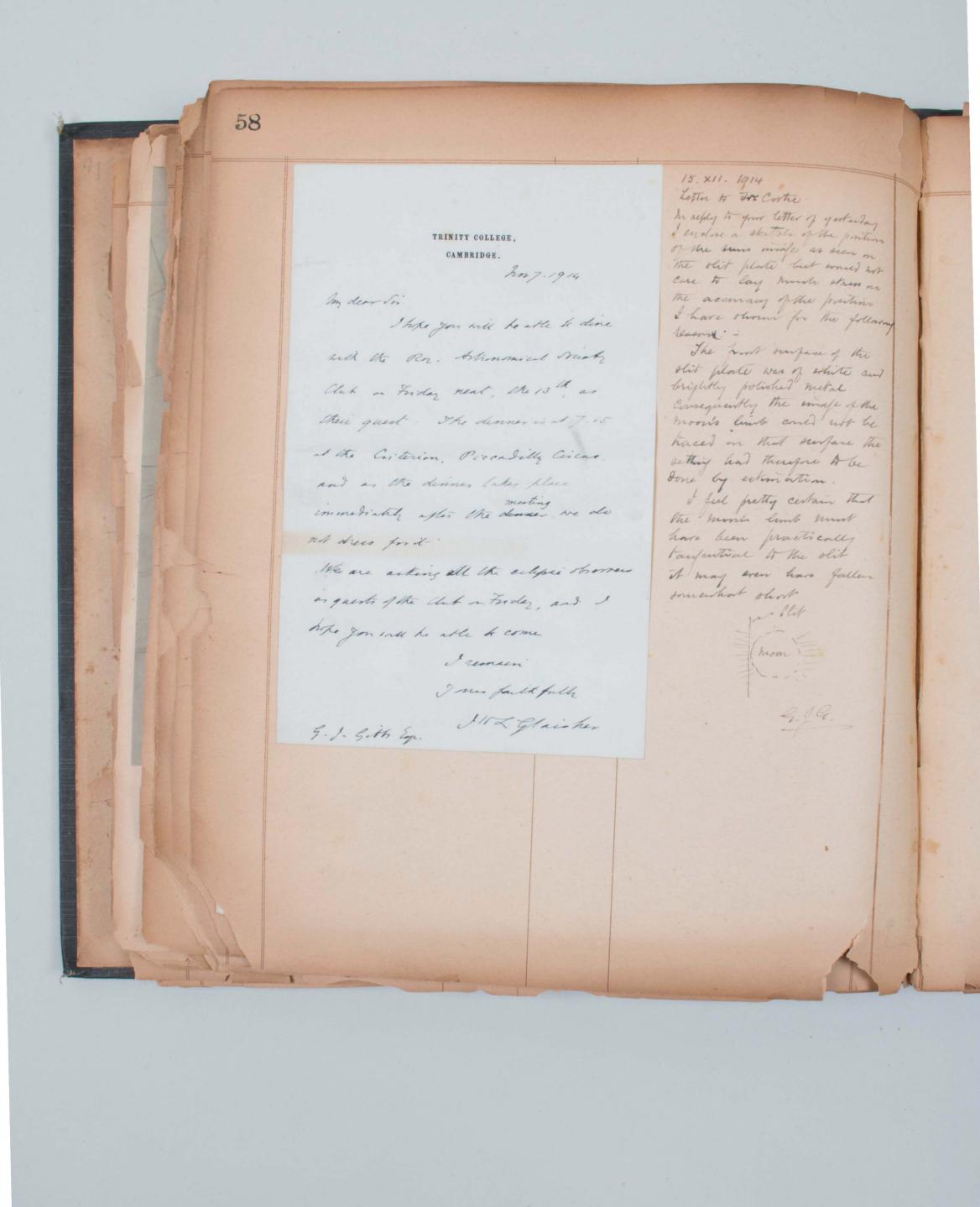
Lask you for you fooding,

is sending he the sew-working,

last, and you for the hour you

have they are about once

hour. In west tale case of


yourself and with voice livings

at first.

The denies, R. a. of the was

hearly pleasoust. But we lost

hearly pleasoust. But we lost

STONYHURST COLLEGE,
BLACKBURN.

Dec 14. 1914

been his 200

tour you unumber

Amounted about what prouding

hings I the hom when we have me

brus yeathern. It was as the

STONYHURST COLLEGE,
BLACKBURN.

2

Nov 26.1914.

been by Libb.

Shave onezed your hump

Le Feeler didges on the letter

Le to an didge debusy 26.

Le to an didge debusy 26.

The shall to delight to an

you have very lot to an

to away this week and and and and and you to become deather

on Wednesday December 2 6 preside at the meeting of the astronomical Aveiety. I return as the Huresday hearing. bould you much me for the 11-20 at Blackburn among hhade 11-42 and have Sunch here, and gread the afternoon when we could go hito the watters astranaical and electrical that require Jues altertian. Loves very sincerely a L. borta. S)

wither the dois but where?

with wide. hy ories is to dried sound posteringly on when you had a the count to the count to the count to see for it.

2. I shall be ory auch
Thised for the boar of the
ancies regulate. I would walk
a bouter shiele than the ore
I have, four yez evicants
a bouter. Love yezeriants

approximate forition. The shi way

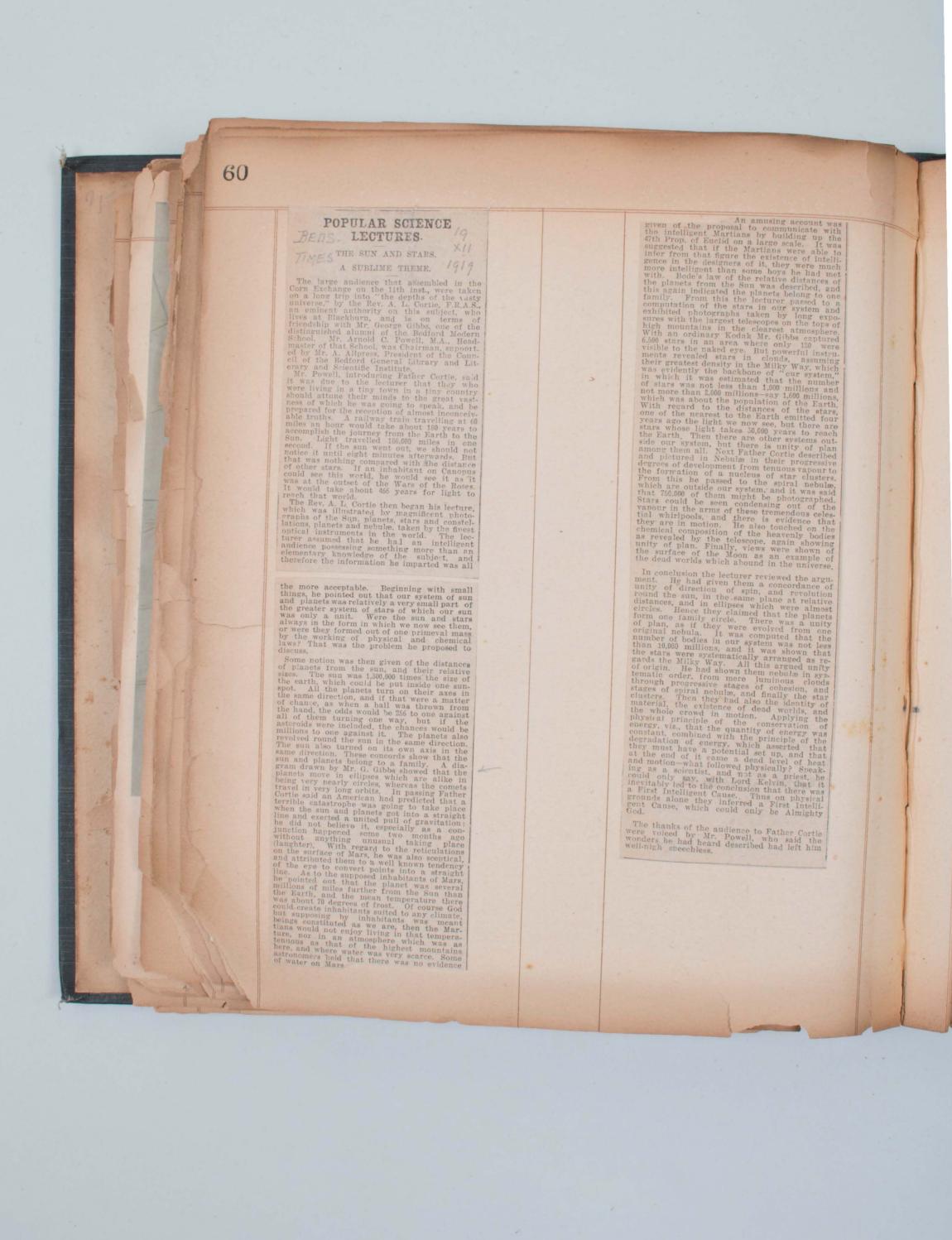
I the augustus in the

Nowid in width, and the

Not was 'lowed wite.

Wand you drew its printen

how or bes to ocale with


a dimule of 160 am 21/8

STONYHURST COLLECE,
BLACKBURN.

Nov 26.1914.

the and the and the face the A bee

been by Libs.

Local Topics.

The fine lecture given by Father Cortie on the "Formation of the Sun and Stars," recalls the fact that Bedford is honourably connected with the Science of Astronomy. The lecturer mentioned his friendship with Mr. George Gibbs, O.B.M., the inventor of the heliometer, and a mathematical pupil of Mr. Edward Langley. His star, we believe, is still in the ascendant in the astronomical sky. In the early Victorian period there was Admiral W. H. Smyth, who lived in the Orescent at a house which was the residence of the late Mr. John Smith, but in Admiral Smyth's time was known as the Bedford Observatory. Substantial volumes written by Admiral Smyth are in the Bedford Library; he was also an authority on Bedford tekens and other subjects. His sons, Charles Piazzi Smyth and Sir Warington Smyth, F.R.S., both alumni of Bedford School, were even better known in the scientific world, the former as an astronomer, and the latter as a geologist. Another man of many accomplishments was Thomas Gwyn Elger, whose text book on the Moon contains practically all that is known of our satellite.

all that is known of our satellite.

An old Bedfordian who did good work in stella science and held appointments at Government observatories was O. A. Le Beau, whose articles in this paper some of our readers may recall. He is, we believe, still at the Cape Observatory. Professor Piazzi Smyth, who left Bedford School in 1835. also became assistant in the Royal Observatory at the Cape of Good Hope, but in 1845 was appointed Astronomer Royal at the Edinburgh Observatory, and held that position until this resignation in 1885. Another old boy of Bedford School, who is distinguished in Astronomy, is W. G. Thackeray, who left school in 1872, and holds office at the Royal Observatory, Greenwich. But the crowning distinction of all is surely the latest, viz., the fact that S. R. Pike has just gained the Henry Skynner Scholarship of £100 a year for five years, at Balliol College, Oxford, for his knowledge of Astronomy and Mathematics. This Scholarship was also open to all the undergraduates of a certain number of terms' standing in the University, and S. R. Pike has won it while still a member of Bedford School. Excellent astronomical text books and charts have been published by Mrs. H. P. Hawkins, and among them may be mentioned the invaluable "A.B.C. Guide to Astronomy," and a work entitled "The Stars from Year to Year," with Charts for every month, and one of the South Polar Stars (Simkin, Marshall).

"FORMATION OF THE SUN AND STARS."

Fine Lecture at Bedford.

The third of the series of popular lectures arranged by the Council of the Bedford Library took place at the Corn Exchange on Thursday evening, the hall being, as usual, packed. The lecturer was the Rev. A. L. Cortie, F.R.H.S., and his subject was "The Formation of the Sun and Stars." The space of Father Cortie's discourse, barely an hour and a half, was all too short for his enthralled audience, who found infinitely more interest in his lucid and powerful exposition of the wonders of the starry realms than they could have found themselves by industriously poring over the best test books on astronomy. The The third of the series of over the best text books on astronomy. The lecture derived added fascination by the series of splendid slides of photographs of constella-tions and nebulae which had been taken by means of the largest and strongest telescopes in the world.

Mr. A. C. Powell, Headmaster of the Bedford Modern School, was in the chair, and in the course of his introductory remarks said that living as they did in a tiny little town, in a tiny little country, in a tiny little solar system, he thought the audience should endeavour to at the other minds to a translation system, he thought the audience should endeavour to attune their minds to a reassation of the great distances of which the lecturer would speak. Supposing a railway train were to start and go on without stopping at 60 miles an hour, it would take 180 years to get to the sun. Take a faster thing—light—which travelled in a second a distance equal to seven times round the world. If the sun were suddenly to go out it would be eight months before we noticed it. Light, travelling from this world to Canopus would take 466 years to get there. there.

Father Cortie said he proposed first to treat of the relatively small system of the sun and planets circling round it, of which the earth was one; next to touch on that system of stars, of which the sun was only a unit; and then to put before them the problem as to whether the sun, planets and stars were always in their present form, or whether there was reason to present form, or whether there was reason to

present form, or whether there was reason to believe that at one time the sun and stars formed parts of one primeval mass, and by the working out of physical and chemical laws were gradually evolved and formed.

The centre of our own system was the sun, which was 92,800,000 miles away from us. It was 1,300,000 times the size of the earth, but was not very dense, being made up of gas under pressure; the earth was bound to the sun by ties of gravitation, and the sun was the source of all heat, light and other activities which we enjoyed. The planets in the solar system, in order of their proximity to the sun, were Mercury, Venus, the Earth, Mars, Jupiter, Saturn, Uranus, and Neptune.

At this point the lights were lowered and some remarkable astronomical diagrams and

At this point the lights were lowered and some remarkable astronomical diagrams and photographs were shown on the screen. Describing diagrams of the planets, drawn to scale, the lecturer pointed out the wonderful concord of direction and revolution existing among the solar system, showing that they were all members of a family. After illustrations of the moon-like phases of Mercury and Venus, and the polar caps of Mars, Father Cortic discussed the possibilities of human ex-Cortie discussed the possibilities of human existence upon Mars, and said he did not agree that the ridges observed on its surface were canals made by Martian engineers to relieve their very dry system. These corrugations were, he thought, due to a sort of optical illusion, the effect of seeing a thing on the "verge of a vision." When he was asked "Is Mars inhabited?" he first replied "You must first define the term. Do you mean 'Is Mars inhabited by intelligent beings constituted like ourselves? Owing to its immense distance from the sun, Mars' mean temperature was equal to about 70 degrees of frost. The atmosphere was very tenuous, akin to that experienced on the summit of the highest mountain in the world, and the probability was that Cortie discussed the possibilities of human extain in the world, and the probability was that the water vapours necessary for human exis-tence was not to be found there. Jupiter was 1,300 times the size of the earth, its year was 1,300 times the size of the earth, its year was equal to twelve of ours, and it was 440,000,000 miles from the sun. It had four moons, clearly visible, which were discovered by Galileo, and five other moons which could only be seen through great telescopes. Saturn was the loveliest of the planets. Its rings were not solid, but nebulous. Neptune, the farthest of the planets, was discovered by mathematical calculations consequent upon observation of perturbations on Uranus.

The second part of Father Cortie's lecture was devoted to consideration of the bodies in vast star fields outside our own system. Very beautiful were some of the pictures shown of the Milky Way, the Constellation of Orion, the Pleiads, and wonderfully impressive was the lecturer's vivid description of the stars destined for separate existence, hanging inchoate in the arms of the whirlpool of the nebulae.

FATHER CORTIE DEAD

DIRECTOR OF STONYHURST COLLEGE OBSERVATORY.

The death occurred on Saturday evening of Father Aloysius Cortie, director of the Stonyhurst College Observatory, aged

Father Cortie was born in London on April 22nd, 1859, and after studying at Stonyhurst and St. Beuno's, North Wales, April 22nd, 1859, and after studying at Stonyhurst and St. Beuno's, North Wales, entered the Society of Jesus in 1878, being ordained priest in 1892. He studied astronomy under the late Father Perry, S.J., F.R.S., and in 1881 was attached to the Stonyhurst Observatory. He was made Fellow of the Royal Astronomical Society in 1891, and for many years served on the council of that body. From 1900 to 1910 he was a director of the Solar Section British Astronomical Society, and in 1911 was president of the Manchester Astronomical Society.

Father Cortic had directed several Government astronomical expeditions and recently visited America to observe the total eclipse of the sun which occurred in that country in February. In 1905 he directed an expedition to observe the total solar eclipse at Vinarog, Spain, and directed other expeditions to the Tonga Islands, South Pacific in 1911, and to Hernosand. Sweden in 1914.

A distinguished scholar in solar and stellar physics and in terrestrial magnetism, he taught physics and mathematics at Stonyhuret College for 27 years, and was a director of music at the College for 19 years and a Gilchrist lecturer. Father Cortie was given an honorary degree of doctor of Padua University in 1922. He had lectured on astronomical subjects in most of the chief towns in England, and was a member of the Salford Diocesan Commission on Church Music. A keen student of astronomy Father Cortie had written numerous papers on astrophysics and terrestrial magnetism.

He was well known in Preston on account of his association with the Preston Scientific Society, with which body he had been connected for a long period of years.

nected for a long period of years.

AN ASTRONOMER OF NOTE.

FATHER CORTIE, S.J.

manshester City hers 23. V. 1925 By the death of Father A. L. Cortie, on Saturday last, at the age of sixty-six years, an astronomer of world-wide reputation has departed. He was director of the Stonyhurst College Observatory, a Fellow of the Royal Astronomical Society, and president of the Manchester Astronomical Society, and one of its oldest and most valued members. Two or three weeks ago Father Cortie was elected president of the Manchester Literary and Philosophical Society. He received his education at Stonyhurst and St. Bruno's College, North Wales; forty-one years ago became a member of the Stonyhurst College Observatory staff, and some years since succeeded the late Father Sidgreaves as director. He made the sun and its wonderful phenomena a special study, and on three occasions was a leading figure in solar eclipse expeditions -Spain in 1905, the Tonga Islands in 1911, and at Hernosand, Sweden, in 1914.

Father Cortie was an honorary doctor of Father Cortie was an honorary doctor of Padua University, a very high distinction. Galileo, the great mathematician and astronomer, was Professor at that University from 1592 to 1610. Father Cortie was a capable musician, and formerly he had charge of the choir at Stonyhurst. Personally he was a man of great charm, homely and unaffected in manner, easy of approach, and ever willing to help when his advice and counsel were sought. By all who had the privilege of his acquaintance he was regarded with affection and admiration.

AN APPRECIATION FROM A SCIENTIFIC FRIEND.

With the death of Father Cortie, S.J., the Manchester Astronomical Society has lost its president, who for some fourteen years in succession has filled this office with unremitting devotion and ability, born of personal devotion and enthusiasm for the most refined science.

Father Cortie, with his great store of physical, chemical, and astronomical knowledge, made at all times an ideal chairman, never at a loss to answer sudden and difficult questions arising in connection difficult questions arising in connection with scientific argument, discussions, and lectures. Not only did he do this ably, but as often as not in a very interesting and entertaining, not to say humorous, manner, as he was fond of a good scientific pun or joke, even if against the science itself, which he held so dear. Ever ready with well considered and shrewd advice, he efficiently helped to negotiate awkward corners and difficulties in the lives of the many societies, which were glad and persistent to have him amongst their councillors.

Often when the lecturers through unexpected circumstances could not keep their appointments he would readily step into the breach at short notice, invariably filling the threatened gap with an interesting discourse on the varied subjects he was so competent to deal with. Being, moreover, a practical observer, and having at his disposal at Stonyhurst Observatory an elaborate outfit and combination of astronomical and astrophysical instruments, he was always able to give his lectures the excellent background of personal observation.

5

I often wondered, with his manifold activities, how he could find time to do it all, along with the routine work daily called for in connection with his directorship at the Stonyhurst College Observatory and the official teaching hours at the same college. Yet he was a prodigious writer also, a ready correspondent on scientific matters, a frequent contributor to the lecture room of the Royal Astronomical and other societies, to the numerous provincial literary societies, and to scientific publications beyond number.

number.

Father Cortie was essentially a "sunspot" man, a term I heard him more than once apply to himself, but that does by no means imply that he confined himself to the study of the sun alone, although this was paramount. Being myself interested in the same direction as an amateur, we corresponded frequently on the subject, just as with his predecessor, the late Father Sidgreaves, who died a little under six years ago, and who also filled the presidential chair of the Manchester Astronomical Society with great ability for many years.

We shall miss Father Cortie badly, and it-will be difficult to replace him, all the more so as he possessed the rare quality of never failing urbanity, coupled with the excellent ability of imparting his knowledge to his listeners, and thereby instilling

excellent ability of imparting his knowledge to his listeners, and thereby instilling enthusiasm and interest. It will be our duty to keep his memory well before our minds, if only as a small token of gratitude for the interesting and valuable education he imparted to us always so willingly and disinterestedly.

The funeral took place at Stonyhurst College on Wednesday, the celebrant of the Requiem Mass being the Rev. Father Weld, S.J., rector of the college. In addition to a large number of clergy who had been long associated with Father Cortic the congregation included Sir Frank Dyson (the Astronomer Royal), Mgr. L. J. O'Kelly, who represented the elergy of the Salford diocese; Father T. L. Parker, secretary of the diocese; Mr. C. L. Barnes, who represented the Manchester Literary and Philosophical Society; Mr. A. A. Buss. F.R.A.S., and Mr. W. Porthouse, F.R.A.S., who represented the Manchester Astronomical Society; and Mr. G. J. Gibb, F.R.A.S., of the Preston Scientific Society.

UNIVERSE, MAY 22,

Obituary.

FR. CORTIE, S.J.

DISTINGUISHED CAREER OF GREAT JESUIT ASTRONOMER.

By the death of the Rev. Aloysius Lawrence Cortie, S.J., at Stonyhurst, on May 16, the world of science has lost a distinguished astronomer and the Society of Jesus a zealous priest.

it would appear that among the greatly various contribu-tions made by the society to the advancement of civilisation and science, those of its astronomers are among the chief. Fr. Cortie worthily followed the great-tradition established in past centuries by the Jesuit astronomers of China and by their no less eminent brethren in the West.
"When the Jesuit Order," says The

Times, "was suppressed throughout the world in 1773, the great French astronomer, Lalande, said, in an outburst of indignation :-

Carvalho and Choisenl have irretrievably destroyed the finest work of man, unrivalled by any human institution—the human race has lost that wonderful and invaluable assembly of 20,000 men, disinterestedly and unceasingly occupied with functions most important and most useful to man.

"The devoted lives of such men as Fr. Cortie (and they are many) show us that the loss, however great, was fortu-nately not 'irretrievable.'''

Born on April 22, 1859, Fr. Cortie went to Stonyhurst in 1872, and in 1878 joined the Society at Roehampton, where he pur-

sued his classical studies until 1881, when he returned to St. Mary's Hall, Stony. hurst. On the completion of the course in philosophy there he taught mathematics and natural science in the school from 1885 to 1888. In 1889 he went to St. Beuno's for theology, and was ordained priest in 1892

He became the first Prefect of Studies at the newly-founded college at Stamford Hill in 1894, and again taught mathematics at Stonyhurst from 1895 to 1904. He took the four vows in 1896.

LEADS GOVERNMENT EXPEDITIONS.

The first public recognition of his scientific work came in 1891, when he became a member of the Royal Astronomical Society. His attention was specially directed to the relation between terrestrial magnetism and solar spots, and he was intensely interested in the observation of solar eclipses,

He directed the expedition which went to Vinaroz, Spain, to observe the total eclipse in 1905. In 1911 he headed the Government expedition to the Tonga Islands for the same purpose, and in 1914 a similar one to observe the eclipse at Hernösand, in Sweden. At the Stonyhurst Observatory, where he succeeded Fr. Sidgreaves as director in 1919, he did much valuable work in the spectroscopy of the stars with apparatus which, compared with that at the great observatories, might have been thought inadequate.

He was made a member of the Committee on Solar Atmosphere at the Astronomical Union in 1922, and in the same year the University of Padua gave him a doctorate in all its faculties. Last year he was made a Fellow of the Royal Meteo-rological Society and went to Toronto for the British Association on behalf of the Royal Astronomical Society.

DEVOTION TO MUSIC.

It might be thought that such a preoccupation with scientific research, added to the responsibilities of the priesthood, would have left little opportunity for other interests, and still less taste for their pursuit. Yet Fr. Cortie was no mean musician, and for nineteen years he filled the post of director of music at Stonyhurst with conspicuous ability. He was also a member of the Salford Diocesan Commission on Church Music. A delightful story is told of him when the International Union for Solar Research met at Bonn in 1913. - A garden party was failing signally to inspire the assembled savants with that spirit which is indispensable to such functions. Then one of Fr. Cortie's songs came float-(Continued at bottom of next column.)

from one of the Windows and the desired opirit was promptly with all .

to receive any criticis
The hearier face or
Will all per

PARCELS WHALLEY HURST.

PARCELS WHALLEY BOUTHEROF

TELEGRAMS: 478 ALLEY & OLITHEROF

TELEPHONE: WHALLEY & OLITHEROF

STATIONS: WHALLEY & OLITHEROF

STONYHURST COLLEGE,
BLACKBURN.

17/5-/25

Hydea Gibbs
Father Rowland Gld
me you knew of Fathers Cortie's
serious illness.

I now have to tell you the rand mens that he passed away at 7.25 p. m. yesterday. The Bronchitis rendered his breathing more and more laboured; but he was consing to the end, and died very

Father Corties last letter to myself apr. 18/1925 Will be Journed in Book NO 5

PARCELS: WHALLEY.

TELEGRAMS: STONYHURST.

TELEPHONE: STONYHURST 20.

STATIONS: WHALLEY & CLITHEROE.

STONYHURST COLLEGE OBSERVATORY,
NR. BLACKBURN,

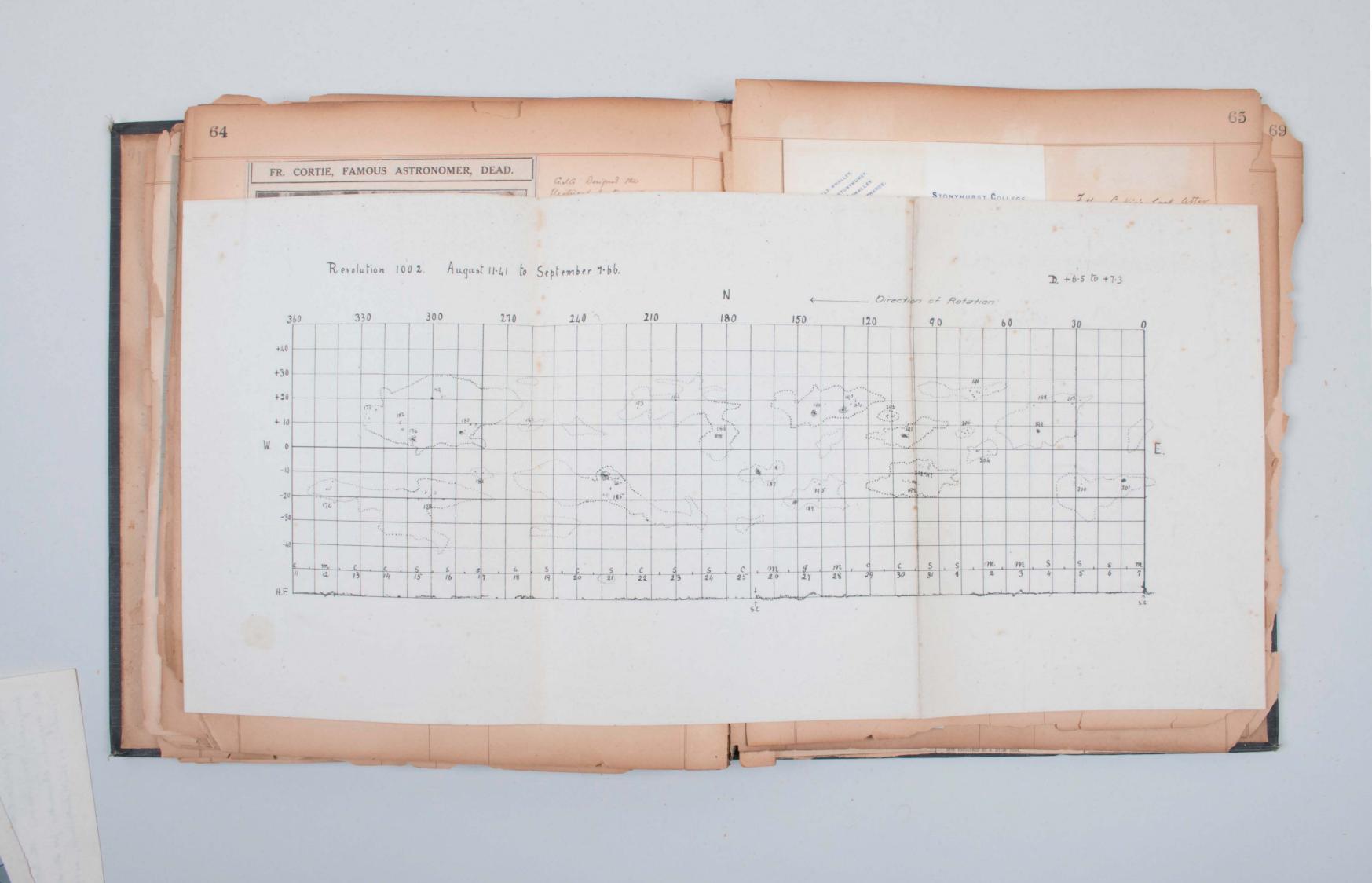
ENGLAND.

Nov. 3rd 1928

Dear Gibbs

I was interested to see in the Raper the other day that you had been lecturing on meteorology - and it brought to my mind that it was yes since I had written to you or had been from you.

How are you keeping?


I thought you might be interested in my latest little brain wave. The matter is still in the experimental stage. The idea is to publish each month, or rather each solar revolution, a "symptic" chart showing the spots and "facular regions" during the revolution.

The spots are drawn usually for the day on which they were central, or accasionally on the day on which they showed the greatest area.

The little vertical lines on the second line from the bottom indicate

The spots are drawn usually for the day on which they were central, or accasionally on the day on which they showed the preatest area. The little vestical lines on the second line from the bottom indicate the midnights at which the corresponding longitudes of the sum were central, the numbers below denoting the days of the month. Thus the preceding spot of groups 187 was central at midnight between Aug. 25-th x 26 th. and at the same time there was a sudden commencement "of a Magnetic storm. If the last line, which gives a miniature reproduction of the Honzontal Force Trace. The letters above the dates of the amounts are the originate character for the day:
c=calm, 5: small disturbance, m: morderate, g=great.

I have just prepared the new revolution - and have added two other lines at the bottom - so that other phenomene may be correlated with the solar surface phenomena. I shall be glad to know what you think of it - and very pleased to receive any criticisms or ideas The heavier facular outline indicate well marked facular. With all jord wishes, yours very miceraly Exolornor S./.

STONYHURST COLLEGE, BLACKBURN.

Father Corties last letter to myself apr. 18/1925 Will be Jourd in Book NO 5

UTLÄNDSKA VETENSKAPSMÄN HIT ATT STUDERA SOLFÖRMÖRKELSEN T. v. engelska expeditionens deltagare, t. h. två holländska astronomer. Båda expeditionerna ha etablerat sig vid Härnösand.

324

several subjects with distinction manches the evening chronics E. Mr. Gibbs, of Preston. 1. 1916 One of the most versatile men Lancashire is Mr. G. J. Gibbs, of

Preston.

Where to start in justifying this assertion it is difficult to say, for anything between designing a town's water supply and discoursing on Chopin's nocturnes comes within his orbit.

Many parts of Great Britain know him in his professional capacity as a civil engineer, and as such he belongs to both the Mechanical and Electrical Engineers' Institutes. Away from his actual business, he is equally well known as an astronomer and scientist. Preston Corporation call their new observatory after Jeremiah Horrocks, the illustrous Hoole parson, but it could as fittingly have been named after Mr. Gibbs, for he designed it and is its honorary curator.

"OUR MR. GIBBS."

"OUR MR. GIBBS."

When a "Preston Guardian" representative called at the Moor Park Observatory one evening this wek, he found the Hon. Curator, Mr. G. J. Gibbs, F.R.G.S., in his shirt sleeves, busily examining an image of the sun projected on a piece of drawing paper through the long telescope. It appears there is a great deal of activity on the sun's surface at present, and the recent spell of bright weather has afforded him a splendid opportunity of studying a number of enormous sun-spots, which represent disturbances in the sun's atmosphere, and provide useful scientific data. Mr. Gibbs is a wonderful worker. His devotion to astronomy, his great knowledge and patience, are not only an asset to the new observatory, ir which he worked so long, and where he now spends so much of his time, but are also at the service of the general public. There is nothing of the scientist full of technical jargon about him; he has the rare gift of being able to explain and illustrate all sorts of chemical and astronomical phenomena to the veriest layman, which is one of the reasons why he is such a success as a lecturer. "When I am working in the observatory," he told our representative, "and notice anyone hanging about who sems really interested in the building and what is going on, I often invite them in and briefly explain the instruments to them, and indicate the value of the records kept and the observations made. In this way many hundreds of people become interested in the observatory, and the number of names in my visitors' book is growing rapidly." Mr. Gibbs is doing good work in thus bringing home to the public the fact that the observatory is a municipal enterprise, and enabling them to participate personally in its work.

Date of Eclipse: A Week To-day, June 29

.....

Time of Totality ... 6-24 a.m. Duration ... 23 seconds First Phase ... 5-20 a.m. Sun Clear Again ... 7-15 a.m.

WATCHING THE SUNSPOTS.

A VISIT TO MOOR PARK OBSERVATORY, PRESTON.

The continued kindliness of the sun, about which so much has been said and written during the past week, has brought to many a business man a disinclination to work, and filled many minds with thoughts of summer games and holidays by the seaside. But there is one man in Preston who finds in the uninterrupted sunshine an opportunity for ratient observation and research, altogether unsuspected by the general public.

Mr. G. J. Gibbs, the hon, curator of the Moor Park Observatory, has found in the present spell of good weather an opportunity of observing and recording the remarkable activity on the sun's surface at the present time and the continually changing sun-spots. When a "Lancashire Daily Post" representative visited the observatory last evening, Mr. Gibbs willingly explained the methods by which sun-spot positions and magnitudes are recorded. The large telescope is fitted with a frame and small drawing-board near the eye-piece, and on to an ordinary piece of drawing-paper carried on the drawing-board is foscussed an image of the sun on which numerous spots, representing disturbances in the sun's atmosphere, can be clearly seen. To secure a drawing of these the astronomer has only to mark with his pencil the position and size of the spots, which usually have a very dark area in the centre, which he calls the penumbra.

The sun-spots vary in size, and from the fact that they appear to travel across the face of the sun the astronomer knows that the sun turns on an axis.

A reproduction of a drawing made by Mr.

fact that they appear to travel across the face of the sun the astronomer knows that the sun turns on an axis.

A reproduction of a drawing made by Mr. Gibbs for our representative in a few minutes at the observatory last evening shows a number of sun-spots, and for the sake of comparison a dot drawn in the rectangle at the top of the picture gives a good idea of the comparative size of the earth. If care be taken, the sun-spots can be seen with the aid of binoculars and a dense-coloured screen. When the image of the sun is passed through the lenses of the telescope the heat of the rays, condensed and focused into a small circle, is so great that a piece of paper placed close to the eye-piece is set on fire immediately.

The question naturally arises as to whether and to what extent these evidences of great activity in the sun's atmosphere affects the atmospheric conditions of the earth. A formal answer to this question is not yet forthcoming. But it is known that apart from heat and light, the radiations and emanations from the sun have other effects, such as the aurora borealis and disturbances in the magnetic conditions of the earth, which in turn react on telegraphs and wireless distribution.

wireless distribution.

In his first article, published in "The Lancashire Daily Post" yesterday, Mr. G. J. Gibbs, F.R.A.S., gave some valuable information to amateurs who hope to make observations of the total eclipse of the sun, en June 29th, without spoiling their chances of seeing the full grandeur of the spectacle. He strongly urged the use of eye shields, preferably those made of mica, which stop the heat rays, as well as the ultra-violet. Any attempt to gaze at the sun, until absolute totality had been reached, would, he pointed out, entail grave risk of damage to the eyesight.

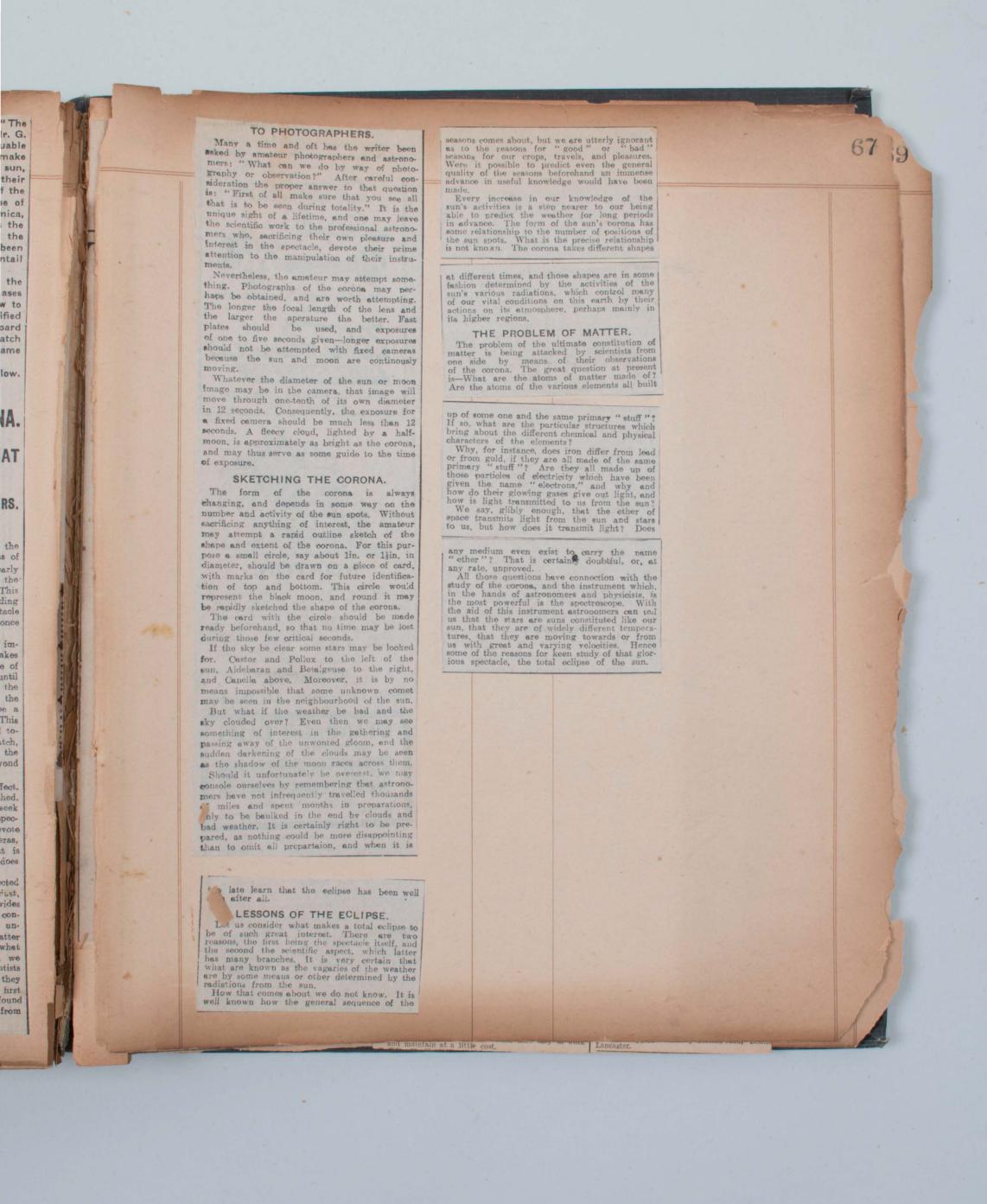
Three diagrams were reproduced in the article, two illustrating the various phases of contact, and the third showing how to rig up a telescope to project a magnified image of the sun on a piece of cardboard so that a number of onlookers could watch the progress of the eclipse at the same

Mr. Gibbs' second article is given below.

WONDERS OF THE CORONA.

IMPRESSIVE SPECTACLE THAT IS NEVER FORGOTTEN.

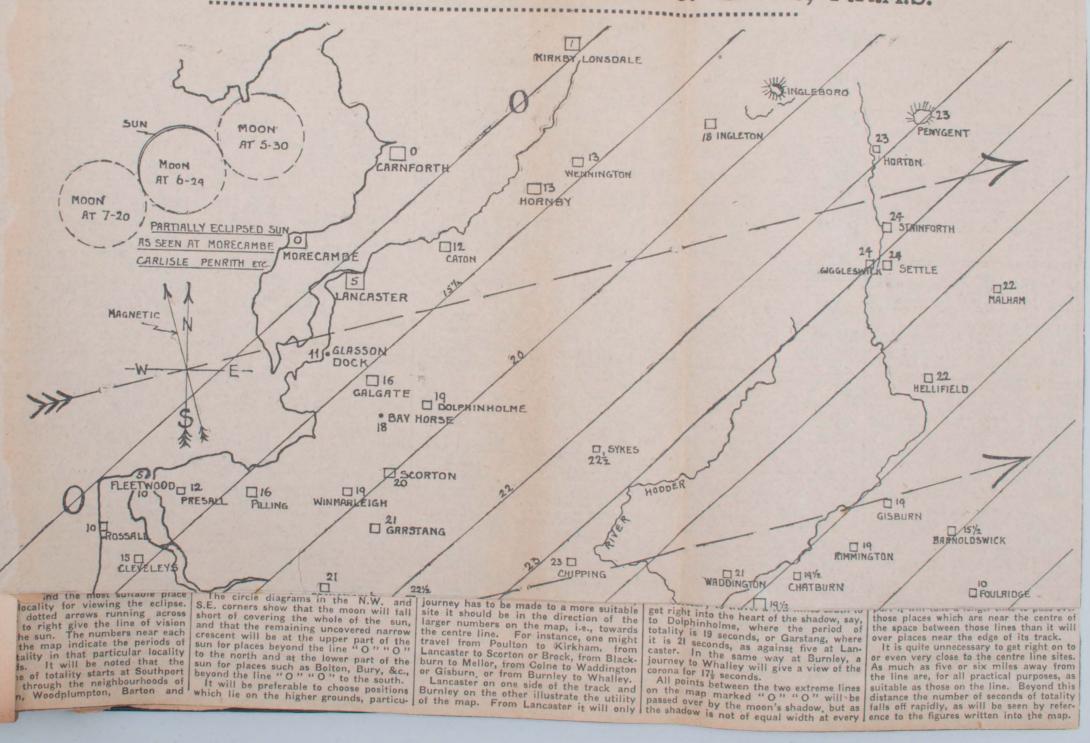
HINTS TO AMATEUR PHOTOGRAPHERS.


(By Mr. G. J. GIBBS, F.R.A.S.)

The corona, which is never seen unless the sun is totally eclipsed, consists of extensions of the sun's atmosphere. It shines with a pearly greenish light on the dark background of the sky, for the sky is dark during totality. This darkness, with the glorious corona surrounding the jet black moon, provides that spectacle which everyone hopes to see, and which, once seen, is never forgotten.

Not only is the phenomenon itself most impressive, but the sudden change which takes place at the moment when the last vestige of the sun disappears adds to the effect. Not until this moment arrives does the round body of the moon show itself. Then, in the place of the brilliant sun, we see what appears to be a round and perfectly black hole in the sky. This is really the dark side of the moon turned towards us, and surrounding that black patch, stretching millions of miles into space, lies the corona-still, calm, and lovely to behold beyond all words of description.

All nature seems to be sensible to the effect. The sky is dark, it becomes cold, all is hushed. Birds retire to their nests, and beasts seek their lairs. The onlooker gazes at the spectacle in silent awe, while the astronomers devote their attention to their instruments, cameras, and spectroscopes, trying to discover what is the meaning of this corona and of what does


They know that it shines partly by reflected sunlight, that it is partly composed of dust, but they do not know what substance provides the dust. They also know that the corone contains some gaseous matter of a quality unknown to us on the earth. This gaseous matter is called "coronium," but what it is and what are its properties, physical and chemical, we do not yet know. Some day, perhaps, scientists may discover the secret of this gas, as they did in the case of helium, which was first found in the sun, and years afterwards found by Sir William Ramsay in a mineral from Norway called Cleveite.

THE LANCASHIRE DAILY POST, WEDNESDAY, JUNE 22, 1927.

here and How to View the Total Eclip

CONCLUDING ARTICLE BY MR. G. J. GIBBS, F.R.A.S.

AILY POST, WEDNESDAY, JUNE 22, 1927.

Over Twenty Prechold Villas; prices from 2500 E1,500. Also Land for Building Purposes, from per yard.

per yard. SPENCER, Liverpool-road. 'Phone 808.

On-One only, completion Sept-Oct.
ortgages can be arranged on any of the
above Houses.
ats, apply, Wm. Smirk & Sons, Conlace, Ashton-on-Ribble. Telephones:

EY.—New Houses for Sale, Parlour and Non our Types; complete and ready for immediat in Mayfield-road; prices from £420 each; cal or full perticulars of special terms for purchase and Moss, 17. Union-street; or 2, Mayfield

ING Plot of Land on By-pass road; 120 yards ntage; splendid at for house and business; Stout House, Garstang. Quantity of Bricks Offers to David B. Pye, Lower House, page Garstang.

MAKE YOUR CHOICE FROM THE FOLLOWING 20 MOTOR CARS, ALL OF WHICH UNDOUBTEDLY REPRESENT EXCELLENT VALUE.

"LOXHAM'S-THE USED CAR SPECIALISTS."

OXPORD, 15-9-hp., 1926 4-Door Saloon; first on the road August; in guaranteed new condi-tion throughout; set of losse covers, two electrical sign indicators, and numerous other fittings; taxed

electrical sign indicators, and numerous other fittings; taxed.

ALVIS, 1927, 12/50-h.p., % Coupe; folding head; eight weeks old only; mileage, 1,400; painted maroon with maroon leather upholistery to match; front wheel brakes; balloon tyres; taxed; makers' three years balloon tyres; taxed; makers' three years balloon tyres; taxed; makers' three years balloon on the road. List price without coupe on the road. List price without extras £595. Our Price

DGE, late 1926, 4-Door Saloon; plush upholistery; one owner; condition O.K. throughout; front wheel brakes; numerous interior fittings.

£145

ROVER, 8-h.p.; the choice of three 2/3-Seaters.
Prices
CITROEN, 1925, 7-h.p., 2/3-Seater; balloon
tyres; in very nice order throughout;
WOLSELEY, 1921, 10-h.p., 2/3-Seater; excellent condition; mechanically O.K.; fully
equipped

ROVER, 1923, 13.9, 4/5-seater; painted Nigger Brown, with smillar colour leather uphoistery to match; all tyres good, special all-weather equipment, rear screen, tip-top order through-out

THE CHOICE OF TWO.

cellent order and in sound mechanical conditions from throughout; fully equipped power and in sound mechanical conditions. The choice of the conditions of

MOTORS

BE INDEPENDENT OF TRAMS

Bargain Price, £77 or £25 down, Balance ov BRADSHAW'S MOTOR

SOLID TYRES, New

7 924 MODEL 10-h.p.

FORD Van, good condi 1926 ROYAL ENFIELD

MONEY TO LEN

WHY EXPOSE YOUR POSITION to Friends or Relative through lack of capital? LOANS to LADIES, GENTLEMEN, and ON THE SECURITY OF YOU ON THE SECURITY OF YOUR
The Exact Amount Repayable is de
romissory Note, and a copy given to
£10 Interest £1. £20 1
£50 Interest £5. £100 in
For Agreed Terms.
I LEND EXACTLY AS ADVI

1 GIVE AND EXPECT A SQUA Write, Call, or 'Phone (1060).

I. HYMAN. 6, FOX STREE

IF YOU REQUIRE AN ADVANCE.

Privately, cheaply, and at
YOU CANNOT DO
than determine before you the cost of the accommod invite your inquiry,

COST YOU NOTHING

EDWARD LIPMAN.
36, GUILDHALL ST., PRESTON
1, TACKETTS ST., BLACK

LIVERPOOL

6 RAWFORD

0 STHELEN'S

CLITHERDE

WHALLEY

0

BOLTON

MOON

AT 7-20

ACCRIMETON

O HASLINGDEN

0

/ MOON

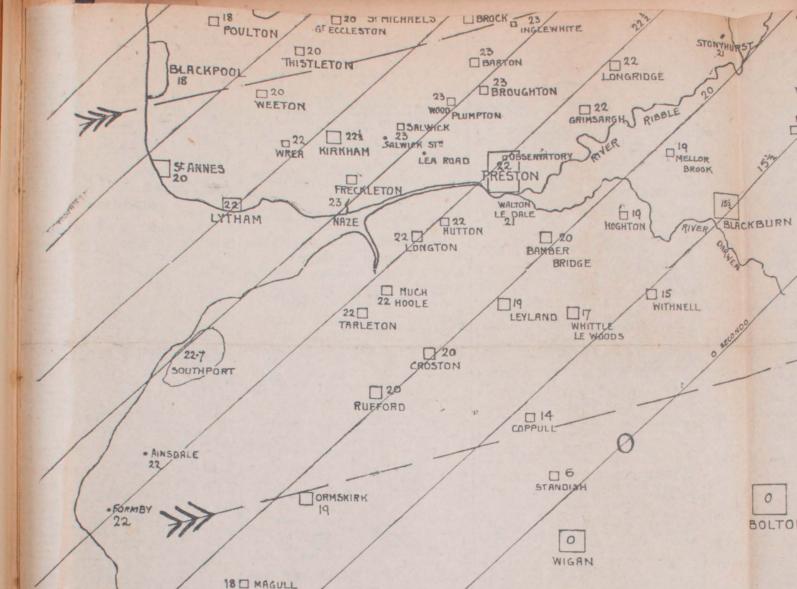
AT 6-24

BURY

MOON

LSUN

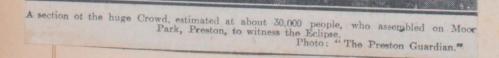
PARTIALLY ECLIPSED

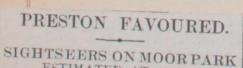

SUN AT 6-24

AS SEEN FROM WIGHN

BOLTON ETC.

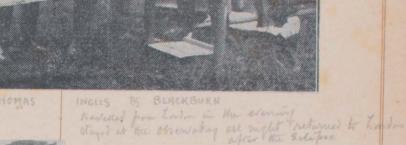
AT 5-30


BURNLEY



The above map will help intending observers to find the most suitable place in their locality for viewing the eclipse. The long dotted arrows running across from left to right give the line of vision left to right give the line of vision actual totality in that particular locality in the Fylde district, and if any journey has to be made to a more suitable get right into the heart of the shadow, say, the short of the stable in the view of the stable into the heart of the shadow, say, th

SCALE of MILES



ESTIMATED AT 30,000. Preston and the surrounding district, in spite of the gloomiest of forecasts, were granted a magnificent view of Wednesday's eclipse, although in some instances the actual period of totality was marred by a cloudy haze. One of

the pleasantest surprises of the morning was the multiplicity of points in Preston from which a clear view of the phenomenon was obtainable. People just opened their front doors or stepped out in the garden, and there was the eclipse all ready at hand.

Most people, however, pinned their faith to the parks, open spaces, and high ground, with Moor Park and Longridge firm favourites. As early as four o'clock the main roads were as congested with traffic as on a Sunday or Bank Holiday, while crowds of people were making

by the time the first contact became perceptible—at 5 20—it was estimated that, including the many hundreds of school children, there were fully 30,000 to 40,000 persons watching the spectacle from Moor Park.

Mr. G. J. Gibbs, the hon. curator of Preston Observatory, was quite satisfied with the observations made at the new observatory, and said those who had stayed up with him all night were repaid for their trouble.

Describing the eclipse, Mr. Gibbs said: "The hazy sky and clouds which drifted over the sun just before totality prevented the pastic view which makes the total eclipse so impressive, because it was practically impossible to see anything of the corona. Up to that point, whilst the sun was seen in a somewhat hazy sky, yet very clear views of the partially eclipsed sun could be seen.

Mr. Gibbs said the quantity of light and the

could be seen.

Mr. Gibbs said the quantity of light and the haze obscured the form of the corona, but sketches had been made by his assistants.

Asked about the period of totality, Mr. Gibbs said it was not timed, but it appeared to be considerably less than the time predicted. "It is not unusual," he said, "for it to be a little different from the predicted time."

Mr. Gibbs added that the wind was in the South and a cloud was blown across the sun just about the time of totality. "I watched the race between the cloud and time for totality all along, and the cloud just won," said Mr. Gibbs.

OBSERVATIONS FROM BALLOON.

For the purpose of photographing the eclipse For the purpose of photographing the eclipse a balloon carrying an aeronaut, a photographer, and a journalist left the Preston Gas Company's yard off Geoffrey-street at 5 50 on Wednesday morning, and as it soared it passed to the northeast. Capt. Boothy, of the Airship Club of Great Britain, was in charge of the trip. The balloon eventuall, came to earth at Flookborough, on the north of Morecambe Bay.

FROM TOOTAL HEIGHT

The 5,000 enthusiasts who made Tootal Height, Longridge, their objective, had a magnificent reward for their labours, for although the prospects remained very uncertain till after six o'clock, when totality arrived the sun presented a never-to-be-forgotten spectacle.

Just as everyone had begun to despair of seeing actual totality, the wreaths of misty cloud separated and darkness rushed suddenly over the valleys below. From the crowd's elevated position the sight was both awesome and magnificent. Only a minute before Preston and the surrounding countryside could be easily distinguished through the eerie half-light. Then arose a wind, bitingly cold, and simultaneously came the "black-out," and we were perched between heaven and earth with nothing beneath us except a sea of inky darkness. As the moon's shadow rushed across us the clouds suddenly parted and there was no further need of eye-protectors, for totality had been reached. The 20-odd seconds' experience, the like of which no one on the hill-top would ever know again, seemed to pass in a flash, but all the phenomena which we had been told to expect were there—the corona, the hydrogen flames, and Baily's Beads.

DISAPPOINTMENT AT STONYHURST.

The Stonyhurst contingent, who made elaborate preparations for recording the eclipse, met with a disappointing experience, for a bank of cloud obscured the sun up to five minutes before totality, when the crescent appeared momentarily, only to be obscured again almost immediately, and the sun remained obscured until the last second of totality, the crescent then reappearing free from cluod and restoring the normal light with astonishing rapidity. If the slow-moving cloud had passed over the sun the slow-moving cloud had passed over the sun a few seconds earlier the astronomers would have got a glimpse of the corona.

At Hrust Green and in the nearby fields fine views were obtained.

Giggleswick, where the 'Astronomer Royal's expedition was encamped, had the best view of Wednesday morning's total eclipse. Watchers at the various points on the totality belt had strange variations of fortune, a mile or two sometimes making the difference between a good view and no view at all. The Welsh end of the totality belt had almost unrelieved bad luck Southport was moderately fortunate. luck, Southport was moderately fortunate, and at the Hartlepools end of the belt only Sunderland on the fringe was not disappointed.

At Giggleswick Sir Frank Dyson and his colleagues of the Greenwich Observatory were able to take entirely satisfactory records which will be specially invaluable under the circumstances.

Even, however, to those who were denied a sight of the moonlight-like corona and the rose-red flaming chromosphere, the gloom which accompanied the obscuration of the sun was vastly impressive. Dr. Lockyer, who had bitter experiences near Richmond, spoke of the "wondrous gloom" of the total phase, and the play of light and shade which accompanied the gloom" of the total phase, and the play of light and shade which accompanied the development of the eclipse, and the removal of the moon's shadow was remarked in many parts of the line.

Scarcely any observations were possible outside the totality belt. Manchester's sky was beclouded till the shadow had passed. In London and the South the eclipse was attended by rain.

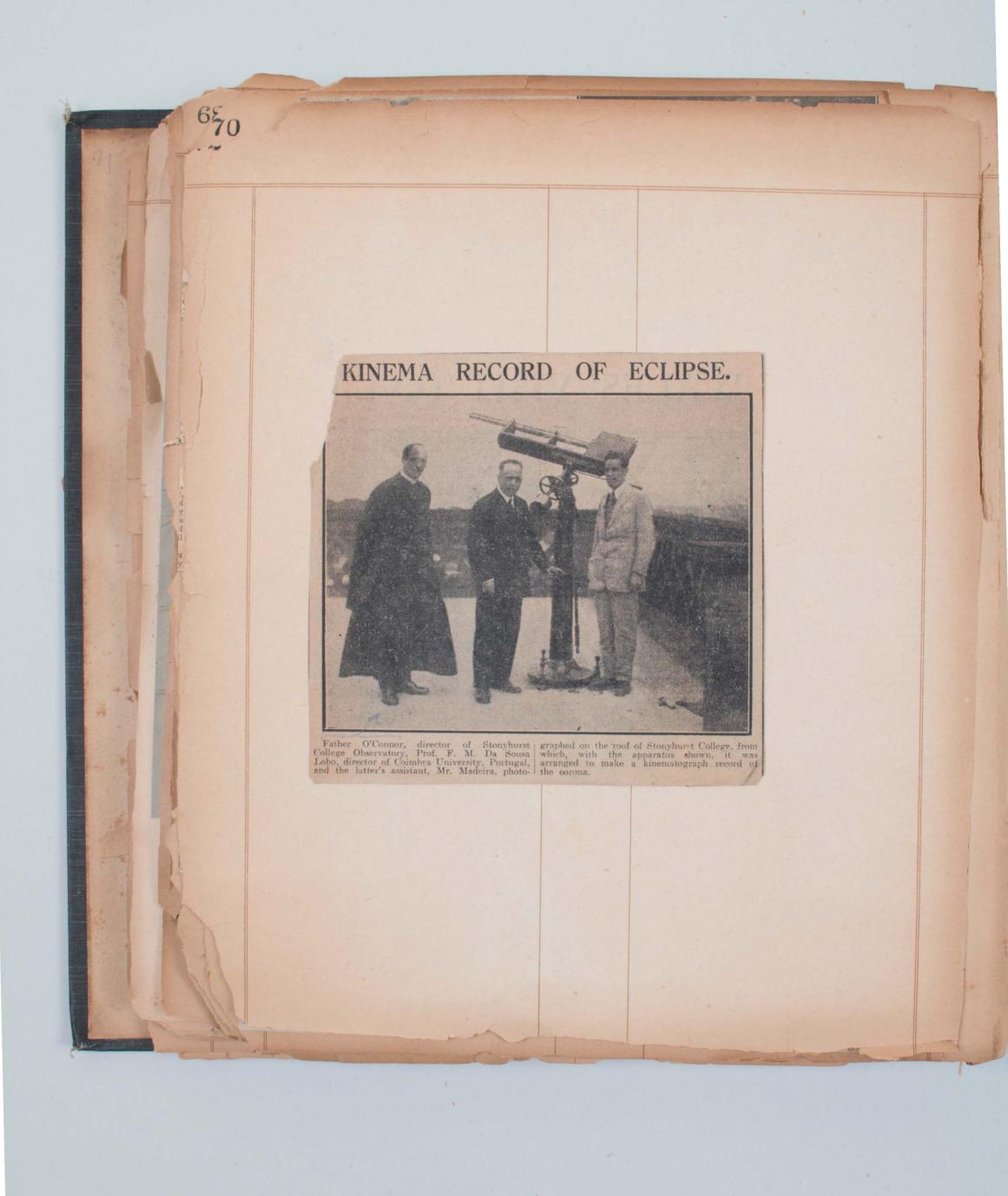
On the centre-line at Southport visibility varied with the difference of a few degrees between observation points, so that the

between observation points, so that the reports of eye-witnesses a mile apart were not unanimous on the success of the

A crowd of 50,000 had a good view of the

eclipse from Waddington Fell, an all-night invasion by motorists starting at 6 p.m. on Tuesday. During the exodus the traffic "jam" was so great that hundreds of motorists had to spend 1½ hours in covering 2½ miles. Following their long vigil a number of persons fainted.

Over 250,000, it is estimated, flocked to Southport, but thousands had a great disappointment at Colwyn Bay, where long preparations for observation had been made by astronomers.


"It is the end of the world." screamed a woman on New Brighton front when darkness descended. She rushed back

from the front, and many fell back with

her.
Two elephants belonging to Sanger's Circus, which had been performing at Barmouth, were on the road at the darkest hour. When the sun's face was covered they stopped and refused to move until it became light again.

Splendid views of the eclipse were obtained from the steamer Bickerstaffe,

which carried many passengers at Black-pool on an eclipse sea cruise at 4 30 a.m. Mr. Ramsay MacDonald, who saw the eclipse from Giggleswick, said: "It was the most moving sight I have ever seen."

TELEPHONE: GERRARD 1587. MESSAGES: REGENT 0291.

2, RYDER STREET, ST JAMES'S, S.W. 1.

1. VII. 27.

My Dear hi Gibbs I do want to thank you for you for your hapital. ity for your kindness in having me al Preston for the eclipse. Both Suglis + I enjoyed out visit very much in deed. I suppose any eclipse must be a mem - or able experience, but this one would be specially to as we seem to have to

been so very fortunate in comparison with many other people. You will have arranged it very well. I do hope you will regard the set of theomometers as a small contribution towards the expenses of the observation of the permanent equip ment of the observation if they should be useful. Everyone was most kind to you the feel very in debted to you the feel very in debted to you the feel very indebted to you the feel very indebted to you the feel very indebted

