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A B S T R A C T

Background: Clinical trials face unprecedented challenges including recruitment delays affecting 80% of studies, 
escalating costs exceeding $200 billion annually in pharmaceutical R&D, success rates below 12%, and data 
quality issues affecting 50% of datasets. Artificial intelligence (AI) offers transformative solutions to address 
these systemic inefficiencies across the clinical trial lifecycle.
Objective: To evaluate the current state, future potential, and implementation challenges of AI technologies in 
clinical trials, providing evidence-based guidance for responsible AI integration while maintaining patient safety 
and scientific integrity.
Method: Comprehensive narrative review following established guidelines for literature synthesis. Systematic 
search of PubMed, Embase, IEEE Xplore, and Google Scholar databases from January 2015 to December 2024. 
Data extraction and narrative synthesis organized thematically according to clinical trial lifecycle stages.
Results: Analysis of relevant studies demonstrated substantial AI benefits: patient recruitment tools improved 
enrollment rates by 65%, predictive analytics models achieved 85% accuracy in forecasting trial outcomes, and 
AI integration accelerated trial timelines by 30–50% while reducing costs by up to 40%. Digital biomarkers 
enabled continuous monitoring with 90% sensitivity for adverse event detection. However, significant imple
mentation barriers emerged, including data interoperability challenges, regulatory uncertainty, algorithmic bias 
concerns, and limited stakeholder trust.
Conclusion: AI represents a transformative force in clinical research with proven capabilities to enhance effi
ciency, reduce costs, and improve patient outcomes. Realizing this potential requires addressing technical 
infrastructure limitations, developing explainable AI systems, establishing comprehensive regulatory frame
works, and fostering collaborative efforts between technology developers, clinical researchers, and regulatory 
agencies to ensure responsible implementation.

1. Introduction

Clinical trials represent the cornerstone of evidence-based medicine, 
serving as the definitive pathway for evaluating the safety and efficacy 
of medical interventions before they are introduced to patients. The 
global clinical trials landscape has witnessed exponential growth, with 

over 400,000 studies registered on ClinicalTrials.gov as of 2024, rep
resenting a five-fold increase since 2005 [1]. This expansion reflects the 
increasing complexity of modern medical research, driven by advances 
in genomics, personalised medicine, and novel therapeutic modalities 
including cell and gene therapies, immunotherapies, and precision 
oncology approaches. However, despite this remarkable growth, the 
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traditional clinical trial paradigm faces unprecedented challenges that 
threaten its sustainability and efficiency. The pharmaceutical industry 
invests approximately $200 billion annually in research and develop
ment, yet the success rate for new drug approvals remains below 12 %, 
with average development costs reaching $2.6 billion per approved drug 
[2].

The clinical trials enterprise faces a multifaceted crisis characterised 
by escalating costs, prolonged timelines, and systemic inefficiencies that 
fundamentally undermine its primary mission of delivering life-saving 
treatments to patients. Contemporary Phase III trials require an 
average investment of $19 million and consume 6–7 years from initia
tion to completion [3]. The most critical challenge is patient recruit
ment, with 80 % of trials experiencing significant delays due to 
enrollment challenges, and 37 % of investigational sites failing to recruit 
a single participant [4]. This recruitment failure extends trial timelines 
by an average of 6–8 months, substantially increasing costs whilst 
delaying patient access to potentially life-saving treatments. Addition
ally, traditional data collection methods rely heavily on manual pro
cesses, resulting in high error rates. Studies indicate that up to 50 % of 
clinical trial data contain errors or inconsistencies, requiring extensive 
cleaning processes that further delay study completion [5]. The regu
latory landscape has become increasingly complex, with mounting 
documentation requirements contributing significantly to trial costs, 
whilst traditional recruitment approaches often result in homogeneous 
study populations that inadequately represent real-world patient di
versity, undermining result generalisability [6].

The convergence of technological and scientific developments cre
ates unprecedented opportunities to address these challenges through 
artificial intelligence (AI) integration. The proliferation of electronic 
health records (EHRs), now covering over 95 % of hospitals, has 
generated vast repositories of clinical data, providing previously inac
cessible raw material for AI-powered insights and predictions [7]. 
Simultaneously, breakthroughs in machine learning, particularly deep 
learning and natural language processing, have demonstrated remark
able capabilities in pattern recognition, predictive modelling, and 
automated decision-making, enabling algorithms to process complex 
datasets and identify subtle patterns impossible for human analysts to 
detect [8,9]. The democratisation of computational infrastructure 
through cloud computing has reduced costs by over 90 % whilst 
enabling real-time analysis of large-scale datasets [10]. Furthermore, 
the development of federated learning approaches enhances data pri
vacy while leveraging multi-institutional data for AI training [11]. 
Finally, regulatory agencies worldwide are increasingly recognising AI’s 
potential to enhance clinical trial quality and efficiency, with the FDA’s 
Digital Health Innovation Plan and EMA’s guidance on computerised 
systems demonstrating growing acceptance of AI-powered trial tools 
[12–14].

This comprehensive review encompasses AI applications across all 
phases of clinical development, from Phase I safety studies through 
Phase IV post-market surveillance, covering diverse therapeutic areas 
whilst extending beyond traditional pharmaceutical trials to include 
medical device studies, digital therapeutics, and innovative trial designs 
such as master protocols and decentralised trials [15–17]. The signifi
cance extends beyond academic interest, offering practical value for 
clinical research organisations to inform AI investment decisions, reg
ulatory agencies to develop oversight frameworks, technology de
velopers to identify market opportunities, and patient advocacy groups 
to understand AI-powered trial benefits and risks [14,18,19]. This re
view addresses critical gaps in existing literature that typically focus on 
narrow AI applications or specific therapeutic areas, failing to provide 
comprehensive coverage of AI’s transformative potential across the 
entire clinical trial lifecycle [20,21]. Unlike previous reviews examining 
isolated applications, this analysis adopts a holistic approach, examining 
AI integration across all trial phases whilst synthesising empirical evi
dence from over 127 studies to provide quantitative assessments of AI 
performance [22,23].

Given the critical challenges facing clinical trials, recruitment crises 
delaying 80 % of studies, data quality issues affecting 50 % of datasets, 
regulatory complexity consuming 30 % of budgets, and limited diversity 
undermining generalisability [24–26] and unprecedented technological 
opportunities presented by AI advances achieving human-level perfor
mance in medical tasks [8,14], this comprehensive review addresses the 
urgent need to evaluate AI’s transformative potential across the clinical 
trial lifecycle. The primary aim is to evaluate the current state, future 
potential, and implementation challenges of artificial intelligence 
technologies in clinical trials, providing evidence-based guidance 
through systematic assessment of AI applications documenting current 
capabilities and performance metrics; evidence synthesis identifying 
proven benefits and knowledge gaps; implementation framework 
development addressing technical, regulatory, and ethical consider
ations; and barrier identification with proposed mitigation strategies. 
Secondary objectives encompass regulatory and ethical analysis exam
ining algorithmic bias and transparency requirements [27]; stakeholder 
perspective integration from clinical investigators, regulatory agencies, 
technology developers, and patient advocates; future research prioriti
sation including federated learning, explainable AI, and adaptive trial 
optimisation; and technology roadmap development for emerging ap
plications including quantum computing and blockchain technologies. 
This review makes novel contributions through: (1) the first compre
hensive benchmarking of AI algorithm performance across clinical trial 
applications, (2) development of a risk-stratified framework for AI 
implementation, and (3) systematic analysis of data complexity chal
lenges specific to medical AI applications. By providing comprehensive, 
evidence-based guidance on responsible AI integration, this work sup
ports clinical research evolution towards a more sustainable, efficient, 
patient-centric paradigm that can accelerate life-saving treatment de
livery whilst maintaining the highest standards of safety and ethical 
conduct.

It is crucial to clarify that the AI technologies discussed in this review 
are primarily task-specific AI tools rather than the large language models 
(LLMs) that most people associate with “AI” today. These include highly 
specialised hybrid machine learning and rules-based engines designed 
for specific clinical applications, such as natural language processing 
tools for clinical documentation that map clinical entities onto concepts 
from standardised medical vocabularies like UMLS, accompanied by 
clinical intent analysis. This differs fundamentally from how LLMs 
process clinical information, while LLMs excel at entity recognition, they 
perform poorly on clinical intent determination that requires deep 
domain expertise and structured medical knowledge.

2. Methods

This narrative review was conducted following established guide
lines for comprehensive literature synthesis [28]. We performed a sys
tematic search of multiple databases including PubMed, Embase, IEEE 
Xplore, and Google Scholar, covering the period from January 2015 to 
December 2024. The search strategy employed a combination of Medi
cal Subject Headings (MeSH) terms and free-text keywords including 
“artificial intelligence,” “machine learning,” “clinical trials,” “patient 
recruitment,” “digital biomarkers,” “predictive analytics,” “natural 
language processing,” and related terms.

Inclusion criteria encompassed peer-reviewed articles, conference 
proceedings, and grey literature reporting on AI applications in clinical 
trials, including feasibility studies, implementation reports, and theo
retical frameworks. We excluded non-English publications, case reports 
with fewer than 10 participants, and studies focusing solely on pre
clinical AI applications without clinical trial relevance.

Two independent reviewers screened titles and abstracts, with full- 
text review conducted for potentially relevant studies. Data extraction 
captured study characteristics, AI methodologies employed, clinical trial 
phases, outcome measures, and reported benefits or limitations. Quality 
assessment was performed using the Newcastle-Ottawa Scale for 
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observational studies and the Cochrane Risk of Bias tool for randomised 
trials.

Given the rapidly evolving nature of AI technology and the hetero
geneity of study designs, we adopted a narrative synthesis approach, 
organising findings thematically according to clinical trial lifecycle 
stages. This methodology allowed for comprehensive coverage of 
diverse AI applications whilst maintaining focus on practical imple
mentation considerations.

3. AI in clinical trial design and feasibility

3.1. Protocol optimisation through historical data analysis

AI-driven protocol optimisation represents a fundamental shift from 
intuition-based trial design to evidence-informed planning. Advanced 
machine learning (ML) algorithms analyse vast repositories of historical 
trial data, identifying patterns that inform optimal study parameters 
[29,30]. Natural language processing (NLP) tools systematically extract 
insights from thousands of prior study protocols, regulatory sub
missions, and published literature to propose evidence-based inclusion/ 
exclusion criteria [31–33]. These AI-driven approaches demonstrate 
significant advantages over traditional statistical methods: whilst con
ventional feasibility assessment relies on limited historical data and 
clinical intuition, machine learning algorithms can process thousands of 
variables simultaneously, achieving 80 % accuracy in protocol optimi
sation compared to 65 % accuracy with traditional regression-based 
approaches [34]. Fig. 1 illustrates a schematic overview of AI applica
tions in protocol optimisation and site selection for clinical trial design.

Deep learning models can predict protocol feasibility by analysing 
multiple variables simultaneously, including target population charac
teristics, geographic distribution, seasonal variations, and competitive 
landscape factors. These predictive models achieve accuracy rates 
exceeding 80 % in forecasting enrollment success, significantly out
performing traditional feasibility assessments [35–37].

However, the complexity of medical data presents significant chal
lenges for AI algorithms. Clinical datasets often contain high- 
dimensional, heterogeneous data types including structured laboratory 
values, unstructured clinical notes, imaging data, and genomic 

information. This complexity can lead to spurious correlations, for 
instance, AI models have been observed to inadvertently learn irrelevant 
features such as hospital-specific documentation patterns rather than 
clinically meaningful variables [38]. A notable example is Google’s 
retinal imaging system that achieved high accuracy in predicting patient 
gender from retinal photographs (despite male and female retinas being 
anatomically identical), highlighting the risk of algorithms identifying 
clinically irrelevant but statistically significant patterns [39,40].

Furthermore, AI systems enable dynamic protocol optimisation, 
continuously refining study parameters based on accumulating real- 
world evidence [41,42]. This adaptive approach supports the develop
ment of more efficient master protocols, including platform and basket 
trials that can accommodate multiple interventions or patient pop
ulations within a single study framework [43,44].

3.2. Site selection and feasibility assessment

Machine learning algorithms revolutionise site selection by inte
grating multiple data sources to predict investigator performance and 
recruitment potential. These models analyse demographic data, disease 
prevalence, healthcare infrastructure, investigator experience, and his
torical site performance metrics to rank potential study sites [45].

Advanced geospatial analysis tools incorporate socioeconomic fac
tors, transportation accessibility, and competing trial activity to opti
mise site selection strategies. By predicting enrollment rates at the site 
level, AI tools enable more accurate timeline forecasting and resource 
allocation, reducing the risk of study delays and cost overruns.

Table 1 demonstrates substantial improvements achieved through AI 
applications in trial design, with particularly strong performance in 
protocol optimisation and competitive intelligence gathering. However, 
it’s important to note that while these AI tools show superior perfor
mance to traditional approaches, they require careful validation and 
ongoing monitoring to ensure clinical relevance.

Fig. 1. Schematic overview of artificial intelligence integration in clinical trial protocol optimisation and site selection. AI technologies (machine learning, 
deep learning, and natural language processing) leverage historical trial data and site metrics to inform evidence-based protocol design, predict feasibility, and 
optimize site selection. This approach enables dynamic, data-driven decision-making that streamlines trial planning, enhances enrollment forecasting, and reduces 
operational risks.
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4. AI-driven patient recruitment and screening

4.1. Predictive matching and participant identification.

Patient recruitment represents the most critical bottleneck in clinical 
trial conduct, with AI offering transformative solutions through auto
mated participant identification and matching systems. Advanced nat
ural language processing (NLP) algorithms scan electronic health 
records (EHRs), clinical notes, and laboratory results to identify poten
tially eligible participants with unprecedented efficiency and accuracy 
[58,59].

IBM Watson for Clinical Trial Matching serves as a concrete example 
of AI implementation challenges and benefits. While the system 
demonstrated 78 % accuracy in patient-trial matching and reduced 
screening time by 78 %, real-world deployment revealed significant 
implementation barriers [60]. The cost of integrating Watson with 
hospital electronic medical record (EMR) systems ranged from $250,000 
to $500,000 per instance, making it economically unsustainable even for 
high-cost oncology trials. Each Epic EMR implementation proved 
unique, requiring extensive customisation for local clinical terminology, 
LOINC codes, laboratory result units, and radiology reporting styles 
[61].

Machine learning models can also predict a patient’s likelihood of 
enrollment success by analysing historical patterns, demographic fac
tors, and clinical characteristics [36,62]. This predictive capability en
ables targeted recruitment strategies, focusing resources on participants 
most likely to enroll and complete study participation, ultimately 
reducing delays and costs associated with trial execution [37,63].

4.2. Addressing recruitment disparities and enhancing diversity

AI systems hold significant potential to address longstanding dis
parities in clinical trial participation, particularly in terms of racial, 
ethnic, and socioeconomic representation. Algorithmic approaches can 
identify and flag underrepresented populations using real-world data
sets, enabling targeted outreach strategies [8,64]. Natural language 
processing tools can analyse social determinants of health, trans
portation barriers, and cultural factors that influence trial participation, 
informing the development of more inclusive recruitment strategies 
[65–67]. By identifying and addressing systemic barriers to participa
tion, such as structural bias, digital access gaps, and linguistic mis
matches, AI-driven approaches can enhance trial diversity whilst 
maintaining scientific rigor [68–70].

4.3. Virtual screening and remote consent processes

AI-powered virtual screening platforms enable remote participant 
evaluation, reducing geographical barriers to trial participation [71,72]. 
Computer vision algorithms can analyse medical images, whilst NLP 
tools process patient-reported outcomes and digital health data to 
conduct preliminary eligibility assessments [72,73]. Intelligent chatbots 
and conversational AI systems facilitate remote consent processes, 

providing personalised information delivery and addressing participant 
questions in real-time [74,75]. These systems can adapt communication 
style and content based on participant literacy levels, cultural back
grounds, and individual preferences [76,77].

4.4. Risk-stratified framework for AI implementation in patient 
recruitment

Different AI applications in patient recruitment carry varying levels 
of risk and require tailored implementation strategies. Low-risk appli
cations such as cohort size estimation carry relatively low financial 
consequences when errors occur, making them ideal entry points for AI 
implementation [78]. These applications can be effectively mitigated 
through statistical validation and manual spot-checking, with oversight 
provided by statisticians who review sample size calculations. The 
relatively contained impact of errors in this category allows organisa
tions to gain experience with AI systems whilst minimising potential 
adverse outcomes [79].

Medium-risk applications encompass recruitment strategy optimi
sation, where errors may result in time delays and recruitment failures 
but do not directly impact patient safety. These applications benefit from 
A/B testing methodologies that compare AI-recommended approaches 
against traditional methods, providing empirical evidence of effective
ness whilst limiting exposure to potential failures [78]. Clinical research 
coordinators provide appropriate oversight for this category, ensuring 
that recruitment strategies align with study objectives and regulatory 
requirements.

High-risk applications involving patient eligibility determination 
carry the most significant consequences, as errors may result in inap
propriate inclusion or exclusion of patients from clinical trials. These 
applications require the most stringent safeguards, including mandatory 
physician review of AI recommendations and principal investigator 
approval for all eligibility decisions [80]. This multi-layered oversight 
ensures that clinical expertise remains central to patient safety decisions 
whilst leveraging AI capabilities to enhance efficiency and consistency 
in the screening process.

5. AI in data Capture, Monitoring, and analysis

5.1. Digital biomarkers and continuous monitoring

The integration of AI with wearable technologies and digital health 
platforms enables continuous patient monitoring through digital bio
markers, representing a paradigm shift from episodic clinical assess
ments to real-time health surveillance. Deep learning algorithms analyse 
multi-modal sensor data, including accelerometry, heart rate variability, 
sleep patterns, and vocal biomarkers, to detect subtle changes in patient 
status [81–83].

Compared to traditional monitoring approaches that rely on periodic 
clinic visits and manual data collection, AI-powered continuous moni
toring systems demonstrate superior sensitivity and specificity. Tradi
tional monitoring typically achieves 70–75 % sensitivity for adverse 

Table 1 
AI Applications in Trial Design and Site Selection − Performance Comparison with Traditional Methods.

Application AI Technology Traditional Method 
Performance

AI Performance Key Benefits

Protocol Optimisation 
[8,46,47]

NLP + ML 65 % prediction accuracy 80 % prediction accuracy Reduced design time, improved 
feasibility

Site Selection [48–50] Predictive 
Analytics

45 % enrollment forecast 
accuracy

75 % enrollment forecast accuracy Better enrollment forecasting

Feasibility Assessment [51–53] Machine Learning 8–12 weeks planning time 4–6 weeks planning time Risk mitigation, resource optimisation
Competitive Intelligence 

[54–56]
Data Mining 60 % trial coverage 90 % coverage of relevant trials Market landscape analysis

Population Modelling [8,49,57] Deep Learning 55 % recruitment accuracy 75 % accuracy in recruitment 
forecasting

Patient availability prediction
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event detection, whilst AI-based digital biomarker systems achieve 90 % 
sensitivity with real-time alerts [84,85]. However, this improved per
formance comes at the cost of increased false positive rates (15–20 % vs. 
5–10 % for traditional methods), requiring careful threshold calibration 
and clinical validation [86,87].

These AI-powered monitoring systems can identify early warning 
signs of adverse events, disease progression, or treatment response, 
enabling proactive clinical management and reducing the risk of serious 
safety events. For example, models using smartwatch-derived data have 
achieved 93 % accuracy and 96 % AUROC in mortality prediction 
among cancer patients [88]. Machine learning models achieve sensi
tivity rates exceeding 90 % in detecting clinically significant changes 
across various therapeutic areas, such as predicting clinical deteriora
tion in COVID‑19 patients [89,90].

5.2. Risk-Based monitoring and quality assurance

AI transforms clinical trial monitoring from reactive, site‑visit–based 
approaches to proactive, data‑driven quality assurance systems. Ma
chine learning algorithms analyse data patterns across multiple sites to 
identify anomalies, protocol deviations, and potential data integrity is
sues in real-time [91–93]. Traditional monitoring approaches require 
clinical research associates to physically visit sites and manually review 
paper or electronic records, a process that typically identifies data issues 
4–6 weeks after occurrence. In contrast, AI-powered monitoring systems 
can detect anomalies within 24–48 h of data entry, enabling immediate 
corrective action and preventing propagation of errors [94].

These systems can predict sites at risk of non‑compliance, enabling 
targeted interventions and resource allocation [92,95]. By automating 
routine monitoring tasks, AI allows clinical research associates to focus 
on high‑risk areas requiring human intervention, improving overall trial 
quality whilst reducing monitoring costs by up to 30–40 % [1,96].

5.3. Automated data cleaning and standardisation

AI-powered data cleaning tools address one of the most time- 
consuming aspects of clinical trial conduct, automatically identifying 
and correcting data inconsistencies, missing values, and entry errors. 
Natural language processing algorithms standardise free-text entries, 
whilst machine learning models predict missing data points based on 
patient characteristics and study context [97,98]. Traditional data 
cleaning processes require 60–80 h of biostatistician time per 100 

patient datasets, with manual review and query resolution extending 
timelines by 4–6 weeks. AI-powered systems reduce this to 12–16 h of 
oversight time with automated processing completed within 24–48 h 
[94].

These automated systems reduce data cleaning time by 60–80 % 
whilst improving data quality and consistency across study sites 
[99,100]. Advanced imputation algorithms, including deep learning, 
generative adversarial networks, and recurrent neural networks, can 
handle complex missing data patterns, maintain statistical power while 
ensuring data integrity [100–102]. See Fig. 2 for a simplified schematic 
of how AI supports clinical trial data capture, monitoring, and cleaning. 
Table 2 demonstrates the substantial performance improvements ach
ieved through AI-powered monitoring systems, with particularly strong 
results in safety monitoring and data quality control applications 
compared to traditional manual approaches.

6. Predictive modelling for trial outcomes

6.1. Dynamic risk prediction models

AI enables the development of sophisticated risk prediction models 
that continuously evolve as trial data accumulates, providing real-time 
insights into patient outcomes and study progression. These dynamic 
models incorporate diverse data sources, including clinical assessments, 
lab values, imaging data, and digital biomarkers, to predict individual 
patient responses and trial-level outcomes [22,64,111]. Traditional 

Fig. 2. AI applications across the clinical trial data lifecycle. This schematic illustrates how artificial intelligence (AI) enhances data workflows in clinical trials. 
From continuous monitoring via digital biomarkers to proactive risk-based site monitoring and automated data cleaning, AI streamlines clinical data processing. 
These technologies reduce manual errors, detect early risks, and improve data quality and integrity, contributing to safer and more efficient trial execution.

Table 2 
AI Applications in Data Capture and Monitoring − Performance Benchmarking.

Monitoring 
Domain

Traditional 
Performance

AI 
Performance

Improvement 
Factor

Digital Biomarkers 
[81,103,104]

70 % adverse event 
sensitivity

90 % 
sensitivity

1.3x 
improvement

Risk-Based 
Monitoring 
[105–108]

4–6 weeks 
detection time

24–48 h 
detection

40-60x faster

Data Quality Control 
[67,109,110]

60–80 h cleaning 
time

12–16 h 4-5x reduction

Real-time Analytics 
[49,111,112]

Weekly trend 
analysis

Real-time 
analysis

Continuous 
monitoring

Safety Monitoring 
[8,112,113]

85 % specificity 95 % 
specificity

1.2x 
improvement
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statistical approaches such as logistic regression and Cox proportional 
hazards models typically consider 10–20 variables and achieve 70–75 % 
accuracy in outcome prediction. In contrast, AI models can analyse 
hundreds of thousands of variables simultaneously, achieving 85–90 % 
accuracy, though this comes with increased risk of overfitting and 
identification of spurious correlations [114].

Bayesian deep learning approaches allow for ongoing model refine
ment and uncertainty quantification, enabling adaptive trial modifica
tions in real time [115,116]. Such adaptive capabilities underpin 
innovative designs, including response-adaptive randomisation and 
early stopping rules guided by real-time futility or efficacy decisions 
[117,118].

6.2. Personalised treatment strategies

Machine learning algorithms can identify patient subgroups most 
likely to benefit from specific interventions, enabling the development 
of personalized treatment strategies within clinical trials. These pre
dictive models analyze multi-omics data, clinical characteristics, and 
treatment histories to identify biomarkers and patient features associ
ated with treatment response [72,111,119]. AI-driven patient stratifi
cation enables more efficient trial designs, reducing sample size 
requirements while maintaining statistical power [120,121]. These 
methods are particularly valuable in oncology trials, where predictive 
biomarkers can detect patients most likely to respond to targeted ther
apies [122,123].

6.3. Adaptive trial design optimisation

Adaptive trial designs powered by AI raise important considerations 
regarding Intention-to-Treat (ITT) analysis principles. When AI algo
rithms modify enrollment criteria, randomisation ratios, or dose levels 
during trial conduct, this creates challenges for traditional ITT analysis, 
which assumes fixed protocol parameters [124]. Researchers must 
carefully consider how dynamic protocol modifications affect the 
comparability of data to historical controls and gold-standard studies 
analysed under traditional ITT methodologies. This may require novel 
statistical approaches that account for the adaptive nature of AI-driven 
protocol modifications while maintaining scientific rigor [125].

AI systems support adaptive trial designs by continuously monitoring 
accumulating trial data and recommending protocol modifications 
based on predefined decision rules. Such systems can adjust random
isation ratios, modify dose levels, or recommend early termination when 
efficacy or safety thresholds are met [117,126]. Machine learning al
gorithms can simulate thousands of potential trial scenarios, optimizing 
adaptive design parameters to maximize trial success probability while 
minimizing exposure to ineffective treatments [127]. These simulation- 
based approaches, including Bayesian adaptive designs, enable more 
efficient trial conduct, improved resource allocation, and enhanced 
patient outcomes [128,129].

7. Algorithm quality and performance analysis

7.1. Comparative analysis of AI algorithms in clinical trials

Different AI algorithms demonstrate varying performance charac
teristics across clinical trial applications, with the selection of appro
priate algorithms depending on the specific use case, data 
characteristics, and performance requirements. Deep learning models 
excel in processing high-dimensional, unstructured data such as medical 
images and clinical notes, but require large datasets containing more 
than 10,000 samples and lack interpretability that is often crucial for 
clinical decision-making [130]. In contrast, traditional machine learning 
approaches including random forests and support vector machines 
perform better with smaller datasets containing fewer than 1,000 sam
ples and provide better interpretability that clinicians can understand 

and validate [131,132]. Performance comparisons reveal that deep 
learning achieves 85–90 % accuracy on image analysis tasks compared 
to 70–75 % for traditional machine learning, whilst traditional machine 
learning achieves 80–85 % accuracy on structured clinical data 
compared to 75–80 % for deep learning approaches [133,134].

Natural language processing approaches also demonstrate distinct 
performance profiles across clinical applications. Rule-based NLP sys
tems achieve 90–95 % precision but only 60–70 % recall in clinical 
entity extraction, making them highly accurate for the entities they 
identify but prone to missing relevant information [135,136]. 
Transformer-based models such as BERT variants achieve 80–85 % 
precision but 85–90 % recall, capturing more relevant information but 
with greater risk of false positives [137]. Hybrid approaches that 
combine rule-based and machine learning methods achieve 85–90 % 
precision and 80–85 % recall, representing an optimal balance for 
clinical applications where both accuracy and completeness are essen
tial for patient safety and regulatory compliance [138].

7.2. Data complexity challenges in medical AI

Medical data presents unique complexity challenges that signifi
cantly impact AI algorithm effectiveness across multiple dimensions. 
High-dimensional heterogeneity represents a fundamental challenge, as 
clinical datasets combine structured data such as laboratory values and 
vital signs, semi-structured data including medical codes and stand
ardised assessments, and unstructured data comprising physician notes 
and imaging studies [139]. This heterogeneity requires sophisticated 
feature engineering and multi-modal AI architectures capable of pro
cessing disparate data types simultaneously, whilst traditional algo
rithms struggle with missing data rates of 20–40 % that are common in 
clinical settings. The integration of these diverse data sources often re
quires extensive preprocessing and harmonisation efforts that can 
consume 40–60 % of total project development time [140].

Temporal dependencies in medical data create additional complexity 
that static algorithms frequently fail to capture effectively. Medical 
conditions evolve over time with complex patterns of progression, 
treatment response, and recovery that require sophisticated modelling 
approaches to understand accurately. Recurrent neural networks and 
transformer architectures demonstrate 15–20 % better performance 
than static models for time-series medical data, as they can capture these 
temporal relationships and predict future states based on historical 
patterns. However, these advanced architectures require substantially 
more computational resources and training data to achieve optimal 
performance [141].

Domain-specific noise represents another significant challenge 
unique to medical AI applications, stemming from documentation var
iations between healthcare providers, measurement errors in clinical 
devices, and coding inconsistencies across different healthcare systems. 
Clinical data contains substantial noise that can confound AI algorithms 
and lead to spurious correlations, requiring robust preprocessing pipe
lines and validation methodologies to ensure reliable performance 
[142]. The development of effective noise reduction and data stand
ardisation approaches often requires deep clinical domain expertise and 
can significantly extend development timelines, emphasising the 
importance of close collaboration between AI developers and clinical 
experts throughout the development process [143].

8. Regulatory and ethical considerations

8.1. Algorithmic bias and fairness

The deployment of AI in clinical trials raises critical concerns 
regarding algorithmic bias and fairness, particularly given the risk that 
AI systems may perpetuate or amplify existing healthcare disparities. 
Models trained on non-representative datasets may systematically 
exclude or disadvantage certain patient groups, compromising the 
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generalisability of trial results [67,144,145]. Addressing algorithmic 
bias requires comprehensive detection and mitigation strategies, 
including the use of diverse training datasets, established fairness met
rics, and ongoing monitoring of system performance across de
mographic subgroups [27,146,147]. Moreover, emerging regulatory 
frameworks are beginning to set clear expectations for bias assessment 
and mitigation in AI-powered clinical trial systems, emphasising trans
parency, auditability, and human oversight [148,149].

8.2. Transparency and Explainability

The “black box” nature of many AI algorithms poses significant 
challenges for clinical interpretation and regulatory approval. Health
care providers and regulators require clear explanations of AI decision- 
making processes to evaluate the appropriateness and safety of AI- 
driven recommendations [150–152]. Developing explainable AI (XAI) 
systems for clinical trials requires balancing model performance with 
interpretability, ensuring that AI recommendations can be understood 
and validated by clinical experts [153,154]. This challenge is particu
larly acute for deep learning models, which may achieve superior per
formance but offer limited interpretability, driving ongoing research 
into novel XAI techniques that enhance transparency without sacrificing 
accuracy [155,156].

8.3. Data privacy and security

The use of AI in clinical trials necessitates robust data privacy and 
security frameworks, particularly given the sensitive nature of health 
information and the potential for data breaches. AI systems require ac
cess to vast datasets, including electronic health records (EHRs), 
genomic data, and real-world evidence, raising complex privacy con
cerns [157–159]. Implementing privacy-preserving AI techniques, 
including federated learning, differential privacy, and homomorphic 
encryption, can enable AI development whilst protecting patient privacy 
[160,161] These approaches allow AI models to be trained on distrib
uted datasets without centralising sensitive information, thereby 
reducing the risk of data leakage and enhancing compliance with reg
ulations such as GDPR and HIPAA [162,163].

9. Barriers to implementation

9.1. Technical and infrastructure challenges

Despite significant advances in AI technology, several technical 
barriers impede widespread adoption in clinical trials. Data interoper
ability remains a critical challenge, with disparate systems and hetero
geneous data formats hindering seamless AI integration and data sharing 
across platforms [164,165]. Legacy clinical trial management systems 
often lack the infrastructure necessary to support AI-powered tools, 
requiring significant technological upgrades and standardized data 
models [166,167]. The complexity of AI systems also creates challenges 
for validation and regulatory approval, as traditional clinical trial par
adigms are not well-suited to evaluating continuously learning or 
adaptive algorithms [168]. Establishing appropriate validation frame
works for AI requires close collaboration between technology de
velopers, clinical researchers, and regulatory agencies to ensure safety, 
efficacy, and transparency [41,169].

9.2. Stakeholder trust and acceptance

Limited stakeholder trust represents a significant barrier to AI 
adoption in clinical trials, with concerns about AI reliability, safety, and 
decision-making transparency [170,171]. Healthcare providers may be 
reluctant to rely on AI-driven recommendations, especially in critical 
clinical situations where patient safety is paramount [168,172]. Build
ing stakeholder trust requires transparent communication about AI 

capabilities and limitations, comprehensive training programs, and 
evidence-based demonstrations of AI system performance [173,174]. 
Engaging clinical investigators in AI development and validation pro
cesses fosters collaboration and helps build confidence in these tech
nologies [175,176].

9.3. Regulatory uncertainty

The regulatory landscape for AI in clinical trials remains uncertain, 
with evolving guidelines and standards creating challenges for tech
nology developers and clinical researchers [41,177]. Regulatory 
agencies, including the FDA, European Medicines Agency (EMA), and 
other international bodies, are actively developing frameworks for AI 
evaluation, but comprehensive and harmonised guidance remains 
limited [13,178]. This regulatory uncertainty complicates AI system 
development and deployment, with unclear requirements for validation, 
documentation, and ongoing performance monitoring [174,179]. 
Establishing clear and globally aligned regulatory pathways for AI- 
powered clinical trial tools is essential to foster innovation and ensure 
widespread adoption [180]. Fig. 3 shows a systems-level view of inter
connected barriers hindering AI integration in clinical trials.

10. Case studies and Real-World applications

10.1. Pfizer’s REMOTE trial Initiative

Pfizer’s REMOTE (Research on Electronic Monitoring of OAB 
Treatment Experience) trial represents one of the first fully virtual 
clinical trials, leveraging AI and digital technologies for comprehensive 
remote data collection [181,182]. The study enrolled participants across 
multiple sites and utilised AI-powered mobile applications with machine 

Fig. 3. Interconnected barriers to AI implementation in clinical trials. This 
figure presents a systems-level schematic of the three major barriers technical 
challenges, stakeholder trust deficits, and regulatory uncertainty that impede AI 
adoption in clinical research. Each barrier originates from specific root causes 
and propagates downstream consequences, ultimately limiting scalability, 
slowing approvals, and reducing clinical uptake. Overcoming these obstacles 
will require coordinated cross-sector efforts to build interoperable infrastruc
ture, improve transparency and training, and establish harmonised valida
tion frameworks.

D.B. Olawade et al.                                                                                                                                                                                                                             International Journal of Medical Informatics 206 (2026) 106141 

7 



learning algorithms that analysed patient-reported outcomes in real- 
time. Wearable sensors collected continuous activity data, while tele
medicine platforms enabled remote consultations [183]. Specific AI 
performance metrics included: 95 % accuracy in detecting treatment 
adherence patterns, 87 % accuracy in predicting treatment response 
within 4 weeks, and 92 % sensitivity in identifying potential adverse 
events through patient-reported symptom patterns [184].

The trial demonstrated the feasibility of AI-driven virtual trials, 
achieving 95 % patient retention rates whilst reducing trial costs by 40 
% compared to traditional site-based studies. AI algorithms analysed 
continuous sensor data to detect treatment responses and safety signals, 
enabling proactive clinical management [185].

10.2. Novartis and IBM Watson collaboration

Novartis partnered with IBM Watson to develop AI-powered patient 
matching and site selection tools for oncology trials, providing concrete 
performance data: the system processed over 2.5 million patient records 
across 15 major healthcare systems, identifying potentially eligible pa
tients with 78 % accuracy compared to 45 % accuracy with traditional 
manual screening methods [186]. The AI system reduced patient 
screening time from an average of 8 h per patient to 30 min, representing 
a 94 % reduction in screening time. However, the implementation 
revealed significant challenges: integration costs ranged from $250,000 
to $500,000 per healthcare system, and the system required 6–8 months 
of customisation for each Epic EMR instance to accommodate local 
terminology and coding practices [187,188].

The partnership demonstrated significant improvements in patient 
recruitment efficiency, with 65 % faster enrollment and 50 % reduction 
in screening failures [189]. AI-driven site selection algorithms improved 
site performance prediction accuracy by 40 %, enabling more effective 
resource allocation [190].

10.3. Verily’s Baseline platform

Verily’s Baseline Platform represents a comprehensive AI-powered 
clinical research ecosystem, integrating data from over 50 healthcare 
institutions and processing more than 10 terabytes of clinical data daily 
[191]. The platform’s machine learning algorithms demonstrated: 82 % 
accuracy in predicting trial enrollment success, 76 % accuracy in iden
tifying patients likely to complete study participation, and 89 % accu
racy in detecting early safety signals. Specific performance 
improvements included: 30 % reduction in trial planning time (from 18 
months to 12–13 months), 25 % reduction in overall study costs, and 35 
% improvement in patient retention rates compared to traditional clin
ical trials [192].

Early implementations of the Baseline Platform demonstrated 30 % 
improvements in trial efficiency and a 25 % reduction in overall study 
costs [193]. The platform’s AI-driven patient stratification capabilities 
enabled more precise treatment effect estimates and improved trial 
design optimisation [194].

11. Future Directions

11.1. Federated learning for Privacy-Preserving AI

Federated learning represents a promising approach for developing 
AI models whilst preserving patient privacy and data security. This 
methodology enables AI training on decentralised datasets across mul
tiple institutions without sharing raw data, addressing privacy concerns 
whilst maintaining model performance [11,162]. Federated learning 
approaches can enable collaborative AI development across pharma
ceutical companies, academic institutions, and healthcare systems, 
accelerating AI advancement whilst protecting proprietary and sensitive 
information [195]. These approaches are particularly valuable for rare 
disease research, where patient data is distributed across multiple 

institutions [160].

11.2. Explainable AI for clinical decision support

The development of explainable AI systems represents a critical 
priority for clinical trial applications, enabling healthcare providers and 
regulators to understand and validate AI-driven recommendations. Ad
vances in interpretable machine learning, including attention mecha
nisms and feature importance analysis, offer promising approaches for 
enhancing AI transparency [151,196,197]. Future research should focus 
on developing AI systems that balance performance with interpret
ability, ensuring that complex models can provide meaningful expla
nations for their decisions [152]. This capability is essential for 
regulatory approval and clinical acceptance of AI-powered trial tools 
[198].

11.3. Fully decentralised AI-Enabled trials

The future of clinical trials may involve fully decentralised, AI-driven 
studies with minimal physical contact between participants and in
vestigators. These virtual trials would leverage AI-powered remote 
monitoring, digital biomarkers, and telemedicine platforms to conduct 
comprehensive clinical evaluations [199,200]. AI algorithms would 
continuously monitor participant safety and efficacy outcomes, auto
matically adjusting trial parameters and triggering clinical interventions 
as needed [201,202]. This approach could dramatically improve trial 
accessibility whilst reducing costs and timeline requirements [203,204].

12. Limitations of the review

While this comprehensive review provides extensive coverage of AI 
applications in clinical trials, several limitations should be acknowl
edged. First, the rapidly evolving nature of AI technology means that 
some developments may not be fully captured in published literature, 
particularly regarding proprietary industry applications and emerging 
technologies [41,168]. The heterogeneity of AI methodologies and 
clinical trial designs makes direct comparison across studies chal
lenging, limiting our ability to provide definitive quantitative assess
ments of AI impact [49,205]. Many reported benefits are based on pilot 
studies or theoretical models rather than large-scale randomized 
controlled trials, raising questions about generalizability and real-world 
performance [107,206].

Publication bias may favour positive results, potentially over
estimating AI benefits whilst underreporting challenges and failures 
[207]. The predominance of studies from well-resourced institutions 
and developed countries may limit the applicability of findings to 
diverse global settings with varying technological infrastructure [208]. 
Regulatory landscapes and ethical frameworks continue to evolve, 
making it difficult to provide definitive guidance on compliance re
quirements and best practices [209,210]. The long-term safety and ef
ficacy of AI-powered clinical trial tools remain uncertain, requiring 
ongoing monitoring and evaluation [41,211].

Finally, the technical complexity of AI systems may limit the acces
sibility of this review to readers without specialised knowledge in ma
chine learning and data science, potentially hindering broader adoption 
and understanding of these technologies [150,212].

13. Conclusion

Artificial Intelligence represents a transformative force in clinical 
trials, offering unprecedented opportunities to address longstanding 
challenges in trial design, patient recruitment, data monitoring, and 
outcome prediction. The evidence reviewed demonstrates substantial 
potential for AI to accelerate trial timelines, reduce costs, and enhance 
the quality and efficiency of clinical research. Key findings indicate that 
AI-powered patient recruitment tools can improve enrollment rates by 
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up to 65 %, whilst predictive analytics models achieve 85 % accuracy in 
forecasting trial outcomes. Digital biomarkers and continuous moni
toring systems enable real-time safety surveillance and adaptive trial 
management, potentially reducing adverse events and improving pa
tient outcomes.

This comprehensive review makes several novel contributions to the 
field: First, we provide the most extensive benchmarking of AI algorithm 
performance across clinical trial applications to date, demonstrating 
clear superiority over traditional methods while highlighting imple
mentation challenges such as cost (£250,000-£500,000 per system), 
customisation complexity, and the risk of spurious correlations. Second, 
we introduce a novel risk-stratified framework for AI implementation 
that categorises applications by potential impact and required oversight 
levels, providing practical guidance for clinical research organisations. 
Third, we systematically analyse the unique data complexity challenges 
in medical AI applications, including high-dimensional heterogeneity, 
temporal dependencies, and domain-specific noise that can significantly 
impact algorithm effectiveness.

However, realising the full potential of AI in clinical trials requires 
addressing significant implementation barriers, including technical 
challenges, regulatory uncertainty, and stakeholder trust issues. Our 
analysis reveals that while AI systems demonstrate superior perfor
mance in controlled settings, real-world implementation faces substan
tial obstacles including interoperability challenges, infrastructure 
requirements, and the need for extensive customisation that can make 
deployment costs prohibitive. The development of explainable AI sys
tems, privacy-preserving methodologies, and comprehensive validation 
frameworks will be essential for widespread adoption.

The evidence strongly supports a measured approach to AI integra
tion that prioritises high-value, low-risk applications initially, with 
gradual expansion to more complex use cases as technology matures and 
stakeholder confidence builds. Our risk-stratified implementation 
framework provides a roadmap for this phased approach, ensuring pa
tient safety while maximising the benefits of AI technology.

Future research priorities should focus on developing robust vali
dation methodologies for AI systems, establishing clear regulatory 
frameworks, and addressing algorithmic bias and fairness concerns. 
Collaborative efforts between technology developers, clinical re
searchers, regulatory agencies, and patient advocacy groups will be 
crucial for ensuring responsible AI implementation. The integration of 
AI into clinical trials represents not merely a technological advancement 
but a fundamental shift towards more efficient, patient-centric, and 
scientifically rigorous clinical research. By carefully navigating the 
challenges and opportunities presented by AI technology, the clinical 
research community can harness these tools to accelerate medical 
innovation whilst maintaining the highest standards of patient safety 
and scientific integrity. As we advance into an era of AI-enabled clinical 
research, the potential for transformative impact on global health out
comes becomes increasingly apparent. The careful, responsible inte
gration of AI technologies into clinical trials, guided by evidence-based 
frameworks and robust validation methodologies, will be essential for 
realising this potential whilst preserving the fundamental principles of 
ethical clinical research and patient protection.
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[145] S.S. Mahmood, A. Dang, L. López, J. Chu, E. Linos, Maximizing equity in the era of 
machine learning: from theory to implementation in medicine, Lancet Digit 
Health. 5 (3) (2023) e129–e140, https://doi.org/10.1016/S2589-7500(23) 
00010-7.

[146] I. Chien, N. Deliu, R.E. Turner, A. Weller, S.S. Villar, N. Kilbertus, 
Multidisciplinary fairness considerations in machine learning for clinical trials, 
arXiv (2022), https://doi.org/10.48550/arXiv.2205.08875.

[147] S. Moon, H. Kim, B.Y. Lee, J. Park, Detecting and mitigating bias in clinical 
machine learning models: a scoping review, JMIR Med. Inform. 11 (5) (2023) 
e36388, https://doi.org/10.2196/36388.

[148] Health and Technology Working Group, Regulatory considerations on the use of 
machine learning: Diversity, fairness, and transparency, Health Technol. 12 
(2022) 1730–1745, https://doi.org/10.1007/s12553-022-00708-0.

[149] B. Goodman, S. Flaxman, Regulating bias in artificial intelligence — a review of 
global regulatory frameworks, Health Technol. 13 (1) (2023) 15, https://doi.org/ 
10.1007/s12553-022-00708-0.

[150] J. Amann, A. Blasimme, E. Vayena, D. Frey, V.I. Madai, Explainability for 
artificial intelligence in healthcare: a multidisciplinary perspective, BMC Med. 
Inf. Decis. Making 20 (1) (2020) 310.

[151] R. Caruana, Y. Lou, J. Gehrke, P. Koch, M. Sturm, N. Elhadad, Intelligible models 
for healthcare: predicting pneumonia risk and hospital readmission, in: In: 
Proceedings of the 21st ACM SIGKDD International Conference on Knowledge 
Discovery and Data Mining, 2015, pp. 1721–1730, https://doi.org/10.1145/ 
2783258.2788613.

[152] C. Rudin, Stop explaining black box models for high stakes decisions and use 
interpretable models instead, Nat. Mach. Intell. 1 (5) (2019) 206–215, https:// 
doi.org/10.1038/s42256-019-0048-x.

[153] E. Tjoa, C. Guan, A survey on explainable artificial intelligence (XAI): Toward 
medical XAI, IEEE Trans Neural Netw Learn Syst. 32 (11) (2020) 4793–4813, 
https://doi.org/10.1109/TNNLS.2020.3027314.

[154] A. Holzinger, G. Langs, H. Denk, K. Zatloukal, H. Müller, Causability and 
explainability of artificial intelligence in medicine, Wiley Interdiscip Rev Data 
Min Knowl Discov. 11 (5) (2021) e1422.

[155] R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, D. Pedreschi, 
A survey of methods for explaining black box models, ACM Comput. Surv. 51 (5) 
(2018) 1–42, https://doi.org/10.1145/3236009.

[156] M. Ghassemi, L. Oakden-Rayner, A.L. Beam, The false hope of current approaches 
to explainable artificial intelligence in health care, Lancet Digit Health. 3 (11) 
(2021) e745–e750, https://doi.org/10.1016/S2589-7500(21)00208-9.

[157] W.N. Price, I.G. Cohen, Privacy in the age of medical big data, Nat. Med. 25 (1) 
(2019) 37–43.

[158] E. Vayena, A. Blasimme, I.G. Cohen, Machine learning in medicine: addressing 
ethical challenges, PLoS Med. 15 (11) (2018) e1002689, https://doi.org/ 
10.1371/journal.pmed.1002689.

[159] X. Jiang, M. Coffee, A. Bari, J. Wang, X. Jiang, J. Huang, X. Shi, Artificial 
intelligence in healthcare: past, present and future, Stroke Vasc Neurol. 6 (4) 
(2021) 205–213, https://doi.org/10.1136/svn-2020-000690.

[160] N. Rieke, J. Hancox, W. Li, F. Milletari, H.R. Roth, S. Albarqouni, et al., The future 
of digital health with federated learning, NPJ Digit Med. 3(1):119 (2020), 
https://doi.org/10.1038/s41746-020-00323-1.

[161] X. Xu, Y. Luo, Y. Li, Y. Ma, M. Zhang, Adaptive clinical trial design enabled by 
artificial intelligence: challenges and opportunities, Pharmaceutics 15 (1) (2023) 
87, https://doi.org/10.3390/pharmaceutics15010087.

[162] T. Li, A.K. Sahu, A. Talwalkar, V. Smith, Federated learning: challenges, methods, 
and future directions, IEEE Signal Process Mag. 37 (3) (2020) 50–60.

[163] G. Kaissis, M.R. Makowski, D. Rückert, R.F. Braren, Secure, privacy–preserving 
and federated machine learning in medical imaging, Nat. Mach. Intell. 2 (6) 
(2020) 305–311, https://doi.org/10.1038/s42256-020-0186-1.

[164] M.I. Razzak, M. Imran, G. Xu, Big data analytics for preventive medicine, Neural 
Comput. & Applic. 31 (5) (2019) 1365–1377, https://doi.org/10.1007/s00521- 
017-3092-5.

[165] P.B. Jensen, L.J. Jensen, S. Brunak, Mining electronic health records: Towards 
better research applications and clinical care, Nat. Rev. Genet. 21 (9) (2020) 
499–517, https://doi.org/10.1038/s41576-020-0223-5.

[166] J. Morley, C.C.V. Machado, C. Burr, J. Cowls, M. Taddeo, L. Floridi, The ethics of 
AI in health care: a mapping review, Soc Sci Med 260 (2020) 113172, https://doi. 
org/10.1016/j.socscimed.2020.113172.

[167] Y. Zhang, Y. Jiang, J. Chen, L. Li, Overcoming interoperability challenges of 
clinical trial data using standard models and integration frameworks, J. Biomed. 
Inform. 126 (2022) 103987, https://doi.org/10.1016/j.jbi.2021.103987.

[168] Shamout F, Zhu T, Clifton D. Machine learning for clinical outcome prediction. 
IEEE Rev Biomed Eng. 2020;14:116–26. Available from: DOI: 10.1109/ 
RBME.2020.3007816.

[169] D. Leslie, Understanding artificial intelligence ethics and safety: a guide for the 
responsible design and implementation of AI systems in the public sector, The 
Alan Turing Institute. (2020), https://doi.org/10.5281/zenodo.3240529.

[170] K. Bærøe, T.A. Eriksen, O.F. Norheim, Trust and distrust in healthcare AI: Ethics, 
regulation, and public engagement, AI & Soc. 35 (3) (2020) 695–706, https://doi. 
org/10.1007/s00146-019-00886-7.

[171] C. Longoni, A. Bonezzi, C.K. Morewedge, Resistance to medical artificial 
intelligence, J. Consum. Res. 46 (4) (2019) 629–650, https://doi.org/10.1093/ 
jcr/ucx047.

[172] D.S. Watson, J. Krutzinna, I.N. Bruce, C.E. Griffiths, I.B. McInnes, M.R. Barnes, 
L. Floridi, Clinical applications of machine learning algorithms: beyond the black 
box, BMJ 364 (2021) l886, https://doi.org/10.1136/bmj.l886.

[173] R. Agarwal, C. Anderson, A. Zarate, M. Ward, Responsible AI: a framework for 
building trust in AI systems, Harvard Data Sci. Rev. 2 (3) (2020), https://doi.org/ 
10.1162/99608f92.8cd550d1.

[174] X. Liu, S. Cruz Rivera, D. Moher, M.J. Calvert, A.K. Denniston, Reporting 
guidelines for clinical trial reports for interventions involving artificial 
intelligence: the CONSORT–AI extension, Nat. Med. 28 (2) (2022) 306–314, 
https://doi.org/10.1038/s41591-021-01616-6.
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