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Toroidal ordering of artificial magnetic systems by spontaneous symmetry breaking
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The new magnetization protocol is proposed for structures with magnetic ferrotoroidal order as the
ground state. The structures should be magnetized by an out-of-plane magnetic field until saturation
first; then the out-of-plane magnetic field is slowly turned off. During the demagnetization process
from saturation, a series of spontaneous symmetry breaking events occur. These symmetry breaking
events create new meta-stable states at lower fields. The ferrotoroidal state is stable after the first
spontaneous symmetry breaking, and it remains the lowest energy state during the switching off of
the external magnetic field. The out-of-plane field thus not only lowers the barriers among states
but also destabilizes the higher-energy metastable states of the artificial crystal unit cell, changing
the free-energy map of the system qualitatively. This protocol is studied analytically within the
macrospin model, numerically on a realistic structure, and is realized experimentally. Switching
from non-toroidal to toroidal order is demonstrated on isolated magnetic sub-micrometer structures

as well as on arrays of such structures.

I. INTRODUCTION

The development of technology enables the fabrication
of artificial structures on a sub-micrometer scale with
a high degree of definition of building elements. The
periodic repetition of the patterned elements defines a
crystal. Thus, technology enables us to create artificial
materials with properties that are not found in natural
materials. The typical examples are metamaterials[1, 2] -
materials intentionally designed to have a negative refrac-
tion index for electromagnetic waves in some frequency
range. In the field of applied magnetism, there is vivid
research in artificial structurally periodic arrays of mag-
netic elements. The special class of magnetic materials
is materials with ferrotoroidal order. Ferrotoroidal order
is characterized by magnetization forming closed loops
within the unit cell. Ferrotoroidal phase breaks both
space and time inversion symmetry, opening the possi-
bility for many technologically interesting phenomena to
occur[3—6]. In this paper, we study an artificial struc-
ture with a square lattice and the ferrotoroidal ground
state. Our motivation to study this structure is the pre-
diction that unidirectional edge states might exist in such
a crystal[7]. A technologically achievable structure with
measurable bandwidth was theoretically calculated[8]. It
is of notable interest to fabricate and prepare such struc-
tures with the desired ferrotoroidal magnetic state.

However, artificial magnetic structures usually have a
nonperiodic magnetic pattern. There are numerous rea-
sons for difficulties in achieving magnetic order. The
main obstacle is the presence of many local minima and
large energy barriers among them. The energy barriers
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are usually much higher than the achievable thermal en-
ergy. Therefore, thermally activated magnetization flip-
ping is possible only during the growth process [9-12]
when the thickness of the magnetic material is about 1
nm. Then, the magnetic structure freezes. The magnetic
state manipulation afterwards is problematic, especially
in cases where the ground state has no net magnetiza-
tion, as in the case of ferrotoroic order. The domain
structure is determined by the strength of the interaction
of the nearest neighbors, which in turn is determined by
the geometry of the sample[11, 13]. Another approach
is to heat up the sample over the Curie temperature of
the constituting ferromagnetic material and anneal the
sample[14]. With this approach, spontaneous ferrotoroic
ordering was observed as a function of the interaction of
constituting elements defined by their separation. The
long range order in this approach is possible for strongly
interacting elements.

The circular arrangement excludes control of the toroid
magnetic moment with a homogeneous external magnetic
field due to symmetry. It was demonstrated experimen-
tally that it is possible to control the circulation of mi-
croscopic units via a localized magnetic field produced
by, for example, the magnetic tip used in magnetic force
microscopy|[10, 15]. However, setting each unit cell in the
crystal individually using this method is a laborious and
a time-consuming method. The strength of the magnetic
tip is also a limiting factor, since there are limits given by
the element’s shape anisotropy and by interactions with
neighboring magnetic elements.

Another possibility is to optimize the design of mag-
netic building blocks with[16], or without[17] lowered
spatial symmetry of the artificial structure.

To reach ferrotoroidal order, we suggest a new type of
magnetic protocol. First, we magnetize the sample by an
out-of-plane field until saturation. The sample should be



saturated to a unique out-of-plane magnetic state. The
consequent reduction of the out-of-plane magnetic field
keeps the system in a unique magnetic state up to the
critical field value. At this magnetic field, the system
reaches a spontaneous symmetry breaking instability at
which the unit cells start to evolve a ferrotoroidal mo-
ment. At the magnetic field below, but close to the crit-
ical field, the temperature is still able to synchronize ad-
jacent unit cells via thermally activated barrier crossing.
Reducing the external out-of-plane magnetic field causes
further rotation of magnetic moments to an in-plane di-
rection and increases energy barriers between states of
different in-plane circulation. The successive decrease of
the out-of-plane magnetic field eventually stabilizes other
metastable states (e.g., onion state). Still, these states
are higher in energy, and some energy barrier is needed
to be thermally overcome to spoil the toroidal order.
The structure of the paper is as follows: in the next
section ”Experiment”, we present experimental results
when fabricated structures were magnetized by an in-
plane field to the so-called onion states, and then our
protocol of an out-of-plane field was applied. Then the
evolution of the ferrotoroidal order is explained using the
analytically treatable macrospin model in the third sec-
tion "Macrospin Model”. Next, the conceptual findings
of the macrospin model are confirmed by more complex
micromagnetic calculations in the section ”Micromag-
netic Calculations”. Within the micromagnetic model,
we computed the free-energy potential maps as a func-
tion of the external out-of-plane magnetic field. Finally
in the section ” Effects of Imperfections” we discuss prob-
lems faced in ordering arrays in ferrotoroidal order.

II. EXPERIMENT

Artificial magnetic structures were patterned using
electron beam lithography (EBL) and positive tone resist
PMMA 950K. The resist was spread by spin coating on a
silicon substrate, then baked on a hotplate at a temper-
ature of 175 °C for 5 minutes. In order to achieve 30-nm
gaps between patterns, we thinned the original resist with
chlorobenzene, which at a speed of 5000 rpm resulted in
a film thickness of about 50 nm. The triangle patterns
were generated using 30 kV e-beam and beam current of
40 pA. The optimal exposure dose varies in the range of
300-400 pC'/em?. Then the development at a tempera-
ture of 6 °C in a MIBK:IPA (1:3) solution for 75 seconds
was applied. Cold development can improve the overall
quality of the patterns, making them more precise and
well-defined [18]. Next, a 20-nm-thick layer of permalloy
(Py) was e-gun evaporated from Ni80Fe20 source. Sub-
sequently, the standard lift-off technique in acetone was
performed to reveal patterned structures. Fig. 1 shows
the fabricated single Py squares, each with a 400 nm side
and composed of four individual triangles separated by a
30 nm gap, as well as a 10x10 array of these squares.

The final sample was magnetized using a Weiss-type

electromagnet. First, an in-plane external magnetic field
of 0.5 T was applied diagonally along squares. The mag-
netic state of the sample was investigated by a magnetic
force microscope (MFM) at room temperature with the
standard two-pass semicontact MFM technique. The lift
distance in the second pass was 30 nm. Measurements
were made with a super-sharp SSS probe (NANOSEN-
SOR) that has a low magnetic moment and coercivity
(~ 0.25 x 107 '3 emu and 125 Oe) to achieve high spa-
tial resolution and not affect the magnetic states of the
structures. Although the first pass provided topography
(Fig. 2.A), the second pass revealed that the magnetiza-
tion in all unit cells was oriented into the so-called ” onion
state” during in-plane magnetization (Fig. 2.B). Then,
we applied an out-of-plane external magnetic field of 0.94
T to ensure that the magnetic structure reached magne-
tization saturation. After a gradual decrease of the field
over 10 minutes, the magnetization states of the struc-
tures were re-evaluated by MFM (Fig. 2.C). In the case
of the isolated squares, all squares except one are in a
circular state. In the case of an array of squares, two do-
main walls are formed, dividing the squares into domains
with the same circulation of magnetization.

III. MACROSPIN MODEL

To understand the undergoing process, we study the
basic unit cell of an artificial magnetic crystal by a
macrospin model approximation. This unit cell is made
up of square cut diagonally into four isosceles triangles
(see Fig. 1). The simple and analytically treatable model
for the unit cell is four macrospins with magnetic moment
m. The macrospins mutually interact via magnetostatic
interaction. The triangular isosceles elements have elon-
gated shapes, which is taken into account by the shape
anisotropy term. The model assumes only the nearest-
neighbor interaction based on the dipole-dipole interac-
tion. The notation and coordinate orientation follow the
Fig. 1. The shape anisotropy and dipole-dipole energies
can be expressed via matrices, which is very convenient
for algebraic manipulation in further analysis. For this
purpose, we introduce the 12-dimensional linear space for
the magnetization vector p as a direct product of 4 lin-
ear spaces where the 3-dimensional vectors my, .., my are
defined. Using this construction, the total energy of the
system of 4 interacting dipoles can be expressed as the
following:

E=p-H-p—p B (1)
A Tpr 0 T4o
gy | T+ Ay Te 0
0 Ji— Ax T4y
J— 0 Ty Ay

The 3x3 matrices J44, J4— represents dipole-dipole in-
teractions of two dipoles along two different orientations
in space (see Fig. 1). The matrices A, A, express the
shape anisotropy when only the largest value is taken
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FIG. 1. SEM image of the isolated magnetic structures (panel A), arrays of such structures (panel B) and macrospin model
of the single unit cell (panel C). The orientation of axes and numbering of macrospins are according the analytical model
discussion. Calculated MFM images of circular (top) and onion (bottom) states are shown in panel D. Panel E shows color
code for magnetization orientation used later in domain structure vizualization. Clockwise orientation is coded green, counter-

B C

clockwise blue.

A

FIG. 2. MFM images of (1) isolated single unit cells and (2) an array of 10x10 elements. A column shows topography, B
column shows the magnetic states after applying an in-plane external magnetic field of 0.5 T along the squares diagonal, C
column shows magnetic states after applying an out-of-plane magnetic field of 0.937 T. The white bar in the bottom right

corner of the images evaluates 1 pum size.

into account. The largest value is in the direction along the longest edge of the isosceles triangle.

—J =3J 0 —J 3J 0
Tr=|-37 =0 0o |, =37 -7 0
0 0 2J 0 0 2J

~A 00 0 0 0
A= 0 00, A, =[0-40 (2)

n N N n



Irred. Rep.|Eigenvalue(s)

Ay A =4J, A2 =6J

Bi1 A3 = —6J, Ay = —4J

A, s =—A—-6J

B2 e = —A+6J

E Ar=Ag = (—A— VA2 +16J2)/2
Ao = Ao = (—A+ VA2 +16J2)/2
A1 =A12=0

TABLE I. Eigenvalues of dipole-dipole matrix H. Eigenvec-
tors are shown on Fig. 3.

Where J = ﬁ%‘;’;‘;, o is permeability of vacuum, a dis-
tance of nearest-neighbour macrospins.

Next, assume that the homogeneous external field is
applied in the z direction following the notation in Fig. 1.
The symmetry group of the energy function (1), including
also the non-zero external field, is Cy,. The dipole-dipole
interaction matrix H in Eq. (1) can be block diagonalized
with the use of symmetry and group theory[19]. Conse-
quently, individual blocks can be completely analytically
diagonalized. Almost all eigenvectors are independent
of interaction constants A and J, except for vectors in
the plane belonging to irreducible representation E. The
eigenvalues of the H matrix are listed in the Tab. I and
corresponding eigenvectors e; to e are shown in Fig.3
[20].

The homogeneous external magnetic field B oriented
in the z direction is expressed as B = Be;. In Eq. (1),
the vector p is constrained to have amplitude |pu|? = 4.
As aresult, the quadratic term is bounded, and the linear
term can be arbitrarily large by increasing the magnitude
of B. Starting from the limit of large B in Eq. (1), the
linear term in p is dominant and the system has a unique
minimum g = e;. The energy of the system (1) is then:

E =4\ — 4B. (3)

As the external field B decreases, the energy E given
by Eq.(3) can be further minimized, allowing p to also
have component with the lowest eigenvalue of the dipole-
dipole interaction, which is in this case the direction es.
The @ can be parametrized:

n=+1-—c2e; +ece; (4)

The € parameter is amplitude of e5 component in p vec-
tor. The parametrization (4) preserves subsidiary condi-
tions |m;|? = 1. Putting this parameterization into Eq.
(1) gives:

E=4(1— )\ +4e2\5 —4BV/1 — €2 (5)

Using standard calculus we find that for B > B, =
2(As — A1) the minimum is € = 0, but for B < B, there

are two equivalent minima € = 4+,/1 — ﬁ. The

same procedure can be performed with other modes in
the plane, but since A5 is the smallest eigenvalue of the

FIG. 3. Symmetry adapted base for 4 macrospin model with
Cy, symmetry group. Arrows represent magnetic moments
of individual macrospins, green lines are eye-guides showing
nearest-neighbour interactions. Base 12-dimensional vectors
e1,- - ,e12 are chosen according this figure, irreducible repre-
sentations are noted by capital letters Ay, --- | F

matrix H, ey is the first direction of spontaneous sym-
metry breaking. So, the system randomly chooses one
of the two minima, and due to the fact that these states
minimize the pair interaction matrix H it remains the
global minimum of the system when the external field B
is lowered further.

Consider now the unit cells at the magnetic field where
only the toroidal magnetic states are stable. If we put
these unit cells into an array with weak interaction, we
get a two-dimensional Ising model. As the interaction
among unit cells becomes stronger, it can stabilize a state
other than the toroidal state in the unit cell again. Such
a state is higher in energy, but can be a local minimum
of the energy. In fact, previously it was shown that the
ratio of inter-cell and intra-cell interactions changes the
type of domain walls[11]. It was also qualitatively shown
that the largest ferrotoroidal domains are achieved if the
intra- and inter-cell interaction strengths are of compa-
rable strength.

IV. MICROMAGNETIC CALCULATIONS

In order to show that general features of the macrospin
model are valid for the more realistic model, we com-
puted the energy barriers that separate the different mag-
netic configurations of the artificial spin crystal unit cell.
A parallel version of the metadynamics algorithm|[21-
23] was developed within a micromagnetic model, based
on the tempered metadynamics algorithm [24]. The
metadynamics algorithm was implemented within the
BORIS[25, 26] software, using the micromagnetic Monte
Carlo method (MMC)[27]. The MMC method uses a
compound trial move consisting of magnetization rota-
tion and length change based on the Maxwell-Boltzmann
distribution, with trial move acceptance probability given
as:



mf AF + AV
Pace(A— B) =min <1, —F 0
(A— B) mm{ i, exp( T )} (6)

Here, my(p) = MA(B)/MSO is the magnetization vec-
tor normalized to zero-temperature saturation magneti-
zation, and AF = F(mp)— F(my) is the change in total
free energy from initial state A to trial state B. A metady-
namic potential V' is computed, and the additional energy
cost of trial moves is included as AV = Vg — V4. The
free energy function in this work, F' = F., + Fy + Fz.,
includes contributions from exchange interaction, mag-
netostatic interaction, and external field, respectively.

The metadynamics potential V' is computed in BORIS
using a general-purpose implementation, allowing user-
defined collective variables @Q;(i = 1,2,3) for 1D, 2D,
and 3D versions of the algorithm, respectively. The 2D
metadynamics potential is defined

V(Q1,Q2,t) = Vo Z exp

t; <t

IQ1 9Q2

_V(Q1,Q2, 1)
kAT

where Vj is a set amplitude, AT is the tempering tem-
perature, and og; are decay widths of the respective
collective variables. In Eq. (7), the sum runs over all
previously computed iterations, where Q1 (t;), Q2(t;) are
collective variables calculated at actual configuration at
time ¢;. Computationally, a discrete collective variable
grid is defined, and at the end of each Monte Carlo it-
eration, the metadynamic potential is updated in each
(Q1,Q2) grid cell by adding a new exponential term con-
tribution using the latest collective variable values Q;(t).
Moreover, when computing the metadynamics potential
energy change, AV = Vg — V4, the V values are ob-
tained using bilinear interpolation in the (Q1,Q2) grid.
In Ref. [23] a serial metadynamics algorithm was used.
To allow large-scale computations, a parallel implemen-
tation of the metadynamcs algorithm was introduced in
BORIS, running on graphical processing units (GPU),
for single and multiple GPUs [28]. In order to avoid data
races, the values of the collective variables Q;(t) are not
updated after an accepted trial move, and instead are
updated at the end of each Monte Carlo iteration. The
finite difference magnetization grid is decomposed using
the red-black checkerboard scheme discussed previously
[29]. As tested, computations using serial and parallel
versions of the algorithm result in the same computed
metadynamics potential.

In this work the collective variables used are the mag-
netic in-plane vorticity, Eq. (8), with values ranging from
-1 to +1, and deviation from vorticity, Eq. (9), with val-

ues ranging from 0 to +1:

1 N
Q1= ;(f'wuz X 1) - 2 (8)
QQ = i i 1-— [(fxyz X Ii’ll) . 2]2 (9)
N % s

=1

In the above equations, £;,; is the unit direction vec-
tor from the vortex center to the i-th computational cell,
m; is the unit magnetization direction vector in the i-th
computational cell, where the sum runs over all N com-
putational cells. For the artificial spin ice unit cell in Fig.
1, the vortex center is defined at the center of the unit
cell, such that @1 values of +1 correspond to perfectly
circular vortices with anticlockwise, respectively clock-
wise, circulation. Values of +0.5 correspond to one of the
triangle magnetization directions flipped away from the
anticlockwise, respectively clockwise, circulation, with 4
degenerate configurations possible. Finally, values of 0
correspond to an equal split of anticlockwise and clock-
wise circulation between the magnetization directions of
the 4 triangles, with 6 degenerate configurations possible.

The metadynamic potential was computed as a func-
tion of the external field for the artificial spin ice unit cell
of Fig. 1, with the experimentally realized dimensions of
400 x 400 x 20 nm and the 30 nm gap between triangles.
The potential was calculated at room temperature for
the NigoF@go material with MSO = 800 kA/m, AO =13
pJ/m, and Curie temperature Tc = 870 K, using a 5 nm
cellsize. The temperature-dependent saturation magne-
tization is Mg(T) = M2Im.(T), and the temperature-
dependent exchange stiffness is A(T) = Agm?2(T), where
me(T) = Bime3To /T + h3MsopoHert /kpT) is the equi-
librium magnetization scaling function, with B(z) =
coth(x) — 1/x. For the metadynamics potential func-
tion of Eq. (7), Vo = 1leV, og1 = og2 = 0.01, and
AT = 105K, which was converged over 250 x 10° itera-
tions.

The resultant potential energy (which is the negative
of the computed metadynamics potential) is shown in
Fig. 4 for zero external field. Five local energy minima
are identified, corresponding to the five sets of degener-
ate magnetic configurations indicated by the diagrams.
Due to the shape anisotropy of the triangles, resulting in
magnetization vectors aligning with the edges, the ideal
vorticity values of £1,40.5 are reduced as observed in
Fig. 4.

The local energy minima are also shown in Fig. 4
as a function of )1, obtained as minimum energy paths
through the computed potential energy map. It can be
seen that the circulating vortex states have the lowest
energy, whilst the other 3 states are stabilized as local
energy minima in zero field, separated by energy barri-
ers. At room temperature and with zero external field,
the energy barriers effectively result in a frozen magnetic
configuration. However, as the out-of-plane field is in-
creased, it can be seen that the energy barriers separating



FIG. 4. Panel a): numerically computed potential energy map
as a function of collective variables Q1, Q2 (Egs.(8), (9)). The
map is computed in zero field for a unit cell, with example
configurations identified using the unit cell diagrams. Panel
b): minimum energy paths obtained from computed potential
energy maps with varying out-of-plane magnetic field, show-
ing the reduction in energy barriers between the 5 sets of
degenerate magnetic configurations.

these states are gradually reduced, and eventually only
the circulating vortex states remain as energy minima.
Further increasing the field removes this final energy bar-
rier, allowing for transitions between the clockwise and
anticlockwise circulations, as can be seen in Fig. 4 for
the 0.67 field. Thus, it is expected that upon gradual
reduction of the out-of-plane field from saturation, the
resulting magnetic configuration of an artificial spin ice
array will consist largely of circulating vortex states with
a mixture of clockwise and anticlockwise vorticities.

We also performed a simulation of the ordering process
of the 10 x 10 array using the standard Monte Carlo
algorithm at room temperature. The gradual reduction
of the out-of-plane field from 1.0 T to 0.0 T was applied
with the field reduction speed at a rate of 0.01 T per
2 x 10* Monte Carlo iterations. . The resulting magnetic
configuration is shown in Fig. 5. As expected, the vast
majority of unit cells are found in a circulating vortex
state, but mono-domain ferrotoroidal structure was not
achieved.

FIG. 5. Ferrotoroidal domain structure as the result of Monte
Carlo simulation of a 10 by 10 unit cell array at T' = 300K,
with ideal geometry and perfect external field alignment.
Color coding follows notation in Fig. 1E - clockwise rota-
tion is shown in green, counterclockwise in blue.

V. EFFECTS OF IMPERFECTIONS

Real-world experiments are always influenced by per-
vasive imperfections. As already shown in Fig. 2, we did
not find a ferrotoroidal monodomain. We obtained some
domain structure within arrays of 10 by 10 unit cells. We
had several such arrays fabricated on our sample, and the
domain structure of the other arrays is shown in Fig. 6.
In order to show magnetic order in a more easily readable
form, we color-coded the magnetic order of individual el-
ements in blue-green maps. The colors reflect a positive
or negative contribution to the toroidal moment of every
particular element.

There are multiple reasons for the existence of do-
mains. First, it is the finite temperature during the ex-
periment that prevents the physical system from reaching
the ground state in favor of higher entropy. The second
reason is the finite time that we have available for the an-
nealing of the samples. Our magnetization protocol was
performed in minutes. These two factors are unavoidable
even in experiments with a geometrically perfect sample.
To demonstrate this effect, a 10 x 10 array of the artifi-
cial spin ice unit cell was simulated using the standard
Monte Carlo algorithm at room temperature, with grad-
ual reduction of the out-of-plane field from 1.0 T down
to 0.0 T. The resulting magnetic configuration is shown
in Fig. 5, where the field was decreased at a rate of 0.01
T per 2 x 10* Monte Carlo iterations.

Another problem is the effect of the misalignment of
the external magnetic field[30]. Indeed, if we look at
the shape of symmetry adapted base vectors of Fig. 3,
the base vectors belonging to the irreducible representa-
tion of E couple to the in-plane homogeneous magnetic
field. Zeeman term might lower the energy of some state



FIG. 6. Ferrotoroidal domain structure of various arrays composed of 10x10 unit cells grown on the same sample. MFM images
are on bottom line, graphical interpretation of ferro-toroidal order on the top line. 1um scale bar is show in each MFM scan

by white line.

FIG. 7. MFM scans (lines 1 and 2) of the same isolated dots
(line 1) and 10x10 array (line 2) after successive out of plane
re-magnetization. Line 3 shows simplified vizualization of the
fero-toroidal order of the arrays on line 2. Columns A and C
shows good alignment of the sample during the magnetization
protocol, column B indicates presence of the in-plane field
during magnetization.

belonging to the irreducible representation E below the
chiral state of the symmetry A,. In Fig.7 we show a se-
quence of out-of-plane magnetization results of the same
10 by 10 array. As there is an in-plane field component
present, the isolated dots are not in toroidal state (col-
umn B) only, but a significant population of onion states
is visible. Magnetic states of isolated dots are good indi-

cators of the in-plane field presence.

Another source of real-world imperfection is structural
disorder. The fabricated structures are not identical be-
cause of technological limits. It is well known that shape
asymmetry can induce a preference for a particular state
in otherwise degenerate states[31, 32]. In this sense, our
structures are sensitive to imperfections in the out-of-
plane direction. In fact, the lift-off fabrication technology
we used might introduce protrusions on the edges of the
fabricated structures. Structures having inversion sym-
metry should not have a preference for some particular
toroidal state, but imperfections might introduce a pref-
erence for some particular direction. If the two elements
have this built-in preference, they can act as nucleation
centers of eventually opposite toroidal order, being an-
other eventual source for domain structure. Looking at
the type of domain walls in Fig. 6 we note that diag-
onal domain walls are more frequent than vertical and
horizontal. It indicates that the interactions between the
unit cells are stronger than the interactions within the
unit cells [11]. The eventual enlargement of the domain
sizes can probably be reached by a slight enlargement
of the gaps between cells to set up intra- and inter-cell
interactions at the same level [11].

VI. CONCLUSION

In summary, we suggest a new magnetization proto-
col for achieving ferrotoroic order based on spontaneous
symmetry breaking. As demonstrated by the macrospin
model, the field-free unit-cell ground state has the lowest
eigenenergy and is the first to break the symmetry when
the out-of-plane magnetic field is reduced. The external
out-of-plane magnetic field can be set up to a value in
some interval when the only stable magnetic state of the
unit cell is toroidal. The array of unit cells can be or-
dered into domains with ferrotoroidal states under these



conditions. The external field does not have any ordering
effect itself; it just lowers the energy barriers among pos-
sible states and destabilizes non-toroidal states in unit
cells. The lowering of energy barriers by a magnetic field
allows annealing of the magnetic order with temperatures
lower than the Curie temperature of the constituting ma-
terial. Lowering the energy barriers and destabilization
of meta-stable states is probably more general and ap-
plicable also to other structures facilitating annealing of
magnetic structures towards the ground state.
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