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Abstract

The well-known bar instability of rotationally supported disk galaxy models has been studied extensively since its
first discovery over half a century ago. We were therefore very surprised to find cases of disks embedded in rigid
halos, which on the basis of widely cited criteria should be unstable, that appeared to be robustly stable. Here we
show that the unstable bar mode in such simulations was being suppressed by changes to the disk caused by other
instabilities having higher angular symmetry that were the first to saturate. Although this may seem like a
promising solution to the long-standing puzzle presented by the apparent stability of real disk galaxies, we also
show that instability is restored in the same models when the rigid halo is replaced by a live population of
particles, where the usual stability conditions apply. Our study has been confined to a narrow range of models, and
we cannot therefore exclude the possibility that mode interference may be able to prevent bar formation in other
models having live halos.

Unified Astronomy Thesaurus concepts: Spiral galaxies (1560)

1. Introduction

F. Hohl (1971) presented perhaps the first careful simula-
tions that revealed the tendency for disk galaxy models to
undergo a global instability that rearranged a rotationally
supported disk of stars into a strongly barred configuration.
Soon thereafter J. P. Ostriker & P. J. E. Peebles (1973)
suggested that the survival of nearly axisymmetric disk
galaxies may require them to be embedded in a halo of dark
matter, provoking many follow-up studies in both theory
(e.g., T. A. Zang 1976, A. J. Kalnajs 1978, A. Toomre 1981)
and numerical work (e.g., F. Combes & R. H. Sanders
1981, D. M. Christodoulou et al. 1995, E. Athanassoula &
A. Misiriotis 2002, V. P. Debattista et al. 2004) that
has continued to this day (e.g., J. A. Sellwood &
R. G. Carlberg 2023, hereafter SC23). Despite all these
studies, we still lack a widely accepted explanation for the
apparent stability of isolated disk galaxies.
It is to be hoped that we may one day identify the

explanation for which galaxies do or do not host bars from
galaxy formation simulations. These massive experiments (see
R. Feldmann & R. Bieri 2026 for a review), which mimic
many physical processes, are increasingly able to synthesize
somewhat realistic model disk galaxies, especially those of
Milky Way mass, but the fraction of these models that support
bars, and their properties, varies widely between the different
codes that are employed (e.g., D. G. Algorry et al. 2017;
D. Zhao et al. 2020; J. Reddish et al. 2022; Y. Rosas-Guevara
et al. 2022; S. R. Anderson et al. 2023; S. Ansar et al. 2024;
F. Fragkoudi et al. 2025; S. Lu et al. 2025). Though studies of
isolated galaxies have provided helpful guidance on the
evolution of bars (e.g., S. Ansar et al. 2024), the very
complexity of the physical processes in the cosmological
context has thus far left the experimenters (e.g., Z.-B. Zhou

et al. 2020; S. Ansar et al. 2024) conceding that they are
unable to identify the mechanism or properties—star formation
and feed back, disk/halo mass fractions, tidal encounters,
mergers, etc.–that caused a particular galaxy model to host a
bar. Both the algorithms and computer power continue to
improve, which it is hoped will eventually enable this question
to be answered. In the meantime we pursue a parallel
investigation using idealized models in which we have some
hope of developing deeper insight into this complicated
question of disk dynamics.
G. Efstathiou et al. (1982, hereafter ELN) undertook a

systematic study of a family of galaxy models having an
exponential disk of mass Md and radial scale length Rd
embedded in various rigid halos and reached the widely
cited conclusion that the disk could avoid forming a bar only
if the maximum rotational velocity of the disk material

( )/ /V GM R1.1m d d
1 2. Since the maximum circular speed due

to the disk alone is ( )/ /GM R0.62 d d
1 2 (K. C. Freeman 1970),

they argued that stable galaxies must be embedded in massive
halos to make up the required circular speed.
The surprise we report here (Section 2) is counterexamples

that violate their stability criterion for a reason that, to our
knowledge, has not previously been identified: changes to the
equilibrium disk caused by saturation of faster-growing spiral
modes that disturbed the incipient bar-forming mode, halting
its linear growth at an early stage. The apparently stable
models were reruns of some of those simulated by SC23, but
which included force terms from multiple sectoral harmonics.
As a result of our discovery, we were greatly concerned that
the principal finding from SC23, that all their models were bar
unstable, suddenly appeared to be incorrect because it had
been based on simulations that were restricted to m = 2 only
disturbance forces.
Suppression of bars by prior saturation of competing modes

may seem like a promising solution to the bar-instability
problem highlighted by J. P. Ostriker & P. J. E. Peebles (1973)
and ELN. However, we further report here that the apparent
stability of our particular disk galaxy models is a numerical
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artifact resulting from employing rigid halos. Replacing the
rigid halo by a similar one composed of mobile particles
allowed the disk to form a strong bar, as expected. While this
finding suggests that almost all the models studied by SC23
were indeed unstable, as they had claimed, it does not rule out
the possibility that disks in other live halo models could be
stabilized by similar nonlinear changes by faster-growing
modes.

2. Models and Methods

2.1. Rigid Halo Models

The two galaxy models we employ in this section were
selected from the set used by SC23. The exponential disk has
the surface density profile

( ) ( )/= =R e
M

R
with

2
, 1R R d

d
0 0 2

d

where Rd is the disk scale length andMd is the nominal mass of
the infinite disk. We limit its radial extent using a cubic
function to taper the surface density from Σ(5Rd) to zero at
R = 6Rd.
The rotation curve is that of a cored isothermal sphere:

( ) ( )
/

=
+

V R V
R

R r
, 2c

c
0

2

2 2

1 2

with rc being the core radius. The implied halo density is
whatever is required, when combined with the disk attraction, to
achieve this rotation curve in the disk plane (S. M. Fall &
G. Efstathiou 1980). We relate the rotation curve to the
disk properties by setting ( )/ /=V GM R0.9 d d0

1 2 and choose
rc = Rd/2 for model A, as the baseline model of SC23, and
rc = Rd for model B. Though quite heavy, the disk has less than
the required mass to account for the central attraction at all
radii. SC23 reported that these two, and nearly all other models
in their study, possessed vigorous, global bar instabilities.
As usual, we adopt units thatG = Md = Rd = 1, so a dynamical

time is ( )/ /R GMd d
3 1 2, etc. For those who prefer physical units, one

possible scaling is to choose Rd = 2.5 kpc and the dynamical time
to be 10 Myr, which impliesMd = 3.47× 1010M⊙ and a velocity
unit ( )/ / =GM R 244.5d d

1 2 km s−1.
SC23 employed the method proposed by F. H. Shu (1969),

with numerical details given in J. A. Sellwood (2014), to create
an equilibrium distribution function (DF) for the disk particles,
which for both models had Q = 1.2 at all radii. The sense of
net rotation in all models presented in SC23 was positive at all
radii, but those authors avoided a discontinuity in the DF by
flipping the sign of Lz for a small fraction of low Lz particles.

2.2. 2D Simulation Codes

We select particles from the adopted DF using the procedure
described in J. A. Sellwood (2024), place them in a plane at
random azimuths (i.e., a noisy start; see Section 2.3 below),
and compute the mutual attractions of the particles using either
a 2D polar, or a 2D Cartesian, mesh. This code is described in
detail in J. A. Sellwood (2014); in summary, the particles
move subject to forces from other particles that are
interpolated from the grid. We adopt the parameters listed in
Table 1.

In the polar grid simulations we report in this section, the
central attraction is that of a rigid halo needed to ensure
centrifugal balance aR = −Vc(R)2/R, and we neglect the
axisymmetric part of the attraction from the mobile particles.
We also generally suppress sectoral harmonics m > 8 from the
force determination, which would add only noise, and describe
forces from the active components 1�m� 8 as “unrest-
ricted,” but we also report results from some simulations in
which nonaxisymmetric forces were restricted to m = 2 only.
We include all force terms from the Cartesian grid and
supplement the central attraction to maintain the same rotation
curve. We employ block time steps that are decreased by
factors of 2 in each radial zone.
As usual, we measure nonaxisymmetric distortions of the

distribution of the N disk particles using an expansion in
logarithmic spirals:

( ) [ ( )] ( )= +
=

A m t
N

im R, ,
1

exp tan ln , 3
j

N

j j
1

where (Rj, fj) are the polar coordinates of the jth particle at
time t, m is the sectoral harmonic and γ is the (radially
constant) angle of the spiral component to the radius vector,
which is the complement to the spiral pitch angle.

2.3. Noisy and Quiet Starts

Random selection of the initial particle coordinates from the
desired distributions creates an initial model in which density
fluctuations are caused by undiminished shot noise arising
from the finite number of particles. Evolving such a “noisy
start” model with unrestricted forces allows all possible
modes, both neutral and unstable, to develop simultaneously.
J. A. Sellwood (1983) described how to create a “quiet

start,” in which particles are placed almost perfectly
symmetrically on rings and given identical orbital and radial
velocities. If nonaxisymmetric disturbance forces are also
restricted to a single sectoral harmonic the forces experienced
by the particles are those from a smooth, massive ring that
distorts as expected from growing large-scale disturbances,
while the initial regular arrangement inhibits small-scale
disturbances. These tricks reduce the level of shot noise by
many orders of magnitude and enable identification of linear
instabilities that emerge and grow through several e-folds
before saturating. See J. A. Sellwood (2024) for more details.

2.4. A Noisy Start Simulation

Figure 1 shows the evolution of a noisy start version, with
sectoral harmonics 1�m� 8 all active, of model A, which is

Table 1
Default Numerical Parameters for our 2D Simulations, the Last Four of Which

are Independent of the Grid Type

Polar Grid Cartesian Grid

Grid points 171 × 256 1024 × 1024
Scaling to grid units Rd = 10 Rd = 80
Active sectoral harmonics 1 � m � 8 unrestricted

Plummer softening length ε = Rd/20 ...
Number of particles 6 × 106 ...
Largest time step 0.2R0/V0 ...
Radial time step zones 5

2
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the baseline model described in SC23. The disk manifested
multiarm spiral patterns but did not form a bar.
This figure is to be compared with Figure 3 of SC23, which

revealed that the m = 2 only, quiet start version of the same
model that started from the same file of particles formed a
large, strong bar. Note that the e-folding time of the dominant
m = 2 mode reported in SC23 is ∼32 dynamical times or ≲1/
9 of the interval illustrated in Figure 1, which is ample for the
bar to have emerged from the noisy start if the same mode had
saturated in this new simulation.
We have verified that a rerun of the same model using a

Cartesian grid with unrestricted forces did not form a bar either,
and its evolution closely resembled that illustrated in Figure 1.
It has long been known (e.g., J. A. Sellwood & R. G. Carlberg

1984) that spiral activity heats the disk and causes the spirals to
fade over time. Figure 2 presents the time evolution of the radial
Q profile in model A, revealing a rise to Q ≳ 2.3 over the range
1� R� 4 and still higher at larger radii. Heating of the very
inner disk was largely suppressed by the high density of the
inner halo.

2.5. Comparison with ELN

The pioneering simulations by ELN were similar in almost
all respects to the noisy start model illustrated here as Figure 1,
except that the limited computational power available at the
time forced them to employ merely 2 × 104 particles and a 2D
grid that had 1282 cells. From these crude, by today’s
standards, simulations, they concluded that bars always formed

provided V0 ≲ 1.1 (Equation (2)). We note that our simulation
illustrated in Figure 1 had V0 = 0.9. A noisy start simulation of
our model B, which also had V0 = 0.9 but the larger core
radius rc = Rd, did not form a strong bar either, and this model
had exactly the same properties as model 11 in the paper
by ELN. Those authors concluded from the slow decline of
their δ2 parameter (bottom, middle panel of their Figure 2) that
their model 11 was bar unstable.
Neither of our noisy start simulations of models A and B,

with V0 = 0.9, formed bars, which is in violation of the widely
cited stability criterion proposed by ELN. In order to investigate
the cause of this discrepancy, we have run a further 79 separate
simulations of model A, in which we employed four differing
numbers of particles, each with 10 different random seeds used
to select the initial particle coordinates, and finally we computed
all 40 models twice, once with forces from sectoral harmonics
1�m� 8 all active and again with m = 2 forces only. Figure 3
illustrates the evolution of one case: the strong m = 3 spiral
pattern that is already visible at t = 25 is typical of all our low-N
simulations having unrestricted forces.
Each line in each panel of Figure 4 presents the time

evolution of the given logarithmic spiral amplitude, averaged
over the minor stochastic differences between 10 realizations
having different random seeds, and the four lines in each panel
span a factor of 1000 in the values of N.
The simulations in the top two panels employed unrestricted

forces, and we report the amplitude of the bar-like A(2, 0) and
the trefoil A(3, 0) coefficients in the top and middle panels,
respectively. Amplitudes are largest in the smallest N simula-
tions (red curves) at early times, reflecting the higher level of
seed noise, but there is no evidence that the amplitudes at later
times depend on the number of particles employed. The final bar
amplitudes are A(2, 0) ∼ 0.02, which is very weak, and A
(2, 0) ≳ 0.12 for strong bars (e.g.,, J. A. Sellwood & E. Atha-
nassoula 1986; SC23). Notice also that the m = 3 coefficients
decrease somewhat over time, perhaps exceeding those of m = 2
at first but ending slightly smaller. The behavior of the red line
in the top panel (m = 2) resembles the evolution of the similar δ2
parameter presented by ELN in their Figure 2 for their low-N
simulation, despite the different scaling.

Figure 1. The evolution of a noisy start realization of the baseline model
from SC23 with force terms 1 � m � 8 all active. The color scale indicates the
logarithm of the disk surface density. Notice that no strong bar forms, though a
short, weak bar is visible from time to time.

Figure 2. The radial variation of Q at intervals of 50 dynamical times in the
simulation illustrated in Figure 1. The lines are not labeled because increases
in Q are mostly monotonic.

3
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The bottom panel of Figure 4 reports results from a separate
set of simulations starting from the same files of particles as
those in the top two panels, but in which we restricted
nonaxisymmetric forces to the m = 2 sectoral harmonic only.
As we suspected that a dominant bar-forming mode was
present in these runs (as found by SC23) we attempted to align
the amplitude variation to pass through A = 0.06 at t = 100 in
each separate simulation before averaging so that time offsets
between the separate cases did not obscure the trends. This
strategy was moderately successful, and it is apparent that bars
in these models have much greater amplitude than in the top
panel, a clear indication that nonlinear interference from
modes having other symmetries inhibited the bar instability.
We followed up this hint by conducting other quiet start

simulations of model A with disturbance forces restricted to
m = 3 or m = 4 to search for other linear instabilities, finding
one m = 4 mode whose growth rate was only slightly lower
than that of the dominant m = 2 mode and two three-fold
symmetric modes having growth rates that exceeded it. All
these, and probably other, modes would have started to grow
from the outset of the simulation illustrated in Figure 1.
Multiple spiral arms can be seen in this figure as early as
t = 100, when the condition for independent linear growth of
each mode is clearly no longer satisfied.4 We therefore
conclude that the bar instability can be inhibited by nonlinear
changes caused by other modes, provided they disturb the

inner disk before the bar-forming instability saturates. We
describe more fully what we mean by this statement in
Section 2.6.
Before this study, we were unaware of the rapidly growing

additional m = 3 and m = 4 modes that saturated before
the bar mode, inhibiting the large bar that developed in
simulations only when disturbance forces are restricted to

Figure 3. The evolution of one comparison simulation of model A having
N = 60K particles. The initial disk extends to R = 5Rd, and times are given in
dynamical times.

Figure 4. Top: the mean amplitudes of the bar-like A(2, 0, t) (Equation (3)) in
10 noisy start realizations of model A for four different values in N with
unrestricted forces. Middle: the same as for the top panel but for m = 3.
Bottom: the evolution of the bar amplitude in identical noisy start simulations
when nonaxisymmetric forces are restricted to m = 2. Results from the
individual simulations were shifted in time in the bottom panel only so that
A = 0.06 at t = 100 for each before averaging.

4 Namely that for as long as nonaxisymmetric distortions and changes to
particle velocities continue to be negligible.

4
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m = 2. Our resimulations of a few of the models from ELN
with N = 2 × 104 particles and 1282 Cartesian grid, and also
with the polar grid, possessed m = 3 features that were
stronger than those of m = 2 in the early evolution (see also
Figure 3), but the relative amplitudes of the two sectoral
harmonics were reversed after t ∼ 100, consistent with the
persistence of m = 2 reported by ELN, which evidence may
have formed the basis for their stability criterion.

2.6. Technical Discussion

Linear instabilities (see, e.g., J. A. Sellwood & K. L. Masters
2022 for a fuller discussion) grow exponentially for as long as the
amplitude of every disturbance is small enough that terms in the
collisionless Boltzmann equation (CBE) that are second order in
the perturbation amplitude can be neglected. Once this assumption
breaks down, the dominant mode is said to saturate; the neglected
terms in the CBE begin to cause finite changes to the initial
equilibrium model, and its exponential growth ceases. The
changes to the equilibrium model are largest at the principal
resonances of the mode (D. Lynden-Bell & A. J. Kalnajs 1972)
and alter both the angular momenta of the affected particles and, at
the Lindblad resonances only, increase their random energy,
which is the reason that the nonlinear evolution of spiral
instabilities causes disks to heat, as shown in Figure 2 (see also
J. A. Sellwood & R. G. Carlberg 2019; M. Roule et al. 2025).
Stars that lose angular momentum at corotation as a vigorous bar-
forming mode saturates, on the other hand, become trapped into a
tumbling bar, while gainers at this resonance move to larger orbits.
The initial amplitude of each mode is determined by the

spectrum of shot noise from the coordinates of each particle.
Thus changing the random seed used for the initial positions of
each particle will change the initial amplitude of every mode,
although each will again start to grow at the rates of the
separate linear modes. If, as here, there are several instabilities
having comparable growth rates, the mode that saturates first
could differ between runs having different random seeds,
leading to macroscopic stochastic differences in the later
evolution (see J. A. Sellwood & V. P. Debattista 2009 for an in
depth study). It seemed possible that the absence of a large bar
in Figure 1 could be a consequence of an unlucky random
seed, but this idea was ruled out by the results presented in the
top panel of Figure 4. Not one of the 10 randomly seeded
models at each N formed a strong bar.
In the case of the simulations reported by ELN, in which

multiple instabilities saturate in quick succession, some
trapping into a bar could perhaps start to occur at about the
same time as the disk is being heated by spiral modes. When
resonances of separate large-amplitude modes overlap, the
dynamics can become chaotic (K. J. Daniel & R. F. G. Wyse
2018), made more so by the changing amplitudes of both
disturbances in this case. Lindblad resonance scattering by a
spiral mode may inhibit some of the trapping that would have
occurred if the bar mode had been isolated, leading to a
much weaker bar as the model settles after these events.
Indeed, ELN’s measurements of their parameter δ2 are
surprisingly small compared with those for bar instabilities
uncontaminated by competing spiral modes (e.g., J. A. Sellw-
ood & E. Athanassoula 1986).
The linear growth rates of all modes should be the same

regardless of the particle number, but as noted above, the seed
amplitudes of all modes in ELN’s simulations would have
been much higher than those in our N = 6 million particle

models. Therefore the modes would have saturated much
sooner after the start, leaving little time for the small
differences in growth rates to matter.
The situation is cleaner when the times of saturation of the

separate modes are well spaced, as occurred in our model
shown in Figure 1. Some spiral modes grow more rapidly than
does the bar mode, and therefore the equilibrium disk in which
the bar mode is growing linearly can suddenly be altered by
the nonlinear heating caused by a spiral instability. It would be
difficult to predict the outcome of this event, but the absence of
even a vestige of a large bar in our simulation indicates that the
linear growth of the bar-forming instability is terminated at
small amplitude before any trapping occurs.
The corotation radius of the bar instability in model A is

∼2.1, while the outer Lindblad resonances of the faster-growing
m = 3 modes mentioned above are at R ∼ 1.80 and ∼1.93.
Thus, while the exponentially growing bar instability was still at
small amplitude, these, and possibly other, spiral modes will
have saturated and heated the disk at their Lindblad resonances
(D. Lynden-Bell & A. J. Kalnajs 1972), thereby changing the
properties of the disk near corotation of the bar mode during its
linear growth. This interference apparently killed off the bar-
forming mode because no bar developed in Figure 1.

3. Live Halo Models

It has long been known (E. Athanassoula 2002; K. Saha &
T. Naab 2013; J. C. Berrier & J. A. Sellwood 2016) that a live
halo provides a supporting response to the bar instability in a
disk, causing that mode to grow more rapidly than in the
equivalent rigid halo. The open spiral of the bar mode couples
strongly to those bisymmetric orbits in the halo that precess at
similar rates to those in the disk, especially any whose orbit
planes are not far from the disk plane (J. A. Sellwood 2016).
Thus the instability is that of the combined halo+disk system,
which a rigid halo could not capture.
In order to study the stability of a disk embedded in a live

halo, it is necessary first to create an equilibrium model.
However, it would be extremely difficult to create live halo
versions of the family of simple models adopted by ELN, since
the halo density in any one model does not have a simple form.
Their models specify an attractively simple functional form for
the total rotation curve (Equation (2)), which results from the
combined attraction of the disk and halo. The attraction of a thin
exponential disk can be expressed in terms of modified Bessel
functions (K. C. Freeman 1970), but the attraction of the halo
must be that which would result from the total radial attraction,

( )/V R Rc
2 , with the disk contribution subtracted. While the
required halo attraction could be calculated numerically, it
clearly would not have a simple functional form. Note that not
all possible models would be physically acceptable since a
heavy disk embedded in a halo having a large core radius rc
could require the halo density to be negative at some radii.
Possible methods that could be employed to construct an

equilibrium DF for the halo having an embedded disk are as
follows:

1. E. Vasiliev (2018) proposed the AGAMA procedure to
create an equilibrium disk+halo model in any one case.
However, one must choose a function of the actions, and
the method converges to an equilibrium model by

5
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iteration, making it hard to achieve exactly the desired
disk/halo mass ratio and rotation curve.

2. A second option, adopted by K. Holley-Bockelmann
et al. (2005), is to use Eddington inversion to find an
equilibrium DF for a halo having an embedded disk. The
inversion formula requires both the halo density and the
total central attraction of the halo and disk (assumed
spherical). One must check that the resulting isotropic
DF is positive over the entire energy range, as inversion
(also described by J. Binney & S. Tremaine 2008) does
not guarantee that it is.

3. A third possible procedure, which we prefer here, is to
use halo compression. One starts with a simple halo
model having a known DF and computes a revised DF
after the disk is added, assuming the potential change
caused by adding the disk was adiabatic. The method
was pioneered by P. Young (1980), who used the fact
that the DF, expressed as a function of the actions, is
invariant during an adiabatic change to the potential. The
two actions in a perfectly spherical model are angular
momentum and radial action. J. A. Sellwood &
S. S. McGaugh (2005) describe the calculation details
for the case of a halo+disk. As for Eddington inversion,
the attraction of the disk must be assumed spherical, but
J. A. Sellwood & S. S. McGaugh (2005) showed this was
an excellent approximation. Even if the DF before
compression was isotropic, inserting a disk and/or bulge
gives the compressed DF a mild radial bias.

In addition to being adaptable, halo compression is
guaranteed to yield a physically acceptable model in which
the density remains positive everywhere. Moreover, the
iteration quickly converges to the equilibrium model, and
therefore the precompression model can be tweaked if the
postcompression model is not to one’s liking.

3.1. Halo+Disk Models
Here we adopt the cored isothermal sphere for the

precompression halo, which has the radial density profile

( )
( )

( )=
+
+

r
V

Gr

x

x4

3

1
, 4

c

0
2

2

2

2 2

where x = r/rc, with rc being the core radius, and V0 the
asymptotic circular speed when x ≫ 1. An isotropic DF for
this mass profile is readily determined by Eddington inversion.
We truncate this infinite mass halo by limiting the maximum

apocentric distance of any orbit to be rt. Thus the maximum

allowed energy of an orbit of total angular momentum L is
( ) ( )/ /= +E r L r 2t tmax

2 , with ( ) ( ) ( )/= +r V x2 ln 10
2 2

being the gravitational potential of the halo before the addition
of a disk.
We insert the exponential disk (Equation (1)) whose center

coincides with the center of the halo and compute the resulting
rotation curve of the combined equilibrium model. Some
examples are shown in Figure 5.

3.2. Evolution of a Live Halo Model

We select the model shown in the left panel of Figure 5,
which has a total rotation curve that approximates that of our
model A, and evolve it using our hybrid grid method. The disk
particles are assigned to a 3D polar grid, while the field of the
halo particles is computed using a multipole expansion on the
spherical grid, as is fully described in J. A. Sellwood (2014).
Our chosen values for the numerical parameters are given in
Table 2.
The evolution of the disk component of this model having a

live halo, which forms a strong bar by t ∼ 150, is presented in
Figure 6. This contrasts with the model shown in Figure 1,
which had a very similar (but not identical) rigid halo. As has
been found previously, the live halo encourages the formation
of the bar.
Figure 7 gives the amplitude evolution of the bar-like

logarithmic spiral component (Equation (3)) of this and two
additional simulations having heavier halos, also shown in
Figure 5. That with V0 = 0.7 for the uncompressed halo also
formed a bar, while only multiarm spirals and no bar formed in
the model having the still heavier halo with V0 = 0.8.
The left panel of Figure 8 reports the angular momenta of

the separate disk and halo components in these three

Figure 5. Three example rotation curves (black curves) of disk + compressed halo. The disk contribution, which is the same in all three, is shown in red and the
compressed halo in green, with V0 = 0.6 in the left panel, V0 = 0.7 in the middle panel, and V0 = 0.8 in the right panel. In all three panels the contribution of the halo
before compression, for which rc = Rd/2, is shown by the dotted curve.

Table 2
Numerical Parameters for our 3D Simulations

Cylindrical Grid Spherical Grid

Grid size (NR, Nf, Nz) ...
=(170, 256, 125) nr = 201

Angular components 0 � m � 8 0 � l � 4
Outer radius 6.30Rd 45Rd
z-spacing 0.025Rd ...
Softening rule cubic spline none
Softening length ε = 0.05Rd ...
Number of particles 6 × 106 5 × 106

Longest time step ( )/ /R GM0.1 d
3 1 2 ...

Time step zones 5 ...
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simulations, while the right panel gives the torque acting on
the halo in all three cases. The angular momentum taken from
the disk is the time integral of the torque, which is very small
in the case of the densest halo (blue lines). The formation of a
bar is associated with angular momentum transfer to the halo,
as has been reported before (J. A. Sellwood 2016).
In light of our experience reported in Section 2 above, we

zeroed out all bisymmetric force terms on both grids and reran
the simulation illustrated in Figure 6 to search for possible
more slowly growing instabilities but found none. Thus the

question of possible mode interference in this live halo model
does not arise.

3.3. Disk Stability

The black curves in Figure 5 indicate Vc,max ≃ 1.10 for the
bar-stable model in the right-hand panel and Vc,max ≃ 1.03 for
the bar-unstable model in the middle panel.5 These two results,
which are from just two simulations, are consistent with the
old stability criterion proposed by ELN, which proposed that
models having Vc,max ≳ 1.1 should be stable. Our finding that
the ELN stability criterion, which was derived from 2D
simulations in rigid halos, holds in these two cases of 3D disks
in live halos was a surprise since E. Athanassoula (2008)
argued that it needed to be revised.
A. Toomre (1981) found that the swing amplifier, which

drives the bar mode in disks, would die away when its
parameter X ≳ 3. Unfortunately, X ≡ 2πR/mλcrit is a locally
defined parameter, but we find that it has a minimum near R =
Rd in our models, where X 2.60min , 3.02, and 3.45 when
V0 = 0.6, 0.7, and 0.8, respectively. The V0 = 0.7 model, for
which X 3.02min , was unstable, but it is on the boundary
given by Toomre for effectiveness of the swing amplifier, and
the mild help from halo coupling probably tipped it into
instability. The outcomes in the two other cases were also
consistent with the predictions of swing-amplifier theory.

4. Conclusions

We have shown that moderately heavy disks embedded in
rigid halos can appear to be stable when disturbance forces
within the disk plane are unrestricted. This result contrasts
both with the findings of SC23 and violates the stability
criterion proposed long ago by ELN. We have demonstrated
that nonlinear scattering by other modes halts the growth of the
bar mode prior to its expected saturation in these models. We
were unaware at the time of our earlier study (SC23) that the
responsible modes, which have different rotational symme-
tries, have linear growth rates that are comparable to, or even
exceed, that of the bar mode. Since linear perturbation theory

Figure 6. The later part of the evolution of the disk component in the V0 = 0.6
3D simulation, whose rotation curve is given in the left panel of Figure 5.
Notice that a strong bar forms.

Figure 7. The amplitude evolution of the bar-like logarithmic spiral
component in the disks of three simulations having different compressed live
halos.

Figure 8. The dashed lines in the left panel indicate the separate angular
momenta of the disks and halos, while the solid lines are their sum,
demonstrating that this global integral is well conserved. The right panel gives
the rates at which angular momentum is taken from the disk component and
added to the halo.

5 Note that Vc,max includes both the compressed halo and disk, while here V0
is for the uncompressed halo only.
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neglects changes to the background disk, the linear growth of a
mode is disturbed when the background disk is altered by the
saturation of a faster-growing mode, which in our models
prevented the incipient bar instability from creating a bar.
The situation is different when disturbance forces are

restricted to a single sectoral harmonic, since all modes having
other angular symmetries are suppressed, and the dominant
mode of the selected rotational symmetry can win out, as was
true for all the simulations in SC23.
While the above discussion applies to disks embedded in

rigid halos, the stability properties of disks in live halos can
differ again because the bar mode elicits a supporting response
from the halo even in the linear regime (J. A. Sellwood 2016).
We have also shown that a disk that appeared to be stable
when embedded in a rigid halo was strongly unstable in a
similar halo that was composed of mobile particles. Further-
more, the stability criteria proposed for disks in rigid halos
by ELN and by A. Toomre (1981) appear to hold for our three
live halo models.
Our discovery that bar-forming modes can be inhibited by

faster-growing spiral modes has turned out in this study to be
an interesting side issue that ultimately did not affect global
stability when simulated with unrestricted disk forces and
embedded in live halos. If live halo models having more
vigorous spiral modes exist, they may provide an interesting
new solution to the long-standing puzzle presented by the bar
instability.
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Data Availability
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