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Abstract

Deceleration is a critical locomotor skill for athletes competing in multi-directional speed sports. Greater deceleration
can help athletes perform rapid reductions in velocity facilitating rapid changes of direction, whilst the high mechanical
forces associated with braking can be linked to a heightened risk of fatigue, tissue damage and injuries. Despite the clear
importance of deceleration in sport, research and applied practices in the past have predominantly focused on assessing an
athlete’s sprint acceleration and maximum velocity capabilities, neglecting the necessity to be able to decelerate. With tacti-
cal evolutions in sports demanding athletes to accelerate and attain higher sprinting speeds more frequently in competition,
there is increased necessity to decelerate and to be able to accurately assess this movement skill. Therefore, the aim of this
article is to discuss methodological and practical considerations of the protocols and measurement technologies that can
be used to assess deceleration in an applied field-based environment. The article highlights a range of different protocols
(i.e. change of direction and acceleration-deceleration ability tests) and measurement technologies (i.e. radar, laser, video,
global navigation satellite systems, inertial measurement units and motorised resistance devices) that can be used to evaluate
deceleration and some of the advantages and disadvantages of each. Key metrics used to measure deceleration performance,
and the kinematics underpinning deceleration technique are highlighted. Given the performance, health and injury-risk
implications associated with deceleration, assessment of this movement skill should be given high priority within any athlete
multi-disciplinary support system.

1 Introduction

In multi-directional speed (MDS) sports (e.g. soccer,
American Football, basketball, rugby), athletes must fre-
quently change velocity to manoeuvre safely and effectively
within the constraints of their competitive environment.
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These changes in velocity require athletes to accelerate (i.e.
increase velocity) and decelerate (i.e. decrease velocity)
across varying distances and times. For this article, both
‘acceleration’ and ‘deceleration’ refer to any human locomo-
tor action that requires an increase or decrease in running
velocity, respectively, and that are self-initiated without the
use of force being imparted by other individuals (e.g. being
hit or tackled). Attaining superior acceleration and decel-
eration capabilities is of paramount importance to athletes
competing in MDS sports as it can provide them with the
physical resources to outmanoeuvre their opponents, leading
to successful match performance outcomes [1]. Therefore,
accurately profiling these capabilities is also of significant
interest to sports science, strength and conditioning, per-
formance and healthcare professionals working with MDS
sport athletes.

For assessment of sprint acceleration, there are evidence-
based guidelines available for practitioners on the meth-
odological considerations (e.g. choice of technology, start
positions) required to establish and implement standardised,
reliable and valid testing protocols [2, 3]. To the authors’
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The focus in sports performance has been on assess-

ing and developing acceleration and maximum velocity
sprinting capabilities, neglecting the necessity to be able
to decelerate

The challenges for assessment of deceleration qualities
are to provide some control by standardising accelera-
tion distance, or total distance and expressing decelera-
tion performance (in terms of deceleration distance
[m], deceleration time [s] or deceleration [m/s?]) in the
context of the maximum velocity attained in the accel-
eration phase

Deceleration tests must be designed so that the velocity
of the athlete drops to an instantaneous zero, which pro-
vides a definitive endpoint to the deceleration task. This
can include ‘acceleration to stop at a point’, or ‘accelera-
tion-deceleration to re-acceleration in 90° to 180° turns.
All of these must be measured using a validated device
that can measure instantaneous velocity

The commands must ensure the necessity to accelerate
to the highest possible velocity within the constraints of
the test (i.e. set distance). Inherently, this velocity and
momentum will be different for all athletes

Designing deceleration test batteries that require each
leg to act as both penultimate and final contact limbs can
give further insights into preferential load distribution
and identify deficiencies in lower extremity strength and
co-ordination

knowledge, however, none currently exist for assessing
deceleration. A major reason for this, historically, has been
the difficulty in assessing deceleration in an applied field-
based environment in comparison to acceleration, where
surrogates of performance can simply be attained using
split-times collected via electronic timing gates across dif-
ferent distances [2, 4]. This is not the case for deceleration,
where electronic timing gates may only permit assessment
of indirect indices [5, 6] or broad estimates of deceleration
ability if multiple electronic timing gates are spaced closely
together [7]. Therefore, research and applied practices have
been dominated by evaluating the more easily measur-
able components of performance that rely predominantly
on the generation of propulsive forces (i.e. acceleration).
Subsequently, knowledge about the determinants of ath-
letic performance and the most effective training methods
have been biased towards getting athletes faster (i.e. greater

acceleration and maximal velocity sprinting capabilities) [8].
We argue that the traditional pursuit of increasing athletes’
speed in particular contexts could in fact be harmful if the
athlete does not have the physical capacity to decelerate
from higher entry momentums and tolerate the associative
forces. Therefore, there is a self-regulatory motor control
aspect where athletes will control their velocity based on
their perceived ability to decelerate and transition into the
next movement.

For MDS sports, obtaining accurate information on an
athlete’s deceleration capabilities combined with their accel-
eration capabilities is critical [8, 9]. High-intensity decelera-
tions are performed frequently in many MDS sports [10], are
the locomotor action that can generate the greatest changes
in velocity [11] and can subsequently expose athletes to
some of the highest mechanical forces they will encounter
during competition [12-18]. Therefore, decelerating can
expose athletes to a heightened risk of lower extremity inju-
ries (e.g. anterior cruciate ligament [ACL] rupture) [19-22],
and be particularly sensitive to neuromuscular fatigue and
mechanically induced tissue damage [23-25] because of
substantial negative work demands that require eccentric
muscle contractions (i.e. active muscle fascicle lengthening)
to absorb kinetic energy [16, 26]. With tactical evolutions in
MDS sports requiring athletes to accelerate and attain higher
sprinting speeds more frequently in competition, there is
consequently increased importance and demand for decel-
erating more frequently, and at higher intensities, effectively
[27]. Additionally, accurately profiling player deceleration
capabilities can also help monitor and inform performance
[8], rehabilitation [28] and injury-risk reduction [9] training
programmes.

Developments in field-based technologies have enabled
deceleration assessments to be more accessible to practition-
ers and for researchers to investigate the reliability [29-31]
and validity [32, 33] of different measurement devices,
testing protocols and performance metrics. However, there
are currently no evidence-based guidelines that summarise
methodological considerations to establish a standardised,
reliable and valid assessment of an athlete’s deceleration
capabilities. Given the performance, health and injury-risk
implications associated with deceleration, assessment of this
movement skill should be given high priority within any ath-
lete multi-disciplinary support system. Therefore, the aims
of this article are to: (a) provide an overview of different
protocols that can be used to assess deceleration; (b) discuss
different technologies that can be used to assess deceleration
and the advantages and disadvantages of each; (c) discuss
common metrics used to assess deceleration and provide
normative values across different sports; and (d) discuss
potential implications for applied practices gleamed from
assessing an athlete’s deceleration capabilities.
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2 Protocols for Assessing Deceleration

Deceleration in MDS sports is performed as an isolated
agility action, or when preceding a directional change [34].
Therefore, to assess deceleration, two types of testing pro-
tocols can be selected (Fig. 1). These include acceleration-
deceleration ability (ADA) tests [29, 35] or change of direc-
tion (COD) tests [31, 33, 36, 37] with angles greater than 90°
requiring whole body rotation. Importantly, both test options
require whole body velocity to be momentarily reduced to
zero in the initial direction of travel. Because of the impor-
tance of accurately assessing deceleration, the subsequent
sections of this article will only incorporate recommenda-
tions from studies that have directly measured deceleration
kinetics or kinematics during ADA or COD tests encompass-
ing angles >90°. More acute COD angles (i.e. <90°) are
not of interest because these angles have lower deceleration
demands and there is more reliance on maintaining velocity
throughout the turn [38].

2.1 Acceleration-Deceleration Ability Tests

For the ADA tests, two test protocols are available: (a) start
deceleration at a pre-set distance or (b) decelerate to a pre-
set distance (Fig. 1). With each option, the entry velocity
at which deceleration (i.e. braking) commences can be

modified based on the sprint approach distance selected,
with longer approach distances requiring greater decelera-
tion distances, times to stop and number of braking steps
[35, 39]. For ADA tests, athletes are instructed to come to a
static stop or to perform a subsequent action post decelera-
tion that avoids whole body rotation movements required in
sharp COD tests (Sect. 2.2). For example, in sports such as
basketball and American Football, having athletes backpedal
a specific distance or number of steps post deceleration may
better mimic movement actions common in their game. Fur-
thermore, to instigate an unanticipated deceleration, practi-
tioners may also consider instigating deceleration with an
unplanned stimulus (e.g. sound, light or human), although
currently to the authors’ knowledge, no research has inves-
tigated the reliability of such a protocol. It is also important
to note that prior to any ADA test, a familiarisation session
is recommended to help reduce any potential learning effects
that could be associated with the test [29].

In the original ADA test protocol devised by Harper et al.
[29], athletes were required to sprint 20 m prior to deceler-
ating before backpedaling back to the 20-m line (Fig. 1a).
Furthermore, to help reduce any potential pacing strategy
prior to decelerating and to standardise the distance at which
deceleration commences, athletes had to attain within 5% of
their 20-m sprint time without a maximal deceleration. In the
authors’ experience, if using this approach with large groups
of athletes, an automated detection of the required threshold

Deceleration Testing Protocols
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Fig. 1 Testing protocols used to assess deceleration. COD change of direction. Note: Red area indicates the exit area following the turning point

for forward COD tests
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would be recommended. The original 20-m ADA test sprint
distance has also been used in other studies [40-44] with
modifications of this protocol including 4.5-m [45], 5-m [43,
46], 9.14-m (10 yards) [39, 47], 10-m [43, 46-52], 15-m
[5, 30, 53, 54], 18.29-m (20 yards) [39] and 30-m [55, 56]
sprint approach distances. Whilst deceleration is generally
self-initiated at the marked pre-set sprint distance (i.e. brak-
ing line), timing cells have also been used to administer an
audible cue to signify crossing of the deceleration line, thus
further helping to ensure deceleration commences at the
required distance [30, 50, 52]. Nonetheless, it is possible
deceleration could commence prior to the marked decelera-
tion line [29], emphasising the importance of deceleration
being measured using instantaneous velocity and from the
timepoint immediately preceding the maximum approach
velocity prior to decelerating (Sect. 4.1).

Acceleration-deceleration ability tests requiring ath-
letes to stop at a pre-set distance (Fig. 1b) have been
used by several studies to assess deceleration perfor-
mance outcomes [35, 45, 57-59] and surrogates of injury
risk [60]. Graham-Smith et al. [35] examined sprint-to-
stop distances of 5 m, 10 m, 15 m and 20 m, with each
incremental sprint distance requiring greater deceleration
distances (5 m=2.93+0.12 m, 10 m=4.94+0.39 m,
15 m=6.61+0.40 m, 20 m=7.93 +0.62 m). Other sprint-
to-stop distances have included 4.5 m [59], 4.6 m [60] and
13 m [57, 58], although it should be noted that all these
studies focused on the final braking step, with one study cal-
culating deceleration (m/s?) across a 1-m distance preceding
the final foot braking step [59].

2.2 Change of Direction Tests

In sharp COD tests (i.e. 90°-180°) requiring whole body
rotation, substantial braking over multiple foot contacts is
required during the deceleration phase to momentarily reduce
velocity to zero prior to turning [38]. Therefore, sharp COD

Time (s)

tests are another option for assessing deceleration capabili-
ties. Traditionally, however, completion time is a commonly
used metric for a COD assessment, which is an oversimplifi-
cation of COD ability, and fails to provide information spe-
cifically related to the deceleration phase. Thus, technologies
(Sect. 3) that permit instantaneous measures of the horizontal
velocity of the centre of mass (COM) over key phases of
the COD (i.e. acceleration, deceleration and re-acceleration
phase-specific information) can provide a more holistic over-
view of deceleration and COD ability, helping to identify
strengths and areas for development (Fig. 2). Sharp COD
tests including the modified (i.e. 5-m approach prior to 180°
turn) and traditional 505 (i.e. 15-m approach prior to 180°
turn) are tests that simultaneously evaluate deceleration and
COD abilities. These COD tests also make it possible for
practitioners to evaluate deceleration from different approach
distances and speeds that may best reflect the positional COD
demands of the sport [61]. Currently, however, only a limited
number of studies have provided phase-specific or instantane-
ous velocity information during 505 COD tests using radar
[48], laser [37, 62], inertial measurement units [50, 52] and
motorised resistance [31, 33, 63—-65] technologies. Neverthe-
less, these studies highlight technological solutions that can
be used to gain advanced insights into deceleration abilities
(e.g. average and peak deceleration, deceleration distance and
time, and braking ground contact time) during COD assess-
ments, although further research is needed providing norma-
tive 505 COD phase-specific data across various populations.

Generally, there is limited research pertaining to phase-
specific and instantaneous velocity measures during mul-
tiplanar tasks such as CODs of 90°-135°, which are not
uniplanar [36, 66] but may help to enhance ecological
validity in some sports. This is likely owing to some tech-
nologies being restricted to tracking athletes in one plane
(i.e. directly behind or in-front of COM), such as with
some radar and laser devices. Advancements in technolo-
gies (Sect. 3) offer solutions for evaluating deceleration
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abilities across a spectrum of COD angles by tracking
COM trajectory data (i.e. x, y coordinates). The reliabil-
ity, validity and application of these devices, however, still
needs to be established in sporting practice. Similar to
ADA tests, to help enhance reliability and reduce potential
learning effects associated with any sharp COD test, it is
recommended to include a familiarisation session prior
to testing. A summary of considerations when choosing a
deceleration test is illustrated in Table 1.

3 Technological Considerations
when Assessing Deceleration

The following section provides an overview of consid-
erations when assessing deceleration with different
field-based technologies including radar/laser, motorised
resistance devices (MRDs), global navigation satellite
system (GNSS) and local positioning systems, video and
inertial measurement units (IMUs). To ensure consistent

Table 1 Summary of considerations when choosing a deceleration test

interpretation of reliability data amongst studies and tech-
nology devices, relative reliability (i.e. intra-class cor-
relation [ICC]) is interpreted using the guidelines from
Koo and Li [70] as: poor (£0.49), moderate (0.50-0.74),
good (0.75-0.89) and excellent (> 0.90) with absolute reli-
ability (i.e. co-efficient of variation; [CV%]) interpreted
using recommendations of McMahon et al. [71] as: poor
(> 15%), moderate (10-15%), good (5-10%) and excellent
(<5%).

3.1 Radar/Laser Devices

The ability to measure instantaneous velocity and distance
makes the use of laser and radar devices appealing for accel-
eration, maximum speed and deceleration assessment [3].
Lasers have been used in several studies to measure decel-
eration abilities using the LAVEG (LAser VElocity Guard,
Jenoptik Technologies, Jena, Germany) [30, 35-37, 66] or

Considerations Importance

Choice of test (i.e. ADA or COD test)

ADA tests allow athletes to decelerate without the necessity to perform a turn with whole body rota-

tion. This potentially reduces task complexity, a factor that has also been highlighted for assessing
deceleration when walking [67]

During COD tests, pure deceleration qualities may be contaminated by other factors such as the skill
required to execute a turn with whole body rotation prior to re-acceleration

COD tasks generally involve deceleration in a rotated position over multiple foot contacts to reduce
the redirection demands and may permit a different evaluation of deceleration ability, which
involves a different braking strategy [50]

Consequently, based on the above point, use of both an ADA and COD test may allow simultaneous
evaluation of deceleration and COD ability

ADA tests may be a more suitable option particularly during earlier phases of field-based rehabilita-
tion to evaluate an athlete’s ability to safely decelerate prior to COD [68, 69]. Subsequently, COD
tests could be integrated in the periods prior to and following return to sport

Using ADA and COD tests that require each leg to act as both penultimate and final contact limbs
can give further insights into preferential load distribution and identify deficiencies in lower
extremity strength and motor coordination

Sprint approach distance/speed

Shorter sprint distances will require deceleration to be initiated from lower percentages of maximal

sprinting speed/momentum and therefore require deceleration to be performed across fewer steps,

and less distance and time

Deceleration kinetic and kinematic demands can be substantially different when performing deceler-
ations from lower (e.g. 10-m approach) compared to higher (e.g. 20-m approach) sprinting speeds
[39], meaning athletes could have good deceleration performance from lower sprinting speeds,
but not higher sprinting speeds, and vice-versa [39]. This may therefore warrant assessment of
deceleration from both lower and higher sprinting velocities

When decelerating from higher sprinting velocity/momentum, the early braking steps require forces
to be generated with single-limb support across very short time frames, and can have high-impact
peak forces and loading rates [8]. Thus, during early phases of field-based rehabilitation, selecting
shorter sprint approach distances may help to reduce these demands

Position and sport-specific sprint distances Selecting a deceleration test and sprint approach distance that best reflects the positional demands of

the sport [61]

In sports and positions where decelerations are performed from a wide range of sprint velocities,
a deceleration assessment may need to be conducted using a test that requires deceleration from
both lower and higher sprint velocities

ADA acceleration-deceleration ability, COD change of direction
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MuscleLab LaserSpeed (Erotest Innovation AS, Stathelle,
Norway) [62, 72] laser devices, both sampling at 100 Hz.
However, to the author’s knowledge, only two studies [30,
36] have investigated the reliability of deceleration perfor-
mance metrics established from the LAVEG laser device.
Ashton and Jones [30] investigated the intra-session and
inter-session reliability of the distance required to deceler-
ate from 75%, 50%, 25% and 0% of the 15-m sprinting speed
reporting moderate-to-good (ICC =0.64-0.83) and good-to-
excellent (ICC=0.79-0.97) intra-session and inter-session
relative reliability, respectively. The CV%, however, for
these metrics ranged between moderate and poor (11-17%),
making it difficult to detect small changes in deceleration
performance. Similarly, Hader et al. [36] reported a CV%
of 38% and 13% for peak deceleration (m/s%) and distance
at peak deceleration (m), respectively, when captured during
a 90° COD test calculated from metre-to-metre changes in
speed over time. Currently, no study has evaluated the valid-
ity or reliability of a laser device for measuring instantane-
ous deceleration or evaluated average deceleration metrics
(m/s?) captured from across the whole of the deceleration
phase.

The only radar device that has been used by numerous
studies to evaluate deceleration performance metrics is
the Stalker ATS II (Stalker Sport, Richardson, TX, USA),
which samples at 47 Hz [29, 43, 44, 4648, 50, 53-55, 73].
The reliability of this device for measuring deceleration
has been reported in numerous studies [5, 29, 43, 44, 47]
with intra-session reliability reported between moderate
and excellent (CV% =1.5-16.7%) for a range of whole
body deceleration performance metrics (i.e. average and
maximum deceleration, early and late deceleration, dis-
tance and time to stop). Practitioners should be aware,
however, that data captured with the Stalker ATS II require
manual data processing procedures and that reliability
could be affected if different individuals process the data
[47]. Therefore, if using this device, it is recommended to
use one trained individual and ideally have a fully auto-
mated processing procedure using selected filters and algo-
rithms that would negate the need to establish inter-rater
reliability [47]. Currently, only one study to the authors’
knowledge has used radar to assess deceleration during a
COD test (traditional 505), but the CV% for deceleration
metrics ranged between 11 and 15% [48]. Advancements
in radar-based three-dimensional sensor technology (e.g.
Photon Sports; Ledsreact, Kortrijk, Belgium), however,
permit future opportunities to investigate the validity, reli-
ability and application of deceleration assessment in both
uni- and multi-planar COD tasks.

3.2 Motorised Resistance Devices

Motorised resistance devices use engines to provide resist-
ance rather than weights, bands or pressure. Specifically,
the computer-controlled engine allows for precise prescrip-
tion of resistance, speed and how the resistance behaves
(i.e. isoinertial, isotonic) in different movement directions
(i.e. concentric/resisted and eccentric/assisted). Both the
control (i.e. load, speed) and presentation of continuous
data (i.e. velocity, force, power) are achieved at high fre-
quencies (>200 Hz). This ensures rapid changes of athlete
movement velocity during deceleration and COD can be
detected, ensuring accuracy of measurements. There are
different types of machines available that can be grouped
into gym-based and field-based machines. In general, field-
based machines have longer lines, greater speeds and lower
resistances in comparison with gym-based machines. If tests
are to be done beyond one or two deceleration steps, field-
based machines should be employed as both line length and
speed capacities (14 m/s) will not be a limiting factor when
performing tests such as ADA or COD.

For the purposes of assessing deceleration, an MRD
(1080 Sprint, 1080 Motion, Sweden) sampling at 333 Hz
has been reported to be valid for measuring velocity before
(— 1.5 s) and after (+1.5 s) a 180° turn during a modified
505 COD test when compared to a three-dimensional (3D)
motion analysis system [33]. Furthermore, the reliability of
the same MRDs for measuring various deceleration metrics
has been investigated in 180° COD tests of varying distances
(i.e. 5-m, 10-m and 15-m approaches) with left and right
foot turns [31] and in a 30-m ADA test [56]. In the study
by Westheim et al. [31], almost all deceleration metrics
had good-to-excellent absolute reliability across each COD
test. Furthermore, West et al. [56] reported good absolute
(CV%=5.3-7.1%) and excellent relative (ICC=0.92-0.97)
inter-session reliability when assessing a range of key decel-
eration metrics (i.e. average deceleration, distance and time
to stop) using a threshold based approach (i.e. deceleration
starts from first value < 1.5 m/s?) averaged across the best of
two trials in a 30-m ADA test. Collectively, these findings
highlight the potential of the 1080 Sprint for assessing decel-
eration performance during COD and ADA tests. Future
research is needed, however, to investigate the validity and
reliability of the 1080 Sprint for assessing deceleration per-
formance in ADA tests with shorter sprint distances (i.e. 5,
10, 15 and 20 m), and to evaluate the validity and reliability
of other MRDs (e.g. DynaSpeed, Ergotest Innovation AS,
Langesund, Norway) for assessing deceleration performance
during sharp COD and ADA tests.
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3.3 Global Navigation Satellite and Local
Positioning Systems

Numerous studies have evaluated the validity and reliability
of GNSS [74-82] and local positioning systems [83, 84] for
assessing sprint acceleration and maximum velocity sprint-
ing capabilities, confirming their potential for assessing
these performance capabilities. Conversely, to the authors’
knowledge, there is currently only one study that has exam-
ined the validity and reliability of a GNSS device (10 Hz
Apex; STATSports, Newry, UK) for the purpose of assess-
ing deceleration during an ADA test with a 20-m sprint
approach distance [44]. Based on agreement with radar
evaluated with equivalence testing (i.e. values within the
smallest effect size of interest), the findings of this study
support the use of average deceleration and maximal decel-
eration metrics, with deceleration distance and time to stop
metrics outside of equivalence bounds. It is important to
note that only raw GNSS data permit calculation of average
deceleration, which requires additional processing proce-
dures and filtering approaches, such as a digital fourth-order
Butterworth filter as used by Jones et al. [44]. Indeed, com-
pared with other filtering approaches, use of a fourth-order
Butterworth filter with a cut-off frequency of 2 Hz has also
been reported to have the best level of agreement, accuracy
and precision between a GNSS device (Vector S7; Cata-
pult Sports) and a 100-Hz Vicon 3D motion analysis system
for the purpose of calculating deceleration during sprint-
to-stop motions and 90° and 180° COD manoeuvres [85].
Therefore, based on the findings of these studies, and for
the purpose of assessing deceleration with GNSS devices,
it is recommended for practitioners to use their own custom
processing of the exported raw data using alternative filter-
ing approaches, and to carefully examine the reliability and
validity of selected metrics.

3.4 Video

Although 3D motion capture is considered the gold stand-
ard for evaluating COM velocity and joint kinematics, the
technology is expensive and generally restricted to labora-
tory environments. Thus, two-dimensional (2D) high-speed
camera-based technology, which is a cheaper and accessi-
ble feature of most smartphones and tablets, can be used to
derive instantaneous measures of COM velocity in the field,
or to measure key deceleration indicators such as distance
and time to stop [86] with a camera positioned perpendicular
to the deceleration plane of motion. Advancements in com-
puter vision technology (i.e. marker-less tracking) and arti-
ficial intelligence provide opportunity to process 2D video
data quickly to attain frame-by-frame kinematic information
on deceleration performance, overcoming time-consuming
processes and feedback delays often associated with manual

2D video digitisation [87]. However, the validity and reli-
ability of data captured using this technology require further
research [88]. In addition to whole body deceleration-related
metrics (i.e. average, peak deceleration), video provides
important visual records of kinematic data (e.g. step
lengths, joint angles/angular velocities) helping to evaluate
the athlete’s deceleration technique (Sect. 4.2), which could
have important implications for performance enhancement
(Sect. 5.1) and rehabilitation and injury-risk reduction pro-
cedures (Sect. 5.2). Because deceleration has the propensity
to generate very large forces, a sub-optimal technique could
further amplify tissue damage and injury risk as highlighted
in previous studies investigating joint kinematics associated
with peak ground reaction forces [60], increased knee joint
loading [89] and future ACL injury risk [51] during maximal
deceleration to stop tests (i.e. ADA tests). Therefore, practi-
tioners are recommended to record 2D sagittal plane video
footage and to select deceleration technical metrics (Sect. 4)
that best represent superior deceleration performance and
movement quality.

3.5 Inertial Measurement Units

Inertial measurement units are devices that contain sensors
that can perceive movement in multiple dimensions tracked
on a cartesian coordinate system (i.e. x-axis, y-axis and
z-axis). As this relates to assessing whole body decelera-
tion and kinetic and kinematic variables during ADA and
sharp COD tests, to the authors’ knowledge, only a few
studies have done so using IMUs [5, 32, 50, 90-92]. Large
to almost perfect associations (#=0.65-0.98) and small-to-
trivial effect size differences (0.57-0.09) have been reported
between an IMU system (Xsens MVN; Xsens, Enschede,
the Netherlands) consisting of units attached to the feet,
shanks, thighs, and pelvis and a 3D motion capture system
for measuring deceleration hip and knee joint kinematics
(i.e. joint angles and angular velocities) and spatial-temporal
(i.e. ground contact time and touchdown distance) variables
at lower intensities (i.e. 50% effort) [32]. With increases in
approach velocity (i.e. 100% effort), however, only ground
contact time and knee flexion angular velocity had both very
large associations (r>0.84) and trivial-to-small effect size
differences (0.07-0.27) between systems [32]. Using the
same IMU system, Philipp et al. [S0] compared the horizon-
tal deceleration demands between an ADA test with a 10-m
sprint approach and a traditional 505 COD test. The authors
reported significant differences in deceleration demands
(i.e. average deceleration, deceleration time and distance,
ground contact times and touchdown distance) between the
two assessments, with intra-session relative reliability that
ranged from poor to excellent ICC =0.13-0.98) based on
the test and or metric of interest [50].
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One advantage of IMUs is their capability to provide
insights on step-by-step forces encountered when deceler-
ating, especially when large-scale force plates are not avail-
able. For example, Nedergaard et al. [90] used an acceler-
ometer mounted on the upper torso to highlight the high
forces encountered during the preparatory deceleration steps
prior to turning and Gageler et al. [91] used accelerometers
positioned on the ankle, knee, sacrum and upper torso to
illustrate shock attenuation demands during decelerations
with 6-m and 3-m stopping zones. Figure 3 illustrates com-
parisons of the braking step forces (g) preceding a 180°
turn in a traditional 505 COD test captured using the Xsens
IMU system. The data clearly highlight the heightened load-
ing characteristics of the early deceleration steps, echoing
the findings by Nedergaard et al. [90]. With regard to the
magnitude of brake step peak forces (g), while reliable [50],
further research is warranted to address the validity of the
Xsens IMU system for quantifying peak brake step forces (g)
during deceleration. Future research is also needed to inves-
tigate the reliability and validity of different IMU systems,
sensor positionings (e.g. foot, shank, thigh, trunk mounted)
and sampling frequencies for the purposes of simultaneously
measuring whole body deceleration and step-by-step kinetic
and kinematic data associated with each braking step.

3.6 Advantages and Disadvantages of Different
Technologies Used to Measure Deceleration

A summary of the advantages and disadvantages associated
with each measurement technology for measuring decelera-
tion is provided in Table 2. Practitioners and organisations
can use Table 2 to help inform decisions around which tech-
nology device may be more suitable for their needs. Com-
mon considerations presented within Table 2 include porta-
bility, cost, sampling frequency, set-up time, post-processing
time, indoor and/or outdoor usage, compatibility with differ-
ent deceleration test types, efficiency for use with multiple
athletes, type of data captured and ability to integrate with
other technologies to capture additional data. For exam-
ple, if a practitioner wants to just investigate the average
deceleration obtained from a velocity time curve, technolo-
gies with lower sampling frequencies (i.e. 15-120 Hz) may
suffice. However, if there is a need to obtain more details,
such as those associated with step-by-step data (e.g. ground
contact times, peak forces and loading rates), technologies
with higher sampling frequencies (i.e. > 120 Hz) would be
required.

620 * # * * # * # *
<
(=}
.‘g
815
@
Q
o
e
(%)
S 10 E}
c
=]
o
T
c
S
5
(U]
) ) ) o ) )
iy ee® 3 oe® ’ oe® y P V\e%\qﬁ? O(\\,ag\
2 2 2 2 2 N,
\‘9\6‘ O & \‘6%‘ 2@ & 2@ & ¢o°
< 59,00 a\\ \)\\\6\ o\&\(“ o
Qe“ ee®
G
o
Brake Step

Fig.3 Comparison of braking step forces (i.e. acceleration; g) pre-
ceding a 180° turn in a 505 change of direction test captured using
the Xsens inertial measurement unit system. Note: Athletes in this
test can take around five braking steps prior to the final foot contact
when turning. For the data used in the figure, the suit configuration
“lower body with sternum” was selected in the Xsens MVN software

(MVN Record 2023), with inertial measurement units placed around
the anterior superior part of the foot, the tibia close to the knee, the
middle of the lateral thigh, the posterior pelvis at the height of the
anterior superior iliac spine, as well as the sternum. *Significant dif-
ference from final foot contact, *significant difference from penulti-
mate foot contact
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Table 2 (continued)

Disadvantages

Advantages

Technology

1. Manual digitisation to attain centre of mass position and velocity can be

1. Provides a visual record of performance for kinematic analysis relating to

Video

deceleration technique time consuming with some systems

2. Pose recognition and artificial intelligence-based software applications can 2. If a single camera is used, this needs to be positioned in a sagittal plane for

assessment of whole-body deceleration metrics

3. Can be used indoors or outdoors to obtain the correct shoe-surface interac- 3. When using automated pose recognition technology systems, there needs to

provide analysis within a few minutes

be good contrast between the background and the athlete
4. Limited validity and reliability data for pose recognition and artificial

tion
4. Cost-effective accessible feature on most smart phones and tablet devices

intelligence-based software applications

with higher sampling rates possible (i.e. 120 Hz)
5. Allows a simultaneous assessment of the deceleration technique to

identify possible technique deficits linked to sub-optimal performance and

injury risk

1. Inertial measurement unit drift (i.e. gradual accumulation of errors in posi-

1. Not restricted to a laboratory with similar accuracy to laboratory-based

Inertial measurement units

tion, velocity or orientation)
2. Calibration procedures necessary prior to usage

motion cameras
2. Can be easily integrated with other technologies to provide more detailed

3. Reliability in some cases decreases at higher movement speeds

insights into deceleration performance (e.g. step-to-step forces, ground

contact times)
3. Can be used indoors and outdoors to obtain the correct shoe-surface

4. Involves a wearable product, which can result in restricted athlete compli-

ance
5. Cost

interaction

3D three-dimensional

4 Key Variables Used to Assess Deceleration
4.1 Whole Body Deceleration

For the purposes of assessing whole body deceleration per-
formance, it is important to ensure accurate identification
of the start and end of the deceleration phase. Based on cur-
rent research and applied practices, we recommend using
the timepoint immediately following maximum velocity
to signify the start of the deceleration phase, and the low-
est velocity attained upon stopping (i.e. zero velocity) or
immediately prior to changing direction to signify the end
of the deceleration phase (Fig. 4). The deceleration phase
can be further sub-divided into the early and late decelera-
tion sub-phases using the timepoint associated with 50%
of maximum velocity. Analysing deceleration performance
in these sub-phases is important because of the different
biomechanical [18] and physical demands [46, 93] associ-
ated with decelerating (i.e. braking) from higher (i.e. early
deceleration) compared to lower velocities (i.e. late decel-
eration). Additionally, athletes who have lower decelera-
tion capabilities in the early deceleration sub-phase may be
more prone to heightened deceleration requirements in the
late deceleration sub-phase, which can be associated with
inferior deceleration and COD performance and heightened
lower limb forces and surrogates of injury risk, such as to the
ACL, in the final foot step [8]. Further research is required to
investigate the influence of different deceleration start-and-
end phase criteria, such as those based upon a percentage or
absolute threshold (e.g. percentage or unit decrease in veloc-
ity), foot interaction with the ground, and other metrics such
as acceleration and its derivatives [50, 56]. For example,
West et al. [56] compared use of a deceleration threshold
method (i.e. deceleration starts from first value < 1.5 m/s?)
with set distance and peak velocity methods and reported the
best inter-session reliability across key deceleration metrics
(i.e. average deceleration, distance and time to stop) when
using the deceleration threshold method averaged across the
best of two trials.

Using the deceleration velocity—time profile attained from
either a COD (Fig. 2) or ADA (Fig. 4) test, there are several
metrics that can be used to evaluate an athlete’s whole-body
deceleration performance. Table 3 provides a definition of
these metrics, equations used to calculate them, and their
importance for sports performance and injury-risk reduction.

Tables 4 and 5 illustrate deceleration scores for whole
body deceleration performance metrics measured across the
entire deceleration phase in ADA and COD tests, respec-
tively. The values provide practitioners with some normative
data that can be used to compare deceleration performance
outcomes amongst athletes for a variety of deceleration
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Fig.4 Velocity—time profile

Acceleration Phase

Deceleration Phase

captured during an acceleration-
deceleration ability (ADA) test. 4
The start of the deceleration
phase is defined using maxi-
mum velocity (Vy,,) with the
end of the deceleration phase
defined using the lowest veloc- 6
ity (Vi) Fifty percent of
maximum velocity (50% V..
is used to identify the early
(DECkg,y) and late (DEC ;)
deceleration sub-phases

Velocity (m.s™)
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50% Vpgax

Viow

0 032 064 0.96

performance assessments and measurement devices. It is
important to note, however, that the filtering of data differs
between measurement devices and software applications,
making comparisons between systems difficult. Therefore,
for purposes of comparison, it is recommended to only com-
pare values to the same measurement device and software
application. Some of these metrics have also been used to
calculate deceleration ratios to indicate athlete deceleration
performance and braking strategies. For example, the aver-
age early deceleration (m/s) can be divided by the average
late deceleration (m/s?) to signify how quickly the athlete
can decelerate within the initial braking steps of commenc-
ing deceleration [39]. A value closer to one would suggest
a more balanced deceleration strategy or that the athlete
can generate higher deceleration within the early horizontal
deceleration sub-phase relative to the late horizontal decel-
eration sub-phase. For purposes of injury-risk reduction and
evaluating rehabilitation and return-to-play programmes, a
deceleration index has been proposed as an important meas-
ure of the rate at which a player can slow down relative to
their ability to accelerate by calculating deceleration time
relative to acceleration time [28], although it is feasible that
other metrics (e.g. deceleration and acceleration; m/s?) could
also be used. Whilst these ratios could help to highlight
some potential strengths and deficiencies of the athlete, for
the purposes of monitoring changes over time it is important
to monitor the component parts, owing to there being more
than one way the ratio could change and to minimise the
measurement error that could be compounded by combin-
ing two component parts [94]. Further research is required
to establish the reliability of these deceleration ratios and
to establish their importance for performance, injury-risk
reduction and rehabilitation purposes.

128

16 192 224 256 288 32 3.52 384 416 448 48

Time (s)

4.2 Deceleration Technique

Because of very large forces that are generated and required
to be effectively attenuated in intense decelerations, the tech-
nical ability to decelerate can have significant implications
for performance, rehabilitation and injury-risk reduction
programmes. It is therefore important to identify and meas-
ure kinematic variables of deceleration technique that best
associate with superior performance and injury-risk reduc-
tion. For example, athletes with lower deceleration move-
ment quality scores (i.e. knee flexion: “shock absorption”,
frontal plane knee projection angle: “limb stability”, pelvis
angle: “pelvis stability”, lateral trunk angle: “trunk stability”
and hip and knee flexion: “movement strategy”’) have been
reported to have higher knee joint loading (i.e. knee abduc-
tion moment) during the final foot contact of a 10-m maxi-
mal sprint-to-stop ADA task [89]. Using the antepenultimate
(i.e. two steps prior to stop/COD), penultimate (i.e. one step
prior to stop) and ultimate foot contact (i.e. final footstep)
of a sprint-to-stop ADA task, key kinematic variables of a
deceleration technique in the sagittal and frontal plane are
illustrated in Tables 6 and 7, respectively.

5 Implications for Practice and Future
Research

5.1 Performance Enhancement

The future evolution of match play in MDS sports will likely
demand players to perform more frequent high-intensity
decelerations requiring an ability to generate and tolerate
high braking forces repeatedly [27]. Accurately assessing
deceleration, therefore, is a crucial requirement to ensuring
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(11.4)

1.45+0.28
1.41+0.18

TTS (s)

(11.40)
538+0.54

6.66+1.41

,(/  DECj,, (m/s) DTS (m)

s%)

-9.53+1.56

(15.5)

DEC,,. (m/s?) DECy,, (m/s?) DECg,,

-3.29+0.58
—-4.10+£0.29

(11.8)

6.54+0.26
(1.5)
4.46+0.28

Device Vi, (m/s)

Radar

IMU

15-0-5
15-0-5

Test

Recreational

Standard
Professional

Sport (posi-
tion)

Handball
Team

n, sex
11F

19

(14 M, 5F)

[50]

[48]
Phillip et al.

RAG6kg resisted-assisted load of 6 kg during test, RA9kg resisted-assited load of 9 kg during test, 77 time to stop, 5-0-5 change of direction test with 5 m approach, /0-0-5 change of direction

early deceleration, DEC, ,,, average late deceleration, DEC,,,, maximum deceleration, DTS distance to stop, MRD motorized resistance device, RA3kg resisted-assisted load of 3 kg during test,
test with 10 m approach, 15-0-5 change of direction test with 15 m approach, F female, M male IMU inertial measurement unit

AR3kg assisted-resisted load of 3 kg during test, AR6kg assisted-resisted load of 6 kg during test, AR9kg assisted-resisted load of 9 kg during test, DEC,,, average deceleration, DECg,,,, average

"Maximum deceleration calculated from the 0.5-s time interval with greatest average deceleration

®Data from fast group (based on time from 0 to 10 m of 15-0-5 COD test)
fData from slow group (based on time from 0 to 10 m of 15-0-5 COD test)

4Data reported from session four for right foot turn

Table 5 (continued)
“Data reported for right foot turn
“Data reported from session three to four

Study
Philipp et al.

athletes have the capability to perform efficient and rapid
changes in speed and direction necessary to close down
and create spaces frequently during match play. By evalu-
ating whole body deceleration performance alongside the
athlete’s deceleration technique, practitioners can identify
areas for improvement and prescribe individualised train-
ing programmes to enhance deceleration performance and
mitigate potential injury risk. For example, this could be
targeting specific strength (e.g. eccentric, reactive) or tech-
nical qualities (e.g. lowering of COM, optimising knee
flexion, trunk control and foot positioning) underpinning
deceleration performance [95]. Future research is needed
to examine the effectiveness of different training interven-
tions on enhancing measures of deceleration performance.
In designing these interventions, practitioners could con-
sider the recommendations and guidelines presented in the
Braking Performance Framework that summarises training
methods that could target the currently known determinants
of deceleration ability [95].

5.2 Rehabilitation and Injury-Risk Reduction

Deceleration assessment has been identified as a missing
link in injury rehabilitation [28] and an important process
in evaluating an athlete’s readiness to return to sport fol-
lowing injury [28, 96]. The assessment, monitoring and
subsequent training of deceleration have also been high-
lighted to be a potential ‘vaccine’ for sports-related inju-
ries [9]. For example, between 32 and 66% of non-contact
ACL injuries in soccer have been reported to occur during
a defensive pressing scenario, when whole body decel-
eration from high velocity precedes a directional change
[19-22]. Therefore, assessing and training deceleration
ability could be an important modifiable risk factor for
reducing ACL injury risk [21] and other soft-tissue inju-
ries, such as calf [97], hamstring [98] and rectus femoris
[99] strains that have also been associated with decelera-
tion manoeuvres. As female athletes have been reported
to be 3.5 times more likely to sustain an ACL injury than
male athletes [100], deceleration assessment and training
may be particularly important for this population [101].
Future research is needed to obtain normative decelera-
tion profiles in various populations and to investigate the
importance of deceleration for rehabilitation and injury-
risk reduction purposes.

6 Conclusions

This article provides practitioners with methodological
and practical considerations for assessing deceleration
in an applied field-based environment. We highlight a
range of different protocols (i.e. COD and ADA tests) and
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Table 6 Key kinematic variables of deceleration technique captured in the sagittal plane using a two-dimensional video

‘| Antepenultimate Foot Contact [© Penultimate Foot Contact 3 Ultimate Foot Contact

Variable

Importance

1 Touch down distance (m) or leg placement angle (°)

2 Peak hip and knee flexion (°) and joint angular velocity (s)

3 Step number (n), length (m) and frequency (Hz)

4 Shin angle (°)

5 Trunk angle (°)

6 Knee flexion on touchdown (°)

Foot is placed in front of COM to increase horizontal braking impulse

(force X time). Could be normalised to stature to permit a fairer compari-
son between athletes of different stature. Notice in earlier braking steps,
the point of contact is with the heel to maximise braking effect. The leg
placement angle is the angle of the line connecting the COM to the ankle
relative to the downward vertical; the larger the angle in front of the
COM the higher the potential for greater braking impulse

Hip and knee flexion (i.e. co-flexion) during each foot contact helps to

ensure the hips and trunk are positioned behind the lead foot braking leg
during ground contact, enabling braking forces to be applied for longer,
leading to greater reduction in momentum. Hip and knee flexion permits
mechanical energy absorption and shock attenuation across lower body
musculoskeletal structures helping to reduce potential tissue damage.
Joint angular velocity is an indicator of loading severity and should be
controlled to prevent excessive knee flexion. Greater knee flexion veloci-
ties are indicative of less muscular control (relative to the horizontal
velocity at foot contact)

Step kinematics alter through shorter step lengths and greater step
frequency. Notice at touchdown of the penultimate and ultimate foot con-
tact, the rear foot is still in contact with the ground providing a dual foot
stance that leads to greater stability, load sharing, longer braking times
(no propulsion phase) and thus greater braking impulse. The number of
braking steps will increase with greater approach velocities in order to
reduce higher forward momentum. Those with reduced braking capacity
will require a greater number of braking steps to reduce momentum
because of lower braking and muscle force-generating capacities

Shin angle is reflective of orientation of force application. To decelerate,
a negative shin angle is required to ensure anterior force application (i.e.
horizontal braking impulse). A less negative shin angle is more reflective
of a cautious upright braking strategy requiring more braking steps to
reduce momentum

Ideally, the trunk should ‘lean back’ or at the very least be upright at
touchdown in each foot contact to help shift the COM further behind the
foot to increase the braking impulse. Notice this is more pronounced in
the antepenultimate foot contact, and thus, important for early decelera-
tion. Excessive forward trunk flexion combined with an extended knee
joint places the hamstrings in a lengthened state, which is why adopting
areclined or upright trunk and a partially flexed knee are recommended.
Forward trunk flexion should be regarded as a compensatory strategy
rather than a desired movement that comes into play when insufficient
braking has occurred prior to final foot contact

A partially flexed knee (approximately 30°) in the sagittal plane at touch-
down helps lower multi-planar knee joint loads and reduce hamstring
stretch loads. The athlete should have the capacity to resist excessive
knee flexion to avoid prolonged ground contact times, but sufficient
flexion to lower the COM and create stability in dual support
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Table 6 (continued)

‘| Antepenultimate Foot Contact [© Penultimate Foot Contact - Ultimate Foot Contact

Variable Importance

7 COM height (m) Flexion of the ankle, knee and hip (i.e. triple flexion) and the absence of
a flight phase leads to a lowering of the COM. Coupled with periods of
dual foot support illustrated in the penultimate and ultimate foot contacts
allows a more stable position (i.e. increased base of support). Lowering
the COM helps to prevent forward rotation about the lead foot braking
limb, permitting greater and prolonged anterior foot placements ahead
of COM. Could be normalised to stature to permit fairer comparison
between athletes of different stature

COM centre of mass

Table 7 Key kinematic variables of the deceleration technique captured in the frontal plane using a two-dimensional video

A [ Penultimate Foot Co 1 LR Ultimate Foot Contact .

Variable Importance
1 Knee abduction at touchdown Initial and peak knee abduction angles could lead to elevated knee joint loading and stress to connec-
and at peak knee flexion (°) tive tissues. Increased knee abduction angle could also be reflective of reduced hip and trunk control/

strength, or as a result of compensatory movements made at the hip and trunk to counteract insuffi-
cient strength of the quadriceps to generate the internal knee extension moment necessary to counter-
act the external knee flexion moment arising from the braking ground reaction force

2 Frontal plane pelvic alignment (°) Neutral pelvic alignment enables optimal trunk alignment, reducing the chance of elevating multiplanar
knee joint loads

3 Frontal plane trunk alignment (°) An upright trunk in the frontal plane allows better alignment of the ground reaction force through the
lower limb and may help to prevent elevated multiplanar knee joint loads. Excessive forward trunk
rotation around the hip could increase the demand on hamstrings, leading to increased potential of
hamstring strains

measurement technologies (i.e. radar, laser, video, GNSS,  highlighted. Given the performance, health and injury-risk
IMUs and MRDs) that can be used by practitioners to eval-  implications associated with deceleration, assessment of
uate deceleration and some of the advantages and disad-  this movement skill should be given high priority within

vantages of each. Key metrics associated with whole body  any athlete multi-disciplinary support system.
deceleration performance and the kinematics underpin-
ning the deceleration technique (i.e. movement quality) are
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