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Calculating the demagnetisation factors and their volume distribution

within (a) assemblies of discrete magnetic elements and (b) solid magnetic
samples of any given shape: A material-independent and multi-scalar polar
model approach

Steven M. McCann @, Tim Mercer

Jeremiah Horrocks Institute for Mathematics, Physics and Astronomy, University of Lancashire, Preston, PR1 2HE, United Kingdom

ARTICLE INFO ABSTRACT

Edited by Prof. Andrew Hazel. Measuring the magnetic characteristics of a magnetic sample, it is critical to evaluate the self-demagnetisation
field, because it reduces the effective magnetic field experienced by the sample. The demagnetisation factor

Keywords: depends on the shape and nature of the sample, whether it is a solid, ordered assembly of magnetic elements, or

Demagnetisation randomly packed magnetic powder in a containing vessel. Literature provides limited information on the

Magnetometric

demagnetisation factor of packed powders, typically for a restricted number of container shapes. This paper

B[lr,;ﬂj;;mn introduces algorithms based on a polar model written in MATLAB 2022b, which calculates not only the average
Cuboid demagnetisation factor but also the entire distribution of demagnetisation factors for the constituent particles
Cylinder and, by extension, to any assembly of magnetic elements within a given volume. Furthermore, this study explains
Ellipsoid how to enhance the efficiency of these algorithms, reduce runtime, and apply them to any container shape.
The validity of the algorithms was assessed by calculating the data for three common container shapes
described in literature over a range of aspect ratios: cuboids, ellipsoids, and cylinders. The calculated mean
demagnetisation factors matched those found in the literature, typically within 0.05 %, 0.1 %, and 1 %,
respectively, for these shapes, demonstrating that the algorithms could be extrapolated to calculate demagnet-
isation data for any container shape; by extension, the magnetometric demagnetisation factor (zero suscepti-
bility) for any solid shape, a hitherto unattainable parameter.
As the method reduces to calculations based on geometry alone, it is material-independent and can be applied
to any macro-, meso-, or microscale of interest.
1. Introduction Hy = —NgM, 1

where Ny is the dimensionless demagnetisation factor. For ellipsoids, the
demagnetisation factor depends on the ratios of the semi-major axes; for
other shapes, both the geometry of the sample and the susceptibility of
the material need to be considered. The sum of the demagnetisation
factors of the sample taken in the three orthogonal axes Ny, Ny, and N; is
equal to one. The demagnetisation factors are either fluxmetric, with the
averaged magnetisation and demagnetising field taken at the mid-point
plane of the sample, or magnetometric, with the averaged magnetisation
and demagnetising field taken over the entire sample. The use of
demagnetisation fields and factors to correct magnetic measurements is
important, as stated by Bahl [2] in a critical review of popular expres-
sions and datasets for demagnetising factors for common shapes,

1.1. General concepts and motivation

If a solid sample of a magnetic material is magnetised by an applied
field, the sample generates its own magnetic field that acts in the
opposite direction to the magnetisation [1]. The demagnetisation field is
influenced by the shape of the sample. For ellipsoids, the magnetisation
is uniform, which leads to a uniform demagnetisation field. In other
commonly encountered shapes, such as cylinders and rectangular
prisms, the magnetisation is not uniform; in these cases, the demag-
netisation field is averaged. The demagnetisation field Hy is proportional
to the magnetisation M, which creates it:
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comparing them to numerical techniques.

If the magnetisation is distributed within an assembly of magnetic
elements, the overall structure can no longer be classified as solid, and
Eq. (1) no longer applies. Instead, a demagnetisation factor must be
applied to the overarching shape within which the elements are con-
tained, such as a cuboid, ellipsoid, or cylinder, and the space between
the elements considered.

There are numerous applications of this type, i.e. consisting of
magnetic nanostructures and assemblies of nanoparticles. In medicine,
nanoparticles are used both analytically, such as in biosensors [3] and
contrast agents [4], and therapeutically, such as in drug delivery systems
[5], artificial antibodies [6], and magnetic hyperthermia cancer treat-
ments [7]. They are found in data storage devices, including upcoming
new technologies utilising skyrmionics [8]; magnetic refrigeration [9],
as a means of improving energy efficiency and reducing the environ-
mental impact of conventional refrigeration systems; in catalysis as they
provide a large surface area, they can be uniformly dispersed and easier
to recover [10].

Although there are some examples in the literature that are unique to
a specific solid shape of the sample, such as ellipsoids [11], cuboids [12],
and cylinders [13], these are not applicable to real assemblies of discrete
elements and cannot be applied to any general overarching shape of
those assemblies.

There is a well-established methodology that is able to account for
discrete elements [14,15]. By considering the volume packing fraction f,
and the magnetometric demagnetisation factor D,, (at a susceptibility of
zero) of the sample if it consisted of a complete solid in the shape of the
container, the overall demagnetisation factor in a given direction is now
given by:

N, = 1/3 +f(Dz - ],/3), @

which reduces to N, = D, for the f = 1 of a solid shape. However, this is
limited to the elements being spherical particles and also that D, must be
known, limiting it to the common shapes analysed in the literature as
described earlier.

Deviations from perfectly spherical particles have been studied by
Bjork and Zhou [16], demonstrating that particle aspect ratio impacted
particle orientations when packed, which in turn influences the overall
demagnetisation factor. This, and other recent studies [17] have used
commercially available finite element software, such as COMSOL Mul-
tiphysics® [18], to obtain demagnetisation information that is
material-dependent, e.g. using its relative permeability. Other limita-
tions using this approach includes a limit to the scale, e.g not applicable
to nanoparticles.

The model presented in this study is not limited by the shape of the
magnetic elements within the assembly, the material of those elements,
or the need to find or calculate the respective D, factor for a given overall
shape. It has the further advantage of being applicable to any macro-,
meso-, or microscale of interest and for these reasons should be of great
interest to a wide range of both experimentalists and modellers alike.

1.2. Model concept and development

The key to the model is the consideration of the magnetic poles on
the surface of fully magnetised particles arranged in a simple cubic
lattice. The advantage of our approach is that the equations reduce to
those of the geometry alone.

In this case, the particles were restricted to being spherical to test our
results with those given by Eq. (2) using published D, values from the
literature. The model calculates the demagnetisation factors of each
constituent particle so that the full spatial distributions of the particle
demagnetisation factors can be obtained; much more information than
can be extracted from Eq. (2) which only evaluates the mean demag-
netisation factor. The model operates in two steps. The first is to perform
a surface integral over a particle at a given position in the lattice to
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calculate its contribution to the demagnetisation field at the origin of the
lattice; this is repeated for each lattice position. The second step
involved performing a series of summations of contributions.

The first iteration of the model was used to support new experi-
mental techniques for measuring the overall average demagnetisation
factor of packed powder samples, which were glass cuboid containers
packed with magnetite nanoparticles [19]. To ensure confidence in the
model, the average demagnetisation factor of the sample was deter-
mined using both the model and Eq. (2) (with f measured during the
packing of the sample, and D, calculated using the equation derived by
Aharoni for the demagnetisation factors of cuboids [12]), and there was
perfect agreement between them.

In this paper, several algorithms are described that address a number
of limitations of the first iteration, and these developments are all based
on how the contributions to the demagnetisation field by each constit-
uent particle are summated. The first shows how the run time of the
model can be significantly reduced for cuboid samples, from several
days for large samples in the first iteration to less than an hour. Cuboid-
containing vessels are commonly used in our laboratory, and their shape
is the easiest to model. Further motivation came from comments made
regarding the publication of the first iteration of the model over the
perceived high computational resources required to run such models (it
was shown the model will run on a standard desktop PC). The second is a
modification that allows packed samples in any container shape to be
studied. To obtain confidence in this algorithm, testing was performed
using ellipsoid container shapes to facilitate comparisons with Eq. (2),
because the D, values for ellipsoids are well documented [11]. The
importance of this algorithm extends beyond that of powdered samples.
By providing the demagnetisation factor of any assembly of discrete
magnetic elements within any container shape, Eq. (2) can be used to
determine the respective D, value; therefore, it is possible to determine
the demagnetisation factor of any solid shape, which is limited to
magnetometric values at zero susceptibility. The third modification
shows how any sample consisting of a uniform cross-section can be
studied (e.g. prisms and cylinders). This can utilise the speed efficiencies
of cuboids that are not available for any general shape. For confidence,
comparisons can be made using Eq. (2), with model testing performed
on cylinders, providing established values for Dz [13].

The algorithms were written in MATLAB 2022b. The algorithms
were tested using a desktop computer with Windows 11. The PC had an
Intel i5-10400F CPU with a base speed of 2.90 GHz, six cores, and twelve
logical processors. The timing performance of each script was deter-
mined using MATLAB profiler. The algorithm scripts and the perfor-
mance test data generated by the profiler were recorded and stored in
the GitHub repository:

https://github.com/physicssteve/Demagnetisation-Factor.git.

2. Method
2.1. The premise; an adaptation

This model uses an adaptation of the work of Bissell and Cookson
et al. [20,21], who studied the demagnetisation factors of magnetic
particulate recording media. The demagnetising factor of a single iso-
lated particle, approximated as a prolate spheroid, is determined by
examining how the magnetic poles on its surface produce a demagnet-
ising magnetic field at its centre, using the coordinate system and
magnetic state, as shown schematically in Fig. 1.

Our model simplifies this further by considering a spherical particle,
that is, where a = b, modelled as a unit sphere centred at the origin, with
points on its surface defined by the coordinates (o, p, q). The particle is
fully magnetised in the z-axis direction so that the poles on its surface
will cause the particle to have a demagnetisation factor in the z-direction
of:


https://github.com/physicssteve/Demagnetisation-Factor.git
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Fig. 1. Coordinate system and geometry of a single isolated particle based on the premise of Cookson [21]. The magnetisation is fully aligned along the z-axis
direction as if subjected to a saturating field along the semi-major axis, a. In our case, the geometry is further simplified to that of a sphere by setting a = b.

a limp(o)
N, — T —q(o, p)
z= 2 2 2132
[02 +p+(—q(o, p)7]

—a —limp(o)

B q(0, p) b d
0% + p2+(q(o, pf]”) P

3)

where q (o, p) is given by:

q(o,p) = /1 —p* — 0%, Q)

and the limit p(o) is given by

limp(0) = V1 — 0*. 6))

It should be noted that the derivation of Eq. (3) in the original work
involves division by a particle’s or element’s magnetisation that reduces
the final outcome to that of geometry alone and is therefore material
independent.

Algorithm 1

For a spherical particle surrounded by other identical particles
magnetised in the z-direction, Eq.(3) can be adapted to evaluate the
contribution to the demagnetising factor of the particle centred at the
origin for any given particle in the assemblage. For ease of program-
ming, the particles were arranged in a cubic lattice with a particle
centred at every positive integer point (x, ¥, z). To consider the volume
packing fraction, a lattice scaling factor m is used, such that if the par-
ticles are in contact, m is equal to one.

a limp(o)
Nyx, 3. 7) = ( 2mz — q(o, p)
EAN [(2mx + 0)* + (2my + p)*+(2mz — q(o, p)°] #
2mz +q(o, p)
dp do. (6)
[(2mx + 0)® + (2my + p)*+(2mz + q(o, p)z]%>

MATLAB 2022b code was used to calculate the contributions of each particle in a simple cubic lattice to the
demagnetization factor of the particle centred at the origin of the lattice.

%user defined variables.
xlength = 101;
ylength = 101;
zlength = 101;
vpf = 0.2;
%set-up of the matrix Nz and lattice spacing m.
Nz = zeros (xlength, ylength, zlength);
m = (pi./(6.*vpf)"(1/3);
%functions used in the integration
gsphere = @ (x,y) sqrt(1-y."2-x."2);
ymax = @ (x) sqrt (1-x."2);
ymin = @ (x) -1.*sqrt (1-x."2);
%calculation of Nz.
for zg = 0:zlength-1
Rindex = 0;
for yg = O:ylength-1
for xg = Rindex:xlength-1

negative = @ (x,y) ((2.*m.*zg)- gsphere(x,y))./(((2.*m.*xg)+x)."2 + ...

((2.*m.*yg) +y)."2 + ((2.*m.*zg)- gsphere(x,y))."2)."1.5;
Xg)+%)."2 + ...

positive = @ (x,y) ((2.*m.*zg)+ gsphere(x,y))./(((2.

((2.*m.*yg) + y)."2 + ((2.*m.*zg)+ gsphere(x,y))."2)."1.5;

fun = @ (x,y) negative(x,y) - positive(x,y);
if xg ==yg

Nz (xg+1,yg+1,zg+1) = integral2 (fun,-1,1,ymin,ymax);

else

Nz (xg+1,yg+1,zg+1) = integral2 (fun,-1,1,ymin,ymax);

Nz (yg+1,xg+1,zg+1) = Nz (xg+1,yg+1,2g+1);
end

end

Rindex = Rindex+1;

end

end
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The demagnetising factor of the particle at the origin is determined
by summing the contributions from each particle and its own surface
poles.

2.2. The contribution matrix

The first part of the model finds the contribution matrix Nz, with
each element corresponding to the contribution to the demagnetising
factor of the particle centred at the origin by a particle centred at (xg, yg
2g); Algorithm 1. The user defines the size of the lattice by stating the x,
y, and z lengths (xlength, ylength, and zlength) and the volume packing
fraction vpf. The limitation on the size of the lattice is simply imposed by
the run time of the program; at the time of writing, a desktop computer
typically takes four minutes per one million particles. Note that in the
calculation of Nz, not every particle has to be assessed due to the sym-
metry of the lattice; hence the truncated number of calls in the “xg” for
loop. The double integral in Eq. (6) is performed using the integral2
function: this function uses a tiled numerical integration method to carry
out this evaluation [22].

Fig. 2 shows a representation of the matrix Nz. The element at index
(1, 1, 1) in MATLAB corresponds to the contribution of the particle
centred at the lattice position (0, 0, 0) on itself, while element (xlength,
ylength, zlength) is the contribution of the particle farthest from the lat-
tice origin. This matrix contains all the data required to determine the
spatial distribution of the demagnetisation factors of the constituent
particles in the z-direction, and therefore, the mean value for the sample.

The final format of the contribution matrix required for the sum-
mation sections of the model is formed by taking each element in the
matrix Nz (x, y, 2) and duplicating the value to all combinations of (+x,
+y, +2), forming octants. Algorithm 2 shows this operation, with matrix
Nzfull being the completed contribution or summation matrix and its
central element being the element (1, 1, 1) of matrix Nz.

The left-hand side of Fig. 3 shows the matrix Nzfull The Nzfull
element (xlength, ylength, zlength) corresponds to the matrix element, Nz
(1, 1, 1). The right-hand side shows the premise of the summing oper-
ation, which is used to determine the demagnetisation factor of each
constituent particle. A subset of Nzfull, matching the dimensions of the
lattice, starts at a position that fits exactly into one of the octants of
matrix Nzfull, and summing the elements in this subset gives the
demagnetisation factor of the constituent particle at one of the corners of
the lattice. Shifting this subset to matrix Nzfull and then summing it
yields the demagnetisation factor for each constituent particle in turn.

Computer Physics Communications 319 (2026) 109938

This subset is represented in Fig. 3 as a semi-transparent green block.
Note that the Nzfull element (xlength, ylength, zlength) is always con-
tained within the subset, which is the self-demagnetisation field of the
particle.

In principle, this summation process is simple and requires only a few
lines of code. However, because we are summing the contribution of
every particle in the lattice and then repeating this summation for every
particle, it is an N2 problem, and the computational time becomes a
factor. Even for small lattice sizes, this simple summation can take
several hours to complete. The upcoming sections deal with methods for
reducing the computational time and how the summation matrix can be
used to calculate the demagnetisation factors of other shapes moving
away from the cuboids depicted here.

2.3. Fast calculation of the demagnetisation information for a cuboid
sample

The subset is repeatedly moved through matrix Nzfull and then
summing the elements of the subset wastes resources simply as we
repeat many of the same additions. To reduce this, the subset used to
move through the matrix Nzfull can be considered as being constructed
from columns in the z-direction, with the length of the column being
equal to zlength (the size of the lattice in the z-direction). An example of
this is shown in Fig. 4. The elements contained within each column can
be summed, with the summation being recorded in another matrix,
Downstack (right-hand side of Fig. 3). For each x-y coordinate, a column
will need to be summed, of length zlength, for z coordinates going from
(2zlength — 1) to zlength, so that all elements in Nzfull are covered. Al-
gorithm 3 is the code for creating and populating the matrix Downstack,
which holds all the column summations. The variables i, j, and k are
related to the x, y, and z elements of the matrix Nzfull.

The final number of summations required per particle can be further
reduced using the summed columns to form summation slices in the y-z
plane (xslices) of Nzfull. An example is shown in Fig. 5, which is achieved
by summing rows in the y-direction of the Downstack matrix of length
ylength and creating a new matrix, xslices, to hold the slice summations.
Algorithm 4 gives the code for this task, where i, j, and k are used as the
X, ¥, and z coordinates of the matrix Downstack.

In the final stage, the total demagnetisation factor (saved to matrix
Demagmatrix) of each constituent particle is obtained by summing the
respective x slices associated with the particle, as shown in Fig. 6 and the
code in Algorithm 5. The final part of the code converts the

(xlength, ylength, zlength)

(1,1, 1)

(1, ylength, 1) ¥

Fig. 2. Representation of matrix N,. Each element contributes to the demagnetisation factor of the particle centred at the origin of the lattice for each particle in the
lattice (xq, yq, zg). Element (1, 1, 1) is the self-contribution of the particle at the origin of the lattice (0, 0, 0). Note the shift in referencing the elements to the particles

in the lattice and that N, is the same size as the user-defined lattice.
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Algorithm 2

MATLAB 2022b code was used to create matrix Nzfull by replicating the contents of matrix Nz to form eight octants centred on Nz’s element (1, 1, 1).
Y%set-up "summation matrix"

Nzfull = zeros ((2*xlength)-1,(2*ylength)-1,(2*zlength)-1);

%populate "summation matrix"

for zg = -zlength+1:zlength-1

for yg = -ylength-+1:ylength-1

for xg = -xlength+1:xlength-1

Nzfull(xg+xlength,yg+ylength,zg+zlength) = ...

Nz(abs(xg)-+1,abs(yg)+1,abs(zg)+1);

end

end
end

(2xlength-1, 2ylength-1, 2zlength-1)
(xlength, ylength, zlength)

X

(L L1 (1, 2ylength-1,1) 5
Fig. 3. The left-hand side shows the overall dimensions of the summation matrix Nzfull. The central element (xlength, ylength, and zlength) is equal to Nz (1, 1, 1).
The right-hand side shows the basic premise of the summation technique. The overall demagnetisation factor of each constituent particle can be determined by

moving a subset equal in size to the user-defined lattice through Nzfull and summing each time over its content. Note that the central element containing the
particle’s self-demagnetisation field contribution is always included in the subset.

demagnetisation factor to SI and calculates the mean demagnetisation
factor of the sample. By removing the repetition of the summation
process, this program takes seconds to run compared to the hours of
labouriously moving and summing the contents of the subset.

2.4. Fast calculation for a containing vessel of any shape

For a container of any shape, reduction summation techniques used
for simple cuboids are difficult to implement. An alternative is to use the

summed column in z direction sum of example column

N

X

y

Fig. 4. The left-hand side shows the first-column summation, column length zlength, which is used to break down Nzfull into smaller chunks. A column summation is
performed for every x y coordinate, starting in the z plane (2zlength -1), and then repeated for other z planes up to and including the z plane (zlength). Each column

summation is written in the matrix Downstack. The right-hand side is a representation of Downstack and shows the location of the summation of the columns shown
on the left.
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Algorithm 3
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MATLAB 2022b code was used to create and populate the matrix Downstack. Each element of Downstack is a column summation, length of zlength, taken from the

matrix Nzfull.

%create Downstack matrix
Downstack = zeros ((2*xlength)-1, (2*ylength)-1, zlength);
% find column (z direction) sums and populate Downstack
for k = (2*zlength)-1:-1:zlength
for j = (2*ylength)-1:-1:1
for i = (2*xlength)-1:-1:1
Downstack(i, j, k-(zlength-1)) = sum(Nzfull(j, j, k-(zlength-1):k));
end
end
end

Summed row in y direction

Sum of example row

X

y

Fig. 5. The left-hand side shows the first-row summation of the matrix Downstack, length of ylength; this is equivalent to summing up a slice in the Ndfull matrix of
dimensions (1, ylength, zlength). This summation would need to be repeated for every x z coordinate in each y plane, starting from the y plane (2ylength-1) and
ending on (and including) the y plane (ylength). This “slice” summation is stored in the matrix xslice; a representation is shown in the right-hand side for this first-

row summation.

Algorithm 4

MATLAB 2022b code was used to create and populate matrix xslices. Each element in this matrix is the summation of a row, length of ylength, taken from the matrix
Downstack. This summation is equivalent to summing a slice in the matrix Ndfull in the x-plane of dimensions (1, ylength, zlength).

%create xslice
xslice = zeros ((2*xlength)-1, ylength, zlength);
%calculating all the x slice summations
for k = zlength:-1:1
for j = O:ylength-1
for i = (2*xlength)-1:-1:1
xslice(i, ylength-j, k) = ...
sum(Downstack(i, ylength-j:(2*ylength)-1-j, k));
end
end
end

concept of regression towards the mean; if a mean is taken from an
increasing number of samples taken from a population, the closer the
mean for the sample is to the mean of the population. The results in this
study show that it is possible to obtain the mean demagnetisation factor
of a sample by examining only as little as 5 % (or even less) of the
constituent particles, meaning that summing over the subset taken from
the matrix Nzfull becomes a viable option.

For cuboids, the shape of the containing vessel is defined by the di-
mensions of the lattice. The cuboid lattice is still used in this variation of
the summation code, but an additional matrix is used, a mask, which
specifies if a particle is absent or present with its elements being either
“0” or “1” respectively. In this manner, only the particles within the
mask are considered in the final demagnetisation factor calculation,
while maintaining the efficiency described earlier for the fast calculation
of the cuboid matrix. This mask matrix, Othello, consists of a user-
defined lattice, a cuboid, with the shape of interest etched within.

The mask matrix can be simply typed by the user. However, ellipsoid
containers were used for testing because their demagnetisation factors
are well known. An example program for generating ellipsoid masks is

provided in Appendix A. Fig. 7 shows an example of a spherical global
shape. The cuboid shape represents the matrix Othello; all the particles of
Othello that reside in the sphere would be set at “1” while the others
would be at “0”.

Determination of the number of samples to be taken is based on the
principle of regression to the mean, which is illustrated in the results
section. Here, the first part of the program shows the implementation of
the number of samples to be taken from the population of particles and
then to randomly select particles up to a user-defined percentage, Al-
gorithm 6. The fraction of samples to be taken frac in the example code is
5 %. The number of particles contained in the container msize, is found
by counting the number of “1” contained within the mask matrix Othello.
The total number of samples to be taken is the number of particles
multiplied by the required sample fraction, samples.

The particles are then randomly selected from the population, and
their coordinates are recorded in arrays p, g, and r (x, y, and z co-
ordinates, respectively). A test is conducted to check whether the
randomly selected coordinates are for a particle that is present in Othello;
if not, another coordinate will be selected, and the test is reapplied.
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Sum row in x direction

X Sum of example row

Fig. 6. The left-hand side shows the first-row summation, length of xlength, made in the matrix xslices, which provides the full demagnetisation factor of the particle
at position (0, 0, 0) in the user-defined lattice. This subset was originally envisaged in the first iteration of the model. This summation is repeated for every y z
coordinate for each x plane, starting from the x plane (2xlength-1) and ending at, and including the x plane (xlength). The resulting summations are written to the
matrix Demagmatrix, as shown on the right-hand side. Each element in Demagmatrix is the full demagnetisation factor of a particle in the lattice. Note the shift in
referencing as element (1, 1, 1) refers to the demagnetisation factor of the particle at the lattice position (0, 0, 0).

The second part of the program, Algorithm 7, creates a matrix Nzsub,
which functions as the subset in the contribution matrix Nzfull, and a
matrix Demagmatrix, to hold the summation of the contributions held in
this subset. Based on the coordinates of each selected particle, the subset
matrix is populated from Nzfull and multiplied by the mask matrix. This
provides the actual contribution of the particles within the container
shape. The demagnetisation factor of the particle is then determined by
summing all the contributions within the subset. These were converted
into SI values and the mean and standard error were calculated.

2.5. Fast calculation for container shapes with uniform cross-section

The technique presented in this section applies to any container
vessel with a uniform cross-section in the x-y plane (perpendicular to the
applied magnetic field in the z-direction). A representation of this is
shown in Fig. 8. Similar to the cuboid program, the contribution matrix
is summed up in columns in the z-direction, Algorithm 3. For a subset
moving through Nzfull, representing the elements that must be summed
per constituent particle, we can envisage that the subset consists of these
columns. It is then possible within this subset to accept or reject columns
to be included in the summation, depending on the required shape
described by a 2-D mask matrix.

To define the shape, as for the generic container routine, a mask is
required; in this case the mask takes the form of a 2-D matrix (Othello),
again with “0” and “1” to represent the absence or presence of a particle.
In this case, the mask defines the container shape in the x-y plane.
Because the demagnetisation factors of cylinders are well defined in the
literature, these were the shapes used for testing. A program to create

Algorithm 5

this 2-D mask, a circle contained within the given lattice x-y space, is
presented in Appendix B. Fig. 9 shows a top-down view of the matrix
relationships. The purple squares represent the matrix Downstack. A
subset 2-D matrix, isolate, represented by the black square, is moved

Fig. 7. Representation of mask matrix Othello for a spherical sample container
shape. All the elements that sit fully within the sphere will be set at “1” while
other elements will be at “0”, representing the presence or absence of particles
in the lattice.

MATLAB 2022b code was used to create and populate the matrix Demagmatrix. Each element in this matrix is the summation of a row, length of xlength, taken from the
matrix xslices. This summation is equivalent to summing up the subset of matrix Ndfull, as originally intended, as shown in Fig. 3.

%create Demagmatrix
Demagmatrix = zeros (xlength,ylength,zlength);
%populate Demagmatrix
for k = 0:zlength-1
for j = O:ylength-1
for i = O:xlength-1
Demagmatrix(i+1, j+1, k+1) = ...
sum(xslice(xlength-i:(2*xlength)-1-i, ylength-j, zlength-k));
end
end
end
Demagmatrix = abs(Demagmatrix)./(4*pi);
valmean = mean(mean(mean(Demagmatrix)))
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MATLAB 2022b code was used to calculate the number of particles required from the total population to be used to calculate the mean demagnetisation factor and their

respective coordinates in the user-defined lattice.

%number of samples to take
frac = 0.05;
msize = sum(sum(sum(Othello)));
samples = round(msize*frac);
%select coordinates of particles to sample
for i = 1:samples
cond = false;
while cond == false
p(i) = randi(xlength);
q(i) = randi(ylength);
r(i) = randi(zlength);
if Othello(p(i), q(), r()) ==1
cond = true;
end
end
end

Algorithm 7

Matlab2022b code that calculates the demagnetisation factors of only the selected particles, calculating a mean value based on this limited selection.

%create matrices Nzsub (subset) and Demagmatrix (particle demagnetisation factors)
Nzsub = zeros (xlength,ylength,zlength);
Demagmatrix = zeros (xlength,ylength,zlength);
%populate Demagmatrix
for i = 1:samples
Nzsub = Nzfull(xlength+1-p(i):(2*xlength)-p(i),...
ylength+1-q(i):(2*ylength)-q(i),zlength+1-r(i):(2*zlength)-r(i));
Nzsub = Nzsub.*Othello;
Demagmatrix(p(i),q(i),r(i)) = sum(sum(sum(Nzsub,3)));
end
%calculation of the mean and standard error of the sample’s demag factor.
Demagmatrix = abs(Demagmatrix)./(4*pi);
Demagmatrix = Demagmatrix.*Othello;
Demagmatrix(Demagmatrix == 0) = NaN;
valmean = mean(Demagmatrix,"all","omitnan")
valstd = std(Demagmatrix,[],"all","omitnan");

Fig. 8. The left-hand side is a representation of the matrix Nzfull, with the first column to be summed highlighted. This is the same technique as that used in the fast
cuboid summation algorithm. However, the right-hand side shows the difference between the two algorithms: a mask can be used to define which columns to accept
or reject as part of the overall summation, with acceptance being given to columns that fit in the desired shape, in this case, a cylinder.

through Downstack; for each element in Downstack, isolate is multiplied
by the mask matrix Othello (same dimensions as isolate, with “1” values
in the red circle) and the product, tosum, is then summed up to give the
demagnetisation factor for a given lattice position, matrix Demagmatrix.
By multiplying Demagmatrix by the mask matrix for each z-layer,
Demagmatrix will only contain demagnetisation factors for particles
present (rather than the contributions of magnetic fields generated by
constituent particles at points outside the sample), as given in Algorithm
8.

3. Results and discussion
3.1. Fast calculation for cuboids

In previous work, using the original iteration of the model [19], a
concern was addressed regarding sample size; testing to see if appre-
ciable differences in the distributions of the demagnetisation factors of
the constituent particles occurred if larger sample sizes were used, even
if the overall aspect ratio of the containing shape remained the same. A
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Fig. 9. A 2-D view of the matrix Downstack, looking down in the z-direction.
The black square represents the matrix isolate, which is moved through
Downstack, while the red circle within isolate, as defined by the matrix Othello,
represents the columns that will be accepted for summation.

Algorithm 8

Computer Physics Communications 319 (2026) 109938

comparison was made between two cube samples, one with an edge
length of 41 particles and the other 151 particles. The normalised dis-
tributions of the demagnetisation factors of the constituent particles
were examined. A two-sample Kolmogorov-Smirnov test was performed
with the null hypothesis that the two datasets were drawn from the same
distribution. The test indicated that the null hypothesis was not rejected
at the 5 % significance level with a p-value of 0.8938.

The difference between the original iteration of the model and the
latest version is simply the efficiency, which significantly reduces run-
time. The original version was capable of handling sample sizes that
consisted of approximately one million particles; above this, run times
quickly escalated to several days and were simply not feasible. With
improvements in the efficiency of the model, larger samples could be
evaluated. Fig. 10 shows the normalised distributions for cubic samples,
one of the edge length 101 particles, and the other 501 particles; both
samples have touching particles (m = 1, giving volume packing fractions
of n/6). The two-sample Kolmogorov-Smirnov test again showed that
the null hypothesis was not rejected at the 5 % significance level, but
with an increased p-value of 0.9848. The larger sample’s distribution
appears smoother and does not form such a noticeable secondary high-
end peak, but the similarity is striking. Because the demagnetisation
factors in the model are all related to the geometry (the demagnetisation
field within the constituent spherical particle is uniform and has no
dependence on its susceptibility), it is not surprising that small sample

MATLAB 2022b code was used to calculate the demagnetisation factors for the constituent particles in a container shape with uniform cross-section, as defined in the 2-

D mask matrix Othello.

Y%create Demagmatrix
Demagmatrix = zeros (xlength,ylength,zlength);
Y%isolating required columns per particle and populating Demagmatrix
layer = 0;
for k = zlength:-1:1
layer = layer + 1;
for j = 0:ylength-1
for i = O:xlength-1
isolate = Downstack(xlength-i:(2*xlength)-1-i,...
ylength-j:(2*ylength)-1-j, k);
tosum = isolate.*Othello;
Demagmatrix(i+1,j+1,layer) = sum(sum(tosum));
end
end
end
%"shaping" Demagmatrix; only for present particles
for z = 1:zlength
Demagmatrix(:,:,z) = Demagmatrix(:,:,z).*Othello;
end
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Fig. 10. Comparison of the distributions of the demagnetisation factors of the constituent particles for cubic samples with different edge lengths obtained from the
model. A comparison is made between a sample of edge length 101 particles and another of length 501 particles.
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Fig. 11. Spatial distribution of demagnetisation factors of constituent particles for cubic sample with edge length of 501 particles.

Table 1

A comparison of the mean demagnetisation factors of the cuboid samples N, obtained from the model and Eq. (2). Note that D, is obtained from [12] and is for cuboids
with aspect ratios varying from one to ten (comparing the z-direction size to that of x and y). This is a close but not exact match for the samples simulated in the model,

apart from the z length of 101 particles).

Sample size (x, y, z) D,, demag. factor of overall shape

N,, mean demag. factor (Eq. (2))

N_, mean demag. factor Ratio of N, (model over Eq. (2) output)

(Aharoni) (model)
(101, 101, 101) 0.33333 0.33333 0.33333 1.0000
(101, 101, 201) 0.19832 0.26264 0.26293 1.0011
(101, 101, 301) 0.14036 0.23229 0.23254 1.0011
(101, 101, 401) 0.10845 0.21558 0.21577 1.0009
(101, 101, 501) 0.088316 0.20504 0.20517 1.0006
(101, 101, 601) 0.074466 0.19779 0.19787 1.0004
(101, 101, 701) 0.064363 0.19250 0.19254 1.0002
(101, 101, 801) 0.056670 0.18847 0.18848 1.0001
(101, 101, 901) 0.050617 0.18530 0.18529 0.9999
(101, 101, 1001) 0.045731 0.18274 0.18271 0.9998

sizes would give a good approximation to that of larger samples, as the
containing shape itself is important. Larger sample sizes yielded better
approximations, but there was an element of diminishing returns be-
tween the computational time and the quality of data obtained.

The model was designed such that the 3D spatial distribution of the
demagnetisation factors of the constituent particles can be found, as
shown in Fig. 11, for a cube sample with an edge length of 501 particles
that are in contact. The figure shows slices taken from the output of the
model, illustrating the spatial distribution of the demagnetisation fac-
tors of the constituent particles. With the applied field in the z-direction,
as shown, the largest N, values were observed on the top and bottom
surfaces, while the lowest values were observed on the side surfaces, as
expected. For clarity, only two slices cutting through the cuboid are
shown and illustrate the tendency to converge on N, values of /5 to-
wards the centre particle. This was consistent with the dominance of the
cuboid shape at the surfaces (and their associated surface poles)
reducing to that of a single isolated particle.

To demonstrate the validity of the model, the mean demagnetisation
factor Nz was calculated from the spatial distribution and compared
with the output of Eq. (2). This can be performed for a range of cuboid
sizes at a set packing fraction volume. The model was used with a set
number of particles in the x- and y-directions of 101 particles and at a
volume packing fraction of 1/6 (m = 1). The sample size in the z-direction
was varied between each test, ranging from 101 to 1001 particles with a
step size of 100. The mean demagnetisation factors for these ten tests are
shown in Table 1. The table also includes the mean demagnetisation
factor calculated using Eq. (2): The value of the demagnetisation factor
of the cuboid D, taken from the calculations of Aharoni [12] (this is the
magnetometric demagnetisation factor with susceptibility being zero). A
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comparison of these two values of Ny illustrates their closeness, giving
confidence in the model. The full model data are summarised as cu-
mulative distribution functions, as plotted in Fig. 12.

As the cuboid became increasingly elongated in the z-direction, the
distribution of the constituent particle demagnetisation factors became
sharper and skewed, and the mean demagnetisation factor decreased.
This behaviour follows the pattern observed in solid samples [1,12],
whereby increasingly elongated samples would tend to have demag-
netisation factors approaching zero in the direction of elongation.
Fig. 13 and Fig. 14 show the normalised and spatial distributions of the
demagnetisation factors of the constituent particles held within a cuboid
sample with a ratio of 10:1. When compared to the same matching data
for a cubic sample (ratio 1:1) in Fig. 10 and Fig. 11, the impact of the
elongation is evident.

The impact of removing duplication in the summing process carried
out in this new algorithm on performance was evident. A linear rela-
tionship between execution time and simulation size was found, running
at 10.2 seconds per million particles. This compares to the squared
relationship for the original simple summation process with an execu-
tion time of approximately 4,000 seconds for a simulation of a million
particles and 100,000 seconds for five million particles. Further details
are given in Appendix C and are illustrated in Fig. C 1.

3.2. Fast calculation for any shape by using regression to the mean

At the heart of this process is the use of regression towards the mean
to enable a feasible runtime. To evaluate the amount of sampling
required to obtain meaningful data, a dataset was used that had a known
average demagnetisation factor. In this case, the spatial distribution of
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Fig. 12. Cumulative frequency distribution of the cuboid samples. As the cuboid became elongated, the distributions became sharper and more asymmetrical. The
ratios given here (z-direction size compared to the x-y size) have been rounded for simplicity.
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Fig. 13. Demagnetisation factors of constituent particles for a cubic sample with dimensions of 101 x 101 x 1001. This clearly shows a shift to lower values of
demagnetisation factors as the cuboids are elongated, with sharper peaks and asymmetric distributions compared to Fig. 10.
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Fig. 14. Spatial distribution of demagnetisation factors of constituent particles for a cuboid sample with dimensions of 101 x 101 x 1001. Compared with a cubic
sample, Fig. 11, the constituent particle demagnetisation factors are typically lower. The particles within the bulk have relatively consistent values with those near
the top and bottom surfaces, where the magnetic field enters and leaves the sample, with a large variation from the mean.
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Fig. 15. The mean demagnetisation factor of a cubic sample with an edge length of 101 particles was calculated from the increasing percentage of the sampled
particles. The mean value of such a sample is /5 (orange line), and the graph shows that as more particles are sampled, the calculated mean value regresses to-

wards this.
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Fig. 16. Spatial distribution of the demagnetisation factors of the constituent particles for a spherical sample with a diameter of 101 particles. Most of the particles
have values of approximately /s, which is expected because this is the mean demagnetisation factor of a sphere and the demagnetisation field of an ellipsoid is
uniform. The particles closer to the surface of the sphere deviate from this value.

the demagnetisation factors for the constituent particles of a cube
sample is edge length 101 particles (m = 1) with a mean demagnet-
isation factor of /5. By randomly selecting particles and maintaining a
running average, a comparison can be made between this value and the
known average for the entire dataset. This can be performed several
times to obtain confidence in the results, as shown in Fig. 15. Typically,
after sampling 5 % of the particles, the running average was within 0.2
% of the mean of the entire sample, and this Fig. was used throughout
most of the testing for this algorithm.

To gain confidence in this element of the model, it was decided to
evaluate it while examining ellipsoid container shapes, ellipsoids with
well-defined D, values [11], and the interesting characteristic that for
solid volumes, the demagnetisation field is uniform for ellipsoids
throughout. Additionally, the random sampling element was removed
(100 % of particles examined) for particles within a sphere with a
diameter of 101 particles. This enabled us to obtain a spatial distribution
at the cost of a significantly longer running time for this container shape.
The spatial distribution of the demagnetisation factors of the constituent
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particles is shown in Fig. 16. Of interest is the uniformity of the
demagnetisation factors, clustered about the expected value of /5 with
deviations occurring towards the surface. This is consistent with the
expectation of a solid sphere having a uniform demagnetisation field
[1], with the difference caused by the packed powder nature of the
sample. Tight clustering is illustrated by the distribution shown in
Fig. 17. Fig. 18 shows a look down view onto the spherical sample such
that the demagnetisation factors of the particles on the surface of the
upper hemisphere are presented in a 2-D format. Here, it can be clearly
observed that there is a high variation in the demagnetisation factors at
the surface compared with the bulk.

The model was run for samples that consisted of ellipsoid container
shapes, packed with particles with a volume packing fraction of n/6 (m
= 1), with a constant diameter in the x and y directions of length 101
particles, sampling 5 % of the constituent particles. The first run had a z-
direction diameter of 101 particles, with subsequent runs increasing this
diameter by 100 each time, up to a final value of 1001. The mean
demagnetisation factors of the samples are listed in Table 2. For
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Fig. 17. Distribution of the constituent particle’s factor for a sphere of diameter 101 particles. The distribution is sharp and centred at a mean value of '/;. The x-axis
scale includes the minimum constituent particle demagnetisation factor of 0.1595 and maximum of 0.4470, thus emphasising the narrowness of the distribution.
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Fig. 18. Spatial distribution of the demagnetisation factors of the particles at the surface of the upper hemisphere of the spherical sample: An effective lookdown
view of the data, as shown in Fig. 16, following the axis of the magnetic field. This illustrates the large variation in the demagnetisation factors of the particles

compared with those within the bulk of the sphere.

comparison, Table 2 lists the mean demagnetisation factors calculated
using Eq. (2). For the ellipsoid samples, the N, values from both the
model and Eq. (2) are close, thus providing confidence in the model. The
full model data are summarised in the cumulative distribution functions
plotted in Fig. 19. As the ellipsoid is elongated in the z-direction, the
distribution of the demagnetisation factors of the individual particles
shifts to lower values; however, the sharpness of the distribution re-
mains, which is consistent with the demagnetisation field within the
sample being uniform within the bulk.

Apart from being able to obtain more information about the
demagnetisation of a sample than the mean value that can be extracted
from Eq. (2), it is possible to obtain the magnetometric demagnetisation
factor (for zero susceptibility) for any solid shape. The shape would be
defined in the same way as used here for the ellipsoids using the “0” and
“1” as absent or present particles in the Othello matrix. The mean value
of the demagnetisation factor output from the model, along with the
volume packing fraction (simple calculation), can then be inputted into
Eq. (2), which can then be used to obtain the demagnetisation factor of
the shape D,.

Since the summation process used in this algorithm is a simple
summation over a selected subsection of the matrix Nzfull, the actual
performance speed is slow, on par with the original model’s cuboid
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summation process (and hence the need to use sampling and regression
to the mean). Typically, in testing, the improvements using the sampling
and regression approach mean this algorithm was working at 3.95 sec-
onds per billion summations performed.

3.3. Fast calculation for container shapes with uniform cross-section

To allow a clear comparison with the accepted values in the litera-
ture, this algorithm was used to examine the demagnetisation infor-
mation for cylindrical samples packed with particles to obtain a volume
packing fraction of 0.513 (m = 1). The cylinders had a consistent
diameter of 101 particles, with the length of the cylinder (z-direction)
altered. The samples were investigated as cylinders with lengths ranging
from 101 to 1001 particles in steps of 100. In addition, the lengths of the
51 and 2001 particles were examined. An example of the spatial dis-
tribution of a cylindrical sample is shown in Fig. 20. The mean
demagnetisation factors of the samples are listed in Table 3. For com-
parison, the table also includes the mean demagnetisation factor
calculated using Eq. (2). Similar to cuboid samples, if a sample consists
of a solid cylinder, its demagnetisation field is not uniform, and there-
fore its susceptibility must be considered. Hence, the D, values used in
Eq. (2) corresponds to zero susceptibility [13]. A close relationship exists
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A comparison of the mean demagnetisation factors of ellipsoid samples N, obtained from the model and Eq. (2), with a fixed packing fraction of = / 6 (m = 1). Note that
D, is obtained from [11] and is for ellipsoids with aspect ratios in the range of one to ten (comparing the z-direction size to that of x y). There is a close but not exact
match for the samples simulated in the model, apart from the z-length of 101 particles).

Sample size: diameters (X, y, D,, demag. factor of overall shape

N,, mean demag. factor (Eq.

N,, mean demag. factor Ratio of N, (model over Eq. (2)

z) (Osborn) (2)) (model) output)
(101, 101, 101) 0.33333 0.33333 0.33332 1.0000
(101, 101, 201) 0.17356 0.24965 0.25027 1.0025
(101, 101, 301) 0.10871 0.21571 0.21630 1.0027
(101, 101, 401) 0.075407 0.19825 0.19875 1.0025
(101, 101, 501) 0.055821 0.18803 0.18837 1.0018
(101, 101, 601) 0.043230 0.18142 0.18167 1.0013
(101, 101, 701) 0.034609 0.17691 0.17710 1.0011
(101, 101, 801) 0.028421 0.17366 0.17382 1.0009
(101, 101, 901) 0.023816 0.17125 0.17132 1.0004
(101, 101, 1001) 0.020286 0.16940 0.16945 1.0003

between the N, values obtained from the model and those obtained from
Eq. (2); however, there was slightly more variation than that for the
previously discussed shapes. The full model data are summarised in the
cumulative distribution functions plotted in Fig. 21. Similar to that of
the cuboid samples, when the length of the sample in the z-direction was
low, the distribution of the constituent particle’s demagnetisation fac-
tors was broad; however, as the length increased, the distribution
became increasingly sharper and asymmetrical in the same manner as
that for the elongation of a cuboid.

Since this algorithm used some of the techniques utilised in the
cuboid summation process, its execution time was relatively quick. On
the cylinder simulations, this script was typically taking 27.7 seconds
per million lattice spaces.

3.4. The contribution matrix: timing performance

All the summation techniques discussed require the contribution
matrix Nz as an input. With the improvements and new techniques used,
it is the generation of this matrix that is now, in most cases, the most
time-consuming part of the overall simulation. The relationship between
execution time and simulation size is linear, typically taking 374 seconds
per million particle contributions.

4. Conclusion

A polar-based model was developed to determine the overall (mean)
magnetometric demagnetisation factor of an assembly of spherical
particles contained within a given shape, in conjunction with their dis-
tribution throughout the volume.

Initially, based on a model developed for cuboid containers [19], the
efficiency was significantly improved by eliminating unnecessary repe-
titions of particle summations when moving from element to element,
thereby reducing the total calculation time, typically from hours to
seconds. The method is equally applicable to any volume with a uniform
cross-sectional shape and was tested using cylinders.

Extending the model further using the concept of a mask applied to
the original cuboid matrix allowed demagnetisation factors for a series
of different shapes to be calculated. The ellipsoids and cylinders were
chosen to enable comparison with the accepted values for solid shapes,
and in each case, compared well to the model by applying the known
solid factors to the simple analytical expression, Eq. (2), which considers
the effects of the volumetric packing fraction.

Further efficiencies were obtained by utilising a regression to the
mean methodology, which showed sufficient convergence on ellipsoids
after randomly sampling as little as 5 % of the constituent particles.
Ellipsoids were deliberately chosen to provide confidence more widely
in the model when applied to other shapes because of (i) variation in the
cross-section and (ii) characteristically known to have a uniform
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Fig. 19. Cumulative frequency distribution of ellipsoid samples. As the ellipsoid became elongated, the demagnetisation factor of the constituent particles decreased,
but the distributions remained sharp and tightly clustered around the mean value. The ratios given here (z-direction size compared to the x-y size) have been rounded

for simplicity.
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Fig. 20. The spatial distributions of the demagnetisation factors of the constituent particles for a cylindrical sample of diameter and length were both equal to

101 particles.

Table 3

A comparison of the mean demagnetisation factors of cylindrical samples N,
obtained from the model and Eq. (2). Note that the D, values are obtained from
[13], and are for cylinders with aspect ratios that closely match those used in the
model (comparing the z-direction size to that of the x y).

demagnetisation field at any point within the volume. This method
yields a final single demagnetisation factor that is comparable to the
calculation of all particles. The cost is the loss of the full 3D spatial
distribution, and thus is a user-dependent choice.

Confidence in the model gained by using these well-known shapes
should now allow demagnetisation factors for any shape to be deter-

Sample size: D,, demag. Ng, Ng, Ratio of N, . .
amp'e size emag mean mean atio o mined, and by using Eq. (2) can be extended to calculate unknown
length of factor of overall ~ demag. demag. (model over )
cylinder (z shape (Chenet  factor (Eq. factor Eq. (2) factors for the solid forms of these shapes: a useful result for both
direction) al) (2) (model) output) experimental and modelling observations.
51 0.47449 0.40570 0.40481 0.9978 A major advantage of using a polar model approach is that the
101 0.31157 0.32218 0.32065 0.9953 equations used, see (3) to (6), reduce to that of geometry alone, provided
201 0.18186 0.25567 0.25336 0.9910 that the constituent particles have the same ellipsoid shape. By
zgi 0.12777 0.22794 8'5325; 0.9880 approximating real particles to ellipsoids, the model is material inde-
501 0.079908 0.20340 0.20025 0.9845 pendent and applicable to any scale and shape of the containing vessel.
601 0.19365 In addition to the single demagnetisation figure obtained here (the
701 0.18885 average of the assembly), the model also allows the distribution of the
801 0.18520 individual particle factors to be mapped spatially over the volume and
901 0.18233 . - .
1001 0.041196 0.18356 0.18002 0.9807 shows 1nterest1n.g and hlgply skewed values an.d patterns. towards the
2001 0.020909 0.17315 0.16941 0.9784 surfaces. There is some evidence from our previous experimental work
[19] that when highly skewed distributions are expected owing to the
containing shape, the easily obtained modal value is closer to the real
1 — -
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Fig. 21. Cumulative frequency distribution for the cylindrical samples. As the cylinder was elongated, the distributions became sharper and more asymmetrical, as
observed for cuboid samples. The ratios given here (z-direction size compared to the x-y size) have been rounded for simplicity.
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value of the system. Furthermore, some preliminary work to examine
the effects of particle agglomeration in samples of the same container
size, shape, and packing fraction resulted in significant changes in the
spatial distributions, and as this may affect the experimental observa-
tions, it is the subject of further work.

During the development and writing of the algorithms used in this
paper, it was our intention to make sure that the coding was as easy to
follow as possible and that could be run on an inexpensive non-specialist
computer. Using nested for statements within the code was a decision
that we made since it seemed more intuitive than using linear indexing
[23]: the speed difference being too marginally a gain over readability.
We also wanted to keep the coding as such that it was not dependent on
hardware setups. In future developments of the algorithms we will be
looking at using parallel computing as means of further improving run
speed; for example, using “parfor loops” (parallel for loops). Since parfor
loops cannot be nested, this future coding will have to use linear
indexing to maximise the full potential of parallelisation [24].

Appendix A. An example program for generating ellipsoid masks

Computer Physics Communications 319 (2026) 109938

Data availability

The code, performance data,and example mask matrices, are avail-
able at: https://github.com/physicssteve/Demagnetisation-Factor.git
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To provide evidence that the algorithms that calculate the demagnetisation information for any shape are valid, ellipsoids were selected as the
demonstration shape for comparison with data in the literature. The shape of interest is “etched” into a cuboid lattice using “1” and “0” to signify the
presence or absence respectively of a particle in the lattice: this is the Othello matrix, or mask, used in the “any shape” algorithms. Algorithm 9 is an
example program used to create a mask, in this case, an ellipsoid of equal size in the x- and y-directions, of 101 particles, and with a z-length of 901
particles. In this example, the initial lattice consists of touching spherical particles of unity diameter in a simple cubic arrangement. The first part of the
program accepts or rejects particles depending on whether their centres lie within the desired ellipsoid shape. The second part examines the particles
at the surface of this “rough and ready” ellipsoid mapped out in the first section, and tests to determine whether the particle touches or intersects with
the required ellipsoid shape. This is achieved by solving the equation for a given particle with the equation governing the ellipsoid shape and testing to
determine whether the solution is purely imaginary (lies fully within the ellipsoid) or has real elements (intersects or touches the ellipsoid).

Algorithm 9

MATLAB 2022b code that generates the mask matrix Othello for an ellipsoid of approximate ratio of 1:1:9 (x, y,
z). The first stage of the code is to assess whether a particle’s centre lies within the overall ellipsoid container
shape. In the second stage, the particles at the surface are tested to confirm that they fully lie within the
container shape.

Othello = zeros(101,101,901);
Syms Xy z
%rough check: test to see if the centre of the particles lies within the
%ellipsoid.
for k = 0.5:900.5
for j = 0.5:100.5
for i = 0.5:100.5
ellip=((i-50.5)/50.5)"2 + ((j-50.5)/50.5)"2 + ((k-450.5)/450.5)"2;

ifellip <1

Othello(i+0.5, j+0.5, k+0.5) = 1;

end

end

end

end

%detailed check to test if the full particle resides within the ellipsoid.
for j = 1:101

fori=1:101

k=1;

if sum(Othello(i, j, 1:901)) == 0
cond = false;

else

cond = true;

end

while cond == true && k <=451
if Othello(j, j, k) == 1

eqns = [((x-50.5)/50.5)"2 + ((y-50.5)/50.5)"2 + ((z-450.5)/450.5)"2 == 1, (x-i-0.5)"2 + (y-j-0.5)"2 + (z-k-0.5)"2 ==
0.5"2];

vars = [x y z];

[X Y Z] = solve(egns, vars);

X = double(X);

testX = isreal(X);

Y = double(Y);

testY = isreal(Y);

(continued on next page)
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Algorithm 9 (continued)

Computer Physics Communications 319 (2026) 109938

Z = double(Z);

testZ = isreal(Z);

if testX == true && testY == true && testZ == true
Othello(, j, k) = 0;
Othello(, j, 901-k+1) = 0;
else

cond = false;

end

end

k =k+1;

end

end

end

clearvars -except Othello

Appendix B. An example program to create a 2-D mask for container shapes with uniform cross-section

The masks required for container shapes with a consistent cross-sectional area in the xy plane are much simpler to create because only the absence
or presence of particles in this plane is required (because it can be duplicated along the z-axis. As cylinders are well documented in the literature, this
shape was selected for testing, which requires the generation of circular masks. Algorithm 10 is an example of a piece of code used to create such a

mask, which is a circular mask with a diameter of 101 particles.

Algorithm 10

MATLAB 2022b code that generates the mask matrix Othello for a circular cross section.

Othello = zeros(101);
for j = 0.5:1:100.5
for i = 0.5:1:100.5
d = sqrt((50.5-)"2 + (50.5-j)"2);

ifd <=50.5- 0.5
Othello(i4-0.5, j+0.5) = 1;
else

Othello(i+0.5, j+0.5) = 0;
end

end

end

clearvars -except Othello

Appendix C. Comparison of new fast cuboid algorithm with the original

Performance testing was carried out on five cuboid simulations of touching particles. Each simulation had a consistent x- and y-axes length of 101
particles each and a z- axis initially set at 101 particles, and then increased in steps of 100 to a final value of 501. A direct comparison was made
between the new fast cuboid algorithm and the original model’s simple summation process, Fig. C 1. The new algorithm reduced execution time
drastically, shifting the relationship between execution time and simulation size from a quadratic to linear. The new process now takes approximately

10 seconds per million particles in the simulation.
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Fig. C. 1: comparison of the new fast cuboid summation script compared to the original model’s summation process of a simple sum taken over a subset of the matrix
Nzfull for each particle. Note the log scale used on the y- axis.

References

[1

—

[2]

[3]

[4]

[5]

[6

—

[71

[8]

[9]

[10]

[11]

B.D. Cullity, C.D. Graham, Introduction to magnetic materials,, 2nd ed, IEEE/
Wiley, Hoboken, N.J, 2009.

C.R.H. Bahl, Estimating the demagnetization factors for regular permanent magnet
pieces, AIP Adv. 11 (2021) 075028, https://doi.org/10.1063/5.0060897.

Z. He, C. Liu, Z. Li, Z. Chu, X. Chen, X. Chen, Y. Guo, Advances in the use of
nanomaterials for nucleic acid detection in point-of-care testing devices: A review,
Front. Bioeng. Biotechnol. 10 (2022) 1020444, https://doi.org/10.3389/
fbioe.2022.1020444.

Q. Shen, C. Yu, Advances in superparamagnetic iron oxide nanoparticles modified
with branched polyethyleneimine for multimodal imaging, Front. Bioeng.
Biotechnol. 11 (2024) 1323316, https://doi.org/10.3389/fbioe.2023.1323316.
R.H. Fang, W. Gao, L. Zhang, Targeting drugs to tumours using cell membrane-
coated nanoparticles, Nat. Rev. Clin. Oncol. 20 (2023) 33-48, https://doi.org/
10.1038/541571-022-00699-x.

A.N. Stephen, T. Mercer, W. Stockburn, S.R. Dennison, J.E. Readman, S.M. Reddy,
Simple size tuning of magnetic nanoparticles using a microwave solvothermal
method and their application in facilitating the solid-phase synthesis of
molecularly imprinted polymers, Mater. Adv. 6 (2025) 2016-2028, https://doi.
org/10.1039/D4MAO01115E.

A. Shakeri-Zadeh, J.W.M. Bulte, Imaging-guided precision hyperthermia with
magnetic nanoparticles, Nat. Rev. Bioeng. (2024), https://doi.org/10.1038/
544222-024-00257-3.

M.M. Rajib, N. Bindal, R.K. Raj, B.K. Kaushik, J. Atulasimha, Skyrmion-mediated
nonvolatile ternary memory, Sci. Rep. 14 (2024) 17199, https://doi.org/10.1038/
541598-024-66853-w.

J.J.B. Levinsky, B. Beckmann, T. Gottschall, D. Koch, M. Ahmadi, O. Gutfleisch, G.
R. Blake, Giant magnetocaloric effect in a rare-earth-free layered coordination
polymer at liquid hydrogen temperatures, Nat. Commun. 15 (2024) 8559, https://
doi.org/10.1038/541467-024-52837-x.

S. Praharaj, D. Rout, Magnetic nanoparticles in catalysis industry, Fundam. Ind.
Appl. Magn. Nanoparticles, Elsevier (2022) 477-495, https://doi.org/10.1016/
B978-0-12-822819-7.00022-3.

J.A. Osborn, Demagnetizing factors of the general ellipsoid, Phys. Rev. 67 (1945)
351-357, https://doi.org/10.1103/PhysRev.67.351.

18

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]

[21]

[22]

[23]

[24]

A. Aharoni, Demagnetizing factors for rectangular ferromagnetic prisms, J. Appl.
Phys. 83 (1998) 3432-3434, https://doi.org/10.1063/1.367113.

D.-X. Chen, E. Pardo, A. Sanchez, Fluxmetric and magnetometric demagnetizing
factors for cylinders, J. Magn. Magn. Mater. 306 (2006) 135-146, https://doi.org/
10.1016/j.jmmm.2006.02.235.

G. Breit, Calculations of the effective permeability and dielectric constant of a
powder, Commun. Phys. Lab. Univ. Leiden 46 (1922) 293-308.

B. Bleaney, R.A. Hull, F.A. Lindemann, The effective susceptibility of a
paramagnetic powder, Proc. R. Soc. Lond. Ser. Math. Phys. Sci. 178 (1941) 86-92,
https://doi.org/10.1098/rspa.1941.0045.

R. Bjerk, Z. Zhou, The demagnetization factor for randomly packed spheroidal
particles, J. Magn. Magn. Mater. 476 (2019) 417-422, https://doi.org/10.1016/j.
jmmm.2019.01.005.

N. Mosleh, A.R. Insinga, C.R.H. Bahl, R. Bjgrk, The magnetic properties of packings
of cylinders, J. Magn. Magn. Mater. 607 (2024) 172391, https://doi.org/10.1016/
jjmmm.2024.172391.

COMSOL Multiphysics. www.comsol.com, 2024.

S.M. McCann, J. Leach, S.M. Reddy, T. Mercer, Methods of investigating the
demagnetization factors within assemblies of superparamagnetic nanoparticles,
AIP Adv. 12 (2022) 075212, https://doi.org/10.1063/5.0095899.

P.R. Bissell, D.A. Parker, G.E. Kay, R.D. Cookson, Validity of the sheet
demagnetising factor in characterisation of advanced metal particle tapes, J. Magn.
Magn. Mater. 242 (1) (2001) 359-361, https://doi.org/10.1016/50304-8853(01)
01159-3.

R.D. Cookson, Transverse susceptibility studies of recording media, PhD thesis,
University of Central Lancashire, 2002.

R.L. Lipsman, J.M. Rosenberg, Multivariable Calculus with MATLAB®, Springer
International Publishing, Cham, 2017 https://doi.org/10.1007/978-3-319-65070-
8.

S. Attaway, MATLAB: a practical introduction to programming and problem
solving, Elsevier, Butterworth-Heinemann, Kidlington, Oxford Cambridge, MA,
2023. Sixth edition.

Y.M. Altman, Accelerating MATLAB® performance: 1001 tips to speed up MATLAB
programs, CRC press, Boca Raton, 2015.


http://refhub.elsevier.com/S0010-4655(25)00439-4/sbref0001
http://refhub.elsevier.com/S0010-4655(25)00439-4/sbref0001
https://doi.org/10.1063/5.0060897
https://doi.org/10.3389/fbioe.2022.1020444
https://doi.org/10.3389/fbioe.2022.1020444
https://doi.org/10.3389/fbioe.2023.1323316
https://doi.org/10.1038/s41571-022-00699-x
https://doi.org/10.1038/s41571-022-00699-x
https://doi.org/10.1039/D4MA01115E
https://doi.org/10.1039/D4MA01115E
https://doi.org/10.1038/s44222-024-00257-3
https://doi.org/10.1038/s44222-024-00257-3
https://doi.org/10.1038/s41598-024-66853-w
https://doi.org/10.1038/s41598-024-66853-w
https://doi.org/10.1038/s41467-024-52837-x
https://doi.org/10.1038/s41467-024-52837-x
https://doi.org/10.1016/B978-0-12-822819-7.00022-3
https://doi.org/10.1016/B978-0-12-822819-7.00022-3
https://doi.org/10.1103/PhysRev.67.351
https://doi.org/10.1063/1.367113
https://doi.org/10.1016/j.jmmm.2006.02.235
https://doi.org/10.1016/j.jmmm.2006.02.235
http://refhub.elsevier.com/S0010-4655(25)00439-4/sbref0014
http://refhub.elsevier.com/S0010-4655(25)00439-4/sbref0014
https://doi.org/10.1098/rspa.1941.0045
https://doi.org/10.1016/j.jmmm.2019.01.005
https://doi.org/10.1016/j.jmmm.2019.01.005
https://doi.org/10.1016/j.jmmm.2024.172391
https://doi.org/10.1016/j.jmmm.2024.172391
http://www.comsol.com
https://doi.org/10.1063/5.0095899
https://doi.org/10.1016/S0304-8853(01)01159-3
https://doi.org/10.1016/S0304-8853(01)01159-3
http://refhub.elsevier.com/S0010-4655(25)00439-4/sbref0021
http://refhub.elsevier.com/S0010-4655(25)00439-4/sbref0021
https://doi.org/10.1007/978-3-319-65070-8
https://doi.org/10.1007/978-3-319-65070-8
http://refhub.elsevier.com/S0010-4655(25)00439-4/sbref0023
http://refhub.elsevier.com/S0010-4655(25)00439-4/sbref0023
http://refhub.elsevier.com/S0010-4655(25)00439-4/sbref0023
http://refhub.elsevier.com/S0010-4655(25)00439-4/sbref0024
http://refhub.elsevier.com/S0010-4655(25)00439-4/sbref0024

	Calculating the demagnetisation factors and their volume distribution within (a) assemblies of discrete magnetic elements a ...
	1 Introduction
	1.1 General concepts and motivation
	1.2 Model concept and development

	2 Method
	2.1 The premise; an adaptation
	2.2 The contribution matrix
	2.3 Fast calculation of the demagnetisation information for a cuboid sample
	2.4 Fast calculation for a containing vessel of any shape
	2.5 Fast calculation for container shapes with uniform cross-section

	3 Results and discussion
	3.1 Fast calculation for cuboids
	3.2 Fast calculation for any shape by using regression to the mean
	3.3 Fast calculation for container shapes with uniform cross-section
	3.4 The contribution matrix: timing performance

	4 Conclusion
	Data availability
	CRediT authorship contribution statement
	Declaration of competing interest
	Appendix A An example program for generating ellipsoid masks
	Appendix B An example program to create a 2-D mask for container shapes with uniform cross-section
	Appendix C Comparison of new fast cuboid algorithm with the original
	References


