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A B S T R A C T

Measuring the magnetic characteristics of a magnetic sample, it is critical to evaluate the self-demagnetisation 
field, because it reduces the effective magnetic field experienced by the sample. The demagnetisation factor 
depends on the shape and nature of the sample, whether it is a solid, ordered assembly of magnetic elements, or 
randomly packed magnetic powder in a containing vessel. Literature provides limited information on the 
demagnetisation factor of packed powders, typically for a restricted number of container shapes. This paper 
introduces algorithms based on a polar model written in MATLAB 2022b, which calculates not only the average 
demagnetisation factor but also the entire distribution of demagnetisation factors for the constituent particles 
and, by extension, to any assembly of magnetic elements within a given volume. Furthermore, this study explains 
how to enhance the efficiency of these algorithms, reduce runtime, and apply them to any container shape.

The validity of the algorithms was assessed by calculating the data for three common container shapes 
described in literature over a range of aspect ratios: cuboids, ellipsoids, and cylinders. The calculated mean 
demagnetisation factors matched those found in the literature, typically within 0.05 %, 0.1 %, and 1 %, 
respectively, for these shapes, demonstrating that the algorithms could be extrapolated to calculate demagnet
isation data for any container shape; by extension, the magnetometric demagnetisation factor (zero suscepti
bility) for any solid shape, a hitherto unattainable parameter.

As the method reduces to calculations based on geometry alone, it is material-independent and can be applied 
to any macro-, meso-, or microscale of interest.

1. Introduction

1.1. General concepts and motivation

If a solid sample of a magnetic material is magnetised by an applied 
field, the sample generates its own magnetic field that acts in the 
opposite direction to the magnetisation [1]. The demagnetisation field is 
influenced by the shape of the sample. For ellipsoids, the magnetisation 
is uniform, which leads to a uniform demagnetisation field. In other 
commonly encountered shapes, such as cylinders and rectangular 
prisms, the magnetisation is not uniform; in these cases, the demag
netisation field is averaged. The demagnetisation field Hd is proportional 
to the magnetisation M, which creates it: 

Hd = − NdM, (1) 

where Nd is the dimensionless demagnetisation factor. For ellipsoids, the 
demagnetisation factor depends on the ratios of the semi-major axes; for 
other shapes, both the geometry of the sample and the susceptibility of 
the material need to be considered. The sum of the demagnetisation 
factors of the sample taken in the three orthogonal axes Nx, Ny, and Nz is 
equal to one. The demagnetisation factors are either fluxmetric, with the 
averaged magnetisation and demagnetising field taken at the mid-point 
plane of the sample, or magnetometric, with the averaged magnetisation 
and demagnetising field taken over the entire sample. The use of 
demagnetisation fields and factors to correct magnetic measurements is 
important, as stated by Bahl [2] in a critical review of popular expres
sions and datasets for demagnetising factors for common shapes, 
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comparing them to numerical techniques.
If the magnetisation is distributed within an assembly of magnetic 

elements, the overall structure can no longer be classified as solid, and 
Eq. (1) no longer applies. Instead, a demagnetisation factor must be 
applied to the overarching shape within which the elements are con
tained, such as a cuboid, ellipsoid, or cylinder, and the space between 
the elements considered.

There are numerous applications of this type, i.e. consisting of 
magnetic nanostructures and assemblies of nanoparticles. In medicine, 
nanoparticles are used both analytically, such as in biosensors [3] and 
contrast agents [4], and therapeutically, such as in drug delivery systems 
[5], artificial antibodies [6], and magnetic hyperthermia cancer treat
ments [7]. They are found in data storage devices, including upcoming 
new technologies utilising skyrmionics [8]; magnetic refrigeration [9], 
as a means of improving energy efficiency and reducing the environ
mental impact of conventional refrigeration systems; in catalysis as they 
provide a large surface area, they can be uniformly dispersed and easier 
to recover [10].

Although there are some examples in the literature that are unique to 
a specific solid shape of the sample, such as ellipsoids [11], cuboids [12], 
and cylinders [13], these are not applicable to real assemblies of discrete 
elements and cannot be applied to any general overarching shape of 
those assemblies.

There is a well-established methodology that is able to account for 
discrete elements [14,15]. By considering the volume packing fraction f, 
and the magnetometric demagnetisation factor Dz, (at a susceptibility of 
zero) of the sample if it consisted of a complete solid in the shape of the 
container, the overall demagnetisation factor in a given direction is now 
given by: 

Nz = 1/3 + f(Dz − 1/3), (2) 

which reduces to Nz = Dz for the f = 1 of a solid shape. However, this is 
limited to the elements being spherical particles and also that Dz must be 
known, limiting it to the common shapes analysed in the literature as 
described earlier.

Deviations from perfectly spherical particles have been studied by 
Bjork and Zhou [16], demonstrating that particle aspect ratio impacted 
particle orientations when packed, which in turn influences the overall 
demagnetisation factor. This, and other recent studies [17] have used 
commercially available finite element software, such as COMSOL Mul
tiphysics® [18], to obtain demagnetisation information that is 
material-dependent, e.g. using its relative permeability. Other limita
tions using this approach includes a limit to the scale, e.g not applicable 
to nanoparticles.

The model presented in this study is not limited by the shape of the 
magnetic elements within the assembly, the material of those elements, 
or the need to find or calculate the respective Dz factor for a given overall 
shape. It has the further advantage of being applicable to any macro-, 
meso-, or microscale of interest and for these reasons should be of great 
interest to a wide range of both experimentalists and modellers alike.

1.2. Model concept and development

The key to the model is the consideration of the magnetic poles on 
the surface of fully magnetised particles arranged in a simple cubic 
lattice. The advantage of our approach is that the equations reduce to 
those of the geometry alone.

In this case, the particles were restricted to being spherical to test our 
results with those given by Eq. (2) using published Dz values from the 
literature. The model calculates the demagnetisation factors of each 
constituent particle so that the full spatial distributions of the particle 
demagnetisation factors can be obtained; much more information than 
can be extracted from Eq. (2) which only evaluates the mean demag
netisation factor. The model operates in two steps. The first is to perform 
a surface integral over a particle at a given position in the lattice to 

calculate its contribution to the demagnetisation field at the origin of the 
lattice; this is repeated for each lattice position. The second step 
involved performing a series of summations of contributions.

The first iteration of the model was used to support new experi
mental techniques for measuring the overall average demagnetisation 
factor of packed powder samples, which were glass cuboid containers 
packed with magnetite nanoparticles [19]. To ensure confidence in the 
model, the average demagnetisation factor of the sample was deter
mined using both the model and Eq. (2) (with f measured during the 
packing of the sample, and Dz calculated using the equation derived by 
Aharoni for the demagnetisation factors of cuboids [12]), and there was 
perfect agreement between them.

In this paper, several algorithms are described that address a number 
of limitations of the first iteration, and these developments are all based 
on how the contributions to the demagnetisation field by each constit
uent particle are summated. The first shows how the run time of the 
model can be significantly reduced for cuboid samples, from several 
days for large samples in the first iteration to less than an hour. Cuboid- 
containing vessels are commonly used in our laboratory, and their shape 
is the easiest to model. Further motivation came from comments made 
regarding the publication of the first iteration of the model over the 
perceived high computational resources required to run such models (it 
was shown the model will run on a standard desktop PC). The second is a 
modification that allows packed samples in any container shape to be 
studied. To obtain confidence in this algorithm, testing was performed 
using ellipsoid container shapes to facilitate comparisons with Eq. (2), 
because the Dz values for ellipsoids are well documented [11]. The 
importance of this algorithm extends beyond that of powdered samples. 
By providing the demagnetisation factor of any assembly of discrete 
magnetic elements within any container shape, Eq. (2) can be used to 
determine the respective Dz value; therefore, it is possible to determine 
the demagnetisation factor of any solid shape, which is limited to 
magnetometric values at zero susceptibility. The third modification 
shows how any sample consisting of a uniform cross-section can be 
studied (e.g. prisms and cylinders). This can utilise the speed efficiencies 
of cuboids that are not available for any general shape. For confidence, 
comparisons can be made using Eq. (2), with model testing performed 
on cylinders, providing established values for DZ [13].

The algorithms were written in MATLAB 2022b. The algorithms 
were tested using a desktop computer with Windows 11. The PC had an 
Intel i5-10400F CPU with a base speed of 2.90 GHz, six cores, and twelve 
logical processors. The timing performance of each script was deter
mined using MATLAB profiler. The algorithm scripts and the perfor
mance test data generated by the profiler were recorded and stored in 
the GitHub repository:

https://github.com/physicssteve/Demagnetisation-Factor.git.

2. Method

2.1. The premise; an adaptation

This model uses an adaptation of the work of Bissell and Cookson 
et al. [20,21], who studied the demagnetisation factors of magnetic 
particulate recording media. The demagnetising factor of a single iso
lated particle, approximated as a prolate spheroid, is determined by 
examining how the magnetic poles on its surface produce a demagnet
ising magnetic field at its centre, using the coordinate system and 
magnetic state, as shown schematically in Fig. 1.

Our model simplifies this further by considering a spherical particle, 
that is, where a = b, modelled as a unit sphere centred at the origin, with 
points on its surface defined by the coordinates (o, p, q). The particle is 
fully magnetised in the z-axis direction so that the poles on its surface 
will cause the particle to have a demagnetisation factor in the z-direction 
of: 
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NZ =

∫a

− a

∫limp(o)

− limp(o)

(
− q(o, p)

[o2 + p2+( − q(o, p)2
]
3/2 −

q(o, p)
[o2 + p2+(q(o, p)2

]
3/2

)

dp do,

(3) 

where q (o, p) is given by: 

q(o, p) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − p2 − o2
√

, (4) 

and the limit p(o) is given by 

limp(0) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − o2

√
. (5) 

It should be noted that the derivation of Eq. (3) in the original work 
involves division by a particle’s or element’s magnetisation that reduces 
the final outcome to that of geometry alone and is therefore material 
independent.

For a spherical particle surrounded by other identical particles 
magnetised in the z-direction, Eq.(3) can be adapted to evaluate the 
contribution to the demagnetising factor of the particle centred at the 
origin for any given particle in the assemblage. For ease of program
ming, the particles were arranged in a cubic lattice with a particle 
centred at every positive integer point (x, y, z). To consider the volume 
packing fraction, a lattice scaling factor m is used, such that if the par
ticles are in contact, m is equal to one. 

NZ(x, y, z) =
∫a

− a

∫limp(o)

− limp(o)

(
2mz − q(o, p)

[
(2mx + o)2

+ (2my + p)2
+(2mz − q(o, p)2]3/2 

−
2mz + q(o, p)

[
(2mx + o)2

+ (2my + p)2
+(2mz + q(o, p)2]3/2

)

dp do. (6) 

Fig. 1. Coordinate system and geometry of a single isolated particle based on the premise of Cookson [21]. The magnetisation is fully aligned along the z-axis 
direction as if subjected to a saturating field along the semi-major axis, a. In our case, the geometry is further simplified to that of a sphere by setting a = b.

Algorithm 1 
MATLAB 2022b code was used to calculate the contributions of each particle in a simple cubic lattice to the 
demagnetization factor of the particle centred at the origin of the lattice.

%user defined variables. 
xlength = 101; 
ylength = 101; 
zlength = 101; 
vpf = 0.2; 
%set-up of the matrix Nz and lattice spacing m. 
Nz = zeros (xlength, ylength, zlength); 
m = (pi./(6.*vpf))^(1/3); 
%functions used in the integration 
qsphere = @ (x,y) sqrt(1-y.^2-x.^2); 
ymax = @ (x) sqrt (1-x.^2); 
ymin = @ (x) -1.*sqrt (1-x.^2); 
%calculation of Nz. 
for zg = 0:zlength-1  
Rindex = 0;  
for yg = 0:ylength-1  
for xg = Rindex:xlength-1  
negative = @ (x,y) ((2.*m.*zg)- qsphere(x,y))./(((2.*m.*xg)+x).^2 + ...  
((2.*m.*yg) + y).^2 + ((2.*m.*zg)- qsphere(x,y)).^2).^1.5;  
positive = @ (x,y) ((2.*m.*zg)+ qsphere(x,y))./(((2.*m.*xg)+x).^2 + ...  
((2.*m.*yg) + y).^2 + ((2.*m.*zg)+ qsphere(x,y)).^2).^1.5;  
fun = @ (x,y) negative(x,y) - positive(x,y);  
if xg == yg  
Nz (xg+1,yg+1,zg+1) = integral2 (fun,-1,1,ymin,ymax);  
else  
Nz (xg+1,yg+1,zg+1) = integral2 (fun,-1,1,ymin,ymax);  
Nz (yg+1,xg+1,zg+1) = Nz (xg+1,yg+1,zg+1);  
end  
end  
Rindex = Rindex+1;  
end 

end
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The demagnetising factor of the particle at the origin is determined 
by summing the contributions from each particle and its own surface 
poles.

2.2. The contribution matrix

The first part of the model finds the contribution matrix Nz, with 
each element corresponding to the contribution to the demagnetising 
factor of the particle centred at the origin by a particle centred at (xg, yg, 
zg); Algorithm 1. The user defines the size of the lattice by stating the x, 
y, and z lengths (xlength, ylength, and zlength) and the volume packing 
fraction vpf. The limitation on the size of the lattice is simply imposed by 
the run time of the program; at the time of writing, a desktop computer 
typically takes four minutes per one million particles. Note that in the 
calculation of Nz, not every particle has to be assessed due to the sym
metry of the lattice; hence the truncated number of calls in the “xg” for 
loop. The double integral in Eq. (6) is performed using the integral2 
function: this function uses a tiled numerical integration method to carry 
out this evaluation [22].

Fig. 2 shows a representation of the matrix Nz. The element at index 
(1, 1, 1) in MATLAB corresponds to the contribution of the particle 
centred at the lattice position (0, 0, 0) on itself, while element (xlength, 
ylength, zlength) is the contribution of the particle farthest from the lat
tice origin. This matrix contains all the data required to determine the 
spatial distribution of the demagnetisation factors of the constituent 
particles in the z-direction, and therefore, the mean value for the sample.

The final format of the contribution matrix required for the sum
mation sections of the model is formed by taking each element in the 
matrix NZ (x, y, z) and duplicating the value to all combinations of (±x, 
±y, ±z), forming octants. Algorithm 2 shows this operation, with matrix 
Nzfull being the completed contribution or summation matrix and its 
central element being the element (1, 1, 1) of matrix Nz.

The left-hand side of Fig. 3 shows the matrix Nzfull. The Nzfull 
element (xlength, ylength, zlength) corresponds to the matrix element, Nz 
(1, 1, 1). The right-hand side shows the premise of the summing oper
ation, which is used to determine the demagnetisation factor of each 
constituent particle. A subset of Nzfull, matching the dimensions of the 
lattice, starts at a position that fits exactly into one of the octants of 
matrix Nzfull, and summing the elements in this subset gives the 
demagnetisation factor of the constituent particle at one of the corners of 
the lattice. Shifting this subset to matrix Nzfull and then summing it 
yields the demagnetisation factor for each constituent particle in turn. 

This subset is represented in Fig. 3 as a semi-transparent green block. 
Note that the Nzfull element (xlength, ylength, zlength) is always con
tained within the subset, which is the self-demagnetisation field of the 
particle.

In principle, this summation process is simple and requires only a few 
lines of code. However, because we are summing the contribution of 
every particle in the lattice and then repeating this summation for every 
particle, it is an N2 problem, and the computational time becomes a 
factor. Even for small lattice sizes, this simple summation can take 
several hours to complete. The upcoming sections deal with methods for 
reducing the computational time and how the summation matrix can be 
used to calculate the demagnetisation factors of other shapes moving 
away from the cuboids depicted here.

2.3. Fast calculation of the demagnetisation information for a cuboid 
sample

The subset is repeatedly moved through matrix Nzfull, and then 
summing the elements of the subset wastes resources simply as we 
repeat many of the same additions. To reduce this, the subset used to 
move through the matrix Nzfull can be considered as being constructed 
from columns in the z-direction, with the length of the column being 
equal to zlength (the size of the lattice in the z-direction). An example of 
this is shown in Fig. 4. The elements contained within each column can 
be summed, with the summation being recorded in another matrix, 
Downstack (right-hand side of Fig. 3). For each x-y coordinate, a column 
will need to be summed, of length zlength, for z coordinates going from 
(2zlength – 1) to zlength, so that all elements in Nzfull are covered. Al
gorithm 3 is the code for creating and populating the matrix Downstack, 
which holds all the column summations. The variables i, j, and k are 
related to the x, y, and z elements of the matrix Nzfull.

The final number of summations required per particle can be further 
reduced using the summed columns to form summation slices in the y-z 
plane (xslices) of Nzfull. An example is shown in Fig. 5, which is achieved 
by summing rows in the y-direction of the Downstack matrix of length 
ylength and creating a new matrix, xslices, to hold the slice summations. 
Algorithm 4 gives the code for this task, where i, j, and k are used as the 
x, y, and z coordinates of the matrix Downstack.

In the final stage, the total demagnetisation factor (saved to matrix 
Demagmatrix) of each constituent particle is obtained by summing the 
respective x slices associated with the particle, as shown in Fig. 6 and the 
code in Algorithm 5. The final part of the code converts the 

Fig. 2. Representation of matrix Nz. Each element contributes to the demagnetisation factor of the particle centred at the origin of the lattice for each particle in the 
lattice (xq, yq, zg). Element (1, 1, 1) is the self-contribution of the particle at the origin of the lattice (0, 0, 0). Note the shift in referencing the elements to the particles 
in the lattice and that Nz is the same size as the user-defined lattice.

S.M. McCann and T. Mercer                                                                                                                                                                                                                 Computer Physics Communications 319 (2026) 109938 

4 



demagnetisation factor to SI and calculates the mean demagnetisation 
factor of the sample. By removing the repetition of the summation 
process, this program takes seconds to run compared to the hours of 
labouriously moving and summing the contents of the subset.

2.4. Fast calculation for a containing vessel of any shape

For a container of any shape, reduction summation techniques used 
for simple cuboids are difficult to implement. An alternative is to use the 

Algorithm 2 
MATLAB 2022b code was used to create matrix Nzfull by replicating the contents of matrix Nz to form eight octants centred on Nz’s element (1, 1, 1).

%set-up "summation matrix" 
Nzfull = zeros ((2*xlength)-1,(2*ylength)-1,(2*zlength)-1); 
%populate "summation matrix" 
for zg = -zlength+1:zlength-1  
for yg = -ylength+1:ylength-1  
for xg = -xlength+1:xlength-1  
Nzfull(xg+xlength,yg+ylength,zg+zlength) = ...  
Nz(abs(xg)+1,abs(yg)+1,abs(zg)+1);  
end  
end 

end

Fig. 3. The left-hand side shows the overall dimensions of the summation matrix Nzfull. The central element (xlength, ylength, and zlength) is equal to Nz (1, 1, 1). 
The right-hand side shows the basic premise of the summation technique. The overall demagnetisation factor of each constituent particle can be determined by 
moving a subset equal in size to the user-defined lattice through Nzfull and summing each time over its content. Note that the central element containing the 
particle’s self-demagnetisation field contribution is always included in the subset.

Fig. 4. The left-hand side shows the first-column summation, column length zlength, which is used to break down Nzfull into smaller chunks. A column summation is 
performed for every x y coordinate, starting in the z plane (2zlength -1), and then repeated for other z planes up to and including the z plane (zlength). Each column 
summation is written in the matrix Downstack. The right-hand side is a representation of Downstack and shows the location of the summation of the columns shown 
on the left.
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concept of regression towards the mean; if a mean is taken from an 
increasing number of samples taken from a population, the closer the 
mean for the sample is to the mean of the population. The results in this 
study show that it is possible to obtain the mean demagnetisation factor 
of a sample by examining only as little as 5 % (or even less) of the 
constituent particles, meaning that summing over the subset taken from 
the matrix Nzfull becomes a viable option.

For cuboids, the shape of the containing vessel is defined by the di
mensions of the lattice. The cuboid lattice is still used in this variation of 
the summation code, but an additional matrix is used, a mask, which 
specifies if a particle is absent or present with its elements being either 
“0” or “1” respectively. In this manner, only the particles within the 
mask are considered in the final demagnetisation factor calculation, 
while maintaining the efficiency described earlier for the fast calculation 
of the cuboid matrix. This mask matrix, Othello, consists of a user- 
defined lattice, a cuboid, with the shape of interest etched within.

The mask matrix can be simply typed by the user. However, ellipsoid 
containers were used for testing because their demagnetisation factors 
are well known. An example program for generating ellipsoid masks is 

provided in Appendix A. Fig. 7 shows an example of a spherical global 
shape. The cuboid shape represents the matrix Othello; all the particles of 
Othello that reside in the sphere would be set at “1” while the others 
would be at “0”.

Determination of the number of samples to be taken is based on the 
principle of regression to the mean, which is illustrated in the results 
section. Here, the first part of the program shows the implementation of 
the number of samples to be taken from the population of particles and 
then to randomly select particles up to a user-defined percentage, Al
gorithm 6. The fraction of samples to be taken frac in the example code is 
5 %. The number of particles contained in the container msize, is found 
by counting the number of “1” contained within the mask matrix Othello. 
The total number of samples to be taken is the number of particles 
multiplied by the required sample fraction, samples.

The particles are then randomly selected from the population, and 
their coordinates are recorded in arrays p, q, and r (x, y, and z co
ordinates, respectively). A test is conducted to check whether the 
randomly selected coordinates are for a particle that is present in Othello; 
if not, another coordinate will be selected, and the test is reapplied.

Algorithm 3 
MATLAB 2022b code was used to create and populate the matrix Downstack. Each element of Downstack is a column summation, length of zlength, taken from the 
matrix Nzfull.

%create Downstack matrix 
Downstack = zeros ((2*xlength)-1, (2*ylength)-1, zlength); 
% find column (z direction) sums and populate Downstack 
for k = (2*zlength)-1:-1:zlength  
for j = (2*ylength)-1:-1:1  
for i = (2*xlength)-1:-1:1  
Downstack(i, j, k-(zlength-1)) = sum(Nzfull(i, j, k-(zlength-1):k));  
end  
end 

end

Fig. 5. The left-hand side shows the first-row summation of the matrix Downstack, length of ylength; this is equivalent to summing up a slice in the Ndfull matrix of 
dimensions (1, ylength, zlength). This summation would need to be repeated for every x z coordinate in each y plane, starting from the y plane (2ylength-1) and 
ending on (and including) the y plane (ylength). This “slice” summation is stored in the matrix xslice; a representation is shown in the right-hand side for this first- 
row summation.

Algorithm 4 
MATLAB 2022b code was used to create and populate matrix xslices. Each element in this matrix is the summation of a row, length of ylength, taken from the matrix 
Downstack. This summation is equivalent to summing a slice in the matrix Ndfull in the x-plane of dimensions (1, ylength, zlength).

%create xslice 
xslice = zeros ((2*xlength)-1, ylength, zlength); 
%calculating all the x slice summations 
for k = zlength:-1:1  
for j = 0:ylength-1  
for i = (2*xlength)-1:-1:1  
xslice(i, ylength-j, k) = ...  
sum(Downstack(i, ylength-j:(2*ylength)-1-j, k));  
end  
end 

end
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The second part of the program, Algorithm 7, creates a matrix Nzsub, 
which functions as the subset in the contribution matrix Nzfull, and a 
matrix Demagmatrix, to hold the summation of the contributions held in 
this subset. Based on the coordinates of each selected particle, the subset 
matrix is populated from Nzfull and multiplied by the mask matrix. This 
provides the actual contribution of the particles within the container 
shape. The demagnetisation factor of the particle is then determined by 
summing all the contributions within the subset. These were converted 
into SI values and the mean and standard error were calculated.

2.5. Fast calculation for container shapes with uniform cross-section

The technique presented in this section applies to any container 
vessel with a uniform cross-section in the x-y plane (perpendicular to the 
applied magnetic field in the z-direction). A representation of this is 
shown in Fig. 8. Similar to the cuboid program, the contribution matrix 
is summed up in columns in the z-direction, Algorithm 3. For a subset 
moving through Nzfull, representing the elements that must be summed 
per constituent particle, we can envisage that the subset consists of these 
columns. It is then possible within this subset to accept or reject columns 
to be included in the summation, depending on the required shape 
described by a 2-D mask matrix.

To define the shape, as for the generic container routine, a mask is 
required; in this case the mask takes the form of a 2-D matrix (Othello), 
again with “0” and “1” to represent the absence or presence of a particle. 
In this case, the mask defines the container shape in the x-y plane. 
Because the demagnetisation factors of cylinders are well defined in the 
literature, these were the shapes used for testing. A program to create 

this 2-D mask, a circle contained within the given lattice x-y space, is 
presented in Appendix B. Fig. 9 shows a top-down view of the matrix 
relationships. The purple squares represent the matrix Downstack. A 
subset 2-D matrix, isolate, represented by the black square, is moved 

Fig. 6. The left-hand side shows the first-row summation, length of xlength, made in the matrix xslices, which provides the full demagnetisation factor of the particle 
at position (0, 0, 0) in the user-defined lattice. This subset was originally envisaged in the first iteration of the model. This summation is repeated for every y z 
coordinate for each x plane, starting from the x plane (2xlength-1) and ending at, and including the x plane (xlength). The resulting summations are written to the 
matrix Demagmatrix, as shown on the right-hand side. Each element in Demagmatrix is the full demagnetisation factor of a particle in the lattice. Note the shift in 
referencing as element (1, 1, 1) refers to the demagnetisation factor of the particle at the lattice position (0, 0, 0).

Algorithm 5 
MATLAB 2022b code was used to create and populate the matrix Demagmatrix. Each element in this matrix is the summation of a row, length of xlength, taken from the 
matrix xslices. This summation is equivalent to summing up the subset of matrix Ndfull, as originally intended, as shown in Fig. 3.

%create Demagmatrix 
Demagmatrix = zeros (xlength,ylength,zlength); 
%populate Demagmatrix 
for k = 0:zlength-1  
for j = 0:ylength-1  
for i = 0:xlength-1  
Demagmatrix(i+1, j+1, k+1) = ...  
sum(xslice(xlength-i:(2*xlength)-1-i, ylength-j, zlength-k));  
end  
end 

end 
Demagmatrix = abs(Demagmatrix)./(4*pi); 
valmean = mean(mean(mean(Demagmatrix)))

Fig. 7. Representation of mask matrix Othello for a spherical sample container 
shape. All the elements that sit fully within the sphere will be set at “1” while 
other elements will be at “0”, representing the presence or absence of particles 
in the lattice.
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through Downstack; for each element in Downstack, isolate is multiplied 
by the mask matrix Othello (same dimensions as isolate, with “1” values 
in the red circle) and the product, tosum, is then summed up to give the 
demagnetisation factor for a given lattice position, matrix Demagmatrix. 
By multiplying Demagmatrix by the mask matrix for each z-layer, 
Demagmatrix will only contain demagnetisation factors for particles 
present (rather than the contributions of magnetic fields generated by 
constituent particles at points outside the sample), as given in Algorithm 
8.

3. Results and discussion

3.1. Fast calculation for cuboids

In previous work, using the original iteration of the model [19], a 
concern was addressed regarding sample size; testing to see if appre
ciable differences in the distributions of the demagnetisation factors of 
the constituent particles occurred if larger sample sizes were used, even 
if the overall aspect ratio of the containing shape remained the same. A 

Algorithm 6 
MATLAB 2022b code was used to calculate the number of particles required from the total population to be used to calculate the mean demagnetisation factor and their 
respective coordinates in the user-defined lattice.

%number of samples to take 
frac = 0.05; 
msize = sum(sum(sum(Othello))); 
samples = round(msize*frac); 
%select coordinates of particles to sample 
for i = 1:samples  
cond = false;  
while cond == false  
p(i) = randi(xlength);  
q(i) = randi(ylength);  
r(i) = randi(zlength);  
if Othello(p(i), q(i), r(i)) == 1  
cond = true;  
end  
end 

end

Algorithm 7 
Matlab2022b code that calculates the demagnetisation factors of only the selected particles, calculating a mean value based on this limited selection.

%create matrices Nzsub (subset) and Demagmatrix (particle demagnetisation factors) 
Nzsub = zeros (xlength,ylength,zlength); 
Demagmatrix = zeros (xlength,ylength,zlength); 
%populate Demagmatrix 
for i = 1:samples  
Nzsub = Nzfull(xlength+1-p(i):(2*xlength)-p(i),...  
ylength+1-q(i):(2*ylength)-q(i),zlength+1-r(i):(2*zlength)-r(i));  
Nzsub = Nzsub.*Othello;  
Demagmatrix(p(i),q(i),r(i)) = sum(sum(sum(Nzsub,3))); 

end 
%calculation of the mean and standard error of the sample’s demag factor. 
Demagmatrix = abs(Demagmatrix)./(4*pi); 
Demagmatrix = Demagmatrix.*Othello; 
Demagmatrix(Demagmatrix == 0) = NaN; 
valmean = mean(Demagmatrix,"all","omitnan") 
valstd = std(Demagmatrix,[],"all","omitnan");

Fig. 8. The left-hand side is a representation of the matrix Nzfull, with the first column to be summed highlighted. This is the same technique as that used in the fast 
cuboid summation algorithm. However, the right-hand side shows the difference between the two algorithms: a mask can be used to define which columns to accept 
or reject as part of the overall summation, with acceptance being given to columns that fit in the desired shape, in this case, a cylinder.
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comparison was made between two cube samples, one with an edge 
length of 41 particles and the other 151 particles. The normalised dis
tributions of the demagnetisation factors of the constituent particles 
were examined. A two-sample Kolmogorov-Smirnov test was performed 
with the null hypothesis that the two datasets were drawn from the same 
distribution. The test indicated that the null hypothesis was not rejected 
at the 5 % significance level with a p-value of 0.8938.

The difference between the original iteration of the model and the 
latest version is simply the efficiency, which significantly reduces run
time. The original version was capable of handling sample sizes that 
consisted of approximately one million particles; above this, run times 
quickly escalated to several days and were simply not feasible. With 
improvements in the efficiency of the model, larger samples could be 
evaluated. Fig. 10 shows the normalised distributions for cubic samples, 
one of the edge length 101 particles, and the other 501 particles; both 
samples have touching particles (m = 1, giving volume packing fractions 
of π/6). The two-sample Kolmogorov-Smirnov test again showed that 
the null hypothesis was not rejected at the 5 % significance level, but 
with an increased p-value of 0.9848. The larger sample’s distribution 
appears smoother and does not form such a noticeable secondary high- 
end peak, but the similarity is striking. Because the demagnetisation 
factors in the model are all related to the geometry (the demagnetisation 
field within the constituent spherical particle is uniform and has no 
dependence on its susceptibility), it is not surprising that small sample 

Fig. 9. A 2-D view of the matrix Downstack, looking down in the z-direction. 
The black square represents the matrix isolate, which is moved through 
Downstack, while the red circle within isolate, as defined by the matrix Othello, 
represents the columns that will be accepted for summation.

Algorithm 8 
MATLAB 2022b code was used to calculate the demagnetisation factors for the constituent particles in a container shape with uniform cross-section, as defined in the 2- 
D mask matrix Othello.

%create Demagmatrix 
Demagmatrix = zeros (xlength,ylength,zlength); 
%isolating required columns per particle and populating Demagmatrix 
layer = 0; 
for k = zlength:-1:1  
layer = layer + 1;  
for j = 0:ylength-1  
for i = 0:xlength-1  
isolate = Downstack(xlength-i:(2*xlength)-1-i,...  
ylength-j:(2*ylength)-1-j, k);  
tosum = isolate.*Othello;  
Demagmatrix(i+1,j+1,layer) = sum(sum(tosum));  
end  
end 

end 
%"shaping" Demagmatrix; only for present particles 
for z = 1:zlength  
Demagmatrix(:,:,z) = Demagmatrix(:,:,z).*Othello; 

end

Fig. 10. Comparison of the distributions of the demagnetisation factors of the constituent particles for cubic samples with different edge lengths obtained from the 
model. A comparison is made between a sample of edge length 101 particles and another of length 501 particles.
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sizes would give a good approximation to that of larger samples, as the 
containing shape itself is important. Larger sample sizes yielded better 
approximations, but there was an element of diminishing returns be
tween the computational time and the quality of data obtained.

The model was designed such that the 3D spatial distribution of the 
demagnetisation factors of the constituent particles can be found, as 
shown in Fig. 11, for a cube sample with an edge length of 501 particles 
that are in contact. The figure shows slices taken from the output of the 
model, illustrating the spatial distribution of the demagnetisation fac
tors of the constituent particles. With the applied field in the z-direction, 
as shown, the largest Nz values were observed on the top and bottom 
surfaces, while the lowest values were observed on the side surfaces, as 
expected. For clarity, only two slices cutting through the cuboid are 
shown and illustrate the tendency to converge on Nz values of 1/3 to
wards the centre particle. This was consistent with the dominance of the 
cuboid shape at the surfaces (and their associated surface poles) 
reducing to that of a single isolated particle.

To demonstrate the validity of the model, the mean demagnetisation 
factor NZ was calculated from the spatial distribution and compared 
with the output of Eq. (2). This can be performed for a range of cuboid 
sizes at a set packing fraction volume. The model was used with a set 
number of particles in the x- and y-directions of 101 particles and at a 
volume packing fraction of π/6 (m = 1). The sample size in the z-direction 
was varied between each test, ranging from 101 to 1001 particles with a 
step size of 100. The mean demagnetisation factors for these ten tests are 
shown in Table 1. The table also includes the mean demagnetisation 
factor calculated using Eq. (2): The value of the demagnetisation factor 
of the cuboid Dz taken from the calculations of Aharoni [12] (this is the 
magnetometric demagnetisation factor with susceptibility being zero). A 

comparison of these two values of NZ illustrates their closeness, giving 
confidence in the model. The full model data are summarised as cu
mulative distribution functions, as plotted in Fig. 12.

As the cuboid became increasingly elongated in the z-direction, the 
distribution of the constituent particle demagnetisation factors became 
sharper and skewed, and the mean demagnetisation factor decreased. 
This behaviour follows the pattern observed in solid samples [1,12], 
whereby increasingly elongated samples would tend to have demag
netisation factors approaching zero in the direction of elongation. 
Fig. 13 and Fig. 14 show the normalised and spatial distributions of the 
demagnetisation factors of the constituent particles held within a cuboid 
sample with a ratio of 10:1. When compared to the same matching data 
for a cubic sample (ratio 1:1) in Fig. 10 and Fig. 11, the impact of the 
elongation is evident.

The impact of removing duplication in the summing process carried 
out in this new algorithm on performance was evident. A linear rela
tionship between execution time and simulation size was found, running 
at 10.2 seconds per million particles. This compares to the squared 
relationship for the original simple summation process with an execu
tion time of approximately 4,000 seconds for a simulation of a million 
particles and 100,000 seconds for five million particles. Further details 
are given in Appendix C and are illustrated in Fig. C 1.

3.2. Fast calculation for any shape by using regression to the mean

At the heart of this process is the use of regression towards the mean 
to enable a feasible runtime. To evaluate the amount of sampling 
required to obtain meaningful data, a dataset was used that had a known 
average demagnetisation factor. In this case, the spatial distribution of 

Fig. 11. Spatial distribution of demagnetisation factors of constituent particles for cubic sample with edge length of 501 particles.

Table 1 
A comparison of the mean demagnetisation factors of the cuboid samples Nz obtained from the model and Eq. (2). Note that Dz is obtained from [12] and is for cuboids 
with aspect ratios varying from one to ten (comparing the z-direction size to that of x and y). This is a close but not exact match for the samples simulated in the model, 
apart from the z length of 101 particles).

Sample size (x, y, z) Dz, demag. factor of overall shape 
(Aharoni)

Nz, mean demag. factor (Eq. (2)) Nz, mean demag. factor 
(model)

Ratio of Nz (model over Eq. (2) output)

(101, 101, 101) 0.33333 0.33333 0.33333 1.0000
(101, 101, 201) 0.19832 0.26264 0.26293 1.0011
(101, 101, 301) 0.14036 0.23229 0.23254 1.0011
(101, 101, 401) 0.10845 0.21558 0.21577 1.0009
(101, 101, 501) 0.088316 0.20504 0.20517 1.0006
(101, 101, 601) 0.074466 0.19779 0.19787 1.0004
(101, 101, 701) 0.064363 0.19250 0.19254 1.0002
(101, 101, 801) 0.056670 0.18847 0.18848 1.0001
(101, 101, 901) 0.050617 0.18530 0.18529 0.9999
(101, 101, 1001) 0.045731 0.18274 0.18271 0.9998
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Fig. 12. Cumulative frequency distribution of the cuboid samples. As the cuboid became elongated, the distributions became sharper and more asymmetrical. The 
ratios given here (z-direction size compared to the x-y size) have been rounded for simplicity.

Fig. 13. Demagnetisation factors of constituent particles for a cubic sample with dimensions of 101 × 101 × 1001. This clearly shows a shift to lower values of 
demagnetisation factors as the cuboids are elongated, with sharper peaks and asymmetric distributions compared to Fig. 10.

Fig. 14. Spatial distribution of demagnetisation factors of constituent particles for a cuboid sample with dimensions of 101 × 101 × 1001. Compared with a cubic 
sample, Fig. 11, the constituent particle demagnetisation factors are typically lower. The particles within the bulk have relatively consistent values with those near 
the top and bottom surfaces, where the magnetic field enters and leaves the sample, with a large variation from the mean.
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the demagnetisation factors for the constituent particles of a cube 
sample is edge length 101 particles (m = 1) with a mean demagnet
isation factor of 1/3. By randomly selecting particles and maintaining a 
running average, a comparison can be made between this value and the 
known average for the entire dataset. This can be performed several 
times to obtain confidence in the results, as shown in Fig. 15. Typically, 
after sampling 5 % of the particles, the running average was within 0.2 
% of the mean of the entire sample, and this Fig. was used throughout 
most of the testing for this algorithm.

To gain confidence in this element of the model, it was decided to 
evaluate it while examining ellipsoid container shapes, ellipsoids with 
well-defined Dz values [11], and the interesting characteristic that for 
solid volumes, the demagnetisation field is uniform for ellipsoids 
throughout. Additionally, the random sampling element was removed 
(100 % of particles examined) for particles within a sphere with a 
diameter of 101 particles. This enabled us to obtain a spatial distribution 
at the cost of a significantly longer running time for this container shape. 
The spatial distribution of the demagnetisation factors of the constituent 

particles is shown in Fig. 16. Of interest is the uniformity of the 
demagnetisation factors, clustered about the expected value of 1/3 with 
deviations occurring towards the surface. This is consistent with the 
expectation of a solid sphere having a uniform demagnetisation field 
[1], with the difference caused by the packed powder nature of the 
sample. Tight clustering is illustrated by the distribution shown in 
Fig. 17. Fig. 18 shows a look down view onto the spherical sample such 
that the demagnetisation factors of the particles on the surface of the 
upper hemisphere are presented in a 2-D format. Here, it can be clearly 
observed that there is a high variation in the demagnetisation factors at 
the surface compared with the bulk.

The model was run for samples that consisted of ellipsoid container 
shapes, packed with particles with a volume packing fraction of π/6 (m 
= 1), with a constant diameter in the x and y directions of length 101 
particles, sampling 5 % of the constituent particles. The first run had a z- 
direction diameter of 101 particles, with subsequent runs increasing this 
diameter by 100 each time, up to a final value of 1001. The mean 
demagnetisation factors of the samples are listed in Table 2. For 

Fig. 15. The mean demagnetisation factor of a cubic sample with an edge length of 101 particles was calculated from the increasing percentage of the sampled 
particles. The mean value of such a sample is 1/3 (orange line), and the graph shows that as more particles are sampled, the calculated mean value regresses to
wards this.

Fig. 16. Spatial distribution of the demagnetisation factors of the constituent particles for a spherical sample with a diameter of 101 particles. Most of the particles 
have values of approximately 1/3, which is expected because this is the mean demagnetisation factor of a sphere and the demagnetisation field of an ellipsoid is 
uniform. The particles closer to the surface of the sphere deviate from this value.
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comparison, Table 2 lists the mean demagnetisation factors calculated 
using Eq. (2). For the ellipsoid samples, the Nz values from both the 
model and Eq. (2) are close, thus providing confidence in the model. The 
full model data are summarised in the cumulative distribution functions 
plotted in Fig. 19. As the ellipsoid is elongated in the z-direction, the 
distribution of the demagnetisation factors of the individual particles 
shifts to lower values; however, the sharpness of the distribution re
mains, which is consistent with the demagnetisation field within the 
sample being uniform within the bulk.

Apart from being able to obtain more information about the 
demagnetisation of a sample than the mean value that can be extracted 
from Eq. (2), it is possible to obtain the magnetometric demagnetisation 
factor (for zero susceptibility) for any solid shape. The shape would be 
defined in the same way as used here for the ellipsoids using the “0” and 
“1” as absent or present particles in the Othello matrix. The mean value 
of the demagnetisation factor output from the model, along with the 
volume packing fraction (simple calculation), can then be inputted into 
Eq. (2), which can then be used to obtain the demagnetisation factor of 
the shape Dz.

Since the summation process used in this algorithm is a simple 
summation over a selected subsection of the matrix Nzfull, the actual 
performance speed is slow, on par with the original model’s cuboid 

summation process (and hence the need to use sampling and regression 
to the mean). Typically, in testing, the improvements using the sampling 
and regression approach mean this algorithm was working at 3.95 sec
onds per billion summations performed.

3.3. Fast calculation for container shapes with uniform cross-section

To allow a clear comparison with the accepted values in the litera
ture, this algorithm was used to examine the demagnetisation infor
mation for cylindrical samples packed with particles to obtain a volume 
packing fraction of 0.513 (m = 1). The cylinders had a consistent 
diameter of 101 particles, with the length of the cylinder (z-direction) 
altered. The samples were investigated as cylinders with lengths ranging 
from 101 to 1001 particles in steps of 100. In addition, the lengths of the 
51 and 2001 particles were examined. An example of the spatial dis
tribution of a cylindrical sample is shown in Fig. 20. The mean 
demagnetisation factors of the samples are listed in Table 3. For com
parison, the table also includes the mean demagnetisation factor 
calculated using Eq. (2). Similar to cuboid samples, if a sample consists 
of a solid cylinder, its demagnetisation field is not uniform, and there
fore its susceptibility must be considered. Hence, the Dz values used in 
Eq. (2) corresponds to zero susceptibility [13]. A close relationship exists 

Fig. 17. Distribution of the constituent particle’s factor for a sphere of diameter 101 particles. The distribution is sharp and centred at a mean value of 1/3. The x-axis 
scale includes the minimum constituent particle demagnetisation factor of 0.1595 and maximum of 0.4470, thus emphasising the narrowness of the distribution.

Fig. 18. Spatial distribution of the demagnetisation factors of the particles at the surface of the upper hemisphere of the spherical sample: An effective lookdown 
view of the data, as shown in Fig. 16, following the axis of the magnetic field. This illustrates the large variation in the demagnetisation factors of the particles 
compared with those within the bulk of the sphere.
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between the Nz values obtained from the model and those obtained from 
Eq. (2); however, there was slightly more variation than that for the 
previously discussed shapes. The full model data are summarised in the 
cumulative distribution functions plotted in Fig. 21. Similar to that of 
the cuboid samples, when the length of the sample in the z-direction was 
low, the distribution of the constituent particle’s demagnetisation fac
tors was broad; however, as the length increased, the distribution 
became increasingly sharper and asymmetrical in the same manner as 
that for the elongation of a cuboid.

Since this algorithm used some of the techniques utilised in the 
cuboid summation process, its execution time was relatively quick. On 
the cylinder simulations, this script was typically taking 27.7 seconds 
per million lattice spaces.

3.4. The contribution matrix: timing performance

All the summation techniques discussed require the contribution 
matrix Nz as an input. With the improvements and new techniques used, 
it is the generation of this matrix that is now, in most cases, the most 
time-consuming part of the overall simulation. The relationship between 
execution time and simulation size is linear, typically taking 374 seconds 
per million particle contributions.

4. Conclusion

A polar-based model was developed to determine the overall (mean) 
magnetometric demagnetisation factor of an assembly of spherical 
particles contained within a given shape, in conjunction with their dis
tribution throughout the volume.

Initially, based on a model developed for cuboid containers [19], the 
efficiency was significantly improved by eliminating unnecessary repe
titions of particle summations when moving from element to element, 
thereby reducing the total calculation time, typically from hours to 
seconds. The method is equally applicable to any volume with a uniform 
cross-sectional shape and was tested using cylinders.

Extending the model further using the concept of a mask applied to 
the original cuboid matrix allowed demagnetisation factors for a series 
of different shapes to be calculated. The ellipsoids and cylinders were 
chosen to enable comparison with the accepted values for solid shapes, 
and in each case, compared well to the model by applying the known 
solid factors to the simple analytical expression, Eq. (2), which considers 
the effects of the volumetric packing fraction.

Further efficiencies were obtained by utilising a regression to the 
mean methodology, which showed sufficient convergence on ellipsoids 
after randomly sampling as little as 5 % of the constituent particles. 
Ellipsoids were deliberately chosen to provide confidence more widely 
in the model when applied to other shapes because of (i) variation in the 
cross-section and (ii) characteristically known to have a uniform 

Table 2 
A comparison of the mean demagnetisation factors of ellipsoid samples Nz obtained from the model and Eq. (2), with a fixed packing fraction of π / 6 (m = 1). Note that 
Dz is obtained from [11] and is for ellipsoids with aspect ratios in the range of one to ten (comparing the z-direction size to that of x y). There is a close but not exact 
match for the samples simulated in the model, apart from the z-length of 101 particles).

Sample size: diameters (x, y, 
z)

Dz, demag. factor of overall shape 
(Osborn)

Nz, mean demag. factor (Eq. 
(2))

Nz, mean demag. factor 
(model)

Ratio of Nz (model over Eq. (2)
output)

(101, 101, 101) 0.33333 0.33333 0.33332 1.0000
(101, 101, 201) 0.17356 0.24965 0.25027 1.0025
(101, 101, 301) 0.10871 0.21571 0.21630 1.0027
(101, 101, 401) 0.075407 0.19825 0.19875 1.0025
(101, 101, 501) 0.055821 0.18803 0.18837 1.0018
(101, 101, 601) 0.043230 0.18142 0.18167 1.0013
(101, 101, 701) 0.034609 0.17691 0.17710 1.0011
(101, 101, 801) 0.028421 0.17366 0.17382 1.0009
(101, 101, 901) 0.023816 0.17125 0.17132 1.0004
(101, 101, 1001) 0.020286 0.16940 0.16945 1.0003

Fig. 19. Cumulative frequency distribution of ellipsoid samples. As the ellipsoid became elongated, the demagnetisation factor of the constituent particles decreased, 
but the distributions remained sharp and tightly clustered around the mean value. The ratios given here (z-direction size compared to the x-y size) have been rounded 
for simplicity.
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demagnetisation field at any point within the volume. This method 
yields a final single demagnetisation factor that is comparable to the 
calculation of all particles. The cost is the loss of the full 3D spatial 
distribution, and thus is a user-dependent choice.

Confidence in the model gained by using these well-known shapes 
should now allow demagnetisation factors for any shape to be deter
mined, and by using Eq. (2) can be extended to calculate unknown 
factors for the solid forms of these shapes: a useful result for both 
experimental and modelling observations.

A major advantage of using a polar model approach is that the 
equations used, see (3) to (6), reduce to that of geometry alone, provided 
that the constituent particles have the same ellipsoid shape. By 
approximating real particles to ellipsoids, the model is material inde
pendent and applicable to any scale and shape of the containing vessel.

In addition to the single demagnetisation figure obtained here (the 
average of the assembly), the model also allows the distribution of the 
individual particle factors to be mapped spatially over the volume and 
shows interesting and highly skewed values and patterns towards the 
surfaces. There is some evidence from our previous experimental work 
[19] that when highly skewed distributions are expected owing to the 
containing shape, the easily obtained modal value is closer to the real 

Fig. 20. The spatial distributions of the demagnetisation factors of the constituent particles for a cylindrical sample of diameter and length were both equal to 
101 particles.

Table 3 
A comparison of the mean demagnetisation factors of cylindrical samples Nz 
obtained from the model and Eq. (2). Note that the Dz values are obtained from 
[13], and are for cylinders with aspect ratios that closely match those used in the 
model (comparing the z-direction size to that of the x y).

Sample size: 
length of 
cylinder (z 
direction)

Dz, demag. 
factor of overall 
shape (Chen et 
al)

Nz, mean 
demag. 
factor (Eq. 
(2))

Nz, mean 
demag. 
factor 
(model)

Ratio of Nz 

(model over 
Eq. (2)
output)

51 0.47449 0.40570 0.40481 0.9978
101 0.31157 0.32218 0.32065 0.9953
201 0.18186 0.25567 0.25336 0.9910
301 0.12777 0.22794 0.22521 0.9880
401 ​ ​ 0.20987 ​
501 0.079908 0.20340 0.20025 0.9845
601 ​ ​ 0.19365 ​
701 ​ ​ 0.18885 ​
801 ​ ​ 0.18520 ​
901 ​ ​ 0.18233 ​
1001 0.041196 0.18356 0.18002 0.9807
2001 0.020909 0.17315 0.16941 0.9784

Fig. 21. Cumulative frequency distribution for the cylindrical samples. As the cylinder was elongated, the distributions became sharper and more asymmetrical, as 
observed for cuboid samples. The ratios given here (z-direction size compared to the x-y size) have been rounded for simplicity.
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value of the system. Furthermore, some preliminary work to examine 
the effects of particle agglomeration in samples of the same container 
size, shape, and packing fraction resulted in significant changes in the 
spatial distributions, and as this may affect the experimental observa
tions, it is the subject of further work.

During the development and writing of the algorithms used in this 
paper, it was our intention to make sure that the coding was as easy to 
follow as possible and that could be run on an inexpensive non-specialist 
computer. Using nested for statements within the code was a decision 
that we made since it seemed more intuitive than using linear indexing 
[23]: the speed difference being too marginally a gain over readability. 
We also wanted to keep the coding as such that it was not dependent on 
hardware setups. In future developments of the algorithms we will be 
looking at using parallel computing as means of further improving run 
speed; for example, using “parfor loops” (parallel for loops). Since parfor 
loops cannot be nested, this future coding will have to use linear 
indexing to maximise the full potential of parallelisation [24].

Data availability

The code, performance data,and example mask matrices, are avail
able at: https://github.com/physicssteve/Demagnetisation-Factor.git
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Appendix A. An example program for generating ellipsoid masks

To provide evidence that the algorithms that calculate the demagnetisation information for any shape are valid, ellipsoids were selected as the 
demonstration shape for comparison with data in the literature. The shape of interest is “etched” into a cuboid lattice using “1” and “0” to signify the 
presence or absence respectively of a particle in the lattice: this is the Othello matrix, or mask, used in the “any shape” algorithms. Algorithm 9 is an 
example program used to create a mask, in this case, an ellipsoid of equal size in the x- and y-directions, of 101 particles, and with a z-length of 901 
particles. In this example, the initial lattice consists of touching spherical particles of unity diameter in a simple cubic arrangement. The first part of the 
program accepts or rejects particles depending on whether their centres lie within the desired ellipsoid shape. The second part examines the particles 
at the surface of this “rough and ready” ellipsoid mapped out in the first section, and tests to determine whether the particle touches or intersects with 
the required ellipsoid shape. This is achieved by solving the equation for a given particle with the equation governing the ellipsoid shape and testing to 
determine whether the solution is purely imaginary (lies fully within the ellipsoid) or has real elements (intersects or touches the ellipsoid).

Algorithm 9 
MATLAB 2022b code that generates the mask matrix Othello for an ellipsoid of approximate ratio of 1:1:9 (x, y, 
z). The first stage of the code is to assess whether a particle’s centre lies within the overall ellipsoid container 
shape. In the second stage, the particles at the surface are tested to confirm that they fully lie within the 
container shape.

Othello = zeros(101,101,901); 
syms x y z 
%rough check: test to see if the centre of the particles lies within the 
%ellipsoid. 
for k = 0.5:900.5 
for j = 0.5:100.5 
for i = 0.5:100.5 
ellip=((i-50.5)/50.5)^2 + ((j-50.5)/50.5)^2 + ((k-450.5)/450.5)^2; 
if ellip < 1 
Othello(i+0.5, j+0.5, k+0.5) = 1; 
end 
end 
end 
end 
%detailed check to test if the full particle resides within the ellipsoid. 
for j = 1:101 
for i = 1:101 
k = 1; 
if sum(Othello(i, j, 1:901)) == 0  
cond = false; 
else 
cond = true; 
end 
while cond == true && k <=451 
if Othello(i, j, k) == 1 
eqns = [((x-50.5)/50.5)^2 + ((y-50.5)/50.5)^2 + ((z-450.5)/450.5)^2 == 1, (x-i-0.5)^2 + (y-j-0.5)^2 + (z-k-0.5)^2 ==

0.5^2]; 
vars = [x y z]; 
[X Y Z] = solve(eqns, vars); 
X = double(X); 
testX = isreal(X); 
Y = double(Y); 
testY = isreal(Y); 

(continued on next page)
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Algorithm 9 (continued )

Z = double(Z); 
testZ = isreal(Z); 
if testX == true && testY == true && testZ == true 
Othello(i, j, k) = 0; 
Othello(i, j, 901-k+1) = 0; 
else 
cond = false; 
end 
end 
k = k+1; 
end 
end 
end 
clearvars -except Othello

Appendix B. An example program to create a 2-D mask for container shapes with uniform cross-section

The masks required for container shapes with a consistent cross-sectional area in the xy plane are much simpler to create because only the absence 
or presence of particles in this plane is required (because it can be duplicated along the z-axis. As cylinders are well documented in the literature, this 
shape was selected for testing, which requires the generation of circular masks. Algorithm 10 is an example of a piece of code used to create such a 
mask, which is a circular mask with a diameter of 101 particles.

Algorithm 10 
MATLAB 2022b code that generates the mask matrix Othello for a circular cross section.

Othello = zeros(101); 
for j = 0.5:1:100.5 
for i = 0.5:1:100.5 
d = sqrt((50.5-i)^2 + (50.5-j)^2);  

if d <= 50.5 - 0.5 
Othello(i+0.5, j+0.5) = 1; 
else 
Othello(i+0.5, j+0.5) = 0; 
end 
end 
end 
clearvars -except Othello

Appendix C. Comparison of new fast cuboid algorithm with the original

Performance testing was carried out on five cuboid simulations of touching particles. Each simulation had a consistent x- and y-axes length of 101 
particles each and a z- axis initially set at 101 particles, and then increased in steps of 100 to a final value of 501. A direct comparison was made 
between the new fast cuboid algorithm and the original model’s simple summation process, Fig. C 1. The new algorithm reduced execution time 
drastically, shifting the relationship between execution time and simulation size from a quadratic to linear. The new process now takes approximately 
10 seconds per million particles in the simulation. 
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Fig. C. 1: comparison of the new fast cuboid summation script compared to the original model’s summation process of a simple sum taken over a subset of the matrix 
Nzfull for each particle. Note the log scale used on the y- axis.
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