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ABSTRACT 

The real-world treatment effect of a novel treatment can be estimated by analysing routinely 

collected patient data, in the form of Electronic Health Records (EHR). Unlike a Randomised 

Clinical Trial, the treatment allocation in this type of data is not randomised and there may be 

systematic differences between the treatment groups. Propensity Score (PS) (Rosenbaum & 

Rubin, 1983) methods are commonly used to correct for these differences and hence reduce the 

bias in the treatment effect estimate. The combined impact on the treatment effect estimate of 

two common issues in EHRs were investigated; covariate measurement error and sparse 

outcome data. 

A comparison was made between the performance of four PS methods: 3:1 PS matching; Inverse 

Probability Treatment Weighting (IPTW) for the Average Treatment Effect (ATE); IPTW for the 

Average Treatment Effect on the Treated (ATT); and PS stratification. Simulation experiments 

were run, based on a data extract from The Health Improvement Network holding UK primary 

care data. The impact of measurement error and outcome prevalence were investigated for 

different scenarios to represent real-life situations. For each simulation, PS conditioning was 

applied to the data to address treatment allocation bias before using Cox proportional hazards 

regression to estimate the treatment effect on the time-to-event outcome. 

In data with higher outcome prevalence, covariate measurement error had little effect on the 

treatment effect estimate. For data with sparse outcomes, ≤ 1%, higher negative measurement 

error (corresponding to under-recording) produced treatment effect estimates with little bias, 

but lower precision.  PS Stratification was the recommended method for estimating ATE with 

lower bias and higher precision over the measurement error range and over the outcome 

prevalence range. IPTW for ATT was the recommended method for estimating ATT with higher 

precision in all scenarios and lower bias, particularly when there was lower outcome prevalence. 
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Chapter 1 INTRODUCTION 

1.1 Background 

Although a Randomised Controlled Trial (RCT) is seen as the gold standard for estimating the 

effect of a novel treatment, the treatment effect in a real-world setting when it is prescribed to 

a more general population is likely to be different. In a RCT the inclusion criteria will often mean 

that participants are likely to have fewer comorbidities and be younger than the general 

population. There may be higher adherence to the treatment in a RCT due to additional 

information provided to participants and more follow up appointments. These could account for 

a better performance of the novel treatment in a RCT than in the real-world setting. Estimation 

of the real-world treatment effect of a novel treatment will add to the evidence of the 

performance of the novel treatment to support national prescribing guidance. 

The increasing availability of Electronic Health Records (EHR) data offers the opportunity for the 

estimation of the real-world treatment effect from observational studies. However, the 

treatment allocation is not randomised so there are likely be systematic differences between 

the treatment groups, and if this is not accounted for the treatment effect estimate will be 

biased. Propensity Score (PS) methods are popular in applied medical research for adjusting for 

this treatment allocation bias. This study applies four commonly used PS methods in the 

presence of other common real-world problems associated with data from EHR, measurement 

error and sparse outcome data, to estimate the real-world treatment effect. The aims of this 

study are to demonstrate the impact of measurement error and sparse outcome data on the 

‘treatment effect estimate’ and to recommend PS methods for use under these conditions. 

1.2 Observational studies and real-world effectiveness 

In applied medical research there are generally two types of studies used to determine the 

effectiveness of a novel treatment: RCTs and Observational Studies (Cochran & Chambers, 

1965). RCTs are the gold standard for assessing the efficacy of a novel treatment (Sibbald & 

Roland, 1998). Randomisation will, on average, balance the treatment groups for measured and 

non-measured variables. Participants are randomly assigned to the novel or control treatment, 

with the allocation balanced by key variables, such as recruitment centre, which may be thought 

to affect the outcome. As observational studies are not randomised, systematic differences in 

the baseline characteristics of participants are likely to exist between the treatment groups. 

Additionally, treatment allocation may be due to participant characteristics (Austin, 2011a). Any 

estimation of the treatment effectiveness will be biased in the presence of either of these. 
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Observational studies have some advantages. They can overcome ethical issues of randomising 

patients to a potentially less favourable treatment in an RCT. For example it would not be 

ethically correct to randomise participants to a treatment which had been an earlier standard 

treatment and was substantially less effective to make a comparison to a new treatment 

(Pruzek, 2011). By using existing data these treatments can be compared in an observational 

study. Running a RCT is a costly and time-intensive process and the number of participants 

recruited relatively low. In observational studies data will generally be available for more 

participants so the study has access to a larger population and hence the treatment effect 

estimate will have lower variability (Altman, 1991, p. 167). In a RCT the inclusion and exclusion 

criteria for participant recruitment can mean that sub-groups of participants most likely to 

respond well to the treatment are recruited, so the effectiveness results in a RCT can be better 

than in a general population. Additionally, in a RCT participants may be more likely to adhere to 

the treatment regime due to additional information, ongoing follow up from the trial 

management teams and closer care from the clinical teams. Observational studies give an 

estimate of effectiveness in a real-world setting where the treatment is used by a more general 

population and in clinical practice. However, the ‘real-world’ treatment effectiveness found in 

an observational study is likely to differ from the estimate of the treatment effectiveness given 

by RCTs. These are both estimates of the true treatment effectiveness. 

1.3 Sources of bias in Electronic Health Records 

Sources of bias in the design and analysis of studies are well documented (B. C. Choi & Pak, 2005; 

Sackett, 1979). However, studies using EHR introduce specific sources of bias which should be 

considered when planning these studies. If these are not addressed, they will lead to a bias in 

the treatment effect estimate. Treatment allocation bias (Section 1.2) is one such source of bias. 

Unmeasured confounders are another source of bias. If variables which contribute to the 

treatment allocation model or the outcome model are not recorded and available for use or 

contain incomplete data, the treatment effect estimate will be biased. The effect is widely 

reported in the literature and is not investigated as part of this study. Random measurement 

error of baseline covariates also introduces bias. Generally, the data in EHR have been collected 

for medical reasons and their use for applied research is secondary. De Gil et al. (2015) and 

Steiner, Cook and Shadish (2011) demonstrate that measurement error does introduce bias and 

report that it should not be ignored, although the effect is not as strong as that introduced by 

missing confounders (Steiner et al., 2011). The focus of this study is the effect of measurement 

error but not that from missing or incomplete confounders. 
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1.4 Propensity Score analysis 

Propensity Score (PS) methods (Rosenbaum & Rubin, 1983) comprise of a range of approaches 

to balancing treatment groups, thus reducing the treatment allocation bias and hence obtaining 

a less biased estimate for the treatment effect estimate. This may be in the form of the Average 

Treatment Effect estimate (ATE) (Imbens, 2004), the effect of the treatment on the whole 

population, or the Average Treatment Effect for the Treated (ATT) (Imbens, 2004), the treatment 

effect of those who are selected to receive the treatment. The PS is defined as the probability 

of treatment assignment based conditionally on observed baseline covariates (Austin, 2011a). 

The closer the PS is to one the more likely the participant is to be in the novel treatment group, 

and the closer the PS is to zero the more likely they are to be in the control group. The PS is a 

balancing score, and is a function of the observed covariates for which the conditional 

distribution of the covariates, given the balancing score, is the same for the control and treated 

(Raykov, 2012). The adjustment for the treatment allocation bias, using the PS method, is 

applied separately from the outcome analysis. 

Other methods to adjust for the systematic differences between the treatment groups include 

regression-based methods. PS methods offer some advantages over regression methods. These 

include firstly, separating the study design from the analysis, using PS methods (matching, 

stratification and IPTW) the PS model is built and checked without knowledge of the outcome. 

With regression methods the outcome is always used. Secondly, it is easier to check for correct 

specification of the PS model using balancing checks than using regression where goodness-of-

fit methods do not check that the model is correctly specified nor that the systematic differences 

between the treatment groups have been eliminated. Thirdly, with rare binary or time-to-event 

outcomes, PS methods have more flexibility, unlike regression which may have poorer 

performance with a low number of events per covariate in the model. Fourthly, PS methods 

allow inspection of the overlap in the distribution of the baseline covariates between the 

treatment groups. If the overlap is small, the researcher will be aware of this and can decide 

whether to proceed with the analysis or not. Using regression methods, there may be no such 

indication (Austin, 2011a). PS methods were therefore chosen for this study. 

1.5 Measurement error 

If the value of an observation does not match its true value, this is known as ‘measurement 

error’ (Wallace, 2020). Often in the literature ‘measurement error’ relates to a continuous 

variable and ‘misclassification’ refers to a categorical variable (Keogh et al., 2020). In this study 

measurement error will be used to mean both. There has been a lack of application of 
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measurement error methods within applied research, with a common approach to dealing with 

it being to ignore it (De Gil et al., 2015; Millimet, 2011). The focus of this study is to consider 

measurement error when PS methods are used to balance the treatment groups in an 

observational study before applying the outcome analysis. 

The types of measurement error which may occur in EHR are covariate measurement error, 

outcome measurement error and treatment allocation measurement error. The measurement 

error investigated in this study is measurement error in a covariate in the treatment allocation 

model, which is the PS model. If such measurement error exists, the treatment groups will be 

balanced on the observed not the true covariates, so differences between the treatment groups 

will still exist, meaning that this could be a source of bias in the outcome analysis (Nguyen & 

Stuart, 2020). Measurement error may be differential, where the measurement error also 

depends on the outcome, or non-differential, where the measurement error does not depend 

on the outcome (Carroll, Ruppert, Stefanski & Crainiceanu, 2006, p. 36).  The study data are 

assumed to have non-differential covariate measurement error; in this context that means that 

measurement error is the same across the treatment groups. Differential measurement error 

may occur if different data sets are combined for analysis, one for the treated group and a 

different one for the control, or if different methods or validated tools have been used to 

measure the covariate (Hong et al., 2017). This is not the case in this study, where the data were 

collected in the same way for both treatment groups. Additionally, they were collected prior to 

treatment allocation or when the primary outcome occurred. Suitable methods to correct for 

non-differential covariate measurement error are discussed in Section 2.4. 

1.6 Sparse data 

Sparseness in data can be caused by any of the following: small sample size (Siino, Fasola & 

Muggeo, 2018); rare exposure (treatment) (Hajage, Tubach, Steg, Bhatt & De Rycke, 2016); rare 

outcome events (Siino et al., 2018) which lead to a low number of events per variable (EPV) 

(Greenland, Mansournia & Altman, 2016); unbalanced or highly predictive risk factor variables 

(Siino et al., 2018) with narrow distributions or categories which are uncommon; variables which 

almost perfectly predict the outcome (Greenland et al., 2016); variables that together almost 

perfectly predict the exposure (treatment) (Greenland et al., 2016). Sparse outcome data are 

the focus of this study and it was assumed that there were rare outcome events because the 

prevalence of the outcome events was low and not due to missingness in the outcome data. 

Sparse outcomes can take the form of rare outcomes in observational studies to estimate 

treatment effect, or Serious Adverse Events in drug safety studies (Ross et al., 2015). Even 

though Serious Adverse Events in drug safety studies may be rare, they are important. An 
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example is Das et al. (2016) who looked at the challenges of trial design in the Neonatal Research 

Network under these circumstances. Rare outcomes in a large dataset are not uncommon (Chao, 

1994; Franklin, Eddings, Austin, Stuart & Schneeweiss, 2017; Paul & Deng, 2000). Sparse data 

bias produces treatment effect estimates which are away from the null, so the treatment effect 

estimates are inflated (Greenland et al., 2016). Methods for working with sparse data are 

discussed in Section 2.5, although this study is limited to the use of PS methods in the presence 

of sparse outcome data. 

1.7 The study dataset 

The Health Improvement Network (THIN) is one of the UK primary care datasets, containing data 

collected for clinical purposes. The motivational example for this study is the assessment of the 

treatment effect of Novel Oral Anti-Coagulants (NOAC) compared with the existing treatment 

Warfarin, an Oral Anti-Coagulant (OAC) for the prevention of future stroke or Transient 

Ischaemic Attack (TIA) (this will be called ‘future stroke’) in patients with Atrial Fibrillation (AF). 

By using the data extract from THIN provided for the REWARD (Performance-Based Innovation 

Rewards) study (Banerjee et al., 2020), an assessment of real-world effectiveness was made. 

This dataset included data on the treatments prescribed (primarily anticoagulants), the 

outcomes (time to stroke and time to bleed event) and variables (covariates) likely to be 

influential to these. 

A sub-set of the full REWARD data extract was used in this study with cases (used to describe 

study participants) with AF. The PS methods used in this study only adjust for treatment 

allocation bias between two treatment groups.  Cases prescribed Apixaban and Dabigatran were 

dropped (Section 3.2) and those who had been prescribed the novel treatment Rivaroxaban (a 

NOAC) or the control treatment Warfarin were retained. Warfarin cases whose first NOAC/OAC 

prescription was before the National Institute for Health and Care Excellence (NICE) approval 

date for Rivaroxaban were discarded. The primary outcome was future stroke. This sub-set of 

the data will be referred to as ‘the study dataset’. 

The types of measurement error potentially present in the study dataset are covariate 

measurement error (covariates used in either the treatment allocation model or the outcome 

model) and outcome measurement error. There is unlikely to be treatment allocation 

measurement error as a comprehensive listing of prescribing data was provided in the original 

data extract, which is believed to be correct and accurate. The data are assumed to have non-

differential covariate measurement error that is the same across the treatment groups. 



 

6 
 

This study will focus on the impact of measurement error in the variable for previous stroke, a 

covariate in the treatment allocation model, on the treatment effect estimate. Work in the 

REWARD study (Burnell, 2015) has shown stroke is under-recorded in primary care records when 

compared with linked Hospital Episode Statistics (HES) data. This is supported by Herrett et al. 

(2013) who showed that there was a 25% under-recording of myocardial infarction (MI) in 

primary care data when compared with the recording in three data sources: primary care data; 

hospital data; and the disease registry.  However, the version of the data used to generate the 

dataset for the current study did not have linked HES data, so there were no external calibration 

data available. 

Although the study dataset had 21,259 cases, it only had 232 future strokes (the primary 

outcome) recorded. The dataset therefore had an outcome prevalence of approximately 1.1% 

and is an example of a large dataset with sparse outcome data and will be used to investigate 

sparse data bias. 

1.8 Summary of this study 

This study will assess the impact of the combination of measurement error and rare outcomes 

when using PS methods to adjust for treatment effect bias when using EHR to estimate real-

world treatment effect. This is a novel approach and to date has not been reported in the 

literature. The aims of the study are to compare the performance of four selected PS methods 

in the estimation of the treatment effect estimate in the presence of covariate measurement 

error and sparse data. This may be used to inform which PS methods perform best in the 

estimation of real-world treatment effect in situations where there are problems commonly 

seen in EHR datasets: covariate measurement error and sparse outcome data. 

In the REWARD study, the study dataset was extracted to investigate the performance of a group 

of NOACs compared to Warfarin in the prevention of future stroke for patients with AF. 

However, in the current study it was used to generate simulated datasets to compare the 

performance of four different PS methods when used in the estimation of the treatment effect 

in the presence of covariate measurement error and sparse outcome data. 

1.9 Introduction to the thesis 

Chapter 2 reviews the literature relating to PS methods, measurement error and sparse data. 

Details of the literature searches are given in Appendix A. It considers methods which are used 

to adjust for measurement error when PS methods are used and the use of PS methods in the 

presence of sparse outcome data. These methods are assessed to see if they are compatible 

with the characteristics of the study data. Chapter 3 describes the selection of the study dataset 
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from the original data extract. The methods are presented which applied the PS methods, 3:1 

PS matching, IPTW for ATE, IPTW for ATT and PS stratification, to the study dataset to correct 

for systematic differences between the treatment groups. It then describes how Cox 

proportional hazards regression was applied for the outcome analysis to estimate the treatment 

effect estimate. The original characteristics of the dataset are retained, before applying 

measurement error and changes to the outcome prevalence in the following chapters. Chapter 

4 develops the simulations framework which runs the method from Chapter 3. The simulations 

method also allowed parameters to be introduced to vary the amount of introduced 

measurement error and the sparseness in the outcomes to assess their impact on the treatment 

effect estimate’s performance. By running simulations, performance measures of the treatment 

effect are generated to allow for the comparison of the different PS methods. Chapter 5 presents 

the results of the simulations. It compares the performance of the PS methods with the original 

data characteristics. Measurement error is introduced into the baseline variable for previous 

stroke, a covariate in the treatment model. The effect size in the treatment model of the variable 

with measurement error (previous stroke) is varied, as well as the measurement error, to 

investigate the impact of a stronger predictor of treatment allocation and to make the work 

more generalisable. The prevalence of future stroke, the primary outcome, is varied in addition 

to the introduced measurement error, to demonstrate the impact of sparse data bias. Finally, 

the measurement error in previous stroke (a covariate in the PS model), its effect size in the PS 

model and the outcome prevalence (future stroke) are jointly varied. Recommendations for the 

PS method to use in the estimation of the ATE and in the estimation of the ATT are made in 

these scenarios. Chapter 6 discusses the study’s findings in the context of the literature. 
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Chapter 2 LITERATURE REVIEW 

2.1 Introduction 

This study compares the performance of four commonly used PS methods when using EHRs to 

estimate the real-world treatment effect of a novel product. It also investigates the effect of 

other real-world problems associated with EHR data: covariate measurement error and sparse 

outcome data. This chapter reviews the literature regarding PS methods, their implementation 

and their use with measurement error and sparse data in order to understand the current 

knowledge gaps and research needs. The potential (or counterfactual) outcomes framework is 

introduced, as PS methods work within this. The steps to run an analysis using PS methods are 

presented, including details of the four main categories of PS methods and a review of the 

comparison between their performance. An overview of measurement error models is given and 

PS analysis methods which correct for measurement error are compared for their applicability 

to the study data. The problems relating to sparse data in the estimation of treatment effects 

are introduced. Methods to address sparse data bias are presented from the literature and 

studies which used PS methods in sparse data settings and are compared with the current 

study’s requirements. 

2.2 The Potential Outcomes Framework and assumptions 

In the Potential Outcomes Framework (or Counterfactual Framework) every participant can 

have two potential outcomes. For participant i they are Yi(0) if the control treatment were 

received and Yi(1) if the novel treatment were received. The treatment effect for participant i 

would be 𝑌𝑖(1) − 𝑌𝑖(0). Each participant will only receive one of the treatments (the other is 

counterfactual) so this cannot be calculated. The observed outcome is  

𝑌𝑖 = 𝑍𝑖𝑌𝑖(1) + (1 − 𝑍𝑖)𝑌𝑖(0)  where 𝑍 = 0 for the control treatment and 𝑍 = 1 for the novel 

treatment. Using all participants in the study population 𝐸[𝑌(1) − 𝑌(0)] will give the Average 

Treatment Effect (ATE) (Imbens, 2004). This could be described as moving the whole population 

from untreated to treated (Austin, 2011a). The Average Treatment Effect of the Treated (ATT) is 

given by 𝐸[𝑌(1)– 𝑌(0) | 𝑍 = 1 ] (Imbens, 2004). This is the effect of the treatment over the 

control for the sub-population of those treated. The ATT could be thought of as the treatment 

effect for those for whom the treatment was intended (Caliendo & Kopeinig, 2008). Occasionally 

the Average Treatment Effect of the Untreated (ATU) is used, given by 𝐸[𝑌(1)– 𝑌(0) | 𝑍 = 0 ] 

(Williamson, Morley, Lucas & Carpenter, 2012a). The research question to answer will 

determine whether the ATE, ATT or ATU should be calculated (Williamson et al., 2012a). 
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In a RCT the ATE would on average equal the ATT due to randomisation as the treated population 

should not systematically differ from the whole population (Austin, 2011a). In observational 

studies there are likely to be systematic differences between the populations from which the 

groups have been sampled, so the ATE and ATT are likely to differ. 

In terms of time-to-event data there is the idea of two survival curves, one where all participants 

received the treatment and the other where they all received the control. The treatment effect 

could be calculated using 1) an estimate of the absolute difference between the groups or 2) an 

estimate of the relative treatment effect. These are known as ‘measures of ATE’ and by 

considering only those who received the treatment this becomes ‘measures of ATT’ (Austin, 

2014b). 

The Potential Outcomes Framework makes the assumptions of positivity, ignorable treatment 

assignment assumption and Stable Unit Treatment Value Assumption (STUVA). Positivity means 

that each participant has the potential to receive either treatment. The ignorable treatment 

assignment assumption is that conditional on a set of covariates, for the participants the 

assignment to the treatment is independent of their potential outcomes Y0 and Y1. This is also 

known as ‘unconfoundedness’, ‘selection on observables’ and ‘exogeneity’ (S. Guo & Fraser, 

2015, p. 29). STUVA is that the two potential outcomes for a participant are independent from 

any other participant’s exposure. 

2.3 Propensity Score methods  

Propensity Score methods were first presented by Rosenbaum and Rubin (1983) as a way to give 

an unbiased estimate of the causal effect in non-randomised studies. They use the idea of 

treatment assignment being strongly ignorable, and then show that any balancing score will 

remove systematic differences and gives an unbiased estimate of the treatment effect at that 

value of the balancing score. They propose the PS and show that it is the coarsest of all balancing 

scores.  They then apply the PS to adjust for confounding in three existing techniques: matched 

sampling; subclassification; and covariance adjustment. 

2.3.1 Overview of Propensity Score analysis 

The literature suggests the steps to run a PS analysis are: generate the PS; check for balance; 

apply the PS method; check for balance; estimate treatment effect; run sensitivity analyses 

(Austin, 2009a; Austin, 2011b; Garrido et al., 2014; Li, 2013). Table 1 summarises these and the 

following sections describe each step in more detail. If any of the tests fail, then the PS model 

should be redefined and the process starts again. This can be an iterative process. PS methods 

are applied in addition to the main outcome analysis. This is regarded as a two-step approach; 
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firstly the PS analysis is applied to adjust for treatment allocation bias (Table 1 Steps 1 to 4) and 

secondly the outcome analysis is performed (Table 1, Step 5). 

Table 1: The steps in Propensity Score analysis. 

Step # Step Title Step Description 

1 Choose the PS model and 
Generate the PS values 

Select the covariates to be used in the PS model. 
Choose the modelling method. 
Generate the value of the PS.  

2 Checks for balance Run basic checks, check for common support, that is 
overlap of the PS distributions between groups. 
Check for balance of the PS and covariate balance 
between the treatment groups. 

3 PS Method Select and Apply the PS method (also known as PS 
conditioning). 

4 Checks for balance after 
PS conditioning 

Check for covariate balance, appropriate to the PS 
conditioning method. 

5 Estimate Treatment Effect Apply the method appropriate for the outcome 
analysis to estimate treatment effect. 

6 Sensitivity tests Compare the treatment effect estimate with an 
unbiased value. 

 

2.3.2 Step 1 - Choose and generate the Propensity Score 

The literature is divided over the selection of the covariates to include in the PS model. The 

options are variables which influence treatment allocation and outcome, variables which 

influence only treatment allocation, or variables which influence only outcome. Including 

variables which influence treatment allocation and outcome is more likely to include any 

(measured) confounders than the other options. The best model includes only true confounders, 

makes the model more parsimonious and gives greater precision with no increase in bias (Austin, 

Grootendorst & Anderson, 2007).  However omitting a true confounder can lead to imbalance 

between the treatment groups and a biased estimation of the treatment effect, (Austin et al., 

2007). In small studies, variables strongly related to treatment allocation and weakly related to 

outcome can give a treatment estimate with a higher Mean Squared Error (MSE) (Brookhart et 

al., 2006). Including variables which influence only treatment allocation can decrease precision 

without decreasing bias (Brookhart et al., 2006). Additionally, including variables which 

influence only treatment allocation may not improve balance and can reduce the number of 

matched pairs (where a treated participant is matched to an untreated participant with a similar 

PS) when using PS matching (Austin et al., 2007). Previously the PS was seen as a treatment 

allocation model but now there is a strong suggestion to include at least some variables which 

affect the outcome, (Austin et al., 2007). Brookhart et al. (2006) suggest, at least in a large 

dataset, including all the variables affecting the outcome as they may be related to treatment 
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assignment and hence reduce unmeasured confounders and reduce bias (Brookhart et al., 2006; 

Garrido et al., 2014).  However, in smaller datasets including all variables may cause too much 

‘noise’, counteracting any benefits of reduction of bias from their inclusion. Covariates which 

are weakly associated with outcome and not associated with treatment allocation should be 

excluded (Garrido et al., 2014). Additionally, clinical knowledge should be used to choose the 

variables to include in the PS model combined with one of the above suggestions. Caliendo and 

Kopeinig (2008) summarise variable choice as based on theory and previous empirical findings. 

Logistic regression is the most popular method used to model the PS (Austin, 2011a; Cham & 

West, 2016). Although interaction and polynomial terms can be used in the PS model, logistic 

regression assumes linearity between the terms and the logit of the PS. Machine learning 

methods, classification trees, random forests and generalised boosted modelling, can also be 

used to generate the PS. They estimate arbitrary nonlinear relationships between the covariates 

and the assignment to the treatment or control group (Cham & West, 2016). Random Forests 

with weighting method is recommended over Classification Trees as it has a lower bias for both 

ATE and ATT (Cham & West, 2016). When using generalised boosted modelling, selecting the 

correct number of iterations can be difficult. If it is too high, the generalised boosted model will 

be overfitted and the estimated PS values are biased towards 0 or 1 (Cham & West, 2016). 

Boosted logistic regression, another machine learning method, can lead to better covariate 

balance, but due to the highly flexible model it can produce high variance when there are rare 

outcomes (Franklin et al., 2017). In high dimensional covariate space, Lasso regression and 

Bayesian logistic regression can be used to model the PS (Franklin et al., 2017). Lasso regression 

can generate imprecise coefficients and some covariates are dropped from the PS model, so 

Bayesian logistic regression, which shrinks estimated coefficient towards zero will retain all 

covariates in the PS model, is recommended (Franklin et al., 2017). 

Regardless of the method chosen, the PS model should be built without knowledge of the 

outcome (Garrido et al., 2014). This reduces any bias introduced by the analyst and is in keeping 

the method similar to a RCT where study design and randomisation are complete before an 

outcome is measured. If several outcomes are to be analysed, a different PS model could be 

used for each outcome (Austin et al., 2007). 

2.3.3 Step 2 - Checks for balance  

Once the value of the PS is calculated a visual check for overlap also known as ‘common support’ 

of PS distributions between the treatment groups should be made (Garrido et al., 2014). If there 

is insufficient common support, in PS matching the treated participants would be matched with 
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only a small selection of the comparison group. In this case the PS model should be redefined 

and the process restarted. If the lack of common support is only evident at the lower or higher 

strata (using the PS values), then untreated subjects with very low or very high PS could be 

dropped, but this changes the study population (Austin, 2011b). 

Not all authors suggest performing balance checking at this stage, although (Garrido et al., 2014) 

recommends creating strata or blocks by the PS and checking for balance of the PS values 

between treatment groups and then checking for balance of covariates within PS blocks. Step 4 

(Section 2.3.5) describes these balance checks. If imbalance is found the PS model will need to 

be redefined and the PS analysis re-run. 

2.3.4 Step 3 - Select and apply the PS method 

There are four general categories of methods for using PS to remove the effect of confounding: 

PS matching, stratification on the PS, inverse probability treatment weighting (IPTW) on the PS 

and covariate adjustment on the PS (Austin, 2011a). In their original paper, Rosenbaum and 

Rubin (1983) presented PS adjustment to the existing methods of matched sampling, 

subclassification (stratification) and covariance adjustment (covariate adjustment). IPTW was 

first presented by Rosenbaum (1987). PS matching will estimate the ATT (Imbens, 2004) and the 

other methods can be implemented to estimate the ATE or ATT. 

PS matching is when matched pairs or groups are created by matching each treated participant 

to an untreated participant with a similar PS. The estimate of treatment effect is generated from 

the matched sample or dataset, where only cases for which a match is made are retained. The 

variance of the treatment effect can also be estimated from the matched sample, but there is 

discussion as to whether the treated and untreated participants are independent or not (Austin, 

2011a). If the data in the matched sample are to be regarded as not independent, then statistical 

tests which account for the matched nature of the data will need to be applied in the outcome 

analysis. Analysis using PS methods can mimic that of a RCT, using the same reporting metrics 

as used for RCTs, which will depend on the type of outcome. 

There are different matching algorithms which can be used. Austin (2014a) compares 12 

matching algorithms. The following choices will help to determine the matching algorithm used: 

• With or without replacement? 

o With replacement – the matched control case is returned to the pool for the 

next (and subsequent) matches 
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o Without replacement - the matched control case is not returned to the pool for 

subsequent matches 

• Greed or optimal? 

o Greedy matching - the best match is made for each treated participant 

o Optimal matching - minimises the within pair difference for the whole dataset 

• How close? 

o Nearest neighbour (NN) - a treated case is matched to the untreated case with 

the closest PS 

o NN with caliper - imposes a maximum difference between the PS score for a 

match to be allowed. There is discussion about the best size of caliper to use. 

For example, matching is often on the logit of the PS with a caliper of 0.2 of 

pooled standard deviation (Austin, 2011a) 

• How many matches? 

o The most common is 1:1 matching  

o Many:1 matching, for example 3:1 matching matches 3 untreated to 1 treated 

o Full-matching is where matched sets are formed of either one treated case and 

at least one untreated case or one untreated case and at least one treated case 

 

PS matching can be combined with additional matching on a variable thought to have a strong 

influence on treatment allocation or outcome. Both PS matching and PS stratification within 

pair/stratum regression analysis can be performed to account for residual differences between 

the treated and untreated (Austin, 2011a). 

PS stratification is developed from subclassification which Cochran (1968) developed to balance 

data. Subclassifying on a covariate which is known to affect treatment allocation removes the 

bias due to this covariate. Removing bias in this way to account for additional covariates 

generates large numbers of strata. Combining all such covariates into the PS and stratifying by 

the PS reduces the number of strata needed. This was first implemented by Rosenbaum and 

Rubin (1984) to reduce bias in the treatment effect estimate. 

Stratification on the PS is performed by ordering the records of all participants by PS and then 

stratified into groups, with five equal-sized strata commonly used. The treatment effect is 

estimated within each stratum and then these stratum-specific results pooled to generate the 

ATE and the Standard Error (SE) of the estimate (S. Guo & Fraser, 2015, p. 205). These estimates 

are weighted by the number of cases in each stratum, to generate the ATE from k strata each 
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stratum is weighted as 1/𝑘 , to generate the ATT the weights will be the number of treated cases 

in each stratum (Austin, 2011a). PS Stratification can be combined with multivariate analysis, 

including survival analysis. 

The number of strata used needs consideration. The PS should be constant within a stratum or 

the number of strata sufficiently large and the differences in the values of the PS between strata 

small (Imbens & Wooldridge, 2009). Five strata were suggested by Cochran (1968) and 

Rosenbaum and Rubin (1984) and are widely used in studies. Lunceford and Davidian (2004) 

showed that five strata may not remove bias and that the number of strata should be based on 

the number which can give covariate balance. The number of strata used is a compromise. A 

larger number of strata gives better homogeneity within each strata and reduces the bias in the 

treatment effect estimate, while a smaller number of strata will have more observations in each 

strata giving lower variance in treatment estimates (S. Guo & Fraser, 2015, p. 208). 

Inverse Probability of Treatment Weighting (IPTW) on the PS uses weights, based on the PS, to 

generate a synthetic dataset. The weight is defined as the inverse probability of receiving the 

treatment the participant actually received. The ATE, ATT and ATU can be calculated but each 

will use a different formula for the weights. Variance estimates must take account of the 

weighted nature of the data and robust variance estimation is commonly used (Joffe, Ten Have, 

Feldman & Kimmel, 2004). 

IPTW was first proposed by Rosenbaum (1987). Joffe et al. (2004) report that weighting removes 

the covariate imbalance across treatment groups. IPTW has a doubly-robust property so will 

lead to unbiased estimate of the treatment effects even if the regression models do not 

represent the true models, hence IPTW is more robust to model misspecification (Lunceford & 

Davidian, 2004). Morgan and Todd (2008) presented a 9-step routine when using weighted 

regression, to estimate an average causal effect and to assess its bias. The method in the current 

study (Section 2.3) is not dissimilar to theirs. Hirano, Imbens and Ridder (2003) implemented 

IPTW and showed that using a nonparametric estimate of the propensity score, rather than the 

true propensity score, led to efficient average treatment effects estimates. 

In Covariate Adjustment using the PS, the outcome is regressed on the treatment (as an 

indicator) and the PS. This method is the only one that requires access to the outcome at this 

stage. 

The four main PS methods, described above, have different implementations. PS matching and 

PS stratification use the PS to group the data but do not use the PS directly when estimating the 
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treatment effect. As IPTW and covariate adjustment both directly use the PS in the analysis,  

Austin (2014b) suggests that these methods are more sensitive to the accuracy of the PS 

estimate.  However, weighting is a ‘doubly-robust’ property so is more stable to model 

misspecification (Lunceford & Davidian, 2004). PS matching, stratification and IPTW use a 2-step 

method: model the PS then perform the outcome analysis to estimate the treatment effect. 

Once the PS model has been correctly specified the modelling for the outcome requires no 

further adjustment. However when using covariate adjustment, the form of the outcome model 

needs to be considered, such as if it is linear or non-linear. Covariate adjustment is the only 

method where the outcome needs to be ‘visible’ so the temptation is to model towards the 

known outcome (Austin, 2011a). 

Most papers which compared the performance of different PS methods used data with binary 

outcomes. Different PS methods address systematic bias by different amounts (Austin, 2011b). 

PS matching and IPTW remove more systematic differences between treatment groups than 

does PS stratification and covariate adjustment, with PS matching and IPTW removing the 

systematic differences to a similar extent (Austin, 2009b, 2011a, 2011b). When the common 

support is not good, matching performs better (Busso, DiNardo & McCrary, 2014). So properties 

of the dataset may guide the choice of PS conditioning. 

Using PS stratification, the bias increases as the sample size does. This can be offset by increasing 

the number of strata used, however quintile stratification was commonly used (Lunceford & 

Davidian, 2004). Weighting methods give unbiased estimates for ‘realistic’ sample sizes. 

Stratification and unadjusted methods can outperform weighting. 

Greater balance is achieved by matching compared to stratification, but matching was working 

with a smaller sample size (Austin & Mamdani, 2006). This may be reflected in stratification 

having greater bias and matching having reduced precision. This is reported as ‘the variance 

versus bias trade off’ (Carroll et al., 2006, p. 60). A comparison between 12 PS matching 

algorithms drew a similar conclusion, reporting that matching algorithms without caliper have 

larger sample, and hence greater precision, whereas matching with caliper gives less bias 

(Austin, 2014a). In large samples (asymptotically) all PS matching methods should give the same 

results, although for smaller samples the choice of matching is usually a trade-off between bias 

and efficiency (Caliendo & Kopeinig, 2008). Ultimately, the choice of PS method will depend on 

the data properties. 

When using time-to-event outcomes, like the study data, Austin (2014b) recommends using 

matching and IPTW. Neither method was seen as superior as they both reduced treatment 
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allocation bias to the same extent. Each method had advantages and limitations; the situation 

may dictate which to use. With PS matching the method was more ‘transparent’, and less 

sensitive to model misspecification, but only estimates ATT, and needed a pool of controls at 

least as large of that of the treated. Weighting (IPTW for ATE and IPTW for ATT) was applicable 

to more complex situations. Austin (2013) ran simulations on time-to-event data to investigate 

the performance of different PS methods, different methods to account for the matched or 

weighted nature of the data and varied the exposure prevalence. They reported that PS 

stratification and covariate adjustment gave biased estimates of the marginal hazard ratio (HR) 

and recommend PS matching and IPTW (for ATE & ATT). Both had minimal bias but IPTW had 

lower Mean Squared Error (MSE). The limitations were that they only used greedy NN matching 

and 1:1 matching not many:1 matching. The recommended PS methods for use with time-to-

event data to estimate the marginal HR are PS matching and PS weighting (IPTW), (Austin, 2013). 

The circumstances will dictate which method to use (Austin, 2014b). 

A further recommendation is to use a number of different PS methods and present the most 

promising (Caliendo & Kopeinig, 2008; Garrido et al., 2014), which would be the method 

achieving the best balance. So although PS matching or IPTW would appear to be the methods 

to consider for analysis of the study data, comparisons using PS stratification and covariate 

adjustment may be useful. 

2.3.5 Step 4 - Balance of covariates after Propensity Score conditioning 

Balance of the more influential variables in the PS model is important. If the data are not shown 

to be balanced, the variable selection for the PS model will have to be adjusted (Austin, 2011a). 

If PS matching or IPTW have been used, then these checks should be applied to the generated 

matched or weighted sample respectively. The literature agrees that checks for balance should 

be carried out at this stage (Austin, 2011a; Garrido et al., 2014; Rubin, 2004; Williamson et al., 

2012a). 

Conditional on the true PS, treatment allocation is independent of the measured covariates. This 

means treated and untreated cases with the same true PS will have the same covariate 

distribution (Rosenbaum & Rubin, 1983). If the distribution of the covariates is similar for the 

matched cases with the same PS, then the PS is sufficiently well defined (Ho, Imai, King & Stuart, 

2007). As the estimated PS is being generated, tests on the difference of the covariate 

distributions will indicate if the estimated PS is sufficiently close to the true PS  (Austin, 2009a). 

These checks are applicable to the PS matched dataset and can be applied for use with PS 

Stratification by applying the checks within each strata (Austin, 2011a). For PS matching which 
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uses many-to-one matching, Austin (2008a) recommends weighting the matched control cases 

before performing the balance checks. 

There is no definitive set of tests for balance checking, but the tests described here are among 

those recommended for use. For PS matching, standardised differences should be calculated for 

each continuous or binary covariates. If the PS matching has adjusted for the systematic 

differences between the treatment groups, the standardised differences should be low. These 

are often compared with the standardised differences for the covariates in the original, 

unmatched dataset by presenting them on the same plot. Additional tests include comparison 

of higher order moment of baseline covariates between treatment groups (Imai, King & Stuart, 

2008). An example is Variance Ratios (Austin, 2009a) which compares variances of these 

covariates and gives a broader comparison. Visual inspection of side-by-side box plots and Q-Q 

plots for continuous variables can be inspected to assess how the systematic differences have 

been removed by the PS matching (Austin, 2009a; Garrido et al., 2014). 

Caliendo and Kopeinig (2008) also listed checks for balance of covariates as standardised bias, t-

test, joint significance and pseudo R2 and the stratification test. However, tests which were 

previously used to assess balance, such as comparison of distributions of the PS for each group, 

significance testing of baseline covariates and the c-statistic and Receiver Operating 

Characteristic (ROC) Curve of the PS, should no longer be used as they have been shown to not 

differentiate between correctly specified PS models and misspecified PS models (Austin, 2009a). 

Morgan and Todd (2008) presented a 9-step method to perform an analysis using inverse 

weighting of the PS (or IPTW). This included checking the balance between the groups in the 

weighted sample, using an average of standardised mean differences across treatment and 

control groups, and also the higher moments of the distributions of the covariates in the PS 

model. Joffe et al. (2004) used graphical displays (boxplots) to show the covariate distributions 

in original and the weighted sample. Austin and Stuart (2015) presented graphical comparisons 

of distributions of continuous variables and numerical comparison of distributions of continuous 

variables (using the Kolmogorov-Smirnov test). If the weights and hence the PS model fail to 

balance the groups, the PS model should be re-specified. 

When using covariate adjustment, Austin (2008b) proposed two diagnostic methods to check 

for balance. The first is weighted conditional standardised difference and can be used for 

continuous or dichotomous variables. The standardised difference is the difference in means of 

that variable in the two treatment groups divided by the common standard deviation of the 

variable in the two treatment groups. It is the number of standard deviations by which the two 
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treatment groups differ. The conditional standardised absolute difference is integrated over the 

distribution of the estimated PS to produce the weighted conditional standardised absolute 

difference. 

The second method is quantile regression, which compares conditional distributions of 

continuous variables. It compares the distributions of measured baseline covariate(s) in the 

different treatment groups with the same PS. A quantile of the dependent variable is regressed 

on baseline covariates, this can be repeated with several quantiles, and Austin (2008b) proposes 

using 5th, 25th, 50th, 75th and 95th. The distribution of the outcome at specific values of the PS for 

the treatment groups can be investigated by plotting the estimated regression quantiles against 

the estimated PS for the participants in each treatment group. 

Weighted conditional standardised differences will show if there is a difference between the 

means of a covariate between the treatment groups, conditional on the PS. Quantile regression 

to compare conditional distributions of continuous variables will show more about the 

distribution of the conditional difference between the two treatment groups. However, under 

the following conditions quantile regression does not provide any extra information and 

weighted conditional standardised differences should be used.  Firstly, the distribution of the 

baseline covariate, conditional on the PS, is symmetrical for each treatment group and the 

conditional distribution takes the same shape for each treatment group. Secondly, if the 

conditional distribution is the same shape for each treatment group and only the location is 

shifted. 

2.3.6 Step 5 - Treatment effect estimates 

To obtain the estimated treatment effect, standard statistical analysis should be run. The 

methods must take account of the nature of the data:  following PS matching the matched 

nature of the data must be accounted for in the analysis; following IPTW robust variance 

estimation is often used to account for the weighted nature of the data (Austin, 2011a; Li, 2013). 

The estimate of the variance of the treatment effect when using standard analyses following the 

use of PS methods does not take into account that the PS is itself estimated from the data (rather 

than being the true PS). This approach gives estimates of the variance which produce CIs of the 

treatment effect that are too wide (Williamson, Morley, Lucas & Carpenter, 2012b). Formulae 

are available which estimate the analogous marginal variance, the variance accounting for the 

uncertainty in estimating the PS, only for PS stratification (Williamson et al., 2012b) and IPTW 

(Lunceford & Davidian, 2004). When using PS stratification, commonly used variance estimation 

produced CIs which are too wide when the PS model includes variables which predict the 
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outcome but only weakly predict the treatment allocation, in comparison to using the analogous 

marginal variance method. For IPTW, commonly used variance estimation produces CIs which 

are too wide in all circumstances, when compared to using the analogous marginal variance 

method (Williamson et al., 2012b). 

2.3.7 Step 6 - Sensitivity tests 

Li (2013) and Caliendo and Kopeinig (2008) suggested sensitivity tests at this stage. They are 

from the fields of economics and management respectively, and sensitivity testing has not been 

seen following the use of PS methods to correct for treatment allocation bias in applied medical 

research guidance papers. The reasons for this are unclear as sensitivity analysis is widely used 

in other in areas of applied medical research, such as the analysis of RCT data. 

Li (2013) suggests that sensitivity analysis on the treatment (or causal) effect estimate should be 

carried out to assess if there are any unmeasured confounders. Preferably this would be by 

comparison with an unbiased estimate, but usually this is not available. Alternate comparisons 

can be made by using an alternative control group, changing the specification of the PS equation, 

or measuring the effect of unobserved variables using instrumental variables method or 

Rosenbaum Bounds. (The Rosenbaum Bounds approach assesses the size of the impact of an 

unmeasured confounding variable needed to bias causal effects from a matching analysis 

(DiPrete & Gangl, 2004)). 

Caliendo and Kopeinig (2008) also suggest investigation of the effect of unmeasured 

confounders and give methods for the assessment of how strong the effect of unobserved 

confounders must be to alter the treatment effect. Additionally, Caliendo and Kopeinig (2008) 

suggest sensitivity analysis by including any cases dropped to ensure common support. 

2.4 Measurement error methods 

2.4.1 Overview 

Measurement error, the difference between the observed value of a variable and its true value, 

can be modelled. Some common examples are: the classical measurement error model, where 

the observed value equals the true value plus random noise; the linear measurement error 

model, where the observed value equals the true value plus random noise and systematic error; 

the Berkson model, where the true value equals the observed value plus error which is 

independent of the observed value (Keogh et al., 2020). Measurement error can be ‘differential’ 

and ‘non-differential’ (Carroll et al., 2006, p. 36). If the measurement error is differential, the 

outcome affects the measurement error. Generally, measurement error is non-differential.  The 
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study data are assumed to have non-differential covariate measurement error; in this context 

that means that measurement error is the same across the treatment groups. The data were 

collected in the same way for both treatment groups, prior to treatment allocation or when the 

primary outcome occurred (Section 1.5). 

If the measurement error model is not known, ancillary data can be used to fit the model. The 

data for calibration or validation can be internal, using a subset of the main data, or external, 

using an independent dataset or study. For each of these, the data can be validation data, where 

the true value is observed directly, replication data where repeated measures of the same 

observed variable are taken, or Instrumental data where an additional variable is measured. 

Carroll et al. (2006, p. 33) recommend using internal data, as direct examination of the data 

structure is possible and it gives greater precision of estimation and inference. External data can 

be used but assumptions are always being made when transporting models. Replicate data can 

be used if the replicate mean is thought to be better than the single observation. An 

instrumental variable, when used externally, should only be used if it is unbiased for the true 

value. 

In Chapter 1 the effect of measurement error in PS analysis was introduced. The literature 

reported that measurement error was previously ignored, but now there is more application of 

methods to correct for measurement error. The author of this thesis believes that the extent of 

measurement error on a variable may not be obvious on first inspection, unlike that of missing 

data. This means that any effect caused by measurement error may go unnoticed and the 

treatment effect estimate may be biased. 

For a continuous variable, 𝑾 = 𝑿 + 𝑒  where 𝑾  are the observed covariate(s), 𝑿 are the true 

covariates and 𝒆  is the measurement error, with an assumed distribution. For a binary variable, 

𝑾  and 𝑿 will take the value 0 or 1, so the misclassification model can be expressed as 

misclassification probabilities 𝑝𝑟(𝑾 = 1|𝑿 = 0) and 𝑝𝑟(𝑾 = 0|𝑿 = 1). For both continuous 

and categorical variables, if only 𝑾 (the mis-measured 𝑿) is known then the strongly ignorable 

treatment assignment assumption required for PS conditioning is not met and using 𝑾 in place 

of 𝑿 fails to control for all confounders (Rudolph & Stuart, 2018). If a covariate in the PS model 

is measured with error, the PS does not remove the systematic differences between the 

treatment groups and hence a biased treatment effect will be estimated (Hong, Rudolph & 

Stuart, 2017). 
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2.4.2 Generic methods to address measurement error 

Measurement error adjustment methods can be categorised as: generic methods, where the 

measurement error adjustment is applied to the data then the standard PS analysis is carried 

out; and specific to PS analysis, where the measurement error adjustment is combined with the 

PS analysis. 

A brief summary of generic methods which may be suitable for this study are given. Multiple 

Over-imputation (MO) (Blackwell, Honaker & King, 2017), regards measurement error as 

partially missing information, and then completely missing values as an extreme form of 

measurement error. So, this approach corrects for both measurement error and missing data. It 

imputes the missing or mismeasured values and then ‘over-imputes’ them, so in other words 

overwrites them. Simulation Extrapolation (SIMEX) (Cook & Stefanski, 1994) adds additional 

measurement error to a single mismeasured covariate and extrapolates it back to a situation 

with no measurement error using simulations. Minimal Assumption Bounds (Black, Berger & 

Scott, 2000) specifies a range of parameter values which meet certain set assumptions on the 

error model. This method only gives bounds; details within the bounds are not available, which 

may not be enough detail for this study. If calibration data are available, Regression Calibration 

(Carroll & Stefanski, 1990) could be used, which replaces the mismeasured variable with an 

estimate of the underlying unobserved variable and then performs the analysis on these 

calibrated data. 

2.4.3 PS-specific methods to address measurement error 

2.4.3.1 Comparison of PS methods when covariate measurement error exists 

The effect of covariate measurement error when using PS conditioning was demonstrated by 

Conover et al. (2021), De Gil et al. (2015) and Hong, Aaby, Siddique and Stuart (2019). De Gil et 

al. (2015) ran simulations varying several parameters including covariate measurement error 

and compared different PS methods. Their findings included covariate measurement error 

affected bias, Type I error control and Confidence Interval (CI) convergence. It did not affect 

common support, balance, Root Mean Squared Error (RMSE) and CI width. De Gil et al. (2015) 

also varied both covariate measurement error (covariate reliability) and effect size (strength of 

relationship between covariates and treatment assignment). Both of these, as individual 

parameters and their interaction, were among parameters which affected CI coverage. 

Conover et al. (2021) used plasmode simulations (Vaughan et al., 2009) to assess the impact of 

a misclassified binary covariate in the PS model and compared the performance of IPTW, IPTW 

following trimming, and 1:1 PS matching. The misclassification was introduced in several 
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scenarios and they focused on misclassification which was differential by outcome status as this 

generated higher bias. They found that when the variable with misclassification was a strong 

indicator for treatment the bias increased with increasing exposure prevalence, but when the 

variable with misclassification was a strong contraindicator for treatment the bias increased 

with the inverse of exposure prevalence. The direction of the bias depended on whether the 

variable with misclassification was an indicator or contraindicator of treatment allocation. 

Scenarios with only false positive misclassifications produced higher bias than scenarios with 

only false negative misclassifications. This is how the measurement error was implemented in 

the current study. In Conover et al. (2021) generally in the scenarios they covered, 1:1 PS 

matching had lower bias and higher precision than IPTW using the untrimmed dataset (this was 

seen for a strong contra indication of a rare exposure and a strong indication of a common 

exposure), but following trimming generally IPTW performed better than 1:1 PS matching . They 

report that ‘modest’ amounts of measurement error, in around ≤5% of observations, can 

introduce bias. 

Hong et al. (2019) ran simulations which showed: that the bias and MSE reduced as the reliability 

of mismeasured confounders approached 1; the bias and MSE is lower when the true covariates 

are correlated even when the mismeasured variables are used (observed); correlation the 

measurement error (of the observed, mismeasured variables) increased bias and MSE. 

2.4.3.2 Study dataset requirements 

The measurement error of interest in this study’s data was covariate misclassification. There 

was no reason to suggest that the measurement error was differential across treatment groups 

(Section 1.5). There may be outcome measurement error in the dataset but this was not the 

current focus. Several PS conditioning methods were used in this study and no calibration 

dataset was available. These requirements guide which of the methods are applicable to this 

study. 

2.4.3.3 Methods to address covariate measurement error 

If a covariate in the PS model is measured with error, the treatment groups are not balanced 

because the PS is based on the observed not true covariate values and hence a biased treatment 

effect will be estimated (Hong et al., 2017). There are methods which perform measurement 

adjustment specifically in PS analysis (Braun et al., 2017; Dong & Millimet, 2020; Hong et al., 

2017; Raykov, 2012; Rudolph & Stuart, 2018; Webb-Vargas, Rudolph, Lenis, Murakami & Stuart, 

2017). These types of method were more suited to the study data and are evaluated and 

discussed in Section 2.4.3. 
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Braun et al. (2017) presents a method to adjust for treatment allocation measurement error 

which is unlikely in the study dataset. Shu and Yi (2019a) present methods to address outcome 

measurement error using validation data, replicant data or a doubly-robust method. Shu and Yi 

(2019c) developed an Augmented SIMEX (ASIMEX) method to account for both covariate 

measurement error and misclassified outcomes. Gravel and Platt (2018) used modified Inverse 

Probability weighting and MLEs of misclassified parameters derived from internal validation 

when there was outcome misclassification. These methods relate either to treatment 

measurement error, which is unlikely in the study data, or outcome measurement error, which 

was not the focus of this study. These methods were not considered further. 

Hong et al. (2017) present two Bayesian models for use with PS methods, 1) a Joint approach 

where the PS, measurement error and outcome are modelled by using all the information jointly 

and 2) a Two-Step approach where the PS and the measurement error are modelled in a 

Bayesian framework then the outcome is modelled separately. They used a ‘subjective’ Bayesian 

approach where the prior reflects expert knowledge before the data are collected, although 

other approaches could be used. They worked with the assumptions that there are no validation 

data, neither internal nor external and that there is some prior knowledge about the extent of 

the differential measurement error, which gives the ‘prior’ distribution. Their simulations show 

that when a covariate which is a strong predictor of outcome is mismeasured, the joint model 

performs best. For measurement error in weaker predictors neither model is better than the 

naïve model (but they do give better coverage). This was reflected in their case study which 

showed little advantage of their model(s) over the naïve model; this could be because the 

covariate with measurement error was only weakly related to the outcome. 

The use of Bayesian models with PS methods is relevant for psychology or education research 

where individuals often ‘self-select’ their treatment (Hong et al., 2017). The current study uses 

medical data where the treatment allocation is decided by a clinician, although the covariates 

which inform this decision may be misrecorded.  Methods presented in the next paragraph can 

be used for both differential and non-differential measurement error. Methods which are 

specifically for differential covariate measurement error, such as (Hong et al., 2017), can be 

discarded as they are not relevant to this study. 

The methods presented which address covariate measurement error, either for single or 

multiple covariates, are all relevant to non-differential measurement error (Dong & Millimet, 

2020; Raykov, 2012; Rudolph & Stuart, 2018; Webb-Vargas et al., 2017), but some may also suit 

differential measurement error. Some of the methods require a calibration/validation dataset. 



 

25 
 

Using latent variables in the PS model may off-set covariate measurement error (Whittaker, 

2020). However, Sengewald, Steiner and Pohl (2019) report that balance checking for latent 

covariates is not possible as latent covariates are unobserved, so it is “not possible to evaluate 

a PS model with latent covariates”. Sengewald et al. (2019) signpost to other methods including 

Raykov (2012)’s Modified PS using factor score estimates of latent covariates. An alternative is 

the inclusive factor score (iFS), (Nguyen & Stuart, 2020). Traditionally a latent variable is 

generated from several error-prone covariates. There are different proxies for the latent 

variable which can be used in PS analysis but these often do not balance the latent variable, and 

so lead to a biased estimate of the treatment effect. The iFS uses a structural equation model to 

predict the latent variable, using a joint distribution of the latent variable, the error-prone 

covariates and the exposure, given the observed covariates. Their simulations showed that iFS 

reduces the bias of the treatment effect estimate. 

Raykov (2012) uses the term Conventional PS (CPS) for a PS which is modelled using at least one 

fallible variable, a variable measured with error. If balancing is performed using this CPS a biased 

estimate of the treatment effect will be obtained. They then present the Modified Propensity 

Score (MPS) using covariates with measurement error. The MPS uses two indicator variables for 

each fallible covariate, which inform the latent dimensions, that are the true values. The MPS 

can be applied to multiple fallible covariates providing each has two indicator variables to inform 

them. The true covariate values were generated using latent variable software Mplus then the 

MPS modelled using logistic regression based on the ‘true’ values of the covariates. They ran 

both the CPS and the MPS methods on simulated data with fallible covariates and a significant 

treatment difference. The CPS failed to identify the significant treatment difference whereas the 

MPS did. 

The MPS (Raykov, 2012) remains in the spirit of PS as it does not access the outcome to build 

the MPS. It needs a large sample size as it uses logistic regression to build the model and 

sufficient indicator variables to inform the fallible variable(s). MPS has not yet been used in 

applied medical research, only in social sciences. Raykov (2012) uses covariate adjustment, but 

the MPS can be used with stratification  (Kaplan, 1999) and matching (Peikes, Moreno & Orzol, 

2008). 

Webb-Vargas et al. (2017) present Multiple Imputation for External Calibration (MI-EC) for use 

with measurement error in a single covariate when the measurement error is non-differential. 

It uses a calibration data set, which is regarded as a gold standard. The main dataset contains Y, 

the outcome, T, treatment, Z, covariates without measurement error, and W, the observed value 
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of the true confounder X. The calibration dataset should contain only X and W. They made 

various assumptions: the 𝑗𝑜𝑖𝑛𝑡 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 (𝑋, 𝑍, 𝑇, 𝑌|𝑊)  is multivariate 

normal (MVN); the distribution is the same for the main and calibration datasets; the mean of 

the joint conditional distribution is linear in W and the covariance matrix is constant; and the 

measurement error is non-differential. If these are met, the posterior distribution of 

𝑓(𝑋|𝑍, 𝑇, 𝑌, 𝑊)  can be generated. 

They ran simulations based on the work by Y. Guo, Little and McConnell (2012) using the Naïve 

method (unadjusted), True method (using X), Uncongenial MI-EC (not using variables later used 

in the outcome model) and Congenial MI-EC (includes outcome, treatment and all confounders). 

Their findings were that the Congenial MI-EC was shown to be the best performing model and 

can be used to correct for measurement error. As some of the covariates which predict Y, the 

outcome, are only in the main dataset and not the calibration one, so MI-EC has the advantage 

over Regression Calibration which needs access to all the confounders in the calibration dataset 

as well. 

This method can be used for a single mismeasured covariate when the measurement error is 

non-differential. A variable used in the analysis must be used in the imputation, which is 

standard practice, but removes the advantage of PS modelling being independent from the 

outcome which is a limitation of MI-EC. MI-EC worked well with any model linear in X and even 

when the joint MVN assumption was violated because the treatment allocation was binary. A 

small calibration dataset limits the bias correction for the Congenial MI-EC model, but relative 

size of the calibration to main ratio is not important. Following MI-EC, they used PS IPTW, but 

reported that PS matching or PS stratification could have been used. The current study did not 

have access to a calibration dataset, so MI-EC was not applicable. 

Rudolph and Stuart (2018) show the equivalence of covariate measurement error and 

unobserved confounding and hence apply three methods previously used for unmeasured 

confounding for use in measurement error correction. These are PS Calibration, Vanderweele 

and Arah’s bias formulas, and Rosenbaum’s sensitivity analysis. They use simulations to show 

how these methods correct for the following, 1) classical measurement error, which is non-

differential and homoscedastic, 2) systematic differential where the measurement error is 

different in the treatment groups, 3) heteroscedastic measurement error. 

PS Calibration (PSC) (Sturmer, Schneeweiss, Avorn & Glynn, 2005) uses a calibration dataset. The 

naïve PS, using mismeasured covariates, and the true PS, using correctly measured covariates, 

are generated in the calibration dataset then extrapolated to the main dataset to calibrate the 
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naïve PS stored there. There are a number of assumptions associated with PSC, and PSC is 

violated if the measurement error is differential. PSC accounts for measurement error in 

multiple covariates and PSC can be used with all PS methods. It works well for PS matching, 

stratification and covariate adjustment, but not IPTW. PSC does not work well when the 

measurement error is large. It reduces bias and works best when the ATE is close to 0. 

Vanderweele and Arah’s bias formulas (VanderWeele & Arah, 2011) are formulae for calculating 

bias caused by unobserved confounders. An unobserved confounder can be related to the 

treatment allocation and/or to the outcome.  Reasonable combinations of the values of the 

coefficients of these covariates are tested to find the ones which lead to a different result. They 

can be used for classical measurement error and differential by treatment group. They correct 

fully for measurement error bias in all three scenarios if the correct sensitivity parameters are 

used and the assumptions met. They can also be applied for any PS estimation method and can 

be used for classical measurement error and differential by treatment group. 

Rosenbaum’s sensitivity analysis (Gastwirth, Krieger & Rosenbaum, 1998) assumes that the data 

are PS matched pairs and the treatment groups are balanced on the observed confounders. 

There are different versions of this method and here the ‘simultaneous’ sensitivity analysis 

version is used, where two parameters are varied simultaneously. When the outcome, Y, is 

binary the analysis is used to set the upper and lower bound for McNemar’s test, and when Y is 

continuous the parameters are varied to set the upper and lower bounds for the normalised 

Wilcoxon Signed Rank test statistic. It may be seen as a limitation that this method can only be 

used with PS matching. This method corrects for non-differential (or classical) and differential 

measurement error. It is difficult to interpret for continuous outcomes and it reduces bias, but 

not by a large amount. 

Rudolph and Stuart (2018) recommended Vanderweele and Arah’s bias formulas, which reduced 

bias by 100% if the correct sensitivity parameters were used in all three simulation scenarios, 

and PS Calibration for use as they worked well for a variety of PS methods and measurement 

error scenarios. However, Rosenbaum’s sensitivity analysis, which performed least well, may 

still be applicable in this study if the focus were on PS matching. 

Dong and Millimet (2020) presented a semi-parametric estimator to address measurement error 

in more than one covariate. They focus on using IPTW when the PS was of an unknown functional 

form. First, they estimate the functional form of the PS and second, they estimate the moment 

of the known form of mismeasured covariates. Their work was applied to assess the 

performance of financial literacy programmes for micro-entrepreneurs. 
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A discussion of the suitability of these methods for use in this study is given in Section 2.6.1. 

2.5 Sparse data methods 

2.5.1 Introduction 

This section of the literature review focused on sparse data in observational studies using 

Electronic Healthcare Record (EHR) data and the most appropriate methods used to analyse 

them. Sparseness in data can be caused by any of the following: small sample size (Siino et al., 

2018); rare exposure (treatment) (Hajage et al., 2016); rare outcome events (Siino et al., 2018) 

which lead to a low number of events per variable (EPV) (Greenland et al., 2016); unbalanced or 

highly predictive risk factor variables (Siino et al., 2018) with narrow distributions or categories 

which are uncommon (Greenland et al., 2016); variables which almost perfectly predict the 

outcome (Greenland et al., 2016); variables that together almost perfectly predict the exposure 

(treatment) (Greenland et al., 2016). 

Sparse data bias produces treatment effect estimates away from the null, so inflated treatment 

effect estimates are produced. Estimates should be compared with existing knowledge and any 

previous studies, and if they strongly differ this could be an indication of bias (Greenland, 

Schwartzbaum & Finkle, 2000). The effects of treatment on outcome measured by risk, rate and 

odds and adjusted versions of these such as logistic, Poisson or Cox modelling can all be subject 

to bias if there are small numbers in any of the treatment/outcome combinations (Greenland et 

al., 2016). These estimation methods assume sufficient events at all treatment levels or 

categories, but when this is not met the estimate for the regression coefficients is away from 

the null. Greenland et al. (2016) refers to this as ‘sparse data bias’, as it can occur in quite large 

datasets not just due to small sample size. 

2.5.2 Sparse data methods 

Methods for working with sparse data include Propensity Score methods (Section 2.5.3), 

Penalised Likelihood Estimation (PLE), Data Augmentation and Bayesian methods. Some of the 

methods are closely related, for example Data Augmentation for sparse data can be used as a 

form of Bayesian analysis, also Data Augmentation is a form of PLE where the prior data forces 

the program to generate a penalty function, which imposes the prior constraints (Sullivan & 

Greenland, 2013). 

When outcomes are binary, logistic regression is a common form of analysis. However when the 

data are sparse the asymptotic properties that maximum likelihood estimates (MLE) are based 

on no longer hold and the treatment effect estimate may therefore be infinite or heavily biased. 
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Firth’s penalized maximum likelihood (PLE) (Firth, 1995) provides a finite treatment effect 

estimate even in such sparse data settings (Siino et al., 2018). 

In studies with binary outcomes and two treatments (exposed or not exposed to the active 

treatment) the results can be reported in a 2x2 table. In studies where the data are stratified, 

such as by centre, the data for each stratum are represented in a separate 2x2 table. There are 

different ways of dealing with sparse data in this setting by combining categories, deleting cells 

or tables containing zero values, or Data Augmentation where a constant is added to each cell 

(Subbiah & Srinivasan, 2008). Data Augmentation is the most popular method in the literature. 

Bayesian methods are well suited to observational studies and they perform well compared to 

frequentist methods particularly when the data are sparse. This is particularly the case when the 

number of covariates approach the number of outcomes (Sullivan & Greenland, 2013). Data 

Augmentation may be regarded as a semi-Bayes or partial-Bayes analysis as it does not require 

priors on all coefficients. The literature reports that a weakly defined prior gives better 

performance than frequentist methods, particularly when the data are sparse. Greenland et al. 

(2000) commented that like all Bayesian methods, Data Augmentation needed suitable 

background information. 

PS methods to address treatment allocation modelling improve the handling of sparse data 

(Greenland et al., 2016). PS methods combine the information from several variables into one, 

making the EPV lower in the outcome model. The current study is limited to the use of PS 

methods in the presence of sparse outcome data. 

2.5.3 Studies investigating Propensity Score methods and sparse data 

A number of papers conducted studies using PS methods on data with some of the 

characteristics of the study data: observational data using EHR; large dataset with few outcomes 

(sparse data); outcome analysis using time-to-event data. Hajage et al. (2016), L. Choi et al. 

(2018), Patorno, Glynn, Hernandez-Diaz, Liu and Schneeweiss (2014) and Franklin et al. (2017) 

compare PS methods in their studies. 

The analysis on the current study’s data is a 2-step approach – firstly to adjust for any treatment 

allocation bias by using PS methods, secondly to perform the outcome analysis suitable for time-

to-event format data. The sparseness in the data takes the form of rare outcomes, so will affect 

the second step. An assessment of different PS methods will be useful to determine which best 

prepares the data for the outcome analysis with sparse data. 
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Several papers used PS methods with sparse data but were not directly applicable to this study. 

Kuss (2002) used logistic regression to build the PS model for rare exposure. The sparseness of 

the data in L. Choi et al. (2018) related to low exposure. Patorno et al. (2014) worked with data 

with frequent exposure, many potential confounders and few outcomes (particularly in the 

exposed group), which is similar to the current study’s data, but used High Dimension Propensity 

Scores (hdPS). These are all different scenarios to the current study. Ali et al. (2014) gave 

recommendations for PS balance and PS model variable selection with rare outcomes. Lee 

(2010) reported that when the data are sparse, doubly-robust adjustment (a PS method with 

regression adjustment) produced more biased treatment effect estimates with higher SE than 

when just using PS weighting. Yoshida et al. (2017) showed that matching weights performed 

better than 1:1:1 matching and IPTW, particularly with rare outcomes or uneven exposure 

distributions, but with 3 treatment groups. Chang, Perng and Shiau (2000) highlighted the 

problems of using Cox PH with sparse data. If there were no events in a stratum it was non-

informative. In cases with many such strata, the Cox PH modelling could become unstable. They 

report that this estimate was unbiased and that precision can be increased by ignoring the 

heterogeneity among strata, but this estimate was then biased. This is an example of the trade-

off between bias and precision. They propose a compromise of these two. 

Hajage et al. (2016), Fabiani et al. (2015) and  Franklin et al. (2017) had stronger similarities to 

the current study. Hajage et al. (2016) ran simulations and applied their analysis to a real-world 

dataset. Their method had similarities to the current study, using EHR, comparing PS methods, 

the outcome data were in the form of time-to-event and they estimated the marginal HR. Their 

data had sparse exposure (treatment) whereas the current study has sparse outcome data. The 

parameters they varied included: prevalence of exposure; correlation between variables in the 

PS model; strength of association between covariates in the PS model and exposure (the effect 

size); association between exposure and outcome and censoring rate. They compared the 

performance of PS weighting (IPTW for ATE & IPTW for ATT) and PS matching. These methods 

had been recommended by the literature as the best performing PS methods (Section 2.3.4). 

The results from Hajage et al. (2016) of most relevance to the current study were when the 

exposure rates were varied: rare exposure gave a biased estimate to the marginal HR; the 

estimate for ATE (using IPTW) had a particularly high bias; estimates for ATT were less biased; 

and IPTW for ATT was recommended over PS matching for estimates of the ATT. 

Fabiani et al. (2015) provided an example of using a PS method (PS stratification) when the data 

are sparse (both exposure and outcomes). They explored if there was a link between the 

influenza vaccine in pregnant women and several maternal and neonatal outcomes. The study 
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setting was similar to the current study: EHR were used; the outcome data were in the form of 

time-to-event; and Cox PH regression was used. There was low exposure prevalence (2%) and 

many of the outcomes had a prevalence of <1%. This is an example of using PS methods in a 

sparse data setting, but no comparison with other PS methods was made. 

Franklin et al. (2017) ran extensive simulations, based on two datasets, in scenarios where the 

outcome data were sparse. There were similarities with the current study, although their 

outcome of interest was binary, the log RR was displayed in their plots. They used a plasmode 

simulations method, compared the performance of several PS methods (some were different to 

the current study), combined them with different outcome modelling options and applied them 

to several scenarios which all had low outcome prevalence, of 1% to 5%. Some of the differences 

to the current study were that they used four methods for generating the PS, ran each analysis 

on trimmed and untrimmed datasets and where feasible, the PS methods were used to estimate 

the ATE and the ATT. Franklin et al. (2017) used seven scenarios to present a variety of 

parameters. In summary, their recommendations for the best PS methods to use were guided 

by calculating the treatment effect within quintiles of the PS. If there was little heterogeneity, 

they recommended regression on the PS using a nonlinear generalised additive model fit. If 

there was heterogeneity, they recommended matching weights. They did not recommend 1:1 

matching, IPTW and stratification when the data had few outcomes and poor common support. 

They also averaged the results over all their simulation scenarios to recommend PS methods to 

estimate the ATE and ATT. Franklin et al. (2017) confirmed that IPTW could be unstable when 

the common support was not good, which agreed with findings from the literature. They found 

that extreme weights also cause problems for stratification and full matching. In full matching 

in areas of poor overlap a single treated case can be matched to many (500) controls, they 

suggest limiting this number, but could give higher variance if the number of outcome events 

reduces. Their findings supported the literature that trimming reduced the bias but may increase 

the SE of the estimate. They reported that datasets with better common support would improve 

the performance of not only IPTW, but also other PS methods. 

2.6 Identification of the gap in the literature 

2.6.1 Measurement error 

This section examines the applicability of the existing methods for correcting for measurement 

error when using PS methods, if they were to be applied to this study’s data. The measurement 

error in the study data to be investigated was non-differential covariate measurement error 

(Section 2.4.3.1). The methods which relate to treatment allocation measurement error (Braun 
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et al., 2017) or outcome measurement error (Gravel & Platt, 2018; Shu & Yi, 2019a, 2019c)  or 

only non-differential covariate measurement error (Hong et al., 2017) were discarded. 

If correction for non-differential, covariate measurement error were to be applied to the study’s 

data, the selection of methods would be as follows. MI-EC and PS Calibration require an external 

calibration dataset which is not available for the study dataset. Rosenbaum’s sensitivity analysis 

has only been applied to PS matching so could not be used with all the PS methods compared in 

this study. The Modified PS uses latent variables each of which are generated from two indicator 

variables. Latent variable methods were not considered for the current study. Vanderweele and 

Arah’s bias formulas or Dong and Millimet (2020)’s semi-parametric estimator would be the 

methods most likely for consideration. Additional criteria which may guide the method selection 

will include, the ability to correct for bias, the ease of application, such as the availability of 

software or code and the novel application of the method. 

Methods to correct for measurement error when using PS conditioning were originally more 

widely applied to social science data (Dong & Millimet, 2020; Hong et al., 2019; Hong et al., 2017; 

Nguyen & Stuart, 2020; Raykov, 2012; Sengewald et al., 2019; Webb-Vargas et al., 2017). More 

recently there have been applications to health survey data or RCT data, (Braun et al., 2017; 

Conover et al., 2021; Shu & Yi, 2019a, 2019b, 2019c). Only one study, (Gravel & Platt, 2018) had 

applied their methods to routinely collected EHR, CPRD data linked to HES & MINAP, which is 

similar to the current study’s dataset. The measurement error seen in survey data (both for 

social science and medical research) which rely on participant recall may be different to the 

measurement error in EHR which are routinely collected data. A novel aspect of this study would 

have been the application of one of these methods to EHR data. However, the study data does 

not contain validation data, such as external data from HES or repeated measures, which 

excludes some of the methods described. 

2.6.2 Sparse data methods 

This study was limited to using PS methods to minimise sparse data bias. Although PS methods 

are a recognised method when analysing sparse data, the different types of PS methods 

performed differently (L. Choi et al., 2018; Franklin et al., 2017; Hajage et al., 2016; Patorno et 

al., 2014). Greenland et al. (2000) summarised that other types of bias, such as misclassification 

and selection bias, can also add to the problem of sparse data bias. In this study additional bias 

could be introduced by measurement error, so the focus was to compare the performance of 

different PS methods in the presence of covariate measurement error and sparseness of 

outcome data. 
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2.7 Summary 

Comparisons of the performance of different PS methods to correct for treatment allocation 

bias when the outcome data is binary is made by Austin (2009b), Austin et al. (2007), Austin and 

Mamdani (2006) and Busso et al. (2014). IPTW and PS matching are the PS methods which 

provide the best balance between the treatment groups. The majority of the literature uses data 

with binary outcomes however Austin (2013), Austin (2014b) and Gayat, Resche-Rigon, Mary 

and Porcher (2012) use time-to-event data. Austin (2013) and Austin (2014b) show IPTW and PS 

matching to be the best performing methods with time-to-event outcomes. 

De Gil et al. (2015), Conover et al. (2021) and Hong et al. (2019) demonstrated the effect of 

covariate measurement error on treatment effect estimates and compare the performance of 

some PS conditioning methods. No method to correct for covariate measurement error when 

using PS analysis was found to be suitable for this study’s data. So, this study focuses on the 

comparison of the performance of PS methods in the presence of covariate measurement error. 

PS analysis is recognised as a method for working with sparse data (Greenland et al., 2016). 

Franklin et al. (2017) and Hajage et al. (2016) compared PS methods in simulations using sparse 

data. Franklin et al. (2017) investigated many scenarios including sparse outcome data and rare 

exposure, although the outcome data were binary. Franklin et al. (2017) compared the 

performance of different PS methods, and their averaged results showed for the ATE PS 

stratification performed slightly better than IPTW for ATE, and for the ATT 1:1 PS matching 

performed slightly better than IPTW for ATT. Hajage et al. (2016) used data in time-to-event 

format from EHR, but with sparse exposure and recommended IPTW for ATT over PS matching 

for estimates of the ATT. 

There is less in the literature where PS methods are compared when the outcome data are in 

the form of time-to-event, as opposed to comparisons of PS methods using binary data. No 

reference to work was found which makes a comparison between PS methods with varied added 

covariate measurement error and varied sparseness of the outcome data. This study developed 

a simulations method to analyse the study dataset, which has time-to-event outcomes. 

Simulations were run to compare the performance of the four selected PS methods when the 

amount of covariate measurement error and the sparseness of outcome data were varied. 

Chapter 3 develops the analysis method for each PS method with no introduced measurement 

error and no change to the sparseness of the outcome data. Chapter 4 develops the simulations 

method. 
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Chapter 3 METHODS 

3.1 Introduction 

The real-world treatment effect of a novel treatment can be estimated from observational (non-

randomised) data. However, as the treatment allocation is not randomised, there may be 

systematic differences between the treatment groups, and if this is not accounted for the 

treatment effect estimate will be biased. Propensity Score (PS) methods are commonly used to 

adjust for differences between treatment groups and are used in this study. The PS methods 

IPTW for ATE, IPTW for ATT, PS stratification and PS matching were chosen for use in this study 

as they are widely used. These PS methods are all applied to the data before the outcome 

analysis is conducted. In later chapters (4 and 5) the performance of the different PS methods is 

compared in the presence of other real-world problems: measurement error and sparse data. 

Before the simulations could be run to compare the performance of the PS methods in the 

presence of measurement error and sparse outcome data, the analysis method was developed 

and run on the study dataset, keeping its original characteristics. This chapter describes how the 

study dataset was established from an extract of primary care data and why Rivaroxaban was 

chosen as the NOAC treatment to compare with Warfarin. It then explains how the PS model, 

the treatment allocation model, was fitted to the data and the PS conditioning methods: PS 

matching; IPTW for ATE; IPTW for ATT; and PS stratification were applied. As the data were in 

time-to-event format, a Cox proportional hazards model was fitted for use in the outcome 

analysis. The baseline hazard was identified for use in the simulations work, (applied in 

subsequent chapters). Further details of the work presented in this chapter are given in 

Appendix B. 

3.2 Establishing the study dataset  

This study used data supplied to the Performance-Based Innovation Rewards study (REWARD) 

(Appendix B-1.2). The data extract contained variables relating to patient demographics, factors 

thought to affect the prescribing of NOAC/OAC medication, factors thought to affect the main 

study outcomes of stroke and major bleed event, details of subsequent outcomes, full details of 

anti-coagulant prescriptions and summary details of other medication thought to affect 

NOAC/OAC prescribing. The NOACs which were available to be prescribed during the REWARD 

study period, (January 2011 to May 2015) were Apixaban, Dabigatran and Rivaroxaban. The 

traditional OAC used as the control treatment was Warfarin. 
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The REWARD dataset contained routinely collected primary care data, so there was no 

randomisation to the treatment. To correct for the possible systematic differences between 

treatment groups this study uses Propensity Score (PS) methods, which have been developed 

for use with two treatments. There may be different factors which affect the prescribing of each 

NOAC so one of the NOACs had to be chosen to compare with Warfarin. Rivaroxaban was chosen 

because its use was increasing and had the highest number of cases to whom it was prescribed 

(Table 2). Although this meant there were likely to be more outcome events in the dataset which 

would make the outcome modelling more stable, the outcome data (the number of future 

strokes) was still sparse. The Rivaroxaban-Warfarin dataset was used as the study dataset. Early 

analysis using the Apixaban-Warfarin dataset is given in Appendix B-4 for comparison. 

Table 2: Number of NOAC-naive patients by year of first NOAC/OAC prescription. 

Year Apixaban Dabigatran Rivaroxaban Warfarin 

2011 and earlier 0 26 4 46,246 

2012 0 280 99 7,409 

2013 114 459 735 7,117 

2014 769 389 1,395 5,333 

2015 (Jan to May) 461 119 699 1,334 

Total 1,344 1,273 2,932 67,439 

 

Selecting the first NOAC/OAC prescription date after the NOAC NICE approval date (May 2012) 

ensured that the treatment groups were compared during the same time period and that the 

same healthcare policies applied. Selecting only NOAC/OAC naïve patients ensured that the 

effect of only this treatment is being studied. This did mean that patients who had ‘crossed over’ 

from Warfarin to a NOAC were excluded from the study dataset. The original requirement was 

‘first NOAC/OAC prescription after first date of AF diagnosis’, but the recording of the first date 

of AF diagnosis appeared to be inaccurate, with many patients apparently prescribed a 

NOAC/OAC before a recorded diagnosis of AF. So the start date of the first NOAC/OAC 

prescription was used in lieu of the date of first AF diagnosis. 

The Rivaroxaban vs Warfarin dataset (RI-WA) was built using the selection criteria: 

• The first NOAC/OAC prescription date was after the National Institute for Health and 

Care Excellence (NICE) approval date for the NOAC (May 2012 for Rivaroxaban) used in 

the dataset. 

• The patients were NOAC/OAC-naïve, that means this was the first NOAC/OAC 

prescription this patient was recorded as being prescribed. 
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3.3 Modelling the Propensity Score 

The PS model is the treatment allocation model and gives the probability that the patient would 

be allocated the novel treatment, the NOAC. So for patients who received the NOAC, it would 

be expected that the PS would be closer to 1 than those who received the control, Warfarin. The 

PS is a probability distribution for which a truncated or an S-shaped curve suit these outcomes 

taking values in the range 0 to 1. Methods used to model the PS include logistic regression, 

general location modelling, classification trees, random forest, generalised boosted model 

(Cham & West, 2016). Logistic Regression is the most widely used method when the data is 

complete (Cham & West, 2016; Luellen, Shadish & Clark, 2005; Thoemmes & Kim, 2011) and was 

selected for modelling the PS model in this study (Appendix B-3.1). 

The literature presents different options for the selection of the covariates to include in the PS 

model: variables which influence prescribing and outcome; variables which influence only 

prescribing; variables which influence only outcome (Section 2.3.2). In this study, variables 

which influenced the prescribing, although they may also have influenced the outcome, were 

included in the PS model. This allowed the PS to be modelled without knowledge of the 

outcome. The variables were selected either by expert knowledge or by identifying non-clinical 

variables from the data. 

All clinically relevant variables (from advice by clinicians) were kept in the PS model, regardless 

of their statistical significance during the model selection process. Other non-clinically relevant 

variables, seen to affect prescribing, were kept in the model if their p-value ≤ 0.05, showing 

them to be statistically significant (Appendix B-3.2). The model selection was made using the 

Bayesian Information Criteria (BIC) (Posada & Buckley, 2004) (Appendix B-2). Several functional 

forms for the continuous variables, age and date of first prescription, were selected and 

combinations of these added to the model containing the clinically relevant variables and the 

significant non-clinical variables. The ‘best’ model was selected, using the BIC, and used as an 

initial PS model (Appendix B-3.3). It was then assessed to determine if any of the variables could 

be dropped to simplify its use in the simulations phase (Appendix B-3.4). The refined PS model 

used in this study is given in Table 3. 
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Table 3: The refined treatment allocation model for the RI-WA dataset. 

Covariate Coefficien
t 

SE of 
coeffi-
cient 

Z P>|z| [95% CI] 

Previous stroke 0.123 0.061 2.03 0.042 (0.004, 0.242) 

Alcohol misuse 0.098 0.128 0.76 0.446 (-0.153, 0.348) 

Chronic kidney disease 0.008 0.051 0.16 0.871 (-0.093, 0.109) 

Liver disease 0.033 0.437 0.07 0.941 (-0.825, 0.890) 

Ischemic heart disease -0.082 0.051 -1.61 0.108 (-0.181, 0.018) 

First NOAC/OAC 
prescription was ≤ 28 
days of first AF 
diagnosis? 

-0.192 0.042 -4.56 <0.001 (-0.275, -0.110) 

=86 if age≤86, else =age 0.077 0.013 6.13 <0.001 (0.053, 0.102) 

licence_to_noac30 *  0.153 0.011 13.56 <0.001 (0.131, 0.175) 

(licence_to_noac30)2 -0.001 <0.001 -5.54 <0.001 (-0.002, -0.001) 

Constant term -10.830 1.096 -9.88 <0.001 (-12.979, -8.682) 
*licence_to_noac30 is the Rivaroxaban licence date to date of first NOAC/OAC prescription, in months 

 

Following the advice of the literature a check for common support, or overlap, was carried out 

once the PS model had been defined and hence the PS value calculated (Section 2.3.3). This 

ensured the two treatment groups had sufficient participants with similar PS values to make the 

PS conditioning meaningful. Figure 1 shows that there was good common support in this 

dataset, that is sufficient overlap of the PS distributions of the two treatment groups. A simple 

match on the PS showed that all NOAC cases were matched to a Warfarin case, so the PS model 

was sufficiently well defined to continue the analysis. 

 

Figure 1: Histogram of Propensity Score, using Stata’s -psgraph-, for Rivaroxaban (Treated) and Warfarin 
(Untreated) for the RI-WA dataset. 
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3.4 PS conditioning methods 

This study compared the treatment effect estimate obtained when using four widely-used PS 

conditioning methods. PS matching and IPTW were recommended from the literature for use 

with time-to-event data. PS matching and IPTW for ATT were selected for comparison in 

estimating the ATT and for estimating the ATE, IPTW for ATE was compared with PS 

stratification. PS stratification was selected because it had performed well in sparse data settings 

(Section 2.7). It is acknowledged that there are many more variations of these PS methods that 

could have been applied in this study, but these examples of PS matching, PS stratification and 

IPTW were used for ease of comparison of the effect of measurement error and sparse data in 

the simulations phase of this study. This section describes the initial implementation of these PS 

conditioning methods on the original dataset with no added measurement error and no 

adjustment of the outcome prevalence. 

3.4.1 PS matching 

3.4.1.1 PS matching - method 

PS matching was chosen for use as it performs well to remove systematic bias between 

treatment groups (Austin, 2011a). PS matching is when matched pairs, or groups, are created 

by matching each treated participant to one or more untreated participant with a similar PS. The 

estimate of treatment effect is generated from the matched sample or dataset, where only cases 

for whom a match is made are retained. This is particularly important for observational studies, 

because there may be a large proportion of cases on the control treatment, so the size of the 

matched dataset will be smaller than the original dataset. A number of different PS matching 

method were investigated for this study in order to find the most appropriate one to take 

forward (Appendix B-6.2). Although other Stata user written commands were considered 

(Appendix B-6.1), the Stata user written command -psmatch2- (Leuven & Sianesi, 2003) was 

used to apply these matching methods. 

3.4.1.2 PS matching - balance checks 

If the matched data were not shown to be balanced, the variable selection for the PS model 

would have to have been adjusted. The literature agrees that balance checks should be carried 

out after PS conditioning. Austin (2009a) describes balance checking methods; for PS matching 

these include reporting descriptive statistics, standardised differences, variance comparisons, 

use of q-q plots for important variables. Although some quantitative comparisons could be 

made, most of the assessment was made visually, by comparing graphs. 
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The balancing checks which were applied to the matched dataset were: comparison of the PS 

distribution between the treatment groups, standardised differences of the variables and the 

number of matched pairs/groups generated. Appendix B-6.3 shows the results of the balance 

checks from the PS matching methods listed in Appendix B-6.2 which were selected for further 

consideration. They showed no one PS matching method to be superior. The simplest case, 1:1 

nearest neighbour no-replacement, was selected for further use as it balanced the data equally 

well compared with the other PS matching methods. As the study dataset has considerably more 

Warfarin patients (18,348) than Rivaroxaban patients (2,911) a many:1 matched dataset could 

be built. In this case 3 Warfarin patients to 1 Rivaroxaban patient was chosen. The 3:1 matched 

dataset used more cases and contained more outcome events. So 3:1 nearest neighbour with 

replacement was also chosen for further use. Whereas the 1:1 matching created pairs of data 

matched on the PS, the 3:1 matching created groups of four matched on the PS. 

An additional step was needed as the 3:1 matched dataset was generated using weights. The 

3:1 matching used replacement (it is not possible to use the no-replacement option in -

psmatch2- so a control case is available for matching to subsequent treatment cases). The 

weights indicated how many times a control case was matched. The working dataset was 

transformed to expand this weighted 3:1 dataset so that there was a separate record for each 

use of a weighted case. This format was needed for the outcome analysis where each matched 

group was considered to have its own baseline hazard function. 

3.4.2 Inverse Probability of Transverse Weighting 

IPTW on the PS uses weights, based on the PS, to generate a synthetic dataset or sample. The 

weight is defined as the inverse probability of receiving the treatment the participant actually 

received (Section 2.3.4). In this study, IPTW was used to estimate the ATE and ATT. A different 

formula was used for the calculation of the weight for ATE and ATT. IPTW was implemented by 

using the Stata community written command -propwt- (Lunt & Linden, n.d.) to generate the 

appropriate weight, for ATE or ATT. This weight was then used as Stata’s pweight (probability 

weights which represent the probability of the case being used in the sample and is proportional 

to the probability of the case being sampled) in the outcome analysis. 

Balance checking was performed on a single run on the original dataset, with no measurement 

error added. The standardised means were compared between the treatment groups and the 

continuous variables plotted to compare their distributions between the treatment groups 

(Appendix B-6.4). These showed the weights applied for IPTW for ATT and IPTW for ATE balanced 

the standardised means of each variable in the PS model between the treatment groups. 
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3.4.3 PS stratification  

Stratification on the PS is another PS conditioning method used in this study, and is performed 

when the records of all participants are ordered by PS, then grouped into strata. The treatment 

effect is estimated within each stratum and then these stratum-specific results pooled, or 

similar, to generate the ATE and the SE of the estimate (Section 2.3.4). Stratification using 5, 10 

and 50 strata were investigated and the balance brought by these strata compared. Five strata 

were traditionally used (Lunceford & Davidian, 2004), 50 strata were used as a high number of 

strata and 10 strata used as a compromise of these. In all cases there were both treated and 

untreated cases in each stratum.  The standardised mean differences for each variable are 

shown in Appendix B-6.5. Using 5, 10 and 50 strata all reduced the standardised differences. As 

the number of strata increased, the standardised differences for each variable decreased. The 

number of strata used is a compromise between a larger number of strata reducing the bias in 

the treatment effect estimate, but can lead to fewer observations in each strata giving a higher 

variance treatment estimate. 10 strata were chosen to use in PS stratification in this study. 10 

strata reduced the standardised differences more than 5 strata and each stratum was less sparse 

than when 50 strata were used. 

3.5 Outcome modelling 

The REWARD data were extracted to compare the effect of NOACs compared with Warfarin in 

the prevention of future stroke, the primary outcome. The outcome analysis was performed on 

time-to-event data, that is time to first stroke following the first NOAC/OAC prescription, using 

survival analysis methods. Cox regression was used for the analysis which estimated the 

treatment effect (Appendix B-7.1). 

Different implementations of Cox regression were used to take account of the matched or 

weighted nature of the data, following PS conditioning used to address the systematic 

differences between the treatment groups (Appendix B-7.2). When using PS matching, Cox 

regression with stratification was chosen over frailty, a term used to represent that individuals 

in the population (such as members of the same family) are heterogeneous due to unobserved 

factors (Cleves, Gould & Marchenko, 2016, p. 327). Frailty was not suitable as the PS is not an 

inherent trait, it can depend on the algorithm used. Using Cox regression with stratification, each 

stratum was a matched pair or group in which the baseline hazard was assumed to be constant.  

When using IPTW, for both the ATE and ATT, the weights generated by IPTW were used directly 

as an option in the Cox regression. When using PS stratification, the stratified option was used, 

again allowing the baseline hazard to vary across strata. 
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The outcome model considered variables which were clinically relevant and had not been 

included in the treatment allocation model, thus making the outcome model a conditional 

model. This maximised the number of potential confounders that had been accounted for, whilst 

following the traditional PS 2-step approach of firstly accounting for the treatment allocation 

bias without sight of the outcome and secondly performing the outcome modelling. The 

estimated treatment effect is therefore conditional on the variables in the outcome model. The 

outcome model was fitted to the analysis dataset used following PS matching (Appendix B-7.3). 

Both 1:1 and 3:1 PS matching were considered, but the outcome modelling following 3:1 PS 

matching was more stable so this was the option retained for use. However, these same 

variables were used for the other PS methods, PS stratification, IPTW for ATE and IPTW for ATT, 

without refitting the model to the full dataset. This was done for consistency between the PS 

methods. It may be regarded as a limitation of this study that the outcome model may be 

regarded as misspecified. There may be confounding which is not accounted for which 

introduces bias into the treatment effect estimate. 

The variables considered for adjustment as likely confounders in the outcome model were those 

in the CHA2DS2-VASc (Lip, Nieuwlaat, Pisters, Lane & Crijns, 2010) which is the stroke risk score 

for patients with Atrial Fibrillation, unless they had been fully accounted for in the PS model (the 

treatment allocation model) and those advised from expert clinical opinion. ‘Univariate’ models, 

using just one variable plus treatment, identified four variables which may be regarded as 

significant with p-values <0.05, being prescribed blood pressure lowering medication, statins or 

antiplatelets and hypercholesterolemia. Models were then fitted which included only these four 

variables, these four variables and the CHA2DS2-VASc score, and these four variables and the 

variables used in the CHA2DS2-VASc score (Appendix B-7.4). The models all included treatment. 

The chosen model was the four variables and the CHA2DS2-VASc score (Table 4). 
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Table 4: The outcome model selected for use. The model includes treatment, the 4 most significant univariate 
variables and the CHA2DS2-VASc score.  

Covariate HR SE of 
HR 

95% CI of HR Coeffi-
cient* 

SE of 
Coeffi-
cient 

95% CI of 
Coefficient 

p-
value 

Treatment 1.534 0.383 (0.940, 2.504) 0.428 0.250 (-0.062, 0.918) 0.087 

Prescribed blood pressure 
lowering medication 

0.339 0.110 (0.180, 0.639) -1.081 0.323 (-1.714, -0.448) 0.001 

Prescribed statins 0.677 0.245 (0.333, 1.378) -0.390 0.362 (-1.100, 0.321) 0.282 

Prescribed antiplatelets 0.646 0.225 (0.326, 1.279) -0.437 0.349 (-1.121, 0.246) 0.210 

Hypercholesterolemia 0.729 0.269 (0.354, 1.502) -0.316 0.369 (-1.039, 0.407) 0.391 

CHA2DS2-VASc score 1.360 0.165 (1.073, 1.725) 0.308 0.121 (0.070, 0.545) 0.011 
*Coefficient is the log(hazard ratio) 

Although the hazard ratio (HR) is often presented for time-to-event studies in applied medical 

research, the assessment of bias is generally carried out on the regression coefficient estimates 

for the Cox model covariates (the log(hazard ratio) ). This method is used to assess the bias to 

compare different models using PS methods for time-to-event data using simulations (Austin, 

2013; Gayat et al., 2012). The current study adopted this approach by using the log-hazard-ratio 

for the assessment of the performance measures of the estimate of the treatment effect. The 

Cox regression coefficients were of more interest than the hazard ratio as they in turn were used 

in the simulations. The selected outcome model is therefore also presented with the covariate 

coefficients, the log-hazard-ratios (Table 4). 

When the outcome model was generated using the Cox model the baseline hazard ℎ0(𝑡) was 

not calculated. However, in the simulations, developed in Chapter 4, it is needed to generate 

the simulated survival time. This can be done using a parametric survival model. Empirical 

investigations had suggested a Weibull model would be an appropriate baseline hazard function.  

A Weibull distribution offered flexibility with parameters of γ, the shape parameter, and λ, the 

scale parameter. By varying the shape parameter, γ, the distribution of the function changes, for 

𝛾 = 1 this distribution is an exponential, so the hazard is constant (Appendix B-7.5). The function 

of the baseline hazard was assessed empirically which gave baseline hazard parameters of λ = 

0.00029933 and γ = 0.480355 (Appendix B-7.6). 

3.6 Summary 

The treatment allocation model (the PS model) and the outcome model were fitted to the 

original dataset with no added measurement error using the original outcome prevalence. The 

PS methods, 3:1 PS matching, IPTW for ATE, IPTW for ATT and PS stratification, were applied to 

remove the treatment allocation bias between two treatment groups, and the balance checking 

confirmed that the PS model was a close estimate of the true PS model. The outcome model 
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was applied to the data following each PS conditioning method, accounting for the nature of the 

data, such as matched or weighted. A baseline hazard function was also generated for use in the 

simulations work. These were all used in the framework to run the simulations which was 

developed in Chapter 4. 
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Chapter 4 DEVELOPMENT FOR THE SIMULATIONS FRAMEWORK 

4.1 Introduction 

In Chapter 3 the study dataset was built to compare the treatment effect estimate of 

Rivaroxaban, a NOAC, with Warfarin in the prevention of future stroke in patients with AF. The 

PS methods used were IPTW for ATE, IPTW for ATT, 3:1 PS matching, and PS stratification. The 

PS model, the Cox PH model (used in the outcome analysis) and the baseline hazard function 

were all fitted to the study dataset with the original characteristics. 

This chapter describes the development of the simulations framework which implemented the 

methods from Chapter 3. The simulations generated performance measures of the treatment 

effect estimate which would be used to compare the PS methods used in this study under 

different conditions. Parameters were varied to assess the impact of measurement error and 

sparse outcomes. Measurement error was investigated in two ways: introducing measurement 

error in the variable for previous stroke into the PS model; and varying the effect size of this 

variable in the PS model.  This will contribute to the guidance on the use of the different PS 

methods under these conditions, when using observational data (or routinely collected data) to 

assess the treatment effect of a novel treatment. 

Section 4.4 justifies the range of measurement error used. The selection of the plasmode 

simulation method (Franklin, Schneeweiss, Polinski & Rassen, 2014), where the draws are made 

from the original data preserving the relationship between the variables for each case and its 

application developed for use in this study, are described in Section 4.2.2. Initial results from 

simulations run with the data characteristics of the study dataset are given in Section 4.3. The 

parameters to vary in the simulations are applied: introduced measurement error in the variable 

previous stroke, a variable in the PS model (Section 4.4); changes to the effect size of this 

variable in the treatment allocation model (PS model) (Section 4.5); and changes to the 

prevalence of future stroke, the primary outcome (Section 4.6). The number of simulated 

datasets required is calculated in Section 4.7 and a plan for the full simulation runs is given in 

Section 4.8. The results from these simulations are reported in Chapter 5. 

4.2 Development of the simulation method 

4.2.1 Examples of simulation methods from the literature 

Broadly, there are two methods to create simulated datasets; resampling and Monte Carlo 

Simulations (MCS). In resampling methods, random draws of cases are made from the original 

data and saved to the generated dataset. Schafer and Kang (2008) and Franklin et al. (2014) use 
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resampling in their Data Generation Mechanisms (DGM). In MCS, the variables are generated 

from random draws of known or calculated functions. Generated variables, such as predicted 

treatment and outcomes, are generated from these ‘new’ baseline covariates. Morris, White 

and Crowther (2019), Tumlinson, Sass and Cano (2014) and Chu et al. (2012) report on the use 

of this method. 

Plasmode simulation (Vaughan et al., 2009) is a resampling method, where the draws of cases, 

that is ‘individual patient records’, are made from the original data and the resulting cases 

copied to the generated dataset. This preserves the relationship between the baseline variables 

for each case. Franklin et al. (2014) used a plasmode simulation method, where a number of 

datasets, J, were created with size, n, which was less than or equal to the original dataset, from 

bootstrapped samples (with replacement) from the original dataset. Each of the generated 

datasets were analysed and the results combined for estimates of bias and variance. The current 

study’s simulation DGM was similar to plasmode simulations.  Using joint distributions in Monte 

Carlo simulations can also maintain the relationship between the baseline variables. In the 

current study’s data there is a mixture of discrete and continuous variables, usually joint 

distributions are used when all the variables are discrete or all the variables are continuous so it 

is very difficult to apply to this study dataset (Thomopoulos, 2013). 

4.2.2 Simulations method 

The simulations method in this study was developed to compare the performance of the 

treatment effect estimate when using the different PS methods in the presence of measurement 

error in a variable in the PS model, the change of effect size of this variable in the PS model and 

change in outcome prevalence on the treatment effect estimate. The simulated datasets were 

generated by resampling (with replacement) from the original dataset. This preserved the 

relationship between the baseline covariates for each case. Once a dataset had been created, 

measurement error was introduced into the variable for previous stroke, to represent under- or 

over-recording of that variable, and an amended value generated for the PS value and CHA2DS2-

VASc score (Appendix B-7.3). Variables for the simulated treatment allocation, simulated 

survival time and simulated survival outcome were created using the baseline variables, the 

chosen values for the effect size in the PS model of the variable with measurement error and 

the outcome prevalence. The treatment effect was estimated from the dataset (using the 

simulated variables) and recorded. Performance measures of the PS methods, mean, SD, bias, 

MSE, percentage change MSE and mean Model SE, were calculated from the treatment effect 

estimates from all the generated datasets. The calculation for all simulation runs used an 

assumed true mean obtained from a single simulation run using the original dataset. It was 
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generated as a plausible value to use in all simulations for estimations of both the ATE and the 

ATT, in order to investigate the variations in the treatment effect estimate due to covariate 

measurement error and outcome prevalence. 

The simulations process is shown as a flow diagram in Figure 2. 
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Build simulated dataset
• Use bootstrapping with replacement (of baseline 

case s record)
• Create same number of records as original dataset

Already defined
• PS model (treatment allocation model)
• Cox PH model (for outcome)
Set values for
• Effect Size
• Outcome Prevalence (baseline hazard function)

For each case, generate
• The PS value using amended previous stroke and 

selected Effect Size
• The simulated treatment, rbinomial(1,PS_adj)
• The generated survival time, censored at the 

episode end - using the simulated treatment 
variable, the baseline variables, the outcome model 
and baseline hazard function (for selected outcome 
prevalence)

• The Indicator variable for if generated stroke 
occurred

For 3:1 PS matching (3 WA : 1 RI)
• Keep only the matched cases
• Create expanded, matched dataset

• Perform Cox PH regression taking account of the  
nature of the data eg. matched, weighted

• Record the treatment effect estimate

• From the individual treatment effect estimates, 
generate the mean, SD, bias and MSE of the 
treatment effect estimate and the mean Model SE

Simulations Process

Repeat for 
each 

simulation

Apply measurement error amendments to
• Previous stroke
• CV_score (if needed)

For PS stratification, IPTW for ATE and 
IPTW for ATT
• Use the full simulated dataset 

 

Figure 2: Flow diagram of the simulations process (CV_score is CHA2DS2-VASc score). 
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4.2.3 Performance measures used 

Table 5 gives the formulae used to calculate the performance measures of the treatment effect 

estimate in the simulations, Standard Deviation (SD), Bias, the absolute Mean Squared Error 

(MSE) and Mean Squared Error percentage change. This terminology is used in this study. 

Table 5: Definition of the performance measures used. 

Performance Measure Definition 

Standard Deviation (SD)  
(Efron & Tibshirani, 1993, p. 47) 
 

𝑆𝐷 =   √
∑ (𝜃𝑖 − 𝜃̂)2𝑛

𝑖=1  

(𝑁 − 1)
   

Bias 
(Austin, 2013) 
 

𝑏𝑖𝑎𝑠 = (
1

𝑁
) 𝛴𝑖=1

𝑛 (𝜃𝑖 − 𝜃) 

 

Mean Squared Error (MSE) 
(Austin, 2013) 
 

𝑀𝑆𝐸 = (
1

𝑁
) 𝛴𝑖=1

𝑛 (𝜃𝑖 − 𝜃)2 

 

MSE Percentage Change 
𝑀𝑆𝐸 % 𝑐ℎ𝑎𝑛𝑔𝑒 =  (

𝑀𝑆𝐸0 −  𝑀𝑆𝐸𝑘 

𝑀𝑆𝐸0 
) ∗ 100 

Model SE Mean  
(Morris et al., 2019) 

Mean of the SE of the treatment effect estimate 
collected from the outcome analysis from each 
generated dataset 

where 

HR is the hazard ratio, the increased hazard when prescribed Rivaroxaban compared to when 

prescribed Warfarin 

𝜃 is the true marginal log(HR) 

𝜃𝑖 is the estimate of log(HR) from the ith dataset 

𝜃 is the sample mean of 𝜃𝑖 

𝑀𝑆𝐸0  is the MSE at no measurement error 

𝑀𝑆𝐸𝑘  is the MSE at k measurement error 

N is number of cases in the dataset 

 

4.3 No added measurement error 

Using the methods described in Section 4.2.2, the simulations were run (Table 6). 100 simulated 

datasets were used to verify the functionality of the simulations method. The simulated datasets 

had the characteristic of the original dataset. The performance measures given in Section 4.2.3 

were recorded. The mean estimated treatment effect was displayed as the log of the hazard 

ratio (Section 3.5) and SD, bias and MSE all relate to this. Number Valid recorded the number of 

non-missing values which were used in these calculations. The coding of the simulations 

captured the return code of the outcome analysis. If the Cox regression failed, for example a Cox 

model could not be fitted to the outcome data in the dataset, the results from that dataset were 

recorded as missing and this allowed the simulations to continue by moving to the next 

simulated dataset. In these simulations there was no missing data. Number Events was the 
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number of outcome events (future stroke), Number WA was the number of cases with a 

generated treatment of Warfarin (the control treatment) and Number RI was the number of 

cases with a generated treatment of Rivaroxaban (the novel treatment). For 3:1 PS matching 

these referred to the values in the expanded matched datasets used for the outcome analysis. 

The values displayed were all means of the values taken from the datasets used in each run. 

These example simulations confirmed that the simulation coding worked as expected and had a 

mechanism to continue the simulation run, even if a single simulation failed. The performance 

measures of interest the mean, SD, bias and MSE of the log(HR)  of the treatment effect and 

mean Model SE were collected and were displayed in tabular and graphical format for later 

simulations. 

IPTW for ATT and PS stratification gave the treatment effect estimate with the lowest bias. 3:1 

PS matching had the largest bias of the treatment effect estimate, which was positive so over- 

estimated the treatment effect, whereas the bias in the treatment effect estimates using the 

other PS methods was negative, which under-estimated the treatment effect. The SD of the 

treatment effect estimate varied from 0.2110 (PS stratification) to 0.2589 (3:1 PS matching). 

These performance measures showed that there was a difference in performance of the PS 

methods used, this is discussed further in Section 5.2. The simulations method was next 

enhanced by introducing measurement error, varying the effect size of the covariate with 

measurement error and varying the outcome prevalence. 

When using 3:1 matching, a feature of the matching process was seen. The resampled datasets 

were built using plasmode simulations which were obtained using bootstrap sampling with 

replacement. In the simulated datasets the generated treatment was created using binomial 

distribution with probability of success defined by the amended PS, so it was possible that 

different occurrences of the same original case would have different generated treatments. 

They would have similar PS values so would be obvious choices for matching when using 3:1 

matching and there was no restriction on this happening. Around 20% of Warfarin cases were 

matched to a Rivaroxaban case based on the same case in the original dataset. In this study this 

is referred to as ‘self-matching’. 
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Table 6: Preliminary results from the different PS methods with no added measurement error, using 1% prevalence 
and 100 datasets (N=100). 

PS 

method 

% M 

error 

Mean* SD* Bias* MSE* MSE % 

change 

Model 

SE 

mean 

Num 

events 

num WA Num RI N 

valid 

IPTW for 

ATE 

0 0.3361 0.2443 -0.0317 0.0607 0.0 0.2576 222.4 18344.8 2914.2 100 

IPTW for 

ATT 

0 0.3653 0.2165 -0.0022 0.0469 0.0 0.2037 180.4 18344.8 2914.2 100 

3:1 PS 

match 

0 0.4173 0.2589 0.0504 0.0695 0.0 0.2420 100.2 8748.1 2916.1 100 

PS Strat-

ification 

0 0.3646 0.2110 -0.0029 0.0445 0.0 0.2005 220.7 18344.8 2914.2 100 

*displayed as the log(HR) 

4.4 Added measurement error 

Guidance for the initial starting point for introducing measurement error into the variable 

previous stroke is informed by earlier work using the data on the REWARD study (Burnell, 2015) 

and Herrett et al. (2013) who compared recording of Myocardial Infarction (MI) from different 

data sources. The work from REWARD compared the recording of stroke events using an extract 

of primary care data from THIN only, with THIN and HES (secondary care) data. Although the 

REWARD data were primarily an extract from THIN (primary care data) 37% of the practices had 

HES-linked data, although these data were only available for the first three months of the study.  

Using THIN only, 343 strokes were recorded, but using both THIN and HES, 516 strokes were 

recorded. THIN only recorded 66.5% of strokes obtained when using THIN and HES. The HES and 

THIN combined result may not be a gold standard as both datasets are likely to be subject to 

different measurement errors, but the combined values are more likely to be more accurate 

than just using a single data source. 

Herrett et al. (2013) used four data sources to compare the recording of MI and all-cause 

mortality in patients who had suffered acute MI. The data sources used were primary care 

(Clinical Practice Research Datalink - CPRD), secondary care (HES), disease registry (Myocardial 

Ischaemia National Audit Project - MINAP) and mortality register (Office for National Statistics - 

ONS). The number of subsequent Mis recorded differed across data sources. The number of 

events given by only one data source was underestimated by 25% to 30% compared to using 

three of the data sources. Looking at the incidence of MI, the number of events using only the 

CPRD was 25% lower than using three of the data sources. 

The current study’s author acknowledges that there can also be over-recording of events like 

stroke or MI, such as where an incorrect coding is used. However, it is more likely that the 

recording of an event is missed, leading to under-recording. The assumption of Herrett et al. 

(2013) is that the discrepancy between the different data sources is due to missing recordings 
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in each data source. Herrett et al. (2013) specifically investigates how parts of the healthcare 

system do not capture events which happen in other parts of the system. Both MI and stroke 

are events which are treated in the hospital setting and reported back to primary care. It is 

therefore a reasonable assumption that there will be under-recording of these events in primary 

care data. 

Based on these two pieces of work, it would therefore appear that primary care data under-

records stroke events by 25% to 35%. These are estimations as the data sources used for 

comparison may also be subject to recording error, not the true value (Herrett et al., 2013). 

However, it is possible, that there is over-recording in the hospital setting; for example all 

patients admitted with a suspected stroke are recorded as having had a stroke. To provide the 

complete picture, the current study looks at measurement error in both directions, under-

recording and over-recording. The chosen range of the measurement error was expanded to -

50% to +50%, which included the provisional estimate of 25% to 35%. 

Measurement error was introduced into the previous stroke variable, to represent under- or 

over-recording, using the algorithm described (Table 7). The ‘temporary variable’ was calculated 

as the binomial(1,pr), where pr is the modulus of (p/100) and p is the chosen percentage 

measurement error.  When positive measurement error was applied (over-recording), no 

change was made when a case had a previous stroke. When a case did not have a previous stroke 

the modified previous stroke became positive if the temporary variable was equal to 1. If the 

temporary variable was equal to 0, the modified previous stroke remained negative.  When 

applying negative measurement error (under-recording), if a case did not have previous stroke 

no change was made. When a case did have a previous stroke the modified previous stroke 

became negative if the temporary variable was equal to 0. The modified previous stroke 

remained positive if the temporary variable was equal to 1. 

Table 7: Algorithm for generating the measurement error to create the modified previous stroke variable. 

Change made Original Previous 
Stroke Variable 

Temporary variable Modified Previous 
Stroke Variable 

Adding events Yes Any Yes 

No 0 No 

No 1 Yes 

Removing events Yes 0 No 

Yes 1 Yes 

No Any No 
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The simulations were then expanded to use added measurement error between -50% to +50% 

in previous stoke, a covariate in the PS model. The results of the full simulations are given in 

Section 5.3. 

4.5 Change of the effect size in the PS model 

In addition to running simulations to investigate the effect of under- or over-recording in a 

covariate in the treatment allocation model by introducing measurement error, the effect size 

of that variable in the treatment allocation model was also included as a parameter to vary in 

the simulations. This section introduces the method to change the effect size of the variable 

with measurement error to assess its impact on the treatment effect estimate. This meant 

changing the coefficient of previous stroke in the PS model. Suggested values were given to 

achieve low, medium and high effect size. These values were then applied to simulations 

reported in Section 5.4. 

The Odds Ratio (OR) of interest is 

𝑂𝑅 =
𝑜𝑑𝑑𝑠 𝑜𝑓 𝑟𝑒𝑐𝑒𝑖𝑣𝑖𝑛𝑔 𝑅𝑖𝑣𝑎𝑟𝑜𝑥𝑎𝑏𝑎𝑛 𝑖𝑓 ℎ𝑎𝑑 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑠𝑡𝑟𝑜𝑘𝑒

𝑜𝑑𝑑𝑠 𝑜𝑓 𝑟𝑒𝑐𝑒𝑖𝑣𝑖𝑛𝑔 𝑅𝑖𝑣𝑎𝑟𝑜𝑥𝑎𝑏𝑎𝑛 𝑖𝑓 𝑛𝑜 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑠𝑡𝑟𝑜𝑘𝑒
 

Previous stroke is coded 0 for No, 1 for Yes 

If  𝛽1 is the coefficient for previous stroke in the PS model, then 𝑂𝑅 = exp (𝛽1 ) Cohen’s d is the 

standardised mean difference between two group means, the effect size underlying power 

calculations for the two-sample t-test (Cohen, 1988). Cohen’s d = 0.2, 0.5, and 0.8 are often used 

to indicate a low, medium, and high effect size (Chen, Cohen & Chen, 2010). Chen et al. (2010) 

calculated the Odds Ratios (OR) equivalent to Cohen’s d, for low, medium and large effect size 

and presented the OR for different disease rates in the non-exposed group. 

The calculated values of ORs, which were relevant to this study, are given in Table 8 and 

informed the values of the coefficient used to represent the low, medium and large effect size 

based on Cohen’s d. The coefficient of previous stroke in the PS model was generated = ln (𝑂𝑅). 

This value was supplied as a parameter to the simulations and used in the PS model. 

This change of effect size related to the PS modelling which was used to correct for treatment 

allocation bias. The ‘outcome’ in this case was the generated treatment, which was created 

using the participants’ PS value. The ‘untreated’ group consisted of those with no previous 

stroke, the ‘outcome prevalence’ was those with a generated treatment of Rivaroxaban (the 

NOAC). In the study data the outcome prevalence took values between 13% and 14.2%, so the 

values quoted for the 10% prevalence in Table 8 were used to change the effect size of previous 
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stroke in the PS model. Rounding these parameters for use in the simulation runs reported in 

Section 5.4, the coefficient of previous stroke in the PS model took the values of 0.5 for low 

effect size, 1.0 for medium effect size and 1.5 for large effect size. When the PS model was fitted 

to the original data, the effect size of previous stroke was 0.123. This was ‘very low’ compared 

with Cohen’s classification. Simulations using this very low (or original) effect size are also 

presented in Section 5.4. 

Table 8: Effect sizes for prevalence of Rivaroxaban is generated treatment of 1% and 10%. 

 Low Effect 
Cohen’s d=0.2 

Medium Effect 
Cohen’s d=0.5 

Large Effect 
Cohen’s d=0.8 

Preva-
lence** 

OR Coeffi-
cient 

xorig* OR Coeffi-
cient 

xorig* OR Coeffi-
cient 

xorig* 

0.01 (1%) 1.6814 0.519627 4.2 3.4739 1.24528 10.1 6.7128 1.90402 15.5 

0.1 (10%) 1.4615 0.379463 3.1 2.4972 0.91517 7.4 4.1387 1.42038 11.6 

* the multiple of the original coefficient, 0.1229108 

** prevalence of Rivaroxaban (the NOAC) is generated treatment 

4.6 Sparseness of outcome data 

The simulation method was now expanded to investigate the effect of the sparseness of the 

outcome data. This section looks at the method needed to generate datasets with different 

outcome prevalences. 

The study’s data can be regarded as sparse due to its rare outcomes, despite there being 82,795 

patient records in the original data set. After selecting patients who were NOAC/OAC-naïve, and 

prescribed Rivaroxaban or Warfarin during the time Rivaroxaban was available there were 

21,259 cases with 232 outcomes (hence an outcome prevalence of 1.1%). This dataset was used 

for PS stratification, IPTW for ATT and IPTW for ATE. Applying 3:1 PS matching, the matched 

dataset had 11,644 cases with only 98 outcomes. Indeed if 1:1PS matching had been applied 

there would only have been around 45 outcomes. 

The model used to generate the survival times used in the simulations was a parametric survival 

model fitted to the original data. A Weibull distribution has parameters of γ, the shape 

parameter, and λ, the scale parameter, and was used for the baseline hazard because of the 

flexibility it offered.  The modelling to the original data suggested the Weibull parameters of 

λ=0.000299 and γ=0.480355 (Section 3.5) and these values created the generated datasets with 

an outcome prevalence of around 1%. For this study, λ was varied and γ was kept constant to 

generate simulated datasets of different prevalences. This kept the shape of the baseline hazard 

function, γ, constant and as it was <1 it remained a monotone decreasing function. 
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To investigate the effect on the treatment effect estimate from variation of the sparseness of 

the outcomes, simulations were run with parameters to generate difference outcome 

prevalences. The values chosen were approximately 1% prevalence, which is similar to the 

original dataset and so is known to exist in real-world data, approximately 0.5% prevalence to 

investigate the effect of a lower prevalence, and approximately 10% prevalence to investigate 

the effect of data which does not suffer from sparseness of outcomes (Table 9). The results of 

the full simulations varying the outcome prevalence are given in Section 5.5. 

Table 9: Baseline hazard changes for selected values – fixed γ and varying λ. 

Prevalence N % m 

error 

*Mean *SD  Mean 

Number 

Events 

Number 

WA 

Number 

RI 

N 

Valid 

λ γ 

0.4% 100 0 0.4839 0.4688 50.5 8733.0 2911.0 100 0.00015 0.480355 

0.9% 100 0 0.4016 0.2851 101.7 8733.0 2911.0 100 0.000299 0.480355 

8.8% 100 0 0.3679 0.0868 1020.3 8733.0 2911.0 100 0.00325 0.480355 

*log(HR) of estimated treatment effect 

4.7 Sample size calculations 

The initial simulation runs reported previously in this chapter had been made using 100 

simulated datasets and were used to demonstrate the performance of the simulation method 

and functionality. The sample size of 100 datasets was arbitrary. This section explores the 

number of simulated datasets which should be used, based on the precision sample size 

calculation. The number of simulated datasets is regarded as the ‘sample size’. 

The sample size was determined by calculating CI widths of the mean treatment effect estimate 

from some additional simulations using 1,000 datasets, determining an acceptable CI width, and 

calculating the number of simulations required to give the acceptable CI width. Full details of 

these calculations are given in Appendix C. 

It is acknowledged here that the selection of an acceptable CI is subjective. From visual 

inspection of plots of the mean of the treatment effect estimate, a CI of 0.04 was thought to be 

too high. A CI of 0.0367 is 10% of the true value of the treatment effect, 0.3674, using the dataset 

with the original characteristics. Combining this information and the visual inspection, an 

acceptable CI width of 0.035 was decided upon. The number of simulations required to generate 

this CI width are given in Table 10. For a CI width of 0.035, the required sample size for each 

prevalence was: for 10% prevalence, the lowest was 54 (PS stratification) and the highest was 

106 (3:1 PS matching); for 1% prevalence, lowest was 560 (PS stratification) and the highest was 

1124 (3:1 PS matching); for 0.5% prevalence, lowest was 1219 (PS stratification) and the highest 
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was 3081 (3:1 PS matching). Generally, the sample sizes were rounded up to the next 100 for 

the simulations runs presented in Chapter 5. 

Table 10: Calculated Sample Size for CI width=0.035. 

PS_Method Prev-
alence 

Mean SD of 
mean 

N 
Calculated 

N 
Rounded 

up 

IPTW_ATE 0.5% 0.3165 0.4001 2008 2100 

IPTW_ATE 1% 0.3483 0.2792 978 1000 

IPTW_ATE 10% 0.3626 0.0872 95 100 

      

IPTW_ATT 0.5% 0.3492 0.3174 1264 1300 

IPTW_ATT 1% 0.3560 0.2142 576 600 

IPTW_ATT 10% 0.3639 0.0664 55 100 

      

3:1_match 0.5% 0.4684 0.4956 3081 3100 

3:1_match 1% 0.4256 0.2994 1124 1200 

3:1_match 10% 0.3716 0.0918 106 200 

      

PS_strat 0.5% 0.3477 0.3117 1219 1300 

PS_strat 1% 0.3575 0.2113 560 600 

PS_strat 10% 0.3643 0.0656 54 100 

 

4.8 Plan for simulation runs 

To assess the effect of covariate measurement error and the sparseness of outcome data on the 

treatment effect, the parameters given in Table 11 were used. They were run for the PS methods 

assessed in this study and the results are presented and discussed in Chapter 5. 

Table 11: Parameters and their values used in the simulation runs. 

Parameter Values 

Measurement error in previous stroke in the 
PS model 

-50%, -30%, -10%, 0%, +10%, +30%, +50% 

Effect size of variable with measurement error 0.123 (original), 0.5 (low), 1.0 (medium) and 
1.5 (high)  

Outcome prevalence of future stroke 0.5%, 1%, 10% 

Sample size, N, the number of simulated 
datasets 

Specific to each PS method for each outcome 
prevalence 

 

The chosen range of the measurement error was -50% to +50%, which included 25% to 35% 

given by the literature (Herrett et al., 2013). The effect size of a variable with measurement error 

could take the original, low, medium or large value. The outcome prevalence of future stroke 

could take the value 0.5%, 1%, 10%. 1% is close to the prevalence of the original data.  The 
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number of simulated datasets used, N, was calculated for each PS method at each outcome 

prevalence (Section 4.7). 

The variable for previous stroke contributes to the outcome model as part of the CHA2DS2-VASC 

score (Section 3.5). The CHA2DS2-VASC score is a validated score so the effect size of previous 

stroke is fixed within it. If the effect size of the CHA2DS2-VASC score were changed, it would also 

influence the effect of all the other variables used within it. Also, whether a patient has a future 

stroke (the outcome of interest) will be dependent on the true value for previous stroke (among 

other variables), that is if they actually had a stroke previously, not the error-prone variable, 

which is the one recorded in their EHR. Therefore, no measurement error was introduced in the 

outcome model; the scope of this study was to investigate the effect of measurement error in 

variables in the PS model (the treatment allocation model) only. 

An extract of the Stata coding used to run these simulations is given in Appendix D. 

4.9 Summary 

The simulations method, presented in Section 4.2.2, established the simulations for use in this 

study. The parameters which could be varied were: 

• measurement error applied to the variable for previous stroke (Section 4.4) 

• the effect size of this variable in the PS model (treatment allocation model) (Section 4.5) 

• the outcome prevalence (future stroke) (Section 4.6). 

 

Preliminary runs using the simulations methods were applied to different PS methods, 3:1 PS 

matching, IPTW for ATT, IPTW for ATE and PS stratification. The simulations method allowed 

variation of sufficient parameters and correctly reported the performance measures of the 

treatment effect estimate to allow for comparison of the performance of the different PS 

methods used in this study. The results of these simulations are presented in Chapter 5 to 

compare the performance of the different PS methods under these conditions. 

The work in this chapter developed the simulations method which allowed several parameters 

to vary: the effect of covariate measurement error; the effect size of this covariate in the PS 

model; and sparseness of data on the treatment effect estimate. The amount of measurement 

error in previous stroke, a variable in the PS model took the range -50% to +50% (Section 4.4). 

The effect size of this variable in the PS model could also be varied so that it had a low, medium 

or large effect (Section 4.5). The outcome prevalence could be varied by changing the number 

of outcome events (future stroke) in the generated datasets. The prevalences used were 0.5%, 
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1% and 10% (Section 4.6). The sample size for the simulations, the number of generated 

datasets, was informed by the work in Section 4.7. The results of the preliminary simulations 

were presented in tabular and graphical format. In Chapter 5 the simulations varying these 

parameters were run using the full sample size for each PS method. The results are presented 

and discussed. 
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Chapter 5 SIMULATIONS RESULTS 

5.1 Introduction 

In this chapter, simulation experiments were run using the method developed in Chapter 4. The 

simulated datasets were generated from the study data which compares the performance of 

Rivaroxaban (the novel treatment) with Warfarin (the control treatment) for patients with AF in 

the prevention of future stroke. 

Section 5.2 compares the PS methods with no introduced measurement error. In Section 5.3, 

measurement error was introduced into a variable in the treatment allocation model to 

investigate the impact of both under-recording and over-recording of an event in a patient’s EHR 

on the treatment effect estimate. In Section 5.4 the effect size in the treatment allocation model 

of the variable with measurement error is varied as well as the amount and direction of 

measurement error. In the original study’s dataset the variable with assumed measurement 

error had a very low effect size in treatment allocation. In Section 5.5, the outcome prevalence 

was varied as well as the introduced measurement error to demonstrate the impact of sparse 

outcome data, which can be present in extracts from EHRs when there is under-recording or 

over-recording of an event which affects treatment allocation. Section 5.6 combines all these 

and varies the measurement error, its effect size in the PS model and the outcome prevalence. 

Simulations were run in all these scenarios using all four PS methods so that a comparison 

between them could be made. Recommendations for the PS method to use in the estimation of 

the ATE and ATT are made in Sections 5.7 and  5.8, respectively. 

The method developed in Chapter 4 had demonstrated that the simulations generated the 

mean, SD, bias, absolute MSE, percentage change MSE and model SE of the treatment effect 

estimate. These were all used as performance measures of the treatment effect estimate and 

are reported in this chapter, in tabular and graphical format. The results display the estimate of 

the treatment effect (of Rivaroxaban over Warfarin) presented as the log(HR). 

In this chapter the simulation results are demonstrated with the results using IPTW for ATE in 

graphical format. The results in tabular format and the results using the other PS methods are 

displayed in Appendix E (varying measurement error and outcome prevalence in tabular form 

and plotted for each PS method), Appendix F (varying measurement error and effect size in 

tabular form and plotted grouped by prevalence and PS method) and Appendix G (results from 

Appendix F plotting all PS methods together, grouped by effect size and prevalence). For 

integrity of results presentation, some plots given in the main body of the thesis are also 

repeated in the Appendices. The heat plots, generated using the Stata user written command -
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heatplot- (Jann, 2019), (Figure 5 to Figure 10) present the results from all the simulations 

together. A summary of the findings is given in Table 13. 

5.2 Results using original data characteristics 

The four PS methods used in this study, IPTW for ATE, IPTW for ATT, 3:1 PS matching and PS 

stratification, were applied, using simulations, to the original study dataset to compare their 

performance with no added measurement error. The results are shown in Table 12. All values 

relate to the log of the HR. IPTW for ATE, IPTW for ATT and PS stratification used the full dataset 

for analysis, whereas 3:1 PS matching used the dataset containing matched cases only. The 

number of Warfarin cases (Num WA) was lower for 3:1 PS matching and the 3:1 PS matching 

simulated datasets also had a lower number of outcomes (Num Events). The treatment effect 

estimate using IPTW for ATE, IPTW for ATT and PS stratification all had negative bias and 3:1 PS 

matching had positive bias. PS stratification had the least biased estimate and 3:1 PS matching 

had the most biased. PS stratification had the highest precision (lowest SD) and lowest MSE of 

the treatment effect estimate and 3:1 PS matching had the lowest precision and highest MSE. 

PS stratification had the lowest mean of the Model SE and IPTW for ATE had the highest. Overall, 

3:1 PS matching appeared to be performing the least well, giving a treatment effect estimate 

with the highest bias, lowest precision (from the highest SD) and the highest MSE. 3:1 PS 

matching was however retained in this chapter to investigate its performance in the presence 

of measurement error and sparse outcomes and for comparison in the estimation of the ATT. 

Table 12: Simulation results comparing the PS methods with no added measurement error. 

PS 

Method 

Out-

come 

Preva-

lence 

N % m 

error 

Mean* SD* Bias* MSE* Model 

SE 

mean 

Num 

Future 

Stroke 

Num WA Num RI 

IPTW for 

ATE 

1% 1000 0 0.3494 0.2654 -0.0181 0.0707 0.2587 222.0 18350.2 2908.8 

IPTW for 

ATT 

1% 1000 0 0.3565 0.2083 -0.0110 0.0435 0.2035 181.5 18350.2 2908.8 

3:1 PS 

Matching 

1% 1200 0 0.4102 0.2857 0.0428 0.0834 0.2435 100.1 8726.2 2908.7 

PS strati-

fication 

1% 1000 0 0.3575 0.2044 -0.0099 0.0418 0.2006 219.3 18350.2 2908.8 

*displayed as the log(HR). WA: Warfarin. RI: Rivaroxaban.     

5.3 Results with added measurement error 

The impact of incorrect recording of a variable which affects the treatment allocation (previous 

stroke) was investigated. Under-recording of previous stroke, thought to be the more likely 

scenario (Section 4.4), was demonstrated by introducing negative measurement error in the 

range of -50% to 0%. Over-recording of previous stroke was demonstrated using positive 

measurement error in the range 0% to +50%. The original dataset characteristics were retained 
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and the simulations used the number of datasets given in Section 4.7. The results from the 

simulations are shown in Figure 3. 

Over the measurement error range, 3:1 PS matching was the only PS method which produced a 

treatment effect estimate with positive bias. This bias had a magnitude of approximately three 

times that when using the other PS methods. 3:1 PS matching showed a rise in both the mean 

and bias of the treatment effect estimate at measurement values of +10% and + 20%. The other 

PS methods showed little variation in the mean and bias over the measurement error range. 

The SD and MSE of the treatment effect estimate showed the same pattern for all four PS 

methods, a decrease in their values from higher negative measurement error toward no 

measurement error and then a slightly steeper decrease from no measurement error to higher 

positive values of measurement error. Over the measurement error range, 3:1 PS matching still 

had the highest values for the SD and MSE and PS stratification and IPTW for ATT had the lowest 

values (which were similar to each other). The model SE followed a similar pattern to the SD and 

MSE over the measurement error range, except that IPTW for ATE had the highest values. The 

percentage MSE change increased from higher negative measurement error towards no 

measurement error, then increased more steeply from no measurement error to higher positive 

measurement error. Generally, 3:1 PS matching had the lowest values. 

Over the whole measurement error range, 3:1 PS matching had the treatment effect estimate 

with the highest bias and also had the highest SD and MSE, so had the treatment effect estimate 

with the lowest precision. The other three PS methods gave the treatment effect estimate with 

a similar bias, but PS stratification and IPTW for ATT both had the highest precision. 

Neither under-recording (negative measurement error) nor over-recording (positive 

measurement error) of a variable affecting treatment allocation gave a biased estimate of the 

treatment effect using these data characteristics. Previous stroke is a positive contributor with 

a very low effect size in the treatment allocation model (PS model). However, 3:1 PS matching 

continued to give the treatment effect estimate with the largest bias, which was positive, 

whereas the other PS methods gave a smaller negative bias. Higher under-recording of a variable 

affecting treatment allocation gave a treatment effect estimate with lower precision and higher 

MSE. Higher over-recording of a variable affecting treatment allocation gave a treatment effect 

estimate with lower precision and higher MSE. These results are produced when the variable 

with measurement error is a positive contributor to the treatment allocation (PS model). PS 

stratification and IPTW for ATT gave the treatment effect estimates with the highest precision 

and lowest MSE. 
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Figure 3: Study PS methods, 1% prevalence, original effect size - the mean, SD, bias, MSE (absolute and % change) 
and model SE mean of the estimated treatment effect displayed as log(HR). 

 

5.4 Results varying measurement error and effect size 

This section presents the results for simulations where the effect size on treatment allocation of 

the variable with measurement error (previous stroke) was varied by changing the coefficient in 

the PS model to investigate the effect on the treatment effect estimation. The under-recording 
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and over-recording remained the same used in Section 5.3 by using measurement error for 

previous stroke over the range, [-50%, +50%]. This part of the simulation experiment 

investigated change to the treatment effect estimate with different effect sizes, to make the 

work applicable to other datasets where the variable with measurement error has a higher 

impact. The values used for the coefficient of previous stroke in the PS model were 0.5 for the 

small effect size, 1.0 for a medium effect size and 1.5 for a high effect size (Section 4.5). These 

were compared with the simulations run in Section 5.3, using the original value of the effect size 

of the variable with measurement error in the PS model, 0.1229 (Section 3.3), which was 

regarded as very low in using this categorisation. 

These simulations were run for all PS methods investigated in this study and use the same 

characteristics as the original data.  The results from each PS method using the different effect 

sizes were plotted together for ease of comparison. Figure 4 displays the different effect sizes 

for IPTW for ATE, the plots for the other PS methods are given in Figure F-2 for IPTW for ATE, 

Figure F-5 for IPTW for ATT, Figure F-8 for 3:1 PS matching, and Figure F-11 for PS stratification. 

The heat plots (Figure 5 to Figure 10) present all the results together, the columns marked 1% 

prevalence on the plots relates to this section and the different effect sizes are marked on the 

y-axis. 

Generally, for each PS method, the different effect sizes followed the same pattern for each 

performance measure of the treatment effect estimate. The bias of the treatment effect 

estimate reduced as the impact in the treatment allocation model of the variable with 

measurement error (effect size) increased. The bias was positive for all effect sizes using 3:1 PS 

matching. It was mainly negative for the other three PS methods, becoming positive for IPTW 

for ATT and PS stratification with high effect size and high positive measurement error. For all 

PS methods, the high impact in the treatment allocation model of the variable with 

measurement error (effect size) had the highest precision and lowest MSE. 3:1 PS matching and 

IPTW for ATE had the biggest differences between the SD and MSE for the original (very small) 

and the high effect size. For all PS methods, the Model SE was lower for the high effect size, 

again 3:1 PS matching and IPTW for ATE had the biggest differences between high and the 

original effect sizes. For all PS methods, the percentage MSE change had a higher magnitude for 

the high effect size than for the other effect sizes. These results all relate to the variable with 

measurement error being a positive contributor in the treatment allocation model (PS model). 
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Figure 4: IPTW for ATE, 1% prevalence, displaying the mean, SD, bias and MSE (the absolute and percentage change) 
of the estimated treatment effect displayed as log(HR) and the model SE mean for different effect sizes. 
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Figure 5: Heat plot for Mean treatment effect estimate. The x-axis shows the outcome prevalence and the 
introduced measurement error. The y-axis shows the PS method and the ‘effect size’ used. 

 

Figure 6: Heat plot for the Bias of the treatment effect estimate. The x-axis shows the outcome prevalence and the 
introduced measurement error. The y-axis shows the PS method and the ‘effect size’ used. 
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Figure 7: Heat plot of the SD of the treatment effect estimate. The x-axis shows the outcome prevalence and the 
introduced measurement error. The y-axis shows the PS method and the ‘effect size’ used. 

 

Figure 8: Heat plot of the MSE of the treatment effect estimate. The x-axis shows the outcome prevalence and the 
introduced measurement error. The y-axis shows the PS method and the ‘effect size’ used. 
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Figure 9: Heat plot of the MSE percentage change of the treatment effect estimate. The x-axis shows the outcome 
prevalence and the introduced measurement error. The y-axis shows the PS method and the ‘effect size’ used. 

 

Figure 10: Heat plot of the Model SE of the treatment effect estimate. The x-axis shows the outcome prevalence and 
the introduced measurement error. The y-axis shows the PS method and the ‘effect size’ used. 
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5.5 Results varying measurement error and sparseness of outcome data 

Simulations were run to investigate under-recording and over-recording of a variable which 

affects the treatment allocation (the PS model) and varying the sparseness of the outcome. The 

under-recording and over-recording was varied by introducing measurement error over the 

range -50% to +50% in previous stroke (Section 5.3). In the original dataset 1% of cases had a 

future stroke during the study period, hence an outcome prevalence of 1%. The outcome 

prevalence was varied by also generating datasets with outcome prevalence to 0.5% and 10% 

(Section 4.6). The original effect size in the treatment allocation model of the variable with 

measurement error was used. These results are displayed for IPTW for ATE (Figure 11). The 

results for the other PS methods are also displayed: IPTW for ATT (Figure E-6), 3:1 PS matching 

(Figure E-7) and PS stratification (Figure E-8). The heat plots (Figure 5 to Figure 10) present all 

the results together, the results for this section are shown in the rows marked ‘Original’ for each 

PS method. The different prevalences are given in the marked blocks. 

The simulations for all PS methods showed some common features. Firstly, the highest 

prevalence runs, with 10% prevalence, were the closest to the true mean and so had the lowest 

bias. As the prevalence was reduced, the mean of the treatment effect estimate was further 

from the true mean and the bias increased. This was an example of ‘sparse data bias’ (Greenland 

et al., 2016) which gives an inflated treatment effect estimate (Section 2.5). Secondly, the 

performance measures from the simulations with different prevalences follow the same pattern 

over the measurement error range as the simulations with the original prevalence (1%) (Section 

5.3). Thirdly, for all performance measures there was less variation over the measurement error 

range in the higher prevalence (10%) runs. The exceptions were the percentage MSE change for 

all PS methods and the mean and bias for 3:1 PS matching. For 3:1 PS matching, the 10% 

prevalence simulations showed the mean and the bias increasing at +10% and +20% 

measurement error, then decreasing for higher positive measurement error. Fourthly, the SD 

and MSE were the lowest for the highest prevalence run. Both these performance measures 

increased as the prevalence of the run was decreased and they followed a similar pattern for all 

the PS methods used. The last two points are due to the instability of the outcome modelling 

with fewer outcome events (lower prevalence). This reflects the fact that power (hence the SE) 

in time-to-event data is calculated using the number of outcomes (Section 4.6). There was no 

consistent pattern for the percentage MSE change. Fifth, the Model SE decreased gradually as 

the negative measurement error approached zero, then decreased at a higher rate as the 

positive measurement error increased. The Model SE was higher for the lower prevalence runs 

over the measurement error range. This was reflected in these results, as generally the higher 
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prevalence simulations gave treatment effect estimates which were less biased and had higher 

precision, they had lower SD and MSE. 

IPTW for ATE, IPTW for ATT and PS stratification had negative bias for all prevalences. IPTW for 

ATT had the smallest difference between the bias at different prevalences and IPTW for ATE had 

the highest. 3:1 PS matching had positive bias for all the simulations except for the 10% 

prevalence runs with close to zero measurement error, which had low negative bias. Overall 3:1 

PS matching had the largest difference between the bias using the different prevalences. There 

was much less difference for both the SD and the MSE for all the PS methods using the higher 

prevalence (10%) than for the lower prevalences (0.5% and 1%). This was also true for the Model 

SE mean. There was no general pattern for the percentage MSE change. Overall, 3:1 PS matching 

showed the biggest difference in all performance measures of the treatment effect estimate 

between the different prevalence simulations and IPTW for ATT and PS stratification showed 

the least difference. 

A small set of simulations was run with a 5% outcome prevalence as it is close to the mid-point 

between 1% and 10% to investigate at what prevalence variability of the treatment effect 

estimate was introduced (Appendix G-1). The simulations were run for IPTW for ATE, which was 

selected because they were representative of IPTW for ATT and PS stratification. The simulation 

results for 5% prevalence followed a similar pattern to the 10% prevalence results more closely 

than those from the 1% prevalence simulations. The 5% prevalence simulations showed little 

variation of all performance measures over the measurement error range and little difference 

between the runs using the different effect sizes. The exception was a small variation in the SD 

and MSE for the different effect sizes at positive measurement error. However, this difference 

was less than that seen in the 1% prevalence runs. All PS methods used in this study showed the 

same pattern for different prevalences, more variability in the over the measurement error 

range and higher bias prevalence runs, SD and MSE for the lower prevalence. It was therefore 

assumed that 5% prevalence runs for the other PS methods would behave in a similar way, that 

is closer to the 10% prevalence runs than the 1% prevalence runs. In summary, measurement 

error and the effect size of the variable with measurement error showed a minimal change to 

the mean, SD, bias and MSE for the 5% and 10% prevalence runs. The highest variability of these 

performance measures due to sparse data were seen below 5% prevalence. 
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Figure 11: Using IPTW to generate ATE, the mean, SD, bias and MSE (the absolute and percentage change) of the 
estimated treatment effect displayed as log(HR) and the model SE mean. 

5.6 Results varying measurement error, effect size and sparseness of outcome 

data 

5.6.1 Overview 

Simulations were run varying the under-recording and over-recording of a variable which 

influences treatment allocation (previous stroke), the impact (effect size) this variable has on 
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treatment allocation (in the PS model) and the sparseness of the outcomes (future stroke). As 

in the previous section (Section 5.3), the under- or over-recording of previous stroke were 

represented by introducing measurement error into previous stroke between -50% and +50%. 

The effect size took the original values (very low), low, medium and high (Section 5.4). The 

outcome prevalence of the simulated datasets was set to 0.5%, 1% and 10% (Section 5.5). Full 

details of the simulation parameters are given in Section 4.8. The results for the different effect 

sizes plotted together for a given prevalence for IPTW for ATE, are shown in Figure 12 (0.5% 

prevalence), Figure 13 (1% prevalence) and Figure 14 (10% prevalence). Similar graphs for the 

other PS methods are given in Appendix F:  for IPTW for ATE (Figure F-1 to Figure F-3), IPTW for 

ATT (Figure F-4 to Figure F-6),  3:1 PS matching (Figure F-7 to Figure F-9) and PS stratification 

(Figure F-10 to Figure F-12). The heat plots, Figure 5 to Figure 10, present all the results from all 

the simulations together for comparison. All performance measures relate to the log(HR) of the 

treatment effect estimate. 
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Figure 12: IPTW for ATE, 0.5% prevalence, displaying the mean, SD, bias and MSE (the absolute and percentage 
change) of the estimated treatment effect displayed as log(HR) and the model SE mean for different effect sizes. 
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Figure 13: IPTW for ATE, 1% prevalence, displaying the mean, SD, bias and MSE (the absolute and percentage 
change) of the estimated treatment effect displayed as log(HR) and the model SE mean for different effect sizes. 
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Figure 14: IPTW for ATE, 10% prevalence, displaying the mean, SD, bias and MSE (the absolute and percentage 
change) of the estimated treatment effect displayed as log(HR) and the model SE mean for different effect sizes. 
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5.6.2 All PS methods 

The general pattern of each performance measure (the mean, SD, bias, MSE absolute, MSE 

percentage change and model SE) over the percentage measurement error range did not change 

as the effect size was modified for each PS method used. 

5.6.3 Comparison of PS methods - all outcome prevalence runs 

For all PS methods analysed using all prevalences, some common features were seen. The 

following patterns in the results were seen which had previously been seen when measurement 

error and effect size were varied (Section 5.4): the different effect sizes followed the same 

pattern for each performance measure of the treatment effect estimate; the bias of the 

treatment effect estimate reduced (moved towards zero) as the effect size increased; the high 

effect size had the highest precision (lowest SD) and lowest MSE, hence; there was less of a 

pattern in the difference in the MSE percentage change for the different effect sizes; the Model 

SE was lower for the high effect size. These results also reflected the findings when 

measurement error and outcome prevalence were varied (Section 5.5) that is, the differences 

in the performance measures (mean, bias, SD, MSE and model SE) due to the change in effect 

size were greater for the lower prevalence runs. 

5.6.4 Comparison of PS methods - higher outcome prevalence runs 

As the higher prevalence runs, with 10% prevalence, showed less difference between the effect 

sizes for the performance measures used than the lower prevalence runs, using 1% and 0.5% 

prevalences, these are discussed in separate sub-sections. The graphs for the different 

combinations of prevalence and effect size are given in Appendix F, for IPTW for ATE (Figure F-

3), IPTW for ATT (Figure F-6), 3:1 PS matching (Figure F-9), and PS stratification (Figure F-12). 

Appendix G Figure G-2 to Figure G-13, have plots with results from all the PS methods for a given 

effect size and prevalence plotted together. The heat plots (Figure 5 to Figure 10) present the 

performance measures of treatment effect. Figure 15 (taken from Figure G-3) is shown as an 

example and plots the treatment effect estimates for all the study PS methods for 10% outcome 

prevalence and the small effect size. 

Generally, as the prevalence increased the difference in each performance measure of the 

treatment effect estimate (mean, SD, bias and MSE) due to the different effect sizes decreased. 

The difference in these performance measures for different effect sizes at 10% prevalence was 

minimal. The maximum differences in the mean between the high effect size (Figure G-5), and 

original run (Figure G-2), (using high effect – original effect) were 0.007 (1.9% of the true mean) 

for IPTW for ATE, 0.0047 (1.3% of the true mean)  for IPTW for ATT, -0.0105  (-2.9% of the true 
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mean) for 3:1 PS matching and 0.0059 (1.6% of the true mean) for PS stratification. The highest 

differences were generally seen at higher positive measurement error. 3:1 PS matching was the 

only PS method where the bias was positive. However, for all PS methods these differences were 

small when the data had 10% prevalence. 

At 10% prevalence, all values for the bias, for all effect sizes over the measurement error range 

were small. The maximum bias, that is the value furthest from the null, was negative for IPTW 

for ATE, IPTW for ATT and PS stratification and positive for 3:1 PS matching. 3:1 PS matching had 

the highest absolute maximum bias and PS stratification had the lowest. IPTW for ATE and IPTW 

for ATT had predominately negative bias with some positive values seen for the higher effect 

sizes. PS stratification had negative bias at lower effect size and positive bias at higher effect size 

with negative measurement error. 3:1 PS matching had positive bias with positive measurement 

error and negative bias with negative measurement error. In all methods the treatment effect 

estimate became less biased (the bias became closer to zero) as the effect size increased. 

At 10% prevalence and for all PS methods, the SD was less than 0.1 for all effect sizes and over 

the measurement error range. This was much lower than for the lower prevalence runs, for the 

0.5% prevalence runs where the SD took values between 0.2 and 0.5 using the different effect 

sizes and over the measurement error range. At 10% prevalence, the MSE was lower than its 

value in the equivalent runs using lower prevalences for all effect sizes and over the 

measurement error range. 

There was little variation over the measurement error range for all the performance measures 

of the treatment effect estimate at 10% outcome prevalence. The exception was 3:1 matching 

where the mean and bias showed a small increase between +10% and +30% measurement error. 
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Figure 15: The study PS methods, 10% prevalence, small effect size – the mean, SD, bias and MSE of the estimated 
treatment effect are displayed as log(HR). 

 

5.6.5 Comparison of PS methods - lower outcome prevalence runs 

For all PS methods, for the runs with lower prevalence (0.5% and 1%), the bias, SD and MSE 

increased and so did the variation over the measurement error range compared to the 10% 

prevalence runs. However, 3:1 PS matching did show more variation over the measurement 
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error range than the other PS methods, particularly for the lower prevalence run of 0.5%. IPTW 

for ATE had predominately negative bias overall effect sizes over the measurement error range. 

IPTW for ATT had mostly negative bias for the lower effect sizes and mostly positive bias for the 

higher effect sizes. 3:1 PS matching had positive bias for all effect sizes over the measurement 

error range. PS stratification had mostly negative bias, but with the higher effect size and 

positive measurement error the bias was positive. At 1% prevalence IPTW for ATE, IPTW for ATT 

and PS stratification all had similar values of bias. IPTW for ATE showed the biggest difference 

between the bias from the original run and the high effect size run, 3:1 PS matching had the 

smallest difference. 

In both the 0.5% and 1% prevalence runs, the SD and MSE behaved in a similar way as the effect 

size changed. As the effect size increased both the SD and MSE took lower values, with this 

difference being greater with increasing positive measurement error. The SD and MSE showed 

a gentle decline in values from -50% measurement error to no measurement error, then a 

steeper decline in values from no measurement error to +50%. The change in the values was 

more pronounced for the 0.5% prevalence runs (Figure G-10 to Figure G-13). 3:1 PS matching 

and IPTW for ATE showed the biggest fall over the measurement error range for both the SD 

and MSE (Figure G-13). 

5.6.6 Summary of results 

When the variable with measurement error that contributed to treatment allocation had a 

higher impact on the treatment allocation, the treatment effect estimate was less biased than 

when this variable had a lower impact on treatment allocation. This was seen in all PS methods 

used. These results may not be as expected, but can be explained by looking at the DGM. In the 

treatment allocation model fitted to the original data, previous stroke, the covariate with 

measurement error, was a positive contributor. In the original PS model its effect size was very 

small. When the effect size of previous stroke was increased in the simulations, those cases with 

previous stroke would have had a higher PS value. A higher PS value increased the probability of 

the generated treatment being Rivaroxaban. This in turn will increase the chance of those cases 

having a future stroke, so there were more outcome events in the simulated data, making the 

outcome modelling more stable. This would generate results with a lower SE, hence a lower SD 

and seemed to have generated lower bias and lower MSE (which a combination of SD and bias). 

There was no clear pattern of the bias always being positive or negative. Only generalisations 

can therefore be made, such as for IPTW for ATE, IPTW for ATT and PS stratification generally 

had negative bias for lower effect sizes and positive bias at higher effect sizes. For 3:1 PS 
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matching, the bias was mostly positive with negative values seen in the 10% prevalence runs for 

negative measurement error. The variation in the bias due to the change in effect size among 

the PS methods used was small. 

Sections 5.6.4 and 5.6.5 explored the change in the SD and MSE of the treatment effect estimate 

as the effect size of on the treatment allocation of the variable with measurement error was 

changed. For the lower prevalence runs, 0.5% and 1%, both the SD and MSE displayed the same 

patterns with a gentle decline in values from higher under-recording (-50% measurement error) 

to no measurement error, then a steeper decline in values from no measurement error to higher 

over-recording (+50% measurement error). The change in the values was more pronounced as 

the outcome prevalence reduced. When using the original, very low, effect size (of the variable 

affecting treatment allocation with measurement error), 3:1 PS matching and IPTW for ATE 

showed the biggest reduction over the measurement error range for both the SD and MSE. In 

the simulations run in this study, as the effect size on the treatment allocation of the variable 

with measurement error increased, the treatment effect estimate was less biased. It had a 

higher precision and a lower MSE, so the variability was lower. This was seen for all PS methods 

and all outcome prevalences. Both higher effect size and higher positive measurement error in 

the data reduced the bias, SD and MSE. This could be due to the DGM, above. 

The results displayed for 3:1 PS matching were different to the other PS methods used in this 

study. For 3:1 PS matching, the bias was mostly positive for the lower prevalence runs with 

negative values seen in the 10% prevalence runs for negative measurement error.  For the other 

PS methods, the bias was generally lower with a mixture of negative and positive values. The SD 

and MSE for 3:1 PS matching were higher than for the other PS methods used. There was more 

variation of all performance measures over the measurement error range for 3:1 PS matching. 

PS matching only uses the cases in the analysis dataset for which a match was found. In this 

study all Rivaroxaban (the novel treatment) cases were used but only the Warfarin (control) 

cases which were matched to a Rivaroxaban case and all other Warfarin cases were dropped. 

This meant the dataset used for the outcome analysis was smaller than that for the other PS 

methods, where all of the cases were used. This smaller dataset size, and hence fewer outcomes, 

could account for the higher values of bias, SD and MSE. This is supported by Franklin et al. 

(2017) for sparse data when a large number of unmatched cases were dropped the variance 

increased. Franklin et al. (2017) recommended full-matching. However, the reason for the bias 

being more positive was less clear. 
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5.7 Recommendations for estimations of ATE 

IPTW for ATE and PS Stratification are PS methods which lead to estimates of the ATE. Both 

methods used the full dataset, with no trimming applied. For IPTW for ATE, weights were 

calculated and applied to the Cox regression in the outcome analysis. PS stratification offers 

more choice, both in the number of strata used and the outcome methods. Comparisons using 

different numbers of strata showed very little difference in the results in this study (Section 

3.4.3) and 10 strata were used for these simulations. In the outcome analysis, Cox regression 

stratified on the PS strata was used to account for the nature of the data (Section 3.5). 

When comparing IPTW for ATE and PS stratification the results were similar in all scenarios. 

When there was under-recording or over-recording of previous stroke, a variable in the 

treatment allocation model, and the original data characteristics retained (Figure 3) there was 

little variation in the bias of the treatment effect estimate over the measurement error range 

for both PS methods. Both IPTW for ATE and PS stratification showed a gentle decline in both 

SD and MSE as the under-recording reduced. The SD and MSE decreased more rapidly with 

increasing over-recording. For all values of under-recording and over-recording, PS stratification 

generated a treatment effect estimate with lower bias than IPTW for ATE. PS stratification had 

higher precision and lower values for MSE and Model SE than IPTW for ATE over the 

measurement error range. As the effect size in the treatment allocation model of the variable 

with measurement error (under- or over-recording) was varied between the original effect size 

and the high effect size, there was little difference in the amount the bias varied for the different 

PS methods. IPTW for ATE showed a greater variation in the SD, MSE and Model SE than PS 

stratification did (Figure 16 to Figure 18). For all effect sizes in the treatment allocation model, 

PS stratification had higher precision and lower values for SD, MSE and Model SE than IPTW for 

ATE. As the outcome prevalence was varied, IPTW for ATE showed a greater variation in the bias, 

SD, MSE and Model SE than PS stratification (Figure 16 to Figure 18). Again, for all effect sizes PS 

stratification had lower values for the bias, SD, MSE and Model SE than IPTW for ATE. 

In all scenarios, the recommendation was to use PS stratification for estimations of the ATE, 

although the difference in the performance of PS stratification and IPTW for ATE was small. PS 

stratification gave a treatment effect estimate with lower bias, higher precision and lower MSE 

than IPTW for ATE. It should be remembered that characteristics of the data may guide the use 

of one PS method over another, regardless of their performance in the presence of 

measurement error (Section 5.10). The study dataset had good common support (it had a good 

overlap of PS values between the two treatment groups) so no trimming of the dataset was 

needed before the outcome analysis was performed. Although PS stratification had the best 
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performance in these simulation experiments, the balancing of the data by stratification did 

seem to be inconclusive (Section 3.4.3) whereas data from IPTW for ATE IPTW balanced well 

(Section 3.4.2). This means that PS stratification may not have removed the same amount of 

systematic differences between the two treatment groups, but still has given a treatment effect 

estimate with comparable bias and precision, to IPTW for ATE. This does not reflect the 

recommendation of Caliendo and Kopeinig (2008) and Garrido et al. (2014) who recommend 

applying several PS conditioning methods and using the one which brings the best balance 

between the treatment groups. 
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Figure 16: Study PS methods for ATE, 10% prevalence, displaying Original and High Effect Sizes – the mean, SD, bias, 
MSE (absolute and % change) and model SE mean of the estimated treatment effect are displayed as log(HR). 
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Figure 17: Study PS methods for ATE, 1% prevalence, displaying Original and High Effect Sizes – the mean, SD, bias, 
MSE (absolute and % change) and model SE mean of the estimated treatment effect are displayed as log(HR). 
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Figure 18: Study PS methods for ATE, 0.5% prevalence, displaying Original and High Effect Sizes – the mean, SD, bias, 
MSE (absolute and % change) and model SE mean of the estimated treatment effect are displayed as log(HR). 

 

5.8 Recommendations for estimations of ATT 

The PS methods used in this study which estimated ATT were 3:1 PS matching and IPTW for ATT. 

For IPTW for ATT, weights were calculated and applied to the Cox regression in the outcome 

analysis. For 3:1 PS matching, each Rivaroxaban (the NOAC) case was matched to 3 Warfarin 
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(control) cases on their PS values and the data stratified by these matched groups for the 

outcome analysis.  IPTW for ATT used the full dataset with no trimming performed. 3:1 PS 

matching used the matched dataset, where non-matched cases were dropped, for the outcome 

analysis. Hence, 3:1 PS matching used a smaller dataset. 

When there was under- or over-recording of previous stroke, a variable in the treatment 

allocation model, and the original data characteristics retained (Figure 3), 3:1 PS matching 

showed more variation in the bias over the measurement error range than IPTW for ATT did. 

The bias in the treatment effect estimate when using 3:1 PS matching was positive, whereas the 

bias using IPTW for ATT was negative. The absolute value of the bias using 3:1 PS matching was 

approximately three times higher than when using IPTW for ATT. The SD, MSE and model SE 

followed the same pattern for both the PS methods, and their values were lower for IPTW for 

ATT across the measurement error range. When the effect size in the treatment allocation of 

the variable with measurement error (under- or over-recording) was varied, it had less impact 

on the bias when using 3:1 PS matching (Figure F-7 to Figure F-9) than when using IPTW for ATT 

(Figure F-4 to Figure F-6). The SD, MSE and Model SE all had more variation between different 

effect sizes (in the treatment allocation model) when using 3:1 PS matching than when using 

IPTW for ATT. For all values of measurement error in the variable which was a contributor to the 

treatment allocation and its effect size in that model, the treatment effect estimate when using 

IPTW for ATT was less biased, had a lower precision and lower MSE and Model SE than when 

using 3:1 PS matching. Varying the sparseness of the outcome (future stroke) between 0.5% and 

10% prevalence (Figure 19 to Figure 21) changed the bias, SD, MSE and Model SE by larger 

amounts when using 3:1 PS matching that it did for IPTW for ATT. Again, in all cases IPTW for 

ATT performed better than 3:1 PS matching. 

Across all the different scenarios, IPTW for ATT was recommended for the estimation of ATT. It 

gave a treatment effect estimate which was less biased, had a higher precision and had a lower 

MSE. Situations which give low numbers of outcomes will disadvantage PS matching. Sparse 

outcome data will be problematic as the outcome analysis is performed on a subset of the sparse 

main dataset. Even using 3:1 matching, rather 1:1 matching did not give sufficient outcomes in 

the analysis dataset. Time-to-event data exacerbates this situation as it tends to have sparse 

outcomes, as cases which are censored will not have an outcome event (even if they have one 

after the study end date). 

As the outcome prevalence decreased, the difference in the treatment effect performance 

measures between the PS methods increased. In this situation the recommendation for IPTW 
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for ATT would become even stronger. However, for 3:1 PS matching, as the positive 

measurement error increased, the treatment effect became less biased, had higher precision 

and MSE decreased. Introducing positive measurement error also increases the number of 

outcome events, which would mean a higher percentage increase in outcome events as 3:1 PS 

matching used the matched dataset which had a smaller number of cases and hence a smaller 

number of outcomes. For 3:1 PS matching, the high effect size showed more of an improvement 

(bias closer to zero and lower SD and MSE) over the original effect size, than IPTW for ATT. These 

may have been accounted for as the DGM used in this study generated higher levels of outcomes 

for higher positive measurement error and for higher effect size, see above. In data where there 

was under-recording of a variable in the PS model, 3:1 matching would also be disadvantaged. 

It should be remembered that characteristics of the data may guide the use of one PS method 

over another (Section 5.10), regardless of their performance in the presence of measurement 

error. This dataset did not require trimming (Section 3.3), but if it had, the dataset used by IPTW 

for ATT may have been reduced in size and IPTW for ATT may not have performed so well. 
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Figure 19: Study PS methods for ATT, 10% prevalence, displaying Original and High Effect Sizes – the mean, SD, bias, 
MSE (absolute and % change) and model SE mean of the estimated treatment effect are displayed as log(HR). 
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Figure 20: Study PS methods for ATT, 1% prevalence, displaying Original and High Effect Sizes – the mean, SD, bias, 
MSE (absolute and % change) and model SE mean of the estimated treatment effect are displayed as log(HR). 
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Figure 21: Study PS methods for ATT, 0.5% prevalence, displaying Original and High Effect Sizes – the mean, SD, bias, 
MSE (absolute and % change) and model SE mean of the estimated treatment effect are displayed as log(HR). 
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5.9 Summary of findings table 

Table 13: Summary of findings. 

Topic Mea-

sure-

ment 

Error 

Effect Size Prev-

alence 

Summary 

No 

measure-

ment error 

No Original Original Comparing all four PS methods using simulations based 

on the original characteristics of the data – no 

measurement error, the original effect size of previous 

stroke in the treatment allocation model and an outcome 

prevalence of 1%.   

3:1 PS matching appeared to perform the least well of the 

PS methods. It had larger bias and the bias was positive as 

opposed to negative for the other PS. 3:1 PS matching was 

retained for use in the later simulations to assess its 

performance with varying measurement error, effect size 

and outcome prevalence. 

 

Negative 

measure-

ment error 

-ve Original Original Under-recording of a variable in the treatment allocation 

model was implemented as negative measurement error 

of previous stroke [-50%, 0%]. Previous stroke had a very 

low effect size in the treatment allocation model. All PS 

methods used in this study showed there was little 

change in the bias of the treatment effect estimate and 

there was slightly lower precision and a small increase in 

the MSE, for increasing the magnitude of negative 

measurement error. 

 

Positive 

measure-

ment error 

+ve Original Original Over-recording of a variable in the treatment allocation 

model was implemented as positive measurement error 

of previous stroke [0%, +50%]. Previous stroke had a very 

low effect size in the treatment allocation model. All PS 

methods used in this study showed there was little 

change in the bias of the treatment effect estimate.  As 

the size of the over-recording increased, there was higher 

precision in this estimate. 

 

Effect Size +ve &  

-ve 

Varied Original The impact that the variable with under- or over-

recording has on determining the treatment allocation 

(the effect size) was varied using values of Low, Medium 

and High for comparison with the Original (very low) 

effect size. There was still little variation in the mean, and 

bias, over the measurement error range for all the effect 

sizes.  When the variable with measurement error had 
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greater impact on the treatment allocation model, (the PS 

model), the treatment effect estimate had lower bias and 

higher precision. It does seem counterintuitive, could be 

due to the DGM used. This is discussed further in Section 

5.6.6. 

 

Prevalence +ve &  

-ve 

Original Varied To investigate the impact of sparse outcome data, the 

outcome prevalence was varied by generating data with 

different numbers of the primary outcome of future 

stroke. The lower prevalence (<5%) data gave treatment 

effect estimates with a higher bias and lower precision 

and using the higher prevalence data, with lower bias and 

higher precision. These results were to be expected, as 

higher EPV in the outcome model generates more stable 

models. At lower prevalences, there was more variation 

in the performance measures of the treatment effect 

estimate over the measurement error range of a variable 

in the treatment allocation model. 

 

Effect size 

and 

Prevalence 

+ve &  

-ve 

Varied Varied When the variable with measurement error has greater 

impact on treatment decision-making, and hence in the 

PS model (effect size), the treatment effect estimate has 

lower bias and higher precision, this may be due to the 

DGM used. The differences in the performance measures 

of the treatment effect due to different effect sizes are 

greater when the data has lower outcome prevalence. 

The treatment effect estimates with the highest bias, 

lowest precision and highest MSE were obtained with low 

prevalence outcome data and when the variable with 

measurement error had a low (or very low) impact in the 

PS model. 

 

PS Methods 

for ATE 

+ve &  

-ve 

Varied Varied PS stratification and IPTW for ATE were the PS methods 

used which estimate the ATE. Both methods gave 

treatment effect estimates which followed the patterns 

described above when measurement error was 

introduced in a variable in the treatment allocation 

model, when the effect size of this variable was changed 

in the treatment allocation model and for different 

outcome prevalences. There was only a little difference in 

the bias from both methods, but the bias was slightly 

closer to 0 for PS stratification. PS stratification had a 

higher precision and lower MSE, than those for IPTW for 

ATE over the measurement error range.  
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Based on this study’s data, the recommendation was to 

use PS stratification for estimating the ATE. However, the 

performance of the two PS methods was similar. There 

were some reservations about the balance produced by 

PS stratification.  

 

PS Methods 

for ATT 

+ve &  

-ve 

Varied Varied 3:1 PS Matching and IPTW for ATT were the PS methods 

used which estimate the ATT. Both methods gave 

treatment effect estimates which followed the patterns 

described above when measurement error was 

introduced in a variable in the treatment allocation 

model, when the effect size of this variable was changed 

in the treatment allocation model and for different 

outcome prevalences.  

Based on this study’s data, the recommendation was to 

use IPTW for ATT for estimating the ATT, which showed 

superior performance over 3:1 PS matching. In all 

scenarios IPTW for ATT had lower bias and higher 

precision.  

 

 

5.10 Summary 

The first set of simulations were run to compare the PS methods used in this study. They used 

data with the characteristics of the original study dataset with no introduced measurement error 

(Section 5.2). This showed that 3:1 PS matching gave the treatment effect estimate with the 

highest bias and that this bias was positive whereas all the other PS methods gave estimates 

with negative bias. The precision of the estimate using 3:1 PS matching was lower than that of 

the other methods. Although 3:1 matching performed poorly, it was retained in the study to 

assess its performance in the presence of measurement error and sparse outcome data. 

One of the main objectives of this study was to investigate the effect of measurement error in 

the treatment effect estimate. In Section 5.3 measurement error was introduced into the 

variable for previous stroke, a positive contributor to the treatment allocation model (the PS 

model). The measurement error included under- or over-recording and the other characteristics 

of the original data set were retained. When using IPTW for ATE, IPTW for ATT and PS 

stratification, there was only a small amount of variation in the bias of the treatment effect 

estimate over the measurement error range. 3:1 PS matching did show more variation of the 

treatment effect estimate over the measurement error range and still generated a more biased 

treatment effect estimate than the other PS methods. 
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For under-recording of previous stroke (negative measurement error), for all the PS methods, 

the treatment effect estimate had higher precision, lower MSE and model SE as the 

measurement error moved towards zero. In the cases which misrecorded previous stroke as 

negative, their PS values was lower and hence their simulated treatment more likely to be the 

control, Warfarin. There would therefore be fewer cases on the active treatment, Rivaroxaban, 

in the simulated dataset. The generated outcome data model uses the generated treatment 

value as a covariate (with a positive coefficient), so if there were fewer generated treatments of 

Rivaroxaban, there would also be fewer outcome events. The DGM was generating fewer 

outcome events and as discussed below, lower outcome prevalence gives less stability of the 

treatment effect estimate. Larger values of under-recording of the variable prone to 

measurement error, thought to be more likely in primary care data (Section 4.4) produce a 

treatment effect estimate with a low bias and a lower precision. 

For over-recording of previous stroke (positive measurement error), for all the PS methods the 

precision of the treatment effect estimate increased and the MSE and model SE decreased at a 

steeper rate as the added measurement error increased. Higher values of over-recording of the 

variable prone to measurement error, thought to be less likely in primary care data, also do not 

have a large effect on the bias of the treatment effect, but the treatment effect estimate had a 

higher precision. This is likely to be caused by a higher number of cases recording that they have 

had a previous stroke, so their PS values are higher. This means in the simulations there will be 

more cases with the generated treatment of Rivaroxaban, which in turn means there will be a 

higher number of cases with an outcome event, so making the outcome modelling more stable 

(see Section 5.6.6 for the effect of the DGM). 

To summarise, when introducing measurement error (under- or over-recording) and using the 

original data characteristics, there was not a large impact on the bias of the treatment effect 

estimate. The variable with introduced measurement error (previous stroke) was a weak 

prognostic variable in treatment allocation (it had a very low coefficient in the PS model), so this 

could have been expected. The precision of the treatment effect estimate increased as the 

positive measurement error increased and conversely the precision of the treatment effect 

estimate decreased as the introduced negative measurement error increased. These results 

related to the number of outcomes in the generated datasets under these conditions and follow 

the principle that a higher number of outcome events provides more stable modelling. 

So with the assumption that there is generally negative measurement error in primary care data 

of previous stroke (Section 4.4) in other words it is under-recorded, and the variable with the 
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measurement error is a weak, positive prognostic variable of treatment allocation, then the 

treatment effect estimate will only have small bias measurement error although the precision 

of this estimate will be lower. 

The variable with measurement error, previous stroke, had a very small impact in the treatment 

allocation model, the PS model, when it was fitted to the original study dataset. To investigate 

the generalisability of the effect of measurement error, the effect size was varied, that is 

changing the impact of the variable with measurement error in the PS model. Values to 

represent high, medium, and low were chosen and simulations run using the characteristics of 

the original data (Section 5.5). Varying the effect size did not change the ‘pattern’ of any of the 

performance measures of the treatment effect estimate (mean, bias, SD, MSE and Model SE) 

over the measurement error range. As the effect size increased, the treatment effect estimate 

was less biased, had a higher precision and lower MSE and model SE, across the measurement 

error range. These results may not be as expected, but can be explained by looking at the DGM 

(Section 5.6.6). When the variable with measurement error had a high effect size in the PS 

model, for those with a previous stroke, their PS value will be higher than if the effect size were 

low. A higher PS value increases the probability of the generated treatment being Rivaroxaban. 

This in turn will generate more outcome events in the simulations, making the outcome 

modelling more stable. At higher introduced positive measurement error, more outcome events 

are generated (Section 5.2), so there may be a cumulative effect, hence there being a larger 

difference between the original and high effect sizes at high positive measurement error and 

high negative measurement error. Whether this is a genuine effect or is caused by the DGM 

used in this study is discussed in Section 6.10. The effect size in the treatment allocation model 

(PS model) of the variable with measurement error (under-recording and over-recording) 

appeared to have more impact on the on the bias and precision of the treatment effect estimate, 

than the amount of measurement error in this variable. The implication for future work could 

be to be aware that when a variable with measurement error in the PS model has a low effect 

size, the treatment effect estimate will be more biased, have a lower precision, and a higher 

MSE. Applying these results, if previous stroke (subject to measurement error) had a high impact 

on the decision to prescribe Rivaroxaban or Warfarin, then the treatment effect estimate would 

have a lower bias and higher precision, than if previous stroke had less impact on the prescribing 

or Rivaroxaban or Warfarin. The difference in the treatment effect estimates when using the 

different impact sizes would be less for under-recording of previous stroke (negative 

measurement error) than for over-recording of previous stroke (positive measurement error). 
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Sparse data bias is widely reported in the literature (Greenland et al., 2016). Simulations were 

run varying the outcome prevalence as well as the measurement error of previous stroke, in the 

treatment allocation model (Section 5.5). In addition to the 1% outcome prevalence, which is 

similar to the original study data, outcome prevalences of 0.5% and 10% were also generated. 

Section 5.6 reports the results from simulations where the effect size of the variable with 

measurement error in the treatment allocation model (the PS model) was also varied. The effect 

of changing the outcome prevalence was considerable. Overall, as the outcome prevalence was 

lowered, the treatment effect estimate had higher bias, lower precision and higher MSE and 

Model SE. The results were as expected as higher EPV in the outcome model produced more 

stable models. Lower outcome prevalence ‘amplify’ any variation in bias, SD and MSE across the 

measurement error range and between different effect sizes. This was seen for all the PS 

methods used. When using EHR to estimate the real-world treatment effect, the outcome 

prevalence should be considered, even when using large datasets. Using PS methods to remove 

systematic differences between the treatment groups before running the outcome analysis of 

time-to-event data, the effect of measurement error in a variable in the treatment allocation 

model and the effect size of that variable in the treatment allocation model have a greater 

impact on the treatment effect estimate when the outcome prevalence is low, <5%. These 

findings strongly suggest that more consideration should be given to covariate measurement 

error in the presence of low outcome prevalence. The use or development of methods to adjust 

for measurement error in this type of data should consider a range of outcome prevalences and 

be targeted towards lower outcome prevalence data. 

The combination of these parameters which would give the treatment effect estimate with the 

highest bias and lowest precision are: high under-recording of the variable with measurement 

error; being a low contributor in the treatment allocation model; low outcome prevalence. The 

study dataset met these criteria: suspected under-recording of previous stroke of approximately 

35%; low effect size of previous stroke in the PS model of 0.1229; and prevalence of future 

stroke, the primary outcome of 1%. Therefore, it could be expected that the estimate of the 

treatment effect using the original data would be biased and of a low precision. 

The characteristics of the analysis dataset used for the different PS methods varied. In the study 

dataset, there were 21,259 cases of which 2,911 cases were prescribed Rivaroxaban, the novel 

treatment. When using PS matching, only matched cases are used for the analysis (S. Guo & 

Fraser, 2015, p. 132). In the study’s matched dataset, all Rivaroxaban cases were used and 3:1 

PS matching was used to maximise the number of Warfarin (control) cases. This meant that the 

analysis dataset had 11,644 cases, but not all the Warfarin cases were unique. In contrast, there 
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was no trimming of cases with very high or very low PS scores (Sturmer, Rothman, Avorn & 

Glynn, 2010) meaning that the full dataset was used for the analysis following IPTW. Other 

datasets may require trimming. Data with different characteristics may give different results for 

the different PS methods and hence recommend the use of different PS methods for estimating 

the ATE and ATT to those given below. 

Although four PS methods were compared in this study, IPTW for ATE and PS stratification 

estimated the ATE and IPTW for ATT and 3:1 PS matching estimated the ATT. For the ATE, PS 

stratification performed better than IPTW for ATE. The difference in the performance measures 

of the treatment effect, (mean, SD, bias and MSE) and the Model SE over the measurement error 

range, between the PS methods was seen at the lower prevalence runs (Figure 17 and Figure 

18) although the differences were small. For the 10% prevalence runs (Figure 16) the 

performance of these PS methods was similar. For the ATT, IPTW for ATT performed better than 

3:1 PS matching. Again, the difference in the performance of these PS methods increased for 

the lower prevalence runs (Figure 20 and Figure 21) and the difference between them at the 

10% prevalence runs were smaller (Figure 19). The recommendations in terms of the 

performance measures of treatment effect estimate, mean bias, SD and MSE, were to use PS 

stratification for ATE and IPTW for ATT for estimating the ATT, meaning these methods gave a 

less biased treatment effect estimate with a higher precision. However, all four PS methods 

showed little variation in the bias of the treatment effect estimate over the measurement error 

range. The precision of this estimate increased as the under-recording reduced (negative 

measurement error moved towards zero) and the precision increased at a higher rate as the 

over-recording (positive measurement) increased. For the ATE, PS stratification did perform 

better than IPTW for ATE, however there were problems achieving balance using the PS in PS 

stratification (Section 3.4.3). Perhaps this indicates that the PS methods which achieves the best 

balance is not necessarily the best one to use. Although Franklin et al. (2017) used different 

study parameters, their data recommended PS stratification (using 10 strata) over IPTW for ATE, 

but would have recommended 1:1 PS matching over IPTW for ATT (they did not use 3:1 PS 

matching). It is difficult to make a definitive recommendation for which PS methods to use. For 

example, if the prevalence of the data is higher, ≥ 5%, the recommendation is less clear. More 

generally, characteristics of the data may guide the use of one PS method over another, 

regardless of their performance in the presence of measurement error. In the study dataset, no 

trimming was required before implementing IPTW, so IPTW used the full dataset for the analysis, 

but 3:1 PS matching dropped cases. This may not be the case for other data. Franklin et al. (2017) 

compared over 35 different implementations of PS methods when using sparse data. They did 
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not recommend 1:1 PS matching, stratification or IPTW when the data had sparse outcomes, 

non-overlap of the PS distributions and when there were extreme weights. Apart from the 

sparse outcomes, these features do not appear in the study dataset, so the study 

recommendations differ to those of (Franklin et al., 2017). 

In summary, measurement error of a single variable with a very low prognostic effect in the 

treatment allocation model under-recording by 50% to over-recording to 50%, had only a small 

effect on the bias and precision of treatment effect estimate. If the effect size in the treatment 

allocation model of this variable was increased (from low to high), the bias decreased only by 

<2% and the precision increased. This was seen in this implementation of the simulations, which 

may be due to the DGM used (Section 5.6.6), where the PS value was used to create a generated 

treatment which in turn was used to generate the outcome data. When the outcome prevalence 

was <5% the differences in bias and precision of the treatment effect estimate, when using 

different amounts of measurement error and effect sizes, were much higher that for the higher 

prevalence runs, ≥5%. Hence when the outcome prevalence is lower, <5%, measurement error 

of this type could be a possible source of error when estimating the treatment effect when using 

routinely collected data. 

When estimating the ATT, the study’s recommendation was to use IPTW for ATT rather than 3:1 

PS matching. When estimating the ATE using IPTW for ATE and PS Stratification, there was no 

clear recommendation. It should be noted that characteristics of the dataset can affect the 

performance of the different PS methods. When there is poor common support (overlap of the 

PS distributions), PS matching performs better than IPTW. So this study’s recommendations 

relate to a dataset which generated fewer matched pairs than the original dataset, hence 3:1 PS 

matching was at a disadvantage, and there was no trimming of cases with extreme PS values, 

which benefitted the IPTW methods. 
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Chapter 6 DISCUSSION 

6.1 Background 

Electronic Health Records can be used to conduct observational studies to give a real-world 

treatment effect estimate. The real-world treatment effect estimate is often different to that 

generated in a RCT, but is a better reflection of the treatment’s performance in the general 

population. PS methods are widely used to adjust for treatment allocation bias in observational 

studies. Different PS methods perform better according to the data characteristics. The aim was 

to select the PS methods which gave the best performing treatment effect estimate, that is those 

with the lowest bias and highest precision, or the lowest MSE. A comparison of four PS methods 

(PS matching, IPTW for ATE, IPTW for ATT and PS Stratification) was made in this study. The 

study’s outcome data are in the form of time-to-event data, which is not widely reported on in 

the literature when a comparison of PS methods is made. 

The impact of under- or over-recording of a variable which influenced the treatment allocation 

was investigated by introducing negative and positive measurement error into the covariate for 

previous stroke, a variable in the treatment allocation model (the PS model). The impact of the 

misrecorded binary variable was further examined by changing its effect size in the treatment 

allocation model, that is changing the coefficient of previous stroke in the treatment allocation 

model. The changes due to sparse outcome data were demonstrated by generating the 

simulated datasets with different outcome prevalences. 

6.2 No introduced measurement error 

Comparing the four PS methods using the study dataset characteristics (with no introduced 

under-recording or over-recording, the original effect size of this variable in the treatment 

allocation model and the original prevalence), 3:1 PS matching appeared to perform the least 

well. 3:1 PS matching had bias considerably higher than the other three PS methods. The bias 

for 3:1 PS matching was positive but was negative for the other PS methods. The MSE was 

highest for 3:1 PS matching and IPTW for ATE. All other performance measures were similar for 

all the PS methods (Section 5.2). The poor performance of 3:1 matching is discussed in Section 

6.8. 

In practice, several PS methods may be used and compared. Caliendo and Kopeinig (2008) and 

Garrido et al. (2014) recommend applying several different PS methods and selecting the one 

which gives the best balance. It is acknowledged that the characteristics of the data will 

influence the performance of the different PS methods and hence any recommendations. 
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Although the aims of this study were to compare PS methods in the presence of covariate 

measurement error and sparse outcome data, comparing the performance of the selected PS 

methods before these were applied was a valid starting point. Much of the literature which 

compares PS methods does so in scenarios with no measurement error and with outcome data 

which are not ‘sparse’. 

In this study the performance of the treatment effect estimate in the outcome analysis was 

compared between simulations using the different PS methods. Austin (2009b) compared the 

amount by which the different PS methods balance the data between the treatment groups. In 

the current study, balance checks were performed to ensure that sufficient treatment allocation 

bias had been removed, there was no direct comparison of the amount of balance given by each 

PS method. There was no consideration of PS model misspecification. If the PS model was 

incorrectly specified, IPTW may be more sensitive to its effect (Rubin, 2004), although weighting 

is a ‘doubly-robust’ property so is more stable to model misspecification (Lunceford & Davidian, 

2004). 

The study’s results were, that if applying PS methods to adjust for treatment allocation bias 

when conducting an observational study and the outcome is of the format of time-to-event, the 

suggestion for data thought to have no measurement error and an outcome prevalence of 

approximately 1%  would be not to use 3:1 PS matching. This is different to the recommendation 

from the literature. When using data with a binary outcome, PS matching and IPTW perform 

equally well, removing more systematic differences between treatment groups than PS 

Stratification and Covariate Adjustment (Austin, 2009b, 2011a, 2011b). When the common 

support is not good, matching performs better (Busso et al., 2014). 

 The study dataset characteristics may have favoured IPTW as there was good common support 

of the PS (Section 5.10). The PS method to use would depend on whether the outcome of 

interest is the ATE or the ATT. Although the literature contains studies which compare the 

performance of PS methods when the data have a binary outcome, generally there is little 

reporting of comparison of PS methods using time-to-event data. Although Austin (2013) 

recommends PS matching and PS weighting (IPTW) for use with time-to-event data. 

6.3 Introduced covariate measurement error 

Although EHR can be used to estimate the real-world treatment effect of a novel product, the 

data may be subject to measurement error, particularly as they are collected for clinical 

purposes and not for research. Measurement error is commonly not taken into account in 

applied medical research. The focus of this study is in covariate measurement error 
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demonstrated by introducing under-recording or over-recording into ‘previous stroke’, a binary 

variable in the treatment allocation model (the PS model). Previous stroke will be more likely to 

be under-recorded than over-recorded (Herrett et al., 2013), but the simulations were run to 

investigate the effect of under-recording or over-recording of a single covariate. It is 

acknowledged that in EHR the measurement error is likely to be a combination of both under-

recording and over-recording. Also, there is likely to be measurement error in several covariates 

and the primary outcome variable (future stroke). These were not considered in this study. 

The simulations from this study showed that higher under-recording of a variable in the 

treatment allocation model (negative measurement error) gave lower precision (and higher 

MSE). With higher over-recording of a variable in the treatment allocation model (positive 

measurement error) there was higher precision (and lower MSE) (Section 5.3). The bias 

remained fairly constant over the measurement error range, which may be due to the variable 

with measurement error having a small impact in the treatment allocation model. 

Studies which report on the effect of varying measurement error and compare PS methods are 

rare. However, De Gil et al. (2015), Conover et al. (2021) and Hong et al. (2019) ran simulations 

which included covariate measurement error. These studies could be used to draw some 

comparisons, but had differences from the current study: they varied different parameters to 

the current study; they used ‘reliability’ of a covariate whereas the current study used only 

positive measurement error or negative measurement error; the scenarios used were often with 

parameters varied which were not considered in the current study; if they compared PS 

methods, they included different PS methods to those in the current study, and they used 

different performance measures of the treatment effect. 

The current study’s results are different to the findings in De Gil et al. (2015), where covariate 

measurement error affected bias but not the RMSE. Conover et al. (2021) reported that in 

scenarios with only false positive misclassifications (over-recording) produced higher bias than 

scenarios with only false negative misclassifications (under-recording). This was how the 

measurement error was implemented in the current study. In the current study there was little 

variation in the bias and any change was in the opposite direction, with slightly lower bias for 

over-recording (positive measurement error). Hong et al. (2019) showed that the bias and MSE 

reduced as the reliability of mismeasured confounders approached one, in terms of the current 

study this was as measurement error approached zero. These results are different to the current 

study, as positive measurement error behaved in a different manner than negative 

measurement error. This could be due to the small changes to the number of outcomes that the 
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measurement error produced, which is noticeable when the outcome prevalence is low, close 

to 1%. 

In the current study, although there were differences in the performance measures for the PS 

methods considered, introduced under-recording or over-recording did not change the relative 

performance of the four PS methods considered (Figure G-2 to Figure G-13). There was a small 

difference with higher over-recording, which increased the precision for 3:1 PS matching and 

IPTW for ATE. These were the PS methods with the lowest precision. This may be an artefact of 

the DGM. Higher over-recording generates data with more outcomes (Section 5.6.6), so any 

differences between the performance of the PS methods are reduced. De Gil et al. (2015) 

compared PS methods but did not report that any PS method performed better in the presence 

of measurement error.  Conover et al. (2021) reported 1:1 PS matching had lower bias and higher 

precision than IPTW using the untrimmed dataset (this was seen for a strong contra indication 

of a rare exposure and a strong indication of a common exposure), but following trimming 

generally IPTW performed better than 1:1 PS matching. This agrees with the literature when 

measurement error is not considered, but was different to the results from the current study. 

However the current study’s dataset had good common support which did not require trimming 

and so would have favoured IPTW over PS matching. Conover et al. (2021) report that ‘modest’ 

amounts of measurement error, in around ≤5% of observations can introduce bias. 

The results of this study show that when using EHR to estimate the real-world treatment effect 

and adjusting for treatment allocation bias with PS methods, there is little change to the bias of 

the treatment effect estimate when a variable which is used to predict treatment allocation is 

either under- or over-recorded. This finding may be specific to this study. When using PS 

methods to correct for treatment allocation bias, the bias of the treatment effect estimate 

appears to be robust to measurement error/misclassification of a variable with very low impact 

in the treatment allocation model. When there is more under-recording of this variable, there is 

lower precision in this estimate. When there is more over-recording of this variable, there is 

higher precision in this estimate. Under-recording or over-recording in a covariate which affects 

the treatment allocation does not affect the relative performance of the PS methods used in this 

study. The recommendations for the PS methods to use are the same as when no covariate 

measurement error was introduced (Section 6.2). 

6.4 Effect size and measurement error 

In this study, the effect size of the covariate with under-recording or over-recording (previous 

stroke) in the treatment allocation model fitted to the data was ‘very low’, using the 
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categorisation in Chen et al. (2010). The coefficient of previous stroke in the PS model was 0.12 

(Section 4.8), so varying the measurement error only in this variable was unlikely to generate 

large changes in the treatment effect estimate. To make this work more widely applicable and 

to investigate the impact when the covariate with under- or over-recording has a higher effect 

size in the treatment allocation model, the effect size was varied in the simulations so that in 

addition to the original (very low) value it also took the values equivalent to Low, Medium and 

High. This meant that the covariate with under- or over-recording had more impact in the 

treatment allocation model. 

In the study dataset, when previous stroke had a higher impact on the treatment allocation, that 

is a higher effect size in the treatment allocation model (PS Model), the treatment effect 

estimate had a lower bias and higher precision than if previous stroke had a lower impact on the 

treatment allocation. 14.1% of cases recorded a previous stroke in the full dataset (Section 4.5). 

The effect size of the variable with measurement error in the PS model appeared to have more 

impact on the treatment effect estimate, and hence its bias and precision, than the amount of 

under- or over-recording in this variable (Section 5.4). It should be noted that the ‘true value’ of 

previous stroke (as opposed to the recorded value with the measurement error) also 

contributed to the outcome. Its true value was included in the CHA2DS2-VASc score in the 

outcome model and the true value of previous stroke (not the value recorded with 

measurement error) would have influenced whether or not the participant had a future stroke.  

When the variable with under- or over-recording had a higher effect size in the treatment 

allocation model it produced a treatment effect estimate with a lower bias and higher precision 

which may seem counterintuitive. The most likely explanation is that this effect is an artefact of 

the DGM used in the simulations method (Section 5.6.6) and may be masking the actual effect. 

This is discussed further in Section 6.10. The changes in covariate measurement error and its 

effect size did not change the relative performance of the different PS methods. The 

recommendation for the PS methods to use remains unchanged and the same as Section 6.2. 

Varying the effect size in the treatment allocation model of the variable with under- or over-

recording was not widely reported in the studies which compared PS methods. However, De Gil 

et al. (2015) did vary both covariate measurement error (covariate reliability) and effect size 

(strength of relationship between covariates and treatment assignment). Both of these, as 

individual parameters and their interaction, were among parameters which affected CI 

coverage. Conover et al. (2021) considered misclassification in a strong indicator and a strong 
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contra-indicator of treatment assignment, so they changed the sign and not the value of the 

effect size. 

This study adds to the literature where there is a lack of the reporting comparisons of PS 

methods with covariate under- or over-recording and varied effect size in the treatment 

allocation model. This may lead to recommendations for the DGM to use in simulation studies 

which estimate real-world treatment effect estimates from EHR. 

6.5 Sparseness of outcome data and measurement error 

In the study dataset 14.1% of cases had had a previous stroke (Section 4.5), 13.7% of cases were 

prescribed Rivaroxaban (the NOAC) (Section B-5) and 1.1% of cases had a future stroke (the 

primary outcome) (Section 4.6). The form of sparse data considered was rare outcome events, 

which could lead to a low number of events per variable (EPV). Cox modelling (among other 

methods) can be subject to bias if there are small numbers in any of the treatment-outcome 

combinations (Greenland et al., 2016). Sparse data bias produces treatment effect estimates 

away from the null, so inflated treatment effect estimates are produced. Sparse data bias can 

occur in large datasets with a low number of outcomes and the study dataset is an example of 

this. PS conditioning is one of the methods to improve the handling of sparse data (Greenland 

et al., 2016), PS methods combine the information from several variables into one, making the 

EPV lower in the outcome model. So, comparison of different PS methods in the presence of 

sparse outcomes could further inform the best PS method(s) to use. In this study IPTW for ATT 

and PS Stratification generated the treatment effect with the lowest bias and highest precision 

at low outcome prevalence, 0.5% (Figure G-10). 

This study also varied under- or over-recording of a variable in the treatment allocation model 

in addition to varying the outcome prevalence. The lower prevalence (<5%) data gave treatment 

effect estimates with a higher bias and lower precision, whereas using the higher prevalence 

data gave a treatment effect estimate with lower bias and higher precision. At lower 

prevalences, there was more variation in the performance measures of the treatment effect 

estimate over the measurement error range of a variable in the treatment allocation model 

(Section 5.5). This study’s recommendations for estimating the ATE and ATT were compared 

with the findings from Franklin et al. (2017) and Hajage et al. (2016). These studies varied 

different parameters in their simulations to the current study. However, the ‘averaged’ results 

in Franklin et al. (2017) allowed a comparison of the performance of the PS methods in the 

current study. 
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The recommendation from the current study for the estimation of the ATE was to use PS 

stratification (using 10 strata) over IPTW for ATE. PS stratification had slightly lower bias and 

slightly higher precision (and lower MSE) than IPTW for ATE over the measurement error range 

and for all prevalences. The differences were small but increased with lower outcome 

prevalence. This agreed with Franklin et al. (2017)’s averaged results, where PS stratification 

(using 10 strata) performed slightly better than IPTW for ATE in terms of absolute bias and 

absolute MSE. Additionally,  Franklin et al. (2017) reported that PS stratification (using 10 strata) 

had slightly lower bias than IPTW for ATE at 5% prevalence, but no difference was seen at 2% 

and 1% prevalence.  Hajage et al. (2016) only studied one PS method to estimate the ATE so did 

not make a recommendation. 

The recommendation from the current study for the estimation of the ATT was to use IPTW for 

ATT over 3:1 PS matching. In all cases (over the measurement error range and all prevalences) 

IPTW for ATT had lower bias and higher precision (so lower MSE). The differences in the 

performance measures increased as the outcome prevalence decreased. This recommendation 

was stronger as these differences were larger than those seen in the ATE comparison. Franklin 

et al. (2017)’s averaged results reported that PS 1:1 matching performed slightly better than 

IPTW for ATT in terms of absolute bias and absolute MSE. These findings are different to the 

current study findings, but tend to agree with other findings in the literature. The dataset in the 

current study had good common support, but rare outcomes, so this may account for the better 

performance of IPTW for ATT over 3:1 matching. The recommendation from Hajage et al. (2016) 

was IPTW for ATT over PS matching for estimates of the ATT, for rare exposure/outcomes. This 

did agree with the results of the current study. Focusing on studies which use time-to-event data 

(without considering the outcome prevalence), Austin (2013) and Austin (2014b) did not find 

performance issues with PS matching when there was low exposure, which disagrees with 

Hajage et al. (2016). Hajage et al. (2016) suggested that Austin (2013) had used a higher sample 

size in their simulations. This is discussed further in Section 6.8. 

This type of sparse data, a large dataset with rare outcomes, is not uncommon (Chao, 1994; 

Franklin et al., 2017; Paul & Deng, 2000). An example of rare outcomes in observational studies 

is comparing treatment effect or Serious Adverse Events in drug safety studies (Ross et al., 2015). 

Even though the outcome may be rare, it can be serious, such as Das et al. (2016) who looked at 

the challenges of the Neonatal Research Network in trial design under these circumstances. 

Data with a higher outcome prevalence, ≥5%, should not be of great concern in EHR (with large 

data sets) as the treatment effect estimate is likely to have lower bias and higher precision. 
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However, for lower outcome prevalence (<5%) the treatment effect estimates are likely to have 

a higher bias and lower precision. At lower prevalences, <5%, there was more variation in the 

performance measures of the treatment effect estimate over the measurement error range of 

a variable in the treatment allocation model and its effect size in the treatment allocation model. 

The recommendations from the current study were to use PS Stratification for estimating the 

ATE and to use IPTW for ATT to estimate the ATT. These are the same as the recommendations 

where the outcome prevalence was not varied (Section 5.3). 

There is little reporting in the literature of comparison of PS methods with time-to-event 

outcomes and sparse outcome, although Franklin et al. (2017) did highlight this for future work. 

There has been no reporting of the comparison of PS methods in the presence of covariate 

measurement error and sparse outcome. This may provide more evidence to support IPTW over 

PS matching for estimates of ATT in sparseness of exposure/outcomes. 

6.6 Effect size, sparseness of outcome data and measurement error 

This study estimates the real-world treatment effect estimate of a novel treatment when the 

data is in the format of time-to-event, using PS methods to adjust for treatment allocation bias. 

The findings in this section combine the effects of two other real-world problems in EHR – 

measurement error and sparse outcome data. Here three parameters were varied: under- or 

over-recording in a covariate in the treatment allocation model; the effect size of this variable 

in the treatment allocation model; and the outcome prevalence. A comparison of the PS 

methods used in this study in these simulations was made. 

Simulations which compared the performance of PS methods outcomes with under- or over-

recording of a variable in the treatment allocation model, varying its effect size in the treatment 

allocation model and varying the outcome prevalence have not been reported in the literature 

before. 

To summarise the findings, when the variable with measurement error has greater impact on 

treatment decision-making, and hence in the PS model (effect size), the treatment effect 

estimate has lower bias and higher precision, for the study dataset. The differences in the 

performance measures of the treatment effect due to different effect sizes are greater when 

the data has lower outcome prevalence. The treatment effect estimates with the highest bias 

and lowest precision (highest SD and MSE) were obtained with low prevalence outcome data 

and when the variable with measurement error had a low (or very low) impact in the PS model 

(Section 5.6). 
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Recommendations for the PS methods remain the same as those from the data using the original 

characteristics (Section 6.3): for ATE the recommendation is to use PS stratification; and for ATT 

the recommendation is to use ‘IPTW for ATT’. 

6.7 Recommendations for PS methods 

This section brings together the recommendations for the PS methods to use in the different 

scenarios (Sections 6.2 to 6.6). There are four general categories of PS methods: PS Matching, 

PS Weighting, which include Inverse Probability of Treatment Weighting (IPTW), PS Stratification 

and Covariate Adjustment on the PS, although there are now many different variations of these 

basic categories. This study compared the performance of 3:1 PS matching, IPTW for ATT, IPTW 

for ATE and PS stratification. The matched or weighted nature of the data should be taken into 

account in the outcome analysis following PS conditioning and there are different options 

available to do this. 

For all scenarios considered in this study the recommendations for the PS methods to use for 

ATE and ATT are the same. For the ATE, this study’s recommendation was to use PS stratification. 

Its bias was similar to IPTW for ATE but its precision was higher (with a lower MSE). However, 

the performance of the two PS methods was similar (Section 5.7). This recommendation was not 

as definitive as that for ATT and there were some reservations about the balance produced by 

PS stratification. If applied to a dataset with different characteristics, the advice may be 

different. In the literature, of the PS methods which estimate the ATE, IPTW for ATE is 

recommended as it provides the best balance (Austin, 2009b). The literature provided no 

comparison of PS methods when covariate measurement error was introduced. When the 

outcome data were sparse, this study’s recommendation to use IPTW for ATE differed from 

Franklin et al. (2017), whose averaged results over all the simulations, reported PS stratification 

(using 10 strata) performed slightly better than IPTW for ATE in terms of absolute bias and 

absolute MSE. This is supported by the findings of the current study. 

For the ATT the recommendation was to use IPTW for ATT, which had a smaller bias and higher 

precision (lower MSE) than 3:1 PS matching (Section 5.8). If applied to a dataset with different 

characteristics, the advice may have been different, as the literature advises that PS matching 

performs better than IPTW when there is not good common support in the data. The study data 

did have good common support so would have favoured IPTW. The recommendation from this 

study is different to the literature which reports PS matching as performing better than IPTW 

for ATT. Many of these studies relate to data with binary outcomes, but Austin (2014b) and 

Austin (2013) use data with time-to-event outcomes (Section 6.9) and they too recommend PS 



 

108 
 

matching over IPTW for ATT (Section 6.8). When sparseness of data was considered, the study’s 

recommendation to use IPTW for ATT differed to the averaged results over the simulations in 

Franklin et al. (2017) but agreed with Hajage et al. (2016). Franklin et al. (2017) had binary 

outcomes, but varied exposure prevalence and outcome prevalence and they reported 1:1 PS 

matching performed slightly better than IPTW for ATT in terms of absolute bias and absolute 

MSE. Hajage et al. (2016) recommended IPTW for ATT over PS matching for estimates of the 

ATT, for rare exposure/outcomes. This is discussed further in Section 6.8. 

These findings are based on under- or over-recording in a variable which is a positive contributor 

to the treatment allocation, that is, if a participant had had a previous stroke they were more 

likely to be prescribed Rivaroxaban (the NOAC) than Warfarin (the control). With the study 

dataset there was limited access to validation data which indicated that there was more likely 

to be under-recording for the variable for previous stroke. For other datasets there may be no 

validation data, so no indication of the direction or magnitude of the measurement error. In 

such cases both under- and over-recording should be investigated and a judgment made about 

the magnitude of the measurement error. 

The characteristics of the dataset used can influence the optimal choice PS method. The study 

dataset had good common support which favoured IPTW over 3:1 matching. A dataset with 

different characteristics may have produced different recommendations. Caliendo and Kopeinig 

(2008) and Garrido et al. (2014) recommend applying several different PS methods and selecting 

the one which gives the best balance. This would allow the influence of the characteristics of the 

dataset to be accounted for. 

The study dataset data contained patients with AF, and the comparison was of the performance 

of Rivaroxaban, the novel treatment, over Warfarin, the previous standard treatment, in the 

prevention of a future stroke. There were contraindications which prevented the prescribing of 

Rivaroxaban to certain patients. The ATT was a more appropriate measure as an estimate of the 

treatment effect on those for whom the treatment was appropriate. However, in this study, the 

dataset was also used to demonstrate the performance of PS methods which estimated the ATE 

when there was covariate measurement error and low outcome prevalence. 

6.8 Poor performance of 3:1 PS matching 

This study’s recommendation for estimating the ATT is to use IPTW for ATT rather than 3:1 PS 

matching (Section 6.7). This applied to all scenarios considered. 3:1 PS matching had a more 

biased estimate of the treatment effect estimate and also had lower precision (and higher MSE). 

This is different to the literature which reports that PS matching and IPTW generally perform 
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equally well (Austin, 2009b, 2011a, 2011b). Mostly this referred to binary outcome data, but 

(Austin, 2013) recommended PS matching and PS weighting (IPTW) for estimating the marginal 

HR in time-to-event data. Generally, the circumstances will dictate which method to use (Austin, 

2014b). 

Franklin et al. (2017) and Hajage et al. (2016) ran simulations to compare the performance of PS 

methods in sparse data conditions and both have methods similar to this study. Franklin et al. 

(2017)’s simulations had sparse, binary outcomes and Hajage et al. (2016) used data with sparse 

exposure and time-to-event outcomes. The study’s finding for recommending IPTW for ATT over 

3:1 PS matching for estimating the ATT disagreed with the general literature, including Franklin 

et al. (2017). The exception is Hajage et al. (2016) whose recommendation was the same as the 

current study. 

Possible reasons for the poor performance of 3:1 matching were first, the study dataset’s 

characteristics. From the literature, PS matching performs well (in comparison to IPTW for ATT) 

when there is poor common support. The study dataset had good common support, so would 

favour IPTW for ATT to some extent. Second, the implementation of 3:1 PS matching was found 

to be more difficult than the other PS methods. Following PS matching, the outcome analysis 

had to account for the matched nature of the data. The ‘strata’ option was used to group the 

matched cases together (one Rivaroxaban and three Warfarin cases) so that they were regarded 

as having the same baseline hazard. Other options were explored but were not suitable to run 

in the simulations. Generally, implementing Cox regression for many matched pairs/groups was 

more problematic than applying weights, generated by IPTW, to Cox regression. 

There are existing Stata user-written programs which were recommended by the literature and 

other researchers in the field. However, these offered limited functionality. Some programs 

could perform a full analysis using PS matching but only for a binary outcome, not for time-to-

event data like the study’s data. The Stata user written program -psmatch2- was chosen to 

perform the PS matching because it recorded the Warfarin (control treatment) IDs that the 

Rivaroxaban (novel treatment) cases were matched to. This was needed in the outcome analysis 

when matched groups were formed. However -psmatch2- did not offer a many:1 matching with 

‘no replacement’. A ‘no replacement’ option could have been useful for a sensitivity analysis in 

view of the poor performance of 3:1 PS matching. 3:1 PS matching had been chosen over 1:1 

matching to boost the number of outcomes in a sparse dataset. As all matching was done using 

replacement, there could have been an over reliance on certain Warfarin cases, which were 

matched many times to different Rivaroxaban cases. There were 18,348 Warfarin (control) cases 
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compared to 2,911 Rivaroxaban cases in the original dataset (Section B-5) which meant that 

there were sufficient Warfarin cases to have matched the Rivaroxaban cases at a ratio of 3:1 had 

‘no replacement’ been used.  A ‘no replacement’ option may have changed the cases matched 

and hence the performance of the treatment effect estimate, although this in turn would have 

changed the underlying distribution of the matched sample. 

When using 3:1 PS matching, ‘self-matching’ was seen (Section 4.3). The simulated datasets 

were generated using plasmode simulations by making random draws, using replacement, from 

the original dataset. All simulated datasets were likely to contain multiple copies of some of the 

original cases. Introducing measurement error generated an amended value for previous stroke, 

giving an amended PS value which then gave a generated treatment. It was possible for multiple 

copies of the same original case to generate cases which have generated treatment of both 

Rivaroxaban and Warfarin. These Warfarin cases became an obvious match for Rivaroxaban 

cases generated. This was known as ‘self-matching’. It is not clear to what extent self-matching 

affected the treatment effect estimate. The number of self-matched cases were identified and 

could have been excluded from the outcome analysis dataset. This would have reduced the size 

of the analysis dataset further, which would be likely to increase the bias and reduce the 

precision. To have excluded matching to the same original case and to match to the nearest 

different case would have meant amending/re-writing part of -psmatch2-.  No studies were 

found in the literature which reported the topic of self-matching, but it may be common in 

bootstrapped samples. Franklin et al. (2017) found that in full matching in areas of poor overlap 

a single treated case could be matched to as many as 500 controls and suggested limiting this 

number, however, this could give higher variance if the number of outcome events reduces. 

Although implementing 3:1 matching with no replacement or excluding self-matched cases may 

not have reduced the bias generated in the treatment effect estimate, they would have allowed 

sensitivity analysis to be performed. This may have informed different implementations of 3:1 

matching which would have generated a less biased treatment effect estimate.  Future work to 

investigate the poor performance of 3:1 PS matching could include further development of a 

many:1 matching program in Stata to allow for a ‘no replacement’ option and to include an 

option to exclude self-matching. Further exploration of the options to use when implementing 

Cox regression to account for the matched nature of the data could be made. 

6.9 Use of time-to-event data 

This study recommended PS stratification over IPTW for ATE for estimates of the ATE (Section 

5.7) and IPTW for ATT over 3:1 PS matching for estimates of the ATT (Section 5.8). The literature 
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which compared the performance of different PS methods mainly covered data with a binary 

outcome. There was little research published on situations where the outcome is of the form 

time-to-event. For estimates of the ATE, this study’s results do not agree with the finding from 

Austin (2014b), Austin (2013), but when there is sparseness of outcome data this study’s results 

agree with Franklin et al. (2017). For estimates of the ATT, the study’s results agree with and 

Hajage et al. (2016), but not with that from Austin (2014b), Austin (2013) and Franklin et al. 

(2017) so further work may consolidate the recommendations. Franklin et al. (2017) also 

highlighted data with time-to-event outcomes as an area for future work. Guidance of the 

implementation of PS methods, particularly PS matching, for time-to-event data should be 

considered for future work. 

6.10 Changing effect size and the Data Generating Mechanism 

To further explore the effect of measurement error, the effect size of the variable with under- 

or over-recording in the treatment allocation model was also varied. The covariate with 

measurement error, previous stroke, had a coefficient in the PS fitted to the original data, which 

was classified as ‘very low’ based on the categorisation in Chen et al. (2010). The simulations 

using this value showed little variation in the bias of the treatment effect estimate (Section 5.3). 

To investigate the impact of a higher effect size, the effect size of the covariate with 

measurement error was increased in the simulations. When the variable with measurement 

error had a higher effect size in the PS model, the treatment effect estimate had lower bias and 

higher precision. This seemed to be counterintuitive, the measurement error in the PS model 

had a higher impact in the treatment allocation model and gave a treatment effect estimate 

with lower bias and higher precision. This can be explained by looking at the DGM, as described 

in Section 5.6.6. In the treatment allocation model fitted to the original data, previous stroke, 

the covariate with measurement error, was a positive contributor and its effect size was very 

small. When the effect size of previous stroke was increased in the simulations, those cases with 

previous stroke would have had a higher PS value. A higher PS value increased the probability of 

the generated treatment being Rivaroxaban. This in turn will increase the chance of those cases 

having a future stroke, so there were more outcome events in the simulated data, making the 

outcome modelling more stable. This would generate results with a lower SE, hence a lower SD 

and seemed to have generated lower bias and lower MSE (which is a combination of SD and 

bias). 

There would be datasets extracted from EHR where the covariate with under- or over-recording 

was a negative contributor in the treatment allocation model and/or receiving the novel 

treatment would have a negative coefficient in the outcome model. For example, consider the 
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case where the covariate with measurement error was a negative contributor to the treatment 

allocation and receiving the novel treatment was still a positive contributor in the outcome 

model. With higher under-recording of the variable with measurement error, there would be 

more cases with a higher PS, hence more cases with a generated novel treatment. This in turn 

would generate more cases with an outcome event, leading to a treatment effect with a lower 

bias and higher precision. This is in contrast to the study models, where higher under-recording 

of the variable with measurement error led to a treatment effect estimate with a higher bias 

and lower precision. 

It is still not clear if this change (a reduced bias and increased precision of the treatment effect 

estimate) seen when the effect size of the covariate with measurement error in the treatment 

allocation is increased is a genuine effect, just an artefact of the DGM, or if the DGM is masking 

the underlying effect. 

Future work could be to extend the simulations so that the coefficient of the covariate with 

measurement error is a negative contributor to the treatment allocation model and/or the 

treatment is also a negative contributor to the outcome. Varying these negative values would 

investigate the DGM used. 

6.11 Summary 

The real-world treatment effect can be estimated from EHR in the form of an observational 

study, so the treatment allocation was not randomised and PS methods were used to adjust for 

treatment allocation bias. The aims of this study were to investigate the effect of under- or over-

recording of a dichotomous covariate in the treatment allocation model and sparse data when 

estimating the real-world treatment effect in this way, and to compare the performance of 

different PS methods in these scenarios. Simulations were run based on a dataset which 

compared the performance of Rivaroxaban (the novel treatment) with Warfarin (the control 

treatment) on the prevention of future stroke for patients with AF. The outcomes were in the 

format of time-to-event. Parameters were varied for measurement error in a covariate in the 

treatment allocation model (previous stroke), the effect size of this covariate in the PS model 

and the outcome prevalence (future stroke).  Using simulations, the performance measures of 

the treatment effect estimate generated when using four PS methods were collected to allow a 

comparison of the PS methods to be made. 

Introducing measurement error replicating under-recording or over-recording of a single 

dichotomous covariate in the treatment allocation model, covered a range of 50% under-

recording to 50% over-recording. Changes in the magnitude of the measurement error had little 
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effect on the bias of the treatment effect estimate. When there was under-recording of that 

variable, as the size of the under-recording increased, there was lower precision in this estimate. 

When there was over-recording of this variable, as the size of the over-recording increased, 

there was higher precision in this estimate. Under- or over-recording in a single covariate in the 

treatment allocation model did not have a large impact on the treatment effect estimate when 

its effect size (in the treatment allocation model) was very small. 

As the effect size of the covariate with measurement error in the treatment allocation model 

was very small, to make the work more useful, its effect size was varied. When the effect size 

was high, the treatment effect estimate had lower bias and higher precision. In simulations 

based on this dataset, the variable with measurement error was a positive contributor in the PS 

model, meaning they would be more likely to be allocated Rivaroxaban (novel treatment) and 

the novel treatment was also a positive contributor in the outcome model, giving a slightly 

increased risk of future stroke. Both these together increased the probability of that patient 

having an outcome event. Simulations generated with higher outcome prevalence produced a 

treatment effect with a lower bias and higher precision. It is not clear if this result is due to the 

impact of changing the effect size or is an artefact of the DGM which is generating more 

outcomes, hence the outcome modelling is more stable. A different simulation experiment may 

help to resolve this. Generally there is little in the literature about comparing PS methods in the 

presence of covariate measurement error and the impact of changing its effect size in the PS 

model. 

Although the original study dataset may have appeared large, with 21,259 cases, the outcome 

prevalence was 1%. Varying this prevalence showed that for the lower outcome prevalence 

(≤1%) the treatment effect estimates are likely to have a higher bias and lower precision. At this 

lower prevalence there was more variation in the performance measures of the treatment effect 

estimate over the measurement error range of a variable in the PS model and its effect size in 

the PS model. Data with a higher outcome prevalence, >1%, had a treatment effect estimate 

with lower bias and higher precision and variation due to measurement error and its effect size 

in the PS model was much less. These findings were as expected. 

The recommendation for the PS methods to use remained the same in all simulation scenarios 

(no introduced measurement error, introduced measurement error, introduced measurement 

error and varied effect size, introduced measurement error and varied outcome prevalence and 

introduced measurement error, varied effect size and varied outcome prevalence). For 

estimations of the ATE, PS stratification performed slightly better than IPTW for ATE. The 
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difference in performance was small and often the literature recommends IPTW for ATE. For 

estimation of the ATT, IPTW for ATT performed considerably better than 3:1 PS matching. Often 

the literature recommends PS matching for estimating the ATT, but Hajage et al. (2016) also 

found IPTW for ATT performed better than PS matching using time-to-event data and sparseness 

in the data. In their study that was sparseness of exposure and in the current study it was 

sparseness in the outcome. 

This study has shown that PS methods recommended in the literature may not perform well for 

individual datasets. Although Caliendo and Kopeinig (2008) and Garrido et al. (2014) recommend 

applying several PS methods and selecting the one which produces the best balance for the 

outcome analysis, this study showed that PS methods which give relatively poor balance can 

produce a treatment effect estimate with lower bias and higher precision. So, it is unclear if 

selecting a PS method based on how well it balances the treatment groups is valid. Studies which 

use EHR to conduct observational studies should consider the impact of sparse outcome data, 

not just on the bias and precision of the treatment effect estimate, but also on the effect that 

covariate measurement error and its impact on the treatment allocation will have. For low 

outcome prevalence data, the effect of measurement error and its impact on the treatment 

allocation on the treatment effect estimate will be greater. For data with outcomes in the form 

of time-to-event, not all outcome events will be recorded as some will be censored, making the 

data more sparse, which compounds these problems. 

When the data are of the form time-to-event, guidance on the implementation of PS methods, 

particularly PS matching, and comparison of PS methods should be considered for future work. 

Further exploration of the options to account for the matched nature following PS matching of 

the data when Cox regression is performed could be undertaken. 

The simulations could be extended to include different scenarios: by defining measurement 

error in terms of reliability, so a combination of under- and over-recording (positive and negative 

measurement error) would be included; by using the current measurement error definition but 

amending the number of over-recorded cases to match the number of under-recorded cases 

(there were more cases with no previous stroke than those with previous stroke); changing the 

variable with measurement error to be a negative contributor in the treatment allocation model 

and/or changing the treatment to be a negative contributor in the outcome model; introducing 

measurement error into a continuous variable in the treatment allocation model. A possible 

enhancement could be to include both variables which affect the treatment allocation and 
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variables which affect the outcome in the PS model. This would then generate an estimate of 

the marginal treatment effect. 

This study successfully ran simulations using four PS methods and varying under- or over-

recording in a variable in the treatment allocation model, varying this variable’s effect size in the 

treatment allocation model and varying the outcome prevalence. The performance measures of 

the treatment effect estimate were collected and displayed in tabular and graphical format. 

This study used only four PS methods (each with one outcome option) which is a limitation, as 

there are many variations of these basic categories of PS methods. Also, it is currently not clear 

if the changes to the treatment effect estimate are due to changes in the effect size or the DGM 

used. The parameters varied in the simulations only took a limited range of values (see above 

for suggested extensions of the simulations). The results using additional PS methods or 

expanded parameter ranges could be compared with those of this study. 

Another limitation of this work is that in the estimation of treatment effect variance no account 

was taken of the uncertainty in estimating the PS. This means the CIs of the treatment effect 

produced were too wide. For PS stratification, using the analogous marginal variance method, 

which accounts for the uncertainty from estimating the PS model from the data, can reduce the 

variance by up to 12% depending on the data characteristics, compared to the commonly used 

variance estimation. For IPTW the variance reduction can be 18% using the analogous marginal 

variance method compared to the commonly used variance estimation. Such changes are 

particularly noticeable for larger samples, n>1000 (Williamson et al., 2012b). 

This study’s findings contribute to the body of knowledge, particularly when using PS methods 

and varying covariate measurement error, the covariate’s effect size in the treatment allocation 

model, the outcome prevalence, and combinations of these. These simulations were applied to 

time-to-event data, which are generally not widely reported on. This study did make 

recommendations for the PS methods to use, but the recommendations have been guided by 

the characteristics of the study dataset, which may mean that they are limited to datasets with 

similar characteristics. 

  



 

116 
 

   



 

117 
 

REFERENCES 

 

Ali, M. S., Groenwold, R. H. H., Pestman, W. R., Belitser, S. V., Roes, K. C. B., Hoes, A. W., . . . 
Klungel, O. H. (2014). Propensity score balance measures in pharmacoepidemiology: a 
simulation study. Pharmacoepidemiology and drug safety, 23(8), 802. 
doi:10.1002/pds.3574 

Altman, D. G. (1991). Practical statistics for medical research London: Chapman and Hall/CRC. 
Austin, P. C. (2008a). Assessing balance in measured baseline covariates when using many-to-

one matching on the propensity-score. Pharmacoepidemiology and Drug Safety, 17(12), 
1218-1225. doi:10.1002/pds.1674 

Austin, P. C. (2008b). Goodness-of-fit diagnostics for the propensity score model when 
estimating treatment effects using covariate adjustment with the propensity score. 
Pharmacoepidemiology and Drug Safety, 17(12), 1202-1217. doi:10.1002/pds.1673 

Austin, P. C. (2009a). Balance diagnostics for comparing the distribution of baseline covariates 
between treatment groups in propensity-score matched samples. Statistics in Medicine, 
28(25), 3083-3107. doi:10.1002/sim.3697 

Austin, P. C. (2009b). The Relative Ability of Different Propensity Score Methods to Balance 
Measured Covariates Between Treated and Untreated Subjects in Observational 
Studies. Medical Decision Making, 29(6), 661-677. doi:10.1177/0272989x09341755 

Austin, P. C. (2011a). An Introduction to Propensity Score Methods for Reducing the Effects of 
Confounding in Observational Studies. Multivariate Behavioral Research, 46(3), 399-
424. doi:10.1080/00273171.2011.568786 

Austin, P. C. (2011b). A Tutorial and Case Study in Propensity Score Analysis: An Application to 
Estimating the Effect of In-Hospital Smoking Cessation Counseling on Mortality. 
Multivariate Behavioral Research, 46(1), 119-151. doi:10.1080/00273171.2011.540480 

Austin, P. C. (2013). The performance of different propensity score methods for estimating 
marginal hazard ratios. Statistics in Medicine, 32(16), 2837-2849. doi:10.1002/sim.5705 

Austin, P. C. (2014a). A comparison of 12 algorithms for matching on the propensity score. 
Statistics in Medicine, 33(6), 1057-1069. doi:10.1002/sim.6004 

Austin, P. C. (2014b). The use of propensity score methods with survival or time-to-event 
outcomes: reporting measures of effect similar to those used in randomized 
experiments. Statistics in Medicine, 33(7), 1242-1258. doi:10.1002/sim.5984 

Austin, P. C., Grootendorst, P., & Anderson, G. M. (2007). A comparison of the ability of different 
propensity score models to balance measured variables between treated and untreated 
subjects: a Monte Carlo study. Statistics in Medicine, 26(4), 734-753. 
doi:10.1002/sim.2580 

Austin, P. C., & Mamdani, M. M. (2006). A comparison of propensity score methods: A case-
study estimating the effectiveness of post-AMI statin use. Statistics in Medicine, 25(12), 
2084-2106. doi:10.1002/sim.2328 

Austin, P. C., & Stuart, E. A. (2015). Moving towards best practice when using inverse probability 
of treatment weighting (IPTW) using the propensity score to estimate causal treatment 
effects in observational studies. Statistics in Medicine, 34(28), 3661-3679. 
doi:10.1002/sim.6607 

Banerjee, A., Benedetto, V., Gichuru, P., Burnell, J., Antoniou, S., Schilling, R. J., . . . Sutton, C. J. 
(2020). Adherence and persistence to direct oral anticoagulants in atrial fibrillation: a 
population-based study. Heart, 106(2), 119-+. doi:10.1136/heartjnl-2019-315307 

Black, D. A., Berger, M. C., & Scott, F. A. (2000). Bounding parameter estimates with nonclassical 
measurement error. Journal of the American Statistical Association, 95(451), 739-748. 
doi:10.2307/2669454 



 

118 
 

Blackwell, M., Honaker, J., & King, G. (2017). A Unified Approach to Measurement Error and 
Missing Data: Overview and Applications. Sociological Methods & Research, 46(3), 303-
341. doi:10.1177/0049124115585360 

Braun, D., Gorfine, M., Parmigiani, G., Arvold, N. D., Dominici, F., & Zigler, C. (2017). Propensity 
scores with misclassified treatment assignment: a likelihood-based adjustment. 
Biostatistics, 18(4), 695-710. doi:10.1093/biostatistics/kxx014 

Brookhart, M. A., Schneeweiss, S., Rothman, K. J., Glynn, R. J., Avorn, J., & Sturmer, T. (2006). 
Variable selection for propensity score models. American Journal of Epidemiology, 
163(12), 1149-1156. doi:10.1093/aje/kwj149 

Burnell, J. (2015). Sensitivity Analysis for HES vs HES and THIN. University of Central Lancashire.   
Busso, M., DiNardo, J., & McCrary, J. (2014). NEW EVIDENCE ON THE FINITE SAMPLE PROPERTIES 

OF PROPENSITY SCORE REWEIGHTING AND MATCHING ESTIMATORS. Review of 
Economics and Statistics, 96(5), 885-897. doi:10.1162/REST_a_00431 

Caliendo, M., & Kopeinig, S. (2008). Some practical guidance for the implementation of 
propensity score matching. Journal of Economic Surveys, 22(1), 31-72. 
doi:10.1111/j.1467-6419.2007.00527.x 

Carroll, R. J., Ruppert, D., Stefanski, L. A., & Crainiceanu, C. M. (2006). Measurement Error in 
Nonlinear Models: A Modern Perspective (2nd ed.): Chapman and Hall/CRC. 

Carroll, R. J., & Stefanski, L. A. (1990). APPROXIMATE QUASI-LIKELIHOOD ESTIMATION IN 
MODELS WITH SURROGATE PREDICTORS. Journal of the American Statistical 
Association, 85(411), 652-663. doi:10.2307/2290000 

Cham, H. N., & West, S. G. (2016). Propensity Score Analysis With Missing Data. Psychological 
Methods, 21(3), 427-445. doi:10.1037/met0000076 

Chang, Y. C., Perng, C. H., & Shiau, C. Y. (2000). On estimating stratified PH model with single 
covariate from sparse data with application to brain metastases study. Biometrical 
Journal, 42(5), 569. doi:10.1002/1521-4036(200009)42:5<569::Aid-bimj569>3.0.Co;2-# 

Chao, A. (1994). Population-Size Estimation for Sparse Data - Reply. Biometrics, 50(1), 303.  
Chen, H. N., Cohen, P., & Chen, S. (2010). How Big is a Big Odds Ratio? Interpreting the 

Magnitudes of Odds Ratios in Epidemiological Studies. Communications in Statistics-
Simulation and Computation, 39(4), 860-864. doi:10.1080/03610911003650383 

Choi, B. C., & Pak, A. W. (2005). Peer reviewed: a catalog of biases in questionnaires. Preventing 
chronic disease, 2(1).  

Choi, L., Carroll, R. J., Beck, C., Mosley, J. D., Roden, D. M., Denny, J. C., & Van Driest, S. L. (2018). 
Evaluating statistical approaches to leverage large clinical datasets for uncovering 
therapeutic and adverse medication effects. Bioinformatics, 34(17), 2988-2996. 
doi:10.1093/bioinformatics/bty306 

Chu, R., Walter, S. D., Guyatt, G., Devereaux, P. J., Walsh, M., Thorlund, K., & Thabane, L. (2012). 
Assessment and Implication of Prognostic Imbalance in Randomized Controlled Trials 
with a Binary Outcome - A Simulation Study. Plos One, 7(5). 
doi:10.1371/journal.pone.0036677 

Cleves, M., Gould, W. W., & Marchenko, Y. V. (2016). An introduction to survival analysis using 
Stata (Revised 3rd ed.): Stata press. 

Cochran, W. G. (1968). The effectiveness of adjustment by subclassification in removing bias in 
observational studies. Biometrics, 24(2), 295–313. 
doi:https://doi.org/10.2307/2528036 

Cochran, W. G., & Chambers, S. P. (1965). The Planning of Observational Studies of Human 
Populations. Journal of the Royal Statistical Society: Series A, 128, 234-255. Retrieved 
from http://dx.doi.org/10.2307/2344179 

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.): Hillsdale, N.J: L. 
Erlbaum Associates. 

https://doi.org/10.2307/2528036
http://dx.doi.org/10.2307/2344179


 

119 
 

Conover, M. M., Rothman, K. J., Sturmer, T., Ellis, A. R., Poole, C., & Funk, M. J. (2021). Propensity 
score trimming mitigates bias due to covariate measurement error in inverse probability 
of treatment weighted analyses: A plasmode simulation. Statistics in Medicine, 40(9), 
2101-2112. doi:10.1002/sim.8887 

Cook, J. R., & Stefanski, L. A. (1994). SIMULATION-EXTRAPOLATION ESTIMATION IN PARAMETRIC 
MEASUREMENT ERROR MODELS. Journal of the American Statistical Association, 
89(428), 1314-1328. doi:10.2307/2290994 

Das, A., Tyson, J., Pedroza, C., Schmidt, B., Gantz, M., Wallace, D., . . . Higgins, R. D. (2016). 
Methodological issues in the design and analyses of neonatal research studies: 
Experience of the NICHD Neonatal Research Network. Seminars in perinatology, 40(6), 
374. doi:10.1053/j.semperi.2016.05.005 

De Gil, P. R., Bellara, A. P., Lanehart, R. E., Lee, R. S., Kim, E. S., & Kromrey, J. D. (2015). How Do 
Propensity Score Methods Measure Up in the Presence of Measurement Error? A Monte 
Carlo Study. Multivariate Behavioral Research, 50(5), 520-532. 
doi:10.1080/00273171.2015.1022643 

DiPrete, T. A., & Gangl, M. (2004). Assessing bias in the estimation of causal effects: Rosenbaum 
bounds on matching estimators and instrumental variables estimation with imperfect 
instruments. Sociological Methodology, 2004, Vol 34, 34, 271-310. doi:10.1111/j.0081-
1750.2004.00154.x 

Dong, H., & Millimet, D. L. (2020). Propensity Score Weighting with Mismeasured Covariates: An 
Application to Two Financial Literacy Interventions. Journal of Risk and Financial 
Management, 13(11). doi:10.3390/jrfm13110290 

Efron, B., & Tibshirani, R. J. (1993). An introduction to the bootstrap: Chapman and Hall. 
Fabiani, M., Bella, A., Rota, M. C., Clagnan, E., Gallo, T., D'Amato, M., . . . Rizzo, C. (2015). A/H1N1 

pandemic influenza vaccination: A retrospective evaluation of adverse maternal, fetal 
and neonatal outcomes in a cohort of pregnant women in Italy. Vaccine, 33(19), 2240. 
doi:10.1016/j.vaccine.2015.03.041 

Firth, D. (1995). BIAS REDUCTION OF MAXIMUM-LIKELIHOOD-ESTIMATES (VOL 80, PG 27, 1993). 
Biometrika, 82(3), 667-667. Retrieved from <Go to ISI>://WOS:A1995RY02600021 

Franklin, J. M., Eddings, W., Austin, P. C., Stuart, E. A., & Schneeweiss, S. (2017). Comparing the 
performance of propensity score methods in healthcare database studies with rare 
outcomes. Statistics in medicine, 36(12), 1946. doi:10.1002/sim.7250 

Franklin, J. M., Schneeweiss, S., Polinski, J. M., & Rassen, J. A. (2014). Plasmode simulation for 
the evaluation of pharmacoepidemiologic methods in complex healthcare databases. 
Computational Statistics & Data Analysis, 72, 219-226. doi:10.1016/j.csda.2013.10.018 

Garrido, M. M., Kelley, A. S., Paris, J., Roza, K., Meier, D. E., Morrison, R. S., & Aldridge, M. D. 
(2014). Methods for Constructing and Assessing Propensity Scores. Health Services 
Research, 49(5), 1701-1720. doi:10.1111/1475-6773.12182 

Gastwirth, J. L., Krieger, A. M., & Rosenbaum, P. R. (1998). Dual and simultaneous sensitivity 
analysis for matched pairs. Biometrika, 85(4), 907-920. doi:10.1093/biomet/85.4.907 

Gayat, E., Resche-Rigon, M., Mary, J. Y., & Porcher, R. (2012). Propensity score applied to survival 
data analysis through proportional hazards models: a Monte Carlo study. 
Pharmaceutical Statistics, 11(3), 222-229. doi:10.1002/pst.537 

Gravel, C. A., & Platt, R. (2018). Weighted estimation for confounded binary outcomes subject 
to misclassification. Statistics in Medicine, 37(3), 425-436. doi:10.1002/sim.7522 

Greenland, S., Mansournia, M. A., & Altman, D. G. (2016). Sparse data bias: a problem hiding in 
plain sight. Bmj-British Medical Journal, 353, i1981. doi:10.1136/bmj.i1981 

Greenland, S., Schwartzbaum, J. A., & Finkle, W. D. (2000). Problems due to small samples and 
sparse data in conditional logistic regression analysis. American Journal of Epidemiology, 
151(5), 531. Retrieved from https://watermark.silverchair.com/151-5-
531.pdf?token=AQECAHi208BE49Ooan9kkhW_Ercy7Dm3ZL_9Cf3qfKAc485ysgAAAmw

https://watermark.silverchair.com/151-5-531.pdf?token=AQECAHi208BE49Ooan9kkhW_Ercy7Dm3ZL_9Cf3qfKAc485ysgAAAmwwggJoBgkqhkiG9w0BBwagggJZMIICVQIBADCCAk4GCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMrIImWWQMZgLUfoQpAgEQgIICH30hol-tGnDTCpBK5EWD31qbGWuejz9tBD2jLQEN4k63xlxHOPYrF9pluv5WjObnnLaIkwpcFlan2zuuA5o0gfWZWhp-15W0p_eHiCCTWGrdtJqD4Xx2gxdwFV34LWb-lGUb7gomFk9fOJs0ZNqro9zNBQ7f49TQAqj5LcuDhs28sEkaw05-a_09WWHKF8PYc8UXZXmubAuq99pm1o07QR5lNOzFZVx7YnPC_SdiS7M5_1j1uuhQHluNot83gXDBq4R7Sq9po5TxlqTI6TH8BpkaHcxhKqmRxgnJCHnQPZfuBouaArmjfHqpO0s8G34L9p8UU86hayqI9sphKyrnlyb689zac0Vl3D_HuC8unsiEthUxMtQ7efZwZJtf3TAPGIjm7mlQJN16RFBJb1loMxbfJQteJ56ydCWDatr3eyx4dgk5EQKj4GsY9jEows2TvIp5LfEd45eF2Exh-nLdjOV8IrJ_YPgYuu17b-uwW_7SGQEVAQ42Ir6f2_PyHGKC9J5dAtD-gQ9_KLkWtQYjWF61sGhZm236o0enKHElJXURzj54s-zu79pRXaRjYTpIa4g-ElcbARSKFlVzaw_zLbqLih1WSYRGJWe5lgjJKXnupVza6LFafYI9R9nq3y2jb0v5cwyGvF_RJTYK1obfctfL1YQPP6XdQIDbLoiposDF3MRJW_WeP_MJb4ncjp_hNafRYFBAYCn1A3NamqUKBg
https://watermark.silverchair.com/151-5-531.pdf?token=AQECAHi208BE49Ooan9kkhW_Ercy7Dm3ZL_9Cf3qfKAc485ysgAAAmwwggJoBgkqhkiG9w0BBwagggJZMIICVQIBADCCAk4GCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMrIImWWQMZgLUfoQpAgEQgIICH30hol-tGnDTCpBK5EWD31qbGWuejz9tBD2jLQEN4k63xlxHOPYrF9pluv5WjObnnLaIkwpcFlan2zuuA5o0gfWZWhp-15W0p_eHiCCTWGrdtJqD4Xx2gxdwFV34LWb-lGUb7gomFk9fOJs0ZNqro9zNBQ7f49TQAqj5LcuDhs28sEkaw05-a_09WWHKF8PYc8UXZXmubAuq99pm1o07QR5lNOzFZVx7YnPC_SdiS7M5_1j1uuhQHluNot83gXDBq4R7Sq9po5TxlqTI6TH8BpkaHcxhKqmRxgnJCHnQPZfuBouaArmjfHqpO0s8G34L9p8UU86hayqI9sphKyrnlyb689zac0Vl3D_HuC8unsiEthUxMtQ7efZwZJtf3TAPGIjm7mlQJN16RFBJb1loMxbfJQteJ56ydCWDatr3eyx4dgk5EQKj4GsY9jEows2TvIp5LfEd45eF2Exh-nLdjOV8IrJ_YPgYuu17b-uwW_7SGQEVAQ42Ir6f2_PyHGKC9J5dAtD-gQ9_KLkWtQYjWF61sGhZm236o0enKHElJXURzj54s-zu79pRXaRjYTpIa4g-ElcbARSKFlVzaw_zLbqLih1WSYRGJWe5lgjJKXnupVza6LFafYI9R9nq3y2jb0v5cwyGvF_RJTYK1obfctfL1YQPP6XdQIDbLoiposDF3MRJW_WeP_MJb4ncjp_hNafRYFBAYCn1A3NamqUKBg


 

120 
 

wggJoBgkqhkiG9w0BBwagggJZMIICVQIBADCCAk4GCSqGSIb3DQEHATAeBglghkgBZQM
EAS4wEQQMrIImWWQMZgLUfoQpAgEQgIICH30hol-
tGnDTCpBK5EWD31qbGWuejz9tBD2jLQEN4k63xlxHOPYrF9pluv5WjObnnLaIkwpcFlan2
zuuA5o0gfWZWhp-15W0p_eHiCCTWGrdtJqD4Xx2gxdwFV34LWb-
lGUb7gomFk9fOJs0ZNqro9zNBQ7f49TQAqj5LcuDhs28sEkaw05-
a_09WWHKF8PYc8UXZXmubAuq99pm1o07QR5lNOzFZVx7YnPC_SdiS7M5_1j1uuhQHl
uNot83gXDBq4R7Sq9po5TxlqTI6TH8BpkaHcxhKqmRxgnJCHnQPZfuBouaArmjfHqpO0s8
G34L9p8UU86hayqI9sphKyrnlyb689zac0Vl3D_HuC8unsiEthUxMtQ7efZwZJtf3TAPGIjm
7mlQJN16RFBJb1loMxbfJQteJ56ydCWDatr3eyx4dgk5EQKj4GsY9jEows2TvIp5LfEd45eF
2Exh-nLdjOV8IrJ_YPgYuu17b-uwW_7SGQEVAQ42Ir6f2_PyHGKC9J5dAtD-
gQ9_KLkWtQYjWF61sGhZm236o0enKHElJXURzj54s-zu79pRXaRjYTpIa4g-
ElcbARSKFlVzaw_zLbqLih1WSYRGJWe5lgjJKXnupVza6LFafYI9R9nq3y2jb0v5cwyGvF_RJ
TYK1obfctfL1YQPP6XdQIDbLoiposDF3MRJW_WeP_MJb4ncjp_hNafRYFBAYCn1A3Nam
qUKBg 

Guo, S., & Fraser, M. W. (2015). Propensity score analysis: Statistical methods and applications 
(2nd ed.): SAGE publications. 

Guo, Y., Little, R. J., & McConnell, D. S. (2012). On Using Summary Statistics From an External 
Calibration Sample to Correct for Covariate Measurement Error. Epidemiology, 23(1), 
165-174. doi:10.1097/EDE.0b013e31823a4386 

Hajage, D., Tubach, F., Steg, P. G., Bhatt, D. L., & De Rycke, Y. (2016). On the use of propensity 
scores in case of rare exposure. Bmc Medical Research Methodology, 16. 
doi:10.1186/s12874-016-0135-1 

Herrett, E., Shah, A. D., Boggon, R., Denaxas, S., Smeeth, L., van Staa, T., . . . Hemingway, H. 
(2013). Completeness and diagnostic validity of recording acute myocardial infarction 
events in primary care, hospital care, disease registry, and national mortality records: 
cohort study. Bmj-British Medical Journal, 346. doi:10.1136/bmj.f2350 

Hirano, K., Imbens, G. W., & Ridder, G. (2003). Efficient estimation of average treatment effects 
using the estimated propensity score. Econometrica, 71(4), 1161-1189. 
doi:10.1111/1468-0262.00442 

Ho, D. E., Imai, K., King, G., & Stuart, E. A. (2007). Matching as nonparametric preprocessing for 
reducing model dependence in parametric causal inference. Political Analysis, 15(3), 
199-236. doi:10.1093/pan/mpl013 

Hong, H., Aaby, D. A., Siddique, J., & Stuart, E. A. (2019). Propensity Score-Based Estimators With 
Multiple Error-Prone Covariates. American Journal of Epidemiology, 188(1), 222-230. 
doi:10.1093/aje/kwy210 

Hong, H., Rudolph, K. E., & Stuart, E. A. (2017). Bayesian Approach for Addressing Differential 
Covariate Measurement Error in Propensity Score Methods. Psychometrika, 82(4), 
1078-1096. doi:10.1007/s11336-016-9533-x 

Imai, K., King, G., & Stuart, E. A. (2008). Misunderstandings between experimentalists and 
observationalists about causal inference. Journal of the Royal Statistical Society Series 
a-Statistics in Society, 171, 481-502. doi:10.1111/j.1467-985X.2007.00527.x 

Imbens, G. W. (2004). Nonparametric estimation of average treatment effects under exogeneity: 
A review. Review of Economics and Statistics, 86(1), 4-29. 
doi:10.1162/003465304323023651 

Imbens, G. W., & Wooldridge, J. M. (2009). Recent Developments in the Econometrics of 
Program Evaluation. Journal of Economic Literature, 47(1), 5-86. doi:10.1257/jel.47.1.5 

Jann, B. (2019). heatplot: Stata module to create heat plots and hexagon plots. Retrieved from 
http://ideas.repec.org/c/boc/bocode/s458598.html 

Joffe, M. M., Ten Have, T. R., Feldman, H. I., & Kimmel, S. E. (2004). Model selection, confounder 
control, and marginal structural models: Review and new applications. American 
Statistician, 58(4), 272-279. doi:10.1198/000313004x5824 

https://watermark.silverchair.com/151-5-531.pdf?token=AQECAHi208BE49Ooan9kkhW_Ercy7Dm3ZL_9Cf3qfKAc485ysgAAAmwwggJoBgkqhkiG9w0BBwagggJZMIICVQIBADCCAk4GCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMrIImWWQMZgLUfoQpAgEQgIICH30hol-tGnDTCpBK5EWD31qbGWuejz9tBD2jLQEN4k63xlxHOPYrF9pluv5WjObnnLaIkwpcFlan2zuuA5o0gfWZWhp-15W0p_eHiCCTWGrdtJqD4Xx2gxdwFV34LWb-lGUb7gomFk9fOJs0ZNqro9zNBQ7f49TQAqj5LcuDhs28sEkaw05-a_09WWHKF8PYc8UXZXmubAuq99pm1o07QR5lNOzFZVx7YnPC_SdiS7M5_1j1uuhQHluNot83gXDBq4R7Sq9po5TxlqTI6TH8BpkaHcxhKqmRxgnJCHnQPZfuBouaArmjfHqpO0s8G34L9p8UU86hayqI9sphKyrnlyb689zac0Vl3D_HuC8unsiEthUxMtQ7efZwZJtf3TAPGIjm7mlQJN16RFBJb1loMxbfJQteJ56ydCWDatr3eyx4dgk5EQKj4GsY9jEows2TvIp5LfEd45eF2Exh-nLdjOV8IrJ_YPgYuu17b-uwW_7SGQEVAQ42Ir6f2_PyHGKC9J5dAtD-gQ9_KLkWtQYjWF61sGhZm236o0enKHElJXURzj54s-zu79pRXaRjYTpIa4g-ElcbARSKFlVzaw_zLbqLih1WSYRGJWe5lgjJKXnupVza6LFafYI9R9nq3y2jb0v5cwyGvF_RJTYK1obfctfL1YQPP6XdQIDbLoiposDF3MRJW_WeP_MJb4ncjp_hNafRYFBAYCn1A3NamqUKBg
https://watermark.silverchair.com/151-5-531.pdf?token=AQECAHi208BE49Ooan9kkhW_Ercy7Dm3ZL_9Cf3qfKAc485ysgAAAmwwggJoBgkqhkiG9w0BBwagggJZMIICVQIBADCCAk4GCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMrIImWWQMZgLUfoQpAgEQgIICH30hol-tGnDTCpBK5EWD31qbGWuejz9tBD2jLQEN4k63xlxHOPYrF9pluv5WjObnnLaIkwpcFlan2zuuA5o0gfWZWhp-15W0p_eHiCCTWGrdtJqD4Xx2gxdwFV34LWb-lGUb7gomFk9fOJs0ZNqro9zNBQ7f49TQAqj5LcuDhs28sEkaw05-a_09WWHKF8PYc8UXZXmubAuq99pm1o07QR5lNOzFZVx7YnPC_SdiS7M5_1j1uuhQHluNot83gXDBq4R7Sq9po5TxlqTI6TH8BpkaHcxhKqmRxgnJCHnQPZfuBouaArmjfHqpO0s8G34L9p8UU86hayqI9sphKyrnlyb689zac0Vl3D_HuC8unsiEthUxMtQ7efZwZJtf3TAPGIjm7mlQJN16RFBJb1loMxbfJQteJ56ydCWDatr3eyx4dgk5EQKj4GsY9jEows2TvIp5LfEd45eF2Exh-nLdjOV8IrJ_YPgYuu17b-uwW_7SGQEVAQ42Ir6f2_PyHGKC9J5dAtD-gQ9_KLkWtQYjWF61sGhZm236o0enKHElJXURzj54s-zu79pRXaRjYTpIa4g-ElcbARSKFlVzaw_zLbqLih1WSYRGJWe5lgjJKXnupVza6LFafYI9R9nq3y2jb0v5cwyGvF_RJTYK1obfctfL1YQPP6XdQIDbLoiposDF3MRJW_WeP_MJb4ncjp_hNafRYFBAYCn1A3NamqUKBg
https://watermark.silverchair.com/151-5-531.pdf?token=AQECAHi208BE49Ooan9kkhW_Ercy7Dm3ZL_9Cf3qfKAc485ysgAAAmwwggJoBgkqhkiG9w0BBwagggJZMIICVQIBADCCAk4GCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMrIImWWQMZgLUfoQpAgEQgIICH30hol-tGnDTCpBK5EWD31qbGWuejz9tBD2jLQEN4k63xlxHOPYrF9pluv5WjObnnLaIkwpcFlan2zuuA5o0gfWZWhp-15W0p_eHiCCTWGrdtJqD4Xx2gxdwFV34LWb-lGUb7gomFk9fOJs0ZNqro9zNBQ7f49TQAqj5LcuDhs28sEkaw05-a_09WWHKF8PYc8UXZXmubAuq99pm1o07QR5lNOzFZVx7YnPC_SdiS7M5_1j1uuhQHluNot83gXDBq4R7Sq9po5TxlqTI6TH8BpkaHcxhKqmRxgnJCHnQPZfuBouaArmjfHqpO0s8G34L9p8UU86hayqI9sphKyrnlyb689zac0Vl3D_HuC8unsiEthUxMtQ7efZwZJtf3TAPGIjm7mlQJN16RFBJb1loMxbfJQteJ56ydCWDatr3eyx4dgk5EQKj4GsY9jEows2TvIp5LfEd45eF2Exh-nLdjOV8IrJ_YPgYuu17b-uwW_7SGQEVAQ42Ir6f2_PyHGKC9J5dAtD-gQ9_KLkWtQYjWF61sGhZm236o0enKHElJXURzj54s-zu79pRXaRjYTpIa4g-ElcbARSKFlVzaw_zLbqLih1WSYRGJWe5lgjJKXnupVza6LFafYI9R9nq3y2jb0v5cwyGvF_RJTYK1obfctfL1YQPP6XdQIDbLoiposDF3MRJW_WeP_MJb4ncjp_hNafRYFBAYCn1A3NamqUKBg
https://watermark.silverchair.com/151-5-531.pdf?token=AQECAHi208BE49Ooan9kkhW_Ercy7Dm3ZL_9Cf3qfKAc485ysgAAAmwwggJoBgkqhkiG9w0BBwagggJZMIICVQIBADCCAk4GCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMrIImWWQMZgLUfoQpAgEQgIICH30hol-tGnDTCpBK5EWD31qbGWuejz9tBD2jLQEN4k63xlxHOPYrF9pluv5WjObnnLaIkwpcFlan2zuuA5o0gfWZWhp-15W0p_eHiCCTWGrdtJqD4Xx2gxdwFV34LWb-lGUb7gomFk9fOJs0ZNqro9zNBQ7f49TQAqj5LcuDhs28sEkaw05-a_09WWHKF8PYc8UXZXmubAuq99pm1o07QR5lNOzFZVx7YnPC_SdiS7M5_1j1uuhQHluNot83gXDBq4R7Sq9po5TxlqTI6TH8BpkaHcxhKqmRxgnJCHnQPZfuBouaArmjfHqpO0s8G34L9p8UU86hayqI9sphKyrnlyb689zac0Vl3D_HuC8unsiEthUxMtQ7efZwZJtf3TAPGIjm7mlQJN16RFBJb1loMxbfJQteJ56ydCWDatr3eyx4dgk5EQKj4GsY9jEows2TvIp5LfEd45eF2Exh-nLdjOV8IrJ_YPgYuu17b-uwW_7SGQEVAQ42Ir6f2_PyHGKC9J5dAtD-gQ9_KLkWtQYjWF61sGhZm236o0enKHElJXURzj54s-zu79pRXaRjYTpIa4g-ElcbARSKFlVzaw_zLbqLih1WSYRGJWe5lgjJKXnupVza6LFafYI9R9nq3y2jb0v5cwyGvF_RJTYK1obfctfL1YQPP6XdQIDbLoiposDF3MRJW_WeP_MJb4ncjp_hNafRYFBAYCn1A3NamqUKBg
https://watermark.silverchair.com/151-5-531.pdf?token=AQECAHi208BE49Ooan9kkhW_Ercy7Dm3ZL_9Cf3qfKAc485ysgAAAmwwggJoBgkqhkiG9w0BBwagggJZMIICVQIBADCCAk4GCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMrIImWWQMZgLUfoQpAgEQgIICH30hol-tGnDTCpBK5EWD31qbGWuejz9tBD2jLQEN4k63xlxHOPYrF9pluv5WjObnnLaIkwpcFlan2zuuA5o0gfWZWhp-15W0p_eHiCCTWGrdtJqD4Xx2gxdwFV34LWb-lGUb7gomFk9fOJs0ZNqro9zNBQ7f49TQAqj5LcuDhs28sEkaw05-a_09WWHKF8PYc8UXZXmubAuq99pm1o07QR5lNOzFZVx7YnPC_SdiS7M5_1j1uuhQHluNot83gXDBq4R7Sq9po5TxlqTI6TH8BpkaHcxhKqmRxgnJCHnQPZfuBouaArmjfHqpO0s8G34L9p8UU86hayqI9sphKyrnlyb689zac0Vl3D_HuC8unsiEthUxMtQ7efZwZJtf3TAPGIjm7mlQJN16RFBJb1loMxbfJQteJ56ydCWDatr3eyx4dgk5EQKj4GsY9jEows2TvIp5LfEd45eF2Exh-nLdjOV8IrJ_YPgYuu17b-uwW_7SGQEVAQ42Ir6f2_PyHGKC9J5dAtD-gQ9_KLkWtQYjWF61sGhZm236o0enKHElJXURzj54s-zu79pRXaRjYTpIa4g-ElcbARSKFlVzaw_zLbqLih1WSYRGJWe5lgjJKXnupVza6LFafYI9R9nq3y2jb0v5cwyGvF_RJTYK1obfctfL1YQPP6XdQIDbLoiposDF3MRJW_WeP_MJb4ncjp_hNafRYFBAYCn1A3NamqUKBg
https://watermark.silverchair.com/151-5-531.pdf?token=AQECAHi208BE49Ooan9kkhW_Ercy7Dm3ZL_9Cf3qfKAc485ysgAAAmwwggJoBgkqhkiG9w0BBwagggJZMIICVQIBADCCAk4GCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMrIImWWQMZgLUfoQpAgEQgIICH30hol-tGnDTCpBK5EWD31qbGWuejz9tBD2jLQEN4k63xlxHOPYrF9pluv5WjObnnLaIkwpcFlan2zuuA5o0gfWZWhp-15W0p_eHiCCTWGrdtJqD4Xx2gxdwFV34LWb-lGUb7gomFk9fOJs0ZNqro9zNBQ7f49TQAqj5LcuDhs28sEkaw05-a_09WWHKF8PYc8UXZXmubAuq99pm1o07QR5lNOzFZVx7YnPC_SdiS7M5_1j1uuhQHluNot83gXDBq4R7Sq9po5TxlqTI6TH8BpkaHcxhKqmRxgnJCHnQPZfuBouaArmjfHqpO0s8G34L9p8UU86hayqI9sphKyrnlyb689zac0Vl3D_HuC8unsiEthUxMtQ7efZwZJtf3TAPGIjm7mlQJN16RFBJb1loMxbfJQteJ56ydCWDatr3eyx4dgk5EQKj4GsY9jEows2TvIp5LfEd45eF2Exh-nLdjOV8IrJ_YPgYuu17b-uwW_7SGQEVAQ42Ir6f2_PyHGKC9J5dAtD-gQ9_KLkWtQYjWF61sGhZm236o0enKHElJXURzj54s-zu79pRXaRjYTpIa4g-ElcbARSKFlVzaw_zLbqLih1WSYRGJWe5lgjJKXnupVza6LFafYI9R9nq3y2jb0v5cwyGvF_RJTYK1obfctfL1YQPP6XdQIDbLoiposDF3MRJW_WeP_MJb4ncjp_hNafRYFBAYCn1A3NamqUKBg
https://watermark.silverchair.com/151-5-531.pdf?token=AQECAHi208BE49Ooan9kkhW_Ercy7Dm3ZL_9Cf3qfKAc485ysgAAAmwwggJoBgkqhkiG9w0BBwagggJZMIICVQIBADCCAk4GCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMrIImWWQMZgLUfoQpAgEQgIICH30hol-tGnDTCpBK5EWD31qbGWuejz9tBD2jLQEN4k63xlxHOPYrF9pluv5WjObnnLaIkwpcFlan2zuuA5o0gfWZWhp-15W0p_eHiCCTWGrdtJqD4Xx2gxdwFV34LWb-lGUb7gomFk9fOJs0ZNqro9zNBQ7f49TQAqj5LcuDhs28sEkaw05-a_09WWHKF8PYc8UXZXmubAuq99pm1o07QR5lNOzFZVx7YnPC_SdiS7M5_1j1uuhQHluNot83gXDBq4R7Sq9po5TxlqTI6TH8BpkaHcxhKqmRxgnJCHnQPZfuBouaArmjfHqpO0s8G34L9p8UU86hayqI9sphKyrnlyb689zac0Vl3D_HuC8unsiEthUxMtQ7efZwZJtf3TAPGIjm7mlQJN16RFBJb1loMxbfJQteJ56ydCWDatr3eyx4dgk5EQKj4GsY9jEows2TvIp5LfEd45eF2Exh-nLdjOV8IrJ_YPgYuu17b-uwW_7SGQEVAQ42Ir6f2_PyHGKC9J5dAtD-gQ9_KLkWtQYjWF61sGhZm236o0enKHElJXURzj54s-zu79pRXaRjYTpIa4g-ElcbARSKFlVzaw_zLbqLih1WSYRGJWe5lgjJKXnupVza6LFafYI9R9nq3y2jb0v5cwyGvF_RJTYK1obfctfL1YQPP6XdQIDbLoiposDF3MRJW_WeP_MJb4ncjp_hNafRYFBAYCn1A3NamqUKBg
https://watermark.silverchair.com/151-5-531.pdf?token=AQECAHi208BE49Ooan9kkhW_Ercy7Dm3ZL_9Cf3qfKAc485ysgAAAmwwggJoBgkqhkiG9w0BBwagggJZMIICVQIBADCCAk4GCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMrIImWWQMZgLUfoQpAgEQgIICH30hol-tGnDTCpBK5EWD31qbGWuejz9tBD2jLQEN4k63xlxHOPYrF9pluv5WjObnnLaIkwpcFlan2zuuA5o0gfWZWhp-15W0p_eHiCCTWGrdtJqD4Xx2gxdwFV34LWb-lGUb7gomFk9fOJs0ZNqro9zNBQ7f49TQAqj5LcuDhs28sEkaw05-a_09WWHKF8PYc8UXZXmubAuq99pm1o07QR5lNOzFZVx7YnPC_SdiS7M5_1j1uuhQHluNot83gXDBq4R7Sq9po5TxlqTI6TH8BpkaHcxhKqmRxgnJCHnQPZfuBouaArmjfHqpO0s8G34L9p8UU86hayqI9sphKyrnlyb689zac0Vl3D_HuC8unsiEthUxMtQ7efZwZJtf3TAPGIjm7mlQJN16RFBJb1loMxbfJQteJ56ydCWDatr3eyx4dgk5EQKj4GsY9jEows2TvIp5LfEd45eF2Exh-nLdjOV8IrJ_YPgYuu17b-uwW_7SGQEVAQ42Ir6f2_PyHGKC9J5dAtD-gQ9_KLkWtQYjWF61sGhZm236o0enKHElJXURzj54s-zu79pRXaRjYTpIa4g-ElcbARSKFlVzaw_zLbqLih1WSYRGJWe5lgjJKXnupVza6LFafYI9R9nq3y2jb0v5cwyGvF_RJTYK1obfctfL1YQPP6XdQIDbLoiposDF3MRJW_WeP_MJb4ncjp_hNafRYFBAYCn1A3NamqUKBg
https://watermark.silverchair.com/151-5-531.pdf?token=AQECAHi208BE49Ooan9kkhW_Ercy7Dm3ZL_9Cf3qfKAc485ysgAAAmwwggJoBgkqhkiG9w0BBwagggJZMIICVQIBADCCAk4GCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMrIImWWQMZgLUfoQpAgEQgIICH30hol-tGnDTCpBK5EWD31qbGWuejz9tBD2jLQEN4k63xlxHOPYrF9pluv5WjObnnLaIkwpcFlan2zuuA5o0gfWZWhp-15W0p_eHiCCTWGrdtJqD4Xx2gxdwFV34LWb-lGUb7gomFk9fOJs0ZNqro9zNBQ7f49TQAqj5LcuDhs28sEkaw05-a_09WWHKF8PYc8UXZXmubAuq99pm1o07QR5lNOzFZVx7YnPC_SdiS7M5_1j1uuhQHluNot83gXDBq4R7Sq9po5TxlqTI6TH8BpkaHcxhKqmRxgnJCHnQPZfuBouaArmjfHqpO0s8G34L9p8UU86hayqI9sphKyrnlyb689zac0Vl3D_HuC8unsiEthUxMtQ7efZwZJtf3TAPGIjm7mlQJN16RFBJb1loMxbfJQteJ56ydCWDatr3eyx4dgk5EQKj4GsY9jEows2TvIp5LfEd45eF2Exh-nLdjOV8IrJ_YPgYuu17b-uwW_7SGQEVAQ42Ir6f2_PyHGKC9J5dAtD-gQ9_KLkWtQYjWF61sGhZm236o0enKHElJXURzj54s-zu79pRXaRjYTpIa4g-ElcbARSKFlVzaw_zLbqLih1WSYRGJWe5lgjJKXnupVza6LFafYI9R9nq3y2jb0v5cwyGvF_RJTYK1obfctfL1YQPP6XdQIDbLoiposDF3MRJW_WeP_MJb4ncjp_hNafRYFBAYCn1A3NamqUKBg
https://watermark.silverchair.com/151-5-531.pdf?token=AQECAHi208BE49Ooan9kkhW_Ercy7Dm3ZL_9Cf3qfKAc485ysgAAAmwwggJoBgkqhkiG9w0BBwagggJZMIICVQIBADCCAk4GCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMrIImWWQMZgLUfoQpAgEQgIICH30hol-tGnDTCpBK5EWD31qbGWuejz9tBD2jLQEN4k63xlxHOPYrF9pluv5WjObnnLaIkwpcFlan2zuuA5o0gfWZWhp-15W0p_eHiCCTWGrdtJqD4Xx2gxdwFV34LWb-lGUb7gomFk9fOJs0ZNqro9zNBQ7f49TQAqj5LcuDhs28sEkaw05-a_09WWHKF8PYc8UXZXmubAuq99pm1o07QR5lNOzFZVx7YnPC_SdiS7M5_1j1uuhQHluNot83gXDBq4R7Sq9po5TxlqTI6TH8BpkaHcxhKqmRxgnJCHnQPZfuBouaArmjfHqpO0s8G34L9p8UU86hayqI9sphKyrnlyb689zac0Vl3D_HuC8unsiEthUxMtQ7efZwZJtf3TAPGIjm7mlQJN16RFBJb1loMxbfJQteJ56ydCWDatr3eyx4dgk5EQKj4GsY9jEows2TvIp5LfEd45eF2Exh-nLdjOV8IrJ_YPgYuu17b-uwW_7SGQEVAQ42Ir6f2_PyHGKC9J5dAtD-gQ9_KLkWtQYjWF61sGhZm236o0enKHElJXURzj54s-zu79pRXaRjYTpIa4g-ElcbARSKFlVzaw_zLbqLih1WSYRGJWe5lgjJKXnupVza6LFafYI9R9nq3y2jb0v5cwyGvF_RJTYK1obfctfL1YQPP6XdQIDbLoiposDF3MRJW_WeP_MJb4ncjp_hNafRYFBAYCn1A3NamqUKBg
https://watermark.silverchair.com/151-5-531.pdf?token=AQECAHi208BE49Ooan9kkhW_Ercy7Dm3ZL_9Cf3qfKAc485ysgAAAmwwggJoBgkqhkiG9w0BBwagggJZMIICVQIBADCCAk4GCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMrIImWWQMZgLUfoQpAgEQgIICH30hol-tGnDTCpBK5EWD31qbGWuejz9tBD2jLQEN4k63xlxHOPYrF9pluv5WjObnnLaIkwpcFlan2zuuA5o0gfWZWhp-15W0p_eHiCCTWGrdtJqD4Xx2gxdwFV34LWb-lGUb7gomFk9fOJs0ZNqro9zNBQ7f49TQAqj5LcuDhs28sEkaw05-a_09WWHKF8PYc8UXZXmubAuq99pm1o07QR5lNOzFZVx7YnPC_SdiS7M5_1j1uuhQHluNot83gXDBq4R7Sq9po5TxlqTI6TH8BpkaHcxhKqmRxgnJCHnQPZfuBouaArmjfHqpO0s8G34L9p8UU86hayqI9sphKyrnlyb689zac0Vl3D_HuC8unsiEthUxMtQ7efZwZJtf3TAPGIjm7mlQJN16RFBJb1loMxbfJQteJ56ydCWDatr3eyx4dgk5EQKj4GsY9jEows2TvIp5LfEd45eF2Exh-nLdjOV8IrJ_YPgYuu17b-uwW_7SGQEVAQ42Ir6f2_PyHGKC9J5dAtD-gQ9_KLkWtQYjWF61sGhZm236o0enKHElJXURzj54s-zu79pRXaRjYTpIa4g-ElcbARSKFlVzaw_zLbqLih1WSYRGJWe5lgjJKXnupVza6LFafYI9R9nq3y2jb0v5cwyGvF_RJTYK1obfctfL1YQPP6XdQIDbLoiposDF3MRJW_WeP_MJb4ncjp_hNafRYFBAYCn1A3NamqUKBg
https://watermark.silverchair.com/151-5-531.pdf?token=AQECAHi208BE49Ooan9kkhW_Ercy7Dm3ZL_9Cf3qfKAc485ysgAAAmwwggJoBgkqhkiG9w0BBwagggJZMIICVQIBADCCAk4GCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMrIImWWQMZgLUfoQpAgEQgIICH30hol-tGnDTCpBK5EWD31qbGWuejz9tBD2jLQEN4k63xlxHOPYrF9pluv5WjObnnLaIkwpcFlan2zuuA5o0gfWZWhp-15W0p_eHiCCTWGrdtJqD4Xx2gxdwFV34LWb-lGUb7gomFk9fOJs0ZNqro9zNBQ7f49TQAqj5LcuDhs28sEkaw05-a_09WWHKF8PYc8UXZXmubAuq99pm1o07QR5lNOzFZVx7YnPC_SdiS7M5_1j1uuhQHluNot83gXDBq4R7Sq9po5TxlqTI6TH8BpkaHcxhKqmRxgnJCHnQPZfuBouaArmjfHqpO0s8G34L9p8UU86hayqI9sphKyrnlyb689zac0Vl3D_HuC8unsiEthUxMtQ7efZwZJtf3TAPGIjm7mlQJN16RFBJb1loMxbfJQteJ56ydCWDatr3eyx4dgk5EQKj4GsY9jEows2TvIp5LfEd45eF2Exh-nLdjOV8IrJ_YPgYuu17b-uwW_7SGQEVAQ42Ir6f2_PyHGKC9J5dAtD-gQ9_KLkWtQYjWF61sGhZm236o0enKHElJXURzj54s-zu79pRXaRjYTpIa4g-ElcbARSKFlVzaw_zLbqLih1WSYRGJWe5lgjJKXnupVza6LFafYI9R9nq3y2jb0v5cwyGvF_RJTYK1obfctfL1YQPP6XdQIDbLoiposDF3MRJW_WeP_MJb4ncjp_hNafRYFBAYCn1A3NamqUKBg
https://watermark.silverchair.com/151-5-531.pdf?token=AQECAHi208BE49Ooan9kkhW_Ercy7Dm3ZL_9Cf3qfKAc485ysgAAAmwwggJoBgkqhkiG9w0BBwagggJZMIICVQIBADCCAk4GCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMrIImWWQMZgLUfoQpAgEQgIICH30hol-tGnDTCpBK5EWD31qbGWuejz9tBD2jLQEN4k63xlxHOPYrF9pluv5WjObnnLaIkwpcFlan2zuuA5o0gfWZWhp-15W0p_eHiCCTWGrdtJqD4Xx2gxdwFV34LWb-lGUb7gomFk9fOJs0ZNqro9zNBQ7f49TQAqj5LcuDhs28sEkaw05-a_09WWHKF8PYc8UXZXmubAuq99pm1o07QR5lNOzFZVx7YnPC_SdiS7M5_1j1uuhQHluNot83gXDBq4R7Sq9po5TxlqTI6TH8BpkaHcxhKqmRxgnJCHnQPZfuBouaArmjfHqpO0s8G34L9p8UU86hayqI9sphKyrnlyb689zac0Vl3D_HuC8unsiEthUxMtQ7efZwZJtf3TAPGIjm7mlQJN16RFBJb1loMxbfJQteJ56ydCWDatr3eyx4dgk5EQKj4GsY9jEows2TvIp5LfEd45eF2Exh-nLdjOV8IrJ_YPgYuu17b-uwW_7SGQEVAQ42Ir6f2_PyHGKC9J5dAtD-gQ9_KLkWtQYjWF61sGhZm236o0enKHElJXURzj54s-zu79pRXaRjYTpIa4g-ElcbARSKFlVzaw_zLbqLih1WSYRGJWe5lgjJKXnupVza6LFafYI9R9nq3y2jb0v5cwyGvF_RJTYK1obfctfL1YQPP6XdQIDbLoiposDF3MRJW_WeP_MJb4ncjp_hNafRYFBAYCn1A3NamqUKBg
https://watermark.silverchair.com/151-5-531.pdf?token=AQECAHi208BE49Ooan9kkhW_Ercy7Dm3ZL_9Cf3qfKAc485ysgAAAmwwggJoBgkqhkiG9w0BBwagggJZMIICVQIBADCCAk4GCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMrIImWWQMZgLUfoQpAgEQgIICH30hol-tGnDTCpBK5EWD31qbGWuejz9tBD2jLQEN4k63xlxHOPYrF9pluv5WjObnnLaIkwpcFlan2zuuA5o0gfWZWhp-15W0p_eHiCCTWGrdtJqD4Xx2gxdwFV34LWb-lGUb7gomFk9fOJs0ZNqro9zNBQ7f49TQAqj5LcuDhs28sEkaw05-a_09WWHKF8PYc8UXZXmubAuq99pm1o07QR5lNOzFZVx7YnPC_SdiS7M5_1j1uuhQHluNot83gXDBq4R7Sq9po5TxlqTI6TH8BpkaHcxhKqmRxgnJCHnQPZfuBouaArmjfHqpO0s8G34L9p8UU86hayqI9sphKyrnlyb689zac0Vl3D_HuC8unsiEthUxMtQ7efZwZJtf3TAPGIjm7mlQJN16RFBJb1loMxbfJQteJ56ydCWDatr3eyx4dgk5EQKj4GsY9jEows2TvIp5LfEd45eF2Exh-nLdjOV8IrJ_YPgYuu17b-uwW_7SGQEVAQ42Ir6f2_PyHGKC9J5dAtD-gQ9_KLkWtQYjWF61sGhZm236o0enKHElJXURzj54s-zu79pRXaRjYTpIa4g-ElcbARSKFlVzaw_zLbqLih1WSYRGJWe5lgjJKXnupVza6LFafYI9R9nq3y2jb0v5cwyGvF_RJTYK1obfctfL1YQPP6XdQIDbLoiposDF3MRJW_WeP_MJb4ncjp_hNafRYFBAYCn1A3NamqUKBg
http://ideas.repec.org/c/boc/bocode/s458598.html


 

121 
 

Kaplan, D. (1999). An extension of the propensity score adjustment method for the analysis of 
group differences in MIMIC models. Multivariate Behavioral Research, 34(4), 467-492. 
doi:10.1207/s15327906mbr3404_4 

Keogh, R. H., Shaw, P. A., Gustafson, P., Carroll, R. J., Deffner, V., Dodd, K. W., . . . Freedman, L. 
S. (2020). STRATOS guidance document on measurement error and misclassification of 
variables in observational epidemiology: Part 1-Basic theory and simple methods of 
adjustment. Statistics in Medicine, 39(16), 2197-2231. doi:10.1002/sim.8532 

Kuss, O. (2002). Global goodness-of-fit tests in logistic regression with sparse data. Statistics in 
medicine, 21(24), 3789. doi:10.1002/sim.1421 

Lee, B. K. (2010). Propensity Score Weighting and Doubly Robust Adjustment in Sparse Data 
Situations. American Journal of Epidemiology, 171, S142.  

Leuven, E., & Sianesi, B. (2003). PSMATCH2: Stata module to perform full Mahalanobis and 
propensity score matching, common support graphing, and covariate imbalance testing 
(Version 4.0.12 30jan2016). Retrieved from 
http://ideas.repec.org/c/boc/bocode/s432001.html 

Li, M. X. (2013). Using the Propensity Score Method to Estimate Causal Effects: A Review and 
Practical Guide. Organizational Research Methods, 16(2), 188-226. 
doi:10.1177/1094428112447816 

Lip, G. Y. H., Nieuwlaat, R., Pisters, R., Lane, D. A., & Crijns, H. (2010). Refining Clinical Risk 
Stratification for Predicting Stroke and Thromboembolism in Atrial Fibrillation Using a 
Novel Risk Factor-Based Approach The Euro Heart Survey on Atrial Fibrillation. Chest, 
137(2), 263-272. doi:10.1378/chest.09-1584 

Luellen, J. K., Shadish, W. R., & Clark, M. H. (2005). Propensity scores - An introduction and 
experimental test. Evaluation Review, 29(6), 530-558. doi:10.1177/0193841x05275596 

Lunceford, J. K., & Davidian, M. (2004). Stratification and weighting via the propensity score in 
estimation of causal treatment effects: a comparative study. Statistics in Medicine, 
23(19), 2937-2960. doi:10.1002/sim.1903 

Lunt, M., & Linden, A. (n.d.). propwt: Generating Weights for Propensity Analysis. Retrieved from 
http://personalpages.manchester.ac.uk/staff/mark.lunt 

Millimet, D. L. (2011). The Elephant in the Corner: A Cautionary Tale about Measurement Error 
in Treatment Effects Models. Advances in Econometrics, 27, 1-39. 
doi:https://doi.org/10.1108/S0731-9053(2011)000027A004 

Morgan, S. L., & Todd, J. J. (2008). A DIAGNOSTIC ROUTINE FOR THE DETECTION OF 
CONSEQUENTIAL HETEROGENEITY OF CAUSAL EFFECTS. In Y. Xie (Ed.), Sociological 
Methodology, Vol 38 (Vol. 38, pp. 231-281). 

Morris, T. P., White, I. R., & Crowther, M. J. (2019). Using simulation studies to evaluate 
statistical methods. Statistics in Medicine, 38(11), 2074-2102. doi:10.1002/sim.8086 

Nguyen, T. Q., & Stuart, E. A. (2020). Propensity Score Analysis With Latent Covariates: 
Measurement Error Bias Correction Using the Covariate's Posterior Mean, aka the 
Inclusive Factor Score. Journal of Educational and Behavioral Statistics, 45(5), 598-636. 
doi:10.3102/1076998620911920 

Patorno, E., Glynn, R. J., Hernandez-Diaz, S., Liu, J., & Schneeweiss, S. (2014). Studies with Many 
Covariates and Few Outcomes Selecting Covariates and Implementing Propensity-Score-
Based Confounding Adjustments. Epidemiology, 25(2), 268-278. 
doi:10.1097/ede.0000000000000069 

Paul, S. R., & Deng, D. L. (2000). Goodness of fit of generalized linear models to sparse data. 
Journal of the Royal Statistical Society Series B-Statistical Methodology, 62, 323. 
doi:10.1111/1467-9868.00234 

Peikes, D. N., Moreno, L., & Orzol, S. M. (2008). Propensity score matching: A note of caution for 
evaluators of social programs. American Statistician, 62(3), 222-231. 
doi:10.1198/000313008x332016 

http://ideas.repec.org/c/boc/bocode/s432001.html
http://personalpages.manchester.ac.uk/staff/mark.lunt
https://doi.org/10.1108/S0731-9053(2011)000027A004


 

122 
 

Posada, D., & Buckley, T. R. (2004). Model selection and model averaging in phylogenetics: 
Advantages of akaike information criterion and Bayesian approaches over likelihood 
ratio tests. Systematic Biology, 53(5), 793-808. doi:10.1080/10635150490522304 

Pruzek, R. M. (2011). Introduction to the Special Issue on Propensity Score Methods in 
Behavioral Research. Multivariate Behavioral Research, 46(3), 389-398. 
doi:10.1080/00273171.2011.576618 

Raykov, T. (2012). Propensity Score Analysis With Fallible Covariates: A Note on a Latent Variable 
Modeling Approach. Educational and Psychological Measurement, 72(5), 715-733. 
doi:10.1177/0013164412440999 

Rosenbaum, P. R. (1987). MODEL-BASED DIRECT ADJUSTMENT. Journal of the American 
Statistical Association, 82(398), 387-394. doi:10.2307/2289440 

Rosenbaum, P. R., & Rubin, D. B. (1983). THE CENTRAL ROLE OF THE PROPENSITY SCORE IN 
OBSERVATIONAL STUDIES FOR CAUSAL EFFECTS. Biometrika, 70(1), 41-55. 
doi:10.1093/biomet/70.1.41 

Rosenbaum, P. R., & Rubin, D. B. (1984). REDUCING BIAS IN OBSERVATIONAL STUDIES USING 
SUBCLASSIFICATION ON THE PROPENSITY SCORE. Journal of the American Statistical 
Association, 79(387), 516-524. doi:10.2307/2288398 

Ross, M. E., Kreider, A. R., Huang, Y.-S., Matone, M., Rubin, D. M., & Localio, A. R. (2015). 
Propensity Score Methods for Analyzing Observational Data Like Randomized 
Experiments: Challenges and Solutions for Rare Outcomes and Exposures. American 
Journal of Epidemiology, 181(12), 989. doi:10.1093/aje/kwu469 

Rubin, D. B. (2004). On principles for modeling propensity scores in medical research. 
Pharmacoepidemiology and Drug Safety, 13(12), 855-857. doi:10.1002/pds.968 

Rudolph, K. E., & Stuart, E. A. (2018). Using Sensitivity Analyses for Unobserved Confounding to 
Address Covariate Measurement Error in Propensity Score Methods. American Journal 
of Epidemiology, 187(3), 604-613. doi:10.1093/aje/kwx248 

Sackett, D. L. (1979). Bias in analytic research. In The case-control study consensus and 
controversy (pp. 51-63): Elsevier. 

Schafer, J. L., & Kang, J. (2008). Average Causal Effects From Nonrandomized Studies: A Practical 
Guide and Simulated Example. Psychological Methods, 13(4), 279-313. 
doi:10.1037/a0014268 

Sengewald, M. A., Steiner, P. M., & Pohl, S. (2019). When does measurement error in covariates 
impact causal effect estimates? Analytic derivations of different scenarios and an 
empirical illustration. British Journal of Mathematical & Statistical Psychology, 72(2), 
244-270. doi:10.1111/bmsp.12146 

Shu, D., & Yi, G. Y. (2019a). Causal inference with measurement error in outcomes: Bias analysis 
and estimation methods. Statistical Methods in Medical Research, 28(7), 2049-2068. 
doi:10.1177/0962280217743777 

Shu, D., & Yi, G. Y. (2019b). Inverse-probability-of-treatment weighted estimation of causal 
parameters in the presence of error-contaminated and time-dependent confounders. 
Biometrical Journal, 61(6), 1507-1525. doi:10.1002/bimj.201600228 

Shu, D., & Yi, G. Y. (2019c). Weighted causal inference methods with mismeasured covariates 
and misclassified outcomes. Statistics in Medicine, 38(10), 1835-1854. 
doi:10.1002/sim.8073 

Sibbald, B., & Roland, M. (1998). Understanding controlled trials - Why are randomised 
controlled trials important? British Medical Journal, 316(7126), 201-201. Retrieved from 
<Go to ISI>://WOS:000071616400030 

Siino, M., Fasola, S., & Muggeo, V. M. R. (2018). Inferential tools in penalized logistic regression 
for small and sparse data: A comparative study. Statistical methods in medical research, 
27(5), 1365. doi:10.1177/0962280216661213 



 

123 
 

Steiner, P. M., Cook, T. D., & Shadish, W. R. (2011). On the Importance of Reliable Covariate 
Measurement in Selection Bias Adjustments Using Propensity Scores. Journal of 
Educational and Behavioral Statistics, 36(2), 213-236. doi:10.3102/1076998610375835 

Sturmer, T., Rothman, K. J., Avorn, J., & Glynn, R. J. (2010). Treatment Effects in the Presence of 
Unmeasured Confounding: Dealing With Observations in the Tails of the Propensity 
Score Distribution-A Simulation Study. American Journal of Epidemiology, 172(7), 843-
854. doi:10.1093/aje/kwq198 

Sturmer, T., Schneeweiss, S., Avorn, J., & Glynn, R. J. (2005). Adjusting effect estimates for 
unmeasured confounding with validation data using propensity score calibration. 
American Journal of Epidemiology, 162(3), 279-289. doi:10.1093/aje/kwi192 

Subbiah, M., & Srinivasan, M. R. (2008). Classification of 2 x 2 sparse data sets with zero cells. 
Statistics & Probability Letters, 78(18), 3212. doi:10.1016/j.spl.2008.06.023 

Sullivan, S. G., & Greenland, S. (2013). Bayesian regression in SAS software. International journal 
of epidemiology, 42(1), 308. doi:10.1093/ije/dys213 

Thoemmes, F. J., & Kim, E. S. (2011). A Systematic Review of Propensity Score Methods in the 
Social Sciences. Multivariate Behavioral Research, 46(1), 90-118. 
doi:10.1080/00273171.2011.540475 

Thomopoulos, N. T. (2013). Essentials of Monte Carlo simulation : statistical methods for building 
simulation models: New York: Springer. 

Tumlinson, S. E., Sass, D. A., & Cano, S. M. (2014). The Search for Causal Inferences: Using 
Propensity Scores Post Hoc to Reduce Estimation Error With Nonexperimental Research. 
Journal of Pediatric Psychology, 39(2), 246-257. doi:10.1093/jpepsy/jst143 

VanderWeele, T. J., & Arah, O. A. (2011). Bias Formulas for Sensitivity Analysis of Unmeasured 
Confounding for General Outcomes, Treatments, and Confounders. Epidemiology, 
22(1), 42-52. doi:10.1097/EDE.0b013e3181f74493 

Vaughan, L. K., Divers, J., Padilla, M. A., Redden, D. T., Tiwari, H. K., Pomp, D., & Allison, D. B. 
(2009). The use of plasmodes as a supplement to simulations: A simple example 
evaluating individual admixture estimation methodologies. Computational Statistics & 
Data Analysis, 53(5), 1755-1766. doi:10.1016/j.csda.2008.02.032 

Wallace, M. (2020). Analysis in an imperfect world. Significance, 17(1), 14-19. 
doi:https://doi.org/10.1111/j.1740-9713.2020.01353.x 

Webb-Vargas, Y., Rudolph, K. E., Lenis, D., Murakami, P., & Stuart, E. A. (2017). An imputation-
based solution to using mismeasured covariates in propensity score analysis. Statistical 
Methods in Medical Research, 26(4), 1824-1837. doi:10.1177/0962280215588771 

Whittaker, T. A. (2020). The Comparison of Latent Variable Propensity Score Models to 
Traditional Propensity Score Models under Conditions of Covariate Unreliability. 
Multivariate Behavioral Research, 55(4), 625-646. 
doi:10.1080/00273171.2019.1663136 

Williamson, E., Morley, R., Lucas, A., & Carpenter, J. (2012a). Propensity scores: From naive 
enthusiasm to intuitive understanding. Statistical Methods in Medical Research, 21(3), 
273-293. doi:10.1177/0962280210394483 

Williamson, E., Morley, R., Lucas, A., & Carpenter, J. (2012b). Variance estimation for stratified 
propensity score estimators. Statistics in Medicine, 31(15), 1617-1632. 
doi:10.1002/sim.4504 

Yoshida, K., Hernandez-Diaz, S., Solomon, D. H., Jackson, J. W., Gagne, J. J., Glynn, R. J., & 
Franklin, J. M. (2017). Matching Weights to Simultaneously Compare Three Treatment 
Groups Comparison to Three-way Matching. Epidemiology, 28(3), 387. 
doi:10.1097/ede.0000000000000627 

 

  

https://doi.org/10.1111/j.1740-9713.2020.01353.x


 

124 
 

  



 

A-1 
 

APPENDIX A – LITERATURE SEARCH 

Background 

The searches were run as a scoping review to investigate the literature for Propensity Score 

methods combined with measurement error or combined with sparse data. 

All searches used the Web of Science. 

Searches for Propensity Score including measurement error 

Original search conducted on 16/11/16 
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Table A-1: Original search - 16/11/16. 

General search 

Name Search Matches Details 

Sa1 Propensity score* (in Title) 2596  

Targeted searches 

Name Search Matches Details 

Sa2 Propensity score* (in Title) 
AND “statistics probability” 
category 

190  

Sa3 Propensity score* (in Title) 
AND missing OR incomplete (in 
Title) 

15  

Sa4 Propensity score* (in Title) 
AND measurement error (in Title) 

1  

Sa5 Propensity score* (in Title) 
AND selection bias (in Title) 

29  

Sa6 Propensity score* (in Title) 
AND selection bias (in Topic) 
AND “statistics probability” 
category 

31  

Sa7 Propensity score* (in Title) 
AND "multiple imputation" OR 
"Multiple Imputation" OR 
"Multiple imputation" (in Topic) 

22  

Sa8 Propensity score* (in Title) 
AND logistic regression (in Title) 

14  

Sa9 Propensity score* (in Title) 
AND meta analysis (in Title) 

13  

Sa10 Propensity score* (in Title) 
AND cost effective* (in Title) 

13  

Sa11 Propensity score* (in Title) 
AND methodological (in Title) 

2  

Sa12 Propensity score* (in Title) 
AND observational (in Title) 
AND “statistics probability” 
category 

19 
(103 w 1st 2 

searches) 

 

Sa13 Propensity score* (in Title) 
AND “CPRD” (in Topic) 

3  

Sa14 Propensity score* (in Title) 
AND “THIN” (in Topic) 

6  
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Re-run of original searches conducted in April 2018, looking for papers published since 2016. 

Table A-2: Re-run of searches – April 2018. 

General search 

Name Search Matches Details 

Sa1 Propensity score* (in Title) 1,441  
 

Targeted searches 

Name Search Matches Details 

Sa2 Propensity score* (in Title) 
AND “statistics probability” 
category 

35 included 4 which presented 
measurement error methods for 
use with PS methods* 

*(Webb-Vargas, Rudolph, Lenis, Murakami & Stuart, 2017), (Braun et al., 2017), (Hong, 
Rudolph & Stuart, 2017), (Rudolph & Stuart, 2018). 
 

Re-run of searches conducted 23/03/21, searched for years 2018 to 2021. 

Table A-3: Re-run of searches – 23/03/21. 

Search Matches Details 

“propensity scor*” in title (original Sa1) 4070 No further action 

“propensity scor*” in title in Stats and Prob 
category (original Sa2) 

115 Screened 

“propensity scor*” AND “measurement 
error” in topic 

34* Screened 

“propensity scor*” AND “misclassification” 
in topic 

31* Screened 

*after de-duplication had a total of 57 

Propensity Scores and Sparse data 

Original search conducted on 18/04/19 

Table A-4: Sparse data search – 18/04/19. 

Search Matches Details 

“sparse data” in Title & Stats & probability 
category 

45  

“sparse data” & “propensity score” in Topic 5  

“rare outcome” & “propensity score” in 
Topic 

8  

“rare outcomes” & “propensity score” in 
Topic 

11  

”sparse data bias” in Topic 11  
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Screening produced 30 papers of relevance to Sparse Data. 

Table A-5: Relevant papers from sparse data search - 18/04/19. 

Topic Number 

Cox PH  
1 theoretical 
1 study with rare outcomes 
1 rare exposure but methods are similar 

3 

General Sparse Data method/background 10 

Key papers 
Franklin (2017) 
Greenland (2016) 

2 

Method – Bayesian 1 

Method - data augmentation 2 

Method - penalisation 3 

Method – stratification 1 

Method - Bayesian/data augmentation 1 

PS methods 5 

Tutorials for related methods 2 

Grand Total 30 

 

Searches re-run on 22/03/21, searched for years 2019 and 2021. 

Table A-6: Re-run of sparse data search – 22/03/21. 

Search Number Details 

“Sparse data” in title in Stats and Prob 
category 

5  

“Sparse data” in title  116  

“sparse data” AND “propensity scor*” in topic 3 Saved to EndNote 

“rare outcome” AND “propensity scor*” in 
topic 

0  

“rare outcomes” AND “propensity scor*” in 
topic 

2 Saved to EndNote 

“spare data bias” in topic 12 Saved to EndNote 

 

16 papers saved to EndNote for screening. 
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B-1 Introduction 

B-1.1 Overview 

This Appendix provides supplementary information about the selection of the NOAC to use in 

the study dataset, the modelling of the PS, the balance checking following PS conditioning, the 

outcome modelling and generating the baseline hazard function. 

B-1.2 Additional information about the study dataset  

This study used data supplied to the Performance-Based Innovation Rewards project (REWARD). 

The aims of REWARD were to increase access to pharmaceutical products, particularly in low- 

and middle-income countries, by financially rewarding pharmaceutical companies for the 

performance of their products. Performance-based Reimbursement (PBR) tools were assessed 

to evaluate the real-world effectiveness of new products in both high and low- and middle-

income countries. The assessment of real-world effectiveness, of the group of Novel Oral 

Anticoagulants (NOAC) compared to the existing or control treatment, Warfarin, referred to as 

an Oral Anti-Coagulant (OAC), on stroke incidence amongst patients with Atrial Fibrillation (AF) 

in the UK using an extract from The Health Improvement Network (THIN), was an example of a 

PBR tool. 

The data for REWARD had been supplied in episode format with a new episode starting when 

the patient’s AF status changed. This was different to the start date for the NOAC/OAC 

prescribing. The episode with the start time closest to the patient’s first prescription of an 

NOAC/OAC was taken as their baseline data. This meant that for some patients the baseline data 

were measured after the first prescription date. Data which were taken several months after 

the first prescription was considered more current than that several years before, but this is 

acknowledged as a source of measurement error. 

B-2 The choice of model assessment criteria 

The Stata estimation command estat ic provided three ways to assess the model fit: Likelihood 

Ratio Test (LRT); Akaike Information Criteria (AIC); Bayesian Information Criteria (BIC). The LRT 

was not used as when additional parameters are added to the model the LRT will always 

improve. The AIC represents the amount of data lost when using model_x to represent model_y. 

The AIC is designed to select the model which is the best approximation to the truth (Posada & 
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Buckley, 2004). The BIC finds the model which is the best approximation to the true model to fit 

the data. Generally, the BIC tends to select a simpler model than the AIC (Posada & Buckley, 

2004). For these reasons the BIC was used. The BIC is defined as 𝐵𝐼𝐶 =  −2 ∗ 𝑙𝑛(𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑)  +

 𝑙𝑛(𝑛) ∗ 𝑘  where n is the sample size and k is the number of parameters. 

The criteria used for assessing the fit of a model was: 

• The standard errors for the variables should not be large to ensure the model 

converged. 

• Models using the highest number of observations were favoured. 

• The model with the lowest BIC. 

B-3 Modelling the Propensity Score for the RI-WA dataset 

B-3.1 Selection of the PS modelling method 

Both logistic regression and probit regression apply a function to transform outcomes from a 

linear model so that they fall in the range of [0, 1]. Probit models can be used when there are 

non-constant error variances (heteroskedastic probit models), but this was not the case in the 

study data so either probit or logistic regression could have been used.  Logistic regression was 

selected over probit regression because logistic regression is widely used in applied medical 

research and it can display the log odds which is useful in understanding the influence of a 

variable on the treatment allocation. 

Logistic regression gives the logged odds, L, of the probability of receiving the treatment, P, the 

PS. For the ith patient  

𝐿𝑖 = ln (
𝑃𝑖

1 − 𝑃𝑖
) = 𝛽0 + 𝛽𝑇𝑋𝑖 

where 𝛽0 is the intercept, 𝛽 is the vector of the model coefficients for 𝑋𝑖  the ith patient’s baseline 

covariates, i=1, …, n, n is the number of patients. 

Hence 𝑃𝑖 , the PS for the ith patient 

𝑃𝑖 = 1/(1 + exp (−1 ∗ (𝛽0 + 𝛽𝑇𝑋𝑖))) 

and 𝑃𝑖 will have values in the range [0, 1]. 

B-3.2 Variable selection for the PS model 

The variables which are known to clinically influence the decision to prescribe a NOAC or 

Warfarin were stroke (Hankey et al., 2012; Toso, 2014), alcohol misuse (Baczek, Chen, Kluger & 



 

 B-4   

Coleman, 2012), chronic kidney disease (Boriani et al., 2016), liver disease (Lai et al., 2016), 

CHA2DS2-VASc score (Giralt‐Steinhauer et al., 2013; Lee, Monz, Clemens, Brueckmann & Lip, 

2012), HAS-BLED score (O'Caoimh et al., 2017), ischaemic heart disease used to indicate previous 

myocardial infarction (Bhatia & Lip, 2004), and age (Wolff, Shantsila, Lip & Lane, 2015). 

Other non-clinically relevant variables which appeared to affect prescribing were included in the 

PS model. The time, in days, from the first AF diagnosis to the first NOAC/OAC prescription date 

was included as it is likely to be a surrogate for other factors affecting prescribing. A variable to 

represent the date of the first NOAC/OAC prescription, was also included. This appeared to 

strongly affect prescribing, as time progressed during the study a higher proportion of patients 

were prescribed NOACs compared to Warfarin. 

B-3.3 Generating the PS model 

All clinically relevant variables were kept in the PS model, regardless of their statistical 

significance during the model selection process. Other non-clinically relevant variables were 

kept in the model if their p-value <=0.05, showing them to be statistically significant. 

Table B-1 describes the variables considered for the model. The functional form of the variable 

is its relationship with the dependent variable. For a continuous variable this included linear, 

squared or expressed as a categorical variable. The functional forms for the continuous 

variables, age and date of first prescription, were assessed using the criteria in Section B-2. The 

functional forms of the variable age that were considered, were age86_gen (below 86 age=86, 

above 86 age=age), age+age^2+age^3, age+age^2, age(continuous), no_age. These were each 

tested in a model containing the clinically relevant variables. All these forms were considered 

further except no age. 

For the RI-WA dataset the first prescription date was expressed as the difference, in days, 

between prescription date and the NICE licence date for Rivaroxaban. It was represented by the 

variable licence_to_noac. Different functional forms were considered (Table B-2). The forms 

which showed the best fit, using BIC, were date_by_qtr_adj3 (any dates in or before 2012q4 

were set to missing), date+date^2 and date(continuous). 
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Table B-1: Variables used in PS model and outcome model. 

Variable name Variable description Variable 
type 

Considered 
for PS 
model 

Considered 
for 

Outcome 
model 

af_to_noac_gen First NOAC/OAC 
prescription was ≤ 28 
days of first AF 
diagnosis? 

Binary Y  

age_65_gen Age ≥ 65? Binary  Y 

age_75_gen Age ≥75? Binary  Y 

age86_gen =86 if age≤86, else =age Binary Y  

alcohol_misuse_gen Alcohol misuse? Binary Y  

chads2_vasc_calculated CHA2DS2-VASc score 
calculated from the data 

Quanti-
tative 

Y  

ckd_gen Chronic kidney disease? Binary Y  

congestive_card_fail_gen Congestive cardiac 
failure? 

Binary  Y 

diabetes_gen Diabetes? Binary  Y 

first_noac_date Date of first NOAC/OAC 
prescription 

Cont-
inuous 

Y  

hasbled_gen HAS-BLED score 
calculated from the data 

Quanti-
tative 

Y  

hypercholesterol_gen Hypercholesterolemia? Binary  Y 

hypertension_gen Hypertension? Binary  Y 

ihd_gen Ischemic heart disease? Binary Y  

licence_to_noac Date of first NOAC/OAC, 
used in RI-WA dataset. It 
is the RI licence date to 
date of first prescription, 
in days. 

Cont-
inuous 

Y  

licence_to_noac30 licence_to_noac/30 
RI licence date to date of 
first prescription, in 
months 

Cont-
inuous 

Y  

liver_disease_gen Liver disease? Binary Y  

number_of_prescriptions Number of medications 
currently prescribed to 
this patient 

Quanti-
tative 

 Y 

on_cvd_antiplatelet On antiplatelet? Binary  Y 

on_cvd_bp_lowering On blood pressure 
lowering medication? 

Binary  Y 

on_cvd_statin On statins? Binary  Y 

Sex Sex of patient Binary  Y 

smoke_now_gen Smokes now? Binary  Y 

smoke_prev_gen Smoked previously? Binary  Y 

stroke_or_tia_gen Previous stroke or TIA? Binary Y  

Townsend Townsend deprivation 
score. (Quintiles) 

*  Y 
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Treatment Name of NOAC/OAC 
treatment 

Categ-
orical 

 Y 

vascular_disease_gen Vascular disease? Binary  Y 
*Townsend was first used as a categorical variable then as a factor 

Table B-2: Functional forms of the variable date of first prescription assessed, represented by licence_to_noac. 

Form of Date Description 

date_by_qtr_adj3 If date <=2012q4 set date = missing 

date+date^2 date+date^2 

date(cont) date(continuous) 

date_by_qtr_adj1 If date=2012q2 set date = 2012q3 

date_by_qtr_adj2 If <=2012q4 set date = 2012q4 

date_by_qtr date_by_qtr 

date_by_year date_by_year 

no_date no_date 

 

The selected functional forms of the two variables were added in combinations of clinically 

relevant variables and the resulting models assessed. The assessment of these models is shown 

in Table B-3. Model selection algorithm was then applied as follows: 

• Ensure there are no high SEs – all models passed. 

• The lowest was BIC preferred – suggested models 2, 14, 10 or 6, but these use fewer 

observations. Observations were dropped for some of the early time periods where 

there were fewer Rivaroxaban patients. 

• Consider lowest BIC using full observations – these are models 4, 12, 16, 8 and 3. Model 

4 (age86_gen + date+date^2) (Table B-3) is chosen due to parsimony. 
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Table B-3: Assessment of combination of different functional forms of age and date for PS model in RI-WA dataset, 
ordered by BIC. 

Mod
el 

Age Prescription date N LL0 LL1 df AIC BIC 

2 age86_gen date_by_qtr_adj3 18551 -7998.38 -7308.94 20 14657.89 14814.45 

14 age+age^2+age^3 date_by_qtr_adj3 18551 -7998.38 -7307.23 22 14658.46 14830.68 

10 age+age^2 date_by_qtr_adj3 18551 -7998.38 -7312.31 21 14666.63 14831.02 

6 age(cont) date_by_qtr_adj3 18551 -7998.38 -7319.43 20 14678.85 14835.42 

4 age86_gen date+date^2 21259 -8489.82 -7507.96 12 15039.91 15135.48 

12 age+age^2 date+date^2 21259 -8489.82 -7510.46 13 15046.92 15150.46 

16 age+age^2+age^3 date+date^2 21259 -8489.82 -7506.59 14 15041.19 15152.69 

3 age86_gen date(cont) 21259 -8489.82 -7523.93 11 15069.86 15157.47 

8 age(cont) date+date^2 21259 -8489.82 -7519.13 12 15062.26 15157.83 

11 age+age^2 date(cont) 21259 -8489.82 -7526.91 12 15077.81 15173.38 

15 age+age^2+age^3 date(cont) 21259 -8489.82 -7522.84 13 15071.69 15175.23 

7 age(cont) date(cont) 21259 -8489.82 -7535.62 11 15093.24 15180.85 

1 age86_gen no_date 21259 -8489.82 -8458.9 10 16937.8 17017.45 

13 age+age^2+age^3 no_date 21259 -8489.82 -8458.03 12 16940.06 17035.64 

9 age+age^2 no_date 21259 -8489.82 -8464.23 11 16950.45 17038.06 

5 age(cont) no_date 21259 -8489.82 -8471.54 10 16963.09 17042.73 

0 no_age no_date 21259 -8489.82 -8481.12 9 16980.24 17051.92 

 

The ‘best’ treatment allocation model was identified. For the RI-WA dataset the model (Table B-

4) using age (which increased when the patient was over 86 years) and date of first prescription 

used the difference, in days, between prescription date and the NICE licence date for 

Rivaroxaban plus its squared format, in addition to the clinically relevant variables selected. 



 

 B-8   

Table B-4: ‘Best’ PS model for the Rivaroxaban-Warfarin dataset. 

Covariate Coefficient SE of 
coefficient 

z P>|z| [95% CI] 

Previous stroke 0.108 0.065 1.67 0.095 (-0.019, 0.235) 

Alcohol misuse 0.117 0.136 0.86 0.39 (-0.149, 0.383) 

Chronic kidney disease 0.005 0.069 0.07 0.944 (-0.130, 0.139) 

Liver disease 0.036 0.439 0.08 0.935 (-0.825, 0.897) 

CHA2DS2-VASc score 
(calculated) 

0.020 0.023 0.84 0.404 (-0.026, 0.065) 

HAS-BLED score 
(calculated) 

-0.009 0.040 -0.23 0.818 (-0.087, 0.069) 

Ischemic heart disease -0.091 0.052 -1.76 0.078 (-0.193, 0.010) 

First NOAC/OAC 
prescription was ≤ 28 
days of first AF 
diagnosis? 

-0.194 0.042 -4.59 <0.001 (-0.277, -0.111) 

=86 if age≤86, else 
=age 

0.075 0.013 5.84 <0.001 (0.050, 0.100) 

licence_to_noac* 0.005 0.000 13.56 <0.001 (0.004, 0.006) 

licence_to_noac2 -1.62E-06 2.92E-07 -5.54 <0.001 (-2.19E-06, -1.04E-06) 

Constant term -10.669 1.110 -9.61 <0.001 (-12.846, -8.493) 
*licence_to_noac30 is the Rivaroxaban licence date to date of first NOAC/OAC prescription, in days 

 

B-3.4 PS Model refinement 

In the Rivaroxaban-Warfarin dataset, the PS model was assessed to determine if any of the 

variables could be dropped to simplify its use in the simulations phase. Table B-5 shows the 

assessment of the variables, marked (1), have a similar effect size with coefficients close to either 

0.1 or -0.1 and were kept in the model. For alcohol_misuse_gen the standard error (of the 

coefficient estimate) is higher, but this could be due to alcohol misuse having a lower 

prevalence. The variables, marked (2), have low p-values and low standard errors and were kept 

in the model. These variables could have been surrogates for other, unmeasured variables. The 

variables, marked (3), were kept in the model. Despite the fact they had low coefficients and 

high p-values they were contraindications to prescribing NOACs, so are clinically relevant. The 

variables, marked (4), were discarded. They all had low coefficients and high p-values and are 

not clinically relevant when prescribing NOACs or Warfarin. The constant, marked (5) was 

included. The refined PS model used in this study is given in Table B-6. 
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Table B-5: Assessment of variables to retain in the treatment allocation model for the RI-WA dataset. 

Covariate Coefficient SE of 
coefficient 

z P>|z| [95% CI] Keep? 

Previous stroke 0.108 0.065 1.67 0.095 (-0.019, 0.235) 1 - keep 

Alcohol misuse 0.117 0.136 0.86 0.390 (-0.149, 0.383) 1 - keep 

Ischemic heart 
disease 

-0.091 0.052 -1.76 0.078 (-0.193, 0.01) 1 – keep 

First NOAC/OAC 
prescription was ≤ 
28 days of first AF 
diagnosis? 

-0.194 0.042 -4.59 <0.001 (-0.277, -0.111) 2 – keep 

=86 if age≤86, 
else =age 

0.075 0.013 5.84 <0.001 (0.05, 0.1) 2 – keep 

licence_to_noac* 0.005 0.000 13.56 <0.001 (0.004, 0.006) 2 – keep 

licence_to_noac2 -1.620E-06 2.920E-07 -5.54 <0.001 (-2.19E-06, -
1.04E-06) 

2 – keep 

Chronic kidney 
disease  

0.005 0.069 0.07 0.944 (-0.13, 0.139) 3 – keep 

Liver disease 0.036 0.439 0.08 0.935 (-0.825, 0.897) 3 – keep 

CHA2DS2-VASc 
score (calculated)  

0.020 0.023 0.84 0.404 (-0.026, 0.065) 4- discard 

HAS-BLED score 
(calculated)  

-0.009 0.040 -0.23 0.818 (-0.087, 0.069) 4- discard 

Constant term -10.669 1.110 -9.61 <0.001 (-12.846, -8.493) 5 – keep 
*licence_to_noac30 is the Rivaroxaban licence date to date of first NOAC/OAC prescription, in days 

 

The variables for the CHA2DS2-VASc score (Lip et al., 2010) and HAS-BLED score (Pisters et al., 

2010) were removed from the model. The variable to measure the date of first prescription was 

adjusted to be in units of 30 day and renamed licence_to_noac30 ( 

Table B-6). Re-fitting the PS model after removing the two variables changed the coefficients. 

This could be due to the variable chads2_vasc_calculated being correlated to other variables 

such as stroke_or_tia_gen (previous stroke or TIA). 
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Table B-6: The refined treatment allocation model for the RI-WA dataset. 

Covariate Coefficien
t 

SE of 
coefficien

t 

z P>|z| [95% CI] 

Previous stroke 0.123 0.061 2.03 0.042 (0.004, 0.242) 

Alcohol misuse 0.098 0.128 0.76 0.446 (-0.153, 0.348) 

Chronic kidney disease 0.008 0.051 0.16 0.871 (-0.093, 0.109) 

Liver disease 0.033 0.437 0.07 0.941 (-0.825, 0.890) 

Ischemic heart disease -0.082 0.051 -1.61 0.108 (-0.181, 0.018) 

First NOAC/OAC 
prescription was ≤ 28 
days of first AF 
diagnosis? 

-0.192 0.042 -4.56 <0.001 (-0.275, -0.110) 

=86 if age≤86, else =age 0.077 0.013 6.13 <0.001 (0.053, 0.102) 

licence_to_noac30 *  0.153 0.011 13.56 <0.001 (0.131, 0.175) 

(licence_to_noac30)2 -0.001 <0.001 -5.54 <0.001 (-0.002, -0.001) 

Constant term -10.830 1.096 -9.88 <0.001 (-12.979, -8.682) 
*licence_to_noac30 is the Rivaroxaban licence date to date of first NOAC/OAC prescription, in months 

 

B-3.5 PS balance checking 

The literature advises that a check for common support, or overlap, should be carried out once 

the PS model has been defined and hence the PS value calculated. This ensures the two 

treatment groups have sufficient participants with similar PS values to make the  PS conditioning 

meaningful. This can be checked visually using a density plot of the PS for each treatment group. 

Figure B-1 shows that there was good common support in both datasets. A simple match on the 

PS showed that all NOAC cases were matched to a Warfarin case in both datasets. In both 

datasets the PS model was sufficiently well defined to continue the analysis. 

Balance checking verifies that the estimated PS, which was generated here, was sufficiently close 

to the true PS. Cases with the same true PS will have the same covariate distribution. If the 

distribution of the covariates is similar for the matched cases with the same estimated PS, then 

the estimated PS is sufficiently well defined (Ho, Imai, King & Stuart, 2007) (Section 2.3.5 main 

text). Although Garrido et al. (2014) suggests that the balance checks be carried out before PS 

conditioning , but not all authors agree and only perform balance checking after the PS method 

has been applied. In this study, covariate balance checking was not undertaken at this stage, it 

was done after PS conditioning. 
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Figure B-1: Histogram of Propensity Score, using Stata’s -psgraph-, for Rivaroxaban (Treated) and Warfarin 
(Untreated) for the RI-WA dataset. 

 

B-4 Apixaban vs Warfarin Dataset 

B-4.1 PS modelling for the AP-WA dataset 

The PS model was fitted to the Apixaban-Warfarin dataset, following the same method 

described for the Rivaroxaban-Warfarin dataset. This helped inform the decision of which 

dataset to select as the study dataset. The functional forms for the continuous variables, age 

and date of first prescription, were assessed using the criteria (Section B-0). The functional forms 

of age that were considered, were age86_gen (below 86 age=86, above 86 age=age), age+age^2, 

age+age^2+age^3, age(continuous) and no age. These were each tested in a model containing 

the clinically relevant variables. The forms which showed the best fit, using BIC, were age86_gen 

and age(continuous). The functional forms of the date of first prescription (to be referred to as 

date) that were considered were, date (continuous), date by year, date by quarter, date by 

adjusted quarter (date before July 2013 set to quarter214 (July to Sept 2013)), date further 

adjusted quarter (date before July 2013 (qtr214) =missing). These adjustments were made due 

to the low number of RI patients at the beginning of the study. Only linear terms were 

considered due to the form of this variable. The forms which showed the best fit, using BIC, were 

date (continuous), date by quarter, date further adjusted quarter (date before July 2013 (qtr214) 

set to missing). The latter lost observations so was dropped. Date (continuous) and date by 

quarter were considered the best forms. 
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The selected forms of the age and date of first prescription were added in all combinations to 

the clinically relevant variables and the resulting models assessed. The model selection 

algorithm was then applied as follows: 

• Ensure no high SEs – all models passed. 

• Lowest BIC preferred – suggests models 4, 8 16 or 12, but these use fewer observations. 

Observations were dropped for some of the early time periods where there were fewer 

Apixaban patients. 

• Consider lowest BIC using full observations – these are models 3 (age86_gen & 

date_continuous) and 7 (age_continuous & date_continuous). Model 3 (Table B-7) was 

chosen as the “best” model due to parsimony. 

Table B-7: Assessment of combination of different functional forms of age and date for PS model in AP-WA dataset, 
ordered by BIC. 

M age pr_date N LL0 LL1 df AIC BIC 

M4 age86_gen date_by_qtr(fthr_adj) 9665 -3814.49 -3533.37 16 7098.737 7213.557 

M8 age(cont) date_by_qtr(fthr_adj) 9665 -3814.49 -3539.25 16 7110.508 7225.328 

M16 age+age^2+age^3 date_by_qtr(fthr_adj) 9665 -3814.49 -3531.18 18 7098.368 7227.541 

M12 age+age^2 date_by_qtr(fthr_adj) 9665 -3814.49 -3536.31 17 7106.623 7228.62 

M3 age86_gen date(cont) 13897 -4403 -3765.55 11 7553.108 7636.042 

M7 age(cont) date(cont) 13897 -4403 -3771.11 11 7564.224 7647.158 

M15 age+age^2+age^3 date(cont) 13897 -4403 -3763.59 13 7553.169 7651.182 

M11 age+age^2 date(cont) 13897 -4403 -3768.61 12 7561.221 7651.695 

M2 age86_gen date_by_year 13897 -4403 -3856.23 12 7736.453 7826.926 

M6 age(cont) date_by_year 13897 -4403 -3860.69 12 7745.376 7835.849 

M10 age+age^2 date_by_year 13897 -4403 -3858.71 13 7743.42 7841.433 

M14 age+age^2+age^3 date_by_year 13897 -4403 -3854.3 14 7736.591 7842.143 

M1 age86_gen no_date 13897 -4403 -4384.07 10 8788.145 8863.54 

M0 no_age no_date 13897 -4403 -4391.38 9 8800.757 8868.612 

M5 age(cont) no_date 13897 -4403 -4389.33 10 8798.656 8874.05 

M13 age+age^2+age^3 no_date 13897 -4403 -4382.22 12 8788.442 8878.916 

M9 age+age^2 no_date 13897 -4403 -4387.6 11 8797.191 8880.125 

 

The best model for the AP-WA dataset (Table B-8) used variables to represent age (which 

increased when the patient was over 86 years) and the date of first NOAC/OAC prescription as 

a continuous variable in addition to the clinically relevant variables. 
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Table B-8: ‘Best’ PS model for the Apixaban-Warfarin dataset. 

Covariate Coefficient SE of 
Coefficient 

z P>|z| 95% CI 

Previous stroke 0.266 0.092 2.88 0.004 (0.085, 0.446) 

Alcohol misuse 0.543 0.170 3.18 0.001 (0.209, 0.877) 

Chronic kidney disease -0.096 0.101 -0.95 0.341 (-0.293, 0.101) 

Liver disease 0.514 0.507 1.01 0.31 (-0.479, 1.508) 

CHA2DS2-VASc score 
(calculated) 

0.035 0.034 1.02 0.309 (-0.032, 0.102) 

HAS-BLED score 
(calculated) 

-0.035 0.057 -0.62 0.537 (-0.148, 0.077) 

Ischemic heart disease -0.076 0.075 -1.01 0.313 (-0.223, 0.071) 

First NOAC/OAC 
prescription was ≤ 28 
days of first AF 
diagnosis? 

-0.168 0.061 -2.74 0.006 (-0.288, -0.048) 

=86 if age≤86, else =age 0.070 0.019 3.71 <0.001 (0.033, 0.107) 

Date of first NOAC/OAC 
prescription 

0.005 0.000 30.98 <0.001 (0.005, 0.005) 

Constant term -107.017 3.609 -29.66 <0.001 (-114.089, -99.944) 

 

B-4.2 PS balance checking – AP-WA 

Figure B-2 shows that there was good common support in the AP-WA dataset. A simple match 

on the PS showed that all Apixaban cases were matched to a Warfarin case.  

 

Figure B-2: Histogram of Propensity Score, using Stata’s -psgraph-, for Apixaban (Treated) and Warfarin (Untreated) 
for AP-WA dataset. 
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B-5 Selection of the study dataset 

The two datasets, Apixaban-Warfarin and Rivaroxaban-Warfarin, were compared to decide 

which one to continue working with during the study. The first NOAC/OAC prescription date 

after the National Institute for Health and Care Excellence (NICE) approval date for Rivaroxaban 

was May 2012 and for Apixaban was February 2013. Although common support was shown in 

both datasets, the NOAC patients in the Rivaroxaban-Warfarin dataset had more patients with 

a higher PS so more contrast to the Warfarin patients, compared to the Apixaban-Warfarin 

dataset (Table B-9). There were more patients overall in the Rivaroxaban-Warfarin dataset as 

the Rivaroxaban NICE licence was earlier than the Apixaban NICE licence date and also a larger 

percentage of the patients are prescribed Rivaroxaban (13.7%) compared to Apixaban (9.6%) 

(Table B-9). This meant there were likely to be more outcome events in the Rivaroxaban-

Warfarin dataset which would make the outcome modelling more stable. Considering that both 

datasets were performing reasonably well in terms of PS matching, the precondition for model 

stability was regarded as an important characteristic and therefore the Rivaroxaban-Warfarin 

dataset was chosen to take forward. 

Table B-9: The number of patients on each treatment in the AP-WA and RI-WA datasets. 

Treatment Frequency Percent  Treatment Frequency Percent 

Warfarin 12,559 90.37  Warfarin 18,348 86.31 

Apixaban 1,338 9.63  Rivaroxaban 2,911 13.69 

Total 13,897 100  Total 21,259 100 

 

B-6 PS conditioning methods 

Details of the implementation of the PS conditioning methods are given in the main text. 

Supplementary information and the results of the balance checks are given in this section. 

B-6.1 Stata matching programs 

The early simulations gave the opportunity to explore alternative matching functions in Stata. 

The function -kmatch- (Jann, 2017) could perform PS matching and calculated the ATT and ATE 

only for binary outcomes. It did not record details of which Warfarin cases were matched to 

each Rivaroxaban case in the 3to1 matching performed in this study. This was needed to form 

the matched groups which had the same baseline hazard in the outcome analysis. -nnmatch- 

(Herr, Drukker, Imbens & Abadie, n.d.) could also perform matching, but only calculated the ATE 

or ATT for binary outcomes. -psmatch2- (Leuven & Sianesi, 2003) offered additional functionality 

so was used for 3to1 PS matching in this study. 
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B-6.2 Additional PS matching types 

Different PS matching methods were investigated for this study (Table B-10) in order to find the 

most appropriate one to take forward. All use greedy matching, where the best match was made 

by each treated case from the available untreated cases. All except A5 and A6 used matching 

with no replacement, when a match was made with an untreated case that case was no longer 

available for matching to subsequent treated cases. A5 and A6 used matching with replacement, 

where after a match was made the untreated case was still available for subsequent cases, 

meaning that untreated cases could be matched to more than one treated case. All of the 

methods used nearest neighbour matching, the treated cases matched the available untreated 

cases with the closest PS. There was no restriction on the difference of the PS values of the 

matched pairs. A2, A3 and A4 matched on the logit(PS) and imposed a caliper, meaning that a 

treated case could only match an untreated case if the difference in their logit(PS) was within 

the value of the caliper. A2 used the standard caliper of 2 x the SD of the logit(PS), 0.227264. A3 

used a caliper of 0.1 and A4 used a caliper of 0.01. All cases, except A5 and A6, used 1 to 1 

matching. A5 matched 2 untreated cases to each treated case and A6 matched 3 untreated cases 

to each treated case. A7 used the common support option, so dropped treated cases whose PS 

was outside the range of the PS for the untreated group. A8 used common support by dropping 

10% of the treatment observations at which the PS density of the control observations was the 

lowest. A1, 1:1 nearest neighbour (default settings) no-replacement, was considered for use, 

but A6, 3:1 nearest neighbour (default settings & with replacement), was used for PS matching 

in this study. 

Table B-10: Propensity Score matching methods applied to the RI-WA dataset. 

Ref Description 

A1 1:1 nearest neighbour (default settings) no-replacement 

A2 1:1 nearest neighbour, using caliper 0.227264, no-replacement 

A3 1:1 nearest neighbour, using caliper 0.1, no-replacement 

A4 1:1 nearest neighbour, using caliper 0.01, no-replacement 

A5 2:1 nearest neighbour (default settings & with replacement) 

A6 3:1 nearest neighbour (default settings & with replacement) 

A7 1:1 nearest neighbour (default settings) no-replacement common support 

A8 1:1 nearest neighbour (default settings) no-replacement trimming 10% from 
treatment group 
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B-6.3 PS matching - balance checks 

PS balance results from some of the PS matching methods given in Table B-10. A3 and A4, 1:1 

nearest neighbour using caliper 0.1 and 0.01, respectively were not considered as A2, using a 

caliper of 0.227264, showed very little difference to A1, 1:1 nearest neighbour. 

 

Table B-11: PS box plot and PS density before and after PS matching. 

PS Match Method Box plot of PS 
(pstest ps_calc1, box both) 

Distribution of PS 
(pstest ps_calc1, density both) 

A1  
1:1 nearest 
neighbour, 
no-replacement 

 

 

 

 

A2 
1:1 nearest 
neighbour, 
 using caliper, 
no-replacement 

 

 

 

 

A5 
2:1 nearest 
neighbour, 
with replacement 
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A6 
3:1 nearest 
neighbour, 
with replacement 
(PS matching 
method used in 
this study) 

 

 

 
 

 

A7 
1:1 nearest 
neighbour, 
no-replacement, 
common support 
imposed 

 

 

 

 

A8 
1:1 nearest 
neighbour, 
no-replacement, 
trimming 10% 
from treatment 
group 
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Table B-12: Variable standardised Differences and Variable ratio of residuals vs standardised %bias, before and after 
PS matching. 

PS Match Method Variable Standardised 
Differences 

(Using, graph) 

Variable Ratio of Residual vs 
Standardised %bias 

(Using, scatter) 

A1  
1:1 nearest 
neighbour, 
no-replacement 

 

 

 

 

A2 
1:1 nearest 
neighbour, 
 using caliper, 
no-replacement 

 

 
 

 

 

A5 
2:1 nearest 
neighbour, 
with replacement 
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A6 
3:1 nearest 
neighbour, 
with replacement 
(PS matching 
method used in 
this study)  

 

 
 

 

A7 
1:1 nearest 
neighbour, 
no-replacement, 
common support 
imposed 

 

 
 

 

 

A8 
1:1 nearest 
neighbour, 
no-replacement, 
trimming 10% 
from treatment 
group 
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B-6.4 Balance checking for IPTW 

The results of the balance checking for IPTW for ATT and IPTW for ATE are shown in this section. 

Table B-13: Standardised mean differences for the original data and that using the IPTW weights for ATT and ATE. 

 Original   ATT 

weights 

  ATE 

weights 

  

Covariate Mean 

treated 

Mean 

un-

treated 

Stdz’d 

diff* 

Mean 

treated 

Mean 

un-

treated 

Stdz’d 

diff* 

Mean 

treated 

Mean 

un-

treated 

Stdz’d 

diff* 

Previous stroke 0.14 0.14 0.01 0.14 0.14 -0.003 0.15 0.14 0.021 

Alcohol misuse 0.03 0.03 0.019 0.03 0.03 0.005 0.02 0.03 -0.022 

Chronic kidney disease 0.22 0.22 0.014 0.22 0.23 -0.004 0.23 0.22 0.025 

Liver disease 0 0 0.001 0 0 -0.002 0 0 0.037 

Ischemic heart disease 0.22 0.24 -0.043 0.22 0.22 -0.001 0.24 0.24 -0.003 

af_to_noac_gen† 0.44 0.47 -0.06 0.44 0.44 0.005 0.45 0.46 -0.019 

=86 if age≤86, else =age 0.58 0.37 0.13 0.58 0.58 0.001 0.39 0.4 -0.005 

licence_to_noac30†† 24.32 15.79 0.934 24.32 24.3 0.002 17.5 16.96 0.059 

(licence_to_noac30)2 660.82 346.86 0.874 660.82 659.47 0.004 400.33 389.68 0.03 

*Standardised Difference 
†First NOAC/OAC prescription was ≤ 28 days of first AF diagnosis? 
††The Rivaroxaban licence date to date of first NOAC/OAC prescription, in months 

 

 

 

Figure B-3: Dot plot of standardised mean differences for the original data and that using the IPTW weights for ATT 
and ATE. 
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Figure B-4: Plots of continuous variables in the PS model from the original data and with IPTW weights applied for 
ATT and ATE. 
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B-6.5 Balance checking for PS Stratification 

The results of the balance checking following PS stratification are given in this section. 

Table B-14: Standardised mean differences for the original data and that stratified on the PS with 5, 10 and 50 
strata. 

Number of 
Strata 

Covariate Mean in 
treated 

Mean in 
untreated 

Standardised 
diff. 

Original Data Previous stroke 0.14 0.14 0.010 

 Alcohol misuse 0.03 0.03 0.019 

 Chronic kidney disease 0.22 0.22 0.014 

 Liver disease 0 0 0.001 

 Ischemic heart disease 0.22 0.24 -0.043 

 af_to_noac_gen† 0.44 0.47 -0.060 

 =86 if age≤86, else =age 0.58 0.37 0.130 

 licence_to_noac30†† 24.32 15.79 0.934 

 (licence_to_noac30)2 660.82 346.86 0.874 

     

Number of 
Strata 

Covariate Mean in 
treated 

Mean in 
untreated 

Standardised 
diff. 

5 Strata Previous stroke 0.14 0.14 0.009 

 Alcohol misuse 0.03 0.03 0.004 

 Chronic kidney disease 0.22 0.22 0.008 

 Liver disease 0 0 0.003 

 Ischemic heart disease 0.22 0.22 -0.006 

 af_to_noac_gen† 0.44 0.45 -0.019 

 =86 if age≤86, else =age 0.58 0.51 0.043 

 licence_to_noac30†† 24.32 23.90 0.046 

 (licence_to_noac30)2 660.82 641.67 0.053 

     

Number of 
Strata 

Covariate Mean in 
treated 

Mean in 
untreated 

Standardised 
diff. 

10 Strata Previous stroke 0.14 0.14 0.004 

 Alcohol misuse 0.03 0.03 -0.001 

 Chronic kidney disease 0.22 0.22 0.004 

 Liver disease 0 0 0 

 Ischemic heart disease 0.22 0.22 -0.002 

 af_to_noac_gen† 0.44 0.44 -0.006 

 =86 if age≤86, else =age 0.58 0.53 0.029 

 licence_to_noac30†† 24.32 24.24 0.010 

 (licence_to_noac30)2 660.82 656.18 0.013 

     

Number of 
Strata 

Covariate Mean in 
treated 

Mean in 
untreated 

Standardised 
diff. 

50 Strata Previous stroke 0.14 0.14 -0.001 

 Alcohol misuse 0.03 0.03 -0.004 

 Chronic kidney disease 0.22 0.22 0.002 

 Liver disease 0 0 -0.002 

 Ischemic heart disease 0.22 0.22 0.001 

 af_to_noac_gen† 0.44 0.44 0 
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 =86 if age≤86, else =age 0.58 0.56 0.010 

 licence_to_noac30†† 24.32 24.30 0.002 

 (licence_to_noac30)2 660.82 659.25 0.004 
†First NOAC/OAC prescription was ≤ 28 days of first AF diagnosis? 
††The Rivaroxaban licence date to date of first NOAC/OAC prescription, in months 

 

B-7 Outcome modelling 

B-7.1 Outcome model – background and theory 

The REWARD data were extracted to compare the effect of NOACs compared with Warfarin in 

the prevention of future stroke, the primary outcome. The outcome analysis was performed on 

time-to-event data, that is time to first stroke following the first NOAC/OAC prescription, using 

survival analysis methods. 

The Cox model is a semi-parametric approach used to analyse survival data. The hazard function 

– for the ith patient at time t 

ℎ(𝑡|𝑋𝑖) =  ℎ0(𝑡)𝑒𝑥𝑝 (𝑋𝑖
𝑇𝛽𝑋)      (1) 

where  𝛽𝑋 is the vector of coefficients estimated in the outcome model, and 𝑋𝑖  , the baseline 

variables for the ith patient, 𝑋𝑖
𝑇 its transpose. 

The Cox model requires the Proportional Hazards (PH) assumption to be valid, that is the ratio 

of the hazards for any two individuals is constant over time. The baseline hazard, ℎ0(𝑡), is not 

estimated and its form is not important. Comparing the ith patient to the mth patient 

ℎ(𝑡|𝑋𝑖)/ℎ(𝑡|𝑋𝑚)  =  𝑒𝑥𝑝(𝑋𝑖
𝑇𝛽𝑋)/𝑒𝑥𝑝(𝑋𝑚

𝑇 𝛽𝑋) 

Cox regression was used for the analysis and to estimate the treatment effect. Different 

implementations of Cox regression were used to account for the PS conditioning used to address 

the systematic differences between the treatment groups. 

B-7.2 Nature of the data 

For PS matching, account had to be taken for the matched nature of the data when using running 

the survival analysis, here Cox regression (Austin, 2011).  The options considered were frailty, 

marginal survival models and stratified survival models. Frailty, a measure of a participant’s 

predisposition to stroke in addition to the values described in the regression model (O'Quigley 

& Stare, 2002), is a latent random effect used multiplicity in the hazard function and directly 

influences the outcome (Cleves, Gould & Marchenko, 2016). Frailty was not suitable as the PS is 

not an inherent trait, it can depend on the algorithm used. The marginal survival models method 
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is known by various names, Huber (Huber, 1967) and White (White, 1980), sandwich estimator 

of variance and robust estimator of variance. It gives an alternative method for estimating 

standard errors, although the point estimate will be the same as the standard method, but it 

was not selected to use. The method chosen was Cox regression stratified by matched pair or 

group. The matched nature of the data is accounted for by each group (or strata) taking a 

different baseline hazard (Cleves et al., 2016, p. 115) .  Cox regression with stratification ran 

successfully in Stata. 

ℎ(𝑡|𝑥𝑗) = ℎ01(𝑡)𝑒𝑥𝑝(𝑥𝑗𝛽𝑥)  , if j is in group 1. 

ℎ(𝑡|𝑥𝑗) = ℎ02(𝑡)𝑒𝑥𝑝(𝑥𝑗𝛽𝑥)  , if j is in group 2. 

When using IPTW, for both the ATE and ATT, variance estimates had to take account of the 

weighted nature of the data and robust variance estimation is commonly used. The weights 

generated by IPTW were used directly as options in the Cox regression. (The weights were used 

as Stata’s pweights as arguments in the -stcox- command). 

When using PS stratification, there are three methods to estimate the HR in the outcome 

analysis  (Austin, 2013, 2014). First, the treatment effect is estimated using Cox PH within each 

stratum and these are pooled or averaged to give the ATE (pooled). Second, Cox PH is run with 

an indicator variable for treatment and strata as a categorical variable (adjusted). Third, regress 

on an indicator variable for treatment and stratify on the strata (stratified). This allows the 

baseline hazard to vary across strata. The stratified method was chosen for use in this study It 

was used with PS matching and allowed for a closer comparison of PS stratification and PS 

matching. 

B-7.3 Outcome model  

The outcome model was fitted to the analysis dataset used following PS matching. The 

CHA2DS2-VASc (Lip, Nieuwlaat, Pisters, Lane & Crijns, 2010) is a score which indicates the risk 

of stroke for patients with AF. As the study outcome is time to first stroke after first NOAC/OAC 

prescription, the variables for the outcome model were selected from the variables which 

contribute to the CHA2DS2-VASc score  

Table B-15) unless they had been fully accounted for in the PS (the treatment allocation model). 

Expert clinical advice also suggested additional variables to be included in the outcome model, 

such as hypercholesterolemia, prescribed antiplatelets, statins or blood pressure lowering 

medication, the number of different medications being prescribed, smoking history (current and 

past) and the Townsend deprivation quintile (Table B-16). 
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Table B-15: CHA2DS2-VASc risk factors and the models in which they were accounted for. 

Risk Factor  Value in CV 
Score 

In PS 
model? 

In Outcome 
model? 

C ongestive heart failure/LV dysfunction 1 Y Y 

H ypertension 1  Y 

A ge ≥ 75 y 2 * Y 

D iabetes mellitus 1  Y 

S troke/TIA/TE 2 y  

V ascular disease (prior myocardial infarction, 
peripheral artery disease, or aortic plaque) 

1  Y 

A ge 65-74 y 1 * Y 

S ex C ategory (i.e. female gender) 1  Y 
*age only represented by age86_gen, no further categorisation used. 

Table B-16: Variables considered in the outcome model. 

Variable Reason for choice of 
variable 

Treatment Variable of interest 

Sex In CHA2DS2-VASc 

Congestive cardiac failure In CHA2DS2-VASc 

Hypertension In CHA2DS2-VASc 

Diabetes In CHA2DS2-VASc 

Vascular disease In CHA2DS2-VASc 

Hypercholesterolemia Expert Advice 

On antiplatelet Expert Advice 

On statins Expert Advice 

On blood pressure lowering medication Expert Advice 

Townsend deprivation quintile Expert Advice 

Number of medications currently prescribed Expert Advice 

Smokes now Expert Advice* 

Smoked previously Expert Advice* 

Age ≥ 65 In CHA2DS2-VASc** 

Age ≥75 In CHA2DS2-VASc** 
*these variables were considered together 
**these variables were considered together. The PS used a variable age86_gen these additional variables 
were used in the outcome modelling as they were used in the CHA2DS2-VASc. 

 
There were two PS matching methods under consideration, 1:1 matching and 3:1 matching 

(Section B-6.2). These each generated using their own dataset and the outcome modelling was 

applied to each of these datasets. The selection of the best outcome model used the following 

options. All variables are those listed in Table B-16: 

• All variables included with Townsend’s deprivation quintile as a continuous variable. 

• All variables included with Townsend’s deprivation quintile as a factor variable. 

• Treatment only. 
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• Treatment and each variable individually (univariate). 

• Selection of models using combinations of the ‘best’ univariate variables and treatment. 

The criteria used for the outcome model selection were: 

• No high standard errors (SE). High SEs indicate the model was not converging well. 

• The highest number of cases used. Some models drop cases when there was missing 

data in the variables used. 

• The lowest BIC. 

• A reasonable AIC and Log-Likelihood. 

B-7.4 Outcome modelling options 

The model assessment began by running the ‘univariate’ models, that is just one variable plus 

treatment in the model (Table B-17). Additional variables, age_65_gen and age_75_gen, were 

added to the model to match more closely the CHA2DS2-VASc scoring system. Some pairs of 

parameters were considered together. smoke_now_gen was retained and smoke_prev_gen 

dropped and both age_65_gen and age_75_gen were kept in the outcome model. 

Table B-17: Results from the ‘univariate’ models, 1 variable plus treatment, sorted by p-value. 

Variable Coef. SE z P>|z| 95% CI Chads-vasc 
variable? 

On blood pressure 
lowering medication 

-1.099 0.292 -3.77 <0.001 (-1.671, -0.527)  

On statins -0.837 0.280 -2.99 0.003 (-1.386, -0.288)  

On antiplatelet -0.748 0.299 -2.50 0.012 (-1.334, -0.162)  

Hypercholesterolemia -0.609 0.286 -2.13 0.033 (-1.170, -0.048)  

Hypertension -0.473 0.264 -1.79 0.073 (-0.990, 0.045) Y 

Sex 0.407 0.252 1.61 0.107 (-0.087, 0.901) Y 

Age ≥75 0.725 0.517 1.40 0.161 (-0.288, 1.738) Y 

Diabetes -0.442 0.352 -1.26 0.209 (-1.132, 0.248) Y 

Townsend 
deprivation quintile 

-0.118 0.102 -1.16 0.246 (-0.317, 0.081)  

Smoked previously 0.269 0.267 1.01 0.315 (-0.255, 0.793)  

Vascular disease 0.279 0.379 0.74 0.462 (-0.464, 1.022) Y 

Number medications 
currently prescribed 

-0.013 0.019 -0.70 0.485 (-0.050, 0.024)  

Congestive cardiac 
failure 

-0.199 0.809 -0.25 0.805 (-1.786, 1.387) Y 

Age ≥ 65 -0.061 0.570 -0.11 0.914 (-1.178, 1.055) Y 

Smokes now -0.049 0.615 -0.08 0.937 (-1.254, 1.157)  

 

Table B-17 identified four variables which may be regarded as significant with p-values <0.05, 

being prescribed blood pressure lowering medication, statins or antiplatelets and 
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hypercholesterolemia. Models were investigated which included these four variables, these four 

variables and the CHA2DS2-VASc score, and these four variables and the variables used in the 

CHA2DS2-VASc score. The models all included treatment but non-clinical and non-significant 

variables were excluded. The model assessment criteria is presented, the models are sorted by 

the number of outcomes (high is preferred) then by BIC (low is preferred). 

Missing data, mostly in Townsend and smoking status, meant that the univariate models for 

townsend_only, smoking_only, and full_townsend_factors used fewer failures, so these models 

were disregarded. The model which used the best four variables and the CHA2DS2-VASc score 

was selected as the model to use. It was a good compromise; it did not lose cases due to missing 

data and so had the maximum number of outcome events, its BIC, the model selection criteria, 

was higher than other models, but it included more information as it included the CHA2DS2-

VASc score. The CHA2DS2-VASc information was contained in a single variable so the degrees of 

freedom were lower than the model which used all the variables which contribute to the 

CHA2DS2-VASc. The chosen model is shown in full in Table B-18. 

All the considered models showed treatment had a positive coefficient, so being prescribed the 

NOAC increases the risk of future stroke compared to prescribing Warfarin. Only the full model 

(with Townsend deprivation quintile as continuous) show this as significant. The coefficient 

varies from, 0.33 in some of the univariate models to 0.56 in the full model (Townsend 

deprivation quintile as continuous) and the standard errors show little variation, 0.23 to 0.29. 

These values are the log(hazard ratio). 

Table B-18: The outcome model selected for use. The model includes treatment, the 4 most significant univariate 
variables and the CHA2DS2-VASc score. 

Covariate HR SE of 
HR 

95% CI of HR Coeffi-
cient* 

SE of 
Coeffi-
cient 

95% CI of 
Coefficient 

p-value 

Treatment 1.534 0.383 (0.940, 2.504) 0.428 0.250 (-0.062, 0.918) 0.087 

Prescribed blood 
pressure lowering meds 

0.339 0.110 (0.180, 0.639) -1.081 0.323 (-1.714, -0.448) 0.001 

Prescribed statins 0.677 0.245 (0.333, 1.378) -0.390 0.362 (-1.100, 0.321) 0.282 

Prescribed antiplatelets 0.646 0.225 (0.326, 1.279) -0.437 0.349 (-1.121, 0.246) 0.210 

Hypercholesterolemia 0.729 0.269 (0.354, 1.502) -0.316 0.369 (-1.039, 0.407) 0.391 

CHA2DS2-VASc score 1.360 0.165 (1.073, 1.725) 0.308 0.121 (0.070, 0.545) 0.011 
*Coefficient is the log(hazard ratio) 

B-7.5 Baseline hazard function 

The outcome of interest was time to first future stroke following the first NOAC/OAC 

prescription. When the outcome model was generated using the Cox model the baseline hazard 

ℎ0(𝑡) was not calculated. However, in the simulations, developed in Chapter 4, it was needed 
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to generate the simulated survival time. This can be done using a parametric survival model. 

Empirical investigations had suggested a Weibull model would be an appropriate baseline 

hazard function. A Weibull distribution offered flexibility, its parameters are γ, the shape 

parameter, and λ, the scale parameter. By varying the shape parameter, γ, the distribution of 

the function changes, for 𝛾 = 1 this distribution is an exponential so, the hazard is constant. 

From equation (1) the hazard function – for the ith patient at time t 

ℎ(𝑡|𝑋𝑖)  =  ℎ0(𝑡)𝑒𝑥𝑝(𝑋𝑖
𝑇𝛽𝑋)  

where 𝑒𝑥𝑝(𝑋𝑖
𝑡𝛽𝑋)  can be calculated from 𝛽𝑋 , the vector of coefficients estimated in the 

outcome model, and 𝑋𝑖  , the baseline variables for the ith patient. 

Using the Weibull model for the baseline hazard 

ℎ0(𝑡) = 𝑝𝑡𝑝−1 exp (𝑎) 

where p and exp(a) are shape and scale parameters, respectively, and they were obtained 

empirically and comparing with the original dataset. 

Hence 

ℎ(𝑡|𝑋𝑖)  =  𝑝𝑡𝑝−1 𝑒𝑥𝑝 (𝛽0)𝑒𝑥𝑝(𝑋𝑖
𝑇𝛽𝑋)  

The cumulative hazard is defined as 

𝐻(𝑡|𝑋) = ∫ ℎ(𝑢|𝑋)𝑑𝑢
𝑡

0

 

And the survival function 

𝑆(𝑡|𝑋) = exp [−𝐻(𝑡|𝑋)] 

Hence using the Weibull model for the baseline hazard 

𝐻(𝑡|𝑋𝑖) = exp(𝛽0 + 𝑋𝑖
𝑇 𝛽𝑋) 𝑡𝑝 

𝑆(𝑡|𝑋𝑖) = exp [− exp(𝛽0 + 𝑋𝑖
𝑇 𝛽𝑋) 𝑡𝑝]      (2) 

The survival times were generated using equation (2), which was censored at the end of the 

patient’s baseline episode, and an indicator variable set with the event being future stroke 

within the time of observation. 



 

 B-29   

B-7.6 Baseline hazard - method and results 

The function of the baseline hazard was assessed empirically. The smoothed baseline hazard 

function was plotted from the data (Figure B-5). It showed that the values for the baseline hazard 

were small and that there was a slight increase around 350 days in the analysis time. To match 

this function a Mixture-Weibull function, implemented by a Stata user written function, was 

considered. However the function took too long to run and would have made running the 

simulations infeasible. A standard Weibull function gave a suitable match to the study data. Cox 

regression using a Weibull baseline hazard function was fitted to the data and gave baseline 

hazard parameters of λ = 0.00029933 and γ = 0.480355. Figure B-6 plots these values. 

In the simulated datasets, for each participant their survival time was simulated using the chosen 

baseline hazard and other variables. The censoring variable was generated by comparing the 

survival time to the end of the episode (the observed time) for each participant. If the survival 

time was less than the episode length the patient was recorded as having a future stroke. If the 

survival time was longer than the episode length the patient was recorded as not having a future 

stroke. 

 

Figure B-5: Smoothed baseline hazard function – Analysis Time is in days. 
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Figure B-6: Baseline hazard function generated using λ = 0.00029933 and γ = 0.480355. 
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APPENDIX C – ADDITIONAL INFORMATION FOR SIMULATIONS 

C-1 Sample size calculations for the simulations 

The initial simulation runs reported in Section 4.3 had been made using 100 simulated datasets 

and were used to demonstrate the performance of the simulation method and functionality. 

The sample size of 100 datasets was arbitrary. This section explores the number of simulated 

datasets which should be used, based on the precision sample size calculation. The number of 

simulated datasets is regarded as the ‘sample size’. 

The sample size was determined by calculating CI widths of the mean treatment effect estimate 

from some additional simulations using 1,000 datasets, determining an acceptable CI, 

calculating the number of simulations required to give the acceptable CI and then using this 

number of simulated datasets (the sample size) in the study simulations. 

Precision sample size calculation 

The precision sample size calculation uses: 

𝑆𝐸 =  
𝑆𝐷

√𝑁
  (Altman, 1991, p. 154) where SE is the Standard Error, SD is the Standard Deviation 

and N the sample size, here the number of simulated datasets. 

The population variance was not known and had to be estimated from the data, using the 

simulations with N=1000. In cases where the population variance has to be approximated from 

the sample, the t-distribution, with 𝑛 − 1 degrees of freedom is used to calculate the Confidence 

Intervals (CI). However, as n was large, the Normal distribution is a good approximation to the 

t-distribution. Also, the Central Limits Theorem states that regardless of the distribution of the 

variable in the population, the distribution of the sample means will be nearly Normal providing 

the samples are large enough (Altman, 1991, p. 154). Altman (1991, p. 181)  suggests that 

n>=100 is large enough for these conditions to hold. Therefore, the normal distribution was used 

and the formula to calculate the 95% CIs was 𝐶𝐼𝑠 = 𝜃 ±  1.96 ∗ 𝑆𝐸 where 𝜃 is the mean of 𝜃𝑖 

So N, the number of simulations (or sample size), is chosen to give the required CI width. The SD 

from earlier simulation runs was used. 

Calculation of the CI widths from the existing simulations 

The results from the simulations with no change of effect size of the variable with measurement 

error, using N=1000 generated datasets were used to calculate their CI widths. Only the runs 

using -50% measurement error and +50% measurement error were used. Generally, the -50% 

measurement error run had the highest SD and the +50% run had the lowest SD, these runs gave 
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the extreme values of the SD in each simulation and hence the extreme values of the CI width. 

All measurement errors related to the log(HR) of the treatment effect estimate when comparing 

RI against WA. 

Table C-1: 95% CI widths from N=1000 simulations for the different PS methods used with prevalences of 0.5%, 1% 
and 10%. 

Prevalence 0.5% 0.5% 1% 1% 10% 10% 

% M error -50% 50% -50% 50% -50% 50% 

IPTW for ATE 0.0496 0.0381 0.0346 0.0261 0.0108 0.0088 

IPTW for ATT 0.0393 0.0303 0.0266 0.0209 0.0082 0.0065 

3to1 Matching 0.0614 0.0418 0.0371 0.0286 0.0114 0.0088 

PS Stratification 0.0386 0.0299 0.0262 0.0205 0.0081 0.0064 

 

The CI widths from the 10% prevalence runs were much smaller than the 0.5% and 1% 

prevalence runs in the same simulation set, but there was little difference between the 0.5% 

and 1% prevalence runs in the same simulations set. There was not a large difference between 

the -50% and +50% measurement error runs in the same simulation. This is a reflection that the 

power in time-to-event data is calculated using the number of outcomes (Altman, 1991, p. 393; 

Guo & Fraser, 2015, p. 352), as opposed to the number of participants in data with binary or a 

continuous outcome. In this study the higher prevalence simulations, by definition, have a higher 

number of outcomes (hence a smaller CI).  The DGM used generated slightly more outcomes in 

the data for +50% measurement error than for -50% measurement error (hence a slightly 

smaller CI). The PS methods which had the lowest SD, and hence lowest SE, IPTW for ATT and 

PS Stratification, had the lowest CI widths. 

Determining the required CI width 

These interpretations were based on the information available before the full simulations were 

run, that is example simulation runs using 1000 simulated dataset and varying the outcome 

prevalence. IPTW for ATE was chosen as it neither had the largest nor the lowest difference 

between the mean treatment effect estimates from the different prevalences. A visual 

inspection showed the CI widths for the 10% prevalence run were <0.01, Table C-1, which did 

not include the mean treatment effect estimate from any of the other prevalences used, 

meaning the other plots of the treatment effect estimates were easily separated with this value 

of the CI. For the 1% prevalence runs, the CI widths were 0.03, which did not include any other 

prevalence runs.  The CI width for the 0.5% prevalence run, at +50% was 0.04 and this did include 

the other two prevalence runs. To summarise, a CI of 0.01 was deemed good, a CI between 0.02 

and 0.03 was thought to be acceptable, and a CI of 0.04 and above was thought to be too high. 
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It is acknowledged that the interpretation of these values is subjective and that the treatment 

effect estimate means generated in the full simulations (from varying other parameters) were 

not known. 

An alternative way of assessing an acceptable CI was to consider 10% of the true value of the 

treatment effect, 0.3674, giving 0.0367 as an acceptable CI, when applied to the 1% prevalence 

simulations. The original data had a prevalence of approximately 1%. Combining this information 

and the visual inspection, an acceptable CI width of 0.035 was decided upon. 

Calculating the number of simulations (sample size) from given CI 

By fixing the CI width at 0.02, 0.03, 0.035 and 0.04 the sample size, the number of simulations 

required N, were calculated to achieve these, Table 10. Only the -50% measurement error runs 

are displayed, which have the highest SD. Table C-1 showed that there was little difference  

between the CI widths for the simulations with different amounts of measurement error for the 

same prevalence. The results using the SD from the N=1000 runs are displayed. 

Table C-2: Calculated Sample Size for fixed CI widths. 

PS_Method Prev-
alence 

Mean SD of 
mean 

N for CI 
width = 

0.02 

N for CI 
width = 

0.03 

N for CI 
width = 
0.035 

N for CI 
width = 

0.04 

IPTW_ATE 0.5% 0.3165 0.4001 6150 2733 2008 1537 

IPTW_ATE 1% 0.3483 0.2792 2995 1331 978 749 

IPTW_ATE 10% 0.3626 0.0872 292 130 95 73 

        

IPTW_ATT 0.5% 0.3492 0.3174 3870 1720 1264 968 

IPTW_ATT 1% 0.3560 0.2142 1763 783 576 441 

IPTW_ATT 10% 0.3639 0.0664 169 75 55 42 

        

3to1_match 0.5% 0.4684 0.4956 9436 4194 3081 2359 

3to1_match 1% 0.4256 0.2994 3444 1530 1124 861 

3to1_match 10% 0.3716 0.0918 324 144 106 81 

        

PS_strat 0.5% 0.3477 0.3117 3732 1659 1219 933 

PS_strat 1% 0.3575 0.2113 1715 762 560 429 

PS_strat 10% 0.3643 0.0656 165 73 54 41 

 

For a CI width of 0.035, the required sample size for each prevalence was: for 10% prevalence, 

the lowest was 54 (PS stratification) and the highest was 106 (3to1 PS matching); for 1% 

prevalence, lowest was 560 (PS stratification) and the highest was 1124 (3to1 PS matching); for 

0.5% prevalence – lowest was 1219 (PS stratification) and the highest was 3081 (3to1 PS 
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matching). Generally, the sample sizes were rounded up to the next 100 for the simulations runs 

presented in Chapter 5. 

References for Appendix C 

Altman, D. G. (1991). Practical statistics for medical research London: Chapman and Hall/CRC. 
Guo, S., & Fraser, M. W. (2015). Propensity score analysis: Statistical methods and applications 

(2nd ed.): SAGE publications. 
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APPENDIX D – STATA CODING 

This Appendix includes samples of the Stata .do file code used for running the simulations. It 

includes ONLY the code for salient parts of the process. There are no program headers, no 

arguments passed to the code, no verification of the arguments and no error checking. 

Due to the formatting required for the thesis, some of the commands in the coding wrap over 

more than one line. 

This code will not run in this format, it is for example purposes only. 

*Samples of the Stata coding for running the simulations 

*It includes ONLY the salient parts of the process 

*NOTE - this coding will not run in this format. 

*There are no program headers, there are no arguments passed to the code, 

*there is no verification of the arguments and no error checking. 

*This coding is for example purposes only 

* 

*Jane Burnell - September 2021 

**************************************** 

 

*an example call 

log_local_ext EXT APP_PS_strat_MED_R1A_M50 300 m 50 stratification inf_chng 

treatment strata1 PS4_86this stratified stcox_best4 Interim_Log seed_append 

0.367433 new_id temp 0 local streg W 0.00015 0.480355 10 1.0 

*the arguments from log_local_ext() 

args level main_tag num action pcent ps_method inflnce treat strata PS_score 

outcome_call output_model main_log seed_type true_mean sorting location 

zero_val mlog_loc out_gen_model out_dist lambda1 gamma1 v1 v2 

  

*log_local_ext calls 

emain() 

*does argument validation 

*creates the folder to save results for this simulation run 

*creates summary_log file - stores results from all simulated datasets 

*creates seed_log - where Stata's RNG is stored after each dataset is analysed 

 

*loop to run simulations using `num' datasets 

forvalues j = 1(1)`num'{ 

 estep2() 

 *generates a bootstrapped sample from the original dataset 

*creates the new variable with added measurement error - 

*"stroke_or_tia_gen_int`action'`pcent'" 

 if (`pc_val'==0) { 

  gen stroke_or_tia_gen_int`action'`pcent' = stroke_or_tia_gen 
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  *add dummy call for no measurement error 

  gen temp_rbinomial = rbinomial(1,0.5) 

 } 

 else { 

  gen temp_rbinomial = rbinomial(1,`pc_val') 

  capture drop stroke_or_tia_gen_int`action'`pcent' 

  gen stroke_or_tia_gen_int`action'`pcent' = stroke_or_tia_gen 

  if ("`action'" == "p" | "`action'" == "P") { 

   *add extra strokes 

replace stroke_or_tia_gen_int`action'`pcent' = 1 if 

(stroke_or_tia_gen == 0 & temp_rbinomial==1) 

  } 

  else if ("`action'" == "m" | "`action'" == "M") { 

   *remove some strokes 

replace stroke_or_tia_gen_int`action'`pcent' = 0 if 

(stroke_or_tia_gen == 1 & temp_rbinomial==1) 

  }  

 } 

 *END estep2() 

  

 estep3a() 

 *generates the PS values using 

  *1)the PS model fitted to the original data 

  *2)previous stroke variable with added measurement error 

  *3)any changes to its "effect size" 

  capture drop temp_`PS_score'_`action'`pcent' 

 

 if ("`inflnce'" == "inf_std") { 

  *the original model - but using stroke_adjusted  

  * with original coeff for prev_stroke 

gen temp_`PS_score'_`action'`pcent' = 

0.1229108*stroke_or_tia_gen_int`action'`pcent' + /// 

  0.0975508*alcohol_misuse_gen + /// 

0.0083667*ckd_gen + 0.0326479*liver_disease_gen -

0.0816038*ihd_gen /// 

-0.1923699*af_to_noac_gen + 0.077417*age86_gen_adj + 

0.1529995*licence_to_noac30 /// 

  -0.0014545*c.licence_to_noac30_2 -4.172514 

 } 

 else if ("`inflnce'" == "inf_chng") { 

  *the original model - but using stroke_adjusted 

  *with changed coeff for previous_stroke 

gen temp_`PS_score'_`action'`pcent' = 

`v2'*stroke_or_tia_gen_int`action'`pcent' + /// 

  0.0975508*alcohol_misuse_gen + /// 
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0.0083667*ckd_gen + 0.0326479*liver_disease_gen -

0.0816038*ihd_gen /// 

-0.1923699*af_to_noac_gen + 0.077417*age86_gen_adj + 

0.1529995*licence_to_noac30 /// 

  -0.0014545*c.licence_to_noac30_2 -4.172514 

 } 

 *generate the PS value 

 capture drop `PS_score'_`action'`pcent' 

gen `PS_score'_`action'`pcent' = 1/(1 + exp(-

1*(temp_`PS_score'_`action'`pcent'))) 

label var `PS_score'_`action'`pcent' "Propensity Score for LR Model4 

with age86_adj for this dataset `action'`pcent'- Manual calc" 

 

*cv_score calculated with previous stroke original and with measurement 

*error 

 *END estep3a() 

  

 estep10() 

 *generates the generated treatment - based on the patient's PS value 

 capture drop treat_gen 

 gen treat_gen = rbinomial(1,`PS_score'_`action'`pcent') 

 label var treat_gen "Generated Treatment with `action'`pcent'" 

  

 *generates the outcome variables  

*these are - 1)time to next stroke and 2)did the event happen 

*before the enddate 

*they are based on the generated treatment and Weibull parameters 

*for the outcome prevalence 

 survsim stime_gen, distribution(exponential)lambdas(`lambda1') /// 

covariates(treat_gen 0.2775938 on_cvd_bp_lowering -0.3989188 

on_cvd_statin -0.2432114 /// 

 on_cvd_antiplatelet 0.3181043 hypercholesterol_gen -0.0687236 /// 

 chads2_vasc_calculated_int`action'`pcent' 0.1658724) 

 *END estep10() 

  

 *PS conditioning - PS method determines which branch to follow 

 if ("`ps_method'" == "3to1match") { 

  *for 3to1 PS matching 

  erun_simulations_gen() 

  *creates 3to1 matched dataset 

  psmatch2 `treat', pscore(`PS_score') neighbor(3) 

  set more off 

  keep if !missing(_weight) 

  *and saves it to the working folder 

  *END erun_simulations_gen() 
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  eexpand_dataset() 

*expands the matched dataset - so there is a record for each time 

*a case is used 

   **CODING IS VERBOSE SO NOT INCLUDED HERE 

  *END eexpand_dataset() 

   

  int_out_stcox_best4() 

  *runs the outcome analysis for PS matching with specified options 

stset s_enddate_gen, failure(future_stroke_gen) 

origin(first_noac_date) 

stcox `treat' on_cvd_bp_lowering on_cvd_statin 

on_cvd_antiplatelet hypercholesterol_gen 

chads2_vasc_calculated_orig, strata(`strata') nohr 

  *writes results to summary_log 

  *END int_out_stcox_best4() 

 } 

 else if ("`ps_method'" == "weight") { 

  *for IPTW for ATE & IPTW for ATT 

  erun_simulations_iptw() 

  *generates PS weights 

  propwt `treat' `PS_score' , `this_w' 

  *END erun_simulations_iptw() 

   

  int_out_stcox_best4_iptw() 

  *runs the outcome analysis for IPTW with specified options 

stset s_enddate_gen [pweight=`this_w'_wt], 

failure(future_stroke_gen) origin(first_noac_date) 

stcox `treat' on_cvd_bp_lowering on_cvd_statin 

on_cvd_antiplatelet hypercholesterol_gen 

chads2_vasc_calculated_orig, nohr vce(robust) 

  *writes results to summary_log 

  *END int_out_stcox_best4_iptw()   

 } 

 else if ("`ps_method'" == "stratification") { 

  *for PS stratification 

  erun_simulations_strat() 

  *generates strata using PS  

  capture drop strat`nstrat' 

  xtile strat`nstrat'=`PS_score'_`action'`pcent', n(`nstrat') 

  *END erun_simulations_strat() 

   

  int_out_stcox_best4_strat() 

*runs the outcome analysis for PS stratification with specified 

*options 
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stset s_enddate_gen, failure(future_stroke_gen) 

origin(first_noac_date) 

stcox `treat' on_cvd_bp_lowering on_cvd_statin 

on_cvd_antiplatelet hypercholesterol_gen 

chads2_vasc_calculated_orig, strata(`nstrat') nohr 

  *writes results to summary_log 

  *END int_out_stcox_best4_strat()   

 } 

*deletes the working dataset as the results have been stored in 

*summary_log 

} 

 *all simulated datasets have been analysed and results collected 

 *closes the summary_log & seed_log files 

 

 erun_int_calc() 

 *generates the treatment effect estimate performance measures  

 *from the results from all the datasets in summary_log 

  *get mean 

  quietly su v3 

  local v3mean=r(mean) 

  *also capture the number on non-missing observations 

  local valid_n=r(N) 

   

  *v4 is now the Model SE, so change temp names 

  capture drop v3a_temp 

  gen v3a_temp=(v3 - `v3mean')^2 

   

  *get SD - is the SD but still called se_calc  

  quietly su v3a_temp 

  local se_calc=sqrt(r(sum)/(r(N)-1)) 

   

  *get bias as used in Austin(2013) 

  capture drop v3b_temp 

  gen v3b_temp=(v3 - `true_mean') 

  quietly su v3b_temp 

  local bias_calc=r(sum)/(r(N)) 

 

  *MSE - mean error squared in Austin(2013) 

  capture drop v3c_temp 

  gen v3c_temp=v3b_temp^2 

  quietly su v3c_temp 

  local mse_calc=r(sum)/(r(N)) 

   

  *Model SE 

  capture drop v4a_temp 
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  gen v4a_temp=v4^2 

  capture drop sum_v4a_temp 

  egen sum_v4a_temp=sum(v4a_temp) 

  local tot_v4a = sum_v4a_temp[1] 

  local model_se = sqrt((1/`se_n')*`tot_v4a') 

 

*writes the performance measures of the simulation run to the main 

*logfile 

 *END erun_int_calc() 

 

*END emain() 
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APPENDIX E – TABLES AND GRAPHS VARYING OUTCOME 

PREVALENCE 

E-1 Example simulations using N=100 

In the headers in all tables in this Appendix, Prevalence is Outcome Prevalence, Num Events is 

the Number of Future Strokes, Num WA is the Number of participants prescribed Warfarin and 

Num RI is the Number of participants prescribed Rivaroxaban. 

Table E-1: Simulation runs using IPTW for ATE, N=100. 

Preva-

lence 

N % 

Adj 

Mean* SE* Bias* MSE* MSE % 

change 

Model SE 

mean 

Num 

events 

num WA Num RI N 

valid 

0.5% 100 -50 0.2972 0.3979 -0.0710 0.1633 -9.4 0.3652 104.6 18363.8 2895.2 100 

0.5% 100 -40 0.2915 0.3995 -0.0767 0.1654 -10.8 0.3627 106.0 18359.9 2899.1 100 

0.5% 100 -30 0.2963 0.3940 -0.0719 0.1603 -7.4 0.3602 107.7 18356.1 2902.9 100 

0.5% 100 -20 0.2906 0.3927 -0.0776 0.1602 -7.3 0.3579 109.3 18352.3 2906.7 100 

0.5% 100 -10 0.2942 0.3839 -0.0740 0.1528 -2.4 0.3560 110.9 18348.4 2910.6 100 

0.5% 100 0 0.2962 0.3797 -0.0720 0.1493 0.0 0.3544 112.7 18344.8 2914.2 100 

0.5% 100 10 0.2895 0.3752 -0.0787 0.1469 1.6 0.3407 121.1 18319.7 2939.3 100 

0.5% 100 20 0.3049 0.3474 -0.0632 0.1247 16.5 0.3289 130.5 18295.1 2963.9 100 

0.5% 100 30 0.3158 0.3318 -0.0522 0.1128 24.4 0.3185 140.2 18270.5 2988.5 100 

0.5% 100 40 0.3084 0.3241 -0.0597 0.1086 27.3 0.3077 149.8 18245.1 3013.9 100 

0.5% 100 50 0.3059 0.3151 -0.0621 0.1031 31.0 0.2974 159.1 18220.2 3038.8 100 

             

1% 100 -50 0.3423 0.2657 -0.0253 0.0712 -17.3 0.2659 207.3 18363.8 2895.2 100 

1% 100 -40 0.3380 0.2648 -0.0297 0.0710 -17.0 0.2643 210.4 18359.9 2899.1 100 

1% 100 -30 0.3406 0.2572 -0.0271 0.0669 -10.1 0.2629 213.3 18356.1 2902.9 100 

1% 100 -20 0.3379 0.2547 -0.0299 0.0658 -8.3 0.2614 216.5 18352.3 2906.7 100 

1% 100 -10 0.3373 0.2461 -0.0304 0.0615 -1.3 0.2597 219.5 18348.4 2910.6 100 

1% 100 0 0.3361 0.2443 -0.0317 0.0607 -0.0 0.2576 222.4 18344.8 2914.2 100 

1% 100 10 0.3353 0.2278 -0.0324 0.0529 12.8 0.2465 240.6 18319.7 2939.3 100 

1% 100 20 0.3321 0.2099 -0.0357 0.0453 25.4 0.2374 258.5 18295.1 2963.9 100 

1% 100 30 0.3315 0.2068 -0.0363 0.0441 27.4 0.2289 276.6 18270.5 2988.5 100 

1% 100 40 0.3295 0.1900 -0.0383 0.0376 38.1 0.2206 295.1 18245.1 3013.9 100 

1% 100 50 0.3288 0.1940 -0.0390 0.0392 35.5 0.2131 313.0 18220.2 3038.8 100 

             

10% 100 -50 0.3654 0.0876 -0.0021 0.0077 -0.1 0.0872 2063.4 18363.8 2895.2 100 

10% 100 -40 0.3641 0.0880 -0.0034 0.0078 -1.2 0.0866 2089.7 18359.9 2899.1 100 

10% 100 -30 0.3631 0.0886 -0.0044 0.0079 -2.6 0.0860 2116.7 18356.1 2902.9 100 

10% 100 -20 0.3639 0.0897 -0.0036 0.0081 -5.0 0.0852 2144.8 18352.3 2906.7 100 

10% 100 -10 0.3638 0.0883 -0.0037 0.0078 -1.9 0.0847 2173.0 18348.4 2910.6 100 

10% 100 0 0.3645 0.0875 -0.0029 0.0077 -0.0 0.0840 2199.8 18344.8 2914.2 100 

10% 100 10 0.3604 0.0851 -0.0071 0.0073 5.0 0.0808 2363.1 18319.7 2939.3 100 

10% 100 20 0.3600 0.0819 -0.0075 0.0068 11.9 0.0777 2526.6 18295.1 2963.9 100 

10% 100 30 0.3603 0.0765 -0.0072 0.0059 22.9 0.0751 2686.9 18270.5 2988.5 100 

10% 100 40 0.3578 0.0763 -0.0097 0.0059 22.8 0.0728 2851.4 18245.1 3013.9 100 

10% 100 50 0.3558 0.0722 -0.0117 0.0053 30.2 0.0706 3013.4 18220.2 3038.8 100 

*displayed as the log(HR) 
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Figure E-1: Using IPTW for ATE, N=100, the mean, SE, bias and MSE (the absolute and percentage change) of the 
estimated treatment effect displayed as log(HR) and the model SE mean. 
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Table E-2: Simulation runs using IPTW for ATT, N=100. 

Preva-

lence 

N % 

Adj 

Mean* SE* Bias* MSE* MSE % 

change 

Model 

SE 

mean 

Num 

events 

num 

WA 

Num RI N 

valid 

0.5% 100 -50 0.3579 0.3191 -0.0097 0.1019 -15.1 0.3015 84.4 18363.8 2895.2 100 

0.5% 100 -40 0.3552 0.3152 -0.0124 0.0995 -12.4 0.2993 85.7 18359.9 2899.1 100 

0.5% 100 -30 0.3559 0.3071 -0.0116 0.0944 -6.7 0.2964 87.1 18356.1 2902.9 100 

0.5% 100 -20 0.3537 0.3022 -0.0139 0.0915 -3.4 0.2941 88.6 18352.3 2906.7 100 

0.5% 100 -10 0.3495 0.2980 -0.0182 0.0891 -0.6 0.2919 89.9 18348.4 2910.6 100 

0.5% 100 0 0.3489 0.2970 -0.0187 0.0885 -0.0 0.2894 91.5 18344.8 2914.2 100 

0.5% 100 10 0.3433 0.2969 -0.0244 0.0887 -0.2 0.2779 99.1 18319.7 2939.3 100 

0.5% 100 20 0.3511 0.2730 -0.0165 0.0748 15.5 0.2660 106.7 18295.1 2963.9 100 

0.5% 100 30 0.3529 0.2682 -0.0147 0.0722 18.5 0.2560 114.3 18270.5 2988.5 100 

0.5% 100 40 0.3436 0.2654 -0.0241 0.0710 19.8 0.2473 122.6 18245.1 3013.9 100 

0.5% 100 50 0.3442 0.2617 -0.0234 0.0690 22.1 0.2390 130.2 18220.2 3038.8 100 

             

1% 100 -50 0.3743 0.2238 0.0069 0.0502 -7.0 0.2111 167.8 18363.8 2895.2 100 

1% 100 -40 0.3689 0.2240 0.0015 0.0502 -7.1 0.2098 170.6 18359.9 2899.1 100 

1% 100 -30 0.3702 0.2252 0.0028 0.0507 -8.2 0.2082 172.8 18356.1 2902.9 100 

1% 100 -20 0.3662 0.2241 -0.0012 0.0502 -7.2 0.2068 175.4 18352.3 2906.7 100 

1% 100 -10 0.3640 0.2171 -0.0035 0.0471 -0.6 0.2052 178.0 18348.4 2910.6 100 

1% 100 0 0.3653 0.2165 -0.0022 0.0469 0.0 0.2037 180.4 18344.8 2914.2 100 

1% 100 10 0.3638 0.2072 -0.0037 0.0430 8.3 0.1948 196.3 18319.7 2939.3 100 

1% 100 20 0.3634 0.1881 -0.0040 0.0354 24.5 0.1871 211.2 18295.1 2963.9 100 

1% 100 30 0.3650 0.1857 -0.0025 0.0345 26.4 0.1801 226.1 18270.5 2988.5 100 

1% 100 40 0.3613 0.1795 -0.0062 0.0323 31.2 0.1740 241.8 18245.1 3013.9 100 

1% 100 50 0.3617 0.1731 -0.0058 0.0300 36.0 0.1683 256.8 18220.2 3038.8 100 

             

10% 100 -50 0.3669 0.0588 -0.0005 0.0035 3.9 0.0666 1694.0 18363.8 2895.2 100 

10% 100 -40 0.3651 0.0589 -0.0023 0.0035 3.5 0.0661 1718.3 18359.9 2899.1 100 

10% 100 -30 0.3644 0.0605 -0.0030 0.0037 -1.8 0.0657 1742.1 18356.1 2902.9 100 

10% 100 -20 0.3638 0.0599 -0.0037 0.0036 0.2 0.0652 1767.6 18352.3 2906.7 100 

10% 100 -10 0.3631 0.0590 -0.0043 0.0035 2.7 0.0648 1792.2 18348.4 2910.6 100 

10% 100 0 0.3632 0.0599 -0.0042 0.0036 -0.0 0.0643 1816.1 18344.8 2914.2 100 

10% 100 10 0.3603 0.0585 -0.0072 0.0035 3.7 0.0618 1964.6 18319.7 2939.3 100 

10% 100 20 0.3592 0.0552 -0.0083 0.0031 13.7 0.0596 2110.1 18295.1 2963.9 100 

10% 100 30 0.3605 0.0517 -0.0070 0.0027 24.4 0.0576 2250.1 18270.5 2988.5 100 

10% 100 40 0.3572 0.0532 -0.0104 0.0029 18.6 0.0558 2392.0 18245.1 3013.9 100 

10% 100 50 0.3561 0.0502 -0.0114 0.0026 26.6 0.0541 2529.7 18220.2 3038.8 100 

*displayed as the log(HR) 
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Figure E-2: Using IPTW for ATT, N=100, the mean, SE, bias and MSE (the absolute and percentage change) of the 
estimated treatment effect displayed as log(HR) and the model SE mean. 
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Table E-3: Simulation runs using 3to1 PS matching, N=100. 

Preva-

lence 

N % 

Adj 

Mean* SE* Bias* MSE* MSE % 

change 

Model 

SE 

mean 

Num 

events 

num 

WA 

Num RI N 

valid 

0.5% 100 -50 0.4714 0.4972 0.1050 0.2581 -59.2 0.3943 46.1 8689.6 2896.6 100 

0.5% 100 -40 0.4468 0.4486 0.0802 0.2076 -28.0 0.3861 47.2 8701.1 2900.4 100 

0.5% 100 -30 0.4611 0.4467 0.0946 0.2084 -28.5 0.3816 48.0 8713.2 2904.4 100 

0.5% 100 -20 0.4315 0.4209 0.0647 0.1813 -11.8 0.3723 48.8 8724.5 2908.2 100 

0.5% 100 -10 0.4337 0.3933 0.0669 0.1591 1.8 0.3668 49.8 8735.7 2911.9 100 

0.5% 100 0 0.4215 0.3989 0.0546 0.1621 -0.0 0.3633 50.8 8748.1 2916.1 100 

0.5% 100 10 0.4281 0.3846 0.0613 0.1516 6.5 0.3420 55.8 8822.9 2941.0 100 

0.5% 100 20 0.4132 0.3746 0.0462 0.1425 12.1 0.3231 61.6 8897.5 2965.8 100 

0.5% 100 30 0.4128 0.3530 0.0458 0.1267 21.8 0.3072 66.9 8971.9 2990.6 100 

0.5% 100 40 0.3899 0.3329 0.0227 0.1114 31.3 0.2937 73.0 9048.1 3016.0 100 

0.5% 100 50 0.4048 0.3189 0.0377 0.1031 36.4 0.2816 78.0 9123.9 3041.3 100 

             

1% 100 -50 0.4206 0.2970 0.0537 0.0911 -30.9 0.2540 92.3 8689.6 2896.6 100 

1% 100 -40 0.4155 0.2841 0.0486 0.0830 -19.4 0.2512 93.8 8701.1 2900.4 100 

1% 100 -30 0.4283 0.2883 0.0615 0.0868 -24.9 0.2494 95.2 8713.2 2904.4 100 

1% 100 -20 0.4229 0.2794 0.0560 0.0812 -16.7 0.2465 96.8 8724.5 2908.2 100 

1% 100 -10 0.4266 0.2708 0.0598 0.0769 -10.5 0.2441 98.6 8735.7 2911.9 100 

1% 100 0 0.4173 0.2589 0.0504 0.0695 0.0 0.2420 100.2 8748.1 2916.1 100 

1% 100 10 0.4057 0.2591 0.0387 0.0686 1.4 0.2300 110.0 8822.9 2941.0 100 

1% 100 20 0.4147 0.2606 0.0478 0.0702 -0.9 0.2189 120.7 8897.5 2965.8 100 

1% 100 30 0.4063 0.2485 0.0393 0.0633 9.0 0.2085 132.0 8971.9 2990.6 100 

1% 100 40 0.3898 0.2331 0.0226 0.0548 21.1 0.1998 142.8 9048.1 3016.0 100 

1% 100 50 0.3945 0.2281 0.0273 0.0527 24.2 0.1924 153.4 9123.9 3041.3 100 

             

10% 100 -50 0.3782 0.0926 0.0108 0.0087 -17.7 0.0767 939.1 8689.6 2896.6 100 

10% 100 -40 0.3772 0.0904 0.0099 0.0083 -12.0 0.0763 952.1 8701.1 2900.4 100 

10% 100 -30 0.3778 0.0885 0.0105 0.0079 -7.5 0.0758 966.4 8713.2 2904.4 100 

10% 100 -20 0.3736 0.0888 0.0062 0.0079 -7.3 0.0753 981.8 8724.5 2908.2 100 

10% 100 -10 0.3720 0.0872 0.0046 0.0076 -3.1 0.0748 997.7 8735.7 2911.9 100 

10% 100 0 0.3710 0.0859 0.0036 0.0074 0.0 0.0743 1011.9 8748.1 2916.1 100 

10% 100 10 0.3907 0.0821 0.0235 0.0073 1.4 0.0714 1098.8 8822.9 2941.0 100 

10% 100 20 0.3857 0.0767 0.0184 0.0062 15.7 0.0685 1196.2 8897.5 2965.8 100 

10% 100 30 0.3830 0.0759 0.0157 0.0060 18.7 0.0661 1290.8 8971.9 2990.6 100 

10% 100 40 0.3766 0.0749 0.0092 0.0057 22.9 0.0639 1389.8 9048.1 3016.0 100 

10% 100 50 0.3687 0.0679 0.0013 0.0046 37.5 0.0617 1491.8 9123.9 3041.3 100 

*displayed as the log(HR) 
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Figure E-3: Using 3to1 PS matching, N=100, the mean, SE, bias and MSE (the absolute and percentage change) of the 
estimated treatment effect displayed as log(HR) and the model SE mean. 
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Table E-4: Simulation runs using PS stratification, with 10 strata, N=100. 

Preva-

lence 

N % 

Adj 

Mean* SE* Bias* MSE* MSE % 

change 

Model 

SE 

mean 

Num 

events 

num 

WA 

Num RI N 

valid 

0.5% 100 -50 0.3521 0.3098 -0.0155 0.0962 -13.8 0.2971 103.8 18363.8 2895.2 100 

0.5% 100 -40 0.3483 0.3062 -0.0193 0.0941 -11.3 0.2950 105.3 18359.9 2899.1 100 

0.5% 100 -30 0.3497 0.2984 -0.0179 0.0894 -5.7 0.2922 106.8 18356.1 2902.9 100 

0.5% 100 -20 0.3478 0.2946 -0.0198 0.0872 -3.1 0.2897 108.5 18352.3 2906.7 100 

0.5% 100 -10 0.3459 0.2888 -0.0218 0.0839 0.8 0.2875 110.0 18348.4 2910.6 100 

0.5% 100 0 0.3453 0.2899 -0.0223 0.0845 0.0 0.2849 111.7 18344.8 2914.2 100 

0.5% 100 10 0.3405 0.2886 -0.0272 0.0840 0.6 0.2736 120.2 18319.7 2939.3 100 

0.5% 100 20 0.3493 0.2660 -0.0183 0.0711 15.9 0.2617 129.4 18295.1 2963.9 100 

0.5% 100 30 0.3525 0.2635 -0.0151 0.0697 17.6 0.2518 138.9 18270.5 2988.5 100 

0.5% 100 40 0.3436 0.2610 -0.0241 0.0687 18.8 0.2432 148.5 18245.1 3013.9 100 

0.5% 100 50 0.3430 0.2561 -0.0247 0.0662 21.7 0.2351 157.8 18220.2 3038.8 100 

             

1% 100 -50 0.3742 0.2185 0.0068 0.0478 -7.4 0.2078 205.6 18363.8 2895.2 100 

1% 100 -40 0.3682 0.2182 0.0008 0.0476 -7.0 0.2065 208.6 18359.9 2899.1 100 

1% 100 -30 0.3699 0.2194 0.0025 0.0481 -8.2 0.2049 211.5 18356.1 2902.9 100 

1% 100 -20 0.3658 0.2181 -0.0017 0.0475 -6.8 0.2036 214.7 18352.3 2906.7 100 

1% 100 -10 0.3637 0.2110 -0.0038 0.0446 -0.1 0.2021 217.7 18348.4 2910.6 100 

1% 100 0 0.3646 0.2110 -0.0029 0.0445 0.0 0.2005 220.7 18344.8 2914.2 100 

1% 100 10 0.3621 0.2026 -0.0054 0.0411 7.7 0.1917 238.8 18319.7 2939.3 100 

1% 100 20 0.3615 0.1840 -0.0060 0.0339 23.9 0.1840 256.8 18295.1 2963.9 100 

1% 100 30 0.3625 0.1803 -0.0050 0.0325 26.9 0.1772 274.9 18270.5 2988.5 100 

1% 100 40 0.3595 0.1715 -0.0080 0.0295 33.8 0.1711 293.4 18245.1 3013.9 100 

1% 100 50 0.3600 0.1669 -0.0075 0.0279 37.3 0.1655 311.1 18220.2 3038.8 100 

             

10% 100 -50 0.3677 0.0593 0.0003 0.0035 3.1 0.0655 2045.1 18363.8 2895.2 100 

10% 100 -40 0.3661 0.0594 -0.0014 0.0035 2.7 0.0651 2071.3 18359.9 2899.1 100 

10% 100 -30 0.3653 0.0610 -0.0022 0.0037 -2.8 0.0647 2098.3 18356.1 2902.9 100 

10% 100 -20 0.3646 0.0603 -0.0029 0.0036 -0.4 0.0642 2126.0 18352.3 2906.7 100 

10% 100 -10 0.3640 0.0597 -0.0034 0.0036 1.2 0.0638 2153.7 18348.4 2910.6 100 

10% 100 0 0.3642 0.0601 -0.0033 0.0036 0.0 0.0634 2180.3 18344.8 2914.2 100 

10% 100 10 0.3620 0.0589 -0.0055 0.0035 3.5 0.0609 2343.6 18319.7 2939.3 100 

10% 100 20 0.3616 0.0557 -0.0059 0.0031 13.4 0.0586 2506.0 18295.1 2963.9 100 

10% 100 30 0.3627 0.0524 -0.0048 0.0028 23.6 0.0566 2666.1 18270.5 2988.5 100 

10% 100 40 0.3593 0.0538 -0.0082 0.0030 18.3 0.0549 2829.6 18245.1 3013.9 100 

10% 100 50 0.3581 0.0505 -0.0094 0.0026 27.1 0.0532 2991.1 18220.2 3038.8 100 

*displayed as the log(HR) 

  



 

E-8 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure E-4: Using PS stratification, using 10 strata, N=100, the mean, SE, bias and MSE (the absolute and percentage 
change) of the estimated treatment effect displayed as log(HR) and the model SE mean. 
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E-2 Full simulations using original data characteristics 

In the headers in all tables in this Appendix, Prevalence is Outcome Prevalence, Num Events is 

the Number of Future Strokes, Num WA is the Number of participants prescribed Warfarin and 

Num RI is the Number of participants prescribed Rivaroxaban. 

Table E-5: Full simulation runs using IPTW to generate the ATE, using original effect size. 

Preva-

lence 

N % 

Adj 

Mean* SE* Bias* MSE* MSE % 

change 

Model 

SE 

mean 

Num 

events 

num 

WA 

Num RI N 

valid 

0.5% 2100 -50 0.3038 0.4107 -0.0636 0.1727 -8.9 0.3728 103.5 18368.7 2890.3 2100 

0.5% 2100 -30 0.3064 0.4044 -0.0611 0.1672 -5.5 0.3668 106.8 18360.9 2898.1 2100 

0.5% 2100 -10 0.3100 0.3980 -0.0575 0.1616 -2.0 0.3610 110.0 18353.2 2905.8 2100 

0.5% 2100 0 0.3130 0.3945 -0.0544 0.1585 -0.0 0.3581 111.6 18349.4 2909.6 2100 

0.5% 2100 10 0.3208 0.3712 -0.0467 0.1399 11.7 0.3426 120.9 18324.5 2934.5 2100 

0.5% 2100 30 0.3289 0.3342 -0.0385 0.1131 28.6 0.3173 139.5 18275.0 2984.0 2100 

0.5% 2100 50 0.3365 0.3124 -0.0310 0.0985 37.9 0.2972 158.3 18225.0 3034.0 2100 

             

1% 1000 -50 0.3483 0.2792 -0.0191 0.0783 -10.7 0.2691 206.4 18369.6 2889.4 1000 

1% 1000 -30 0.3479 0.2731 -0.0196 0.0750 -5.9 0.2649 212.6 18361.7 2897.3 1000 

1% 1000 -10 0.3502 0.2675 -0.0172 0.0719 -1.6 0.2607 218.8 18354.0 2905.0 1000 

1% 1000 0 0.3494 0.2654 -0.0181 0.0708 -0.0 0.2587 222.0 18350.2 2908.8 1000 

1% 1000 10 0.3498 0.2502 -0.0176 0.0629 11.1 0.2476 240.4 18325.5 2933.5 1000 

1% 1000 30 0.3514 0.2270 -0.0161 0.0518 26.8 0.2286 276.8 18276.2 2982.8 1000 

1% 1000 50 0.3511 0.2109 -0.0164 0.0447 36.8 0.2135 313.3 18226.3 3032.7 1000 

             

10% 1000 -50 0.3626 0.0872 -0.0048 0.0076 -6.8 0.0875 2058.8 18369.6 2889.4 1000 

10% 1000 -30 0.3631 0.0862 -0.0044 0.0075 -4.3 0.0861 2113.4 18361.7 2897.3 1000 

10% 1000 -10 0.3643 0.0848 -0.0031 0.0072 -0.7 0.0848 2168.5 18354.0 2905.0 1000 

10% 1000 0 0.3650 0.0845 -0.0025 0.0071 -0.0 0.0842 2195.5 18350.2 2908.8 1000 

10% 1000 10 0.3628 0.0817 -0.0046 0.0067 6.2 0.0809 2357.8 18325.5 2933.5 1000 

10% 1000 30 0.3600 0.0761 -0.0074 0.0059 18.1 0.0752 2681.4 18276.2 2982.8 1000 

10% 1000 50 0.3581 0.0711 -0.0094 0.0051 28.1 0.0706 3005.7 18226.3 3032.7 1000 

*displayed as the log(HR) 
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Figure E-5: Using IPTW to generate the ATE, original effect size – the mean, SD, bias and MSE (the absolute and 
percentage change) of the estimated treatment effect displayed as log(HR) and the model SE mean. 
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Table E-6: Full simulation runs using IPTW to generate the ATT, using original effect size. 

Preva-

lence 

N % 

Adj 

Mean* SE* Bias* MSE* MSE % 

change 

Model 

SE 

mean 

Num 

events 

num 

WA 

Num RI N 

valid 

0.5% 1300 -50 0.3467 0.3186 -0.0207 0.1018 -9.2 0.3034 84.5 18369.5 2889.5 1300 

0.5% 1300 -30 0.3471 0.3130 -0.0203 0.0983 -5.4 0.2981 87.3 18361.7 2897.3 1300 

0.5% 1300 -10 0.3485 0.3088 -0.0189 0.0956 -2.5 0.2930 90.1 18353.9 2905.1 1300 

0.5% 1300 0 0.3497 0.3050 -0.0178 0.0933 -0.0 0.2904 91.4 18350.1 2908.9 1300 

0.5% 1300 10 0.3531 0.2874 -0.0143 0.0828 11.3 0.2769 99.5 18325.4 2933.6 1300 

0.5% 1300 30 0.3590 0.2611 -0.0084 0.0682 26.9 0.2548 115.3 18276.2 2982.8 1300 

0.5% 1300 50 0.3573 0.2453 -0.0101 0.0602 35.4 0.2378 130.6 18226.3 3032.7 1300 

             

1% 1000 -50 0.3560 0.2142 -0.0115 0.0460 -5.7 0.2119 168.2 18369.6 2889.4 1000 

1% 1000 -30 0.3564 0.2112 -0.0111 0.0447 -2.8 0.2084 173.6 18361.7 2897.3 1000 

1% 1000 -10 0.3577 0.2088 -0.0097 0.0437 -0.4 0.2051 178.8 18354.0 2905.0 1000 

1% 1000 0 0.3565 0.2083 -0.0110 0.0435 -0.0 0.2035 181.5 18350.2 2908.8 1000 

1% 1000 10 0.3562 0.1955 -0.0113 0.0384 11.9 0.1946 197.6 18325.5 2933.5 1000 

1% 1000 30 0.3608 0.1768 -0.0066 0.0313 28.1 0.1796 228.4 18276.2 2982.8 1000 

1% 1000 50 0.3610 0.1690 -0.0064 0.0286 34.3 0.1678 258.6 18226.3 3032.7 1000 

             

10% 1000 -50 0.3639 0.0664 -0.0035 0.0044 -5.7 0.0666 1695.6 18369.6 2889.4 1000 

10% 1000 -30 0.3644 0.0656 -0.0030 0.0043 -3.2 0.0656 1744.1 18361.7 2897.3 1000 

10% 1000 -10 0.3651 0.0647 -0.0023 0.0042 -0.2 0.0647 1792.7 18354.0 2905.0 1000 

10% 1000 0 0.3656 0.0646 -0.0018 0.0042 0.0 0.0643 1816.5 18350.2 2908.8 1000 

10% 1000 10 0.3630 0.0622 -0.0045 0.0039 7.1 0.0618 1962.9 18325.5 2933.5 1000 

10% 1000 30 0.3616 0.0570 -0.0058 0.0033 21.4 0.0576 2247.6 18276.2 2982.8 1000 

10% 1000 50 0.3603 0.0525 -0.0072 0.0028 32.9 0.0541 2524.5 18226.3 3032.7 1000 

*displayed as the log(HR) 
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Figure E-6: Using IPTW to generate the ATT, original effect size – the mean, SD, bias and MSE (the absolute and 
percentage change) of the estimated treatment effect displayed as log(HR) and the model SE mean. 
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Table E-7: Full simulation runs using 3to1 PS matching, using original effect size. 

Preva-

lence 

N % 

Adj 

Mean* SE* Bias* MSE* % MSE 

change 

Model 

SE 

mean 

Num 

events 

num 

WA 

Num RI N 

valid 

0.5% 3100 -50 0.4578 0.4851 0.0904 0.2434 -16.9 0.3878 46.5 8675.9 2892.0 3100 

0.5% 3100 -30 0.4501 0.4693 0.0827 0.2270 -9.0 0.3787 48.1 8698.7 2899.6 3100 

0.5% 3100 -10 0.4429 0.4572 0.0754 0.2146 -3.1 0.3697 49.8 8721.7 2907.2 3100 

0.5% 3100 0 0.4422 0.4503 0.0748 0.2083 -0.0 0.3655 50.6 8733.3 2911.1 3100 

0.5% 3100 10 0.4578 0.4180 0.0903 0.1828 12.2 0.3453 55.4 8808.1 2936.0 3100 

0.5% 3100 30 0.4278 0.3706 0.0604 0.1409 32.3 0.3097 66.2 8957.6 2985.9 3100 

0.5% 3100 50 0.4126 0.3386 0.0452 0.1167 44.0 0.2837 77.1 9107.5 3035.8 3100 

             

1% 1200 -50 0.4175 0.2996 0.0500 0.0922 -10.6 0.2547 92.6 8669.0 2889.7 1200 

1% 1200 -30 0.4124 0.2965 0.0450 0.0899 -7.8 0.2503 95.5 8691.8 2897.3 1200 

1% 1200 -10 0.4118 0.2904 0.0443 0.0862 -3.4 0.2458 98.6 8714.5 2904.8 1200 

1% 1200 0 0.4102 0.2857 0.0428 0.0834 0.0 0.2435 100.1 8726.2 2908.7 1200 

1% 1200 10 0.4219 0.2722 0.0545 0.0770 7.6 0.2319 109.5 8800.9 2933.6 1200 

1% 1200 30 0.4126 0.2530 0.0451 0.0660 20.9 0.2109 130.8 8950.2 2983.4 1200 

1% 1200 50 0.3930 0.2304 0.0255 0.0537 35.6 0.1943 152.4 9100.0 3033.3 1200 

             

10% 1000 -50 0.3716 0.0918 0.0042 0.0085 -7.3 0.0768 940.9 8667.2 2889.1 1000 

10% 1000 -30 0.3699 0.0899 0.0025 0.0081 -2.8 0.0759 968.3 8690.1 2896.7 1000 

10% 1000 -10 0.3670 0.0891 -0.0004 0.0079 -0.8 0.0749 998.3 8712.7 2904.2 1000 

10% 1000 0 0.3665 0.0888 -0.0010 0.0079 -0.0 0.0744 1013.4 8724.4 2908.1 1000 

10% 1000 10 0.3845 0.0839 0.0171 0.0073 7.0 0.0714 1100.0 8799.2 2933.1 1000 

10% 1000 30 0.3822 0.0747 0.0148 0.0058 26.4 0.0662 1290.0 8948.7 2982.9 1000 

10% 1000 50 0.3663 0.0711 -0.0011 0.0050 35.9 0.0618 1490.3 9098.3 3032.8 1000 

*displayed as the log(HR) 
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Figure E-7: Using 3to1 PS matching, original effect size – the mean, SD, bias and MSE (the absolute and percentage 
change) of the estimated treatment effect displayed as log(HR) and the model SE mean. 
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Table E-8: Full simulation runs using PS Stratification, using original effect size. 

Preva-

lence 

N % 

Adj 

Mean* SE* Bias* MSE* MSE % 

change 

Model 

SE 

mean 

Num 

events 

num 

WA 

Num RI N 

valid 

0.5% 1300 -50 0.3443 0.3129 -0.0232 0.0983 -9.7 0.2993 102.5 18369.5 2889.5 1300 

0.5% 1300 -30 0.3447 0.3074 -0.0228 0.0949 -5.9 0.2941 105.7 18361.7 2897.3 1300 

0.5% 1300 -10 0.3467 0.3028 -0.0207 0.0920 -2.7 0.2890 108.9 18353.9 2905.1 1300 

0.5% 1300 0 0.3481 0.2989 -0.0193 0.0897 0.0 0.2864 110.4 18350.1 2908.9 1300 

0.5% 1300 10 0.3522 0.2820 -0.0153 0.0797 11.1 0.2729 119.7 18325.4 2933.6 1300 

0.5% 1300 30 0.3583 0.2570 -0.0091 0.0661 26.3 0.2509 138.2 18276.2 2982.8 1300 

0.5% 1300 50 0.3569 0.2410 -0.0106 0.0581 35.2 0.2341 156.7 18226.3 3032.7 1300 

             

1% 1000 -50 0.3575 0.2113 -0.0099 0.0447 -6.8 0.2089 203.9 18369.6 2889.4 1000 

1% 1000 -30 0.3575 0.2080 -0.0099 0.0434 -3.6 0.2054 210.0 18361.7 2897.3 1000 

1% 1000 -10 0.3589 0.2055 -0.0085 0.0423 -1.0 0.2021 216.2 18354.0 2905.0 1000 

1% 1000 0 0.3575 0.2044 -0.0099 0.0419 -0.0 0.2006 219.3 18350.2 2908.8 1000 

1% 1000 10 0.3573 0.1929 -0.0102 0.0373 10.9 0.1916 237.6 18325.5 2933.5 1000 

1% 1000 30 0.3609 0.1743 -0.0065 0.0304 27.3 0.1768 273.9 18276.2 2982.8 1000 

1% 1000 50 0.3610 0.1654 -0.0064 0.0274 34.5 0.1651 310.1 18226.3 3032.7 1000 

             

10% 1000 -50 0.3643 0.0656 -0.0031 0.0043 -5.8 0.0656 2041.7 18369.6 2889.4 1000 

10% 1000 -30 0.3646 0.0649 -0.0028 0.0042 -3.6 0.0647 2096.2 18361.7 2897.3 1000 

10% 1000 -10 0.3654 0.0640 -0.0021 0.0041 -0.6 0.0638 2150.9 18354.0 2905.0 1000 

10% 1000 0 0.3658 0.0638 -0.0016 0.0041 -0.0 0.0634 2177.8 18350.2 2908.8 1000 

10% 1000 10 0.3637 0.0613 -0.0037 0.0038 7.5 0.0609 2339.4 18325.5 2933.5 1000 

10% 1000 30 0.3625 0.0563 -0.0049 0.0032 21.7 0.0567 2662.2 18276.2 2982.8 1000 

10% 1000 50 0.3611 0.0518 -0.0064 0.0027 33.1 0.0533 2985.0 18226.3 3032.7 1000 

*displayed as the log(HR) 
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Figure E-8: Using PS Stratification, original effect size – the mean, SD, bias and MSE (the absolute and percentage 
change) of the estimated treatment effect displayed as log(HR) and the model SE mean. 
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APPENDIX F – TABLES AND GRAPHS VARYING EFFECT SIZE 

F-1 Tables for different prevalence and fixed effect size 

In the headers in all tables in this Appendix, Prevalence is Outcome Prevalence, Num Events is 

the Number of Future Strokes, Num WA is the Number of participants prescribed Warfarin and 

Num RI is the Number of participants prescribed Rivaroxaban. 

IPTW for ATE 

Table F-1: Simulation runs using IPTW for ATE – Small effect. 

Preva-
lence 

N % m 
error 

Mean* SE* Bias* MSE* MSE* % 
**  

Model 
SE Mean 

Num 
event 

Num 
WA 

Num 
RI 

0.5% 2100 -50 0.3075 0.3998 -0.0600 0.1634 -14.3 0.3662 103.7 18300.5 2958.5 

0.5% 2100 -30 0.3103 0.3908 -0.0572 0.1559 -9.1 0.3577 107.0 18265.3 2993.7 

0.5% 2100 -10 0.3152 0.3803 -0.0523 0.1473 -3.1 0.3496 110.2 18230.5 3028.6 

0.5% 2100 0 0.3180 0.3749 -0.0494 0.1429 -0.0 0.3456 111.9 18213.0 3046.0 

0.5% 2100 10 0.3255 0.3451 -0.0420 0.1208 15.5 0.3252 121.4 18100.8 3158.2 

0.5% 2100 30 0.3349 0.3059 -0.0325 0.0946 33.8 0.2934 140.6 17875.5 3383.5 

0.5% 2100 50 0.3416 0.2757 -0.0258 0.0767 46.4 0.2689 160.1 17650.0 3609.0 

            

1% 1000 -50 0.3503 0.2720 -0.0172 0.0742 -14.4 0.2645 206.7 18301.5 2957.5 

1% 1000 -30 0.3505 0.2639 -0.0170 0.0698 -7.7 0.2585 212.9 18266.4 2992.6 

1% 1000 -10 0.3522 0.2575 -0.0152 0.0665 -2.5 0.2526 219.3 18231.8 3027.2 

1% 1000 0 0.3508 0.2543 -0.0166 0.0649 -0.0 0.2499 222.4 18214.5 3044.5 

1% 1000 10 0.3520 0.2348 -0.0154 0.0553 14.7 0.2348 241.2 18102.5 3156.5 

1% 1000 30 0.3533 0.2075 -0.0141 0.0432 33.4 0.2109 278.7 17877.4 3381.6 

1% 1000 50 0.3548 0.1871 -0.0127 0.0351 45.8 0.1922 316.6 17651.8 3607.2 

            

10% 200 -50 0.3654 0.0891 -0.0020 0.0079 -5.2 0.0858 2067.9 18298.3 2960.7 

10% 200 -30 0.3643 0.0893 -0.0031 0.0080 -5.9 0.0839 2122.2 18262.9 2996.1 

10% 200 -10 0.3649 0.0879 -0.0026 0.0077 -2.4 0.0821 2178.2 18228.2 3030.8 

10% 200 0 0.3656 0.0869 -0.0019 0.0075 -0.0 0.0812 2205.8 18210.7 3048.3 

10% 200 10 0.3631 0.0807 -0.0043 0.0065 13.6 0.0770 2373.1 18099.0 3160.0 

10% 200 30 0.3644 0.0720 -0.0031 0.0052 31.2 0.0697 2706.5 17872.3 3386.7 

10% 200 50 0.3615 0.0613 -0.0059 0.0038 49.8 0.0640 3042.1 17646.6 3612.4 

*displayed as the log(HR) **percent change 

  



 

F-2 
 

Table F-2: Simulation runs using IPTW for ATE – Medium Effect. 

Preva-

lence 

N % m 

error 

Mean* SE* Bias* MSE* MSE* % 

** 

Model 

SE 

mean 

Num 

event 

Num 

WA 

Num RI 

0.5% 2100 -50 0.3103 0.3907 -0.0572 0.1558 -19.4 0.3581 103.8 18189.3 3069.7 

0.5% 2100 -30 0.3128 0.3791 -0.0546 0.1466 -12.3 0.3472 107.2 18109.8 3149.2 

0.5% 2100 -10 0.3191 0.3656 -0.0483 0.1359 -4.2 0.3367 110.5 18030.4 3228.6 

0.5% 2100 0 0.3215 0.3584 -0.0460 0.1305 -0.0 0.3319 112.2 17990.7 3268.3 

0.5% 2100 10 0.3295 0.3270 -0.0380 0.1083 17.0 0.3069 122.1 17736.8 3522.3 

0.5% 2100 30 0.3400 0.2768 -0.0275 0.0773 40.7 0.2681 142.3 17228.1 4030.9 

0.5% 2100 50 0.3484 0.2441 -0.0190 0.0599 54.1 0.2394 162.9 16720.1 4538.9 

            

1% 1000 -50 0.3510 0.2682 -0.0165 0.0721 -18.8 0.2595 207.0 18190.5 3068.5 

1% 1000 -30 0.3515 0.2588 -0.0159 0.0671 -10.7 0.2520 213.4 18111.0 3148.0 

1% 1000 -10 0.3552 0.2494 -0.0123 0.0623 -2.6 0.2445 220.0 18031.4 3227.6 

1% 1000 0 0.3532 0.2460 -0.0142 0.0607 0.0 0.2412 223.3 17991.7 3267.3 

1% 1000 10 0.3555 0.2259 -0.0119 0.0511 15.8 0.2230 242.9 17737.4 3521.6 

1% 1000 30 0.3574 0.1943 -0.0101 0.0378 37.7 0.1940 282.3 17228.2 4030.8 

1% 1000 50 0.3614 0.1718 -0.0060 0.0295 51.4 0.1722 322.6 16719.9 4539.1 

            

10% 200 -50 0.3661 0.0880 -0.0013 0.0077 -4.7 0.0847 2072.1 18187.6 3071.4 

10% 200 -30 0.3655 0.0887 -0.0019 0.0078 -6.2 0.0824 2128.2 18108.5 3150.5 

10% 200 -10 0.3673 0.0877 -0.0001 0.0076 -3.7 0.0801 2185.9 18028.8 3230.2 

10% 200 0 0.3674 0.0861 -0.0000 0.0074 0.0 0.0790 2214.1 17988.4 3270.6 

10% 200 10 0.3635 0.0777 -0.0039 0.0060 18.3 0.0738 2386.9 17736.2 3522.8 

10% 200 30 0.3640 0.0684 -0.0034 0.0047 36.8 0.0650 2735.9 17225.9 4033.1 

10% 200 50 0.3630 0.0579 -0.0044 0.0034 54.5 0.0580 3087.3 16714.1 4544.9 

*displayed as the log(HR) **percent change 
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Table F-3: Simulation runs using IPTW for ATE – High Effect. 

Preva-

lence 

N % m 

error 

Mean* SE* Bias* MSE* MSE* % 

**  

Model SE 

mean 

Num 

event 

Num 

WA 

Num 

RI 

0.5% 2100 -50 0.3104 0.3932 -0.0570 0.1578 -19.8 0.3533 104.1 18057.7 3201.3 

0.5% 2100 -30 0.3147 0.3805 -0.0528 0.1475 -12.0 0.3406 107.6 17925.6 3333.4 

0.5% 2100 -10 0.3201 0.3667 -0.0473 0.1366 -3.8 0.3289 111.0 17793.5 3465.5 

0.5% 2100 0 0.3222 0.3601 -0.0452 0.1317 -0.0 0.3234 112.8 17727.6 3531.4 

0.5% 2100 10 0.3317 0.3233 -0.0357 0.1058 19.7 0.2951 123.1 17308.3 3950.7 

0.5% 2100 30 0.3443 0.2658 -0.0231 0.0711 46.0 0.2521 144.3 16471.0 4788.0 

0.5% 2100 50 0.3547 0.2268 -0.0127 0.0516 60.8 0.2208 166.2 15633.9 5625.1 

            

1% 1000 -50 0.3500 0.2666 -0.0174 0.0713 -19.3 0.2569 207.5 18058.8 3200.2 

1% 1000 -30 0.3513 0.2589 -0.0162 0.0672 -12.5 0.2484 214.2 17926.7 3332.3 

1% 1000 -10 0.3545 0.2480 -0.0129 0.0616 -3.0 0.2400 221.0 17794.6 3464.4 

1% 1000 0 0.3537 0.2442 -0.0137 0.0598 -0.0 0.2362 224.4 17728.5 3530.5 

1% 1000 10 0.3590 0.2198 -0.0084 0.0483 19.2 0.2159 244.8 17309.5 3949.5 

1% 1000 30 0.3625 0.1842 -0.0050 0.0339 43.3 0.1836 286.4 16471.8 4787.2 

1% 1000 50 0.3694 0.1571 0.0020 0.0247 58.7 0.1595 329.1 15635.0 5624.0 

            

10% 200 -50 0.3656 0.0880 -0.0018 0.0077 -7.2 0.0840 2077.6 18056.1 3202.9 

10% 200 -30 0.3660 0.0881 -0.0014 0.0077 -7.5 0.0814 2135.9 17923.7 3335.3 

10% 200 -10 0.3681 0.0867 0.0006 0.0075 -3.9 0.0789 2194.7 17791.8 3467.2 

10% 200 0 0.3674 0.0850 -0.0000 0.0072 -0.0 0.0776 2224.4 17724.9 3534.1 

10% 200 10 0.3647 0.0758 -0.0028 0.0057 20.3 0.0719 2405.1 17307.7 3951.3 

10% 200 30 0.3652 0.0657 -0.0022 0.0043 40.2 0.0622 2769.6 16471.5 4787.5 

10% 200 50 0.3651 0.0525 -0.0024 0.0027 61.8 0.0544 3141.0 15635.5 5623.5 

*displayed as the log(HR) **percent change 
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IPTW for ATT 

Table F-4: Simulation runs using IPTW ATT – Small Effect. 

Preva

-lence 

N % m 

error 

Mean* SE* Bias* MSE* MSE* % 

** 

Model 

SE mean 

Num 

event 

Num 

WA 

Num RI 

0.5% 1300 -50 0.3484 0.3151 -0.0190 0.0996 -12.0 0.2986 87.0 18301.1 2957.9 

0.5% 1300 -30 0.3498 0.3087 -0.0176 0.0955 -7.5 0.2917 90.7 18266.0 2993.0 

0.5% 1300 -10 0.3522 0.3015 -0.0152 0.0911 -2.5 0.2852 94.2 18231.3 3027.7 

0.5% 1300 0 0.3536 0.2979 -0.0138 0.0889 -0.0 0.2820 95.9 18213.9 3045.1 

0.5% 1300 10 0.3586 0.2756 -0.0088 0.0760 14.5 0.2656 105.9 18101.8 3157.2 

0.5% 1300 30 0.3610 0.2491 -0.0064 0.0620 30.2 0.2403 123.8 17876.9 3382.1 

0.5% 1300 50 0.3558 0.2281 -0.0116 0.0521 41.3 0.2213 139.8 17651.6 3607.4 

            

1% 1000 -50 0.3578 0.2130 -0.0097 0.0454 -5.9 0.2087 173.0 18301.5 2957.5 

1% 1000 -30 0.3599 0.2102 -0.0075 0.0442 -3.0 0.2042 180.0 18266.4 2992.6 

1% 1000 -10 0.3610 0.2079 -0.0064 0.0432 -0.8 0.2000 186.8 18231.8 3027.2 

1% 1000 0 0.3608 0.2071 -0.0066 0.0429 0.0 0.1981 190.2 18214.5 3044.5 

1% 1000 10 0.3629 0.1895 -0.0045 0.0359 16.3 0.1870 209.9 18102.5 3156.5 

1% 1000 30 0.3658 0.1707 -0.0016 0.0291 32.2 0.1696 244.8 17877.4 3381.6 

1% 1000 50 0.3654 0.1584 -0.0020 0.0251 41.6 0.1563 276.3 17651.8 3607.2 

            

10% 200 -50 0.3649 0.0624 -0.0026 0.0039 -0.5 0.0656 1744.4 18298.3 2960.7 

10% 200 -30 0.3650 0.0639 -0.0025 0.0041 -5.4 0.0644 1807.3 18262.9 2996.1 

10% 200 -10 0.3640 0.0621 -0.0034 0.0039 0.1 0.0633 1870.7 18228.2 3030.8 

10% 200 0 0.3643 0.0622 -0.0032 0.0039 0.0 0.0627 1901.5 18210.7 3048.3 

10% 200 10 0.3610 0.0575 -0.0064 0.0033 13.6 0.0596 2081.0 18099.0 3160.0 

10% 200 30 0.3613 0.0482 -0.0061 0.0024 39.0 0.0545 2401.6 17872.3 3386.7 

10% 200 50 0.3581 0.0423 -0.0094 0.0019 51.5 0.0506 2687.6 17646.6 3612.4 

*displayed as the log(HR) **percent change 
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Table F-5: Simulation runs using IPTW for ATT – Medium Effect. 

Preva-

lence 

N % m 

error 

Mean* SE* Bias* MSE* MSE* 

%** 

Model SE 

mean 

Num 

event 

Num 

WA 

Num 

RI 

0.5% 1300 -50 0.3615 0.3007 -0.0060 0.0904 -18.5 0.2937 90.7 18190.3 3068.7 

0.5% 1300 -30 0.3642 0.2883 -0.0032 0.0831 -8.9 0.2854 95.7 18110.8 3148.2 

0.5% 1300 -10 0.3687 0.2780 0.0013 0.0772 -1.2 0.2777 100.3 18031.3 3227.7 

0.5% 1300 0 0.3698 0.2763 0.0023 0.0763 0.0 0.2741 102.5 17991.7 3267.3 

0.5% 1300 10 0.3728 0.2593 0.0053 0.0672 11.9 0.2559 114.8 17737.5 3521.5 

0.5% 1300 30 0.3691 0.2306 0.0017 0.0531 30.4 0.2279 135.2 17228.8 4030.2 

0.5% 1300 50 0.3652 0.2082 -0.0022 0.0433 43.2 0.2071 151.5 16720.9 4538.1 

            

1% 1000 -50 0.3665 0.2033 -0.0009 0.0413 -10.7 0.2061 180.6 18190.5 3068.5 

1% 1000 -30 0.3672 0.1982 -0.0002 0.0392 -5.2 0.2008 190.1 18111.0 3148.0 

1% 1000 -10 0.3703 0.1939 0.0029 0.0376 -0.7 0.1957 199.2 18031.4 3227.6 

1% 1000 0 0.3688 0.1933 0.0013 0.0373 -0.0 0.1934 203.7 17991.7 3267.3 

1% 1000 10 0.3706 0.1800 0.0032 0.0324 13.2 0.1807 228.0 17737.4 3521.6 

1% 1000 30 0.3692 0.1599 0.0017 0.0255 31.6 0.1612 267.6 17228.2 4030.8 

1% 1000 50 0.3694 0.1460 0.0020 0.0213 42.9 0.1466 299.7 16719.9 4539.1 

            

10% 200 -50 0.3657 0.0631 -0.0018 0.0040 0.4 0.0651 1814.5 18187.6 3071.4 

10% 200 -30 0.3664 0.0657 -0.0010 0.0043 -7.9 0.0636 1899.6 18108.5 3150.5 

10% 200 -10 0.3670 0.0652 -0.0005 0.0042 -6.0 0.0623 1982.7 18028.8 3230.2 

10% 200 0 0.3680 0.0633 0.0005 0.0040 0.0 0.0616 2021.9 17988.4 3270.6 

10% 200 10 0.3627 0.0599 -0.0048 0.0036 9.9 0.0580 2241.6 17736.2 3522.8 

10% 200 30 0.3604 0.0520 -0.0070 0.0027 31.1 0.0520 2604.3 17225.9 4033.1 

10% 200 50 0.3622 0.0478 -0.0052 0.0023 42.2 0.0476 2890.2 16714.1 4544.9 

*displayed as the log(HR) **percent change 
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Table F-6: Simulation runs using IPTW for ATT – High Effect. 

Preva-

lence 

N % m 

error 

Mean* SE* Bias* MSE* MSE* % 

**  

Model SE 

mean 

Num 

event 

Num 

WA 

Num 

RI 

0.5% 1300 -50 0.3688 0.3123 0.0013 0.0974 -18.2 0.2939 95.3 18058.4 3200.6 

0.5% 1300 -30 0.3720 0.3052 0.0045 0.0931 -12.9 0.2855 101.6 17926.4 3332.6 

0.5% 1300 -10 0.3742 0.2920 0.0068 0.0852 -3.4 0.2776 107.4 17794.1 3464.9 

0.5% 1300 0 0.3772 0.2871 0.0098 0.0825 -0.0 0.2736 110.1 17728.1 3530.9 

0.5% 1300 10 0.3769 0.2579 0.0095 0.0666 19.3 0.2543 124.7 17309.1 3949.9 

0.5% 1300 30 0.3751 0.2243 0.0076 0.0503 39.0 0.2240 146.7 16471.5 4787.5 

0.5% 1300 50 0.3733 0.2040 0.0059 0.0416 49.5 0.2016 163.3 15635.0 5624.0 

            

1% 1000 -50 0.3664 0.2112 -0.0010 0.0446 -15.2 0.2077 189.6 18058.8 3200.2 

1% 1000 -30 0.3677 0.2083 0.0002 0.0434 -12.1 0.2022 202.0 17926.7 3332.3 

1% 1000 -10 0.3693 0.1995 0.0018 0.0398 -2.8 0.1968 213.3 17794.6 3464.4 

1% 1000 0 0.3703 0.1967 0.0029 0.0387 -0.0 0.1941 218.5 17728.5 3530.5 

1% 1000 10 0.3739 0.1742 0.0065 0.0304 21.5 0.1803 247.0 17309.5 3949.5 

1% 1000 30 0.3735 0.1492 0.0060 0.0223 42.4 0.1589 290.0 16471.8 4787.2 

1% 1000 50 0.3771 0.1398 0.0097 0.0196 49.3 0.1431 322.4 15635.0 5624.0 

            

10% 200 -50 0.3639 0.0634 -0.0036 0.0040 5.1 0.0658 1898.8 18056.1 3202.9 

10% 200 -30 0.3656 0.0675 -0.0018 0.0045 -7.5 0.0643 2007.5 17923.7 3335.3 

10% 200 -10 0.3693 0.0669 0.0019 0.0045 -5.5 0.0628 2107.2 17791.8 3467.2 

10% 200 0 0.3682 0.0652 0.0007 0.0042 -0.0 0.0621 2156.9 17724.9 3534.1 

10% 200 10 0.3635 0.0590 -0.0039 0.0035 17.6 0.0580 2414.2 17307.7 3951.3 

10% 200 30 0.3635 0.0510 -0.0040 0.0026 38.4 0.0514 2803.7 16471.5 4787.5 

10% 200 50 0.3650 0.0469 -0.0024 0.0022 48.0 0.0465 3090.9 15635.5 5623.5 

*displayed as the log(HR) **percent change 
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3to1 PS Matching 

Table F-7: Simulation runs using 3to1 PS matching – Small Effect. 

Preva-

lence 

N % m 

error 

Mean* SE* Bias* MSE* MSE* % 

**  

Model SE 

mean 

Num 

event 

Num 

WA 

Num 

RI 

0.5% 3100 -50 0.4538 0.4752 0.0864 0.2332 -20.9 0.3787 48.8 8881.4 2960.5 

0.5% 3100 -30 0.4442 0.4570 0.0768 0.2147 -11.3 0.3663 51.5 8986.1 2995.4 

0.5% 3100 -10 0.4360 0.4404 0.0685 0.1986 -2.9 0.3543 54.2 9090.7 3030.2 

0.5% 3100 0 0.4372 0.4337 0.0698 0.1929 0.0 0.3486 55.5 9143.2 3047.7 

0.5% 3100 10 0.4518 0.3953 0.0844 0.1634 15.3 0.3223 63.3 9481.2 3160.4 

0.5% 3100 30 0.4270 0.3448 0.0595 0.1224 36.5 0.2811 80.1 10157.3 3385.8 

0.5% 3100 50 0.4077 0.3098 0.0402 0.0976 49.4 0.2516 97.2 10833.6 3611.2 

            

1% 1200 -50 0.4150 0.2975 0.0475 0.0907 -12.2 0.2497 97.1 8874.8 2958.3 

1% 1200 -30 0.4059 0.2908 0.0385 0.0860 -6.4 0.2430 102.3 8979.6 2993.2 

1% 1200 -10 0.4056 0.2848 0.0382 0.0825 -2.1 0.2366 107.3 9083.8 3027.9 

1% 1200 0 0.4055 0.2818 0.0381 0.0808 0.0 0.2335 109.7 9135.9 3045.3 

1% 1200 10 0.4228 0.2639 0.0553 0.0726 10.1 0.2181 124.6 9473.3 3157.8 

1% 1200 30 0.4087 0.2375 0.0413 0.0581 28.1 0.1924 158.0 10149.5 3383.2 

1% 1200 50 0.3934 0.2198 0.0260 0.0489 39.4 0.1734 191.8 10824.5 3608.2 

            

10% 200 -50 0.3640 0.0832 -0.0035 0.0069 -1.3 0.0753 987.9 8893.8 2964.6 

10% 200 -30 0.3629 0.0836 -0.0045 0.0070 -2.5 0.0738 1033.7 8998.7 2999.6 

10% 200 -10 0.3598 0.0823 -0.0076 0.0068 0.3 0.0723 1081.4 9103.1 3034.4 

10% 200 0 0.3608 0.0825 -0.0067 0.0068 0.0 0.0716 1104.5 9155.9 3052.0 

10% 200 10 0.3806 0.0741 0.0132 0.0056 17.2 0.0675 1247.2 9492.2 3164.1 

10% 200 30 0.3761 0.0671 0.0087 0.0046 33.1 0.0607 1555.9 10170.5 3390.2 

10% 200 50 0.3662 0.0632 -0.0012 0.0040 41.6 0.0554 1874.0 10849.3 3616.4 

*displayed as the log(HR) **percent change 

  



 

F-8 
 

Table F-8: Simulation runs using 3to1 PS Matching – Medium Effect. 

Preva-

lence 

N % m 

error 

Mean* SE* Bias* MSE* MSE* % 

**  

Model SE 

mean 

Num 

event 

Num 

WA 

Num 

RI 

0.5% 3100 -50 0.4472 0.4647 0.0797 0.2223 -23.1 0.3641 52.9 9215.5 3071.8 

0.5% 3100 -30 0.4421 0.4481 0.0746 0.2063 -14.3 0.3479 57.1 9453.3 3151.1 

0.5% 3100 -10 0.4370 0.4288 0.0696 0.1886 -4.5 0.3321 61.4 9691.5 3230.5 

0.5% 3100 0 0.4399 0.4187 0.0725 0.1805 -0.0 0.3250 63.5 9810.6 3270.2 

0.5% 3100 10 0.4520 0.3785 0.0846 0.1504 16.7 0.2927 76.2 10573.7 3524.6 

0.5% 3100 30 0.4286 0.3278 0.0612 0.1111 38.4 0.2467 103.0 12099.4 4033.1 

0.5% 3100 50 0.4103 0.2857 0.0428 0.0834 53.8 0.2163 130.1 13622.5 4540.8 

            

1% 1200 -50 0.4101 0.2936 0.0427 0.0879 -26.0 0.2410 105.4 9207.6 3069.2 

1% 1200 -30 0.4089 0.2801 0.0414 0.0801 -14.7 0.2316 113.5 9445.7 3148.6 

1% 1200 -10 0.4133 0.2657 0.0459 0.0726 -4.0 0.2228 121.4 9682.7 3227.6 

1% 1200 0 0.4117 0.2606 0.0442 0.0698 0.0 0.2187 125.5 9801.1 3267.0 

1% 1200 10 0.4224 0.2467 0.0550 0.0638 8.5 0.1989 150.7 10564.9 3521.6 

1% 1200 30 0.4062 0.2172 0.0387 0.0486 30.3 0.1696 204.1 12093.0 4031.0 

1% 1200 50 0.3902 0.1973 0.0228 0.0394 43.5 0.1497 258.4 13615.6 4538.5 

            

10% 200 -50 0.3649 0.0834 -0.0025 0.0069 -19.9 0.0730 1062.1 9230.3 3076.8 

10% 200 -30 0.3656 0.0824 -0.0018 0.0068 -17.1 0.0708 1137.6 9467.4 3155.8 

10% 200 -10 0.3647 0.0792 -0.0027 0.0062 -8.2 0.0686 1215.3 9702.1 3234.0 

10% 200 0 0.3650 0.0762 -0.0024 0.0058 0.0 0.0676 1253.1 9822.0 3274.0 

10% 200 10 0.3794 0.0753 0.0120 0.0058 -0.2 0.0620 1493.4 10581.0 3527.0 

10% 200 30 0.3743 0.0659 0.0068 0.0044 24.3 0.0539 1992.6 12107.3 4035.8 

10% 200 50 0.3703 0.0617 0.0029 0.0038 34.2 0.0482 2495.1 13629.0 4543.0 

*displayed as the log(HR) **percent change 
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Table F-9: Simulation runs using 3to1 PS matching – High Effect. 

Preva-

lence 

N % m 

error 

Mean* SE* Bias* MSE* MSE* % 

** 

Model SE 

mean 

Num 

event 

Num 

WA 

Num 

RI 

0.5% 3100 -50 0.4510 0.4566 0.0836 0.2154 -27.4 0.3461 58.1 9608.3 3202.8 

0.5% 3100 -30 0.4465 0.4375 0.0791 0.1976 -16.8 0.3259 64.4 10003.7 3334.6 

0.5% 3100 -10 0.4393 0.4118 0.0719 0.1747 -3.3 0.3077 70.8 10399.9 3466.6 

0.5% 3100 0 0.4377 0.4052 0.0703 0.1691 0.0 0.2998 73.9 10597.1 3532.4 

0.5% 3100 10 0.4481 0.3670 0.0806 0.1412 16.5 0.2643 92.8 11855.0 3951.7 

0.5% 3100 30 0.4264 0.3108 0.0589 0.1001 40.8 0.2172 131.9 14368.0 4789.3 

0.5% 3100 50 0.4161 0.2741 0.0486 0.0775 54.2 0.1882 170.7 16879.6 5626.5 

            

1% 1200 -50 0.4076 0.3012 0.0402 0.0922 -30.1 0.2300 115.7 9598.9 3199.6 

1% 1200 -30 0.4041 0.2869 0.0367 0.0836 -17.9 0.2180 128.0 9995.3 3331.8 

1% 1200 -10 0.4021 0.2715 0.0346 0.0748 -5.5 0.2075 140.1 10389.5 3463.2 

1% 1200 0 0.3993 0.2645 0.0319 0.0709 -0.0 0.2026 146.1 10586.8 3528.9 

1% 1200 10 0.4119 0.2441 0.0445 0.0615 13.2 0.1801 183.4 11845.3 3948.4 

1% 1200 30 0.4038 0.2078 0.0364 0.0445 37.3 0.1496 261.1 14361.5 4787.1 

1% 1200 50 0.3891 0.1895 0.0217 0.0364 48.7 0.1303 339.1 16871.8 5623.9 

            

10% 200 -50 0.3680 0.0798 0.0006 0.0063 -14.5  1159.9 9628.3 3209.4 

10% 200 -30 0.3678 0.0809 0.0003 0.0065 -17.6 0.0671 1274.3 10021.3 3340.4 

10% 200 -10 0.3673 0.0778 -0.0001 0.0060 -8.8 0.0644 1388.7 10412.5 3470.8 

10% 200 0 0.3670 0.0746 -0.0004 0.0055 -0.0 0.0631 1446.1 10611.3 3537.1 

10% 200 10 0.3805 0.0746 0.0130 0.0057 -3.2 0.0566 1800.5 11869.3 3956.4 

10% 200 30 0.3717 0.0645 0.0043 0.0042 24.9 0.0479 2528.8 14375.8 4791.9 

10% 200 50 0.3705 0.0607 0.0031 0.0037 33.5 0.0422 3259.1 16888.9 5629.6 

*displayed as the log(HR) **percent change 
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PS Stratification 

Table F-10: Simulation runs using PS Stratification – Small Effect. 

Preva-

lence 

N % m 

error 

Mean* SE* Bias* MSE* MSE* % 

** 

Model SE 

mean 

Num 

event 

Num 

WA 

Num 

RI 

0.5% 1300 -50 0.3470 0.3072 -0.0204 0.0947 -12.5 0.2936 102.8 18301.1 2957.9 

0.5% 1300 -30 0.3481 0.3009 -0.0193 0.0909 -7.9 0.2866 106.1 18266.0 2993.0 

0.5% 1300 -10 0.3506 0.2935 -0.0168 0.0864 -2.6 0.2799 109.3 18231.3 3027.7 

0.5% 1300 0 0.3518 0.2899 -0.0157 0.0842 0.0 0.2767 111.0 18213.9 3045.1 

0.5% 1300 10 0.3591 0.2671 -0.0084 0.0714 15.2 0.2599 120.5 18101.8 3157.2 

0.5% 1300 30 0.3617 0.2409 -0.0057 0.0580 31.1 0.2346 139.6 17876.9 3382.1 

0.5% 1300 50 0.3576 0.2218 -0.0098 0.0493 41.5 0.2159 158.6 17651.6 3607.4 

            

1% 1000 -50 0.3595 0.2085 -0.0079 0.0435 -8.4 0.2051 204.4 18301.5 2957.5 

1% 1000 -30 0.3604 0.2046 -0.0070 0.0419 -4.3 0.2005 210.7 18266.4 2992.6 

1% 1000 -10 0.3609 0.2020 -0.0065 0.0408 -1.7 0.1962 217.1 18231.8 3027.2 

1% 1000 0 0.3600 0.2003 -0.0074 0.0401 -0.0 0.1942 220.3 18214.5 3044.5 

1% 1000 10 0.3643 0.1842 -0.0032 0.0339 15.6 0.1828 239.2 18102.5 3156.5 

1% 1000 30 0.3658 0.1645 -0.0017 0.0270 32.6 0.1655 276.7 17877.4 3381.6 

1% 1000 50 0.3657 0.1530 -0.0018 0.0234 41.7 0.1524 314.0 17651.8 3607.2 

            

10% 200 -50 0.3675 0.0615 0.0001 0.0038 -3.9 0.0645 2051.6 18298.3 2960.7 

10% 200 -30 0.3673 0.0626 -0.0001 0.0039 -7.4 0.0632 2106.6 18262.9 2996.1 

10% 200 -10 0.3659 0.0610 -0.0016 0.0037 -2.2 0.0620 2162.6 18228.2 3030.8 

10% 200 0 0.3661 0.0603 -0.0013 0.0036 -0.0 0.0615 2190.2 18210.7 3048.3 

10% 200 10 0.3654 0.0562 -0.0020 0.0031 13.3 0.0583 2357.7 18099.0 3160.0 

10% 200 30 0.3653 0.0474 -0.0021 0.0022 38.3 0.0532 2689.5 17872.3 3386.7 

10% 200 50 0.3619 0.0415 -0.0055 0.0017 51.9 0.0493 3022.0 17646.6 3612.4 

*displayed as the log(HR) **percent change 
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Table F-11: Simulation runs using PS Stratification – Medium Effect. 

Preva-

lence 

N % m 

error 

Mean* SE* Bias* MSE* MSE* % 

** 

Model SE 

mean 

Num 

event 

Num 

WA 

Num 

RI 

0.5% 1300 -50 0.3577 0.2899 -0.0097 0.0841 -18.0 0.2856 103.2 18190.3 3068.7 

0.5% 1300 -30 0.3591 0.2791 -0.0083 0.0779 -9.3 0.2766 106.7 18110.8 3148.2 

0.5% 1300 -10 0.3619 0.2696 -0.0056 0.0727 -2.0 0.2684 110.1 18031.3 3227.7 

0.5% 1300 0 0.3621 0.2670 -0.0054 0.0713 0.0 0.2647 111.8 17991.7 3267.3 

0.5% 1300 10 0.3686 0.2494 0.0012 0.0621 12.8 0.2454 121.8 17737.5 3521.5 

0.5% 1300 30 0.3688 0.2184 0.0014 0.0477 33.1 0.2177 141.8 17228.8 4030.2 

0.5% 1300 50 0.3645 0.1998 -0.0030 0.0399 44.0 0.1978 161.9 16720.9 4538.1 

            

1% 1000 -50 0.3668 0.1966 -0.0007 0.0386 -13.8 0.2000 205.2 18190.5 3068.5 

1% 1000 -30 0.3664 0.1911 -0.0010 0.0365 -7.5 0.1942 211.9 18111.0 3148.0 

1% 1000 -10 0.3677 0.1856 0.0003 0.0344 -1.4 0.1888 218.6 18031.4 3227.6 

1% 1000 0 0.3650 0.1843 -0.0024 0.0339 0.0 0.1863 222.0 17991.7 3267.3 

1% 1000 10 0.3696 0.1716 0.0021 0.0294 13.3 0.1731 241.9 17737.4 3521.6 

1% 1000 30 0.3681 0.1507 0.0007 0.0227 33.2 0.1539 281.3 17228.2 4030.8 

1% 1000 50 0.3683 0.1385 0.0009 0.0192 43.5 0.1399 320.6 16719.9 4539.1 

            

10% 200 -50 0.3696 0.0606 0.0022 0.0037 0.6 0.0631 2058.0 18187.6 3071.4 

10% 200 -30 0.3683 0.0622 0.0009 0.0039 -4.8 0.0615 2115.7 18108.5 3150.5 

10% 200 -10 0.3682 0.0622 0.0007 0.0038 -4.6 0.0600 2174.3 18028.8 3230.2 

10% 200 0 0.3682 0.0608 0.0008 0.0037 -0.0 0.0593 2203.2 17988.4 3270.6 

10% 200 10 0.3672 0.0561 -0.0002 0.0031 14.9 0.0555 2378.2 17736.2 3522.8 

10% 200 30 0.3665 0.0477 -0.0009 0.0023 38.4 0.0497 2725.7 17225.9 4033.1 

10% 200 50 0.3646 0.0438 -0.0028 0.0019 47.9 0.0454 3074.0 16714.1 4544.9 

*displayed as the log(HR) **percent change 
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Table F-12: Simulation runs using PS Stratification – High Effect. 

Preva-

lence 

N % m 

error 

Mean* SE* Bias* MSE* MSE* % 

**  

Model SE 

mean 

Num 

event 

Num 

WA 

Num 

RI 

0.5% 1300 -50 0.3618 0.2878 -0.0056 0.0828 -16.9 0.2793 103.8 18058.4 3200.6 

0.5% 1300 -30 0.3628 0.2803 -0.0047 0.0785 -10.9 0.2693 107.4 17926.4 3332.6 

0.5% 1300 -10 0.3642 0.2698 -0.0032 0.0727 -2.7 0.2604 111.0 17794.1 3464.9 

0.5% 1300 0 0.3651 0.2662 -0.0023 0.0708 0.0 0.2561 112.8 17728.1 3530.9 

0.5% 1300 10 0.3693 0.2396 0.0018 0.0574 19.0 0.2356 123.5 17309.1 3949.9 

0.5% 1300 30 0.3723 0.2061 0.0049 0.0425 40.0 0.2066 144.7 16471.5 4787.5 

0.5% 1300 50 0.3715 0.1878 0.0041 0.0353 50.2 0.1863 165.9 15635.0 5624.0 

            

1% 1000 -50 0.3668 0.1962 -0.0006 0.0385 -16.3 0.1962 206.2 18058.8 3200.2 

1% 1000 -30 0.3657 0.1924 -0.0018 0.0370 -11.9 0.1895 213.2 17926.7 3332.3 

1% 1000 -10 0.3655 0.1853 -0.0019 0.0343 -3.8 0.1835 220.3 17794.6 3464.4 

1% 1000 0 0.3641 0.1819 -0.0033 0.0331 0.0 0.1808 223.9 17728.5 3530.5 

1% 1000 10 0.3698 0.1617 0.0023 0.0261 21.0 0.1665 244.9 17309.5 3949.5 

1% 1000 30 0.3712 0.1387 0.0037 0.0192 41.8 0.1463 286.7 16471.8 4787.2 

1% 1000 50 0.3753 0.1280 0.0079 0.0164 50.3 0.1319 328.4 15635.0 5624.0 

            

10% 200 -50 0.3702 0.0597 0.0027 0.0036 2.2 0.0620 2066.3 18056.1 3202.9 

10% 200 -30 0.3681 0.0617 0.0007 0.0038 -4.4 0.0601 2127.2 17923.7 3335.3 

10% 200 -10 0.3687 0.0621 0.0013 0.0038 -5.7 0.0584 2188.8 17791.8 3467.2 

10% 200 0 0.3669 0.0604 -0.0005 0.0036 0.0 0.0576 2219.4 17724.9 3534.1 

10% 200 10 0.3671 0.0528 -0.0003 0.0028 23.5 0.0534 2404.4 17307.7 3951.3 

10% 200 30 0.3672 0.0472 -0.0002 0.0022 38.9 0.0473 2770.5 16471.5 4787.5 

10% 200 50 0.3670 0.0431 -0.0005 0.0019 49.0 0.0429 3137.6 15635.5 5623.5 

*displayed as the log(HR) **percent change 
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F-2 Plots at given prevalence for different effect sizes 

IPTW for ATE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure F-1: Using IPTW for ATE, 0.5% prevalence, displaying the mean, SD, bias and MSE (the absolute and 
percentage change) of the estimated treatment effect displayed as log(HR) and the model SE mean for different 

effect sizes. 
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Figure F-2: IPTW for ATE, 1% prevalence, displaying the mean, SD, bias and MSE (the absolute and percentage 
change) of the estimated treatment effect displayed as log(HR) and the model SE mean for different effect sizes. 
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Figure F-3: IPTW for ATE, 10% prevalence, displaying the mean, SD, bias and MSE (the absolute and percentage 
change) of the estimated treatment effect displayed as log(HR) and the model SE mean for different effect sizes. 
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IPTW for ATT 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure F-4: IPTW for ATT, 0.5% prevalence, displaying the mean, SD, bias and MSE (the absolute and percentage 
change) of the estimated treatment effect displayed as log(HR) and the model SE mean for different effect sizes. 
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Figure F-5: IPTW for ATT, 1% prevalence, displaying the mean, SD, bias and MSE (the absolute and percentage 
change) of the estimated treatment effect displayed as log(HR) and the model SE mean for different effect sizes. 
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Figure F-6: IPTW for ATT, 10% prevalence, displaying the mean, SD, bias and MSE (the absolute and percentage 
change) of the estimated treatment effect displayed as log(HR) and the model SE mean for different effect sizes. 
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3to1 PS matching  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure F-7: 3to1 PS matching, 0.5% prevalence, displaying the mean, SD, bias and MSE (the absolute and percentage 
change) of the estimated treatment effect displayed as log(HR) and the model SE mean for different effect sizes. 
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Figure F-8: 3to1 PS matching, 1% prevalence, displaying the mean, SD, bias and MSE (the absolute and percentage 
change) of the estimated treatment effect displayed as log(HR) and the model SE mean for different effect sizes. 
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Figure F-9: 3to1 PS matching, 10% prevalence, displaying the mean, SD, bias and MSE (the absolute and percentage 
change) of the estimated treatment effect displayed as log(HR) and the model SE mean for different effect sizes. 
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PS Stratification 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure F-10: PS stratification, 0.5% prevalence, displaying the mean, SD, bias and MSE (the absolute and percentage 
change) of the estimated treatment effect displayed as log(HR) and the model SE mean for different effect sizes. 
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Figure F-11: PS stratification, 1% prevalence, displaying the mean, SD, bias and MSE (the absolute and percentage 
change) of the estimated treatment effect displayed as log(HR) and the model SE mean for different effect sizes. 
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Figure F-12: PS stratification, 10% prevalence, displaying the mean, SD, bias and MSE (the absolute and percentage 
change) of the estimated treatment effect displayed as log(HR) and the model SE mean for different effect sizes. 
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APPENDIX G – ADDITIONAL TABLES AND GRAPHS 

G-1 Tables and graphs for 5% prevalence simulations 
In the headers in all tables in this Appendix, Prevalence is Outcome Prevalence, Num Events is 

the Number of Future Strokes, Num WA is the Number of participants prescribed Warfarin and 

Num RI is the Number of participants prescribed Rivaroxaban. 

5% prevalence runs for IPTW for ATE 

Table G-1: 5% prevalence simulation runs for IPTW for ATE. 

Effect 
size 

Preva-
lence 

N % m 
error 

Mean* SE* Bias* MSE* MSE* % 
**  

Num 
event 

Num 
WA 

Num RI 

ORIG 5% 250 -50 0.3594 0.1094 -0.0080 0.0120 -14.9 1184.7 18367.3 2891.7 

ORIG 5% 250 -30 0.3596 0.1069 -0.0079 0.0115 -9.7 1218.5 18359.5 2899.5 

ORIG 5% 250 -10 0.3632 0.1040 -0.0042 0.0108 -3.3 1252.5 18351.8 2907.2 

ORIG 5% 250 0 0.3643 0.1023 -0.0031 0.0104 0.0 1268.8 18347.8 2911.1 

ORIG 5% 250 10 0.3628 0.1008 -0.0047 0.0101 2.9 1367.9 18323.0 2936.0 

ORIG 5% 250 30 0.3606 0.0944 -0.0068 0.0089 14.5 1566.2 18273.6 2985.4 

ORIG 5% 250 50 0.3617 0.0878 -0.0058 0.0077 26.2 1767.8 18223.5 3035.5 

            

SMALL 5% 250 -50 0.3591 0.1100 -0.0083 0.0121 -13.1 1186.4 18300.0 2959.0 

SMALL 5% 250 -30 0.3593 0.1078 -0.0081 0.0116 -8.6 1220.7 18264.4 2994.6 

SMALL 5% 250 -10 0.3611 0.1045 -0.0063 0.0109 -1.9 1255.2 18229.7 3029.3 

SMALL 5% 250 0 0.3612 0.1035 -0.0062 0.0107 -0.0 1271.7 18212.3 3046.7 

SMALL 5% 250 10 0.3615 0.0959 -0.0059 0.0092 14.2 1373.0 18100.8 3158.2 

SMALL 5% 250 30 0.3634 0.0848 -0.0041 0.0072 33.0 1577.6 17873.8 3385.2 

SMALL 5% 250 50 0.3635 0.0757 -0.0040 0.0057 46.6 1786.0 17647.6 3611.4 

            

MED 5% 250 -50 0.3603 0.1075 -0.0072 0.0116 -13.9 1188.9 18188.6 3070.4 

MED 5% 250 -30 0.3610 0.1049 -0.0064 0.0110 -8.4 1224.2 18109.4 3149.6 

MED 5% 250 -10 0.3635 0.1024 -0.0039 0.0105 -3.0 1260.3 18029.6 3229.4 

MED 5% 250 0 0.3633 0.1009 -0.0041 0.0102 -0.0 1277.2 17989.6 3269.4 

MED 5% 250 10 0.3610 0.0910 -0.0065 0.0083 18.3 1382.4 17737.2 3521.8 

MED 5% 250 30 0.3620 0.0797 -0.0054 0.0064 37.4 1596.6 17227.7 4031.3 

MED 5% 250 50 0.3651 0.0693 -0.0023 0.0048 52.8 1815.8 16715.6 4543.4 

            

HIGH 5% 250 -50 0.3601 0.1076 -0.0073 0.0116 -11.1 1192.3 18057.7 3201.3 

HIGH 5% 250 -30 0.3623 0.1049 -0.0051 0.0110 -5.3 1229.0 17925.7 3333.3 

HIGH 5% 250 -10 0.3644 0.1028 -0.0030 0.0105 -1.0 1265.9 17793.3 3465.7 

HIGH 5% 250 0 0.3637 0.1023 -0.0038 0.0104 0.0 1283.6 17726.8 3532.2 

HIGH 5% 250 10 0.3620 0.0903 -0.0055 0.0082 21.8 1394.5 17309.1 3949.9 

HIGH 5% 250 30 0.3646 0.0754 -0.0028 0.0057 45.6 1618.6 16474.3 4784.7 

HIGH 5% 250 50 0.3678 0.0630 0.0004 0.0039 62.1 1851.0 15636.8 5622.2 

*displayed as the log(HR) **percent change 
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5% prevalence runs for IPTW for ATE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure G-1:IPTW for ATE, 5% prevalence - the mean, SD, bias and MSE (absolute & % change) of the estimated 
treatment effect displayed as log(HR). 
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G-2 Graphs plotting all PS methods 

10% prevalence 
10% prevalence with Original effect size 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure G-2: Study PS methods, 10% prevalence, original effect size - the mean, SD, bias, MSE (absolute and % 
change) and model SE mean of the estimated treatment effect displayed as log(HR). 
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10% prevalence with Small effect size 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure G-3: Study PS methods, 10% prevalence, Small effect size - the mean, SD, bias, MSE (absolute and % change) 
and model SE mean of the estimated treatment effect displayed as log(HR). 
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10% prevalence with Medium effect size 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure G-4: Study PS methods, 10% prevalence, Medium effect size - the mean, SD, bias, MSE (absolute and % 
change) and model SE mean of the estimated treatment effect displayed as log(HR). 
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10% prevalence with High effect size 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure G-5: Study PS methods, 10% prevalence, High effect size - the mean, SD, bias, MSE (absolute and % change) 
and model SE mean of the estimated treatment effect displayed as log(HR). 
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1% prevalence 
1% prevalence for Original effect size 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure G-6: Study PS methods, 1% prevalence, Original effect size - the mean, SD, bias, MSE (absolute and % change) 
and model SE mean of the estimated treatment effect displayed as log(HR). 
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1% prevalence with Small effect size 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure G-7: Study PS methods, 1% prevalence, Small effect size - the mean, SD, bias, MSE (absolute and % change) 
and model SE mean of the estimated treatment effect displayed as log(HR). 
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1% prevalence with Medium effect size 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure G-8: Study PS methods, 1% prevalence, Medium effect size - the mean, SD, bias, MSE (absolute and % change) 
and model SE mean of the estimated treatment effect displayed as log(HR). 
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1% prevalence with High effect size 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure G-9: Study PS methods, 1% prevalence, High effect size - the mean, SD, bias, MSE (absolute and % change) 
and model SE mean of the estimated treatment effect displayed as log(HR). 
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0.5% prevalence 
0.5% prevalence with Original effect size 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure G-10: Study PS methods, 0.5% prevalence, Original effect size - the mean, SD, bias, MSE (absolute and % 
change) and model SE mean of the estimated treatment effect displayed as log(HR). 
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0.5% prevalence for Small effect size 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure G-11: Study PS methods, 0.5% prevalence, Small effect size - the mean, SD, bias, MSE (absolute and % change) 
and model SE mean of the estimated treatment effect displayed as log(HR). 
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0.5% prevalence with Medium effect size 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure G-12: Study PS methods, 0.5% prevalence, Medium effect size - the mean, SD, bias, MSE (absolute and % 
change) and model SE mean of the estimated treatment effect displayed as log(HR). 
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0.5% prevalence with High effect size 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure G-13: Study PS methods, 0.5% prevalence, High effect size - the mean, SD, bias, MSE (absolute and % change) 
and model SE mean of the estimated treatment effect displayed as log(HR). 
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G-3 Graphs PS methods for ATE and PS methods for ATT 

For ATE 
ATE 10% prevalence 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure G-14: Study PS methods for ATE, 10% prevalence - the mean, SD, bias, MSE (absolute and % change) and 
model SE mean of the estimated treatment effect displayed as log(HR). 
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ATE 1% prevalence 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure G-15: Study PS methods for ATE, 1% prevalence - the mean, SD, bias, MSE (absolute and % change) and model 
SE mean of the estimated treatment effect displayed as log(HR). 
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ATE for 0.5% prevalence 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure G-16: Study PS methods for ATE, 0.5% prevalence - the mean, SD, bias, MSE (absolute and % change) and 
model SE mean of the estimated treatment effect displayed as log(HR). 
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For ATT 
ATT 10% prevalence 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure G-17: Study PS methods for ATT, 10% prevalence - the mean, SD, bias, MSE (absolute and % change) and 
model SE mean of the estimated treatment effect displayed as log(HR). 
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ATT 1% prevalence 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure G-18: Study PS methods for ATT, 1% prevalence - the mean, SD, bias, MSE (absolute and % change) and model 
SE mean of the estimated treatment effect displayed as log(HR). 
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ATT 0.5% prevalence 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure G-19: Study PS methods for ATT, 0.5% prevalence - the mean, SD, bias, MSE (absolute and % change) and 
model SE mean of the estimated treatment effect displayed as log(HR). 

 

 

 


