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A B S T R A C T

Direct Air Capture (DAC) using solid sorbents has emerged as a promising technology for achieving net-negative 
CO₂ emissions and meeting global climate targets. Among the available sorbent materials, amine-functionalised 
metal–organic frameworks (MOFs) have gained significant attention due to their tuneable structures and strong 
affinity for CO₂ under ambient conditions. In particular, mmen-Mg2(dobpdc) has demonstrated exceptional CO₂ 
uptake capacity, making it a strong candidate for DAC applications. However, its process-level performance 
optimisation under realistic operating conditions remains insufficiently explored. This study introduces the first 
comprehensive multi-objective optimisation of a temperature–vacuum swing adsorption (TVSA) process 
employing the amine-functionalised metal–organic framework mmen-Mg₂(dobpdc) as the sorbent for direct air 
capture (DAC) of CO₂. The optimisation simultaneously targets minimisation of energy consumption and max
imisation of CO₂ recovery and productivity, while ensuring high product purity, thereby providing new insights 
into the process–material interactions governing DAC performance. To achieve this, a validated dynamic tem
perature vacuum swing adsorption (TVSA) model was developed in Aspen Adsorption, integrated with a sur
rogate artificial neural network (ANN) and optimised using the Non-dominated Sorting Genetic Algorithm 
(NSGA-II). This approach facilitates efficient multi-objective optimisation of key process variables, significantly 
reducing computational time from approximately 350 days to two hours. The resulting Pareto fronts reveal clear 
trade-offs between specific energy consumption (SEC), recovery, and productivity at purities above 95 %. The 
optimised design achieved a 37 % increase in recovery, a threefold improvement in productivity, and a 14.9 % 
reduction in SEC, at the cost of a modest 3 % decrease in CO₂ purity (from 98 % to 95 %) compared to the base 
case. Moreover, the study highlights the strong influence of ambient temperature on process performance, 
showing that mmen-Mg2(dobpdc) exhibits enhanced CO₂ uptake below 8 ◦C, demonstrating its suitability for 
DAC operation in cool climates.

1. Introduction

Atmospheric carbon dioxide (CO2) concentration over the past three 
glacial cycles increased from approximately 180 ppm (ppm) to 427.87 
ppm as recorded in July 2025 [1], with an average annual growth rate of 
nearly two ppm [2,3]. This escalation has accelerated global climate 
change and underscored the urgency of mitigation strategies. To address 
the Paris Agreement 2015 goals—restricting warming to below 2 ◦C and 
ideally 1.5 ◦C above pre-industrial levels—substantial efforts in decar
bonisation are required [4] [5]. While conventional carbon capture, 
utilisation, and storage (CCUS) technologies are critical components of 

mitigation strategies, their focus on point sources limits their ability to 
address dispersed emissions. According to the International Energy 
Agency (IEA), CCUS could reduce global CO2 emissions by nearly 20 % 
and reduce the cost of future climate mitigation by up to 70 % [2,5]. In 
this context, direct air capture (DAC) has gained attention as a com
plementary negative emission technology to address both current and 
historical CO2 emissions directly from the atmosphere [6,7].

Currently, post-combustion carbon capture can be effectively un
dertaken through a variety of technologies, including absorption [8,9], 
adsorption, membrane separation [10], and cryogenic distillation pro
cesses [11,12], each encompassing diverse techniques and methodolo
gies [13]. The adsorption process has emerged as a promising alternative 
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to conventional absorption, particularly due to its ability to overcome 
key limitations such as high solvent degradation, corrosiveness, and 
substantial energy requirement for solvent regeneration [14,15]. 
Adsorption processes employ various regeneration methods and are 
typically classified based on whether regeneration involves altering 
temperature, pressure, or both. Compared to other separation technol
ogies, temperature vacuum swing adsorption (TVSA) offers several ad
vantages for DAC. By combining elevated temperature and vacuum, 
TVSA enables higher product purity [16], faster desorption rate 
compared to temperature swing adsorption (TSA) [17,18], greater 
working capacity [17], and lower energy consumption than pressure 
vacuum swing adsorption (PVSA) [19]. A comparative study of TSA, 
pressure temperature swing adsorption (PTSA), and TVSA cycles using 
Polyethylene terephthalate (PET)-waste-derived activated carbon re
ported that the TVSA configuration achieved the highest exergy effi
ciency (32.9 %), confirming its superior energy utilisation and practical 
applicability for post-combustion CO2 capture under moderate feed 
concentrations (10–20 vol%) [20]. TVSA technology has been success
fully applied to amine-functionalised nanocellulose for extracting CO2 
and water vapour from ambient air (10–30 ◦C, 20–80 % relative hu
midity (RH)). The process achieves over 94.4 % CO₂ purity, requiring 
approximately 12.5 kJ/mol CO2 of mechanical work and 493–640 kJ/ 
mol CO₂ of low-grade heat, depending on humidity [21]. Zhu et al. 
developed a three-step steam-assisted temperature vacuum-swing 
adsorption (S-TVSA) cycle based on a packed column for use in DAC 
systems. The process achieved 4.45 mol/ kg CO2 day productivity at 
0.295 MJ /mol energy demand using low-grade heat (< 100 ◦C) via 
steam purging [22].

The performance of any adsorbent is dependent on the specific 
process configuration including the duration of the adsorption and 
desorption cycles, as well as the vacuum level and temperature applied 
during the desorption stage. To accurately assess the suitability and 
competitiveness of a sorbent, it needs to be evaluated through detailed 
simulations and standardised optimisation across various process de
signs [23]. In engineering, many optimisation problems involve simul
taneously optimising multiple objectives, known as multi-objective 
optimisation problems (MOOPs). These problems become particularly 
challenging when the objectives conflict with one another, meaning that 
the optimal solution for one objective differs from that of another. When 
solving such problems, whether constraints or not, the results are typi
cally a set of trade-off optimal solutions referred to as Pareto-optimal 
solutions [24]. The Non-Dominated Sorting Genetic Algorithm (NSGA- 
II) was initially proposed by Deb et al. [25] as an efficient multi- 
objective evolutionary algorithm that introduced a fast non-dominated 
sorting procedure, an elitist selection mechanism, and a parameter- 
less crowding distance operator for diversity preservation. Through 

validation on several benchmark problems, NSGA-II demonstrated su
perior convergence and solution diversity compared to other contem
porary approaches such as Pareto-archived evolution strategy (PAES) 
[26] and strength Pareto EA (SPEA) [27]. It is a widely applied and 
effective evolutionary algorithm specifically developed to address 
MOOPs, providing a Powerful decision-space exploration capabilities 
based on the principles of Genetic Algorithm (GA). NSGA-II operates 
based on four key mechanisms: Non-Dominated Sorting, Elite Preserving 
Operator, Crowding Distance, and the Selection Operator [28]. This 
algorithm has been extensively applied in engineering for identifying 
Pareto-optimal solutions in problems involving multiple conflicting 
objectives. For example, NSGA-II was used to optimise three different 
TSA process configurations: (1) fixed-bed TSA with pellets, (2) fixed-bed 
TSA with hollow fibers, and (3) moving-bed TSA with pellets, by 
simultaneously minimising energy consumption and maximising pro
ductivity, resulting in Pareto fronts that satisfied the imposed con
straints of 95 % CO2 purity and 90 % recovery [29]. In another study by 
Bagheri et al. [30], NSGA-II was applied to optimise a TSA cycle design 
for ethane purification, aiming to minimise specific energy consumption 
while maximising hydrocarbon recovery and ethane productivity, 
resulting in valuable trade-off solutions.

For cyclic adsorption systems such as PSA and TSA, optimising per
formance indicators like purity, recovery, productivity, and specific 
energy consumption is essential, but computationally intensive [31]. 
This is due to the need for dynamic simulations to achieve cyclic steady- 
state conditions (CSS) under varying operational parameters, often 
requiring hundreds to thousands of CSS [32]. While steady-state ap
proaches have reduced computational time for PSA/VSA processes [30], 
the TSA process remains challenging due to longer cycle durations in 
both dynamic and steady-state simulations [30]. In TVSA, the large 
number of operating variables increases and their strong interdepen
dence with performance targets further complicate simulation and 
optimisation, making direct optimisation increasingly time and resource 
intensive. In our case, a single simulation run using the detailed process 
model takes up 2 to 10 min on a standard desktop computer, making 
multi-objective optimisation involving thousands of simulations prac
tically infeasible. One approach to mitigate the high computational cost 
associated with detailed process simulations is the use of shortcut 
models [33,34], which simplify the underlying physics to reduce simu
lation time. Zhao et al. [35] employed a shortcut fixed-bed TSA model to 
compare various adsorbents and cycle configurations for post- 
combustion CO2 capture. While this framework enabled rapid compar
ative assessment of the relation between cycle design and adsorbent 
properties, the authors suggesting that future studies should incorporate 
mass-transfer effects and bed configuration for more realistic evaluation. 
Such simplified models often omit critical descriptors from detailed 

Nomenclature

Ts Gas phase temperature (◦C)
Tg Solid phase temperature (◦C)
Y predicted Predicted value by ANN
Y actual Actual value of performance indicators
R2 Coefficient of determination
AARD Average absolute relative deviation
RMSE Root mean squared error
GA Genetic algorithm
LHS Latin hypercube sampling
PIs Performance indicators
PDEs Partial differential equations

Abbreviations
VSA Vacuum swing adsorption

PAES Pareto-archived evolution strategy
MOOPs Multi-objective optimisation problems
NSGA-II Non-dominating sorting genetic algorithm
ANN Artificial neural network
SEC Specific energy consumption (MJ/kg CO2)
DAC Direct air capture
MOF Metal organic framework
CCUS Carbon capture, utilisation, and storage
TVSA Temperature vacuum swing adsorption
RH Relative humidity
LDF Linear driving force
S-TVSA Steam assistance TVSA
PSA Pressure swing adsorption
TSA Temperature swing adsorption
SPEA Strength Pareto EA
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simulations, such as mass and heat transfer, which limits their applica
bility for systems involving slow adsorption kinetics, such as amine- 
functionalised sorbents [33,36].

An alternative and increasingly popular solution is the adoption of 

surrogate models, which aim to reduce problem dimensionality while 
maintaining the fidelity of the detailed simulations when trained on 
sufficiently large datasets [36]. Common Surrogate modelling tech
niques include support vector machine [37], radial basis function [38], 

Fig. 1. Schematic of the optimisation procedures employed in this study.

Fig. 2. Schematic of the TVSA process modelled in Aspen adsorption, along with a summary of input data and cycle organiser [43].
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polynomial regression [39], artificial neural network (ANN) [40], and 
Gaussian process regression model [41]. With the broader rise of arti
ficial intelligence (AI) in engineering applications, ANNs have found 
widespread use in CCS research, including simulating and optimising 
CO2 capture processes, as well as for predicting effective physico
chemical properties of sorbents. Du et al. [31] developed a hybrid 
surrogate-based framework integrating a convolutional neural network 
(CNN) with the NSGA-III algorithm to optimise a VPSA process for CO2 
removal from confined environments. Similarly, ANN-based surrogate 
models within an NSGA-II framework for PSA cycle optimisation have 
been employed by Subraveti et al. [42], for pre-combustion CO2 capture. 
The results of these studies demonstrate that ANNs not only provide an 
accurate approximation of detailed capture processes, but also signifi
cantly reduce the computational time required for multi-objective 
optimisation.

This study developed a TVSA cycle incorporating both time- and 
event-driven steps to optimise the DAC process for a gas mixture con
taining N2 and CO2 at an atmospheric concentration of 400 ppm using 
mmen-Mg2(dobpdc). A two-step approach was employed, coupling a 
neural network-based surrogate model with the NSGA-II algorithm for 
multi-objective optimisation. In the first step, an artificial neural 
network (ANN) with two hidden layers is trained on simulation data 
generated by the detailed TVSA model and verified using an indepen
dent dataset to predict key process indicators, including CO2 purity, 
recovery, productivity, and Specific energy consumption (SEC). In the 
second step, NSGA-II is used to perform a multi-objective optimisation of 
the trained ANN surrogate model, with CO2 recovery, productivity, and 
SEC defined as the objective functions. Finally, the process is analysed 
using performance indicators and decision variables, demonstrating 
how these variables influenced the process performance. The resulting 
Pareto solutions illustrate the trade-off between SEC and CO2 recovery, 
providing valuable insights for DAC process design. Fig. 1 illustrates the 
complete workflow leading to the optimisation stage.

2. Process description and methodology

2.1. Modelling and simulation of TVSA process

A dynamic TVSA model was developed in Aspen Adsorption V14 to 
evaluate the technical performance of mmem-Mg2(dobpdc) under DAC 
conditions. The software simulates the complete adsorption/desorption 
cycle by incorporating mass, energy, and momentum balances to predict 
system behaviour and evaluate key process performance indicators, 
including CO2 purity, recovery, productivity, and SEC. A schematic of 
the TVSA process, the parameter values used in the simulation, and cycle 
durations are shown in Fig. 2. The feed gas mixture, containing 400 ppm 
CO2 and 0.9996 % N2, was introduced at 1.013 bar, 296.15 K, and a flow 
rate of 17.2 N mL/min. The governing equations and detailed modelling 
approach, including kinetic and equilibrium models and their parame
ters, are described comprehensively in our previous work [43]. The 

model is assumed to be one-dimensional, ignoring radial gradients, with 
constant adsorbent and wall properties. The gas mixture follows ideal 
gas behaviour. The partial differential equations (PDEs) are solved using 
the UDS1 discretisation method with 20 nodes. The adsorption process is 
non-isothermal and adiabatic, with heat conduction in both gas and 
solid phases, and local thermal equilibrium assumed (Ts = Tg). Heat of 
adsorption and heat capacities are considered constant. Pressure drop is 
calculated using the Ergun equation. CO2 adsorption behaviour on 
mmen-Mg2(dobpdc) is described by the Sips isotherm model. Adsorption 
kinetics is modelled using the linear driving force (LDF) approach below 
the step pressure and the Avrami fractional-order model above it [44]. 
The complete simulation methodology and results have been performed 
and reported in detail in [43], which is referenced here for modelling 
specifics.

2.2. Optimisation problem

The results from the structured sensitivity analysis [43] revealed that 
multiple process parameters significantly influence process perfor
mance, often through nonlinear interactions. A summary of these effects 
is presented below:

A decrease in feed temperature enhances the CO2 adsorption ca
pacity and prolongs the adsorption time. While this extended duration 
improves CO2 recovery, it can negatively impact process productivity by 
reducing the number of annual cycles. To mitigate this drawback, 
increasing the feed flow rate offers an alternative approach, as it allows 
the system to reach saturation without significantly expanding the 
adsorption time. Reducing the vacuum pressure further contributes to 
improvement in CO2 purity, recovery, and productivity by enhancing 
the thermodynamic driving force for desorption. However, this benefit 
comes at the cost of increased SEC. Notably, a relationship exists be
tween feed temperature and the required vacuum pressure: lower feed 
temperatures shift the isotherm curve toward lower step pressures, 
allowing for more efficient desorption at milder vacuum conditions. In 
addition, the sorbent exhibits a threshold for heating temperature in the 
desorption step that is dependent on the applied vacuum level and 
desorption duration. At deeper vacuum pressures, the equilibrium par
tial pressure of CO2 decreases, enabling effective desorption at lower 
temperatures [45], and it necessitates a prolonged desorption time. The 
duration of the desorption step also influences CO2 purity and recovery, 
enhancing these metrics up to a specific limit. However, extended 
desorption times reduce productivity due to fewer operational cycles per 
year. Furthermore, there is a connection between desorption time and 
the thermal energy required for the desorption stage: longer desorption 
duration results in reduced heat demand for the regeneration step, 
which can positively affect SEC.

Due to the complex and interdependent effects of the process vari
ables on process performance, the optimisation problem becomes highly 
intricate. Therefore, an advanced optimisation technique is necessary to 
identify optimal solutions by managing the trade-offs between selected 
performance indicators, TVSA operating parameters, and feed specifi
cations. CO2 Purity, recovery, productivity, and SEC are the key process 
performance indicators (PIs). The corresponding equations used to 
evaluate these indicators are presented in Table 1. The total energy 
demand consists of two components: electrical energy required by the 
vacuum pump and thermal energy supplied to the heat exchanger. The 
electrical energy consumption of the vacuum pump was calculated using 
the thermodynamic expression shown in Table 1, while thermal energy 
input for the heat exchanger was determined through Aspen Adsorption 
simulations. Due to the negligible pressure drop across the adsorption 
bed observed under experimental conditions, the energy consumption 
by the fan was considered insignificant and excluded from the overall 
energy analysis. In alignment with the requirements of DAC processes, 
the optimisation aims to maximise both recovery and productivity while 
minimising SEC. Six parameters influencing process performance were 
selected as decision variables, with their upper and lower bounds 

Table 1 
Formulas for performance indicators.

Performance indicators Unit Formula

CO2 purity % ∫ tcycle
0 FproductyCO2 dt

∑m
i=1

∫ tcycle
0 Fproductyidt

Recovery % ∫ tcycle
0

(
yproduct,CO2 Fproduct

⃒
⃒
z=L

)
dt

∫ tcycle
0

(
yfeed,CO2 Ffeed

⃒
⃒
z=0

)
dt

Productivity Kmol/kg.h 3600 ×
∫ tcycle

0
(
FproductyCO2

)
dt

wadsorbent tcycle

SEC (vacuum) MJ/kg CO2
∫ tcycle

0
FvacPvacγ
η(γ − 1)

⎡

⎢
⎣

(
Pfeed

Pvac

)1− 1
γ
− 1

⎤

⎥
⎦dt

∫ tcycle
0 Fproductyproduct,CO2 dt
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established through sensitivity analysis [43]. Constraining the decision 
variable ranges based on the sensitivity analysis results improved 
convergence and reduced the overall complexity of the optimisation 
problem.

2.3. Surrogate model development

2.3.1. Data generation and pre-processing
To develop the data-driven component of the surrogate model using 

various neural network algorithms, it was essential to generate a broad, 
uniform, and sufficiently large dataset. The comprehensiveness and di
versity of the training data significantly influence the accuracy, 
robustness, and predictive capability of the surrogate model results. To 
ensure both adequate randomness and full coverage of the design space, 
the Latin Hypercube Sampling (LHS) method was employed for data 
generation [46]. A MATLAB-based interface was developed to automate 
the transfer of generated design points to Aspen Adsorption and to 
extract simulation output data into Microsoft Excel. A total of 2500 

Fig. 3. The probability density distribution of each decision variable: vacuum pressure, desorption time, feed temperature, adsorption time, heating temperature, 
and feed flow rate, with overlaid normal probability density functions (red curves). (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.)

Fig. 4. The probability distributions of the performance indicators (SEC, CO2 purity, recovery, and productivity), with overlaid normal probability density functions 
(red curves). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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samples were generated using the LHS approach, covering a wide range 
of operational conditions defined by the selected decision variables. The 
generated operating conditions were simulated using Aspen Adsorption 
under the TVSA model, and performance indicators – CO2 purity, re
covery, SEC, and productivity- were extracted from the simulation 
result. To ensure the accuracy of the dataset, the Aspen adsorption 
model was first validated against experimental data [43].

Fig. 3 presents the frequency distribution of each decision variable 
and normal probability density functions. The decision variables follow 
a uniform distribution, reflecting the use of LHS sampling. In contrast, 
the frequency distribution of performance indicators shown in Fig. 4
does not exhibit a normal distribution. Notably, CO2 purity shows a 
right-skewed distribution, while SEC displays a pronounced left tail, 
indicating a wide range of simulation outcomes for these metrics. The 
observed skewness originates from the intrinsic behaviour of the Aspen 
Adsorption model rather than the sampling method. The input variable 
ranges were defined through preliminary single-variable sensitivity 
analyses to exclude unrealistic operating conditions. Thus, the skewed 
distributions reflect genuine process responses within the feasible DAC 
design space. In the subsequent stage of data pre-processing, a loga
rithmic transformation is applied to CO2 purity and SEC, shown in Fig. 5, 
to address their pronounced skewness. This transformation helps 
approximate a normal distribution and improve the data symmetry of 
these performance indicators. Additionally, due to the substantial dif
ferences in the order of magnitude between the individual input and 
output variables, data normalisation is required before model training. A 
normalisation is performed using the functions described in Eqs. 1 and 2, 
where x and y represent the original input and output values, respec
tively; normalised denotes the scaled value; min and max correspond to 
the minimum and maximum values of each feature. Finally, the entire 
dataset is divided into a training, validation, and test sets with a ratio 80 
%:10 %:10 %. 

xnormalised =
xi − xmin

xmax − xmin
(1) 

ynormalised =
yi − ymin

ymax − ymin
(2) 

2.3.2. Surrogate model structure and training
An ANN model comprises three types of layers: an input layer, one or 

more hidden layers, and an output layer, all composed of interconnected 
processing units known as neurons. The input features of the ANN model 
include feed flow rate, feed temperature, vacuum pressure, adsorption 
time, desorption time, and the heat requirement for regeneration pa
rameters, which are recognise for their significant impact on process 
performance. The outputs of the ANN model are CO2 purity, recovery, 
SEC, and productivity, which are considered reliable performance in
dicators for evaluating the system.

In the development of data-driven models like ANN, determining the 
appropriate hyperparameters – including the number of hidden layers, 
the number of neurons in each layer, the activation functions, and the 
training algorithm are crucial for model accuracy and generalisation. In 

this study, the heuristic approach of manual trial and error was initially 
used to assess the suitability of different activation functions. However, 
to more systematically and efficiently determine the full network ar
chitecture, we adapted a genetic algorithm (GA) as a hyperparameter 
optimisation strategy. GAs are population-based metaheuristic search 
methods inspired by the principles of natural selection and genetics. 
They operate by evolving a population of candidate solutions (ANN 
configurations) through processes such as selection, crossover, and 
mutation, iteratively searching for architectures that maximise model 
performance. There are some studies that use the GA approach for 
selecting the surrogate model structure [47,48].

Three critical aspects of the ANN design are optimised through the 
GA algorithm: (1) the number of hidden layers (up to three), as 
increasing network depth on small datasets makes them prone to 
generating overfitted models, reducing generalisation ability [49], while 
too few layers may result in underfitting, limiting the network capacity 
to capture complex patterns [50]. This issue is particularly pronounced 
in models with high complexity and high-dimensional training patterns, 
where the model performance can significantly degrade on unseen data. 
(2) The number of neurons in each hidden layer, which influences the 
network’s ability to capture the nonlinear relationship between inputs 
and outputs. Too many neurons may lead to overfitting, while too few 
may cause underfitting. (3) The type of activation function used in 
hidden layers, which affects the network’s learning dynamics and 
approximation capability. Each candidate ANN generated within the GA 
population was constructed with different architectural parameters (e. 
g., number of layers activation function). Each network was trained on 
the predefined training dataset, and its performance was then evaluated 
using a separate validation dataset. This procedure allowed the GA to 
assess networks based on their validation accuracy and progressively 
evolve toward architectures with improved predictive performance. The 
coefficient of determination (R2), the root mean square error (RMSE), 
and average absolute relative deviation (AARD) were used as evaluation 
metrics to assess the predictive accuracy and reliability of different 
neural network architectures. R2 evaluate how well the predicted values 
match the actual data, AARD measures the average absolute relative 
error between actual and predicted values, and RMSE quantifies the 
average magnitude of prediction error. These metrics are calculated 
using the formulas 3 to 5, Where yactual is the actual target value obtained 
by simulation, ypredicted is the predicted value from the ANN, yactual,ave is 
the mean of the actual target values, i is the index of data samples, and n 
is the number of data points. Following the initial optimisation of the 
ANN architecture using the GA, the best-performing network configu
ration, identified based on the evaluation metrics, R2, RMSE, and AARD, 
is selected for further validation. To assess the generalisability and 
reliability of the surrogate model, the selected ANN was integrated into 
the NSGA-II framework. NSGA-II was executed multiple times using the 
GA-derived ANN to generate a diverse set of pareto solutions. Each 
design proposed by the ANN was then input into Aspen Adsorption to 
compute the key performance indicators; CO2 purity, recovery, pro
ductivity, and SEC. Subsequently, the performance metrics predicted by 
the ANN were independently validated by comparing them against the 

Fig. 5. The probability density distribution of SEC, and CO2 purity after log transformation, with overlaid normal probability density functions (red curves). (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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corresponding values obtained from Aspen simulations. This compari
son enabled a comprehensive assessment of the surrogate model’s pre
dictive accuracy in representing the true process behaviour across a 
wide range of operating conditions. The procedures for developing the 
ANN are shown in Fig. 6. 

R2 = 1 −

∑n

i=1

(
yactual − ypredicted

)2

∑n

i=1

(
yactual − yactual,ave

)2 (3) 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1

(
yactual − ypredicted

)2
√

(4) 

AARD =
100
n

∑n

i=1
abs

(
yactual − ypredicted

yactual

)

(5) 

2.4. TVSA process optimisation

After developing the surrogate model, determining the optimal 
parameter configuration, and rigorously validating its predictive accu
racy, the NSGA-II algorithm was employed to perform multi-objective 
optimisation of the TVSA process, targeting three conflicting objec
tives: productivity, recovery, and SEC. NSGA-II was selected due to its 
ability to overcome shortcomings of traditional evolutionary algorithms, 
such as the lack of elitism and the reliance on manually defined sharing 
parameters [28]. A key strength of multi-objective optimisers like 
NSGA-II lies in their capacity to generate a well-distributed Pareto front, 
enabling informed decision-making by revealing the trade-offs among 
competing objectives [51]. The NSGA-II algorithm is often employed as 
a benchmark for evaluating the performance of new optimisation algo
rithms [28]. In this study, NSGA-II is integrated with an ANN to optimise 
key performance metrics of the process, including CO2 purity, recovery, 
productivity, and SEC. The selected decision variables are adsorption 
time, desorption time, vacuum pressure, heating temperature, feed flow 
rate, and feed temperature. The flow chart illustrating the procedures of 
the NSGA-II algorithm is shown in Fig. 7. The optimisation process 

Table 2 
Range of Decision variables used in the optimisation process.

Process parameters Unit Lower bond Upper bond

Adsorption time s 5000 10,000
Desorption time s 200 2000
Vacuum pressure Bar 0.07 0.15
Heating temperature 0C 120 150
Feed flow rate Kmol/h 1 e-4 5 e-4
Feed temperature 0C 5 30

Fig. 6. Flowchart of the procedure for developing the ANN model, from data generation to final model construction.
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begins with the initialisation of a population within NSGA-II, where 
each encodes are potential solutions defined by a specific set of decision 
variable values. These values are transferred into the trained ANN 

model, which estimates the corresponding performance metrics-CO2 
purity, recovery, productivity, and SEC. The predicted outcomes are 
then fed back to the NSGA-II algorithm for fitness evaluation. NSGA-II 

Fig. 7. Flowchart of the sequence of procedure in the NSGA-II optimiser.

Fig. 8. The results of sensitivity analysis of six decision variables on the CO2 purity, recovery, specific energy consumption and productivity [44].
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ranks the population using a non-dominated sorting approach, classi
fying individuals into different Pareto fronts. The first front consists of 
non-dominated solutions, while subsequent fronts are incrementally 
dominated by those preceding them. To maintain solution diversity, a 
crowding distance is calculated for each individual within the same 
front, quantifying its proximity to neighbouring solutions. Selection of 
solutions is performed using a binary tournament, considering both their 
rank and crowding distance. Solutions with a higher rank are selected 
first. When solutions share the same rank, preference is given to the one 
with the greater crowding distance. The selected individuals undergo 
crossover and mutation to generate a new offspring population. This 
new offspring is then combined with the parent population, and the 
combined pool is re-sorted using non-dominated sorting. The top- 
performing solutions based on rank and crowding distance are carried 
forward to the next generation. This iterative process continues until a 
specific number of generations is reached. The final output is a set of 
Pareto-optimal solutions, offering trade-offs among the conflicting ob
jectives. The selection of an appropriate population size and the 
maximum number of generations in an optimisation problem typically 
depends on the complexity of the process and is often refined through 
trial and error to achieve the desired level of accuracy.

3. Results and discussion

3.1. Process simulation

The TVSA process model was previously developed and validated 
against experimental data. Following this, an extensive sensitivity 
analysis was conducted to evaluate the influence of key operational 
parameters on process performance. The full details of this analysis, 

including the impact of each parameter and the corresponding graphical 
results, are presented in [43]. Fig. 8 presents the results of the sensitivity 
analysis, highlighting the influence of each selected parameter on the 
key performance indicators. These parameters were prioritised based on 
their significant impact on performance indicators such as CO2 purity, 
recovery, productivity, and SEC. Based on the outcomes of the sensi
tivity study, a set of decision variables and their corresponding ranges 
were identified, as summarised in Table 2. These ranges are consistently 
used to generate a simulation dataset of 2500 samples for neural 
network training using the LHS approach and also served as input 
bounds for the NSGA-II optimisation framework. This structured meth
odology ensures that both the surrogate model and optimisation process 
are grounded in realistic and physically meaningful operating 
conditions.

3.2. ANN-surrogate model: Development and reliability analysis

The ANN model is trained using 2500 data samples generated from 
the Aspen Adsorption simulations. The structure of the surrogate model 
and its optimal hyperparameters have been determined through a sys
tematic multi-step procedure, as illustrated in Fig. 6. (See Fig. 9.) (See 
Fig. 16.)

After separating the dataset into training, validation, and test (80 %, 
10 %, and 10 % respectively), in the first step, the number of hidden 
layers and the type of activation function are specified using a GA al
gorithm optimisation framework. Over 1000 neural network configu
rations are evaluated, varying in the number of hidden layers (ranging 
from 1 to 3), the number of neurons per layer, and the activation 
function (either logsig or tansig). Each configuration was assessed based 
on its performance on both training and validating datasets, using the R2 

Fig. 10. Comparison the training dataset for actual values (from software) and predicted values (from ANN model) of four process performance indicators, where (a) 
represents the SEC, (b) shows the CO2 purity, (c) displays the recovery, and (d) shows the productivity.
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and RMSE as performance metrics. The comparison results are sum
marised in Fig. 9a, and b for different hidden layer counts and Fig. 9c 
and d for different activation functions. As shown, the architecture with 
two hidden layers exhibited the best overall performance, achieving the 
highest R2 and lowest RMSE values. Similarly, the logsig activation 
function (represented as option 2 in Fig. 9c and d) outperformed tansig 
(represented as option 1 in Fig. 9c and d) in terms of predictive accuracy. 
Based on these findings, a two-hidden-layer architecture with logsig as 
the activation function is selected.

Following determining the optimal optimiser and activation func
tion, the next step involves selecting the appropriate number of neurons 
in each hidden layer. The GA provides an initial estimate for the number 
of neurons, which is used as a baseline. With the constant activation 
function and number of hidden layers, the GA returns to optimise the 
number of neurons in each layer. The resulting network configurations 
are trained, and their performance is evaluated based on both the vali
dation and testing datasets. After each iteration, the ANN model un
dergoes further validation to assess and refine its predictive accuracy. 
The outputs of the ANN model are compared with simulation results 
from Aspen Adsorption for a new set of input decision variables. The 
number of neurons was iteratively refined through successive GA runs 
until a satisfactory agreement was achieved between the neural network 
predictions and the simulator outputs. This final comparison served to 
verify the surrogate model’s capability to accurately replicate the 
simulation behaviour. The final network architecture consists of 17 
neurons in the first hidden layer and 8 neurons in the second hidden 

layer. The performance of the ANN model during training and validation 
phases is shown in Fig. 10 and Fig. 11, respectively. The accuracy of the 
ANN model is evaluated by comparing its prediction with the actual 
dataset from Aspen Adsorption in the test dataset, displayed in Fig. 12. 
Furthermore, the corresponding R2 values, AARD and RMSE metrics for 
the training, validating, and testing datasets are reported Table 3. As 
shown, the selected ANN model is characterised by high predictive ac
curacy, with the highest R2 values and the lowest RMSE and MAPE on 
the testing dataset, indicating robust generalisation and reliable pre
dictive performance for the DAC process investigated in this study. The 
performance of the final surrogate model in comparison with the Aspen 
adsorption outputs for a new dataset is also illustrated in Fig. 13. Table 4 
summarises the R2 and AARD results, demonstrating high accuracy of 
the model in predicting the process outputs. Therefore, the selected ANN 
architecture comprised two hidden layers with an optimised number of 
neurons in each. The logistic sigmoid (logsig) was used in the hidden 
layers, while the linear activation function (purelin) was applied in the 
output layer. Network training was performed using the Bayesian reg
ularisation backpropagation algorithm (trainbr). Training was con
ducted for a maximum of 1000 epochs, with convergence monitored 
through a gradient threshold of 1e-9. To enhance robustness and avoid 
overfitting, early stopping was implemented through a maximum vali
dation failure tolerance of 9 consecutive epochs. The training is 
executed without the graphical training window to ensure reproduc
ibility and streamline execution. (See Table 4.)

Fig. 11. Comparison the validation dataset for actual values (from software) and predicted values (from ANN model) of four process performance indicators, where 
(a) represents the SEC, (b) shows the CO2 purity, (c) displays the recovery, and (d) shows the productivity.
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3.3. Multi-objective process optimisation by surrogate model

Once the validity of the ANN model was confirmed, the NSGA-II 
algorithm was integrated with the ANN model to perform the multi- 
objective optimisation of the TVSA process. The parameters of the 
NSGA-II were empirically calibrated through multiple computational 
trial-and-error procedures, with the final values present in Table 5. The 
crossover and mutation probabilities are set to 0.9 and 0.1, respectively, 
and a standard value of 20 is applied to both the crossover and mutation 
indices. Fig. 14 shows the progression of the best solution across gen
erations for each objective function: recovery, productivity, and SEC. 
Since recovery and productivity are maximised, while SEC is minimised, 
the normalised fitness values converge toward 1 and 0, respectively. The 
optimisation process stabilises around generation 850, where the best 
fitness value reaches their optimal levels. Based on this behaviour, the 
population size and number of generations are fixed at 250 and 1000, 
respectively.

The outcomes of the optimisation process are represented as a Pareto 
front, which consists of non-dominated solutions. In other words, none 
of these solutions is universally superior; rather, each reflects trade-offs 
and demonstrates advantages in at least one objective compared to 
others. The Pareto front may contain an infinite number of mathemat
ically incomparable solutions, each reflecting a unique balance among 
competing objectives. Every point on the Pareto front corresponds to a 
specific combination of decision variables that can be considered as a 
viable design strategy [52]. Consequently, the optimisation provides a 
diverse set of optimal configurations for potential implementation. The 
3D Pareto front for CO2 recovery, productivity, and SEC is shown in 
Fig. 15, with CO2 purity indicated by colour. Designs indicated in blue, 

which exhibit low purity and recovery, are excluded from further 
analysis in this study. The remaining designs achieve CO2 purity above 
94 %, which is considered the target threshold for this work. As observed 
in this figure, increases in productivity and recovery are accompanied by 
higher SEC, but two distinct trends can be observed. To explore this 
relationship further, 2D Pareto fronts of recovery versus productivity are 
presented in Error! Reference source not found. The data points form 
two distinct clusters. In both clusters, a clear direct relationship is seen 
between productivity and recovery. However, cluster two exhibits 
higher SEC for similar recovery levels compared to cluster 1 (dark blue 
point), reflecting the trade-off between improved productivity and 
greater energy consumption. Additionally, following the yellow and 
green data points - representing designs with high SEC and high pro
ductivity, respectively - it becomes clear that, although both sets achieve 
strong performance, they differ in terms of recovery and productivity. 
The yellow designs, which consume more energy, attain the highest CO2 
recovery, albeit with slightly lower productivity compared to the green 
group. In contrast, the green designs require more energy and achieve 
slightly lower recovery (around 84–87 %), but they offer the highest 
productivity among all configurations. This highlights the inherent 
trade-offs and emphasises the need to balance process performance and 
energy requirements carefully.

Building on the findings from the sensitivity analysis, several key 
trends were identified regarding the impact of individual decision var
iables on process performance which are summarised in section 2.2.

However, unlike sensitivity analysis- which evaluates the effect of 
one variable at a time- the optimisation process considers the combined 
influence of all decision variables simultaneously. This enables the 
optimiser to explore the full design space and identify design 

Fig. 12. Comparison the test dataset for actual values (from software) and predicted values (from ANN model) of four process performance indicators, where (a) 
represents the SEC, (b) shows the CO2 purity, (c) displays the recovery, and (d) shows the productivity.
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configurations that achieve the best overall balance between produc
tivity, recovery, and SEC, considering the interdependent and nonlinear 
effects revealed by the sensitivity analysis. To further understand the 
role of each decision variable in shaping these outcomes, an exploration 
range analysis was conducted. The spread of each variable along the x- 
axis in these figures reflects its influence on the productivity and SEC 
(Fig. 17) and recovery and SEC (Fig. 18). Based on this analysis, feed 
flow rate, adsorption time, and vacuum pressure emerged as the most 
influential decision variables. The feed flow rate is varied from 1e-4 to 
4e-4 Kmol/h - an increase of 300 % - highlighting its significant influ
ence on system performance. As the feed flow rate increases up to 3e-4 
Kmol/h, productivity rises steadily from approximately 0.8 to 1.68 
Kmol/kg.h, more than doubling. This trend is accompanied by the 
modest increase in both recovery and SEC, with SEC rising from 3.2 to 

3.8 MJ/kg CO2, and recovery increasing from 75 % to 95 %. However, 
further increasing the flow rate from 3e-4 to 4e-4 Kmol/h results in a 
slight improvement in productivity (from 1.68 to 1.78 e-3 Kmol/kg.h) 
along with a reduction in SEC (from 3.6 to 3.2 MJ/kg CO2), but at the 
expense of reduced recovery (falling from 88 to 78 %). This trade-off 
highlights the delicate balance between productivity, SEC, and recov
ery when optimising the feed flow rate.

Additionally, the adsorption time is varied from 5000 to 10,000 s, 
representing a 100 % change. The substantial variation, along with the 
wide range in feed flow rate, indicates that both parameters were 
thoroughly explored during the optimisation process and are critical to 
achieving optimal performance. Given their strong individual and 
combined impact, their interaction is illustrated in Fig. 19, where 
adsorption time is plotted on the x-axis and feed flow rate on the y-axis, 

Fig. 13. Final testing results of the ANN using a new dataset evaluated through the simulator, where (a) represents the SEC, (b) shows productivity, (c) displays 
recovery, and (d) represents CO2 purity.

Fig. 14. Number of generation required for convergence with a constant population of 250. The NSGA-II model was terminated upon stabilisation of values across 
the three objective functions: SEC, productivity, and recovery.
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with productivity, purity, recovery, and SEC represented by colour 
gradients in each subplot. The results reveal an inverse relationship 
between these two parameters in the search for optimal designs: as 
adsorption time increases, achieving optimal performance requires a 
reduction in feed flow rate. This reflects the need to allow sufficient time 
for bed saturation and effective CO2 uptake, depending on the rate of 
CO2 supply. Regarding vacuum pressure, which varies from 0.07 to 0.15 
% bar(a 114 % change), Fig. 17 and Fig. 18 show that increasing vacuum 
pressure generally leads to reduced productivity and recovery. However, 
this comes with the benefit of improved energy efficiency, as SEC is 
significantly lowered. Previous studies have indicated that a vacuum 
pressure of 0.15 bar generally fails to achieve high levels of productivity 
and recovery (reference). In this study, the optimisation results support 
this observation: at a vacuum pressure of 0.15 bar, the maximum 
achievable recovery (94 %) and productivity (1.8 e-3 Kmol/kg.h) were 
not achieved. However, several designs operating at this pressure still 

demonstrated reasonably high performance while benefiting from 
reduced energy consumption. This implies that the limitations of higher 
vacuum pressures can be offset by appropriately adjusting other decision 
variables. For instance, at a fixed vacuum pressure of 0.15 bar, recovery 
and productivity varied between 73 and 92 % and 0.8–1.6 e-3 Kmol/kg. 
h, respectively, depending on the combination of other parameters. 
Notably, the energy consumption across all these configurations 
remained around 3.2 MJ/kg CO2, which is substantially lower than the 
maximum observed value of 3.9 MJ/kg CO2. This highlights the po
tential of synergistic parameter tuning to mitigate energy demands 
while maintaining acceptable process performance.

In contrast, the heating temperature showed minimal variation 
during optimisation, ranging from 149 to 150 ◦C, a change of lower than 
1 %. As observed in the sensitivity analysis, temperatures below 120 ◦C 
were insufficient for effective CO2 desorption, indicating that a mini
mum threshold temperature is required for this sorbent to function 

Fig. 15. Three-dimensional Pareto front illustrating the trade-offs among SEC, productivity, and recovery.

Fig. 17. Effect of operational parameters on the Pareto front with productivity and SEC represented by colour.
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properly. However, once the temperature exceeds this threshold, further 
increases within the 120–150 ◦C range have a limited impact on key 
performance indicators. Nonetheless, the optimisation results suggest 
that achieving high productivity and recovery still requires operating at 
the upper end of this temperature range, in conjunction with adjust
ments to other decision variables. A similar pattern was observed for the 
feed temperature. Although the initial exploration range for feed tem
perature was between 5 and 28 ◦C, the optimiser focused on a narrow 
range of 5 to 8 ◦C, with most optimal designs found between 5 and 6 ◦C. 
This indicates that feed temperature plays a crucial role in sorbent 
performance, with lower temperatures enhancing efficiency- consistent 
with the trends observed in sensitivity analysis. It is important to note 

that, in all the discussed designs, CO2 purity ranges from 94 % to 96.5 %, 
as illustrated in Fig. 15.

3.4. Optimal design discussion

The two-dimensional Pareto front showing the relationship between 
CO2 recovery and SEC is presented in Fig. 20, with the productivity of 
each Pareto solution indicated by colour. Three distinct regions can be 
identified based on the range of productivity and SEC. Region 1, Region 
2, and Region 3. These regions represent different sets of optimal process 
designs, each offering a unique balance of performance trade-offs. 
Importantly, no single region is universally superior; rather, each 

Fig. 18. Effect of operational parameters on the Pareto front with recovery and SEC represented by colour.

Fig. 19. Effect of flow rate and adsorption time for all four performance indicators.
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reflects a viable optimal solution depending on specific process prior
ities. Each design corresponds to a specific combination of operating 
parameters and cycle configurations. Region 1 is characterised by high 
productivity (1.6e-3–1.7e-3 Kmol/kg.h), the highest recovery (over 93 
%), and the greatest SEC (exceeding 3.7 MJ/kg CO2). A representative 
design in this region operates at the maximum heating temperature 
(150 ◦C) to enhance sorbent regeneration, combined with a low vacuum 
pressure (0.07 bar) to facilitate CO2 desorption by reducing its partial 
pressure. The cycle employs a short adsorption (5000 s) and desorption 
time (200 s), which helps shorten the overall cycle and improve pro
ductivity. Additionally, the feed temperature is kept at the lowest tested 
value (5 ◦C) to increase the sorbent’s CO2 uptake capacity, and a mod
erate feed flow rate of 2.89 e-4 Kmol/h is applied to ensure adequate 
CO2 delivery during the brief adsorption phase. This configuration re
flects a design that maximises productivity, recovery, and purity, but 

demands significantly higher energy input, resulting in elevated SEC.
In contrast, Region 2 achieves relatively high recovery rates (88–92 

%) and productivity values ranging from 1.3e-3 to 1.5e-3 Kmol/kg.h, 
with SEC varying between 3.25 and 3.4 MJ/kg CO2 depending on the 
operational conditions. As evident from the reported operational vari
ables for one example from this region, the air enters the adsorption bed 
at a low temperature of 5 ◦C to enhance CO2 capture, while the 
desorption step requires the highest heating temperature of around 
150 ◦C to effectively regenerate the sorbent. However, this design uses a 
higher vacuum pressure (0.146 bar) compared to region 1(0.07 bar), 
which is less energy-intensive for vacuum generation. To compensate for 
the reduced driving force at this pressure, the system relies on longer 
desorption (785 s) and adsorption time of 5570 s. This configuration 
allows the optimiser to balance performance with energy efficiency by 
selecting conditions that reduce SEC, even if it requires extended cycle 
durations.

An important aspect of this plot is Region 3, which differs noticeably 
from the other regions. Within Region 3, two distinct groups of data 
emerge, each exhibiting different ranges of productivity and SEC while 
maintaining a constant recovery level. The blue colour group shows 
productivity between 0.8 e-3 and 1.1e-3 Kmol/kg. s with SEC below 3.2 
MJ/kg CO2, whereas the yellow group achieves the highest productivity 
values (1.7e-3-1.8e-3 Kmol/kg.h) but with increased SEC ranging from 
3.4 to 3.7 MJ/kg CO2. Examining two representative points from these 
groups at a constant recovery of 85 % reveals that both require the 
lowest feed temperature(5 ◦C) and highest heating temperature 
(150 ◦C). However, their other decision variables differ significantly. For 
the design with lower energy consumption (3.2 MJ/kg CO2) and mod
erate productivity of 0.9 e-3 Kmol/kg.h, a lower vacuum pressure (0.15 
bar, the minimum considered in this study) is used. To maintain the 
constant recovery at this vacuum pressure, the adsorption and desorp
tion times need to be extended to 8000 s and 970 s, respectively, while 
the feed flow rate is reduced to 1.93e − 4 Kmol/h. In contrast, increasing 
productivity at the same recovery level involves raising the vacuum 
pressure slightly to 0.092 bar and reducing adsorption and desorption 

Fig. 20. Two-dimensional Pareto front illustrating the trade-off between SEC 
and recovery, with productivity represented by colour.

Fig. 9. (a) and (b) Comparison of R2 and RMSE values for different numbers of hidden layers (1, 2, 3 represent the number of hidden layers), respectively. (c) and (d) 
Comparison of R2 and RMSE values for selecting the activation function, where option1 represents the tansig function and option 2 represents the logsig function.
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time to their minimum values of 5000 and 200 s, respectively, with a 
higher feed flow rate of 3.55 e-4 Kmol/h. Since productivity depends 
strongly on time, shorter cycle times boost productivity but increase 
energy consumption. Therefore, the selection of operating conditions 
within region 3 depends on whether priority is given to maximising 
productivity or minimising energy use.

Taking into account the importance of energy usage within Europe, 
this study recommended designs that prioritise minimising energy 
consumption while maintaining high recovery and productivity, along 
with CO2 purity above 94 %. Therefore, Region 2 is selected, and the 
results of a representative point from this region are compared with our 

baseline design. Table 6 compares the performance outcomes of the 
recommended design against the base case and reported data from Cli
meworks, while Table 7 represents the values of decision variables for 
both the base case and the recommended design. As shown, the rec
ommended design achieves notably higher productivity and CO2 re
covery, along with the reduction in SEC, at the expense of a slight drop in 

Fig. 16. Two dimensional Pareto front for recovery and productivity.

Table 3 
values of error metrics (R2,MSE, and AARD) of the ANN model for four process performance indicators (SEC, CO2 purity, recovery, and productivity) across training, 
validation, and test datasets.

Process parameters Unit Training Validation Testing

R2 MSE AARD R2 MSE AARD R2 MSE AARD

SEC MJ/kg CO2 0.994 0.004 1.32 % 0.995 0.004 1.32 % 0.994 0.004 1.35 %
CO2 purity % 0.936 1.444 0.26 % 0.997 0.078 0.21 % 0.997 0.061 0.18 %
Recovery % 0.999 0.416 0.76 % 0.999 0.279 0.71 % 0.999 0.232 0.68 %
Productivity Kmol/kg.h 0.998 0 1.03 % 0.998 0 0.98 % 0.998 0 1.04 %

Table 4 
Error comparison of the ANN on the new dataset for four performance in
dicators: SEC, CO2 purity, productivity, and recovery.

Process parameters Unit R2 AARD(%)

SEC MJ/kg CO2 0.958455 1.6277
CO2 purity % 0.990575 0.124495
Productivity Kmol/kg.h 0.96951 1.69055
Recovery % 0.87523 1.2468

Table 5 
NGSA-II parameters used in this study.

NSGA-II parameters Quantity

Population 250
Generation 1000
Cross over probability 0.9
Mutation probability 0.1
Cross over index 20
Mutation index 20

Table 6 
Comparison of performance indicators for the base case, the recommended 
optimal case, and the Climeworks reports.

Performance 
parameters

Unit Base 
design

Recommended 
optimal design

Climeworks

SEC MJ/kg 
CO2

3.85 3.35 6.12–8.18

CO2 purity % 98.13 95.3 99.9
Productivity Kmol/ 

kg.h
3.61e-4 1.5e-3 —

Recovery % 53.26 90.2 85.4
Reference This work [53,54]

Table 7 
Comparison of operating conditions between the base case and the recom
mended optimal case.

Decision variables Unit Base design Recommended optimal design

Feed flow rate Kmol/h 0.0003 0.000295
Feed temperature 0C 23 5
Heating temperature 0C 150 149.5
Adsorption time s 7200 5000
Desorption time s 10,000 504
Vacuum pressure Bar 0.09 0.127
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purity from 98 % to 95 %. When compared to the Climeworks reported 
performance for an unspecified amine-functionalised solid sorbent, the 
proposed design demonstrates superior productivity, higher recovery, 
and a reduction in SEC by at least 82 %, albeit with a decrease in CO2 
purity from 99.9 to 95.3 %. This discrepancy is expected, as the current 
model represents an idealised and optimised system. In contrast to real- 
world operations, it assumes full sorbent utilisation, negligible pressure 
drop, and ideal equipment. It also simplifies the process by assuming 
axial flow through a thin sorbent layer – reducing flow resistance- and 
neglects energy requirements for water- CO2 separation. These ideal
isations contribute to the lower energy consumption observed in the 
model compared to actual systems like Climeworks.

4. Conclusion

A TVSA cycle model, developed in Aspen Adsorption for capturing 
CO2 under DAC conditions using mmen-Mg2(dobpdc), was employed to 
optimise the process with the goal of achieving high-purity CO2 
removal, while minimising SEC and maximising both recovery and 
productivity. Given the computational intensity of the optimisation 
process – which requires thousands of simulation runs and results in long 
computation times - a surrogate modelling approach was implemented 
to identify an optimal design at a reduced computational cost. In 
particular, an ANN model was developed and integrated with the NSGA- 
II to efficiently optimise key process variables (Adsorption time, 
desorption time, adsorption temperature, and vacuum pressure) and 
feed properties (feed temperature and feed flow rate). To train a high- 
performance ANN model, 2500 data points were generated using the 
LHS sampling technique from the detailed simulation model. After 
validating and testing the Network, a final verification was performed 
using 300 additional data points. The ANN predictions for these new 
points were compared against results from the full simulation model to 
confirm the accuracy of the surrogate model. By integrating the ANN 
surrogate model and the NSGA-II algorithm, optimal TVSA designs were 
successfully identified with significantly reduced computation time. 
Using the same NSGA-II configuration—including 1000 generations and 
a population of 250, the optimisation with the surrogate model required 
only approximately 2 h, compared to approximately 350 days if per
formed directly in Aspen Adsorption, assuming an average of 2-min 
runtime per dynamic simulation(250 × 1000 × 2 = 500,000 min). 
The developed surrogate model effectively captures complex, nonlinear 
relationships between process variables and performance outcomes- 
thereby enhancing optimisation efficiency and enabling faster, more 
efficient optimisation iterations, ultimately accelerating the discovery of 
advanced CO2 capture materials.

Considering the CO2 purity over 95 %, the resulting Pareto front 
analysis reveals two distinct data trends, both highlighting a trade-off 
between SEC and recovery and productivity. In one of these trends, it 
is observed that under constant recovery, increasing SEC can lead to a 
significant gain in productivity. Depending on the specific priorities of 
an industry, whether to maximise throughput or minimise energy con
sumption, these results offer flexible design options that balance oper
ational efficiency with energy demand. Furthermore, the optimisation 
results indicate that environmental conditions, particularly ambient 
temperature (feed temperature), play a critical role in performance. 
Lower feed temperatures enhance adsorption capacity, thereby 
increasing recovery, and making ambient temperature an important 
factor in achieving optimal TVSA operation for this sorbent.

The insights gained from this study demonstrate the potential 
application of mmen-Mg2(dobpdc) in industrial DAC systems. For future 
work, we aim to upscale the model to the industrial scale to evaluate the 
performance of this sorbent under realistic operating conditions. Addi
tionally, considering the effect of humidity is essential, as water in the 
air can significantly influence CO2 adsorption behaviour; incorporating 
this factor will improve the reliability of predictions and guide practical 
DAC implementation. These steps will help bridge the gap between lab- 

scale optimisation and industrial deployment, providing a more 
comprehensive understanding of the sorbent’s performance in real- 
world DAC operations.

Finally, Comprehensive climate mitigation demands that we com
plement capture technologies with cleaner transition energy fuels. 
Natural gas remains a vital bridge in this energy matrix, necessitating 
continued rigour in extraction mechanics, specifically the flowback and 
cleanup processes that govern unconventional reservoir performance 
[55–57].
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