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ARTICLE INFO ABSTRACT

Editor name: Z Bao Direct Air Capture (DAC) using solid sorbents has emerged as a promising technology for achieving net-negative
CO: emissions and meeting global climate targets. Among the available sorbent materials, amine-functionalised

Keywords: metal-organic frameworks (MOFs) have gained significant attention due to their tuneable structures and strong

Direct air capture affinity for CO2 under ambient conditions. In particular, mmen-Mgs(dobpdc) has demonstrated exceptional CO2

Temperature vacuum swing adsorption
CCUS

Artificial neural network

Metal organic framework

uptake capacity, making it a strong candidate for DAC applications. However, its process-level performance
optimisation under realistic operating conditions remains insufficiently explored. This study introduces the first
comprehensive multi-objective optimisation of a temperature-vacuum swing adsorption (TVSA) process
employing the amine-functionalised metal-organic framework mmen-Mgz(dobpdc) as the sorbent for direct air
capture (DAC) of CO2. The optimisation simultaneously targets minimisation of energy consumption and max-
imisation of CO: recovery and productivity, while ensuring high product purity, thereby providing new insights
into the process-material interactions governing DAC performance. To achieve this, a validated dynamic tem-
perature vacuum swing adsorption (TVSA) model was developed in Aspen Adsorption, integrated with a sur-
rogate artificial neural network (ANN) and optimised using the Non-dominated Sorting Genetic Algorithm
(NSGA-II). This approach facilitates efficient multi-objective optimisation of key process variables, significantly
reducing computational time from approximately 350 days to two hours. The resulting Pareto fronts reveal clear
trade-offs between specific energy consumption (SEC), recovery, and productivity at purities above 95 %. The
optimised design achieved a 37 % increase in recovery, a threefold improvement in productivity, and a 14.9 %
reduction in SEC, at the cost of a modest 3 % decrease in CO:z purity (from 98 % to 95 %) compared to the base
case. Moreover, the study highlights the strong influence of ambient temperature on process performance,
showing that mmen-Mgy(dobpdc) exhibits enhanced CO:z uptake below 8 °C, demonstrating its suitability for
DAC operation in cool climates.

mitigation strategies, their focus on point sources limits their ability to
address dispersed emissions. According to the International Energy
Agency (IEA), CCUS could reduce global CO, emissions by nearly 20 %
and reduce the cost of future climate mitigation by up to 70 % [2,5]. In
this context, direct air capture (DAC) has gained attention as a com-
plementary negative emission technology to address both current and
historical CO;, emissions directly from the atmosphere [6,7].
Currently, post-combustion carbon capture can be effectively un-
dertaken through a variety of technologies, including absorption [8,9],
adsorption, membrane separation [10], and cryogenic distillation pro-
cesses [11,12], each encompassing diverse techniques and methodolo-
gies [13]. The adsorption process has emerged as a promising alternative

1. Introduction

Atmospheric carbon dioxide (CO3) concentration over the past three
glacial cycles increased from approximately 180 ppm (ppm) to 427.87
ppm as recorded in July 2025 [1], with an average annual growth rate of
nearly two ppm [2,3]. This escalation has accelerated global climate
change and underscored the urgency of mitigation strategies. To address
the Paris Agreement 2015 goals—restricting warming to below 2 °C and
ideally 1.5 °C above pre-industrial levels—substantial efforts in decar-
bonisation are required [4] [5]. While conventional carbon capture,
utilisation, and storage (CCUS) technologies are critical components of
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Nomenclature
Ts Gas phase temperature (°C)
T, Solid phase temperature (°C)

Y predicted Predicted value by ANN
Y actual  Actual value of performance indicators
R? Coefficient of determination

AARD  Average absolute relative deviation
RMSE Root mean squared error

GA Genetic algorithm

LHS Latin hypercube sampling

PIs Performance indicators

PDEs Partial differential equations
Abbreviations

VSA Vacuum swing adsorption

PAES Pareto-archived evolution strategy
MOOPs Multi-objective optimisation problems
NSGA-II Non-dominating sorting genetic algorithm
ANN Artificial neural network

SEC Specific energy consumption (MJ/kg CO5)
DAC Direct air capture

MOF Metal organic framework

CCUS Carbon capture, utilisation, and storage
TVSA Temperature vacuum swing adsorption
RH Relative humidity

LDF Linear driving force

S-TVSA  Steam assistance TVSA

PSA Pressure swing adsorption

TSA Temperature swing adsorption

SPEA Strength Pareto EA

to conventional absorption, particularly due to its ability to overcome
key limitations such as high solvent degradation, corrosiveness, and
substantial energy requirement for solvent regeneration [14,15].
Adsorption processes employ various regeneration methods and are
typically classified based on whether regeneration involves altering
temperature, pressure, or both. Compared to other separation technol-
ogies, temperature vacuum swing adsorption (TVSA) offers several ad-
vantages for DAC. By combining elevated temperature and vacuum,
TVSA enables higher product purity [16], faster desorption rate
compared to temperature swing adsorption (TSA) [17,18], greater
working capacity [17], and lower energy consumption than pressure
vacuum swing adsorption (PVSA) [19]. A comparative study of TSA,
pressure temperature swing adsorption (PTSA), and TVSA cycles using
Polyethylene terephthalate (PET)-waste-derived activated carbon re-
ported that the TVSA configuration achieved the highest exergy effi-
ciency (32.9 %), confirming its superior energy utilisation and practical
applicability for post-combustion CO5 capture under moderate feed
concentrations (10-20 vol%) [20]. TVSA technology has been success-
fully applied to amine-functionalised nanocellulose for extracting CO5
and water vapour from ambient air (10-30 °C, 20-80 % relative hu-
midity (RH)). The process achieves over 94.4 % CO: purity, requiring
approximately 12.5 kJ/mol CO5 of mechanical work and 493-640 kJ/
mol CO: of low-grade heat, depending on humidity [21]. Zhu et al.
developed a three-step steam-assisted temperature vacuum-swing
adsorption (S-TVSA) cycle based on a packed column for use in DAC
systems. The process achieved 4.45 mol/ kg CO, day productivity at
0.295 MJ /mol energy demand using low-grade heat (< 100 °C) via
steam purging [22].

The performance of any adsorbent is dependent on the specific
process configuration including the duration of the adsorption and
desorption cycles, as well as the vacuum level and temperature applied
during the desorption stage. To accurately assess the suitability and
competitiveness of a sorbent, it needs to be evaluated through detailed
simulations and standardised optimisation across various process de-
signs [23]. In engineering, many optimisation problems involve simul-
taneously optimising multiple objectives, known as multi-objective
optimisation problems (MOOPs). These problems become particularly
challenging when the objectives conflict with one another, meaning that
the optimal solution for one objective differs from that of another. When
solving such problems, whether constraints or not, the results are typi-
cally a set of trade-off optimal solutions referred to as Pareto-optimal
solutions [24]. The Non-Dominated Sorting Genetic Algorithm (NSGA-
II) was initially proposed by Deb et al. [25] as an efficient multi-
objective evolutionary algorithm that introduced a fast non-dominated
sorting procedure, an elitist selection mechanism, and a parameter-
less crowding distance operator for diversity preservation. Through

validation on several benchmark problems, NSGA-II demonstrated su-
perior convergence and solution diversity compared to other contem-
porary approaches such as Pareto-archived evolution strategy (PAES)
[26] and strength Pareto EA (SPEA) [27]. It is a widely applied and
effective evolutionary algorithm specifically developed to address
MOOPs, providing a Powerful decision-space exploration capabilities
based on the principles of Genetic Algorithm (GA). NSGA-II operates
based on four key mechanisms: Non-Dominated Sorting, Elite Preserving
Operator, Crowding Distance, and the Selection Operator [28]. This
algorithm has been extensively applied in engineering for identifying
Pareto-optimal solutions in problems involving multiple conflicting
objectives. For example, NSGA-II was used to optimise three different
TSA process configurations: (1) fixed-bed TSA with pellets, (2) fixed-bed
TSA with hollow fibers, and (3) moving-bed TSA with pellets, by
simultaneously minimising energy consumption and maximising pro-
ductivity, resulting in Pareto fronts that satisfied the imposed con-
straints of 95 % CO; purity and 90 % recovery [29]. In another study by
Bagheri et al. [30], NSGA-II was applied to optimise a TSA cycle design
for ethane purification, aiming to minimise specific energy consumption
while maximising hydrocarbon recovery and ethane productivity,
resulting in valuable trade-off solutions.

For cyclic adsorption systems such as PSA and TSA, optimising per-
formance indicators like purity, recovery, productivity, and specific
energy consumption is essential, but computationally intensive [31].
This is due to the need for dynamic simulations to achieve cyclic steady-
state conditions (CSS) under varying operational parameters, often
requiring hundreds to thousands of CSS [32]. While steady-state ap-
proaches have reduced computational time for PSA/VSA processes [30],
the TSA process remains challenging due to longer cycle durations in
both dynamic and steady-state simulations [30]. In TVSA, the large
number of operating variables increases and their strong interdepen-
dence with performance targets further complicate simulation and
optimisation, making direct optimisation increasingly time and resource
intensive. In our case, a single simulation run using the detailed process
model takes up 2 to 10 min on a standard desktop computer, making
multi-objective optimisation involving thousands of simulations prac-
tically infeasible. One approach to mitigate the high computational cost
associated with detailed process simulations is the use of shortcut
models [33,34], which simplify the underlying physics to reduce simu-
lation time. Zhao et al. [35] employed a shortcut fixed-bed TSA model to
compare various adsorbents and cycle configurations for post-
combustion CO capture. While this framework enabled rapid compar-
ative assessment of the relation between cycle design and adsorbent
properties, the authors suggesting that future studies should incorporate
mass-transfer effects and bed configuration for more realistic evaluation.
Such simplified models often omit critical descriptors from detailed
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Fig. 1. Schematic of the optimisation procedures employed in this study.

Parameters Units Values
[{\—H—»@ — ss ‘
CO, heat of adsorption KJ/mol -71 V_Purge " brodua
N, heat of adsorption KJ/mol -18
Heat capacity of crystal KJ/Kg. K 1.6 \
CO, Heat capacity KJ/Kmol.K 37.4673 o
N, Heat capacity KJ/Kmol.K 29.1806 &
Thermal conductivity W/mK 03 Cycle_Organizer
Parameters Units Values
Bed Length m 0.055 Rt EVFE—vb?d ; wj._- g=
Bed Internal Radius m 0.004 Yase
Desorption Temperature °C 115
Adsorption Temperature e O 23
Cycles of Process Duration (s)
Particle Radius m 2.25¢-4
Adsorption 7200
Crystal Density Kg/m? 860
3 Evacuation 6
Bed Porosity 0.32
Adsorbent Weight g 60 Heating + Evacuation 10000
Particle Porosity 0.85 Cooling Event driven (Teggin= Teecg)
Feed Flow rate N ml/min 17.2 Pressurising Eventdriven (P=P,,,)

Fig. 2. Schematic of the TVSA process modelled in Aspen adsorption, along with a summary of input data and cycle organiser [43].

simulations, such as mass and heat transfer, which limits their applica-
bility for systems involving slow adsorption kinetics, such as amine-
functionalised sorbents [33,36].

An alternative and increasingly popular solution is the adoption of

surrogate models, which aim to reduce problem dimensionality while
maintaining the fidelity of the detailed simulations when trained on

sufficiently large datasets [36]. Common Surrogate modelling tech-

niques include support vector machine [37], radial basis function [38],
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Table 1
Formulas for performance indicators.
Performance indicators Unit Formula
€O, purity % Jo ForotuaYcoudt
Toycte
Z:il oyl FproducLYidt
Recovery %

tcycle
b (yprodun.coz Fyroduct |, )dt

1
It (}'fem.coz Freed|,_g )dt

Productivity Kmol/kg.h 3600 x fémle (Fproductyco, ) dt
WadsorbentLeycle
SEC (vacuum) MJ/kg CO, 1
/‘Ccycu FyacPyacy <Pfecd> r 1 ar
n(y—1) Pyac

Leycl
J f o " F, 'productYproduct,CO» dt

polynomial regression [39], artificial neural network (ANN) [40], and
Gaussian process regression model [41]. With the broader rise of arti-
ficial intelligence (AI) in engineering applications, ANNs have found
widespread use in CCS research, including simulating and optimising
CO4 capture processes, as well as for predicting effective physico-
chemical properties of sorbents. Du et al. [31] developed a hybrid
surrogate-based framework integrating a convolutional neural network
(CNN) with the NSGA-III algorithm to optimise a VPSA process for CO2
removal from confined environments. Similarly, ANN-based surrogate
models within an NSGA-II framework for PSA cycle optimisation have
been employed by Subraveti et al. [42], for pre-combustion CO4 capture.
The results of these studies demonstrate that ANNs not only provide an
accurate approximation of detailed capture processes, but also signifi-
cantly reduce the computational time required for multi-objective
optimisation.

This study developed a TVSA cycle incorporating both time- and
event-driven steps to optimise the DAC process for a gas mixture con-
taining Ny and CO; at an atmospheric concentration of 400 ppm using
mmen-Mgy(dobpdc). A two-step approach was employed, coupling a
neural network-based surrogate model with the NSGA-II algorithm for
multi-objective optimisation. In the first step, an artificial neural
network (ANN) with two hidden layers is trained on simulation data
generated by the detailed TVSA model and verified using an indepen-
dent dataset to predict key process indicators, including CO, purity,
recovery, productivity, and Specific energy consumption (SEC). In the
second step, NSGA-II is used to perform a multi-objective optimisation of
the trained ANN surrogate model, with CO; recovery, productivity, and
SEC defined as the objective functions. Finally, the process is analysed
using performance indicators and decision variables, demonstrating
how these variables influenced the process performance. The resulting
Pareto solutions illustrate the trade-off between SEC and CO3 recovery,
providing valuable insights for DAC process design. Fig. 1 illustrates the
complete workflow leading to the optimisation stage.

2. Process description and methodology
2.1. Modelling and simulation of TVSA process

A dynamic TVSA model was developed in Aspen Adsorption V14 to
evaluate the technical performance of mmem-Mgs(dobpdc) under DAC
conditions. The software simulates the complete adsorption/desorption
cycle by incorporating mass, energy, and momentum balances to predict
system behaviour and evaluate key process performance indicators,
including CO4 purity, recovery, productivity, and SEC. A schematic of
the TVSA process, the parameter values used in the simulation, and cycle
durations are shown in Fig. 2. The feed gas mixture, containing 400 ppm
CO5 and 0.9996 % N», was introduced at 1.013 bar, 296.15 K, and a flow
rate of 17.2 N mL/min. The governing equations and detailed modelling
approach, including kinetic and equilibrium models and their parame-
ters, are described comprehensively in our previous work [43]. The
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model is assumed to be one-dimensional, ignoring radial gradients, with
constant adsorbent and wall properties. The gas mixture follows ideal
gas behaviour. The partial differential equations (PDEs) are solved using
the UDS1 discretisation method with 20 nodes. The adsorption process is
non-isothermal and adiabatic, with heat conduction in both gas and
solid phases, and local thermal equilibrium assumed (Ts = Tg). Heat of
adsorption and heat capacities are considered constant. Pressure drop is
calculated using the Ergun equation. CO; adsorption behaviour on
mmen-Mgs(dobpdc) is described by the Sips isotherm model. Adsorption
kinetics is modelled using the linear driving force (LDF) approach below
the step pressure and the Avrami fractional-order model above it [44].
The complete simulation methodology and results have been performed
and reported in detail in [43], which is referenced here for modelling
specifics.

2.2. Optimisation problem

The results from the structured sensitivity analysis [43] revealed that
multiple process parameters significantly influence process perfor-
mance, often through nonlinear interactions. A summary of these effects
is presented below:

A decrease in feed temperature enhances the CO, adsorption ca-
pacity and prolongs the adsorption time. While this extended duration
improves CO, recovery, it can negatively impact process productivity by
reducing the number of annual cycles. To mitigate this drawback,
increasing the feed flow rate offers an alternative approach, as it allows
the system to reach saturation without significantly expanding the
adsorption time. Reducing the vacuum pressure further contributes to
improvement in CO; purity, recovery, and productivity by enhancing
the thermodynamic driving force for desorption. However, this benefit
comes at the cost of increased SEC. Notably, a relationship exists be-
tween feed temperature and the required vacuum pressure: lower feed
temperatures shift the isotherm curve toward lower step pressures,
allowing for more efficient desorption at milder vacuum conditions. In
addition, the sorbent exhibits a threshold for heating temperature in the
desorption step that is dependent on the applied vacuum level and
desorption duration. At deeper vacuum pressures, the equilibrium par-
tial pressure of CO, decreases, enabling effective desorption at lower
temperatures [45], and it necessitates a prolonged desorption time. The
duration of the desorption step also influences CO; purity and recovery,
enhancing these metrics up to a specific limit. However, extended
desorption times reduce productivity due to fewer operational cycles per
year. Furthermore, there is a connection between desorption time and
the thermal energy required for the desorption stage: longer desorption
duration results in reduced heat demand for the regeneration step,
which can positively affect SEC.

Due to the complex and interdependent effects of the process vari-
ables on process performance, the optimisation problem becomes highly
intricate. Therefore, an advanced optimisation technique is necessary to
identify optimal solutions by managing the trade-offs between selected
performance indicators, TVSA operating parameters, and feed specifi-
cations. CO; Purity, recovery, productivity, and SEC are the key process
performance indicators (PIs). The corresponding equations used to
evaluate these indicators are presented in Table 1. The total energy
demand consists of two components: electrical energy required by the
vacuum pump and thermal energy supplied to the heat exchanger. The
electrical energy consumption of the vacuum pump was calculated using
the thermodynamic expression shown in Table 1, while thermal energy
input for the heat exchanger was determined through Aspen Adsorption
simulations. Due to the negligible pressure drop across the adsorption
bed observed under experimental conditions, the energy consumption
by the fan was considered insignificant and excluded from the overall
energy analysis. In alignment with the requirements of DAC processes,
the optimisation aims to maximise both recovery and productivity while
minimising SEC. Six parameters influencing process performance were
selected as decision variables, with their upper and lower bounds
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and feed flow rate, with overlaid normal probability density functions (red curves). (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)
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Fig. 4. The probability distributions of the performance indicators (SEC, CO,, purity, recovery, and productivity), with overlaid normal probability density functions
(red curves). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

established through sensitivity analysis [43]. Constraining the decision
variable ranges based on the sensitivity analysis results improved
convergence and reduced the overall complexity of the optimisation
problem.

2.3. Surrogate model development

2.3.1. Data generation and pre-processing
To develop the data-driven component of the surrogate model using

various neural network algorithms, it was essential to generate a broad,
uniform, and sufficiently large dataset. The comprehensiveness and di-
versity of the training data significantly influence the accuracy,
robustness, and predictive capability of the surrogate model results. To
ensure both adequate randomness and full coverage of the design space,
the Latin Hypercube Sampling (LHS) method was employed for data
generation [46]. A MATLAB-based interface was developed to automate
the transfer of generated design points to Aspen Adsorption and to
extract simulation output data into Microsoft Excel. A total of 2500
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interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

samples were generated using the LHS approach, covering a wide range
of operational conditions defined by the selected decision variables. The
generated operating conditions were simulated using Aspen Adsorption
under the TVSA model, and performance indicators — CO9 purity, re-
covery, SEC, and productivity- were extracted from the simulation
result. To ensure the accuracy of the dataset, the Aspen adsorption
model was first validated against experimental data [43].

Fig. 3 presents the frequency distribution of each decision variable
and normal probability density functions. The decision variables follow
a uniform distribution, reflecting the use of LHS sampling. In contrast,
the frequency distribution of performance indicators shown in Fig. 4
does not exhibit a normal distribution. Notably, CO, purity shows a
right-skewed distribution, while SEC displays a pronounced left tail,
indicating a wide range of simulation outcomes for these metrics. The
observed skewness originates from the intrinsic behaviour of the Aspen
Adsorption model rather than the sampling method. The input variable
ranges were defined through preliminary single-variable sensitivity
analyses to exclude unrealistic operating conditions. Thus, the skewed
distributions reflect genuine process responses within the feasible DAC
design space. In the subsequent stage of data pre-processing, a loga-
rithmic transformation is applied to CO purity and SEC, shown in Fig. 5,
to address their pronounced skewness. This transformation helps
approximate a normal distribution and improve the data symmetry of
these performance indicators. Additionally, due to the substantial dif-
ferences in the order of magnitude between the individual input and
output variables, data normalisation is required before model training. A
normalisation is performed using the functions described in Egs. 1 and 2,
where x and y represent the original input and output values, respec-
tively; normalised denotes the scaled value; min and max correspond to
the minimum and maximum values of each feature. Finally, the entire
dataset is divided into a training, validation, and test sets with a ratio 80
%:10 %:10 %.

Xi — Xmin

Xnormalised = (@)
Xmax — Xmin

Ynormalised = Y1 = Ymin (2)
y max — )’ min
2.3.2. Surrogate model structure and training

An ANN model comprises three types of layers: an input layer, one or
more hidden layers, and an output layer, all composed of interconnected
processing units known as neurons. The input features of the ANN model
include feed flow rate, feed temperature, vacuum pressure, adsorption
time, desorption time, and the heat requirement for regeneration pa-
rameters, which are recognise for their significant impact on process
performance. The outputs of the ANN model are CO; purity, recovery,
SEC, and productivity, which are considered reliable performance in-
dicators for evaluating the system.

In the development of data-driven models like ANN, determining the
appropriate hyperparameters — including the number of hidden layers,
the number of neurons in each layer, the activation functions, and the
training algorithm are crucial for model accuracy and generalisation. In

this study, the heuristic approach of manual trial and error was initially
used to assess the suitability of different activation functions. However,
to more systematically and efficiently determine the full network ar-
chitecture, we adapted a genetic algorithm (GA) as a hyperparameter
optimisation strategy. GAs are population-based metaheuristic search
methods inspired by the principles of natural selection and genetics.
They operate by evolving a population of candidate solutions (ANN
configurations) through processes such as selection, crossover, and
mutation, iteratively searching for architectures that maximise model
performance. There are some studies that use the GA approach for
selecting the surrogate model structure [47,48].

Three critical aspects of the ANN design are optimised through the
GA algorithm: (1) the number of hidden layers (up to three), as
increasing network depth on small datasets makes them prone to
generating overfitted models, reducing generalisation ability [49], while
too few layers may result in underfitting, limiting the network capacity
to capture complex patterns [50]. This issue is particularly pronounced
in models with high complexity and high-dimensional training patterns,
where the model performance can significantly degrade on unseen data.
(2) The number of neurons in each hidden layer, which influences the
network’s ability to capture the nonlinear relationship between inputs
and outputs. Too many neurons may lead to overfitting, while too few
may cause underfitting. (3) The type of activation function used in
hidden layers, which affects the network’s learning dynamics and
approximation capability. Each candidate ANN generated within the GA
population was constructed with different architectural parameters (e.
g., number of layers activation function). Each network was trained on
the predefined training dataset, and its performance was then evaluated
using a separate validation dataset. This procedure allowed the GA to
assess networks based on their validation accuracy and progressively
evolve toward architectures with improved predictive performance. The
coefficient of determination (Rz), the root mean square error (RMSE),
and average absolute relative deviation (AARD) were used as evaluation
metrics to assess the predictive accuracy and reliability of different
neural network architectures. R? evaluate how well the predicted values
match the actual data, AARD measures the average absolute relative
error between actual and predicted values, and RMSE quantifies the
average magnitude of prediction error. These metrics are calculated
using the formulas 3 to 5, Where y,cuq is the actual target value obtained
by simulation, Yyrediceed is the predicted value from the ANN, Yocuatave 1S
the mean of the actual target values, i is the index of data samples, and n
is the number of data points. Following the initial optimisation of the
ANN architecture using the GA, the best-performing network configu-
ration, identified based on the evaluation metrics, Rz, RMSE, and AARD,
is selected for further validation. To assess the generalisability and
reliability of the surrogate model, the selected ANN was integrated into
the NSGA-II framework. NSGA-II was executed multiple times using the
GA-derived ANN to generate a diverse set of pareto solutions. Each
design proposed by the ANN was then input into Aspen Adsorption to
compute the key performance indicators; COy purity, recovery, pro-
ductivity, and SEC. Subsequently, the performance metrics predicted by
the ANN were independently validated by comparing them against the
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Table 2

Range of Decision variables used in the optimisation process.
Process parameters Unit Lower bond Upper bond
Adsorption time s 5000 10,000
Desorption time H 200 2000
Vacuum pressure Bar 0.07 0.15
Heating temperature ¢ 120 150
Feed flow rate Kmol/h le4 5e-4
Feed temperature oc 5 30

corresponding values obtained from Aspen simulations. This compari-
son enabled a comprehensive assessment of the surrogate model’s pre-
dictive accuracy in representing the true process behaviour across a
wide range of operating conditions. The procedures for developing the
ANN are shown in Fig. 6.

n

2
Z (.ya:mal - ypredicted>

R=1-5 ®
l; (_)’ actual — Y actual.ave) ’
RMSE = \/ % ,ZH; (}' actual — ypredicted> ’ 4

Input data from Aspen adsorption
)

pre processing
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AARD = m Z abs (yactual - ypredicted> )

Yactual

2.4. TVSA process optimisation

After developing the surrogate model, determining the optimal
parameter configuration, and rigorously validating its predictive accu-
racy, the NSGA-II algorithm was employed to perform multi-objective
optimisation of the TVSA process, targeting three conflicting objec-
tives: productivity, recovery, and SEC. NSGA-II was selected due to its
ability to overcome shortcomings of traditional evolutionary algorithms,
such as the lack of elitism and the reliance on manually defined sharing
parameters [28]. A key strength of multi-objective optimisers like
NSGA-II lies in their capacity to generate a well-distributed Pareto front,
enabling informed decision-making by revealing the trade-offs among
competing objectives [51]. The NSGA-II algorithm is often employed as
a benchmark for evaluating the performance of new optimisation algo-
rithms [28]. In this study, NSGA-II is integrated with an ANN to optimise
key performance metrics of the process, including CO» purity, recovery,
productivity, and SEC. The selected decision variables are adsorption
time, desorption time, vacuum pressure, heating temperature, feed flow
rate, and feed temperature. The flow chart illustrating the procedures of
the NSGA-II algorithm is shown in Fig. 7. The optimisation process

I
A 4

GA optimiation

I

Results
1-Activation Function
2- number of hidden layers
3- number of neurons

GA
Specify numbet of neurons in
each layer
NSGA-II optimiation
T
v N

Decision variable design

performance indicators

e

Aspen Adsorption

I

performance indicators

I Ves |

]

2-AARD

Yes

Accepted the ANN

Fig. 6. Flowchart of the procedure for developing the ANN model, from data generation to final model construction.
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begins with the initialisation of a population within NSGA-II, where model, which estimates the corresponding performance metrics-CO2
each encodes are potential solutions defined by a specific set of decision purity, recovery, productivity, and SEC. The predicted outcomes are
variable values. These values are transferred into the trained ANN then fed back to the NSGA-II algorithm for fitness evaluation. NSGA-II
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Fig. 10. Comparison the training dataset for actual values (from software) and predicted values (from ANN model) of four process performance indicators, where (a)
represents the SEC, (b) shows the CO, purity, (c) displays the recovery, and (d) shows the productivity.

ranks the population using a non-dominated sorting approach, classi-
fying individuals into different Pareto fronts. The first front consists of
non-dominated solutions, while subsequent fronts are incrementally
dominated by those preceding them. To maintain solution diversity, a
crowding distance is calculated for each individual within the same
front, quantifying its proximity to neighbouring solutions. Selection of
solutions is performed using a binary tournament, considering both their
rank and crowding distance. Solutions with a higher rank are selected
first. When solutions share the same rank, preference is given to the one
with the greater crowding distance. The selected individuals undergo
crossover and mutation to generate a new offspring population. This
new offspring is then combined with the parent population, and the
combined pool is re-sorted using non-dominated sorting. The top-
performing solutions based on rank and crowding distance are carried
forward to the next generation. This iterative process continues until a
specific number of generations is reached. The final output is a set of
Pareto-optimal solutions, offering trade-offs among the conflicting ob-
jectives. The selection of an appropriate population size and the
maximum number of generations in an optimisation problem typically
depends on the complexity of the process and is often refined through
trial and error to achieve the desired level of accuracy.

3. Results and discussion
3.1. Process simulation

The TVSA process model was previously developed and validated
against experimental data. Following this, an extensive sensitivity

analysis was conducted to evaluate the influence of key operational
parameters on process performance. The full details of this analysis,

including the impact of each parameter and the corresponding graphical
results, are presented in [43]. Fig. 8 presents the results of the sensitivity
analysis, highlighting the influence of each selected parameter on the
key performance indicators. These parameters were prioritised based on
their significant impact on performance indicators such as CO; purity,
recovery, productivity, and SEC. Based on the outcomes of the sensi-
tivity study, a set of decision variables and their corresponding ranges
were identified, as summarised in Table 2. These ranges are consistently
used to generate a simulation dataset of 2500 samples for neural
network training using the LHS approach and also served as input
bounds for the NSGA-II optimisation framework. This structured meth-
odology ensures that both the surrogate model and optimisation process
are grounded in realistic and physically meaningful operating
conditions.

3.2. ANN-surrogate model: Development and reliability analysis

The ANN model is trained using 2500 data samples generated from
the Aspen Adsorption simulations. The structure of the surrogate model
and its optimal hyperparameters have been determined through a sys-
tematic multi-step procedure, as illustrated in Fig. 6. (See Fig. 9.) (See
Fig. 16.)

After separating the dataset into training, validation, and test (80 %,
10 %, and 10 % respectively), in the first step, the number of hidden
layers and the type of activation function are specified using a GA al-
gorithm optimisation framework. Over 1000 neural network configu-
rations are evaluated, varying in the number of hidden layers (ranging
from 1 to 3), the number of neurons per layer, and the activation
function (either logsig or tansig). Each configuration was assessed based
on its performance on both training and validating datasets, using the R
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Fig. 11. Comparison the validation dataset for actual values (from software) and predicted values (from ANN model) of four process performance indicators, where
(a) represents the SEC, (b) shows the CO,, purity, (c) displays the recovery, and (d) shows the productivity.

and RMSE as performance metrics. The comparison results are sum-
marised in Fig. 9a, and b for different hidden layer counts and Fig. 9c
and d for different activation functions. As shown, the architecture with
two hidden layers exhibited the best overall performance, achieving the
highest R? and lowest RMSE values. Similarly, the logsig activation
function (represented as option 2 in Fig. 9c and d) outperformed tansig
(represented as option 1 in Fig. 9c and d) in terms of predictive accuracy.
Based on these findings, a two-hidden-layer architecture with logsig as
the activation function is selected.

Following determining the optimal optimiser and activation func-
tion, the next step involves selecting the appropriate number of neurons
in each hidden layer. The GA provides an initial estimate for the number
of neurons, which is used as a baseline. With the constant activation
function and number of hidden layers, the GA returns to optimise the
number of neurons in each layer. The resulting network configurations
are trained, and their performance is evaluated based on both the vali-
dation and testing datasets. After each iteration, the ANN model un-
dergoes further validation to assess and refine its predictive accuracy.
The outputs of the ANN model are compared with simulation results
from Aspen Adsorption for a new set of input decision variables. The
number of neurons was iteratively refined through successive GA runs
until a satisfactory agreement was achieved between the neural network
predictions and the simulator outputs. This final comparison served to
verify the surrogate model’s capability to accurately replicate the
simulation behaviour. The final network architecture consists of 17
neurons in the first hidden layer and 8 neurons in the second hidden
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layer. The performance of the ANN model during training and validation
phases is shown in Fig. 10 and Fig. 11, respectively. The accuracy of the
ANN model is evaluated by comparing its prediction with the actual
dataset from Aspen Adsorption in the test dataset, displayed in Fig. 12.
Furthermore, the corresponding R? values, AARD and RMSE metrics for
the training, validating, and testing datasets are reported Table 3. As
shown, the selected ANN model is characterised by high predictive ac-
curacy, with the highest R? values and the lowest RMSE and MAPE on
the testing dataset, indicating robust generalisation and reliable pre-
dictive performance for the DAC process investigated in this study. The
performance of the final surrogate model in comparison with the Aspen
adsorption outputs for a new dataset is also illustrated in Fig. 13. Table 4
summarises the R? and AARD results, demonstrating high accuracy of
the model in predicting the process outputs. Therefore, the selected ANN
architecture comprised two hidden layers with an optimised number of
neurons in each. The logistic sigmoid (logsig) was used in the hidden
layers, while the linear activation function (purelin) was applied in the
output layer. Network training was performed using the Bayesian reg-
ularisation backpropagation algorithm (trainbr). Training was con-
ducted for a maximum of 1000 epochs, with convergence monitored
through a gradient threshold of 1e-9. To enhance robustness and avoid
overfitting, early stopping was implemented through a maximum vali-
dation failure tolerance of 9 consecutive epochs. The training is
executed without the graphical training window to ensure reproduc-
ibility and streamline execution. (See Table 4.)
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Fig. 12. Comparison the test dataset for actual values (from software) and predicted values (from ANN model) of four process performance indicators, where (a)
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3.3. Multi-objective process optimisation by surrogate model

Once the validity of the ANN model was confirmed, the NSGA-II
algorithm was integrated with the ANN model to perform the multi-
objective optimisation of the TVSA process. The parameters of the
NSGA-II were empirically calibrated through multiple computational
trial-and-error procedures, with the final values present in Table 5. The
crossover and mutation probabilities are set to 0.9 and 0.1, respectively,
and a standard value of 20 is applied to both the crossover and mutation
indices. Fig. 14 shows the progression of the best solution across gen-
erations for each objective function: recovery, productivity, and SEC.
Since recovery and productivity are maximised, while SEC is minimised,
the normalised fitness values converge toward 1 and 0, respectively. The
optimisation process stabilises around generation 850, where the best
fitness value reaches their optimal levels. Based on this behaviour, the
population size and number of generations are fixed at 250 and 1000,
respectively.

The outcomes of the optimisation process are represented as a Pareto
front, which consists of non-dominated solutions. In other words, none
of these solutions is universally superior; rather, each reflects trade-offs
and demonstrates advantages in at least one objective compared to
others. The Pareto front may contain an infinite number of mathemat-
ically incomparable solutions, each reflecting a unique balance among
competing objectives. Every point on the Pareto front corresponds to a
specific combination of decision variables that can be considered as a
viable design strategy [52]. Consequently, the optimisation provides a
diverse set of optimal configurations for potential implementation. The
3D Pareto front for CO, recovery, productivity, and SEC is shown in
Fig. 15, with CO4 purity indicated by colour. Designs indicated in blue,
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which exhibit low purity and recovery, are excluded from further
analysis in this study. The remaining designs achieve CO, purity above
94 %, which is considered the target threshold for this work. As observed
in this figure, increases in productivity and recovery are accompanied by
higher SEC, but two distinct trends can be observed. To explore this
relationship further, 2D Pareto fronts of recovery versus productivity are
presented in Error! Reference source not found. The data points form
two distinct clusters. In both clusters, a clear direct relationship is seen
between productivity and recovery. However, cluster two exhibits
higher SEC for similar recovery levels compared to cluster 1 (dark blue
point), reflecting the trade-off between improved productivity and
greater energy consumption. Additionally, following the yellow and
green data points - representing designs with high SEC and high pro-
ductivity, respectively - it becomes clear that, although both sets achieve
strong performance, they differ in terms of recovery and productivity.
The yellow designs, which consume more energy, attain the highest CO,
recovery, albeit with slightly lower productivity compared to the green
group. In contrast, the green designs require more energy and achieve
slightly lower recovery (around 84-87 %), but they offer the highest
productivity among all configurations. This highlights the inherent
trade-offs and emphasises the need to balance process performance and
energy requirements carefully.

Building on the findings from the sensitivity analysis, several key
trends were identified regarding the impact of individual decision var-
iables on process performance which are summarised in section 2.2.

However, unlike sensitivity analysis- which evaluates the effect of
one variable at a time- the optimisation process considers the combined
influence of all decision variables simultaneously. This enables the
optimiser to explore the full design space and identify design
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the three objective functions: SEC, productivity, and recovery.

configurations that achieve the best overall balance between produc-
tivity, recovery, and SEC, considering the interdependent and nonlinear
effects revealed by the sensitivity analysis. To further understand the
role of each decision variable in shaping these outcomes, an exploration
range analysis was conducted. The spread of each variable along the x-
axis in these figures reflects its influence on the productivity and SEC
(Fig. 17) and recovery and SEC (Fig. 18). Based on this analysis, feed
flow rate, adsorption time, and vacuum pressure emerged as the most
influential decision variables. The feed flow rate is varied from le-4 to
4e-4 Kmol/h - an increase of 300 % - highlighting its significant influ-
ence on system performance. As the feed flow rate increases up to 3e-4
Kmol/h, productivity rises steadily from approximately 0.8 to 1.68
Kmol/kg.h, more than doubling. This trend is accompanied by the
modest increase in both recovery and SEC, with SEC rising from 3.2 to
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3.8 MJ/kg COo, and recovery increasing from 75 % to 95 %. However,
further increasing the flow rate from 3e-4 to 4e-4 Kmol/h results in a
slight improvement in productivity (from 1.68 to 1.78 e-3 Kmol/kg.h)
along with a reduction in SEC (from 3.6 to 3.2 MJ/kg CO5), but at the
expense of reduced recovery (falling from 88 to 78 %). This trade-off
highlights the delicate balance between productivity, SEC, and recov-
ery when optimising the feed flow rate.

Additionally, the adsorption time is varied from 5000 to 10,000 s,
representing a 100 % change. The substantial variation, along with the
wide range in feed flow rate, indicates that both parameters were
thoroughly explored during the optimisation process and are critical to
achieving optimal performance. Given their strong individual and
combined impact, their interaction is illustrated in Fig. 19, where
adsorption time is plotted on the x-axis and feed flow rate on the y-axis,
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with productivity, purity, recovery, and SEC represented by colour
gradients in each subplot. The results reveal an inverse relationship
between these two parameters in the search for optimal designs: as
adsorption time increases, achieving optimal performance requires a
reduction in feed flow rate. This reflects the need to allow sufficient time
for bed saturation and effective CO5 uptake, depending on the rate of
COg supply. Regarding vacuum pressure, which varies from 0.07 to 0.15
% bar(a 114 % change), Fig. 17 and Fig. 18 show that increasing vacuum
pressure generally leads to reduced productivity and recovery. However,
this comes with the benefit of improved energy efficiency, as SEC is
significantly lowered. Previous studies have indicated that a vacuum
pressure of 0.15 bar generally fails to achieve high levels of productivity
and recovery (reference). In this study, the optimisation results support
this observation: at a vacuum pressure of 0.15 bar, the maximum
achievable recovery (94 %) and productivity (1.8 e-3 Kmol/kg.h) were
not achieved. However, several designs operating at this pressure still
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demonstrated reasonably high performance while benefiting from
reduced energy consumption. This implies that the limitations of higher
vacuum pressures can be offset by appropriately adjusting other decision
variables. For instance, at a fixed vacuum pressure of 0.15 bar, recovery
and productivity varied between 73 and 92 % and 0.8-1.6 e-3 Kmol/kg.
h, respectively, depending on the combination of other parameters.
Notably, the energy consumption across all these configurations
remained around 3.2 MJ/kg CO», which is substantially lower than the
maximum observed value of 3.9 MJ/kg CO2. This highlights the po-
tential of synergistic parameter tuning to mitigate energy demands
while maintaining acceptable process performance.

In contrast, the heating temperature showed minimal variation
during optimisation, ranging from 149 to 150 °C, a change of lower than
1 %. As observed in the sensitivity analysis, temperatures below 120 °C
were insufficient for effective CO2 desorption, indicating that a mini-
mum threshold temperature is required for this sorbent to function
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properly. However, once the temperature exceeds this threshold, further
increases within the 120-150 °C range have a limited impact on key
performance indicators. Nonetheless, the optimisation results suggest
that achieving high productivity and recovery still requires operating at
the upper end of this temperature range, in conjunction with adjust-
ments to other decision variables. A similar pattern was observed for the
feed temperature. Although the initial exploration range for feed tem-
perature was between 5 and 28 °C, the optimiser focused on a narrow
range of 5 to 8 °C, with most optimal designs found between 5 and 6 °C.
This indicates that feed temperature plays a crucial role in sorbent
performance, with lower temperatures enhancing efficiency- consistent
with the trends observed in sensitivity analysis. It is important to note
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that, in all the discussed designs, CO; purity ranges from 94 % to 96.5 %,
as illustrated in Fig. 15.

3.4. Optimal design discussion

The two-dimensional Pareto front showing the relationship between
CO; recovery and SEC is presented in Fig. 20, with the productivity of
each Pareto solution indicated by colour. Three distinct regions can be
identified based on the range of productivity and SEC. Region 1, Region
2, and Region 3. These regions represent different sets of optimal process
designs, each offering a unique balance of performance trade-offs.
Importantly, no single region is universally superior; rather, each
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reflects a viable optimal solution depending on specific process prior-
ities. Each design corresponds to a specific combination of operating
parameters and cycle configurations. Region 1 is characterised by high
productivity (1.6e-3-1.7e-3 Kmol/kg.h), the highest recovery (over 93
%), and the greatest SEC (exceeding 3.7 MJ/kg CO5). A representative
design in this region operates at the maximum heating temperature
(150 °C) to enhance sorbent regeneration, combined with a low vacuum
pressure (0.07 bar) to facilitate CO, desorption by reducing its partial
pressure. The cycle employs a short adsorption (5000 s) and desorption
time (200 s), which helps shorten the overall cycle and improve pro-
ductivity. Additionally, the feed temperature is kept at the lowest tested
value (5 °C) to increase the sorbent’s CO; uptake capacity, and a mod-
erate feed flow rate of 2.89 e-4 Kmol/h is applied to ensure adequate
CO;, delivery during the brief adsorption phase. This configuration re-
flects a design that maximises productivity, recovery, and purity, but
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demands significantly higher energy input, resulting in elevated SEC.

In contrast, Region 2 achieves relatively high recovery rates (88-92
%) and productivity values ranging from 1.3e-3 to 1.5e-3 Kmol/kg.h,
with SEC varying between 3.25 and 3.4 MJ/kg CO> depending on the
operational conditions. As evident from the reported operational vari-
ables for one example from this region, the air enters the adsorption bed
at a low temperature of 5 °C to enhance CO, capture, while the
desorption step requires the highest heating temperature of around
150 °C to effectively regenerate the sorbent. However, this design uses a
higher vacuum pressure (0.146 bar) compared to region 1(0.07 bar),
which is less energy-intensive for vacuum generation. To compensate for
the reduced driving force at this pressure, the system relies on longer
desorption (785 s) and adsorption time of 5570 s. This configuration
allows the optimiser to balance performance with energy efficiency by
selecting conditions that reduce SEC, even if it requires extended cycle
durations.

An important aspect of this plot is Region 3, which differs noticeably
from the other regions. Within Region 3, two distinct groups of data
emerge, each exhibiting different ranges of productivity and SEC while
maintaining a constant recovery level. The blue colour group shows
productivity between 0.8 e-3 and 1.1e-3 Kmol/kg. s with SEC below 3.2
MJ/kg CO,, whereas the yellow group achieves the highest productivity
values (1.7e-3-1.8e-3 Kmol/kg.h) but with increased SEC ranging from
3.4 to 3.7 MJ/kg CO,. Examining two representative points from these
groups at a constant recovery of 85 % reveals that both require the
lowest feed temperature(5 °C) and highest heating temperature
(150 °C). However, their other decision variables differ significantly. For
the design with lower energy consumption (3.2 MJ/kg CO3) and mod-
erate productivity of 0.9 e-3 Kmol/kg.h, a lower vacuum pressure (0.15
bar, the minimum considered in this study) is used. To maintain the
constant recovery at this vacuum pressure, the adsorption and desorp-
tion times need to be extended to 8000 s and 970 s, respectively, while
the feed flow rate is reduced to 1.93e —4 Kmol/h. In contrast, increasing
productivity at the same recovery level involves raising the vacuum
pressure slightly to 0.092 bar and reducing adsorption and desorption
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Table 3

values of error metrics (R%MSE, and AARD) of the ANN model for four process performance indicators (SEC, CO, purity, recovery, and productivity) across training,

validation, and test datasets.

Process parameters Unit Training Validation Testing
R2 MSE AARD R2 MSE AARD R2 MSE AARD
SEC MJ/kg CO, 0.994 0.004 1.32% 0.995 0.004 1.32% 0.994 0.004 1.35%
CO,, purity % 0.936 1.444 0.26 % 0.997 0.078 0.21 % 0.997 0.061 0.18 %
Recovery % 0.999 0.416 0.76 % 0.999 0.279 0.71 % 0.999 0.232 0.68 %
Productivity Kmol/kg.h 0.998 0 1.03 % 0.998 0 0.98 % 0.998 0 1.04 %
Table 4 Table 6

Error comparison of the ANN on the new dataset for four performance in-
dicators: SEC, CO,, purity, productivity, and recovery.

Comparison of performance indicators for the base case, the recommended
optimal case, and the Climeworks reports.

Process parameters Unit R? AARD(%)
SEC MJ/kg CO2 0.958455 1.6277
CO,, purity % 0.990575 0.124495
Productivity Kmol/kg.h 0.96951 1.69055
Recovery % 0.87523 1.2468

Table 5

NGSA-II parameters used in this study.
NSGA-II parameters Quantity
Population 250
Generation 1000
Cross over probability 0.9
Mutation probability 0.1
Cross over index 20
Mutation index 20

time to their minimum values of 5000 and 200 s, respectively, with a
higher feed flow rate of 3.55 e-4 Kmol/h. Since productivity depends
strongly on time, shorter cycle times boost productivity but increase
energy consumption. Therefore, the selection of operating conditions
within region 3 depends on whether priority is given to maximising
productivity or minimising energy use.

Taking into account the importance of energy usage within Europe,
this study recommended designs that prioritise minimising energy
consumption while maintaining high recovery and productivity, along
with CO9 purity above 94 %. Therefore, Region 2 is selected, and the
results of a representative point from this region are compared with our
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Performance Unit Base Recommended Climeworks
parameters design optimal design
SEC MJ/kg 3.85 3.35 6.12-8.18
CO,
CO,, purity % 98.13 95.3 99.9
Productivity Kmol/ 3.6le-4 1.5e-3 —
kg.h
Recovery % 53.26 90.2 85.4
Reference This work [53,54]
Table 7

Comparison of operating conditions between the base case and the recom-
mended optimal case.

Decision variables Unit Base design Recommended optimal design
Feed flow rate Kmol/h 0.0003 0.000295

Feed temperature ¢ 23 5

Heating temperature %¢c 150 149.5

Adsorption time s 7200 5000

Desorption time s 10,000 504

Vacuum pressure Bar 0.09 0.127

baseline design. Table 6 compares the performance outcomes of the
recommended design against the base case and reported data from Cli-
meworks, while Table 7 represents the values of decision variables for
both the base case and the recommended design. As shown, the rec-
ommended design achieves notably higher productivity and CO; re-
covery, along with the reduction in SEC, at the expense of a slight drop in
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purity from 98 % to 95 %. When compared to the Climeworks reported
performance for an unspecified amine-functionalised solid sorbent, the
proposed design demonstrates superior productivity, higher recovery,
and a reduction in SEC by at least 82 %, albeit with a decrease in CO5
purity from 99.9 to 95.3 %. This discrepancy is expected, as the current
model represents an idealised and optimised system. In contrast to real-
world operations, it assumes full sorbent utilisation, negligible pressure
drop, and ideal equipment. It also simplifies the process by assuming
axial flow through a thin sorbent layer — reducing flow resistance- and
neglects energy requirements for water- CO, separation. These ideal-
isations contribute to the lower energy consumption observed in the
model compared to actual systems like Climeworks.

4. Conclusion

A TVSA cycle model, developed in Aspen Adsorption for capturing
CO5 under DAC conditions using mmen-Mgs(dobpdc), was employed to
optimise the process with the goal of achieving high-purity CO,
removal, while minimising SEC and maximising both recovery and
productivity. Given the computational intensity of the optimisation
process — which requires thousands of simulation runs and results in long
computation times - a surrogate modelling approach was implemented
to identify an optimal design at a reduced computational cost. In
particular, an ANN model was developed and integrated with the NSGA-
II to efficiently optimise key process variables (Adsorption time,
desorption time, adsorption temperature, and vacuum pressure) and
feed properties (feed temperature and feed flow rate). To train a high-
performance ANN model, 2500 data points were generated using the
LHS sampling technique from the detailed simulation model. After
validating and testing the Network, a final verification was performed
using 300 additional data points. The ANN predictions for these new
points were compared against results from the full simulation model to
confirm the accuracy of the surrogate model. By integrating the ANN
surrogate model and the NSGA-II algorithm, optimal TVSA designs were
successfully identified with significantly reduced computation time.
Using the same NSGA-II configuration—including 1000 generations and
a population of 250, the optimisation with the surrogate model required
only approximately 2 h, compared to approximately 350 days if per-
formed directly in Aspen Adsorption, assuming an average of 2-min
runtime per dynamic simulation(250 x 1000 x 2 = 500,000 min).
The developed surrogate model effectively captures complex, nonlinear
relationships between process variables and performance outcomes-
thereby enhancing optimisation efficiency and enabling faster, more
efficient optimisation iterations, ultimately accelerating the discovery of
advanced CO; capture materials.

Considering the CO5 purity over 95 %, the resulting Pareto front
analysis reveals two distinct data trends, both highlighting a trade-off
between SEC and recovery and productivity. In one of these trends, it
is observed that under constant recovery, increasing SEC can lead to a
significant gain in productivity. Depending on the specific priorities of
an industry, whether to maximise throughput or minimise energy con-
sumption, these results offer flexible design options that balance oper-
ational efficiency with energy demand. Furthermore, the optimisation
results indicate that environmental conditions, particularly ambient
temperature (feed temperature), play a critical role in performance.
Lower feed temperatures enhance adsorption capacity, thereby
increasing recovery, and making ambient temperature an important
factor in achieving optimal TVSA operation for this sorbent.

The insights gained from this study demonstrate the potential
application of mmen-Mg,(dobpdc) in industrial DAC systems. For future
work, we aim to upscale the model to the industrial scale to evaluate the
performance of this sorbent under realistic operating conditions. Addi-
tionally, considering the effect of humidity is essential, as water in the
air can significantly influence CO;, adsorption behaviour; incorporating
this factor will improve the reliability of predictions and guide practical
DAC implementation. These steps will help bridge the gap between lab-

Separation and Purification Technology 383 (2026) 136177

scale optimisation and industrial deployment, providing a more
comprehensive understanding of the sorbent’s performance in real-
world DAC operations.

Finally, Comprehensive climate mitigation demands that we com-
plement capture technologies with cleaner transition energy fuels.
Natural gas remains a vital bridge in this energy matrix, necessitating
continued rigour in extraction mechanics, specifically the flowback and
cleanup processes that govern unconventional reservoir performance
[55-57].
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