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ABSTRACT

An asteroseismic analysis has revealed a magnetic field in the deep interior of a slowly rotating main-sequence F star KIC
9244992, which was observed by the Kepler spacecraft for 4 yr. The star shows clear asymmetry of frequency splittings of high-
order dipolar gravity modes, which cannot be explained by rotation alone, but are fully consistent with a model with rotation, a
magnetic field, and a discontinuous structure (glitch). Careful examination of the frequency dependence of the asymmetry allows
us to put constraints on not only the radial component of the magnetic field but also its azimuthal (toroidal) component. The
lower bounds of the root mean squares of the radial and azimuthal components in the radiative region within 50 per cent in radius,
which have the highest sensitivity in the layers just outside the convective core with a steep gradient of chemical compositions,
are estimated to be B™M" = 3.5 £+ 0.1kG and Bg‘i“ = 92 &£ 7KkG, respectively. The much stronger azimuthal component than the
radial one is consistent with the significant contribution of the differential rotation, although the star has almost uniform rotation
at present. The estimated field strengths are too strong to be explained by dynamo mechanisms in the radiative zone associated
with the magnetic Tayler instability. The aspherical glitch is found to be located in the innermost radiative layers where there
is a steep gradient of chemical composition. The first detection of magnetic fields in the deep interior of a main-sequence star
sheds new light on the problem of stellar magnetism, for which there remain many uncertainties.

Key words: asteroseismology —stars: individual: KIC 9244992 —stars: interiors —stars: magnetic fields —stars: oscillations —

stars: variables: general.

1 INTRODUCTION

The study of magnetic fields in stars has been a major subject in
astrophysics since G. E. Hale (1908) first detected them in sunspots.
The Sun has not only strong magnetic fields of the order of 10° G
confined in sunspots but also a global-scale weak field of the order of
1 G, which extends from the photosphere to the corona. The number
of sunspots (H. Schwabe 1844) and their latitudinal position (Sporer’s
law; R. C. Carrington 1863) both change over a period of about 11 yr,
which actually corresponds to a half of the magnetic cycle of about
22 yr (G. E. Hale et al. 1919). Understanding the mechanism of
how the magnetic fields are generated and maintained is the central
problem of the activity of the Sun and low-mass main-sequence stars
(e.g. D. H. Hathaway 2015).

On the other hand, large-scale nearly dipolar magnetic fields with
typical strengths of 10* G are detected at the surface of a small
fraction of early-type main-sequence stars that do not have a thick

* E-mail: takata@astron.s.u-tokyo.ac.jp (MT);
simon.murphy @unisq.edu.au (SIM)

© The Author(s) 2025.

convective envelope (J. D. Landstreet 1982). In early studies H.
W. Babcock (1947) first reported the detection of magnetic fields
mainly in A- and B-type stars with chemical peculiarities, whereas
recent surveys have extended the detections to O- and B-type stars
(e.g. M. Briquet 2015; G. A. Wade et al. 2016; M. E. Shultz et al.
2019; V. Petit & M. E. Oksala 2026). Unlike the Sun, these fields
are apparently stable (at least on human observation time-scales),
and their observed variability is interpreted as rotational modulation
with the magnetic axis inclined to the rotation axis (D. W. N. Stibbs
1950). These fields could originate from interstellar fields that were
locked into the stars during the formation process (E. F. Borra, J.
D. Landstreet & L. Mestel 1982). Or they might alternatively come
from the dynamo process in the stars (K. Stepiefi 2000).

We now give an overview of the surface fields of pulsating main-
sequence stars with low and intermediate mass. The first example
of magnetic pulsators is the rapidly oscillating Ap (roAp) stars (D.
W. Kurtz 1982, 1990), which show high-order acoustic modes with
a typical periods around 10 min under significant influence of the
surface field of the order of 10° G. Although the roAp stars are
found in the same region in the HR diagram as § Sct stars, which
show only low- to intermediate-order modes, the large-scale strong
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surface magnetic field has long been thought to be incompatible with
low-order oscillation modes.

This situation changed when surface fields were detected in a
few 8 Sct stars (K. Thomson-Paressant et al. 2023), and when S.
J. Murphy et al. (2020) discovered the first example of § Sct-roAp
hybrid stars, KIC 11296437, with the surface field of 2.8 £ 0.5kG.
Furthermore, S. J. Murphy et al. argued, based on theoretical analysis,
that strong surface fields could inhibit high-order gravity modes.
In fact, there has so far been no detection of a large-scale surface
magnetic field in y Dor stars and § Sct—y Dor hybrid pulsators (e.g.
S. Hubrig et al. 2023; K. Thomson-Paressant et al. 2023). However,
the hypothesis of suppression of high-order gravity modes by strong
magnetic fields must be examined quantitatively because surface
magnetic fields and high-order gravity modes do coexist in slowly
pulsating B (SPB) and SPB—f Cep hybrid stars (e.g. C. Neiner et al.
2003; M. Briquet et al. 2013), which are also main-sequence stars,
but with higher masses (3-9 M) than y Dor stars. In this context,
we note that the low-frequency peak found in the spectrum of some
y Dor stars may be caused by surface spots, which are associated
with small-scale surface magnetic activity (A. I. Henriksen et al.
2023a, b; V. Antoci et al. 2025). In summary, due to improvements
in observational techniques, the number of confirmed main-sequence
magnetic pulsators is steadily increasing. This naturally leads to a
stronger motivation to understand these stars also from a theoretical
point of view.

The surface magnetic fields are detected not only in main-sequence
stars but also in stars in the initial (pre-main-sequence) stage of
their lives (T Tauri stars) and those in the final stage (white dwarfs
and neutron stars) (e.g. S. Bagnulo & J. D. Landstreet 2021). The
magnetic fields thus play significant roles throughout the entire life
of stars affecting many physical processes, including star formation,
rotation, mass accretion, flares, and winds (e.g. L. Mestel 2012).

While surface magnetic fields are measured by the Zeeman effect
of spectral lines, asteroseismology provides a unique method to
constrain the internal magnetic fields through their effect on stellar
oscillations. Among others, G. Li et al. (2022) have carefully
examined the oscillation frequencies of three red-giant stars, which
were observed by the Kepler spacecraft, to deduce the detection of
fields of 30-100kG in the core. This analysis has been extended to
a larger sample of stars by S. Deheuvels et al. (2023), G. Li et al.
(2023), and E. J. Hatt et al. (2024).

Turning to main-sequence stars, D. Lecoanet, D. M. Bowman &
T. Van Reeth (2022) estimated an upper limit of the magnetic-field
strength in the near-core region of the main-sequence B star HD
43317 to be of order 500 kG. This was based on the picture that the
observed suppression of gravity modes in the low-frequency range is
due to the conversion of constituent waves from the internal gravity
waves to resonant Alfvén waves as a result of significant interaction
with the magnetic field in the layer of the steep gradient of chemical
composition just outside the convective core (D. Lecoanet et al.
2017). The essential part of this picture was originally presented by
J. Fuller et al. (2015) to explain unusually low amplitudes of dipolar
modes in a fraction of red-giant stars observed by the Kepler space
telescope (B. Mosser et al. 2012; R. A. Garcia et al. 2014). However,
B. Mosser et al. (2017) contradicted this idea by demonstrating that
the low-amplitude dipolar modes of red giants are formed by the
coupling between core and envelope oscillations, which implies that
the waves transmitted from the envelope to the core come back to the
envelope (at least partially). This is not expected by the mechanism of
J. Fuller et al. (2015), at least in its original form. Continuing efforts
have been made to understand the mechanism of mode suppression
and its relation to the magnetic field from both observational aspects

MNRAS 545, 1-24 (2026)

Table 1. Parameters for KIC 9244992 from T. M. Brown et al. (2011) (B11),
D. Huber et al. (2014) (H14), and J. M. Nemec et al. (2017) (N17).

Parameter Value Reference
Kepler magnitude (mag) 13.998 B11
Ter (K) 6900 £ 292 H14
7550 £+ 100 N17
log g (cgs) 3.524+0.40 H14
3.52+0.15 N17
vsini (kms1) <6+1 N17
[Fe/H] —0.15+0.30 H14
+0.1+0.3 N17

(e.g D. Stello et al. 2016; Q. Coppée et al. 2024) and theoretical ones
(e.g. S. T. Loi 2020; N. Z. Rui & J. Fuller 2023).

Following recent work on red-giant stars, we report in this paper
the detection of a magnetic field in the deep interior of a main-
sequence F star, KIC 9244992, which can be classified as a § Sct—
y Dor hybrid pulsator (H. Saio et al. 2015, hereafter S15). The
structure of this paper is as follows: the main analysis is presented in
Section 2 with the details given in appendices; Section 3 is devoted
to discussions; we finally give conclusions in Section 4.

2 ASYMMETRY OF FREQUENCY SPLITTINGS

2.1 Target

KIC 9244992 has a Kepler magnitude of Kp = 14 (T. M. Brown
et al. 2011) and a spectral type of FO (J. M. Nemec et al. 2017).
There is no observational evidence that the star belongs to a binary
(or multiple) system (S. J. Murphy et al. 2018). The properties of the
star are summarized in Table 1.

S15 analysed the Kepler long-cadence data of the star in quarters
1 to 17 to find rich frequency spectra of both of gravity and acoustic
modes. Using the MESA stellar evolution code (B. Paxton et al.
2011, 2013, 2015, 2018, 2019; A. S. Jermyn et al. 2023), they
then constructed evolutionary models, which reproduce the observed
properties well. The best model has a mass of 1.45Mc), an initial
metal abundance of Zy = 0.01, and an age of 1.9 Gyr, which implies
the late phase of the main-sequence stage (see Table 2). From the
observed frequency splittings, they estimated the rotation periods of
the core and the envelope to be 63.51 + 0.28 and 66.18 4+ 0.58d,
respectively.

The star can be classified as a § Sct—y Dor hybrid pulsator, though
its rotation period is much longer than the typical value of ~ 1 d
of y Dor stars (G. Li et al. 2020). Most stars rotating this slowly
with this T, log g, and age show Am chemical peculiarities, or Ap
peculiarities if there is a surface magnetic field. A high-resolution
spectroscopic study of KIC 9244992 would be useful to examine its
surface abundances.

2.2 Measurement

While the internal rotation can be inferred from the difference
between the lowest frequency and highest frequency of each g-mode
triplet (e.g. C. Aerts, J. Christensen-Dalsgaard & D. W. Kurtz 2010),
we may study magnetic fields and the second-order effect of rotation
based on the asymmetry of triplets, which is defined by

Vn1,1+ Vn1,—1

a, = f — V1,0 - (1)
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Table 2. carefully examine this problem and establish more robustProperties
of evolutionary models by S15. Symbols X, Aoy, and IT; stand for the central
hydrogen abundance, the parameter of overshooting from the convective core,
and the period spacing of dipolar gravity modes, respectively, while S, and
Sh are defined by equations (9) and (10), respectively. The upper limit of Gp
(the magnetic region in the gravity-mode cavity) is expressed by xyp, which
is measured in units of the fractional radius. The other symbols have their
usual meanings.

Model A* B C
M/Mg 1.45 1.50 1.54
Toi (K) 6625 6748 7221
logL/Lg 0.854 0.907 1.050
log R/Rg 0.309 0319 0.331
log g (cgs) 3.982 3.977 3.962
Age (Gyr) 1.9 1.7 1.4
X 0.149 0.142 0.111
X 0.724 0.724 0.727
Yo 0.266 0.266 0.266
Zo 0.010 0.010 0.007
hov 0.005 0.000 0.005
I (s) 2349 2335 2306
for xyp = 0.5

S:(1073 ecmg~!s72) 3.0 2.8 29
Sh(10~* cmg™1) -2.5 —2.4 —2.4

Note. A* indicates our best model (see S15).
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Figure 1. Asymmetry of frequency splittings a, (see equation 1) for high-
order gravity modes in KIC 9244992. Errors are smaller than the symbol size
for the points without error bars.

Here, v, ,.n generally represent mode frequencies with radial order
n, spherical degree ¢, and azimuthal order m.

In Fig. 1, we plot a,, as a function of v, ; ¢ for all of the 17 gravity-
mode triplets between 0.9 and 1.8 d~!, whose frequencies are listed in
table 1 of S15. The first point we should note is that all a, except those
at1.29,1.70, and 1.78 d~! are statistically significantly different from
zero, although all |a,,| are smaller than the frequency resolution,

fres = — = 1.7 x 107*d™! 2

4Ty
(T. Kallinger, P. Reegen & W. W. Weiss 2008), where Ty = 1459d is
the total observation time-span of the Kepler primary mission Q1-17
data for KIC 9244992. The pulsation frequencies can be determined
to higher precision than the frequency resolution, so long as there are
no undetected unresolved frequencies within the spectral window
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of the mode frequency peaks. The consistency of our results for
a, indicates that this is the case. Given that, we list the following
properties of a,: (1) a negative and decreasing trend below 1.25d7!;
(2) pseudo-sinusoidal behaviour, particularly for v > 1.3d™", with
a wavelength of several data points; (3) an outlier at 1.13d~!. The
main question of this paper is how we can understand these.

2.3 Theory

In the present analysis, we assume that asymmetry of the frequency
splitting arises from the three effects,

a, = aElrot) + aimag) + a;glilch) , (3)

in which af, a™® and a&ih indicate the effects of rotation, a
magnetic field, and a discontinuous structure (glitch), respectively.
There are three remarks about equation (3): first, we assume that the
first-order effect of rotation is much larger than that of the magnetic
field. In fact, table 1 of S15 shows that the frequency splittings are
all equal to about 8 x 1073 d~!, which is larger by two orders of
magnitude than the observed asymmetry in Fig. 1. However, since
the rotational splitting is symmetric, the first-order effect of rotation
cannot influence a, and we need to analyse its second-order effect.
Secondly, in contrast, it is sufficient to consider the first-order effects
for the magnetic field and the glitch. Finally, we assume that the
deformation of the equilibrium structure caused by the Lorentz force
is negligible compared to that caused by the centrifugal force. We
will discuss this assumption at the end of Section 2.5.

Each of the three terms on the right-hand-side of equation (3) is
discussed separately in the following subsections.

2.3.1 Rotation effect

For simplicity, we restrict ourselves to the case of uniform rotation
(without the magnetic field), which is a good approximation for
KIC 9244992 (see Section 2.1). From a physical point of view,
the second-order effect of rotation is composed of two sources (in
the Eulerian picture), the second-order effect of the Coriolis force,
which directly affects the oscillations, and the deformation of the
equilibrium structure due to the centrifugal force.

Although we need to rely on sophisticated methods and stellar
models to quantify the corresponding a{™ accurately, it would be
worth providing a model-independent analytical formula for the
order-of-magnitude estimates. For high-order gravity modes, the
Coriolis force becomes more important than the centrifugal force,
because the former effect is inversely proportional to the frequency
(the ratio between the Coriolis force and the acceleration of the
oscillation). Using equation (117) of W. A. Dziembowski & P. R.
Goode (1992) (see also P. Brassard, F. Wesemael & G. Fontaine
1989), we estimate for dipolar modes (¢ = 1),

‘)2
a(rol,asymp) = rot

n 0, 4
. 400, as v, — “4)

in which v, means the (cyclic) rotation frequency. Equation (4) can
be rewritten as

P ) -2 Vol -1
(rot,asymp) =6 10_6 2 ( i ) d_] ’
al x (64d) Ld! ’ N

where Py, = v, means the rotation period. The rotation effect is
opposite in sign to and smaller in amplitude by an order of magnitude
than the observed asymmetry in Fig. 1. We conclude that there exist
some physical effects other than the rotation in the star.

MNRAS 545, 1-24 (2026)
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2.3.2 Magnetic effect

The frequency change due to a weak magnetic field is analysed
in the framework of the regular perturbation theory (e.g. D. O.
Gough & M. J. Thompson 1990; H. Shibahashi & M. Takata 1993).
Analyses that can be adapted to the case of high-order and low-
degree gravity modes have been developed in some recent papers
(e.g. S. Mathis et al. 2021; G. Li et al. 2022). We extend these
previous works under the assumption of |By| > |B;|, |Bs|, where
B., By, and By represent r, 6, and ¢ components of the magnetic
field in the spherical coordinates (with the rotation axis in the
direction of 6 = 0), respectively. The reason for dominant By is
that this component could easily be increased by rotation (2 effect).
In order to define the ¢ component, it is necessary to identify
a magnetic axis. Although we assume that this magnetic axis is
aligned with the rotation axis, this does not necessarily mean that
the field is axisymmetric. Namely, each component can generally
depend on ¢. [Still, we may note that Gauss’s law for magnetism
(V- B =0)leads to
axisymmetry.] The motivation of this extension comes from the fact
that the asymmetry in Fig. 1 does not perfectly follow the inverse-
cube law of frequency (e.g. L. Bugnet et al. 2021). In fact, we show
in Appendix A (equation A67) that the asymmetry of frequency
splittings is given as a function of the unperturbed frequency
Vi1 by

b

Vn,1

al(lmag) — a +

3
Vn1

, (6)

in which frequency-independent parameters a and b are given by

a = S(W.B}) (7
and
b= Sn(WyB;) , (®)

respectively. Here, S; and Sy, represent the sensitivity to the equi-
librium structure, defined in terms of the density p and the Brunt—
Viisild frequency N by

3 fGB Ny

\ 9
~ 187 [ Yar ©
and
9 dr
S, = Jo 57 . (10)

T 3053 fG erdr

respectively. The domains of the radial integral G and Gg, respec-
tively, mean the gravity-mode cavity and its subdomain where the
magnetic field exists. The gravity-mode cavity G extends to almost
the entire radiative region in the case of intermediate-mass main-
sequence stars. The angle brackets in equations (7) and (8) stand for
the volume average over Gg, which is defined by

(WaBg) = / Ko(r)W,B2 dr fora =rand ¢ , (11
Gp
with the spherical average introduced by
—_— 1
WyB2 = 4—/ B2 (r, 8, ¢) W, (cos6) sin6 d de . (12)
T Jax

The kernels in the radial direction are defined by

3 -1 a3
K.(r) = (/ N—3dr> N—3 (13)
Gy PT pr

MNRAS 545, 1-24 (2026)
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Figure 2. Profiles of K, (solid curve) and Ky (dashed curve) multiplied by
the total radius R for the best evolutionary model (model A in Table 2) with
the upper limit of Gp set at 50 per cent of the total radius. The gradual increase
of RK towards larger r/R actually complicates the interpretation, which is
treated in Section 2.5 in detail.

and

K = N d L 14
+0) = ( Gy P13 r) pr3 (1
As examples, the profiles of K, and K, are plotted in Fig. 2 for the
best model with the upper limits of G set at 50 per cent of the total
radius. The upper limits should be carefully fixed to be consistent
with the assumptions of the analysis (see Section 2.5). While the
amplitude of K, concentrates on the sharp peak around r = 0.06R,
which corresponds to the layers of a steep gradient in mean molecular
weight, K, not only takes a local maximum at the same position as
K, but also has a long tail towards larger . The difference is because
K, depends on a higher power of N than K. On the other hand, the
weight functions for the spherical averages are introduced by

3cos?6 — 1
W, (cos8) = P, (cosf) = % (15)
and
Scos?6 — 1
Wy (cos6) = S (16)

4

In equation (15), function P, is the Legendre polynomial of degree
two.

We have made no assumption about the ratio between the two
terms on the right-hand side of equation (6). Therefore, the second
term can in principle dominate over the first term, when | By| is much
larger than | B,|. In this case, the asymmetry would be proportional
to the inverse of frequency, rather than the inverse cube.

The difference between the two terms on the right-hand side of
equation (6) can be understood from a physical point of view. Since
the oscillation motion is predominantly horizontal for high-order
gravity modes, the magnetic field in the radial direction would be
significantly bent by the short-wavelength motions to generate a
strong restoring Lorentz force. On the other hand, the field in the
azimuthal direction is nearly parallel to the motion for £ =1 and
m = 1 modes near the equator, where the oscillation amplitude is
largest, so that there is little restoring force. For the axisymmetric
modes (m = 0), the motion is perpendicular to the azimuthal field,
which means that we may expect some Lorentz force to restore the
motion. However, since the wavelength in the horizontal direction is
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of the order of the stellar radius, which is much larger than that in the
radial direction, the size of the restoring force would be much smaller
than in the case of the radial field. Thus, the radial field influences the
high-order and low-degree gravity modes much more significantly
than the azimuthal field. This qualitatively explains why we observe
IS 3> 1|8y for v = 1d~" (see the last two lines of Table 2), which
implies that the first term is much larger than the second term if
|B;| ~ |By|. In addition, as the radial wavelength gets shorter for
higher order (smaller-frequency) gravity modes, the radial field is
accordingly bent with the shorter scale, which results in a larger
restoring Lorentz force, and hence a more significant impact on the
oscillation frequencies. This is the reason for the strong frequency
dependence of the first term. In contrast, the effect of the azimuthal
field would depend little of the order of modes, because the bending
scale of the field line in the horizontal direction is not affected by
the radial wavelength. This implies a weaker frequency dependence
of the second term. In fact, the inverse dependence on v, ; originates
from the perturbation to v2, so that we may regard that the impact of
the azimuthal field is essentially independent of the frequency if it is
measured by the perturbation to the squared frequency.

2.3.3 Glitch effect

In Fig. 1, we observe that the data points are not distributed
randomly, nor do they follow a linear trend, but instead they show
correlation, which in the high-frequency range is pseudo-sinusoidal
with a wavelength of several points. This is a typical signature
of discontinuous structure (glitch) in the star, which disturbs the
wave propagation. Because a, is not sensitive to any spherically
symmetric structure, which is usually assumed in the literature about
glitches, we formulate a framework to analyse aspherical glitches in
Appendix B. The glitches generally induce oscillatory structures
in the diagram of period and period difference with a constant
wavelength, but varying amplitude. Such a component can actually
be identified in Fig. 1 based on the detailed analysis in Sections 2.4.3
and 2.4.4. While the wavelength provides us with the information
about the location of each glitch, the amplitude modulation depends
on the type of discontinuity. We demonstrate in Appendix B4
that the amplitude depends on the period linearly, constantly, or
reciprocally, if the discontinuity is associated with the density itself,
its first derivative, or its second derivative, respectively. We will
carefully examine the type of discontinuity during our data analysis
(Section 2.4.3).

2.4 Interpretation

2.4.1 Evolutionary models

We use three evolutionary models A, B, and C of KIC 9244992,
which are constructed by S15, to interpret the observed asymmetry
of frequency splittings. The properties of the models are summarized
in Table 2. Their main differences are found in mass M, initial metal
abundance Zj, and parameter h,, of the convective overshooting.
Model A corresponds to the best model, which reproduces the
observed frequencies most accurately, while the other two models
also have quite close frequencies (see fig. 11 of S15).

2.4.2 Rotation effect

There exist two different methods to analyse the second-order
rotation effect. One is based on perturbation theory (e.g. H. Saio
1981;D. O. Gough & M. J. Thompson 1990; W. A. Dziembowski & P.
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Figure 3. Asymmetry of frequency splittings caused by the second-order
effect of rotation for the modes of our best evolutionary model (model A in
Table 2). The total effects a,(fm) and the asymptotic estimates af{ oL.asymp) (see

equation 4) are shown by the filled dots and the dashed curve, respectively.

R. Goode 1992), while the other relies on two-dimensional numerical
computation (e.g. U. Lee & I. Baraffe 1995). We try both methods.

We first calculate the effect for the modes of the best evolutionary
model by S15 (Section 2.1). We set the rotation period to Py =
64d, which corresponds to vy = 0.0156d™!. Fig. 3 shows a{™
and a{°t3YmP) (equation 4) for the modes in the observed frequency
range in Fig. 1. We have checked that the values of a{", which are
estimated based on perturbation theory (H. Saio 1981), are consistent
with a two-dimensional calculation by the program of U. Lee & I.
Baraffe (1995) within 1 per cent. This reconfirms the conclusion of
Section 2.3.1 that the observed asymmetry cannot be explained only
by the rotation. Fig. 3 also demonstrates that the asymptotic formula
(equation 4) overestimates the true values by only a factor of 3 at
most, which is acceptable for order-of-magnitude estimates.

We also calculate a™ for two other evolutionary models with
masses of 1.50 M and 1.54 M), which are shown in fig. 13 of S15,
and confirm that there is no essential difference from the case of the
best model.

2.4.3 Type of the glitch

Given the estimates for a™ based on the evolutionary models, we
may interpret the remaining contribution to the observed asymmetry
a, as the combined effects of a magnetic field and a glitch. While
the magnetic effects can be described by equation (6), we first need
to decide which formula to use for the glitch signature.

For this purpose, we first fit equation (6) to a, — a™ in the low-
frequency range between 0.95 and 1.25d~" (without the outlier at
1.13d7"), where the pseudo-sinusoidal component has only a small
amplitude (see Fig. 1). Then, using the fitted parameters a and b, we
extract the magnetic contribution from a, — a™ in the whole range
between 0.95 and 1.8d~!. The residuals are shown as a function
of period in Fig. 4. As shown by the solid curve, we confirm that
these residuals can be explained by a sinusoidal function with a
constant amplitude, except for one data point at 0.83 d. The sinusoidal
variation is expected for a glitch associated with the discontinuity in
the first derivative of density (see Appendix B4).

After the preliminary steps to determine the type of the glitch,
global fitting in the whole frequency range should be performed
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Figure 4. Residuals of the fitting in period, —v,~ % (an - aE{"” - af,mag) ), as
a function of the mode period. The fitting is performed based on equation (6)
for model A (see Table 4) using only the eight modes with periods longer
than 0.8 d. The residuals are computed for not only those modes but also
the modes with shorter periods. The solid curve represents the best fit to the
residuals by a sinusoidal function of constant amplitude, neglecting the data
point at 0.83 d. There is another rejected point at 0.88 d, whose ordinate is
outside the plot range. This corresponds to the outlier at 1.13d~" in Fig. 1

(see Section 3.1).

using simultaneously equation (6) and

. A

a®ih = A2 | sin {2% (— - 1//>] 17
Vn,1

(see equation B22), in which &7, J#; and ¢ are constant parameters to

be fixed. Equation (17) suffers from two types of degeneracy. First,

the expression is invariant under the transformation of

(mww(—mw%w) ; (18)

in which £ is an arbitrary integer. Secondly, since the mode periods
Py =v, i of high-order gravity modes have an almost constant
spacing, IT;, the sampling theorem tells us that the frequency %
cannot be distinguished from its mirror image with respect to the
Nyquist frequency, (2IT)~". This implies that the expression is
invariant under the transformation,

1
() — (nr‘—f,wi—w) : (19)
if the mode periods follow

Poi=m+e)I;, (20)

in which ¢ is a constant that corresponds to the total phase offset
introduced at the inner and outer turning points of the gravity-mode
cavity. We do not need to consider the other Nyquist aliases because
0< X< Hfl, which will become clear later from equation (21).
This type of degeneracy is identical to the core/envelope mirror
symmetry discussed by M. H. Montgomery, T. S. Metcalfe & D. E.
Winget (2003) (see Section 2.4.5). Strictly speaking, this degeneracy
is approximate because the period spacing is not exactly constant
in reality. It is still possible that the two sets of parameters (%, V),
which are approximately related to each other by equation (19), give
equally good fits to the data.
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Table 3. The best-fitting values of the five parameters in equations (6) and
(17) to explain the observed asymmetry in the frequency splittings a,, in Fig. 1
after subtracting the contribution of rotation that is estimated based on our
best evolutionary model A in Table 2. Two cases, 1 and 2, are considered
because of the degeneracy about the glitch signature described by equation
(19). In each case, the chi-squared per degrees of freedom (x2/df) is given
in the last row.

Case 1 Case 2
Parameters of the magnetic effect
a (1074d™%) —1.18+0.08 —1.134+0.07
b(1073d~2) 4340.6 4.040.6
Parameters of the glitch effect
/(1072 d) —1.6+0.1 —1.51+£0.09
VAGCES) 7.7+0.1 29.940.1
¥ 0.14 % 0.09 0.57 & 0.09
x2/df 0.997 0.732

2.4.4 Combined effects of the magnetic field and the glitch

We fit in total five parameters, two (¢ and b) in equation (6) and
three (7, #; and ¥) in equation (17), to the difference a, — a.
We exclude from the fitting the two data points at v, ;o = 1.13 d-!
and 1.20d~'. The former clearly follows a different trend from the
others, while the latter cannot be explained by the assumed form of
the glitch signature in equation (17). In fact, inclusion of these points
makes the fitting much worse. Possible origins for the two points
are discussed in Section 3.1. We use the curve_fit function in
the SciPy library of Python to fit the remaining 15 data points.
We adopt as a set of initial guesses of the five parameters the values
obtained during the preliminary steps to determine the type of the
glitch in Section 2.4.3. We make another set of initial guesses using
equation (19). The results originating from the first and second sets
are referred to as cases 1 and 2, respectively.

The results of the fitting are presented in Table 3 for model A (see
Table 2). We find that the fitting is good in both cases 1 and 2 since
x2/df is close to one, although the value in case 2 is slightly smaller.
The fitted values of a,, and the residuals are shown in Fig. 5.

Since a™ weakly depends on the evolutionary models, we repeat
the fitting for the two other evolutionary models (models B and C in
Table 2) and find little difference in all of the five parameters.

We can make a simple remark about the configuration of the
inferred magnetic field. The negative sign of a in Table 3 implies
that | B;| is larger on average near the equatorial region than in the
polar region because of equation (15). Similarly, the positive sign of
b means that |B¢ | is more confined to the equator than the poles (see
equation 16).

2.4.5 Properties of the glitch

Here we interpret the three parameters, .<7, /%, and v, about the glitch.
The fitted value of .#'in Table 3 can be used to estimate the position
of the glitch (r,) based on the relation

Ty N
/ —dr = V2rlH, @21
which can be obtained by comparing equation (17) with equation
(B22). Here, r;, means the inner edge of the gravity-mode cavity,
which almost coincides with the outer boundary of the convective
core. We use model A in Table 2 to obtain

7« 10.0636 £0.0002 incase 1, 22)
R~ 10.298 £ 0.003 in case 2 .
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Figure 5. Asymmetry of frequency splittings a,, of KIC 9244992 fitted with the model that takes account of rotation, a magnetic field, and a glitch (upper part
of each panel) and the residuals (lower part). The results for the two cases, 1 and 2 (see Table 3), with different positions of the glitch (see Fig. 6), are presented
in the left and right panels, respectively. The rotation effect is estimated based on our best evolutionary model (model A in Table 2). In each panel, there are two
data points excluded from the fitting, one at 1.20d ™! indicated by the filled circle and the other at 1.13d~!, whose ordinate is outside the plot range (Fig. 1).

See Section 3.1 for the possible origins of these points.
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Figure 6. Two possible positions of the aspherical buoyancy glitch in
fractional radius (r/R) indicated by the vertical dotted and dashed lines.
The solid curve represents the Brunt—Viisild frequency (N) normalized by
the peak value (Npeak) at /R = 0.06, while the dashed curve stands for the
hydrogen mass fraction (Xy). This plot is based on the structure of model A
in Table 2.

The two possible positions are shown in Fig. 6, together with
the Brunt—Viisild frequency and the hydrogen mass fraction. The
position in case 1 means that the discontinuity is located in the layer
of the steep gradient of the hydrogen profile, which is created when
the convective core shrinks in mass during evolution of the star. It
is plausible that some mixing processes near the boundary between
the convective core and the radiative envelope could generate the

discontinuity in the first derivative of the hydrogen profile. On
the other hand, the position in case 2 implies that the glitch is
located deep in the radiative region, where it is not clear how to
make a discontinuous structure in general. Because of this, case 1 is
preferable to case 2 from a physical point of view.

The amplitude of the glitch signature .o/ is related to that of the
step function 50(11) that describes the discontinuity in the quadrupole
component of the Brunt—Viisild frequency (see equation B21). The
relation is given by

_8v5713 g

@(l) —
: 310

; (23)
in which I, is the period spacing defined by equation (B14). Using
the fitted value in Table 3 and the structure of model A in Table 2,
we obtain

o _ 002040001
1 7=10.018 £ 0.001

incase 1,

in case 2 . 24

The constant factor in equation (23) is equal to 33.2, which implies
that the size of the glitch signature <7is sensitive only weakly to the
amplitude of the discontinuity. The positive sign of 9(11) means that
the quadrupole component of the Brunt—Viisild frequency decreases
in the radial direction at the glitch, which in turn implies that (the
quadrupole component of) the density gradient becomes less steep.
If the Brunt—Viisild frequency is dominated by the composition
gradient, the gradient of the mean molecular weight also becomes
less steep across the discontinuity. However, there is a warning at this
point. The sign of i)(ll) could be opposite because of the degeneracy
given by equation (18).

We now turn to v, which is related to the phase lag (¢;,) at the
inner turning point of the gravity-mode cavity (see equation A58), by
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¥ = ¢in/7m. We can compare ¢ in Table 3 with its theoretical value
of 0.25, which corresponds to ¢i, = w/4 (W. Unno et al. 1989) to
conclude that they are consistent with each other in case 1 because
the difference is only 1.2 times greater than the uncertainty. The
corresponding factor in case 2 increases to at most 1.9 if we accept
the change,

(. ¥) = (—1.51,0.57) — (1.51,0.07) , (25)

based on equation (18).

2.5 Strengths of the magnetic field

We can infer the properties of the internal magnetic field based
on equations (7) and (8). However, these expressions are in the
asymptotic limit, which is less accurate in the outer layers of the
star. We carefully examine this problem and establish more robust
estimates of the field strengths.

2.5.1 Asymptotic expressions for the lower bounds to the strengths
of the field

We first illustrate the principle of estimating the lower bounds of the
strengths of the field. The parameter a can be interpreted by equation
(7). Using S; of the evolutionary models, we can estimate (WrBf),
which in turn can be used to constrain the lower bound to the root
mean square of the radial component of the magnetic field B™". For
negative values of (WrBf), we can utilize the relation

2—a)

(BY) > —2(W:B}) = 3

v (26)
(see G. Li et al. 2022). Similarly, in equation (8) we may use b in
Table 3 and Sy, of the models to estimate (W, Bé), which imposes
a constraint on the lower bound to the root mean square of the
azimuthal component, Bg““, by the relation

4b

= —. 27
(=Sn) @7

(By) > —4(W, By)
In order to use equations (26) and (27), we need to assume the radius
Tup, Outside which no magnetic field exists at all. However, there is
no direct observational constraint on ry,. Instead, we may set ryp
to the outer edge of the gravity-mode cavity, but this approach also
has a problem because equations (26) and (27) are valid only in
the asymptotic limit, which is not realized very well in the outer
layers. Therefore, we consider it improper to apply equations (26)
and (27) as they are. In the following sections, we carefully examine
the problems of these relations to revise them.

2.5.2 Problem of the asymptotic expressions

An essential point of the arguments in Section 2.5.1 is that @ and b
are independent of the mode frequencies. This is correct only in the
asymptotic limit, while their general expressions are given by

3 L
a, = / K&Dw, B2 dr (28)
12877,'5 0
and
9 [* v
— -, 2
by = —32]13/0 RY-DW,B2 dr (29)
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in which K and K" are defined by

2
) () ()
Kb = — (30)
fO ( r2;n,l + zsk%;n,l) ,or2 dr

1) _ 28501
¢ = R 2 2 2 ’
f() ( i, 1 + 2Sh;n,1) or dr
respectively (see Appendix A6). Here, &, o and &, , represent the
radial and horizontal displacements, respectively, with radial order

n and spherical degree £. The asymptotic expressions for KD and
/Cf;‘l) are provided by

(3D

/€asymp = pr3 32
' Jo X ar 2
and
o5
K;asymp = pr 33
O o

Fig. 7 shows the profiles of K (with n = —38, —20') and K™
in the upper panels and I@f; b (withn = —38, —20) and I@;Symp in the
lower panels for model A in Table 2. We observe in the upper panels
that the profiles of K" are highly concentrated around r /R = 0.06
and so oscillatory in the inner layers (r/R < 0.5) that their average
behaviour can be described by I@;‘Symp very well. The high peak is
located in the layers of the steep gradient of chemical compositions
just outside the convective core. The oscillatory behaviour occurs
because the radial wave number &, is large enough. On the other
hand, in the outer layers (r/R 2= 0.5), we find that (1) the profiles
of Iq"’“ become rapidly less oscillatory, that (2) the amplitude of
K@y increases steeply, and that (3) the amplitude of K" differs
significantly between the two modes. The reason for point (1) is that
k. becomes smaller due to the decrease in the Lamb frequency rather
than the Brunt—Viisila frequency (see fig. 12 of S15). In fact, unlike
the higher order mode (with n = —38), the outer turning point of the
lower order mode (with n = —20) is not fixed by the Brunt—Viisald
frequency but the Lamb frequency, which explains point (3). Point
(2) is due to the lower density in the near-surface layers. All of
the three points demonstrate that the asymptotic expression I@;‘Symp
becomes inaccurate in the outer layers.

In the lower panels of Fig. 7, K" and K3*™ show similar
structures to K1 and K2V, respectively, although the peak of
K™ in the innermost radiative region is much smaller than that in
the outermost radiative region around » /R ~ 0.93. The much higher
weight in the outer layers is because K;*"™ is proportional to a lower
power of N than I@f”mp. The largest amplitude of Iﬁfb" Y in the outer
layers appears to imply that these layers contribute significantly to the
integral in equation (29). However, we argue in the next section that
this is not true.

2.5.3 Maximum field strengths of the analysis at each radius

Here, we recall the two assumptions given in Section 2.3. The first
one is that the first-order rotation effect is much larger than the direct
effect of the magnetic field. The former and latter can be estimated

I'We follow M. Takata (2006) for the definition of the radial order n.
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Figure 7. Profiles of I@E”’l) (with n = —38, —20) and K?Symp normalized by GR™3 (upper panels) and Kg"l) (with n = —38, —20) and l@‘rymp normalized
by M (lower panels) as functions of the fractional radius /R for model A in Table 2. The frequencies of the modes with n = —38 and n = —20 are 0.96 and
1.79d7!, respectively. The left panels are the plots to see the overall structure, while the right panels have smaller ordinate scales to resolve the oscillatory

behaviour of K" and K01,

by the dimensionless parameters,

2 IOl
== (34)
and
B 2
Sm = (ﬁ) : (35)

respectively, in which BUL is defined by equation (A71). Here, s
is called the spin parameter and provides the ratio of the Coriolis
force and the inertial term, whereas sy, is the ratio of the horizontal
component of the Lorentz force and that of the pressure gradient.
The condition of s, < s (for £ = 1) yields

|B;| € B =/ 647r5vmtv3p% . (36)

The second assumption is that the magnetic deformation of the
equilibrium structure is smaller than the rotational deformation. The
effect of the magnetic deformation can be estimated by the ratio
between the magnetic and gas pressure (p),

B2

— 37
s7p (37

Tmag =

whereas that of the rotational deformation can be estimated by the
ratio between the centrifugal force at the equator and the gravity,

r Q7 Vir)?
g = )" (38)
8
where g is the gravitational acceleration. Then, the condition of

Tiag K Tt Means

(327312
B < B™ = % . (39)

The profiles of B™* and B™* are shown in Fig. 8. We observe
that B™** decreases monotonically and rapidly because p does
so towards the surface. Although the amplitude of K g"l) roughly
increases in proportion to the inverse of p in the outer layers of
the star, K g” ”(B““‘")Z becomes smaller for larger radii because p/p
decreases. We therefore understand that the contribution of the outer
layers to the integral in equation (29) is small.

We may stress the meanings of these maximum strengths. The
estimates for the radial and total magnetic fields at each radius must
not be larger than B™* and B™¥, respectively, for the analysis to
be self-consistent. If this is not the case, the fundamental relation
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Figure 8. The maximum strengths of the radial component of the magnetic
field (B/™*) and the total magnetic field (B™) that come from the
assumptions of the present analysis. The condition of |B;| < B means
that the Coriolis force contributes to the restoring force of the oscillation
more importantly than the Lorentz force, while |B| < B™** means that the
equilibrium structure is deformed by the centrifugal force more significantly
than the Lorentz force. Model A in Table 2 is used. The rotation period and
the oscillation frequency are assumed to be 64 d and 1d~!, respectively.

of the present analysis, equation (3), cannot be justified. The fact
that equation (3) provides good fits to the data suggests, but does not
prove, that these conditions are actually satisfied. Since B™ < B
for r/R > 0.42, we concentrate on B™ to discuss the contribution
from the near-surface layers to the integrals in equation (29).

2.5.4 Estimates for the root mean square of the strengths of the field

We modify equations (26) and (27), taking into account the two
problems, the poor asymptotic expressions in the outer layers and the
maximum strengths of the field in the analysis. Since the problems
are more severe for B, than B, we first discuss By.

Since Wy > —1/4 (see equation 16), we find from equation (29)

1287°

R I
bn < / ’CgLI)B; dr = In,in + In,oul s (40)
0

where we have separated the integral in two parts at radius ry, by
introducing

Y AP R
Lin = Ky By dr 41)
0
and
R
Lo = / K$-VB2 dr . (42)
Tup

The idea is to choose r, such that the asymptotic expression K ;Symp

is accurate enough for r < ry, while keeping 1, o, small enough.
We may substitute K 5 " into ]q;m) in I, ;.. The error of this
approximation can be estimated as

Tup N _
Liin — / K;"™Bj dr
T

in

<, 43
1287%h, =¢ “3)

in which we have defined

9Vn,l (/ N 4 )1 |:(Bma>()2:| (44)
W= —F— — dr .
128v2r2b \Jg 1 prr ] .,
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Note that ry, in equation (43), which has been introduced in equation
(21), means the inner edge of the gravity-mode cavity. In deriving
equation (44), we have substituted equation (A58) into equation (41),
and performed integration by parts.

On the other hand, we may constrain the upper limit of the relative
contribution of I, oy to be

91n oul 9 Koo n
oy / R0 (Bm)? dr . @5)

12873b — " = 1287

Tup

The relative errors ¢, and 9, can be evaluated using the structure
and the eigenfunctions of the equilibrium models in Table 2 together
with the fitted values of b given in Table 3. We confirm for all the
modes in the analysis of all the models in Table 2 and for the both
cases of the glitch positions (cases 1 and 2)

¢, <©=0012 (46)

and

29, <0=0.1 47)

for

Xy = _ 05 (48)
w="2=05.

Although we may choose other values of x,,, we regard the
value in equation (48) as fiducial. Note that this corresponds to
the radial coordinate of r = 1.02R and the mass coordinate of
M, = 1.42 Mg (98 per cent of the total mass) in model A.

Using equations (40), (43), and (45) with b, = b, we can revise
equation (27) as

2y1/2 i 4b ~1"
(B2) >Bm‘“z[ 1_0} , (49)

[ [ (_ Sh) ( )
in which we have neglected ¢ because it is smaller than D by an order
of magnitude (see equations 46 and 47). Here, the integral domain
G p that appears in the definition of Sy, (see equation 10) is between
r=ripand r = ryp.

In order to obtain the corresponding expression for B, for
simplicity we make an additional assumption

S KOOW,BZ dr

R g(n.1) 2
- l frup ’C¢ W¢B¢ dr
R (n,
J KW, B? dr

T AR W B dr

(50)

which roughly means that B, is concentrated in the core region to
the degree similar to or more than B,. Then, also assuming that the
error in the asymptotic expression is negligible for r < ry,, we can
revise equation (26) as

2(—a)
S

1/2
(BX)!/? > BPin = { (1 —5)] : (51)

Table 4 provides B{"" and BJ'™ for the three evolutionary models
in Table 2 (A, B, and C) and the two positions of the aspherical
glitch (cases 1 and 2) with x,, = 0.5. The results for model A and
case 1, BM" = 3.5 4 0.1kG and Bj™ = 92 + 7kG, are completely
consistent with the other cases with different combinations of
evolutionary models and glitch positions. The estimates for B™n
and Bgi“ are quite insensitive to the evolutionary models and the
positions of the glitch. The fact that B;‘,““ is larger than B™* at
r/R = 0.5, which is equal to 37 kG for model A (see Fig. 8), means
that the field distribution within r/R < 0.5 is biased to the core.
We also confirm that B™" is well below B™* in Fig. 8. We finally
note that if B, = B™" and B, = Bgi“ for r/R < 0.5, the ratio of the
magnetic pressure to the centrifugal force at the equator is equal to
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Table 4. Estimates of the lower bounds to root mean squares of B; and By.
The assumed models are those in Table 2, while cases 1 and 2 are different
from each other in the position of the glitch (see Fig. 6). The upper limit of
the integrals in the numerators of equations (9) and (10) is set to x,p = 0.5 in
unit of the fractional radius.

Model A* B C
BMin(kG)

case 1 3.54+0.1 3.74+0.1 3.6 +0.1
case 2 3.44+0.1 3.6 0.1 3.5+0.1
By (kG)

case 1 92 +7 92 +7 93+7
case 2 88 £ 7 89+7 89 +7

Note. * the best model (see S15).

0.04-0.7 outside the convective core for model A and case 1. This
confirms one of the assumptions made in Section 2.3.

3 DISCUSSION

We have shown that the observed asymmetry of frequency splittings
in KIC 9244992 can be explained by a model with an internal
magnetic field, whose azimuthal component is much stronger than
the radial component. Historically, it is well established that a small
fraction (about 10 percent) of intermediate-mass main-sequence
stars have strong and large-scale magnetic fields at the surface,
which are associated with chemical peculiarities. Because of this,
much attention has been paid to the surface of these stars. The result
of this study enables us to move our focus to the interior of the stars
with observational constraints. From the asteroseismic point of view,
we have so far been able to constrain only the radial component of
the internal magnetic field in red giants, which allows us to study
only limited aspects of the magnetic problems in stars. On the other
hand, the predominantly toroidal configuration in the main-sequence
star revealed by this study has opened the possibility of investigating
the origin, the impact on the angular momentum transport, and the
evolutionary change of the field from a new angle. Here, we discuss
several topics concerning this result.

3.1 Excluded data points

We exclude from the fitting two data points of the asymmetry of the
frequency splittings, (1) a, = 8.1 x 10> d " atv, | = 1.13d~! (see
Fig. )and 2) a, = —2.5 x 107d ' atv, ; = 1.20d! (see Fig. 5).
We speculate on the origin of these points.

First, we point out a potential problem in the frequency analysis
that the frequency determination of a mode can be perturbed by
another mode with a very close frequency within the resolution and
an amplitude above the noise level.

Actually, the problem of the close frequency influences not only
the data analysis but also the physics of stellar oscillations. If there
are two modes with very close frequencies (close degeneracy), those
frequencies could be perturbed as a result of mode interaction due
to non-linearity or rotation or magnetic fields. This might possibly
cause a considerable effect in the frequency spectrum as a result of
an avoided crossing.

In fact, checking the frequencies of model A, we find a quadrupolar
mode with v_s¢, = 1.1347d~!, which is close to the dipolar mode
with v_3, = 1.1356d~!, which corresponds to data point (1).
Therefore, data point (1) could undergo a significant effect of
close degeneracy. In addition, although the frequency difference
between the two modes of 9 x 107#d~! is larger than the frequency
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resolution given by equation (2), it is possible that a small error in the
evolutionary model shifts the theoretical frequencies to agree with
each other within the resolution. Only one other mode has a closer
£ =2 mode frequency, which is the one at 1.7d~!. However, this
mode has a much larger measurement uncertainty, so the influence
of any mode interaction is difficult to discern. On the other hand, in
the case of data point (2), there do not exist for 2 < £ < 4 modes with
such close frequencies to the dipolar one with v_zp; = 1.2088 d-.
Still, there is an £ = 5 mode with v_;;3 5 = 1.2066 d~!, which differs
by 2 x 1073 d~! from the dipolar mode. This is itself not surprising
because the period spacing becomes smaller (the spectrum becomes
denser) for larger ¢, which implies a higher chance of finding a close
frequency. Since we do not expect strong interaction between the
¢ =1 and £ = 5 modes, the effect of the close degeneracy for data
point (2) would be much smaller than for data point (1). Although this
is qualitatively consistent with the fact that data point (2) is much
closer to the best-fitting curves than data point (1), we postpone
detailed quantitative analysis to future work.

3.2 Origin of the detected magnetic field

We may consider at least four possible origins of the detected
magnetic field: (1) an interstellar field that is locked into the star
(fossil field) (Section 3.2.1); (2) a field generated by the dynamo
process in the convective core and moved or left in the radiative region
(Section 3.2.3); (3) a field generated and maintained by a dynamo
process of Tayler—Spruit type in the radiative region (Section 3.2.4);
(4) a field generated by the magneto-rotational instability (MRI)
during a merger process (Section 3.2.5). We also discuss the stability
of the field (Section 3.2.2).

3.2.1 Fossil field

During formation of an intermediate-mass star, weak magnetic
fields that are embedded in the interstellar medium can become
concentrated in the star as the medium collapses into it. Unless the
fields are completely destroyed during the pre-main-sequence wholly
convective phase, they are eventually locked in the radiative region of
the star. If these fields relax to a stable configuration, they can survive
for the time-scale of magnetic diffusion, which is of the order of
10'% yr (longer than the lifetime of the main-sequence stage for a star
with a mass 2 1.5M@). While the problem of stability is discussed
separately in Section 3.2.2, there have been many theoretical studies
of the equilibrium structure of magnetic fields and its stability in the
stellar radiative interior (e.g. K. H. Prendergast 1956; L. Woltjer
1960; J. Braithwaite & H. C. Spruit 2004; J. Braithwaite & A.
Nordlund 2006; J. Braithwaite 2008; V. Duez & S. Mathis 2010;
V. Duez, J. Braithwaite & S. Mathis 2010b). There have also been
studies about the effect of internal fields on stellar structure and
evolution (e.g. L. Mestel & D. L. Moss 1977; V. Duez, S. Mathis &
S. Turck-Chieze 2010a). It certainly will be interesting to compare
the result of the present analysis with these works in detail, which is
postponed to future work. Instead, we concentrate on the following
issue here.

If the field originates from the interstellar field, we may expect it
to extend outside the surface. This is not likely because our model
with no surface field can explain the observed data quite well. In
addition, if there were a large-scale surface magnetic field, which is
generally inclined to the rotation axis, the oblique pulsator model (D.
W. Kurtz 1990) would predict that all acoustic modes should show
a multiplet structure in the frequency spectrum, whose components
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are equally split by the rotation frequency. This phenomenon is not
detected in KIC 9244992 (see Table 3 of S15). Furthermore, there
has been no confirmed detection of any large-scale magnetic field at
the surface of any y Dor (or § Sct—y Dor hybrid) stars (e.g. S. Hubrig
et al. 2023; K. Thomson-Paressant et al. 2023).

One possible solution to this problem could come from the
hypothesis of A. S. Jermyn & M. Cantiello (2020), which was
proposed to explain the observed bimodal distribution of the surface
magnetic fields of early-type main-sequence stars (e.g. M. Auriere
et al. 2007; F. Lignieres et al. 2014). A large-scale surface magnetic
field could be destroyed by convective motions near the surface
unless it is sufficiently strong. Then, a dynamo process would work
in the subsurface convective zone to generate a much weaker small-
scale field. We may examine this idea using simplified expressions.
A sufficient condition for a magnetic field to suppress convection is
given by

B?
—— >V
Br2+87TF1p

(D. O. Gough & R. J. Tayler 1966). Here, I'; is the first adiabatic
index, while V and V,4 mean the temperature gradient,dIn 7' /d In p,
and its adiabatic value, (0InT/0d1In p)g, respectively, where S
represents entropy. If the radial component of the fossil field, B,
is strong enough to satisfy equation (52) for V = V4, where V,q is
the radiative temperature gradient, then the convection is suppressed
and the field keeps its large-scale structure on the surface of the
star. Otherwise, the convective motions significantly modify the field
to generate small-scale structures, which would lead to unstable
configurations, and hence decay of the field.

Our best model of KIC 9244992 (model A) with 1.45 M, has only
one subsurface convective zone in the outermost 5 per cent in radius
(5 x 107 in fractional mass), where hydrogen (H1), He 1, and He 11
undergo ionization. An essential point is that the opacity in this zone
is dominated by that of the ionization of hydrogen, which results
in very large values of V4 with the maximum value of =~ 400.
Since the left-hand side of equation (52) is always smaller than
one, this condition can never be satisfied in most of the convective
zone, which implies that the magnetic field would not suppress
the subsurface convection. However, the convection associated with
the ionization of hydrogen is so efficient that the strength of the
dynamo-generated small-scale field should range between 0.4kG
(near the top of the zone) and 1.3 kG (near the bottom), values that
are obtained by assuming the equipartition of energy between the
magnetic field and the convective motion. This means that the field
strength at the photosphere is about a few hundred Gauss, which
has not been detected in any y Dor stars so far. In summary, if
we adopt the picture of A. S. Jermyn & M. Cantiello (2020), the
large-scale fossil field could indeed be erased by the subsurface
convection, but it would be replaced with a small-scale dynamo-
generated field with considerable strength, which does not have any
observational support. We therefore need to revise the picture or
switch to some other mechanism (see e.g. J. Braithwaite & H. C.
Spruit 2017) to explain the detected internal field of KIC 9244992 as
a fossil one. In particular, since the assumption of the equipartition
of energy could be too crude in the above discussion, it is highly
desirable to perform more detailed analysis about the interaction
between the fossil magnetic field and the near-surface convection,
which is outside the scope of this paper. We should also note that the
present argument does not contradict A. S. Jermyn & M. Cantiello
(2020), who considered only main-sequence models above 2Mg.
In such higher mass structures, the main focus is on the subsurface
convection zones associated with the ionization of Helland iron-

— Vi (52)
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Figure 9. Profile of the minimum strength of the toroidal component of the
magnetic field, which is defined by equation (53), for the Tayler instability to
operate based on model A in Table 2 with the rotation period of 64 d.

group elements, which are much less efficient than the one with the
ionization of hydrogen, and hence would generate a much weaker
field by dynamo.

3.2.2 Stability of the field

Apart from its origin, it is an interesting and important question
whether the predominantly toroidal configuration found in the
present analysis is stable or not (e.g. J. Braithwaite & H. C. Spruit
2017). On the one hand, it is well known from a theoretical point
of view that purely toroidal magnetic fields are unstable against the
Tayler instability (R. J. Tayler 1973). In fact, we may estimate the
minimum strength of the toroidal component that is required for the
Tayler instability to operate by overcoming the magnetic diffusion
as
B = (477 pNogp)'2 1/4

= PNete) '~ (nS2) "™, (53)

¢, min

in which 1 and €2 stand for the magnetic diffusivity and the angular
rotation rate, respectively. Equation (53) can be obtained by replacing
N by N in equation (8) of H. C. Spruit (2002). Here, N is the
effective Brunt—Viisild frequency defined by

2 _ N\ 2
NeffZENT_FN;L’

(54)

in which « means the thermal diffusivity and Ny and N, represent
the thermal and compositional part of the Brunt—Viisili frequency,
respectively. This replacement approximately takes into account
the fact that the stabilizing effect of thermal stratification becomes
weaker due to thermal diffusion on the small spatial scales on which
the Tayler instability occurs (see H. C. Spruit 2002). The profile of
Bgﬂin is plotted in Fig. 9. It takes a maximum of ~ 30kG around
r/R ~ 0.06, which is below Bg‘“ given in Table 4. This means that
the detected field would be unstable against the Tayler instability
if we neglect the poloidal component.On the other hand, from an
observational point of view, no detectable change in the oscillation
frequencies is found in KIC 9244992 over the nearly 4-yr period
of the Kepler observation, which is much longer than the Alfvén
time-scale (the characteristic scale of the system / divided by the
Alfvén velocity) of ~ 200d for B = 100kG, p =30gcm~>, and
I;,=0.1 x27R.
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These considerations lead to the following question: can a purely
toroidal field be stabilized by a small contribution of the poloidal
component? In fact, the theoretical study of J. Braithwaite (2009)
gives an affirmative answer to this question because the poloidal
component gives a restoring force through bending of the field line
against the horizontal motion, which is the main component of the
Tayler instability. That study provides the stability condition for
axisymmetric magnetic fields as

~

E E
a, — < 2<08, (55)
U E

inwhich E, U, and E,, are the total magnetic energy, the gravitational
energy and the energy of the poloidal component, respectively. The
parameter a, is of the order of 10 for main-sequence stars. Although
the condition assumes a purely radiative structure with no convective
zone, we none the less apply it to KIC 9244992, which has a small
convective core (8 percent in mass in model A), to check the field
stability. Using the results in Table 4 and the structure of model A in
Table 2, we obtain the following estimates:

E
g -7 (56)
and

E

f" ~107%, (57)

which clearly satisfy equation (55). This means that the detected field
in KIC 9244992 is stable, if it is axisymmetric.

3.2.3 Convective dynamo

As for the second possibility, three-dimensional numerical simula-
tions by A. S. Brun, M. K. Browning & J. Toomre (2005) and J. P.
Hidalgo et al. (2024) have demonstrated that a dynamo can operate in
the convective cores of A stars. Although these simulations assume
a few (or more) times faster rotation rates than that of KIC 9244992,
they show that the magnetic energy can reach at least the same order
as the kinetic energy, implying an average field strength of several
tens of kG in the convective core. This number is slightly smaller than,
but is still on the same order as our inference of B‘;ji“ =92+ 7kGin
the inner radiative region. However, if we assume a crude estimate
of

By
B,

min
B¢
B:_mn

~

~ 30 (58)

(see Table 4), this large value is not realized in the convective core in
the cited simulations. The reason could possibly be given as follows.

If the field originates from the convective core, we need some
mechanism to move it to the radiative region. Here, we may list
two possibilities: direct transport by overshooting at the top of
the convective core, or the shrinking of the convective core with
stellar evolution leaving the generated magnetic field in the radiative
region near the outer edge of the convective core. In either case,
if there exists rotational shear (radial differential rotation) at the
convective/radiative boundary, we may expect that the Q effect
operates to convert the radial component into the toroidal component
in the radiative region. Although S15 estimated that the degree of
radial differential rotation of KIC 9244992 between the core and
the envelope is only a few per cent, this does not necessarily mean
that the 2 effect is negligible because it is cumulative after many
rotations, and the degree of radial differential rotation could have
been higher in the past.
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Interestingly, the picture of the enhanced toroidal component due
to rotational shear is supported by the recent numerical simulations
of R. P. Ratnasingam et al. (2024) for a 7-M( main-sequence star
with a rotation period of 4.04d and a seed dipolar field of ~ 1G.
These simulations with a higher mass and a shorter rotation period
than KIC 9244992, which has the mass of ~ 1.5 M, and a rotation
period of 64d, provide a ratio of the toroidal field energy to the
poloidal field energy that is comparable to that implied by equation
(58), although the asteroseismic analysis of KIC 9244992 rejects the
presence of such strong rotational shear as found in the simulations in
the near-core layers where the Brunt—Viiséld frequency has a sharp
peak.

Because the steep gradient of chemical composition at the con-
vective/radiative boundary is generated by the shrinking of the
convective core along with evolution, the layers of the steep gradient
are those once in the convective core, where the active dynamo
process was in operation. In addition, since the steep gradient makes
it difficult for the magnetic field to migrate to the outer region, it is
possible that the field is totally confined in those layers. In this case,
we may set x,, = 0.1 and 9 = 0 in equations (49) and (51) to obtain
larger values of the lower bounds,

Bj™ =175 £ 13kG (59)
and
BMin = 4,04 0.1kG, (60)

respectively, for model A with the glitch position of case 1. These
lead to an even larger ratio of
E By

—— =~ 40, 61
Br Blrmn ( )

which means that the energy of the toroidal component is three
orders of magnitude larger than that of the radial component. It is
obvious that a more detailed comparison of the asteroseismic result
with three-dimensional simulations with the appropriate parameters
for KIC 9244992 is highly desirable.

3.2.4 Radiative dynamo

A promising mechanism for the dynamo process in the radiative
region is the one proposed by H. C. Spruit (2002), which can be
understood in the classical picture of the «—<2 dynamo. Under radial
differential rotation, the toroidal component of the magnetic field
can be generated by stretching the (initially small) seed poloidal
field (the Q2 effect). If the toroidal component becomes strong
enough, the Tayler instability sets in, which essentially provides the o
effect to make the poloidal component from the toroidal component.
Since the predominantly toroidal field is still unstable against the
Tayler instability, the process continues. This mechanism (Tayler—
Spruit dynamo) has received much attention, particularly because
the magnetic field can transport angular momentum very efficiently
in the radiative region of the stars (e.g. M. Cantiello et al. 2014; F.
D. Moyano et al. 2023; F. D. Moyano, P. Eggenberger & S. J. A. J.
Salmon 2024). However, the details of the mechanism are still under
active debate, and more studies are clearly needed to understand its
whole picture (e.g. J. P. Zahn, A. S. Brun & S. Mathis 2007; J. Fuller
et al. 2019; L. Petitdemange, F. Marcotte & C. Gissinger 2023; L.
Petitdemange et al. 2024).

Having said all this, the first question to ask is whether the current
structure of KIC 9244992 satisfies the condition for the Tayler—Spruit
dynamo or not. In order to check this, we plot in Fig. 10 the minimum
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Figure 10. The minimum values of the gradient of the rotation rate, ¢, defined

by equation (62), for the Tayler—Spruit dynamo to operate. The structure of

model A in Table 2 is assumed with the rotation period of 64 d. Two cases

are considered: one proposed by H. C. Spruit (2002) as in equation (63)

(solid line) and the other by J. Fuller, A. L. Piro & A. S. Jermyn (2019)

as in equation (64) (dashed line). The horizontal dotted line indicates the

asteroseismic estimate by S15 (equation 65).

values of the degree of differential rotation, g, defined by

dlnQ
dinr

; (62)

0=|

which is required to sustain the mechanism. The original argument
of H. C. Spruit (2002) provides

gomie — (N ) (0 ) (63)
min Q ereff ?

whereas J. Fuller et al. (2019) reconsider the saturation mechanism
based on turbulent dissipation of the perturbed field rather than the
background toroidal field to present?

aer _ (New\ 0 \3
G = <E'> (=) - (64)

On the other hand, S15 constrain the difference between the core and
envelope rotation rates, which implies

q~0.04. (65)

We thus find ¢ < ¢3P™ in the entire radiative region, which means
that the Tayler—Spruit dynamo does not work in KIC 9244992 at
least in its original form proposed by H. C. Spruit (2002). We also
observe g < gt near the peak around /R = 0.06, which means
that the Fuller-type mechanism can work only in the radiative region
above the layer of the steep gradient of chemical compositions.

The next point to check is whether the field strengths detected are
consistent with the prediction of the theory by J. Fuller et al. (2019).
We therefore plot in Fig. 11 the radial and azimuthal components of
the field based on equations (23) and (22) of J. Fuller et al. (2019),
assuming equation (65) and the rotation period of 64 d. We confirm
that the predicted azimuthal component has its maximum of 16 kG
around r/R = 0.20 for 0.06 < r/R < 0.94, while the maximum of

the radial component is found to be 0.014 kG around /R = 0.34 in

2For simplicity, we set @ = 1 in equation (36) of J. Fuller et al. (2019).
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Figure 11. Profiles of the radial (B;) and azimuthal (By) components of
the magnetic field by the dynamo mechanism of J. Fuller et al. (2019). The
structure of model A in Table 2 is assumed with the rotation period of 64 d
and equation (65) for the gradient of the rotation rate.

the same range. For both components, the predicted values are well
below the seismically estimated lower bound given in Table 4. We
neglect the divergent trends of By and B, near the inner and outer
boundaries of the radiative region. This is justified by the fact that
the trends come from the assumption of a finite differential rotation
(equation 65) even near the boundaries, which is unrealistic because
the angular momentum transport is so efficient as Neg — O that the
differential rotation would disappear quickly. We therefore conclude
that the Fuller-type mechanism is not operative in KIC 9244992,
either.

One remaining possibility is that the star used to have strong
differential rotation in the past, which was removed by efficient
angular momentum transport by the magnetic field generated by the
Tayler—Spruit dynamo. After the differential rotation subsided, the
field suffered from the Tayler instability, which could substantially
modify the configuration to settle in with the detected strengths
of the field components. However, unless the structure of the star
changes significantly, this scenario has difficulty explaining the
implied significant increase of the total magnetic energy as a result of
the Tayler instability. Such significant structural change cannot come
from the central condensation that occurs with single-star evolution.
Only significant mass transfer or a merger would suffice, and the
former is essentially ruled out by the non-detection of a companion
(or remnant) via pulsation timing (S. J. Murphy et al. 2018) and the
absence of eclipses or ellipsoidal variation in the light curve (S15).
The final conclusion of this section is that the dynamo mechanism in
the radiative region is unlikely to be the origin of the detected field
in KIC 9244992.

3.2.5 Stellar merger

One of the remarkable properties of KIC 9244992 is that its rotation
period of ~ 64 d is much longer than the typical period of 1 d of y Dor
stars. One possible explanation is that the star is a product of stellar
merger. In fact, KIC 11145123, which is another slowly rotating &
Sct—y Dor hybrid pulsator with a similar mass and a rotation period
of ~ 100d, is suspected to be a blue straggler (D. W. Kurtz et al.
2014; M. Takada-Hidai et al. 2017; Y. Hatta et al. 2021). One reason
for this is that the best evolutionary model constructed by D. W.
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Kurtz et al. (2014) has an initial helium abundance of 0.36, which is
unusually high for a single-star model. Although this is not the case
for the models of KIC 9244992 (see Table 2), it would still be worth
examining the merger or mass-transfer processes, which are possible
mechanisms to form blue stragglers.

F. R. N. Schneider et al. (2019) have numerically simulated such
a merger process to successfully explain the properties of the blue
straggler T Sco, which has a rotation period of 41 d and a surface
magnetic field of a few hundred gauss. They find that a strong internal
magnetic field is generated by MRI during the merger, and that
the merger product experiences significant spin-down during the
subsequent (thermal relaxation) phase, before reaching the main-
sequence position on the HR diagram. Although the mass of their
target (~ 15 M) is much larger than KIC 9244992, we may consider
the possibility that the same physical processes are at work in both
systems. This hypothesis can simultaneously explain (qualitatively)
the internal magnetic field and the slow (and uniform) rotation, but
it also implies that the star should have a strong surface magnetic
field, which is not supported by the present analysis (as we discuss
in Section 3.2.1). In this context, we may note that no surface
magnetic field has been detected in KIC 11145123 by high-resolution
spectroscopy (M. Takada-Hidai et al. 2017), while L. Gizon et al.
(2016) conjecture the presence of a surface field much weaker than
the Sun at its activity maximum based on the asymmetry of the
frequency splittings of acoustic modes. In order for the merger
hypothesis to hold, we need to explain how to confine the magnetic
field in the stellar interior (see Section 3.2.1).

3.3 Comparison with the case of red giants

The present result of asteroseismic detection of the internal magnetic
field in KIC 9244992 follows those of red-giant stars (G. Li et al.
2022; S. Deheuvels et al. 2023; E. J. Hatt et al. 2024). We compare
the two cases in this section.

G. Li et al. (2022) estimate that the detected (B2)!/2 of 30 to 100
kG at the red-giant branch (RGB) stage should originate from that
between 3 and 5 kG at the main-sequence stage, assuming magnetic
flux conservation. The fact that this range is consistent with our
estimate of B™" in Table 4 supports the idea that the detected fields
in KIC 9244992 and red giants have the same physical origin.

If we compare the analysis between the two cases, the main
difference is that the present result can detect not only the radial
component but also the azimuthal component of the field, whereas
only the radial component is so far constrained in the red-giant
case. This is mainly because the gravity radial orders of ~ 30 of the
detected modes in KIC 9244992 are lower than those of 2> 100 in stars
at the RGB stage (except during the very early phase). While mode
frequencies are generally more sensitive to the radial component than
to the azimuthal component (Section 2.3.2), the corresponding longer
radial wavelengths (measured relative to the size of the gravity-mode
cavity) lessen this effect in KIC 9244992. As a result, the frequency
perturbation due to the azimuthal component can be detected more
easily in KIC 9244992.

On the other hand, in the red-giant cases, we can estimate
the average field strength, (B?)!/2, although the analysis for KIC
9244992 can provide only the lower bound, B™". This is because
the red-giant analysis relies on the asymptotic frequency formula to
fit individual frequencies, while the current analysis concentrates on
the asymmetry of the frequency splitting. In fact, a similar fitting
of individual frequencies is not straightforward for KIC 9244992
because of the significant contribution of the glitch (see Section 3.5).
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3.4 Implications on angular momentum transport

The field strengths detected in KIC 9244992, which are given
in Table 4, imply that the torque via Maxwell stresses, which is
proportional to BBy, is larger by three orders of magnitude than
predicted by the mechanism of J. Fuller et al. (2019). The number
would be even larger for the original Tayler—Spruit dynamo by H.
C. Spruit (2002). Therefore, the angular momentum transport in
KIC 9244992 is much more efficient than described by the dynamo
mechanisms associated with the Tayler instability in the radiative
zone. We may quantify this point based on the time-scale. Under the
assumption that €2 depends only on the radius (shellular rotation),
the angular momentum transport in the radial direction due to the
magnetic field can be formulated as a diffusion process (e.g. A.
Maeder 2009). The corresponding diffusion coefficient (effective
viscosity) is given by

(66)

Then, the time-scale of the angular momentum transport for a
characteristic length scale /; can be estimated as

12 8m’pql?
Dmag Prot |BrB¢ |

—1 2
P Prot IS
=68lg | ————=
102 gcm 64d Rp

in which P, = 27/ 2 means the rotation period (as in equation 5)
and p = 10> gcm™ is a good estimate of the density at the top of
the convective core. The length scale of I; ~ R corresponds to
50 percent of the total radius of model A. It is clear that, for KIC
9244992, 1, is much shorter than the evolutionary time-scale of
~ 10° yr. This means that uniform rotation (¢ = 0) is established
very quickly in the layers with the magnetic field.

We may use this argument to reject, in a different way from that
in Section 3.2.1, the possibility that the magnetic field extends to
the surface layers. In this case, we may set x,, = 0.95 (the base of
the near-surface convective zone) to obtain BM" = 2 kG and Bg‘i" =
13kG (for model A). Even with these lower values of the field
strengths, T, is still so short that the observed value of ¢ = 0.04
cannot be retained for the evolutionary time-scale. More precisely,
assuming the two-zone structure, S15 estimate that the rotation rate
in the inner 40 per cent in radius is 4 per cent higher than that in the
outer 60 per cent. The lower rotation rate in the outer region should
have a significant contribution by the non-magnetic layers, where
there is no efficient transport of angular momentum.

Apart from the angular momentum transport inside the star, the
slow rotation of KIC 9244992 (with the period of ~ 64 d) needs to be
explained separately because the total angular momentum of the star
is much smaller than typical y Dor stars, which have rotation periods
of ~ 1d. Since we interpret that there is no large-scale magnetic field
at the surface, there is no chance for magnetic braking to operate.
Other possibilities include binary interaction and/or mass transfers,
which are all speculative at this stage.

Tmag =

-1 -1

yr,
(67)

B;
3.5kG

By
92kG

3.5 Spherical counterpart of the aspherical glitch

We may expect to identify the spherical counterpart of the aspherical
glitch in the period versus period spacing diagram, which is repro-
duced in Fig. 12. From equation (B22), we can derive the expression
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Figure 12. Diagram of period versus period spacing for high-order gravity
modes of KIC 9244992.

for the period spacing as

n + Pn+1
S — —1/1)} . (68

in which the amplitude of the oscillatory component is given by

Py —P, =11 + 9 cos {27[ (

1)

1,9

A = -2 sin(w ) . (69)
473 :

Assuming that the amplitude of the spherical component of the glitch

is on the same order as the quadrupole component,

)

o]~ o

we may use D(ll) in equation (24), IT; in Table 2 and #in Table 3 to
obtain

|| ~ 1. (70)

This estimate does not depend on the evolutionary model (models A
or B or C) or the glitch position (cases 1 or 2).

However, our preliminary analysis finds it difficult to judge
quantitatively whether the data contain the sinusoidal component
given by the second term on the right-hand side of equation (68)
with the expected amplitude given by equation (70) or not. This
is because there are clearly multiple components with different
amplitudes and periods. In fact, the dominant oscillatory component
has a much larger amplitude of ~ 50 s and a longer period of ~ 0.5d
(see Fig. 12). This means that the non-linearity (deviation from the
sinusoidal function) of the dominant component is not negligible
when we discuss a period difference of the order of seconds. Apart
from the most dominant component, we may observe at most that
the second most dominant component shows an oscillatory behaviour
with an amplitude on the same order as that given by equation (70)
and a period of ~ 0.1d, which is consistent with ¢~ 1'=0.13d for
case 1 in Table 4. Since more careful treatment is necessary, we defer
the detailed analysis to future work.

4 CONCLUSIONS

We have detected an internal magnetic field of KIC 9244992. The
lower bounds to the root mean squares of the radial and azimuthal
components (with respect to the rotation axis) within 50 per cent in
radius are estimated to be 3.5 4= 0.1 and 92 £ 7 kG, respectively. The
radial and azimuthal components are more confined to the equator
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than to the poles. The lower bound to the radial component is clearly
incompatible with the prediction of the Taylor—Spruit dynamo, sug-
gesting that the field could originate from other mechanisms, such as
convective-core dynamos, fossil fields, and stellar mergers. We have
also identified a signature of an aspherical discontinuous structure,
which is located in the layers of steep chemical composition gradient
just outside the convective core. We suppose that the structure
is generated by some mixing processes at the boundary between
the convective core and the radiative region. The discovery of the
predominantly toroidal magnetic field has revealed a new aspect of
magnetic fields in stars in general, generating many questions about
their structure, origin, and evolution.
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APPENDIX A: ASYMMETRIC FREQUENCY
SPLITTINGS OF HIGH-ORDER GRAVITY
MODES CAUSED BY THE MAGNETIC FIELD

A1 Guidelines of the analysis

We develop a regular perturbation analysis to obtain an expression
for the frequency change of high-order and low-degree gravity modes
due to slow rotation and a weak magnetic field that is confined in
the stellar interior. Following G. Li et al. (2022), the present analysis
is designed to be independent of the field configuration. One of our
fundamental assumptions is that the rotation effect dominates over
the magnetic effect. In this case, we may consider the rotation effect
first, and then take the magnetic effect into account in the second step.
An advantage of this approach is that the rotation perturbation lifts
the degeneracy among the eigenmodes in the spherically symmetric
case with respect to the azimuthal order, m, so that we may apply
the non-degenerate perturbation theory in the second step. Then, the
main point of the analysis is to calculate the matrix element of the
magnetic operator. Since the expression for the matrix element can
be highly complicated, we adopt its symmetric form (see A. Kovetz
1966; K. Glampedakis & N. Andersson 2007). We list two advantages
of this approach: (1) the variational principle can be applied; (2) the
frequency perturbations are clearly real.

In general, the magnetic effect consists of two aspects. First, the
equilibrium structure is deformed by the Lorentz force. This structure
change contributes to the frequency change. Then, oscillations occur
about the deformed structure under the direct influence of the Lorentz
force. Following D. O. Gough & M. J. Thompson (1990), we refer to
the former and the latter as the indirect and direct effects, respectively.

A2 Oscillation equations in the presence of the magnetic field

We start from the equation of motion of a uniformly rotating
magnetized fluid in the rotating frame,

d 1
pd—l:=—Vp—pV<I>+—jXB—p[ZSva+SZX(SZ><r)],
Cy

(A1)

in which d/dr is the Lagrangian time derivative, v the velocity, p
the pressure, ® the gravitational potential, ¢, the speed of light in
vacuum, j the electric current density, B the magnetic field, € the
rotation vector, and r the position vector. The third term on the right-
hand side of equation (A1) stands for the Lorentz force, while the
fourth and fifth terms represent the Coriolis and centrifugal forces,
respectively. We assume that j is related to B by Ampere’s law (or the
Ampere-Maxwell equation neglecting the displacement current),
4
VxB=—j. (A2)

Cy
Equation (A1) can be recast as

dv;
pg = 0T — P —2p (R xv); (A3)
where subscripts i and j mean the ith and jth components of
the Cartesian coordinates, respectively. We follow the Einstein
summation convention for repeated indices. In equation (A3), tensor
I;,; and scalar ¥ are introduced by

M, =5 +B2 BiB; (A4)
b =0\ P 87 4
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and
1
\IJ=<1>—§|Q><r|2. (A5)

In equation (A4), §; ; is the Kronecker delta. Assuming that there is
no velocity field in the equilibrium structure (in the rotating frame),
we can linearize equation (A3) to derive the oscillation equation with
respect to a small displacement vector &,

o’p& = o0Ci & + T & (A6)

in which we have assumed that £ depends on time ¢ as exp (—io't)
with an angular frequency o. The tensorial operators T; ; and C; ; in
equation (A6) are defined by

1
Ti.jéj = ,05 (;ajl'[j,i) + ,05 (a,‘lj) (A7)
and

In equation (A7), § is the operator for the Lagrangian perturbation. In
order to relate the perturbed quantities in equation (A7) to €, we need
to use the linearized versions of the continuity equation, the Poisson
equation, and the adiabatic relation between the Lagrangian pressure
and density perturbations. In addition, we also use the linearized
induction equation of (ideal) magnetohydrodynamics,

SBIEI=(B-V)§— (V- OB (A9)
(e.g. P. H. Roberts 1967).

A3 Matrix element

It can be shown that the operator 7; ; is symmetric in the sense

T(éf) = [T (6,5)} : (A10)
where * indicates the complex conjugate. Here, 7 is defined by
T (&.¢) E/éi*r,,js,-dv, (Al1)

in which the domain of the integral is the entire stellar volume.
Equation (A10) holds for any £ and £ that satisty the proper boundary
conditions. The proof is almost the same as that given by A. Kovetz
(1966), except that ® should be replaced with W. Since C; ; is also
symmetric (D. Lynden-Bell & J. P. Ostriker 1967), the total operator
0 C;,; + T; ; on the right-hand side of equation (A6) is symmetric as
a whole. This property serves as a basis of the variational principle.
The symmetric form of 7 is composed of three parts,

T(b¢)=c(be)+B(be)+r(b¢). (A12)

Here, £ and B correspond to the part that does not depend on B
directly, and that explicitly includes it, respectively, while R stands
for the contribution coming from the surface and the exterior of the
star. They are further decomposed as

c(Ee)=s(be)+a(be)+[a(ed)] .  @an
B(8.&) =55 (B.6)+ A5 (.6) + [ (¢2)].
R(E€) =k (B.€)+An(be)+[An(68)] . 13

where S and A mean the symmetric and asymmetric parts, respec-
tively. The definitions of Sy, A;Sg, Ap, Sk, and Ay are provided
by

(A14)
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s(ee)= [rip(vE)(voe) av
-G / / RO BANICSHISAY

x <¥> v, dvp | (A16)
|7y — 1ol
A (B€)=—[ (8- Vo) (07 e+1e-vp) av, (A1)
Ss (é,.g) =L [sB [ ] [g] av, (A18)
Ay (8.€) = - /[(Vs) (€ [(B-V)B)
%é AE-VI(B-V) B]}} dv (A19)

se(8.€) = (n.g*)(n.g)(n-w[gi"—(p+g)} ds

T

(A20)

and

s 1 o
A (B.€) = —Q/m-ms 1€ V) Ba] dS . (A21)

In equation (A16), I'; is the first adiabatic index, while r in equation
(A20) is the unit normal vector of the stellar surface. In equations
(A20) and (A21), B and B, [£] mean the magnetic field in the
exterior of the star and its Eulerian perturbation that is induced by
displacement £ in the interior. The volume integral in equation (A20)
is performed over the whole region outside the star, while the surface
integrals in equations (A20) and (A21) are over the entire surface of
the star. When we derive equations (A16)—(A19), we have used the
equilibrium relation

B’ (B-V)B
—V{ p+— )+ —"——pV¥=0.

8w % 4 (422)
Utilizing this relation, we can show that equation (A12) is equivalent
to equation (39) of A. Kovetz (1966).

In addition to the absence of the magnetic field at the surface and
the exterior, we also assume that the density is equal to zero at the
surface in the equilibrium structure. Under these assumptions, we
simply obtain

R (5, g) —0. (A23)

A4 Frequency perturbation

Equation (A6) is a general expression that assumes neither slow
rotation nor a weak magnetic field. The next step is to regard them as
small perturbations. Although equation (A6) concerns oscillations
about the (rotationally and magnetically) deformed equilibrium
structure, we may reinterpret this equation as describing oscillations
about the non-rotating and non-magnetic structure with two different
kinds of perturbations, the contributions to the restoring force and the
deformation. Since we consider the major effect of rotation separately
in the first step, we study here the frequency perturbation due only to

3For comparison, we need to replace U with —W in the equation. In addition,
we believe that in A. Kovetz (1966) the second term in the fourth line has a
sign error, and that 82/(8,0) in the sixth line means BZ/(8T[)‘
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the magnetic effect. We can then separate the quantities in equation
(A6) into the unperturbed part (with subscript 0) and the perturbed
part (with subscript 1). Due to the symmetric property of T; ;, we
can derive an expression for the frequency perturbation as

_ Ti (€0, €0) — o [ pi 1€l AV

R (A24)
200Z (&0, &)
in which we have introduced
7(&.¢€) z/poé*-sdv. (A25)

We implicitly assume in equation (A24) that the third- and higher
order effects of rotation are negligible. Strictly speaking, as we
explain in Appendix Al, the unperturbed eigenfunctions should be
those after taking the rotation effect into account. However, since we
analyse only the leading-order effect, we may neglect the perturbation
to & due to rotation, and adopt as &, the eigenfunctions of the
spherically symmetric structure. In this case, &, can be expressed in
the spherical coordinates (r, 6, ¢) with the origin (r = 0) set at the
centre of the star and the direction of & = 0 aligned with the rotation
axis as

& =&)Y (0, P)e: +E (VLY (6, 9) | (A26)

in which Y;" (6, ¢) is the spherical harmonic with the angular degree
£ and the azimuthal order m. While e, is the unit vector in the radial
direction, the horizontal gradient operator V is defined by

0 1 9
VLZeQ%‘{‘e m%, (A27)
where ey and e, are the unit vectors in the 6 and ¢ directions,
respectively. The functions &, and &, depend not only on r but also
on ¢ and the radial order n. The corresponding eigenfrequency oy is
also dependent on n and £.

The matrix element 77 (£, &o) is obtained by perturbing equation

(A12) as

Ti (&0, &o0) = L1 (&0, &0) + B (o, &o)

in which £ can in turn be derived by perturbing equation (A13) as

(A28)

Ly (&0, &0) = Sp.1 (€0, &o) + 20 [AL1 (€0, &0)] - (A29)
Here, S;1 and A, are provided by
Sr.1 (€0, &0)
= /(Flml IV - &l* dv
- 2Gm{ / / [00 (ra) & (ra) - Va] [p1 (o) &o (1) - Vi)
X <¥) dv, dVb} (A30)
|ra - rb|

and

Api (&0, &) = —/{(53 V) (pov ~&o + %ﬁo : V/Oo)

+ (&5 - Vo) (mV -&o +%§o : Vpl)} dv (A31)

In equation (A28), B corresponds to the direct effect of the magnetic
field, while £; and the second term in the numerator of equation
(A24) describe the indirect effect.

MNRAS 545, 1-24 (2026)
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A5 Dominant terms for high-order and low-degree gravity
modes

We evaluate equation (A24) for high-order and low-degree gravity

modes. A primary parameter is

00
TN

<1, (A32)

in which r, is a representative radius in the propagative region of
gravity waves. We also assume that

oor«
— <1, (A33)

in which c is the sound speed. According to the asymptotic analysis
(e.g. W. Unno et al. 1989), the horizontal displacement &, dom-
inates over the radial displacement &, by factor ¢~!. Because the
wavelength at radius r is of the order of er, the first derivatives
of the eigenfunctions & with respect to r are evaluated to be
~ e~ 1r~1¢. Exceptionally, the divergence, V - &, is only of the order
of r~'&, which reflects that high-order gravity waves are almost
uncompressed.
As for the field configuration, we assume

<1 (A34)

and | Bg| ~

Under these assumptions, we retain only the terms that can be of
the order of € *&7 B} or &7 B; or & B; in the numerator on the right-
hand side of equation (A24). We may thus identify the dominant
terms in B (&, &) as

1
B~ - [ (8- v&r
g G- VIB-VIBI])av. (A3

and confirm that there is no contribution from L; (&, &) and the
second term in the numerator of equation (A24). This means that
the indirect effects of the magnetic field is not important for high-
order gravity modes even in the order that we consider in the present
analysis (see S. Mathis & L. Bugnet 2023). As a result, equation
(A24) is reduced to

o~ B0 &) (A36)

200Z (&0, &0)

We remark on the second term on the right-hand side of equation
(A30), which appears to be of the order of &2 Bé. However, this inte-
gral includes the Eulerian perturbation to the gravitational potential,
@, which is given by

1
D (r) = —G/,O(ra)ﬁ(ra) Va (ﬁ) dvy . (A37)

Itis well established that @g is negligibly small for high-order gravity
modes (T. G. Cowling 1941).
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A6 Evaluation of the dominant terms

A6.1 Angular integrals

The main result of this section is the expression for the angular
integral in equation (A35), which is provided by

/4 (ICB - V) &l* + 9t [& - (& - VII(B - V) B]}]) dQ

~ dfh : 2 Sh 2 ~m 2, ~m
~ 4 B!Dj} dQ + (BJF]" + B;G}') d92,
r 4 4r

(A38)

where Dy, F;" and G7' are all functions of 6. In equation (A38),
dQ2 means an infinitesimal element of a solid angle, given by
dQ2 = sin 0 df d¢. Their derivation is lengthy, but straightforward
if we use generalized spherical harmonics (I. M. Gel’fand & Z.
Y. Sapiro 1956), which are widely used in geophysics (e.g. R. A.
Phinney & R. Burridge 1973; F. Dahlen & J. Tromp 1998) and have
also been adapted to helio- and asteroseismic problems (e.g. M. H.
Ritzwoller & E. M. Lavely 1991; S. M. Hanasoge et al. 2017; R.
Kiefer, A. Schad & M. Roth 2017; S. B. Das et al. 2020). The results
are summarized as follows:
¢

DI = Z Up.i (K —2L)PY) (m) Py (cos6) , (A39)
k=0
i+ 67 +Gm ZUZ ¢ [— (K —2L)(K + 1) —2L7]

x P5 (m) Py (cos 0) (A40)

Fm — G ¢ K(K+2L—1)—4L(L+1
andu:ZUﬂc (K + ) (L+1

4K — 1)

k=1
PL (m) P2 (cos0) , (A41)

in which we have introduced
k! 4k + 1) (2k)! (2 + D! (€ + k)!

Vo= 0 P e+ 2kt Dl — k)L (A42)
K=k@2k+1), (A43)
L=t (Z; D (A44)
O et WQRE=DIQE+ DI
andPjmy = (=D 20)! m-mo0)"
(A45)

Note that P, in equations (A39) and (A40) are the Legendre
polynomials, while P2 in equation (A41) are the associated Legendre
functions. The last factor on the right-hand side of equation (A45) is
Wigner’s 3-j symbol. The coefficients PEZ) (m) are polynomials in m
of degree j, which form a basis to represent the frequency splitting
as
20
vn &m)=> a;(n. OP; (m) . (A46)
j=0
Here, a; is called the a-coefficient of order j. The asymmetry in the
frequency splittings defined by equation (1) is related to a; as

a, =3a,(n, 1) . (A47)

The coefficients Pj(.e) (m) are first introduced by M. H. Ritzwoller &
E. M. Lavely (1991) to analyse frequency splittings in the spectrum of
solar oscillations, while they are also used in asteroseismic analyses
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(e.g. O. Benomar et al. 2023). Here, we adopt the normlization
introduced by J. Schou, J. Christensen-Dalsgaard & M. J. Thompson
(1994). It is worth noting the following relation:

/4k+1 .
U« PS (m) = /YZk]Y > de.

The expressions for Dy, F;”, and G}’ are given for £ =1 and 2 as
follows:

(A48)

1
DI = ot Py (m) (3cos? 6 — 1) , (A49)
3
F' = 795” (m) (3 —7cos?6) , (A50)
Gl = o 5 (m) (1 —5cos?8) (A51)
3 15
DY == 2 (m) P, (cos0) — —— P (m) Py (cos ) ,
(A52)
F 4G 3 15 o
27— P 0
2 x  Tag 2 (M Pa(cost)
) (m) Py (cos 6) (A53)
and
—Gn 15 .,
% Z_E ()(m)Pz (COS@)
17
T P (m) P2 (cosb) , (A54)
in which P;Z) (m) coefficients are provided by
PV (m) =3m? -2, (A55)
PP (m) =m? -2, (A56)
and
35m* — 155m* + 72
PP (m) = . (A57)

6

Note that D', F}", and G}’ depend on m only through "P(l) (m), which
include only even powers of m. The independence of the sign of m
comes from the symmetric property of the operator BB (see equation
Al4).

A6.2 Radial integrals

In order to evaluate &, in equation (A38), we use its asymptotic
expression,

N 12 ,
éh ~ A (273) sin (/ kr dr — @in) s
Oy pr Tin

in which A is a normalization constant, r;, the inner turning point of
the gravity-mode cavity, ¢;, the phase lag introduced at r = r;,, and
k; defined by

VLU +1)N

= ~— (A59)
oor

(A58)

(e.g. W. Unno et al. 1989). We accordingly obtain

3\ /2 r
%%A<M> COS(/ krdr_%)

dr al pr’
When we evaluate the radial integrals that include &2 or (d&,/dr)?,
the highly oscillatory factors proportional to sin? and cos? can be

(A60)
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replaced with 1/2, and the domain of integrals can be set to Gz. We
may thus calculate equation (A35) as

A2+ 1
AT+ / B2D} dQdr
Gg or3 Jan

8oy
A? ) )
+7/ 7/ BSF" + B:G7) dQdr .
87{003 Gy P> 4ﬂ( o ¢ 4 K)

(A61)

B (&, &) ~

Similarly, we may compute Z (53, 50) in equation (A25) as

Z(&0.&0) = / (&8 + e+ l)Ehz] prdr~ €+ 1)/pr2€§ dr

AX L+ 1)

d (A62)
200 G

Using equations (A61) and (A62) in equation (A36), we obtain the
expression for the magnetic perturbation to cyclic frequency as

V) = /ﬁdr / /BD'"der
G r 1287’[51)8 GB o

1
- — B2F" + B2G™) dQd
+32n3€(6+1)v0/93073/4n(6[+ » z) r

(A63)

A7 Asymmetry of the frequency splittings of dipolar modes

We derive the expression for the asymmetry of the frequency
splittings for £ = 1. Using equations (A49)—-(AS51), we first obtain

3 3
D} — D} = — (3cos’0 — 1) = — W, (cosb) , (A64)
T 4
1 0 9 2 9
Fl —F) =—— (Tcos’0 —3) = —— W (cos0), (A65)
T 2
and
G| fGozfi(SCOSZQfI) =2 W, (cost) (A66)
! ! 8w o ¢ ’

where W, (cosf) with o =1, 6 and ¢ are normalized so that they
take their maxima of W, = 1 at @ = 0. Noting that the asymmetry is
equal to the difference in frequency perturbation between m = 1 and
m = 0 with the same radial order n and the spherical degree £ = 1,
we obtain its expression from equations (A63)—(A66) as

N ! 3 N3
a™e = / —dr ——— [ — W,B2dr
G T 1287%v; | Jg, or3

9 N
3271 Vn,1 Gp pr3

Wy B2 + W¢B¢ dr) , (A6T)
in which overlines mean the spherical averages (see equation 12).
Equation (A67) is equivalent to equation (6), if we assume |By| <
|Bg|.

A8 Validity condition of the perturbation analysis

The perturbation analysis presented in this paper can be justified only
if the magnetic effect is a small perturbation. This condition can be
rephrased as the perturbed Lorentz force being much smaller than the
total restoring force that exists in the absence of the magnetic field.
For high-order gravity modes, the dominant force is the buoyancy
force, which is always in the radial direction, whereas only the
Eulerien perturbation to the pressure gradient (V p’) contributes to the
horizontal component of the total force. We first derive the condition

MNRAS 545, 1-24 (2026)
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of the horizontal component of the Lorentz force L’ being much
smaller than that of Vp’. We then discuss the condition about the
radial components.

The horizontal component of Vp’ can be estimated from the
perturbed equation of motion to be

/ p, m m
(VP) = VY] ~ oo VoY), (A68)

in the Cowling approximation. On the other hand, the dominant
horizontal component of the Lorentz force is given for high-order
gravity modes by

1
L~ —EBfkfgth Yr (A69)

(see equation A35). Here, we do not assume equation (A34), but
consider that all of the components of B are on the same order,
which does not seriously influence the order-of-magnitude estimate
in this section.

From equations (A68) and (A69), we may introduce a dimen-
sionless parameter to measure the importance of the Lorentz force
by

B 2
smz( ) , (A70)

UL
Br

in which B" is defined by

4 2
Bl =, |- P 7T (A1)
Ll+1) N

If we do not take the rotation into account, the condition for the
magnetic field to be weak enough to apply the perturbation analysis
is given simply by s,, < 1, or equivalently |B;| <« BUL. The upper
limit given by equation (A71) is essentially the same as that derived
by L. Bugnet et al. (2021) in their equation (29) and larger by factor 2
than the critical field strength in equation (3) of J. Fuller et al. (2015)
for¢ = 1.

We now turn to the radial components. Since L’ is perpendicular
to B, the radial component of L’ is different in amplitude from its
horizontal component by at most factor

By
B

fo= ‘ , (AT72)

in which B, means the amplitude of the horizontal component of B.
On the other hand, the buoyancy force p N, is larger than | (V p’)
by factor

i

fo=— (AT3)

for high-order gravity modes. Therefore, in the situations where
fr < fn, the buoyancy force dominates over the radial component
of L’ if equation (A70) is satisfied. In fact, from Table 4 of this
paper and fig. 12 of S15, we estimate (f, fn) ~ (26, 10-100) for
r/R <0.5.

APPENDIX B: ASPHERICAL BUOYANCY
GLITCHES

B1 Background

Physical processes in the stellar interior often create a layer of
rapid variation in chemical composition and other physical quantities
typically near the boundary of mixing regions. If the scale height of
the variation is much shorter than the wavelength of waves that go
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through the layer, the structure is essentially considered as a discon-
tinuous surface, which generally disturbs the wave propagation, and
hence modifies the frequencies of modes that consist of those waves.
This is called a glitch problem in asteroseismology. The problem
is particularly important for high-order modes because the glitch
induces characteristic signatures in the spectrum of mode frequencies
(or periods) depending on its structure. Such signatures, which are
frequently observed in real stars, provide us with a unique probe into
the properties of the physical processes that cause the glitch.

In this appendix, we confine ourselves to the glitch problem
of high-order gravity modes, for which a considerable amount of
effort has already been made. The present analysis extends it to take
account of the glitch structure that is not spherically symmetric. For
simplicity, we assume that the discontinuity is so weak that we may
apply the variational principle (or the perturbation theory in the non-
degenerate case) to estimate the change in the mode frequencies (or
periods). This also implies another assumption that the degeneracy
among the modes with the same radial order and the same spherical
degree, but with different azimuthal orders, has been lifted by the
effect of the rotation before we consider a smaller effect of the glitch
(see appendix Al).

B2 Framework for high-order gravity modes with uniform
rotation

Under the assumptions that we have made, our task is simply
to evaluate equation (A24) without taking the magnetic field into
account. In this case, it is convenient to eliminate W in equation
(A12) using

Vp+pV¥ =0 (BD)
(see equation A22) to obtain
T(8€) =sr(B.¢)+ar(bg)+[ar (68)] . ®

in which the symmetric part Sy and the asymmetric part Az are
defined by

sr(é¢) = /%pp €] p [¢] av
e / / O RANSHORY

1
X (7) dv,dv, , (B3)
|ra — 1ol

and

Ar(Bg) =5 [ (£ -vp)e (%—%) av. (B4

In equation (B3), p’ means the Eulerian perturbation to the pressure,
Pl=-T"V-£-&-Vp. (B5)

For high-order gravity modes, we may neglect Sy because the first
term corresponds to the potential energy of the acoustic oscillations,
and the second term depends on the perturbation to the gravitational
potential (T. G. Cowling 1941). In order to evaluate A7, we note
that p and p are functions of only W in uniformly rotating stars (see
equation B1). We therefore find

'r(s,sw/meemw av (B6)
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in which ey and .4? are defined by

\A'%
e = Tyl (B7)
and
/yg_IV‘PIZ dp 1 dp 1dp
T dw Fipd¥  pd¥
1 0 1 0 10
~— (=) (2222 (BY)
P or I'ypor por

It is obvious that .#* reduces to the (squared) Brunt—Viisdld
frequency N in spherically symmetric structures. The approximate
equality in equation (B8) is because VW is almost in the radial
direction.

B3 General formula of the glitch signature

In order to describe the analysis precisely, we consider three different
equilibrium structures that are very close to each other. The first
(structure 0) is the spherically symmetric one without rotation and
any glitches. The second (structure r) has a slow uniform rotation,
but without any glitches. The third (structure g) rotates at the same
rate as the second and has a glitch. We distinguish the variables of
these structures by subscripts O, r and g for the first, second and third
structures, respectively. We derive the frequency difference between
structures g and r in the following way: we separately compute the
difference between structures r and O and that between structures
g and 0, and then take the difference between the two differences.
Although structures g and r are both deformed by the centrifugal
force, its effect on the frequencies cancels out in the leading order
when their differences between the two structures are computed. We
thus obtain

|2 AN

Tr (€. £0) ~ / poNGE? V[P S av (B9)
0

in which A_#? is the difference at the same position, defined by
AN =M= N (B10)

In equation (B9), the difference in density is neglected because it
has a much smaller impact on the induced glitch signature in the
frequency (or period) spectrum than that in .4?, which depends on
the derivative of the density. In addition, we choose to neglect the
difference in ey between structures r and g by assuming that W of
structure g (W,) is a function of only W,, which implies that VW,
is in the same direction as VW, at every point. After adopting this
assumption, we further approximate ey by e, in equation (B9).
Using equation (A58) and the corresponding expression for &,

ee+1)\"? ’
E~—A (7(1\’—’— )3) cos </ k; dr—win) R
00 NoPor Fin

we obtain from equations (A24) and (B9) the oscillatory component
of the difference in the mode period as

(B11)

[
AP (n, t,m)="> a5 (n, O)PY (m) (B12)
k=0
in which the period a-coefficients a3, are defined by
Uy 11 AN
a5 (n, 6) = ——L" 260 6o (2K) dK . (B13)

VAT Dr Jo NE

Here, we have introduced the following definitions:
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ne 2 ([ M) -

VISV AY A

Aﬂgk,o(”)z/ YR AN dQ, (B15)
4

and

o= YEEED [TNo (B16)

%0 rin T

In equation (B13), we neglect the contribution of the components
that depend on the mode period only smoothly, because it should
be ascribed to the period difference between structures r and 0. We
retain this treatment throughout this section.

B4 Three types of discontinuity

Equations (B12) and (B13) provide the fundamental formulae that
describe the glitch signature in the period spectrum of high-order
gravity modes. The signature depends on the type of discontinuity
in A#?. In the following, we consider three different types, which
are located at r = r,, inside the gravity-mode cavity (see A. Miglio
et al. 2008). The corresponding expressions for a5, are derived as
functions of the mode period Py in each case.

If the density itself is discontinuous, A.4? follows a Dirac delta
function (§) as

ANy
Ng

= QEO)r*S (r—ry), (B17)

in which ZDECO) is a dimensionless constant. Then, the &5, is given by

27 Py (n, £
ag, (n, £) = €% Py (n, £) cos {%”) — 20l (B18)
L%
where @fi and I, , are defined by
LA+1) UgITgNy (re) o
e = ‘ o B19
bk 4k + D7 2 k (B19)
and
m 2 ( "N )_1 (B20)
e ——— — dr )
e+ \J, -

respectively.

If the derivative of the density is discontinuous, A.#? is described
by a Heaviside step function (H) with a dimensionless constant @2')
as

AN
X0 — o H @ —1) . (B21)

NO

The corresponding a5, is provided by
27 Py (n, £
a&, (n, 0) = &) sin % 20| (B22)
X3
in which @21,)( is defined by
Uy T

¢) = (B23)

2@+ hr *

In case where the second derivative of the density is discontinuous,
A.A? has a form of the ramp function with a dimensionless constant
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@f) as
AN, [P (1 - %) forr <r,,
N? 0 forr >r, .
‘We then obtain
. 21 Py(n, £
a5 (n, ) = €L Py (n, £)cos {% —2¢u | .
£,%

in which &%) is given by

@ — _ T Ueille o)
bk = L0+ 1) 4k + 1) 2No(ry) ~ ¢

(B24)

(B25)

(B26)

Equations (B18), (B22), and (B25) demonstrate that, for the three
types of discontinuity, the a5, coefficients depend on the sinusoidal
functions of Py with the same period I, ., but that their amplitude
follows a linear or constant or reciprocal function of P, for the Dirac
or Heaviside or ramp type, respectively.

This paper has been typeset from a TeX/IATEX file prepared by the author.
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