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A B S T R A C T 

An asteroseismic analysis has revealed a magnetic field in the deep interior of a slowly rotating main-sequence F star KIC 

9244992, which was observed by the Kepler spacecraft for 4 yr. The star shows clear asymmetry of frequency splittings of high- 
order dipolar gravity modes, which cannot be explained by rotation alone, but are fully consistent with a model with rotation, a 
magnetic field, and a discontinuous structure (glitch). Careful examination of the frequency dependence of the asymmetry allows 
us to put constraints on not only the radial component of the magnetic field but also its azimuthal (toroidal) component. The 
lower bounds of the root mean squares of the radial and azimuthal components in the radiative region within 50 per cent in radius, 
which have the highest sensitivity in the layers just outside the convective core with a steep gradient of chemical compositions, 
are estimated to be Bmin 

r = 3 . 5 ± 0 . 1 kG and Bmin 
φ = 92 ± 7 kG , respectively. The much stronger azimuthal component than the 

radial one is consistent with the significant contribution of the differential rotation, although the star has almost uniform rotation 

at present. The estimated field strengths are too strong to be explained by dynamo mechanisms in the radiative zone associated 

with the magnetic Tayler instability. The aspherical glitch is found to be located in the innermost radiative layers where there 
is a steep gradient of chemical composition. The first detection of magnetic fields in the deep interior of a main-sequence star 
sheds new light on the problem of stellar magnetism, for which there remain many uncertainties. 

Key words: asteroseismology – stars: individual: KIC 9244992 – stars: interiors – stars: magnetic fields – stars: oscillations –
stars: variables: general. 
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 I N T RO D U C T I O N  

he study of magnetic fields in stars has been a major subject in
strophysics since G. E. Hale ( 1908 ) first detected them in sunspots.
he Sun has not only strong magnetic fields of the order of 103 G
onfined in sunspots but also a global-scale weak field of the order of
 G, which extends from the photosphere to the corona. The number
f sunspots (H. Schwabe 1844 ) and their latitudinal position (Spörer’s 
aw; R. C. Carrington 1863 ) both change over a period of about 11 yr,
hich actually corresponds to a half of the magnetic cycle of about
2 yr (G. E. Hale et al. 1919 ). Understanding the mechanism of
ow the magnetic fields are generated and maintained is the central 
roblem of the activity of the Sun and low-mass main-sequence stars
e.g. D. H. Hathaway 2015 ). 

On the other hand, large-scale nearly dipolar magnetic fields with 
ypical strengths of 103 G are detected at the surface of a small
raction of early-type main-sequence stars that do not have a thick 
 E-mail: takata@astron.s.u-tokyo.ac.jp (MT); 
imon.murphy@unisq.edu.au (SJM) 
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onvective envelope (J. D. Landstreet 1982 ). In early studies H.
. Babcock ( 1947 ) first reported the detection of magnetic fields
ainly in A- and B-type stars with chemical peculiarities, whereas 

ecent surveys have extended the detections to O- and B-type stars
e.g. M. Briquet 2015 ; G. A. Wade et al. 2016 ; M. E. Shultz et al.
019 ; V. Petit & M. E. Oksala 2026 ). Unlike the Sun, these fields
re apparently stable (at least on human observation time-scales), 
nd their observed variability is interpreted as rotational modulation 
ith the magnetic axis inclined to the rotation axis (D. W. N. Stibbs
950 ). These fields could originate from interstellar fields that were
ocked into the stars during the formation process (E. F. Borra, J.
. Landstreet & L. Mestel 1982 ). Or they might alternatively come

rom the dynamo process in the stars (K. Ste ¸pień 2000 ). 
We now give an overview of the surface fields of pulsating main-

equence stars with low and intermediate mass. The first example 
f magnetic pulsators is the rapidly oscillating Ap (roAp) stars (D.
. Kurtz 1982 , 1990 ), which show high-order acoustic modes with

 typical periods around 10 min under significant influence of the
urface field of the order of 103 G. Although the roAp stars are
ound in the same region in the HR diagram as δ Sct stars, which
how only low- to intermediate-order modes, the large-scale strong 
is is an Open Access article distributed under the terms of the Creative
h permits unrestricted reuse, distribution, and reproduction in any medium,
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Table 1. Parameters for KIC 9244992 from T. M. Brown et al. ( 2011 ) (B11), 
D. Huber et al. ( 2014 ) (H14), and J. M. Nemec et al. ( 2017 ) (N17). 

Parameter Value Reference 

Kepler magnitude (mag) 13.998 B11 
Teff (K) 6900 ± 292 H14 

7550 ± 100 N17 
log g (cgs) 3 . 52 ± 0 . 40 H14 

3 . 52 ± 0 . 15 N17 
v sin i (km s−1 ) < 6 ± 1 N17 
[Fe / H ] −0 . 15 ± 0 . 30 H14 

+ 0 . 1 ± 0 . 3 N17 
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urface magnetic field has long been thought to be incompatible with
ow-order oscillation modes. 

This situation changed when surface fields were detected in a
ew δ Sct stars (K. Thomson-Paressant et al. 2023 ), and when S.
. Murphy et al. ( 2020 ) discovered the first example of δ Sct–roAp
ybrid stars, KIC 11296437, with the surface field of 2 . 8 ± 0 . 5 kG .
urthermore, S. J. Murphy et al. argued, based on theoretical analysis,

hat strong surface fields could inhibit high-order gravity modes.
n fact, there has so far been no detection of a large-scale surface
agnetic field in γ Dor stars and δ Sct–γ Dor hybrid pulsators (e.g.
. Hubrig et al. 2023 ; K. Thomson-Paressant et al. 2023 ). However,

he hypothesis of suppression of high-order gravity modes by strong
agnetic fields must be examined quantitatively because surface
agnetic fields and high-order gravity modes do coexist in slowly

ulsating B (SPB) and SPB–β Cep hybrid stars (e.g. C. Neiner et al.
003 ; M. Briquet et al. 2013 ), which are also main-sequence stars,
ut with higher masses (3–9 M�) than γ Dor stars. In this context,
e note that the low-frequency peak found in the spectrum of some
Dor stars may be caused by surface spots, which are associated

ith small-scale surface magnetic activity (A. I. Henriksen et al.
023a , b ; V. Antoci et al. 2025 ). In summary, due to improvements
n observational techniques, the number of confirmed main-sequence
agnetic pulsators is steadily increasing. This naturally leads to a

tronger motivation to understand these stars also from a theoretical
oint of view. 
The surface magnetic fields are detected not only in main-sequence

tars but also in stars in the initial (pre-main-sequence) stage of
heir lives (T Tauri stars) and those in the final stage (white dwarfs
nd neutron stars) (e.g. S. Bagnulo & J. D. Landstreet 2021 ). The
agnetic fields thus play significant roles throughout the entire life

f stars affecting many physical processes, including star formation,
otation, mass accretion, flares, and winds (e.g. L. Mestel 2012 ). 

While surface magnetic fields are measured by the Zeeman effect
f spectral lines, asteroseismology provides a unique method to
onstrain the internal magnetic fields through their effect on stellar
scillations. Among others, G. Li et al. ( 2022 ) have carefully
xamined the oscillation frequencies of three red-giant stars, which
ere observed by the Kepler spacecraft, to deduce the detection of
elds of 30–100 kG in the core. This analysis has been extended to
 larger sample of stars by S. Deheuvels et al. ( 2023 ), G. Li et al.
 2023 ), and E. J. Hatt et al. ( 2024 ). 

Turning to main-sequence stars, D. Lecoanet, D. M. Bowman &
. Van Reeth ( 2022 ) estimated an upper limit of the magnetic-field
trength in the near-core region of the main-sequence B star HD
3317 to be of order 500 kG. This was based on the picture that the
bserved suppression of gravity modes in the low-frequency range is
ue to the conversion of constituent waves from the internal gravity
aves to resonant Alfvén waves as a result of significant interaction
ith the magnetic field in the layer of the steep gradient of chemical

omposition just outside the convective core (D. Lecoanet et al.
017 ). The essential part of this picture was originally presented by
. Fuller et al. ( 2015 ) to explain unusually low amplitudes of dipolar
odes in a fraction of red-giant stars observed by the Kepler space

elescope (B. Mosser et al. 2012 ; R. A. Garcı́a et al. 2014 ). However,
. Mosser et al. ( 2017 ) contradicted this idea by demonstrating that

he low-amplitude dipolar modes of red giants are formed by the
oupling between core and envelope oscillations, which implies that
he waves transmitted from the envelope to the core come back to the
nvelope (at least partially). This is not expected by the mechanism of
. Fuller et al. ( 2015 ), at least in its original form. Continuing efforts
ave been made to understand the mechanism of mode suppression
nd its relation to the magnetic field from both observational aspects
NRAS 545, 1–24 (2026)
e.g D. Stello et al. 2016 ; Q. Coppée et al. 2024 ) and theoretical ones
e.g. S. T. Loi 2020 ; N. Z. Rui & J. Fuller 2023 ). 

Following recent work on red-giant stars, we report in this paper
he detection of a magnetic field in the deep interior of a main-
equence F star, KIC 9244992, which can be classified as a δ Sct–
Dor hybrid pulsator (H. Saio et al. 2015 , hereafter S15 ). The

tructure of this paper is as follows: the main analysis is presented in
ection 2 with the details given in appendices; Section 3 is devoted

o discussions; we finally give conclusions in Section 4 . 

 ASYMMETRY  O F  F R E QU E N C Y  SPLITTINGS  

.1 Target 

IC 9244992 has a Kepler magnitude of Kp = 14 (T. M. Brown
t al. 2011 ) and a spectral type of F0 (J. M. Nemec et al. 2017 ).
here is no observational evidence that the star belongs to a binary

or multiple) system (S. J. Murphy et al. 2018 ). The properties of the
tar are summarized in Table 1 . 

S15 analysed the Kepler long-cadence data of the star in quarters
 to 17 to find rich frequency spectra of both of gravity and acoustic
odes. Using the MESA stellar evolution code (B. Paxton et al.

011 , 2013 , 2015 , 2018 , 2019 ; A. S. Jermyn et al. 2023 ), they
hen constructed evolutionary models, which reproduce the observed
roperties well. The best model has a mass of 1 . 45 M�, an initial
etal abundance of Z0 = 0 . 01, and an age of 1 . 9 Gyr , which implies

he late phase of the main-sequence stage (see Table 2 ). From the
bserved frequency splittings, they estimated the rotation periods of
he core and the envelope to be 63 . 51 ± 0 . 28 and 66 . 18 ± 0 . 58 d,
espectively. 

The star can be classified as a δ Sct–γ Dor hybrid pulsator, though
ts rotation period is much longer than the typical value of ∼ 1 d
f γ Dor stars (G. Li et al. 2020 ). Most stars rotating this slowly
ith this Teff , log g, and age show Am chemical peculiarities, or Ap
eculiarities if there is a surface magnetic field. A high-resolution
pectroscopic study of KIC 9244992 would be useful to examine its
urface abundances. 

.2 Measurement 

hile the internal rotation can be inferred from the difference
etween the lowest frequency and highest frequency of each g-mode
riplet (e.g. C. Aerts, J. Christensen-Dalsgaard & D. W. Kurtz 2010 ),
e may study magnetic fields and the second-order effect of rotation
ased on the asymmetry of triplets, which is defined by 

 n ≡ νn, 1 , 1 + νn, 1 , −1 

2 
− νn, 1 , 0 . (1) 
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Table 2. carefully examine this problem and establish more robustProperties 
of evolutionary models by S15 . Symbols Xc , hov , and �1 stand for the central 
hydrogen abundance, the parameter of overshooting from the convective core, 
and the period spacing of dipolar gravity modes, respectively, while Sr and 
Sh are defined by equations ( 9 ) and ( 10 ), respectively. The upper limit of G B 

(the magnetic region in the gravity-mode cavity) is expressed by xup , which 
is measured in units of the fractional radius. The other symbols have their 
usual meanings. 

Model A∗ B C 

M/ M� 1.45 1.50 1.54 
Teff (K) 6625 6748 7221 
log L/ L� 0.854 0.907 1.050 
log R/ R� 0.309 0.319 0.331 
log g (cgs) 3.982 3.977 3.962 
Age (Gyr ) 1.9 1.7 1.4 
Xc 0.149 0.142 0.111 
X0 0.724 0.724 0.727 
Y0 0.266 0.266 0.266 
Z0 0.010 0.010 0.007 
hov 0.005 0.000 0.005 
�1 (s) 2349 2335 2306 
for xup = 0 . 5 
Sr (10−31 cm g−1 s−2 ) 3.0 2.8 2.9 
Sh (10−24 cm g−1 ) −2 . 5 −2 . 4 −2 . 4

Note. A∗ indicates our best model (see S15 ). 

Figure 1. Asymmetry of frequency splittings a n (see equation 1 ) for high- 
order gravity modes in KIC 9244992. Errors are smaller than the symbol size 
for the points without error bars. 
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ere, νn,	,m 

generally represent mode frequencies with radial order 
 , spherical degree 	 , and azimuthal order m . 
In Fig. 1 , we plot a n as a function of νn, 1 , 0 for all of the 17 gravity-
ode triplets between 0 . 9 and 1 . 8 d−1 , whose frequencies are listed in

able 1 of S15 . The first point we should note is that all a n except those
t 1 . 29, 1 . 70, and 1 . 78 d−1 are statistically significantly different from
ero, although all | a n | are smaller than the frequency resolution, 

res = 1 

4 T0 
= 1 . 7 × 10−4 d−1 (2) 

T. Kallinger, P. Reegen & W. W. Weiss 2008 ), where T0 = 1459 d is
he total observation time-span of the Kepler primary mission Q1–17 
ata for KIC 9244992. The pulsation frequencies can be determined 
o higher precision than the frequency resolution, so long as there are
o undetected unresolved frequencies within the spectral window 
f the mode frequency peaks. The consistency of our results for
 n indicates that this is the case. Given that, we list the following
roperties of a n : (1) a negative and decreasing trend below 1 . 25 d−1 ;
2) pseudo-sinusoidal behaviour, particularly for ν � 1 . 3 d−1 , with
 wavelength of several data points; (3) an outlier at 1 . 13 d−1 . The
ain question of this paper is how we can understand these. 

.3 Theory 

n the present analysis, we assume that asymmetry of the frequency
plitting arises from the three effects, 

 n = a (rot ) 
n + a (mag ) 

n + a (glitch ) 
n , (3) 

n which a (rot ) 
n , a (mag ) 

n , and a (glitch ) 
n indicate the effects of rotation, a 

agnetic field, and a discontinuous structure (glitch), respectively. 
here are three remarks about equation ( 3 ): first, we assume that the
rst-order effect of rotation is much larger than that of the magnetic
eld. In fact, table 1 of S15 shows that the frequency splittings are
ll equal to about 8 × 10−3 d−1 , which is larger by two orders of
agnitude than the observed asymmetry in Fig. 1 . However, since

he rotational splitting is symmetric, the first-order effect of rotation 
annot influence a n and we need to analyse its second-order effect. 
econdly, in contrast, it is sufficient to consider the first-order effects
or the magnetic field and the glitch. Finally, we assume that the
eformation of the equilibrium structure caused by the Lorentz force 
s negligible compared to that caused by the centrifugal force. We
ill discuss this assumption at the end of Section 2.5 . 
Each of the three terms on the right-hand-side of equation ( 3 ) is

iscussed separately in the following subsections. 

.3.1 Rotation effect 

or simplicity, we restrict ourselves to the case of uniform rotation
without the magnetic field), which is a good approximation for 
IC 9244992 (see Section 2.1 ). From a physical point of view,

he second-order effect of rotation is composed of two sources (in
he Eulerian picture), the second-order effect of the Coriolis force, 
hich directly affects the oscillations, and the deformation of the 

quilibrium structure due to the centrifugal force. 
Although we need to rely on sophisticated methods and stellar 
odels to quantify the corresponding a (rot ) 

n accurately, it would be 
orth providing a model-independent analytical formula for the 
rder-of-magnitude estimates. For high-order gravity modes, the 
oriolis force becomes more important than the centrifugal force, 
ecause the former effect is inversely proportional to the frequency 
the ratio between the Coriolis force and the acceleration of the
scillation). Using equation (117) of W. A. Dziembowski & P. R.
oode ( 1992 ) (see also P. Brassard, F. Wesemael & G. Fontaine
989 ), we estimate for dipolar modes ( 	 = 1), 

 

(rot, asymp ) 
n ≡ ν2 

rot 

40 νn, 1 
as νn, 1 → 0 , (4) 

n which νrot means the (cyclic) rotation frequency. Equation ( 4 ) can
e rewritten as 

 

(rot, asymp ) 
n = 6 × 10−6 

(
Prot 

64 d 

)−2 ( νn, 1 

1 d−1 

)−1 
d−1 , (5) 

here Prot = ν−1 
rot means the rotation period. The rotation effect is 

pposite in sign to and smaller in amplitude by an order of magnitude
han the observed asymmetry in Fig. 1 . We conclude that there exist
ome physical effects other than the rotation in the star. 
MNRAS 545, 1–24 (2026)
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Figure 2. Profiles of Kr (solid curve) and Kφ (dashed curve) multiplied by 
the total radius R for the best evolutionary model (model A in Table 2 ) with 
the upper limit of G B set at 50 per cent of the total radius. The gradual increase 
of RKφ towards larger r/R actually complicates the interpretation, which is 
treated in Section 2.5 in detail. 
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.3.2 Magnetic effect 

he frequency change due to a weak magnetic field is analysed
n the framework of the regular perturbation theory (e.g. D. O.
ough & M. J. Thompson 1990 ; H. Shibahashi & M. Takata 1993 ).
nalyses that can be adapted to the case of high-order and low-
egree gravity modes have been developed in some recent papers
e.g. S. Mathis et al. 2021 ; G. Li et al. 2022 ). We extend these
revious works under the assumption of | Bφ | � | Br | , | Bθ | , where
r , Bθ , and Bφ represent r , θ , and φ components of the magnetic
eld in the spherical coordinates (with the rotation axis in the
irection of θ = 0), respectively. The reason for dominant Bφ is
hat this component could easily be increased by rotation ( � effect).
n order to define the φ component, it is necessary to identify
 magnetic axis. Although we assume that this magnetic axis is
ligned with the rotation axis, this does not necessarily mean that
he field is axisymmetric. Namely, each component can generally
epend on φ. [Still, we may note that Gauss’s law for magnetism
 ∇ · B = 0) leads to

∣∣∂ Bφ/∂ φ
∣∣ 	 ∣∣Bφ

∣∣, which implies approximate
xisymmetry.] The motivation of this extension comes from the fact
hat the asymmetry in Fig. 1 does not perfectly follow the inverse-
ube law of frequency (e.g. L. Bugnet et al. 2021 ). In fact, we show
n Appendix A (equation A67 ) that the asymmetry of frequency
plittings is given as a function of the unperturbed frequency
n, 1 by 

 

(mag ) 
n = a 

ν3 
n, 1 

+ b 

νn, 1 
, (6) 

n which frequency-independent parameters a and b are given by 

 = Sr 〈Wr B
2 
r 〉 (7) 

nd 

 = Sh 〈WφB2 
φ〉 , (8) 

espectively. Here, Sr and Sh represent the sensitivity to the equi-
ibrium structure, defined in terms of the density ρ and the Brunt–
äisälä frequency N by 

r ≡ 3 

128 π5 

∫ 
G B 

N3 

ρr3 d r ∫ 
G 

N 
r 

d r 
(9) 

nd 

h ≡ − 9 

32 π3 

∫ 
G B 

N 

ρr3 d r ∫ 
G 

N 
r 

d r 
, (10) 

espectively. The domains of the radial integral G and G B , respec-
ively, mean the gravity-mode cavity and its subdomain where the
agnetic field exists. The gravity-mode cavity G extends to almost

he entire radiative region in the case of intermediate-mass main-
equence stars. The angle brackets in equations ( 7 ) and ( 8 ) stand for
he volume average over G B , which is defined by 

WαB
2 
α〉 ≡

∫ 

G B 

Kα( r)WαB2 
α d r for α = rand φ , (11) 

ith the spherical average introduced by 

αB2 
α ≡ 1 

4 π

∫ 

4 π
B2 

α ( r, θ, φ) Wα ( cos θ ) sin θ d θ d φ . (12) 

he kernels in the radial direction are defined by 

r ( r) ≡
(∫ 

G B 

N3 

ρr3 
d r

)−1 
N3 

ρr3 
(13) 
NRAS 545, 1–24 (2026)
nd 

φ( r) ≡
(∫ 

G B 

N 

ρr3 
d r

)−1 
N 

ρr3 
. (14) 

s examples, the profiles of Kr and Kφ are plotted in Fig. 2 for the
est model with the upper limits of G B set at 50 per cent of the total
adius. The upper limits should be carefully fixed to be consistent
ith the assumptions of the analysis (see Section 2.5 ). While the

mplitude of Kr concentrates on the sharp peak around r = 0 . 06 R,
hich corresponds to the layers of a steep gradient in mean molecular
eight, Kφ not only takes a local maximum at the same position as
r but also has a long tail towards larger r . The difference is because
r depends on a higher power of N than Kφ . On the other hand, the
eight functions for the spherical averages are introduced by 

r ( cos θ ) ≡ P2 ( cos θ ) = 3 cos 2 θ − 1 

2 
(15) 

nd 

φ ( cos θ ) ≡ 5 cos 2 θ − 1 

4 
. (16) 

n equation ( 15 ), function P2 is the Legendre polynomial of degree
wo. 

We have made no assumption about the ratio between the two
erms on the right-hand side of equation ( 6 ). Therefore, the second
erm can in principle dominate over the first term, when | Bφ | is much
arger than | Br | . In this case, the asymmetry would be proportional
o the inverse of frequency, rather than the inverse cube. 

The difference between the two terms on the right-hand side of
quation ( 6 ) can be understood from a physical point of view. Since
he oscillation motion is predominantly horizontal for high-order
ravity modes, the magnetic field in the radial direction would be
ignificantly bent by the short-wavelength motions to generate a
trong restoring Lorentz force. On the other hand, the field in the
zimuthal direction is nearly parallel to the motion for 	 = 1 and
 = ±1 modes near the equator, where the oscillation amplitude is

argest, so that there is little restoring force. For the axisymmetric
odes ( m = 0), the motion is perpendicular to the azimuthal field,
hich means that we may expect some Lorentz force to restore the
otion. However, since the wavelength in the horizontal direction is
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f the order of the stellar radius, which is much larger than that in the
adial direction, the size of the restoring force would be much smaller
han in the case of the radial field. Thus, the radial field influences the
igh-order and low-degree gravity modes much more significantly 
han the azimuthal field. This qualitatively explains why we observe 
 Sr | � ν2 | Sh | for ν = 1 d −1 (see the last two lines of Table 2 ), which
mplies that the first term is much larger than the second term if
 Br | ∼ | Bφ | . In addition, as the radial wavelength gets shorter for
igher order (smaller-frequency) gravity modes, the radial field is 
ccordingly bent with the shorter scale, which results in a larger 
estoring Lorentz force, and hence a more significant impact on the 
scillation frequencies. This is the reason for the strong frequency 
ependence of the first term. In contrast, the effect of the azimuthal
eld would depend little of the order of modes, because the bending
cale of the field line in the horizontal direction is not affected by
he radial wavelength. This implies a weaker frequency dependence 
f the second term. In fact, the inverse dependence on νn, 1 originates 
rom the perturbation to ν2 , so that we may regard that the impact of
he azimuthal field is essentially independent of the frequency if it is

easured by the perturbation to the squared frequency. 

.3.3 Glitch effect 

n Fig. 1 , we observe that the data points are not distributed
andomly, nor do they follow a linear trend, but instead they show
orrelation, which in the high-frequency range is pseudo-sinusoidal 
ith a wavelength of several points. This is a typical signature 
f discontinuous structure (glitch) in the star, which disturbs the 
ave propagation. Because a n is not sensitive to any spherically 

ymmetric structure, which is usually assumed in the literature about 
litches, we formulate a framework to analyse aspherical glitches in 
ppendix B . The glitches generally induce oscillatory structures 

n the diagram of period and period difference with a constant 
avelength, but varying amplitude. Such a component can actually 
e identified in Fig. 1 based on the detailed analysis in Sections 2.4.3
nd 2.4.4 . While the wavelength provides us with the information 
bout the location of each glitch, the amplitude modulation depends 
n the type of discontinuity. We demonstrate in Appendix B4 
hat the amplitude depends on the period linearly, constantly, or 
eciprocally, if the discontinuity is associated with the density itself, 
ts first derivative, or its second derivative, respectively. We will 
arefully examine the type of discontinuity during our data analysis 
Section 2.4.3 ). 

.4 Interpretation 

.4.1 Evolutionary models 

e use three evolutionary models A, B, and C of KIC 9244992,
hich are constructed by S15 , to interpret the observed asymmetry 
f frequency splittings. The properties of the models are summarized 
n Table 2 . Their main differences are found in mass M , initial metal
bundance Z0 , and parameter hov of the convective overshooting. 
odel A corresponds to the best model, which reproduces the 

bserved frequencies most accurately, while the other two models 
lso have quite close frequencies (see fig. 11 of S15 ). 

.4.2 Rotation effect 

here exist two different methods to analyse the second-order 
otation effect. One is based on perturbation theory (e.g. H. Saio 
981 ; D. O. Gough & M. J. Thompson 1990 ; W. A. Dziembowski & P.
. Goode 1992 ), while the other relies on two-dimensional numerical
omputation (e.g. U. Lee & I. Baraffe 1995 ). We try both methods. 

We first calculate the effect for the modes of the best evolutionary
odel by S15 (Section 2.1 ). We set the rotation period to Prot =

4 d, which corresponds to νrot = 0 . 0156 d−1 . Fig. 3 shows a (rot ) 
n 

nd a (rot, asymp ) 
n (equation 4 ) for the modes in the observed frequency 

ange in Fig. 1 . We have checked that the values of a (rot ) 
n , which are

stimated based on perturbation theory (H. Saio 1981 ), are consistent
ith a two-dimensional calculation by the program of U. Lee & I.
araffe ( 1995 ) within 1 per cent. This reconfirms the conclusion of
ection 2.3.1 that the observed asymmetry cannot be explained only 
y the rotation. Fig. 3 also demonstrates that the asymptotic formula
equation 4 ) overestimates the true values by only a factor of 3 at
ost, which is acceptable for order-of-magnitude estimates. 
We also calculate a (rot ) 

n for two other evolutionary models with 
asses of 1 . 50 M� and 1 . 54 M�, which are shown in fig. 13 of S15 ,

nd confirm that there is no essential difference from the case of the
est model. 

.4.3 Type of the glitch 

iven the estimates for a (rot ) 
n based on the evolutionary models, we 

ay interpret the remaining contribution to the observed asymmetry 
 n as the combined effects of a magnetic field and a glitch. While
he magnetic effects can be described by equation ( 6 ), we first need
o decide which formula to use for the glitch signature. 

For this purpose, we first fit equation ( 6 ) to a n − a (rot ) 
n in the low-

requency range between 0 . 95 and 1 . 25 d−1 (without the outlier at
 . 13 d−1 ), where the pseudo-sinusoidal component has only a small
mplitude (see Fig. 1 ). Then, using the fitted parameters a and b, we
xtract the magnetic contribution from a n − a (rot ) 

n in the whole range 
etween 0 . 95 and 1 . 8 d−1 . The residuals are shown as a function
f period in Fig. 4 . As shown by the solid curve, we confirm that
hese residuals can be explained by a sinusoidal function with a
onstant amplitude, except for one data point at 0 . 83 d. The sinusoidal
ariation is expected for a glitch associated with the discontinuity in
he first derivative of density (see Appendix B4 ). 

After the preliminary steps to determine the type of the glitch,
lobal fitting in the whole frequency range should be performed 
MNRAS 545, 1–24 (2026)
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M

Figure 4. Residuals of the fitting in period, −ν−2 
n, 1 

(
a n − a 

(rot ) 
n − a 

(mag ) 
n 

)
, as 

a function of the mode period. The fitting is performed based on equation ( 6 ) 
for model A (see Table 4 ) using only the eight modes with periods longer 
than 0 . 8 d. The residuals are computed for not only those modes but also 
the modes with shorter periods. The solid curve represents the best fit to the 
residuals by a sinusoidal function of constant amplitude, neglecting the data 
point at 0 . 83 d. There is another rejected point at 0 . 88 d, whose ordinate is 
outside the plot range. This corresponds to the outlier at 1 . 13 d−1 in Fig. 1 
(see Section 3.1 ). 
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Table 3. The best-fitting values of the five parameters in equations ( 6 ) and 
( 17 ) to explain the observed asymmetry in the frequency splittings a n in Fig. 1 
after subtracting the contribution of rotation that is estimated based on our 
best evolutionary model A in Table 2 . Two cases, 1 and 2, are considered 
because of the degeneracy about the glitch signature described by equation 
( 19 ). In each case, the chi-squared per degrees of freedom ( χ2 /df ) is given 
in the last row. 

Case 1 Case 2 

Parameters of the magnetic effect 
a (10−4 d−4 ) −1 . 18 ± 0 . 08 −1 . 13 ± 0 . 07 
b (10−5 d−2 ) 4 . 3 ± 0 . 6 4 . 0 ± 0 . 6 
Parameters of the glitch effect 
A (10−5 d) −1 . 6 ± 0 . 1 −1 . 51 ± 0 . 09 
K (d−1 ) 7 . 7 ± 0 . 1 29 . 9 ± 0 . 1 
ψ 0 . 14 ± 0 . 09 0 . 57 ± 0 . 09 
χ2 /df 0.997 0.732 
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sing simultaneously equation ( 6 ) and 

 

(glitch) 
n = A ν2 

n, 1 sin 

[
2 π

(
K 

νn, 1 
− ψ

)]
(17) 

see equation B22 ), in which A , K , and ψ are constant parameters to
e fixed. Equation ( 17 ) suffers from two types of degeneracy. First,
he expression is invariant under the transformation of 

( A , ψ) →
(

−A , ψ + 1 

2 
+ k

)
, (18) 

n which k is an arbitrary integer. Secondly, since the mode periods
n, 1 = ν−1 

n, 1 of high-order gravity modes have an almost constant
pacing, �1 , the sampling theorem tells us that the frequency K
annot be distinguished from its mirror image with respect to the
yquist frequency, ( 2 �1 ) 

−1 . This implies that the expression is
nvariant under the transformation, 

( K , ψ) →
(

�−1 
1 − K , ε + 1 

2 
− ψ

)
, (19) 

f the mode periods follow 

n, 1 = ( n + ε) �1 , (20) 

n which ε is a constant that corresponds to the total phase offset
ntroduced at the inner and outer turning points of the gravity-mode
avity. We do not need to consider the other Nyquist aliases because
 < K < �−1 

1 , which will become clear later from equation ( 21 ).
his type of degeneracy is identical to the core/envelope mirror
ymmetry discussed by M. H. Montgomery, T. S. Metcalfe & D. E.

inget ( 2003 ) (see Section 2.4.5 ). Strictly speaking, this degeneracy
s approximate because the period spacing is not exactly constant
n reality. It is still possible that the two sets of parameters (K , ψ),
hich are approximately related to each other by equation ( 19 ), give

qually good fits to the data. 
NRAS 545, 1–24 (2026)
.4.4 Combined effects of the magnetic field and the glitch 

e fit in total five parameters, two ( a and b) in equation ( 6 ) and
hree (A , K , and ψ) in equation ( 17 ), to the difference a n − a (rot ) 

n .
e exclude from the fitting the two data points at νn, 1 , 0 = 1 . 13 d−1 

nd 1 . 20 d−1 . The former clearly follows a different trend from the
thers, while the latter cannot be explained by the assumed form of
he glitch signature in equation ( 17 ). In fact, inclusion of these points
akes the fitting much worse. Possible origins for the two points

re discussed in Section 3.1 . We use the curve fit function in
he SciPy library of Python to fit the remaining 15 data points.

e adopt as a set of initial guesses of the five parameters the values
btained during the preliminary steps to determine the type of the
litch in Section 2.4.3 . We make another set of initial guesses using
quation ( 19 ). The results originating from the first and second sets
re referred to as cases 1 and 2, respectively. 

The results of the fitting are presented in Table 3 for model A (see
able 2 ). We find that the fitting is good in both cases 1 and 2 since
2 /df is close to one, although the value in case 2 is slightly smaller.
he fitted values of a n and the residuals are shown in Fig. 5 . 
Since a (rot ) 

n weakly depends on the evolutionary models, we repeat
he fitting for the two other evolutionary models (models B and C in
able 2 ) and find little difference in all of the five parameters. 
We can make a simple remark about the configuration of the

nferred magnetic field. The negative sign of a in Table 3 implies
hat | Br | is larger on average near the equatorial region than in the
olar region because of equation ( 15 ). Similarly, the positive sign of
 means that

∣∣Bφ

∣∣ is more confined to the equator than the poles (see
quation 16 ). 

.4.5 Properties of the glitch 

ere we interpret the three parameters, A , K , and ψ , about the glitch.
he fitted value of K in Table 3 can be used to estimate the position
f the glitch ( r∗) based on the relation ∫ r∗

rin 

N 

r 
d r = √ 

2 π2 K , (21) 

hich can be obtained by comparing equation ( 17 ) with equation
 B22 ). Here, rin means the inner edge of the gravity-mode cavity,
hich almost coincides with the outer boundary of the convective

ore. We use model A in Table 2 to obtain 

r∗
R 

=
{

0 . 0636 ± 0 . 0002 in case 1 , 
0 . 298 ± 0 . 003 in case 2 . 

(22) 
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Figure 5. Asymmetry of frequency splittings a n of KIC 9244992 fitted with the model that takes account of rotation, a magnetic field, and a glitch (upper part 
of each panel) and the residuals (lower part). The results for the two cases, 1 and 2 (see Table 3 ), with different positions of the glitch (see Fig. 6 ), are presented 
in the left and right panels, respectively. The rotation effect is estimated based on our best evolutionary model (model A in Table 2 ). In each panel, there are two 
data points excluded from the fitting, one at 1 . 20 d−1 indicated by the filled circle and the other at 1 . 13 d−1 , whose ordinate is outside the plot range (Fig. 1 ). 
See Section 3.1 for the possible origins of these points. 

Figure 6. Two possible positions of the aspherical buoyancy glitch in 
fractional radius ( r/R) indicated by the vertical dotted and dashed lines. 
The solid curve represents the Brunt–Väisälä frequency ( N ) normalized by 
the peak value ( Npeak ) at r/R = 0 . 06, while the dashed curve stands for the 
hydrogen mass fraction ( XH ). This plot is based on the structure of model A 

in Table 2 . 
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he two possible positions are shown in Fig. 6 , together with
he Brunt–Väisälä frequency and the hydrogen mass fraction. The 
osition in case 1 means that the discontinuity is located in the layer
f the steep gradient of the hydrogen profile, which is created when
he convective core shrinks in mass during evolution of the star. It
s plausible that some mixing processes near the boundary between 
he convective core and the radiative envelope could generate the 
iscontinuity in the first derivative of the hydrogen profile. On 
he other hand, the position in case 2 implies that the glitch is
ocated deep in the radiative region, where it is not clear how to
ake a discontinuous structure in general. Because of this, case 1 is

referable to case 2 from a physical point of view. 
The amplitude of the glitch signature A is related to that of the

tep function D 

(1) 
1 that describes the discontinuity in the quadrupole 

omponent of the Brunt–Väisälä frequency (see equation B21 ). The 
elation is given by 

 

(1) 
1 = −8

√ 

5 π3 

3 

A 

�1 
, (23) 

n which �1 is the period spacing defined by equation ( B14 ). Using
he fitted value in Table 3 and the structure of model A in Table 2 ,
e obtain 

 

(1) 
1 =

{
0 . 020 ± 0 . 001 in case 1 , 
0 . 018 ± 0 . 001 in case 2 . 

(24) 

he constant factor in equation ( 23 ) is equal to 33.2, which implies
hat the size of the glitch signature A is sensitive only weakly to the
mplitude of the discontinuity. The positive sign of D 

(1) 
1 means that 

he quadrupole component of the Brunt–Väisälä frequency decreases 
n the radial direction at the glitch, which in turn implies that (the
uadrupole component of) the density gradient becomes less steep. 
f the Brunt–Väisälä frequency is dominated by the composition 
radient, the gradient of the mean molecular weight also becomes 
ess steep across the discontinuity. However, there is a warning at this
oint. The sign of D 

(1) 
1 could be opposite because of the degeneracy 

iven by equation ( 18 ). 
We now turn to ψ , which is related to the phase lag ( ϕin ) at the

nner turning point of the gravity-mode cavity (see equation A58 ), by
MNRAS 545, 1–24 (2026)
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 = ϕin /π . We can compare ψ in Table 3 with its theoretical value
f 0.25, which corresponds to ϕin = π/ 4 (W. Unno et al. 1989 ) to
onclude that they are consistent with each other in case 1 because
he difference is only 1.2 times greater than the uncertainty. The
orresponding factor in case 2 increases to at most 1.9 if we accept
he change, 

( A , ψ) = ( −1 . 51 , 0 . 57) → ( 1 . 51 , 0 . 07) , (25) 

ased on equation ( 18 ). 

.5 Strengths of the magnetic field 

e can infer the properties of the internal magnetic field based
n equations ( 7 ) and ( 8 ). However, these expressions are in the
symptotic limit, which is less accurate in the outer layers of the
tar. We carefully examine this problem and establish more robust
stimates of the field strengths. 

.5.1 Asymptotic expressions for the lower bounds to the strengths 
f the field 

e first illustrate the principle of estimating the lower bounds of the
trengths of the field. The parameter a can be interpreted by equation
 7 ). Using Sr of the evolutionary models, we can estimate 〈Wr B

2 
r 〉 ,

hich in turn can be used to constrain the lower bound to the root
ean square of the radial component of the magnetic field Bmin 

r . For
egative values of 〈Wr B

2 
r 〉 , we can utilize the relation 

B2 
r 〉 > −2 〈Wr B

2 
r 〉 =

2( −a) 

Sr 
(26) 

see G. Li et al. 2022 ). Similarly, in equation ( 8 ) we may use b in
able 3 and Sh of the models to estimate 〈WφB2 

φ〉 , which imposes
 constraint on the lower bound to the root mean square of the
zimuthal component, Bmin 

φ , by the relation 

B2 
φ〉 > −4 〈WφB2 

φ〉 = 4 b 

( −Sh ) 
. (27) 

n order to use equations ( 26 ) and ( 27 ), we need to assume the radius
up , outside which no magnetic field exists at all. However, there is
o direct observational constraint on rup . Instead, we may set rup 

o the outer edge of the gravity-mode cavity, but this approach also
as a problem because equations ( 26 ) and ( 27 ) are valid only in
he asymptotic limit, which is not realized very well in the outer
ayers. Therefore, we consider it improper to apply equations ( 26 )
nd ( 27 ) as they are. In the following sections, we carefully examine
he problems of these relations to revise them. 

.5.2 Problem of the asymptotic expressions 

n essential point of the arguments in Section 2.5.1 is that a and b
re independent of the mode frequencies. This is correct only in the
symptotic limit, while their general expressions are given by 

n ≡ 3 

128 π5 

∫ R 

0 

ˆ K( n, 1) 
r Wr B2 

r d r (28) 

nd 

n ≡ − 9 

32 π3 

∫ R 

0 

ˆ K( n, 1) 
φ WφB2 

φ d r , (29) 
NRAS 545, 1–24 (2026)
n which ˆ K( n, 1) 
r and ˆ K( n, 1) 

φ are defined by 

ˆ ( n, 1) 
r ≡

(
2 πνn, 1 

)2 
r2 

(
d ξh; n, 1 

d r 

)2 

∫ R 
0 

(
ξ 2 

r; n, 1 + 2 ξ 2 
h; n, 1 

)
ρr2 d r 

(30) 

nd 

ˆ ( n, 1) 
φ ≡ 2 ξ 2 

h; n, 1 ∫ R 
0 

(
ξ 2 

r; n, 1 + 2 ξ 2 
h; n, 1 

)
ρr2 d r 

, (31) 

espectively (see Appendix A6 ). Here, ξr; n,	 and ξh; n,	 represent the
adial and horizontal displacements, respectively, with radial order
 and spherical degree 	 . The asymptotic expressions for ˆ K( n, 1) 

r and
ˆ ( n, 1) 

φ are provided by 

ˆ asymp 
r ≡

N3 

ρr3 ∫ 
G 

N 
r 

d r 
(32) 

nd 

ˆ asymp 
φ ≡

N 

ρr3 ∫ 
G 

N 
r 

d r 
. (33) 

ig. 7 shows the profiles of ˆ K( n, 1) 
r (with n = −38 , −20 1 ) and ˆ Kasymp 

r 

n the upper panels and ˆ K( n, 1) 
φ (with n = −38 , −20 ) and ˆ Kasymp 

φ in the
ower panels for model A in Table 2 . We observe in the upper panels
hat the profiles of ˆ K( n, 1) 

r are highly concentrated around r/R ≈ 0 . 06
nd so oscillatory in the inner layers ( r/R � 0 . 5) that their average
ehaviour can be described by ˆ Kasymp 

r very well. The high peak is
ocated in the layers of the steep gradient of chemical compositions
ust outside the convective core. The oscillatory behaviour occurs
ecause the radial wave number kr is large enough. On the other
and, in the outer layers ( r/R � 0 . 5), we find that (1) the profiles
f ˆ K( n, 1) 

r become rapidly less oscillatory, that (2) the amplitude of
ˆ asymp 

r increases steeply, and that (3) the amplitude of ˆ K( n, 1) 
r differs

ignificantly between the two modes. The reason for point (1) is that
r becomes smaller due to the decrease in the Lamb frequency rather
han the Brunt–Väisälä frequency (see fig. 12 of S15 ). In fact, unlike
he higher order mode (with n = −38 ), the outer turning point of the
ower order mode (with n = −20 ) is not fixed by the Brunt–Väisälä
requency but the Lamb frequency, which explains point (3). Point
2) is due to the lower density in the near-surface layers. All of
he three points demonstrate that the asymptotic expression ˆ Kasymp 

r 
ecomes inaccurate in the outer layers. 

In the lower panels of Fig. 7 , ˆ K( n, 1) 
φ and ˆ Kasymp 

φ show similar

tructures to ˆ K( n, 1) 
r and ˆ Kasymp 

r , respectively, although the peak of
ˆ asymp 

φ in the innermost radiative region is much smaller than that in
he outermost radiative region around r/R ≈ 0 . 93. The much higher
eight in the outer layers is because ˆ Kasymp 

φ is proportional to a lower

ower of N than ˆ Kasymp 
r . The largest amplitude of ˆ K( n, 1) 

φ in the outer
ayers appears to imply that these layers contribute significantly to the
ntegral in equation ( 29 ). However, we argue in the next section that
his is not true. 

.5.3 Maximum field strengths of the analysis at each radius 

ere, we recall the two assumptions given in Section 2.3 . The first
ne is that the first-order rotation effect is much larger than the direct
ffect of the magnetic field. The former and latter can be estimated
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Figure 7. Profiles of ˆ K( n, 1) 
r (with n = −38 , −20 ) and ˆ Kasymp 

r normalized by GR−3 (upper panels) and ˆ K( n, 1) 
φ (with n = −38 , −20 ) and ˆ Kasymp 

φ normalized 
by M (lower panels) as functions of the fractional radius r/R for model A in Table 2 . The frequencies of the modes with n = −38 and n = −20 are 0 . 96 and 
1 . 79 d−1 , respectively. The left panels are the plots to see the overall structure, while the right panels have smaller ordinate scales to resolve the oscillatory 
behaviour of ˆ K( n, 1) 

r and ˆ K( n, 1) 
φ . 
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y the dimensionless parameters, 

 ≡ 2 νrot 

ν
(34) 

nd 

m 

≡
(

Br 

BUL 
r 

)2 

, (35) 

espectively, in which BUL 
r is defined by equation ( A71 ). Here, s 

s called the spin parameter and provides the ratio of the Coriolis
orce and the inertial term, whereas sm 

is the ratio of the horizontal
omponent of the Lorentz force and that of the pressure gradient. 
he condition of sm 

	 s (for 	 = 1) yields 

| Br | 	 Bmax 
r ≡

√ 

64 π5 νrot ν3 ρ
r 

N 

. (36) 

The second assumption is that the magnetic deformation of the 
quilibrium structure is smaller than the rotational deformation. The 
ffect of the magnetic deformation can be estimated by the ratio 
etween the magnetic and gas pressure ( p), 

 mag ≡ B2 

8 πp 

, (37) 
hereas that of the rotational deformation can be estimated by the
atio between the centrifugal force at the equator and the gravity, 

 rot ≡ r ( 2 πνrot ) 
2 

g 
, (38) 

here g is the gravitational acceleration. Then, the condition of 
 mag 	 r rot means 

 	 Bmax ≡
√ 

32 π3 ν2 
rot rp 

g 
. (39) 

he profiles of Bmax and Bmax 
r are shown in Fig. 8 . We observe

hat Bmax decreases monotonically and rapidly because p does 
o towards the surface. Although the amplitude of ˆ K

( n, 1) 
φ roughly 

ncreases in proportion to the inverse of ρ in the outer layers of
he star, ˆ K

( n, 1) 
φ ( Bmax )2 becomes smaller for larger radii because p/ρ

ecreases. We therefore understand that the contribution of the outer 
ayers to the integral in equation ( 29 ) is small. 

We may stress the meanings of these maximum strengths. The 
stimates for the radial and total magnetic fields at each radius must
ot be larger than Bmax 

r and Bmax , respectively, for the analysis to
e self-consistent. If this is not the case, the fundamental relation
MNRAS 545, 1–24 (2026)
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M

Figure 8. The maximum strengths of the radial component of the magnetic 
field ( Bmax 

r ) and the total magnetic field ( Bmax ) that come from the 
assumptions of the present analysis. The condition of | Br | < Bmax 

r means 
that the Coriolis force contributes to the restoring force of the oscillation 
more importantly than the Lorentz force, while | B| < Bmax means that the 
equilibrium structure is deformed by the centrifugal force more significantly 
than the Lorentz force. Model A in Table 2 is used. The rotation period and 
the oscillation frequency are assumed to be 64 d and 1 d−1 , respectively. 

o  

t  

p
f  

f

2  

W  

p  

m  

a

w  

i

I

a

I

T
i

 

a

i

c

N  

(  

e  

a
 

c

 

a  

w  

m  

c

c

a

d

f

x

A  

v  

t  

M

 

e

〈

i  

o  

G  

r

 

s

w  

t  

e  

r

〈

 

i  

g  

c  

c  

e
a  

p  

r  

t  

W  

n  

m  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/545/3/staf2153/8363649 by bellvitge user on 05 January 2026
f the present analysis, equation ( 3 ), cannot be justified. The fact
hat equation ( 3 ) provides good fits to the data suggests, but does not
rove, that these conditions are actually satisfied. Since Bmax < Bmax 

r 

or r/R > 0 . 42, we concentrate on Bmax to discuss the contribution
rom the near-surface layers to the integrals in equation ( 29 ). 

.5.4 Estimates for the root mean square of the strengths of the field

e modify equations ( 26 ) and ( 27 ), taking into account the two
roblems, the poor asymptotic expressions in the outer layers and the
aximum strengths of the field in the analysis. Since the problems

re more severe for Bφ than Br , we first discuss Bφ . 
Since Wφ ≥ −1 / 4 (see equation 16 ), we find from equation ( 29 ) 

128 π3 

9 
bn ≤

∫ R 

0 

ˆ K( n, 1) 
φ B2 

φ d r = In,in + In,out , (40) 

here we have separated the integral in two parts at radius rup by
ntroducing 

n,in ≡
∫ rup 

0 

ˆ K( n, 1) 
φ B2 

φ d r (41) 

nd 

n,out ≡
∫ R 

rup 

ˆ K( n, 1) 
φ B2 

φ d r . (42) 

he idea is to choose rup such that the asymptotic expression ˆ K
asymp 
φ

s accurate enough for r ≤ rup while keeping In,out small enough. 
We may substitute ˆ K

asymp 
φ into ˆ K( n, 1) 

φ in In,in . The error of this
pproximation can be estimated as 

9 

128 π3 bn 

∣∣∣∣In,in −
∫ rup 

rin 

ˆ K
asymp 
φ B2 

φ d r

∣∣∣∣ ≤ c n , (43) 

n which we have defined 

 n ≡ 9 νn, 1 

128
√ 

2 π2 b 

(∫ 

G 

N 

r 
d r

)−1 [ ( Bmax )2 

ρr2 

]
r= rup 

. (44) 
NRAS 545, 1–24 (2026)
ote that rin in equation ( 43 ), which has been introduced in equation
 21 ), means the inner edge of the gravity-mode cavity. In deriving
quation ( 44 ), we have substituted equation ( A58 ) into equation ( 41 ),
nd performed integration by parts. 

On the other hand, we may constrain the upper limit of the relative
ontribution of In,out to be 

9 In,out 

128 π3 b 
≤ d n ≡ 9 

128 π3 b 

∫ R 

rup 

ˆ K( n, 1) 
φ

(
Bmax 

)2 
d r . (45) 

The relative errors c n and d n can be evaluated using the structure
nd the eigenfunctions of the equilibrium models in Table 2 together
ith the fitted values of b given in Table 3 . We confirm for all the
odes in the analysis of all the models in Table 2 and for the both

ases of the glitch positions (cases 1 and 2) 

 n < c = 0 . 012 (46) 

nd 

 n < d = 0 . 1 (47) 

or 

up = rup 

R 

= 0 . 5 . (48) 

lthough we may choose other values of xup , we regard the
alue in equation ( 48 ) as fiducial. Note that this corresponds to
he radial coordinate of r = 1 . 02 R� and the mass coordinate of

r = 1 . 42 M� (98 per cent of the total mass) in model A. 
Using equations ( 40 ), ( 43 ), and ( 45 ) with bn = b, we can revise

quation ( 27 ) as 

B2 
φ〉1 / 2 > Bmin 

φ ≡
[

4 b 

( −Sh ) 

(
1 − d 

)]1 / 2 

, (49) 

n which we have neglected c because it is smaller than d by an order
f magnitude (see equations 46 and 47 ). Here, the integral domain
B that appears in the definition of Sh (see equation 10 ) is between

 = rin and r = rup . 
In order to obtain the corresponding expression for Br , for

implicity we make an additional assumption ∣∣∣∣∣∣
∫ R 

rup 
ˆ K( n, 1) 

r Wr B2 
r d r ∫ R 

0 
ˆ K( n, 1) 

r Wr B2 
r d r 

∣∣∣∣∣∣ ≤ 1 

4 

∣∣∣∣∣∣
∫ R 

rup 
ˆ K( n, 1) 

φ WφB2 
φ d r ∫ R 

0 
ˆ K( n, 1) 

φ WφB2 
φ d r 

∣∣∣∣∣∣ , (50) 

hich roughly means that Br is concentrated in the core region to
he degree similar to or more than Bφ . Then, also assuming that the
rror in the asymptotic expression is negligible for r ≤ rup , we can
evise equation ( 26 ) as 

B2 
r 〉1 / 2 > Bmin 

r ≡
[

2( −a) 

Sr 

(
1 − d 

)]1 / 2 

. (51) 

Table 4 provides Bmin 
r and Bmin 

φ for the three evolutionary models
n Table 2 (A, B, and C) and the two positions of the aspherical
litch (cases 1 and 2) with xup = 0 . 5. The results for model A and
ase 1, Bmin 

r = 3 . 5 ± 0 . 1 kG and Bmin 
φ = 92 ± 7 kG , are completely

onsistent with the other cases with different combinations of
volutionary models and glitch positions. The estimates for Bmin 

r 

nd Bmin 
φ are quite insensitive to the evolutionary models and the

ositions of the glitch. The fact that Bmin 
φ is larger than Bmax at

/R = 0 . 5, which is equal to 37 kG for model A (see Fig. 8 ), means
hat the field distribution within r/R ≤ 0 . 5 is biased to the core.

e also confirm that Bmin 
r is well below Bmax 

r in Fig. 8 . We finally
ote that if Br = Bmin 

r and Bφ = Bmin 
φ for r/R ≤ 0 . 5, the ratio of the

agnetic pressure to the centrifugal force at the equator is equal to
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Table 4. Estimates of the lower bounds to root mean squares of Br and Bφ . 
The assumed models are those in Table 2 , while cases 1 and 2 are different 
from each other in the position of the glitch (see Fig. 6 ). The upper limit of 
the integrals in the numerators of equations ( 9 ) and ( 10 ) is set to xup = 0 . 5 in 
unit of the fractional radius. 

Model A∗ B C 

Bmin 
r (kG ) 

case 1 3 . 5 ± 0 . 1 3 . 7 ± 0 . 1 3 . 6 ± 0 . 1 
case 2 3 . 4 ± 0 . 1 3 . 6 ± 0 . 1 3 . 5 ± 0 . 1 
Bmin 

φ (kG ) 
case 1 92 ± 7 92 ± 7 93 ± 7 
case 2 88 ± 7 89 ± 7 89 ± 7 

Note. ∗ the best model (see S15 ). 
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.04–0.7 outside the convective core for model A and case 1. This
onfirms one of the assumptions made in Section 2.3 . 

 DISCUSSION  

e have shown that the observed asymmetry of frequency splittings 
n KIC 9244992 can be explained by a model with an internal
agnetic field, whose azimuthal component is much stronger than 

he radial component. Historically, it is well established that a small
raction (about 10 per cent) of intermediate-mass main-sequence 
tars have strong and large-scale magnetic fields at the surface, 
hich are associated with chemical peculiarities. Because of this, 
uch attention has been paid to the surface of these stars. The result

f this study enables us to move our focus to the interior of the stars
ith observational constraints. From the asteroseismic point of view, 
e have so far been able to constrain only the radial component of

he internal magnetic field in red giants, which allows us to study
nly limited aspects of the magnetic problems in stars. On the other
and, the predominantly toroidal configuration in the main-sequence 
tar revealed by this study has opened the possibility of investigating 
he origin, the impact on the angular momentum transport, and the 
volutionary change of the field from a new angle. Here, we discuss
everal topics concerning this result. 

.1 Excluded data points 

e exclude from the fitting two data points of the asymmetry of the
requency splittings, (1) a n = 8 . 1 × 10−5 d−1 at νn, 1 = 1 . 13 d−1 (see
ig. 1 ) and (2) a n = −2 . 5 × 10−5 d−1 at νn, 1 = 1 . 20 d−1 (see Fig. 5 ).
e speculate on the origin of these points. 
First, we point out a potential problem in the frequency analysis 

hat the frequency determination of a mode can be perturbed by 
nother mode with a very close frequency within the resolution and 
n amplitude above the noise level. 

Actually, the problem of the close frequency influences not only 
he data analysis but also the physics of stellar oscillations. If there
re two modes with very close frequencies (close degeneracy), those 
requencies could be perturbed as a result of mode interaction due 
o non-linearity or rotation or magnetic fields. This might possibly 
ause a considerable effect in the frequency spectrum as a result of
n avoided crossing. 

In fact, checking the frequencies of model A, we find a quadrupolar
ode with ν−56 , 2 = 1 . 1347 d−1 , which is close to the dipolar mode
ith ν−32 , 1 = 1 . 1356 d−1 , which corresponds to data point (1).
herefore, data point (1) could undergo a significant effect of 
lose degeneracy. In addition, although the frequency difference 
etween the two modes of 9 × 10−4 d−1 is larger than the frequency 
esolution given by equation ( 2 ), it is possible that a small error in the
volutionary model shifts the theoretical frequencies to agree with 
ach other within the resolution. Only one other mode has a closer
 = 2 mode frequency, which is the one at 1 . 7 d−1 . However, this
ode has a much larger measurement uncertainty, so the influence 

f any mode interaction is difficult to discern. On the other hand, in
he case of data point (2), there do not exist for 2 ≤ 	 ≤ 4 modes with
uch close frequencies to the dipolar one with ν−30 , 1 = 1 . 2088 d−1 .
till, there is an 	 = 5 mode with ν−118 , 5 = 1 . 2066 d−1 , which differs
y 2 × 10−3 d−1 from the dipolar mode. This is itself not surprising
ecause the period spacing becomes smaller (the spectrum becomes 
enser) for larger 	 , which implies a higher chance of finding a close
requency. Since we do not expect strong interaction between the 
 = 1 and 	 = 5 modes, the effect of the close degeneracy for data
oint (2) would be much smaller than for data point (1). Although this
s qualitatively consistent with the fact that data point (2) is much
loser to the best-fitting curves than data point (1), we postpone
etailed quantitative analysis to future work. 

.2 Origin of the detected magnetic field 

e may consider at least four possible origins of the detected
agnetic field: (1) an interstellar field that is locked into the star

fossil field) (Section 3.2.1 ); (2) a field generated by the dynamo
rocess in the convective core and moved or left in the radiative region
Section 3.2.3 ); (3) a field generated and maintained by a dynamo
rocess of Tayler–Spruit type in the radiative region (Section 3.2.4 );
4) a field generated by the magneto-rotational instability (MRI) 
uring a merger process (Section 3.2.5 ). We also discuss the stability
f the field (Section 3.2.2 ). 

.2.1 Fossil field 

uring formation of an intermediate-mass star, weak magnetic 
elds that are embedded in the interstellar medium can become 
oncentrated in the star as the medium collapses into it. Unless the
elds are completely destroyed during the pre-main-sequence wholly 
onvective phase, they are eventually locked in the radiative region of
he star. If these fields relax to a stable configuration, they can survive
or the time-scale of magnetic diffusion, which is of the order of
010 yr (longer than the lifetime of the main-sequence stage for a star
ith a mass � 1 . 5 M�). While the problem of stability is discussed

eparately in Section 3.2.2 , there have been many theoretical studies
f the equilibrium structure of magnetic fields and its stability in the
tellar radiative interior (e.g. K. H. Prendergast 1956 ; L. Woltjer
960 ; J. Braithwaite & H. C. Spruit 2004 ; J. Braithwaite & Å.
ordlund 2006 ; J. Braithwaite 2008 ; V. Duez & S. Mathis 2010 ;
. Duez, J. Braithwaite & S. Mathis 2010b ). There have also been
tudies about the effect of internal fields on stellar structure and
volution (e.g. L. Mestel & D. L. Moss 1977 ; V. Duez, S. Mathis &
. Turck-Chièze 2010a ). It certainly will be interesting to compare

he result of the present analysis with these works in detail, which is
ostponed to future work. Instead, we concentrate on the following 
ssue here. 

If the field originates from the interstellar field, we may expect it
o extend outside the surface. This is not likely because our model
ith no surface field can explain the observed data quite well. In

ddition, if there were a large-scale surface magnetic field, which is
enerally inclined to the rotation axis, the oblique pulsator model (D.
. Kurtz 1990 ) would predict that all acoustic modes should show

 multiplet structure in the frequency spectrum, whose components 
MNRAS 545, 1–24 (2026)
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re equally split by the rotation frequency. This phenomenon is not
etected in KIC 9244992 (see Table 3 of S15 ). Furthermore, there
as been no confirmed detection of any large-scale magnetic field at
he surface of any γ Dor (or δ Sct–γ Dor hybrid) stars (e.g. S. Hubrig
t al. 2023 ; K. Thomson-Paressant et al. 2023 ). 

One possible solution to this problem could come from the
ypothesis of A. S. Jermyn & M. Cantiello ( 2020 ), which was
roposed to explain the observed bimodal distribution of the surface
agnetic fields of early-type main-sequence stars (e.g. M. Aurière

t al. 2007 ; F. Lignières et al. 2014 ). A large-scale surface magnetic
eld could be destroyed by convective motions near the surface
nless it is sufficiently strong. Then, a dynamo process would work
n the subsurface convective zone to generate a much weaker small-
cale field. We may examine this idea using simplified expressions.
 sufficient condition for a magnetic field to suppress convection is
iven by 

B2 
r 

B2 
r + 8 π�1 p 

> ∇ − ∇ad (52) 

D. O. Gough & R. J. Tayler 1966 ). Here, �1 is the first adiabatic
ndex, while ∇ and ∇ad mean the temperature gradient, d ln T /d ln p,
nd its adiabatic value, ( ∂ ln T /∂ ln p) S , respectively, where S 

epresents entropy. If the radial component of the fossil field, Br ,
s strong enough to satisfy equation ( 52 ) for ∇ = ∇rad , where ∇rad is
he radiative temperature gradient, then the convection is suppressed
nd the field keeps its large-scale structure on the surface of the
tar. Otherwise, the convective motions significantly modify the field
o generate small-scale structures, which would lead to unstable
onfigurations, and hence decay of the field. 

Our best model of KIC 9244992 (model A) with 1 . 45 M� has only
ne subsurface convective zone in the outermost 5 per cent in radius
5 × 10−6 in fractional mass), where hydrogen (H I ), He I , and He II
ndergo ionization. An essential point is that the opacity in this zone
s dominated by that of the ionization of hydrogen, which results
n very large values of ∇rad with the maximum value of ≈ 400.
ince the left-hand side of equation ( 52 ) is always smaller than
ne, this condition can never be satisfied in most of the convective
one, which implies that the magnetic field would not suppress
he subsurface convection. However, the convection associated with
he ionization of hydrogen is so efficient that the strength of the
ynamo-generated small-scale field should range between 0.4 kG
near the top of the zone) and 1.3 kG (near the bottom), values that
re obtained by assuming the equipartition of energy between the
agnetic field and the convective motion. This means that the field

trength at the photosphere is about a few hundred Gauss, which
as not been detected in any γ Dor stars so far. In summary, if
e adopt the picture of A. S. Jermyn & M. Cantiello ( 2020 ), the

arge-scale fossil field could indeed be erased by the subsurface
onvection, but it would be replaced with a small-scale dynamo-
enerated field with considerable strength, which does not have any
bservational support. We therefore need to revise the picture or
witch to some other mechanism (see e.g. J. Braithwaite & H. C.
pruit 2017 ) to explain the detected internal field of KIC 9244992 as
 fossil one. In particular, since the assumption of the equipartition
f energy could be too crude in the above discussion, it is highly
esirable to perform more detailed analysis about the interaction
etween the fossil magnetic field and the near-surface convection,
hich is outside the scope of this paper. We should also note that the
resent argument does not contradict A. S. Jermyn & M. Cantiello
 2020 ), who considered only main-sequence models above 2 M�.
n such higher mass structures, the main focus is on the subsurface
onvection zones associated with the ionization of He II and iron-
NRAS 545, 1–24 (2026)
roup elements, which are much less efficient than the one with the
onization of hydrogen, and hence would generate a much weaker
eld by dynamo. 

.2.2 Stability of the field 

part from its origin, it is an interesting and important question
hether the predominantly toroidal configuration found in the
resent analysis is stable or not (e.g. J. Braithwaite & H. C. Spruit
017 ). On the one hand, it is well known from a theoretical point
f view that purely toroidal magnetic fields are unstable against the
ayler instability (R. J. Tayler 1973 ). In fact, we may estimate the
inimum strength of the toroidal component that is required for the
ayler instability to operate by overcoming the magnetic diffusion
s 

(TI ) 
φ,min ≡ ( 4 πrρNeff ) 

1 / 2 ( η�) 1 / 4 , (53) 

n which η and � stand for the magnetic diffusivity and the angular
otation rate, respectively. Equation ( 53 ) can be obtained by replacing
 by Neff in equation ( 8 ) of H. C. Spruit ( 2002 ). Here, Neff is the

ffective Brunt–Väisälä frequency defined by 

2 
eff ≡

η

κ
N2 

T + N2 
μ , (54) 

n which κ means the thermal diffusivity and NT and Nμ represent
he thermal and compositional part of the Brunt–Väisälä frequency,
espectively. This replacement approximately takes into account
he fact that the stabilizing effect of thermal stratification becomes
eaker due to thermal diffusion on the small spatial scales on which

he Tayler instability occurs (see H. C. Spruit 2002 ). The profile of
(TI ) 
φ,min is plotted in Fig. 9 . It takes a maximum of ∼ 30 kG around
/R ∼ 0 . 06, which is below Bmin 

φ given in Table 4 . This means that
he detected field would be unstable against the Tayler instability
f we neglect the poloidal component.On the other hand, from an
bservational point of view, no detectable change in the oscillation
requencies is found in KIC 9244992 over the nearly 4-yr period
f the Kepler observation, which is much longer than the Alfvén
ime-scale (the characteristic scale of the system ls divided by the
lfvén velocity) of ∼ 200 d for B = 100 kG , ρ = 30 g cm 

−3 , and
s = 0 . 1 × 2 πR. 
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These considerations lead to the following question: can a purely 
oroidal field be stabilized by a small contribution of the poloidal 
omponent? In fact, the theoretical study of J. Braithwaite ( 2009 )
ives an affirmative answer to this question because the poloidal 
omponent gives a restoring force through bending of the field line 
gainst the horizontal motion, which is the main component of the 
ayler instability. That study provides the stability condition for 
xisymmetric magnetic fields as 

∗
E 

U 

<
Ep 

E 

� 0 . 8 , (55) 

n which E, U , and Ep are the total magnetic energy, the gravitational
nergy and the energy of the poloidal component, respectively. The 
arameter a∗ is of the order of 10 for main-sequence stars. Although 
he condition assumes a purely radiative structure with no convective 
one, we none the less apply it to KIC 9244992, which has a small
onvective core (8 per cent in mass in model A), to check the field
tability. Using the results in Table 4 and the structure of model A in
able 2 , we obtain the following estimates: 

E 

U 

∼ 10−7 (56) 

nd 

Ep 

E 

∼ 10−3 , (57) 

hich clearly satisfy equation ( 55 ). This means that the detected field
n KIC 9244992 is stable, if it is axisymmetric. 

.2.3 Convective dynamo 

s for the second possibility, three-dimensional numerical simula- 
ions by A. S. Brun, M. K. Browning & J. Toomre ( 2005 ) and J. P.
idalgo et al. ( 2024 ) have demonstrated that a dynamo can operate in

he convective cores of A stars. Although these simulations assume 
 few (or more) times faster rotation rates than that of KIC 9244992,
hey show that the magnetic energy can reach at least the same order
s the kinetic energy, implying an average field strength of several 
ens of kG in the convective core. This number is slightly smaller than,
ut is still on the same order as our inference of Bmin 

φ = 92 ± 7 kG in
he inner radiative region. However, if we assume a crude estimate 
f ∣∣∣∣Bφ

Br 

∣∣∣∣ ∼ Bmin 
φ

Bmin 
r 

≈ 30 (58) 

see Table 4 ), this large value is not realized in the convective core in
he cited simulations. The reason could possibly be given as follows.

If the field originates from the convective core, we need some 
echanism to move it to the radiative region. Here, we may list

wo possibilities: direct transport by overshooting at the top of 
he convective core, or the shrinking of the convective core with 
tellar evolution leaving the generated magnetic field in the radiative 
egion near the outer edge of the convective core. In either case,
f there exists rotational shear (radial differential rotation) at the 
onvective/radiative boundary, we may expect that the � effect 
perates to convert the radial component into the toroidal component 
n the radiative region. Although S15 estimated that the degree of
adial differential rotation of KIC 9244992 between the core and 
he envelope is only a few per cent, this does not necessarily mean
hat the � effect is negligible because it is cumulative after many 
otations, and the degree of radial differential rotation could have 
een higher in the past. 
Interestingly, the picture of the enhanced toroidal component due 
o rotational shear is supported by the recent numerical simulations 
f R. P. Ratnasingam et al. ( 2024 ) for a 7-M� main-sequence star
ith a rotation period of 4 . 04 d and a seed dipolar field of ∼ 1 G.
hese simulations with a higher mass and a shorter rotation period

han KIC 9244992, which has the mass of ∼ 1 . 5 M� and a rotation
eriod of 64 d, provide a ratio of the toroidal field energy to the
oloidal field energy that is comparable to that implied by equation
 58 ), although the asteroseismic analysis of KIC 9244992 rejects the
resence of such strong rotational shear as found in the simulations in
he near-core layers where the Brunt–Väisälä frequency has a sharp 
eak. 

Because the steep gradient of chemical composition at the con- 
ective/radiative boundary is generated by the shrinking of the 
onvective core along with evolution, the layers of the steep gradient
re those once in the convective core, where the active dynamo
rocess was in operation. In addition, since the steep gradient makes
t difficult for the magnetic field to migrate to the outer region, it is
ossible that the field is totally confined in those layers. In this case,
e may set xup = 0 . 1 and d = 0 in equations ( 49 ) and ( 51 ) to obtain

arger values of the lower bounds, 

min 
φ = 175 ± 13 kG (59) 

nd 

min 
r = 4 . 0 ± 0 . 1 kG , (60) 

espectively, for model A with the glitch position of case 1. These
ead to an even larger ratio of ∣∣∣∣Bφ

Br 

∣∣∣∣ ∼ Bmin 
φ

Bmin 
r 

≈ 40 , (61) 

hich means that the energy of the toroidal component is three
rders of magnitude larger than that of the radial component. It is
bvious that a more detailed comparison of the asteroseismic result 
ith three-dimensional simulations with the appropriate parameters 

or KIC 9244992 is highly desirable. 

.2.4 Radiative dynamo 

 promising mechanism for the dynamo process in the radiative 
egion is the one proposed by H. C. Spruit ( 2002 ), which can be
nderstood in the classical picture of the α–� dynamo. Under radial 
ifferential rotation, the toroidal component of the magnetic field 
an be generated by stretching the (initially small) seed poloidal 
eld (the � effect). If the toroidal component becomes strong 
nough, the Tayler instability sets in, which essentially provides the α
ffect to make the poloidal component from the toroidal component. 
ince the predominantly toroidal field is still unstable against the 
ayler instability, the process continues. This mechanism (Tayler–
pruit dynamo) has received much attention, particularly because 

he magnetic field can transport angular momentum very efficiently 
n the radiative region of the stars (e.g. M. Cantiello et al. 2014 ; F.
. Moyano et al. 2023 ; F. D. Moyano, P. Eggenberger & S. J. A. J.
almon 2024 ). However, the details of the mechanism are still under
ctive debate, and more studies are clearly needed to understand its
hole picture (e.g. J. P. Zahn, A. S. Brun & S. Mathis 2007 ; J. Fuller

t al. 2019 ; L. Petitdemange, F. Marcotte & C. Gissinger 2023 ; L.
etitdemange et al. 2024 ). 
Having said all this, the first question to ask is whether the current

tructure of KIC 9244992 satisfies the condition for the Tayler–Spruit 
ynamo or not. In order to check this, we plot in Fig. 10 the minimum
MNRAS 545, 1–24 (2026)
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Figure 10. The minimum values of the gradient of the rotation rate, q, defined 
by equation ( 62 ), for the Tayler–Spruit dynamo to operate. The structure of 
model A in Table 2 is assumed with the rotation period of 64 d. Two cases 
are considered: one proposed by H. C. Spruit ( 2002 ) as in equation ( 63 ) 
(solid line) and the other by J. Fuller, A. L. Piro & A. S. Jermyn ( 2019 ) 
as in equation ( 64 ) (dashed line). The horizontal dotted line indicates the 
asteroseismic estimate by S15 (equation 65 ). 
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Figure 11. Profiles of the radial ( Br ) and azimuthal ( Bφ ) components of 
the magnetic field by the dynamo mechanism of J. Fuller et al. ( 2019 ). The 
structure of model A in Table 2 is assumed with the rotation period of 64 d 
and equation ( 65 ) for the gradient of the rotation rate. 
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alues of the degree of differential rotation, q, defined by 

 ≡
∣∣∣∣d ln �

d ln r 

∣∣∣∣ , (62) 

hich is required to sustain the mechanism. The original argument
f H. C. Spruit ( 2002 ) provides 

Spruit 
min =

(
Neff 

�

)7 / 4 (
η

r2 Neff 

)1 / 4 

, (63) 

hereas J. Fuller et al. ( 2019 ) reconsider the saturation mechanism
ased on turbulent dissipation of the perturbed field rather than the
ackground toroidal field to present 2 

Fuller 
min =

(
Neff 

�

)5 / 2 ( η

r2 �

)3 / 4 
. (64) 

n the other hand, S15 constrain the difference between the core and
nvelope rotation rates, which implies 

 ≈ 0 . 04 . (65) 

e thus find q < qSpruit 
min in the entire radiative region, which means

hat the Tayler–Spruit dynamo does not work in KIC 9244992 at
east in its original form proposed by H. C. Spruit ( 2002 ). We also
bserve q < qFuller 

min near the peak around r/R = 0 . 06, which means
hat the Fuller-type mechanism can work only in the radiative region
bove the layer of the steep gradient of chemical compositions. 

The next point to check is whether the field strengths detected are
onsistent with the prediction of the theory by J. Fuller et al. ( 2019 ).
e therefore plot in Fig. 11 the radial and azimuthal components of

he field based on equations (23) and (22) of J. Fuller et al. ( 2019 ),
ssuming equation ( 65 ) and the rotation period of 64 d. We confirm
hat the predicted azimuthal component has its maximum of 16 kG
round r/R = 0 . 20 for 0 . 06 ≤ r/R ≤ 0 . 94, while the maximum of
he radial component is found to be 0 . 014 kG around r/R = 0 . 34 in
NRAS 545, 1–24 (2026)

 For simplicity, we set α = 1 in equation (36) of J. Fuller et al. ( 2019 ). 

o  

2  

f  
he same range. For both components, the predicted values are well
elow the seismically estimated lower bound given in Table 4 . We
eglect the divergent trends of Bφ and Br near the inner and outer
oundaries of the radiative region. This is justified by the fact that
he trends come from the assumption of a finite differential rotation
equation 65 ) even near the boundaries, which is unrealistic because
he angular momentum transport is so efficient as Neff → 0 that the
ifferential rotation would disappear quickly. We therefore conclude
hat the Fuller-type mechanism is not operative in KIC 9244992,
ither. 

One remaining possibility is that the star used to have strong
ifferential rotation in the past, which was removed by efficient
ngular momentum transport by the magnetic field generated by the
ayler–Spruit dynamo. After the differential rotation subsided, the
eld suffered from the Tayler instability, which could substantially
odify the configuration to settle in with the detected strengths

f the field components. However, unless the structure of the star
hanges significantly, this scenario has difficulty explaining the
mplied significant increase of the total magnetic energy as a result of
he Tayler instability. Such significant structural change cannot come
rom the central condensation that occurs with single-star evolution.
nly significant mass transfer or a merger would suffice, and the

ormer is essentially ruled out by the non-detection of a companion
or remnant) via pulsation timing (S. J. Murphy et al. 2018 ) and the
bsence of eclipses or ellipsoidal variation in the light curve ( S15 ).
he final conclusion of this section is that the dynamo mechanism in

he radiative region is unlikely to be the origin of the detected field
n KIC 9244992. 

.2.5 Stellar merger 

ne of the remarkable properties of KIC 9244992 is that its rotation
eriod of ∼ 64 d is much longer than the typical period of 1 d of γ Dor
tars. One possible explanation is that the star is a product of stellar
erger. In fact, KIC 11145123, which is another slowly rotating δ
ct–γ Dor hybrid pulsator with a similar mass and a rotation period
f ∼ 100 d, is suspected to be a blue straggler (D. W. Kurtz et al.
014 ; M. Takada-Hidai et al. 2017 ; Y. Hatta et al. 2021 ). One reason
or this is that the best evolutionary model constructed by D. W.
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urtz et al. ( 2014 ) has an initial helium abundance of 0.36, which is
nusually high for a single-star model. Although this is not the case
or the models of KIC 9244992 (see Table 2 ), it would still be worth
xamining the merger or mass-transfer processes, which are possible 
echanisms to form blue stragglers. 
F. R. N. Schneider et al. ( 2019 ) have numerically simulated such

 merger process to successfully explain the properties of the blue 
traggler τ Sco, which has a rotation period of 41 d and a surface
agnetic field of a few hundred gauss. They find that a strong internal
agnetic field is generated by MRI during the merger, and that 

he merger product experiences significant spin-down during the 
ubsequent (thermal relaxation) phase, before reaching the main- 
equence position on the HR diagram. Although the mass of their 
arget ( ∼ 15 M�) is much larger than KIC 9244992, we may consider
he possibility that the same physical processes are at work in both
ystems. This hypothesis can simultaneously explain (qualitatively) 
he internal magnetic field and the slow (and uniform) rotation, but 
t also implies that the star should have a strong surface magnetic
eld, which is not supported by the present analysis (as we discuss

n Section 3.2.1 ). In this context, we may note that no surface
agnetic field has been detected in KIC 11145123 by high-resolution 

pectroscopy (M. Takada-Hidai et al. 2017 ), while L. Gizon et al.
 2016 ) conjecture the presence of a surface field much weaker than
he Sun at its activity maximum based on the asymmetry of the
requency splittings of acoustic modes. In order for the merger 
ypothesis to hold, we need to explain how to confine the magnetic
eld in the stellar interior (see Section 3.2.1 ). 

.3 Comparison with the case of red giants 

he present result of asteroseismic detection of the internal magnetic 
eld in KIC 9244992 follows those of red-giant stars (G. Li et al.
022 ; S. Deheuvels et al. 2023 ; E. J. Hatt et al. 2024 ). We compare
he two cases in this section. 

G. Li et al. ( 2022 ) estimate that the detected 〈B2 
r 〉1 / 2 of 30 to 100

G at the red-giant branch (RGB) stage should originate from that 
etween 3 and 5 kG at the main-sequence stage, assuming magnetic 
ux conservation. The fact that this range is consistent with our 
stimate of Bmin 

r in Table 4 supports the idea that the detected fields
n KIC 9244992 and red giants have the same physical origin. 

If we compare the analysis between the two cases, the main 
ifference is that the present result can detect not only the radial
omponent but also the azimuthal component of the field, whereas 
nly the radial component is so far constrained in the red-giant 
ase. This is mainly because the gravity radial orders of ∼ 30 of the
etected modes in KIC 9244992 are lower than those of � 100 in stars
t the RGB stage (except during the very early phase). While mode
requencies are generally more sensitive to the radial component than 
o the azimuthal component (Section 2.3.2 ), the corresponding longer 
adial wavelengths (measured relative to the size of the gravity-mode 
avity) lessen this effect in KIC 9244992. As a result, the frequency
erturbation due to the azimuthal component can be detected more 
asily in KIC 9244992. 

On the other hand, in the red-giant cases, we can estimate 
he average field strength, 〈B2 

r 〉1 / 2 , although the analysis for KIC 

244992 can provide only the lower bound, Bmin 
r . This is because 

he red-giant analysis relies on the asymptotic frequency formula to 
t individual frequencies, while the current analysis concentrates on 

he asymmetry of the frequency splitting. In fact, a similar fitting 
f individual frequencies is not straightforward for KIC 9244992 
ecause of the significant contribution of the glitch (see Section 3.5 ).
.4 Implications on angular momentum transport 

he field strengths detected in KIC 9244992, which are given 
n Table 4 , imply that the torque via Maxwell stresses, which is
roportional to Br Bφ , is larger by three orders of magnitude than
redicted by the mechanism of J. Fuller et al. ( 2019 ). The number
ould be even larger for the original Tayler–Spruit dynamo by H.
. Spruit ( 2002 ). Therefore, the angular momentum transport in
IC 9244992 is much more efficient than described by the dynamo
echanisms associated with the Tayler instability in the radiative 

one. We may quantify this point based on the time-scale. Under the
ssumption that � depends only on the radius (shellular rotation), 
he angular momentum transport in the radial direction due to the

agnetic field can be formulated as a diffusion process (e.g. A.
aeder 2009 ). The corresponding diffusion coefficient (effective 

iscosity) is given by 

mag ≡
∣∣Br Bφ

∣∣
4 πρq�

. (66) 

hen, the time-scale of the angular momentum transport for a 
haracteristic length scale ls can be estimated as 

τmag ≡ l2 
s 

Dmag 
= 8 π2 ρql2 

s 

Prot 
∣∣Br Bφ

∣∣
= 681 q

(
ρ

102 g cm 

−3 

)(
Prot 

64 d 

)−1 (
ls 

R�

)2 ∣∣∣∣ Br 

3 . 5 kG 

∣∣∣∣
−1 ∣∣∣∣ Bφ

92 kG 

∣∣∣∣
−1 

yr , 

(67) 

n which Prot = 2 π/� means the rotation period (as in equation 5 )
nd ρ = 102 g cm 

−3 is a good estimate of the density at the top of
he convective core. The length scale of ls ≈ R� corresponds to 
0 per cent of the total radius of model A. It is clear that, for KIC
244992, τmag is much shorter than the evolutionary time-scale of 

109 yr . This means that uniform rotation ( q = 0) is established
ery quickly in the layers with the magnetic field. 

We may use this argument to reject, in a different way from that
n Section 3.2.1 , the possibility that the magnetic field extends to
he surface layers. In this case, we may set xup = 0 . 95 (the base of
he near-surface convective zone) to obtain Bmin 

r = 2 kG and Bmin 
φ = 

3 kG (for model A). Even with these lower values of the field
trengths, τmag is still so short that the observed value of q = 0 . 04
annot be retained for the evolutionary time-scale. More precisely, 
ssuming the two-zone structure, S15 estimate that the rotation rate 
n the inner 40 per cent in radius is 4 per cent higher than that in the
uter 60 per cent. The lower rotation rate in the outer region should
ave a significant contribution by the non-magnetic layers, where 
here is no efficient transport of angular momentum. 

Apart from the angular momentum transport inside the star, the 
low rotation of KIC 9244992 (with the period of ∼ 64 d) needs to be
xplained separately because the total angular momentum of the star 
s much smaller than typical γ Dor stars, which have rotation periods
f ∼ 1 d. Since we interpret that there is no large-scale magnetic field
t the surface, there is no chance for magnetic braking to operate.
ther possibilities include binary interaction and/or mass transfers, 
hich are all speculative at this stage. 

.5 Spherical counterpart of the aspherical glitch 

e may expect to identify the spherical counterpart of the aspherical
litch in the period versus period spacing diagram, which is repro-
uced in Fig. 12 . From equation ( B22 ), we can derive the expression
MNRAS 545, 1–24 (2026)
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Figure 12. Diagram of period versus period spacing for high-order gravity 
modes of KIC 9244992. 
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or the period spacing as 

n + 1 − Pn = �1 + A 

(0) cos 

[
2 π

(
K 

Pn + Pn + 1 

2 
− ψ

)]
, (68) 

n which the amplitude of the oscillatory component is given by 

 

(0) ≡ −�1 D 

(1) 
0 

4
√ 

π3 
sin ( πK �1 ) . (69) 

ssuming that the amplitude of the spherical component of the glitch

s on the same order as the quadrupole component,
∣∣∣D(1) 

0 

∣∣∣ ∼
∣∣∣D(1) 

1 

∣∣∣,
e may use D(1) 

1 in equation ( 24 ), �1 in Table 2 and K in Table 3 to
btain ∣∣A 

(0) 
∣∣ ∼ 1 s . (70) 

his estimate does not depend on the evolutionary model (models A
r B or C) or the glitch position (cases 1 or 2). 
However, our preliminary analysis finds it difficult to judge

uantitatively whether the data contain the sinusoidal component
iven by the second term on the right-hand side of equation ( 68 )
ith the expected amplitude given by equation ( 70 ) or not. This

s because there are clearly multiple components with different
mplitudes and periods. In fact, the dominant oscillatory component
as a much larger amplitude of ∼ 50 s and a longer period of ∼ 0 . 5 d
see Fig. 12 ). This means that the non-linearity (deviation from the
inusoidal function) of the dominant component is not negligible
hen we discuss a period difference of the order of seconds. Apart

rom the most dominant component, we may observe at most that
he second most dominant component shows an oscillatory behaviour
ith an amplitude on the same order as that given by equation ( 70 )

nd a period of ∼ 0 . 1 d, which is consistent with K 

−1 = 0 . 13 d for
ase 1 in Table 4 . Since more careful treatment is necessary, we defer
he detailed analysis to future work. 

 C O N C L U S I O N S  

e have detected an internal magnetic field of KIC 9244992. The
ower bounds to the root mean squares of the radial and azimuthal
omponents (with respect to the rotation axis) within 50 per cent in
adius are estimated to be 3 . 5 ± 0 . 1 and 92 ± 7 kG, respectively. The
adial and azimuthal components are more confined to the equator
NRAS 545, 1–24 (2026)
han to the poles. The lower bound to the radial component is clearly
ncompatible with the prediction of the Taylor–Spruit dynamo, sug-
esting that the field could originate from other mechanisms, such as
onvective-core dynamos, fossil fields, and stellar mergers. We have
lso identified a signature of an aspherical discontinuous structure,
hich is located in the layers of steep chemical composition gradient

ust outside the convective core. We suppose that the structure
s generated by some mixing processes at the boundary between
he convective core and the radiative region. The discovery of the
redominantly toroidal magnetic field has revealed a new aspect of
agnetic fields in stars in general, generating many questions about

heir structure, origin, and evolution. 
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PPENDIX  A :  ASYMMETRIC  FREQUENCY  

PL ITTINGS  O F  H I G H - O R D E R  G R AV I T Y  

O D E S  C AU SED  BY  T H E  MAGNETIC  FIELD  

1 Guidelines of the analysis 

e develop a regular perturbation analysis to obtain an expression
or the frequency change of high-order and low-degree gravity modes
ue to slow rotation and a weak magnetic field that is confined in
he stellar interior. Following G. Li et al. ( 2022 ), the present analysis
s designed to be independent of the field configuration. One of our
undamental assumptions is that the rotation effect dominates over
he magnetic effect. In this case, we may consider the rotation effect
rst, and then take the magnetic effect into account in the second step.
n advantage of this approach is that the rotation perturbation lifts

he degeneracy among the eigenmodes in the spherically symmetric
ase with respect to the azimuthal order, m , so that we may apply
he non-degenerate perturbation theory in the second step. Then, the

ain point of the analysis is to calculate the matrix element of the
agnetic operator. Since the expression for the matrix element can

e highly complicated, we adopt its symmetric form (see A. Kovetz
966 ; K. Glampedakis & N. Andersson 2007 ). We list two advantages
f this approach: (1) the variational principle can be applied; (2) the
requency perturbations are clearly real. 

In general, the magnetic effect consists of two aspects. First, the
quilibrium structure is deformed by the Lorentz force. This structure
hange contributes to the frequency change. Then, oscillations occur
bout the deformed structure under the direct influence of the Lorentz
orce. Following D. O. Gough & M. J. Thompson ( 1990 ), we refer to
he former and the latter as the indirect and direct effects, respectively.

2 Oscillation equations in the presence of the magnetic field 

e start from the equation of motion of a uniformly rotating
agnetized fluid in the rotating frame, 

d v 

d t 
= −∇ p − ρ∇ � + 1 

c∗
j × B − ρ [ 2� × v + � × ( � × r ) ] , 

(A1

n which d /d t is the Lagrangian time derivative, v the velocity, p 

he pressure, � the gravitational potential, c∗ the speed of light in
acuum, j the electric current density, B the magnetic field, � the
otation vector, and r the position vector. The third term on the right-
and side of equation ( A1 ) stands for the Lorentz force, while the
ourth and fifth terms represent the Coriolis and centrifugal forces,
espectively. We assume that j is related to B by Ampere’s law (or the
mpere–Maxwell equation neglecting the displacement current), 

 × B = 4 π

c∗
j . (A2) 

Equation ( A1 ) can be recast as 

d vi 

d t 
= −∂ j �j, i − ρ∂ i � − 2 ρ ( � × v ) i , (A3) 

here subscripts i and j mean the ith and j th components of
he Cartesian coordinates, respectively. We follow the Einstein
ummation convention for repeated indices. In equation ( A3 ), tensor
i,j and scalar � are introduced by 

i,j ≡ δi,j 

(
p + B 

2 

8 π

)
− Bi Bj 

4 π
(A4) 
NRAS 545, 1–24 (2026)
nd 

 = � − 1 

2 
| � × r | 2 . (A5) 

n equation ( A4 ), δi,j is the Kronecker delta. Assuming that there is
o velocity field in the equilibrium structure (in the rotating frame),
e can linearize equation ( A3 ) to derive the oscillation equation with

espect to a small displacement vector ξ, 

2 ρξi = σCi,j ξj + Ti,j ξj , (A6) 

n which we have assumed that ξ depends on time t as exp ( −i σ t)
ith an angular frequency σ . The tensorial operators Ti,j and Ci,j in

quation ( A6 ) are defined by 

i,j ξj ≡ ρδ

(
1 

ρ
∂ j �j,i 

)
+ ρδ ( ∂ i �) (A7) 

nd 

i,j ξj ≡ −2i ρ ( � × ξ) i . (A8) 

n equation ( A7 ), δ is the operator for the Lagrangian perturbation. In
rder to relate the perturbed quantities in equation ( A7 ) to ξ, we need
o use the linearized versions of the continuity equation, the Poisson
quation, and the adiabatic relation between the Lagrangian pressure
nd density perturbations. In addition, we also use the linearized
nduction equation of (ideal) magnetohydrodynamics, 

B [ ξ] = ( B · ∇) ξ − ( ∇ · ξ) B (A9) 

e.g. P. H. Roberts 1967 ). 

3 Matrix element 

t can be shown that the operator Ti,j is symmetric in the sense (
ˆ ξ , ξ

)
=

[ 
T

(
ξ, ˆ ξ

)] ∗
, (A10) 

here ∗ indicates the complex conjugate. Here, T is defined by (
ˆ ξ , ξ

)
≡

∫ 

ˆ ξ ∗
i Ti,j ξj d V , (A11) 

n which the domain of the integral is the entire stellar volume.
quation ( A10 ) holds for any ξ and ˆ ξ that satisfy the proper boundary
onditions. The proof is almost the same as that given by A. Kovetz
 1966 ), except that � should be replaced with �. Since Ci,j is also
ymmetric (D. Lynden-Bell & J. P. Ostriker 1967 ), the total operator
Ci,j + Ti,j on the right-hand side of equation ( A6 ) is symmetric as
 whole. This property serves as a basis of the variational principle. 

The symmetric form of T is composed of three parts, (
ˆ ξ , ξ

)
= L

(
ˆ ξ , ξ

)
+ B

(
ˆ ξ , ξ

)
+ R

(
ˆ ξ , ξ

)
. (A12) 

ere, L and B correspond to the part that does not depend on B 

irectly, and that explicitly includes it, respectively, while R stands
or the contribution coming from the surface and the exterior of the
tar. They are further decomposed as (

ˆ ξ , ξ
)

= SL 

(
ˆ ξ , ξ

)
+ AL 

(
ˆ ξ , ξ

)
+

[ 
AL 

(
ξ, ˆ ξ

)] ∗
, (A13) (

ˆ ξ , ξ
)

= SB 

(
ˆ ξ , ξ

)
+ AB 

(
ˆ ξ , ξ

)
+

[ 
AB 

(
ξ, ˆ ξ

)] ∗
, (A14) 

nd (
ˆ ξ , ξ

)
= SR 

(
ˆ ξ , ξ

)
+ AR 

(
ˆ ξ , ξ

)
+

[ 
AR 

(
ξ, ˆ ξ

)] ∗
, (A15) 

here S and A mean the symmetric and asymmetric parts, respec-
ively. The definitions of SL , AL SB , AB , SR , and AR are provided
y 
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L 

(
ˆ ξ , ξ

)
≡

∫ 

�1 p
(
∇ · ˆ ξ

∗)(
∇ · ξ

)
d V 

− G

“ [ 
ρ ( r a ) ̂  ξ

∗
( r a ) · ∇a 

] [ 
ρ ( r b ) ξ ( r b ) · ∇b 

] 

×
(

1 

| r a − r b | 
)

d Va d Vb , (A16) 

L 

(
ˆ ξ , ξ

)
≡ − ∫ (ˆ ξ

∗ · ∇ �
) (

ρ∇ · ξ + 1 
2 ξ · ∇ρ

)
d V , (A17) 

B 

(
ˆ ξ , ξ

)
≡ 1 

4 π

∫ 
δB 

[ 
ˆ ξ
∗] · δB 

[ 
ξ
] 

d V , (A18) 

B 

(
ˆ ξ , ξ

)
≡ 1 

4 π

∫ 

[(
∇ · ˆ ξ

∗)
( ξ · [ ( B · ∇) B ] ) 

+1 

2 
ˆ ξ
∗ · { ( ξ · ∇) [ ( B · ∇) B ] } 

]
d V , (A19) 

R 

(
ˆ ξ , ξ

)
≡

∫ (
n · ˆ ξ

∗)
( n · ξ) ( n · ∇) 

[
B 

2 
ex 

8 π
−

(
p + B 

2 

8 π

)]
d S 

+
∫ 

Vex 

B 

′ 
ex 

[ 
ˆ ξ
∗] · B 

′ 
ex 

[ 
ξ
] 

4 π
d V (A20) 

nd 

R 

(
ˆ ξ , ξ

)
≡ − 1 

8 π

∫ 

( n · B ) ̂  ξ
∗ · [ ( ξ · ∇) B ex ] d S . (A21) 

n equation ( A16 ), �1 is the first adiabatic index, while n in equation
 A20 ) is the unit normal vector of the stellar surface. In equations
 A20 ) and ( A21 ), B ex and B 

′ 
ex [ ξ] mean the magnetic field in the

xterior of the star and its Eulerian perturbation that is induced by
isplacement ξ in the interior. The volume integral in equation ( A20 )
s performed over the whole region outside the star, while the surface
ntegrals in equations ( A20 ) and ( A21 ) are over the entire surface of
he star. When we derive equations ( A16 )–( A19 ), we have used the
quilibrium relation 

− ∇
(

p + B 

2 

8 π

)
+ ( B · ∇) B 

4 π
− ρ∇� = 0 . (A22) 

tilizing this relation, we can show that equation ( A12 ) is equivalent
o equation (39) of A. Kovetz ( 1966 ). 3 

In addition to the absence of the magnetic field at the surface and
he exterior, we also assume that the density is equal to zero at the
urface in the equilibrium structure. Under these assumptions, we 
imply obtain (

ˆ ξ , ξ
)

= 0 . (A23) 

4 Frequency perturbation 

quation ( A6 ) is a general expression that assumes neither slow
otation nor a weak magnetic field. The next step is to regard them as
mall perturbations. Although equation ( A6 ) concerns oscillations 
bout the (rotationally and magnetically) deformed equilibrium 

tructure, we may reinterpret this equation as describing oscillations 
bout the non-rotating and non-magnetic structure with two different 
inds of perturbations, the contributions to the restoring force and the 
eformation. Since we consider the major effect of rotation separately 
n the first step, we study here the frequency perturbation due only to
 For comparison, we need to replace U with −� in the equation. In addition, 
e believe that in A. Kovetz ( 1966 ) the second term in the fourth line has a 

ign error, and that B2 / (8 ρ) in the sixth line means B2 / (8 π ). 

I  

fi  

(

he magnetic effect. We can then separate the quantities in equation
 A6 ) into the unperturbed part (with subscript 0) and the perturbed
art (with subscript 1). Due to the symmetric property of Ti,j , we
an derive an expression for the frequency perturbation as 

1 = T1 ( ξ0 , ξ0 ) − σ 2 
0 

∫ 
ρ1 | ξ0 | 2 d V 

2 σ0 I ( ξ0 , ξ0 ) 
, (A24) 

n which we have introduced (
ˆ ξ , ξ

)
≡

∫ 

ρ0 ̂
 ξ
∗ · ξ d V . (A25) 

e implicitly assume in equation ( A24 ) that the third- and higher
rder effects of rotation are negligible. Strictly speaking, as we 
xplain in Appendix A1 , the unperturbed eigenfunctions should be 
hose after taking the rotation effect into account. However, since we
nalyse only the leading-order effect, we may neglect the perturbation 
o ξ0 due to rotation, and adopt as ξ0 the eigenfunctions of the
pherically symmetric structure. In this case, ξ0 can be expressed in 
he spherical coordinates ( r, θ, φ) with the origin ( r = 0) set at the
entre of the star and the direction of θ = 0 aligned with the rotation
xis as 

0 = ξr ( r ) Y
m 

	 ( θ, φ) e r + ξh ( r ) ∇⊥ 

Ym 

	 ( θ, φ) , (A26) 

n which Ym 

	 ( θ, φ) is the spherical harmonic with the angular degree 
 and the azimuthal order m . While e r is the unit vector in the radial
irection, the horizontal gradient operator ∇⊥ 

is defined by 

⊥ 

= e θ
∂ 

∂ θ
+ e φ

1 

sin θ

∂ 

∂ φ
, (A27) 

here e θ and e φ are the unit vectors in the θ and φ directions, 
espectively. The functions ξr and ξh depend not only on r but also
n 	 and the radial order n . The corresponding eigenfrequency σ0 is
lso dependent on n and 	 . 

The matrix element T1 ( ξ0 , ξ0 ) is obtained by perturbing equation 
 A12 ) as 

1 ( ξ0 , ξ0 ) = L1 ( ξ0 , ξ0 ) + B ( ξ0 , ξ0 ) , (A28) 

n which L1 can in turn be derived by perturbing equation ( A13 ) as 

1 ( ξ0 , ξ0 ) = SL, 1 ( ξ0 , ξ0 ) + 2 � [
AL, 1 ( ξ0 , ξ0 ) 

]
. (A29) 

ere, SL, 1 and AL, 1 are provided by 

SL, 1 ( ξ0 , ξ0 ) 

≡
∫ 

( �1 p) 1 | ∇ · ξ0 | 2 d V 

− 2 G �
{“ [

ρ0 ( r a ) ξ∗
0 ( r a ) · ∇a 

]
[ ρ1 ( r b ) ξ0 ( r b ) · ∇b ] 

×
(

1 

| r a − r b | 
)

d Va d Vb 

}
(A30) 

nd 

L, 1 ( ξ0 , ξ0 ) ≡ −
∫ 

{(
ξ∗

0 · ∇�1 

)(
ρ0 ∇ · ξ0 + 1 

2 
ξ0 · ∇ρ0 

)

+ (
ξ∗

0 · ∇�0 

) (
ρ1 ∇ · ξ0 + 1 

2 
ξ0 · ∇ρ1 

)}
d V . (A31) 

n equation ( A28 ), B corresponds to the direct effect of the magnetic
eld, while L1 and the second term in the numerator of equation
 A24 ) describe the indirect effect. 
MNRAS 545, 1–24 (2026)
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5 Dominant terms for high-order and low-degree gravity 
odes 

e evaluate equation ( A24 ) for high-order and low-degree gravity
odes. A primary parameter is 

= σ0 

N ( r∗) 
	 1 , (A32) 

n which r∗ is a representative radius in the propagative region of
ravity waves. We also assume that 

σ0 r∗
c 

	 1 , (A33) 

n which c is the sound speed. According to the asymptotic analysis
e.g. W. Unno et al. 1989 ), the horizontal displacement ξh dom-
nates over the radial displacement ξr by factor ε−1 . Because the
avelength at radius r is of the order of εr , the first derivatives
f the eigenfunctions ξ with respect to r are evaluated to be
ε−1 r−1 ξ. Exceptionally, the divergence, ∇ · ξ, is only of the order

f r−1 ξr , which reflects that high-order gravity waves are almost
ncompressed. 
As for the field configuration, we assume 

� | Br | ∣∣Bφ

∣∣ 	 1 (A34) 

nd | Bθ | ∼
∣∣Bφ

∣∣, the latter of which will be changed at the last step.
Under these assumptions, we retain only the terms that can be of

he order of ε−2 ξ 2 
h B

2 
r or ξ 2 

h B
2 
θ or ξ 2 

h B
2 
φ in the numerator on the right-

and side of equation ( A24 ). We may thus identify the dominant
erms in B ( ξ0 , ξ0 ) as 

( ξ0 , ξ0 ) ≈ 1 

4 π

∫ (
| ( B · ∇) ξ0 | 2 

+� [
ξ∗

0 · { ( ξ0 · ∇) [ ( B · ∇) B ] } ]) d V , (A35) 

nd confirm that there is no contribution from L1 ( ξ0 , ξ0 ) and the
econd term in the numerator of equation ( A24 ). This means that
he indirect effects of the magnetic field is not important for high-
rder gravity modes even in the order that we consider in the present
nalysis (see S. Mathis & L. Bugnet 2023 ). As a result, equation
 A24 ) is reduced to 

1 ≈ B ( ξ0 , ξ0 ) 

2 σ0 I ( ξ0 , ξ0 ) 
. (A36) 

We remark on the second term on the right-hand side of equation
 A30 ), which appears to be of the order of ξ 2 

h B
2 
φ . However, this inte-

ral includes the Eulerian perturbation to the gravitational potential,
′ 
ξ , which is given by 

′ 
ξ ( r ) = −G

∫ 

ρ ( r a ) ξ ( r a ) · ∇a 

(
1 

| r − r a | 
)

d Va . (A37) 

t is well established that �′ 
ξ is negligibly small for high-order gravity

odes (T. G. Cowling 1941 ). 
NRAS 545, 1–24 (2026)
6 Evaluation of the dominant terms 

6.1 Angular integrals 

he main result of this section is the expression for the angular
ntegral in equation ( A35 ), which is provided by ∫ 

4 π

(| ( B · ∇) ξ0 | 2 + � [
ξ∗

0 · { ( ξ0 · ∇) [ ( B · ∇) B ] } ]) d �

≈
(

d ξh 

d r 

)2 ∫ 

4 π
B2 

r D
m 

	 d � +
(

ξh 

r 

)2 ∫ 

4 π

(
B2 

θ F
m 

	 + B2 
φGm 

	 

)
d � , 

(A38) 

here Dm 

	 , F
m 

	 and Gm 

	 are all functions of θ . In equation ( A38 ),
 � means an infinitesimal element of a solid angle, given by
 � = sin θ d θ d φ. Their derivation is lengthy, but straightforward
f we use generalized spherical harmonics (I. M. Gel’fand & Z.
. ˆ Sapiro 1956 ), which are widely used in geophysics (e.g. R. A.
hinney & R. Burridge 1973 ; F. Dahlen & J. Tromp 1998 ) and have
lso been adapted to helio- and asteroseismic problems (e.g. M. H.
itzwoller & E. M. Lavely 1991 ; S. M. Hanasoge et al. 2017 ; R.
iefer, A. Schad & M. Roth 2017 ; S. B. Das et al. 2020 ). The results

re summarized as follows: 

m 

	 =
	 ∑ 

k= 0 

U	, k ( K − 2 L) P ( 	) 
2 k ( m) P2 k ( cos θ ) , (A39) 

Fm 

	 + Gm 

	 

2 
=

	 ∑ 

k= 0 

U	, k 

[− ( K − 2 L) ( K + 1) − 2 L2 
]

× P ( 	) 
2 k ( m) P2 k ( cos θ ) (A40) 

nd 
Fm 

	 − Gm 

	 

2 
= 

	 ∑ 

k= 1 

U	, k 

K ( K + 2 L − 1) − 4 L ( L + 1) 

4 ( K − 1) 

× P ( 	) 
2 k ( m) P 2 

2 k ( cos θ ) , (A41) 

n which we have introduced 

	, k ≡ ( −1) k+ 1 ( 4 k + 1) ( 2 k) ! ( 2 	 + 1) ! ( 	 + k) ! 

4 π	 ( k!) 2 ( 2 	 + 2 k + 1) ! ( 	 − k) ! 
, (A42) 

 ≡ k ( 2 k + 1) , (A43) 

 ≡ 	 ( 	 + 1) 

2 
(A44) 

nd P ( 	) 
j ( m) ≡ ( −1) −	 + m 

	
√ 

( 2 	 − j ) ! ( 2 	 + j + 1) ! 

( 2 	) ! 

(
	 	 j 

m −m 0 

)
. 

(A45)

ote that P2 k in equations ( A39 ) and ( A40 ) are the Legendre
olynomials, while P 2 

2 k in equation ( A41 ) are the associated Legendre
unctions. The last factor on the right-hand side of equation ( A45 ) is

igner’s 3- j symbol. The coefficients P ( 	) 
j ( m) are polynomials in m

f degree j , which form a basis to represent the frequency splitting
s 

( n, 	, m) =
2 	 ∑ 

j= 0 

aj ( n, 	) P ( 	) 
j ( m) . (A46) 

ere, aj is called the a-coefficient of order j . The asymmetry in the
requency splittings defined by equation ( 1 ) is related to a2 as 

 n = 3 a2 ( n, 1) . (A47) 

he coefficients P ( 	) 
j ( m) are first introduced by M. H. Ritzwoller &

. M. Lavely ( 1991 ) to analyse frequency splittings in the spectrum of
olar oscillations, while they are also used in asteroseismic analyses
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e.g. O. Benomar et al. 2023 ). Here, we adopt the normlization
ntroduced by J. Schou, J. Christensen-Dalsgaard & M. J. Thompson 
 1994 ). It is worth noting the following relation: 

	, k P ( 	) 
2 k ( m) = −

√ 

4 k + 1 

4 π

∫ 

4 π
Y 0 

2 k 

∣∣Ym 

	 

∣∣2 
d � . (A48) 

he expressions for Dm 

	 , F
m 

	 , and Gm 

	 are given for 	 = 1 and 2 as
ollows: 

m 

1 = 1 

2 π
+ 1 

8 π
P ( 1) 

2 ( m) 
(
3 cos 2 θ − 1

)
, (A49) 

m 

1 = 3 

8 π
P ( 1) 

2 ( m) 
(
3 − 7 cos 2 θ

)
, (A50) 

m 

1 = 3 

8 π
P ( 1) 

2 ( m) 
(
1 − 5 cos 2 θ

)
, (A51) 

m 

2 = 3 

2 π
− 15 

28 π
P ( 2) 

2 ( m) P2 ( cos θ ) − 3 

14 π
P ( 2) 

4 ( m) P4 ( cos θ ) , 

(A52)

Fm 

2 + Gm 

2 

2 
= 3 

π
− 15 

14 π
P ( 2) 

2 ( m) P2 ( cos θ ) 

+ 93 

28 π
P ( 2) 

4 ( m) P4 ( cos θ ) (A53) 

nd 

Fm 

2 − Gm 

2 

2 
= − 15 

28 π
P ( 2) 

2 ( m) P 2 
2 ( cos θ ) 

− 17 

112 π
P ( 2) 

4 ( m) P 2 
4 ( cos θ ) , (A54) 

n which P ( 	) 
j ( m) coefficients are provided by 

( 1) 
2 ( m) = 3 m2 − 2 , (A55) 

( 2) 
2 ( m) = m2 − 2 , (A56) 

nd 

( 2) 
4 ( m) = 35 m4 − 155 m2 + 72 

6 
. (A57) 

ote that Dm 

	 , F
m 

	 , and Gm 

	 depend on m only through P ( 	) 
2 k ( m) , which

nclude only even powers of m . The independence of the sign of m
omes from the symmetric property of the operator B (see equation 
14 ). 

6.2 Radial integrals 

n order to evaluate ξh in equation ( A38 ), we use its asymptotic
xpression, 

h ≈ A

(
N 

σ 3 
0 ρr3 

)1 / 2 

sin 

(∫ r 

rin 

kr d r − ϕin 

)
, (A58) 

n which A is a normalization constant, rin the inner turning point of
he gravity-mode cavity, ϕin the phase lag introduced at r = rin , and
r defined by 

r ≡
√ 

	 ( 	 + 1) N 

σ0 r 
(A59) 

e.g. W. Unno et al. 1989 ). We accordingly obtain 

d ξh 

d r 
≈ A

(
	 ( 	 + 1) N3 

σ 5 
0 ρr5 

)1 / 2 

cos 

(∫ r 

rin 

kr d r − ϕin 

)
. (A60) 

hen we evaluate the radial integrals that include ξ 2 
h or (d ξh /d r)2 , 

he highly oscillatory factors proportional to sin 2 and cos 2 can be 
eplaced with 1 / 2, and the domain of integrals can be set to G B . We
ay thus calculate equation ( A35 ) as 

( ξ0 , ξ0 ) ≈ A2 	 ( 	 + 1) 

8 πσ 5 
0 

∫ 

GB 

N3 

ρr3 

∫ 

4 π
B2 

r D
m 

	 d � d r 

+ A2 

8 πσ 3 
0 

∫ 

GB 

N 

ρr3 

∫ 

4 π

(
B2 

θ F
m 

	 + B2 
φGm 

	 

)
d � d r . 

(A61) 

imilarly, we may compute I
(
ξ∗

0 , ξ0 

)
in equation ( A25 ) as 

( ξ0 , ξ0 ) = 

∫ [
ξ 2 

r + 	 ( 	 + 1) ξ 2 
h 

]
ρr2 d r ≈ 	 ( 	 + 1) 

∫ 

ρr2 ξ 2 
h d r 

≈ A2 	 ( 	 + 1) 

2 σ 3 
0 

∫ 

G 

N 

r 
d r . (A62) 

sing equations ( A61 ) and ( A62 ) in equation ( A36 ), we obtain the
xpression for the magnetic perturbation to cyclic frequency as 

1 = 

(∫ 

G 

N 

r 
d r

)−1 [ 1 

128 π5 ν3 
0 

∫ 

GB 

N3 

ρr3 

∫ 

4 π
B2 

r D
m 

	 d � d r 

+ 1 

32 π3 	 ( 	 + 1) ν0 

∫ 

GB 

N 

ρr3 

∫ 

4 π

(
B2 

θ F
m 

	 + B2 
φGm 

	 

)
d � d r

]
(A63

7 Asymmetry of the frequency splittings of dipolar modes 

e derive the expression for the asymmetry of the frequency 
plittings for 	 = 1. Using equations ( A49 )–( A51 ), we first obtain 

1 
1 − D0 

1 =
3 

8 π

(
3 cos 2 θ − 1

) ≡ 3 

4 π
Wr ( cos θ ) , (A64) 

1 
1 − F 0 

1 = − 9 

8 π

(
7 cos 2 θ − 3

) ≡ − 9 

2 π
Wθ ( cos θ ) , (A65) 

nd 

1 
1 − G0 

1 = − 9 

8 π

(
5 cos 2 θ − 1

) ≡ − 9 

2 π
Wφ ( cos θ ) , (A66) 

here Wα ( cos θ ) with α = r, θ and φ are normalized so that they 
ake their maxima of Wα = 1 at θ = 0. Noting that the asymmetry is
qual to the difference in frequency perturbation between m = 1 and
 = 0 with the same radial order n and the spherical degree 	 = 1,
e obtain its expression from equations ( A63 )–( A66 ) as 

 

(mag) 
n = 

(∫ 

G 

N 

r 
d r

)−1 ( 3 

128 π5 ν3 
n, 1 

∫ 

GB 

N3 

ρr3 
Wr B2 

r d r 

− 9 

32 π3 νn, 1 

∫ 

GB 

N 

ρr3 
WθB

2 
θ + WφB2 

φ d r

)
, (A67) 

n which overlines mean the spherical averages (see equation 12 ).
quation ( A67 ) is equivalent to equation ( 6 ), if we assume | Bθ | 	
 Bφ | . 

8 Validity condition of the perturbation analysis 

he perturbation analysis presented in this paper can be justified only
f the magnetic effect is a small perturbation. This condition can be
ephrased as the perturbed Lorentz force being much smaller than the
otal restoring force that exists in the absence of the magnetic field.
or high-order gravity modes, the dominant force is the buoyancy 
orce, which is always in the radial direction, whereas only the
ulerien perturbation to the pressure gradient ( ∇p′ ) contributes to the
orizontal component of the total force. We first derive the condition
MNRAS 545, 1–24 (2026)
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f the horizontal component of the Lorentz force L 

′ being much
maller than that of ∇p′ . We then discuss the condition about the
adial components. 

The horizontal component of ∇p′ can be estimated from the
erturbed equation of motion to be 

(∇p′ )
⊥ 

= p′ 

r 
∇⊥ 

Ym 

	 ≈ σ 2 ρξh ∇⊥ 

Ym 

	 , (A68) 

n the Cowling approximation. On the other hand, the dominant
orizontal component of the Lorentz force is given for high-order
ravity modes by 

L 

′ 
⊥ 

≈ − 1 

4 π
B2 

r k
2 
r ξh ∇⊥ 

Ym 

	 (A69) 

see equation A35 ). Here, we do not assume equation ( A34 ), but
onsider that all of the components of B are on the same order,
hich does not seriously influence the order-of-magnitude estimate

n this section. 
From equations ( A68 ) and ( A69 ), we may introduce a dimen-

ionless parameter to measure the importance of the Lorentz force
y 

m 

≡
(

Br 

BUL 
r 

)2 

, (A70) 

n which BUL 
r is defined by 

UL 
r ≡

√ 

4 πρ

	 ( 	 + 1) 

σ 2 r 

N 

. (A71) 

f we do not take the rotation into account, the condition for the
agnetic field to be weak enough to apply the perturbation analysis

s given simply by sm 

	 1, or equivalently | Br | 	 BUL 
r . The upper

imit given by equation ( A71 ) is essentially the same as that derived
y L. Bugnet et al. ( 2021 ) in their equation (29) and larger by factor 2
han the critical field strength in equation ( 3 ) of J. Fuller et al. ( 2015 )
or 	 = 1. 

We now turn to the radial components. Since L 

′ is perpendicular
o B , the radial component of L 

′ is different in amplitude from its
orizontal component by at most factor 

L =
∣∣∣∣B⊥ 

Br 

∣∣∣∣ , (A72) 

n which B⊥ 

means the amplitude of the horizontal component of B .
n the other hand, the buoyancy force ρN2 ξr is larger than

∣∣(∇p′ )
⊥ 

∣∣
y factor 

N = N 

σ
(A73) 

or high-order gravity modes. Therefore, in the situations where
L � fN , the buoyancy force dominates over the radial component
f L 

′ if equation ( A70 ) is satisfied. In fact, from Table 4 of this
aper and fig. 12 of S15 , we estimate ( fL , fN ) ∼ ( 26 , 10–100) for
/R � 0 . 5. 

PPENDIX  B:  ASPHERICAL  BU OYA N C Y  

L I T C H E S  

1 Background 

hysical processes in the stellar interior often create a layer of
apid variation in chemical composition and other physical quantities
ypically near the boundary of mixing regions. If the scale height of
he variation is much shorter than the wavelength of waves that go
NRAS 545, 1–24 (2026)
hrough the layer, the structure is essentially considered as a discon-
inuous surface, which generally disturbs the wave propagation, and
ence modifies the frequencies of modes that consist of those waves.
his is called a glitch problem in asteroseismology. The problem

s particularly important for high-order modes because the glitch
nduces characteristic signatures in the spectrum of mode frequencies
or periods) depending on its structure. Such signatures, which are
requently observed in real stars, provide us with a unique probe into
he properties of the physical processes that cause the glitch. 

In this appendix, we confine ourselves to the glitch problem
f high-order gravity modes, for which a considerable amount of
ffort has already been made. The present analysis extends it to take
ccount of the glitch structure that is not spherically symmetric. For
implicity, we assume that the discontinuity is so weak that we may
pply the variational principle (or the perturbation theory in the non-
egenerate case) to estimate the change in the mode frequencies (or
eriods). This also implies another assumption that the degeneracy
mong the modes with the same radial order and the same spherical
egree, but with different azimuthal orders, has been lifted by the
ffect of the rotation before we consider a smaller effect of the glitch
see appendix A1 ). 

2 Framework for high-order gravity modes with uniform 

otation 

nder the assumptions that we have made, our task is simply
o evaluate equation ( A24 ) without taking the magnetic field into
ccount. In this case, it is convenient to eliminate � in equation
 A12 ) using 

 p + ρ∇ � = 0 (B1) 

see equation A22 ) to obtain (
ˆ ξ , ξ

)
= ST 

(
ˆ ξ , ξ

)
+ AT 

(
ˆ ξ , ξ

)
+

[ 
AT 

(
ξ, ˆ ξ

)] ∗
, (B2) 

n which the symmetric part ST and the asymmetric part AT are
efined by 

T 

(
ˆ ξ , ξ

)
≡

∫ 

1 

�1 p 

p′ 
[ 

ˆ ξ
∗] 

p′ 
[ 
ξ
] 

d V 

− G

“ [ 
ρ ( r a ) ̂  ξ

∗
( r a ) · ∇a 

] [ 
ρ ( r b ) ξ ( r b ) · ∇b 

] 

×
(

1 

| r a − r b | 
)

d Va d Vb , (B3) 

nd 

T 

(
ˆ ξ , ξ

)
= −1 

2 

∫ (
ˆ ξ
∗ · ∇p

)
ξ ·

( ∇p 

�1 p 

− ∇ρ

ρ

)
d V . (B4) 

n equation ( B3 ), p′ means the Eulerian perturbation to the pressure, 

′ [ ξ] = −�1 ∇ · ξ − ξ · ∇p . (B5) 

or high-order gravity modes, we may neglect ST because the first
erm corresponds to the potential energy of the acoustic oscillations,
nd the second term depends on the perturbation to the gravitational
otential (T. G. Cowling 1941 ). In order to evaluate AT , we note
hat p and ρ are functions of only � in uniformly rotating stars (see
quation B1 ). We therefore find 

( ξ, ξ) ≈
∫ 

ρ | ξ · e � 

| 2 N 

2 d V , (B6) 
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n which e � 

and N 

2 are defined by 

 � 

≡ ∇� 

| ∇ �| (B7) 

nd 

 

2 ≡ | ∇ �| 2 
ρ

(
− d p 

d � 

)(
1 

�1 p 

d p 

d � 

− 1 

ρ

d ρ

d � 

)

≈ 1 

ρ

(
−∂ p 

∂ r 

) (
1 

�1 p 

∂ p 

∂ r 
− 1 

ρ

∂ ρ

∂ r 

)
. (B8) 

t is obvious that N 

2 reduces to the (squared) Brunt–Väisälä 
requency N2 in spherically symmetric structures. The approximate 
quality in equation ( B8 ) is because ∇� is almost in the radial
irection. 

3 General formula of the glitch signature 

n order to describe the analysis precisely, we consider three different 
quilibrium structures that are very close to each other. The first
structure 0) is the spherically symmetric one without rotation and 
ny glitches. The second (structure r) has a slow uniform rotation, 
ut without any glitches. The third (structure g) rotates at the same
ate as the second and has a glitch. We distinguish the variables of
hese structures by subscripts 0, r and g for the first, second and third
tructures, respectively. We derive the frequency difference between 
tructures g and r in the following way: we separately compute the
ifference between structures r and 0 and that between structures 
 and 0, and then take the difference between the two differences.
lthough structures g and r are both deformed by the centrifugal 

orce, its effect on the frequencies cancels out in the leading order
hen their differences between the two structures are computed. We 

hus obtain 

1 ( ξ0 , ξ0 ) ≈
∫ 

ρ0 N
2 
0 ξ

2 
r 

∣∣Ym 

	 

∣∣2 �N 

2 

N2 
0 

d V , (B9) 

n which �N 

2 is the difference at the same position, defined by 

N 

2 = N 

2 
g − N 

2 
r . (B10) 

n equation ( B9 ), the difference in density is neglected because it
as a much smaller impact on the induced glitch signature in the
requency (or period) spectrum than that in N 

2 , which depends on 
he derivative of the density. In addition, we choose to neglect the
ifference in e � 

between structures r and g by assuming that � of
tructure g ( �g ) is a function of only �r , which implies that ∇�g 

s in the same direction as ∇�r at every point. After adopting this
ssumption, we further approximate e � 

by e r in equation ( B9 ). 
Using equation ( A58 ) and the corresponding expression for ξr , 

r ≈ −A

(
	 ( 	 + 1) 

σ0 N0 ρ0 r3 

)1 / 2 

cos 

(∫ r 

rin 

kr d r − ϕin 

)
, (B11) 

e obtain from equations ( A24 ) and ( B9 ) the oscillatory component
f the difference in the mode period as 

P ( n, 	, m) =
	 ∑ 

k= 0 

ˆ ag 
2 k ( n, 	) P ( 	) 

2 k ( m) , (B12) 

n which the period a-coefficients ˆ ag 
2 k are defined by 

ˆ g 2 k ( n, 	) ≡ U	, k �	 √ 

( 4 k + 1) π

∫ 

G 

�N 

2 
2 k, 0 

N2 
0 

cos ( 2 K) d K . (B13) 

ere, we have introduced the following definitions: 
	 ≡ 2 π2 

√ 

	 ( 	 + 1) 

(∫ 

G 

N0 

r 
d r

)−1 

, (B14) 

N 

2 
2 k, 0 ( r) ≡

∫ 

4 π
Y 0 

2 k �N 

2 d �, (B15) 

nd 

 ≡
√ 

	 ( 	 + 1) 

σ0 

∫ r 

rin 

N0 

r 
d r − ϕin . (B16) 

n equation ( B13 ), we neglect the contribution of the components
hat depend on the mode period only smoothly, because it should
e ascribed to the period difference between structures r and 0. We
etain this treatment throughout this section. 

4 Three types of discontinuity 

quations ( B12 ) and ( B13 ) provide the fundamental formulae that
escribe the glitch signature in the period spectrum of high-order 
ravity modes. The signature depends on the type of discontinuity 
n �N 

2 . In the following, we consider three different types, which
re located at r = r∗ inside the gravity-mode cavity (see A. Miglio
t al. 2008 ). The corresponding expressions for ˆ ag 

2 k are derived as 
unctions of the mode period P0 in each case. 

If the density itself is discontinuous, �N 

2 follows a Dirac delta 
unction ( δ) as 

�N 

2 
2 k, 0 

N2 
0 

= D 

(0) 
k r∗δ ( r − r∗) , (B17) 

n which D 

(0) 
k is a dimensionless constant. Then, the ˆ ag 

2 k is given by 

ˆ g 2 k ( n, 	) = E 

(0) 
	,k P0 ( n, 	) cos 

[
2 πP0 ( n, 	) 

�	, ∗
− 2 ϕin 

]
, (B18) 

here E 

(0) 
	,k and �	, ∗ are defined by 

 

(0) 
	,k ≡

√ 

	 ( 	 + 1) 

( 4 k + 1) π

U	, k �	 N0 ( r∗) 

2 π
D 

(0) 
k (B19) 

nd 

	, ∗ ≡ 2 π2 

√ 

	 ( 	 + 1) 

(∫ r∗

rin 

N0 

r 
d r

)−1 

, (B20) 

espectively. 
If the derivative of the density is discontinuous, �N 

2 is described 
y a Heaviside step function ( H ) with a dimensionless constant D 

(1) 
k 

s 

�N 

2 
2 k, 0 

N2 
0 

= D 

(1) 
k H ( r∗ − r) . (B21) 

he corresponding ˆ ag 
2 k is provided by 

ˆ g 2 k ( n, 	) = E 

(1) 
	,k sin 

[
2 πP0 ( n, 	) 

�	, ∗
− 2 ϕin 

]
, (B22) 

n which E 

(1) 
	,k is defined by 

 

(1) 
	,k =

U	, k �	 

2
√ 

( 4 k + 1) π
D 

(1) 
k . (B23) 

In case where the second derivative of the density is discontinuous,
N 

2 has a form of the ramp function with a dimensionless constant
MNRAS 545, 1–24 (2026)
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(2) 
k as 

�N 

2 
2 k, 0 

N2 
0 

=
{ 

D 

(2) 
k 

(
1 − r 

r∗

)
for r ≤ r∗ , 

0 for r ≥ r∗ . 
(B24) 

e then obtain 

ˆ g 2 k ( n, 	) = E 

(2) 
	,k P

−1 
0 ( n, 	) cos 

[
2 πP0 ( n, 	) 

�	, ∗
− 2 ϕin 

]
, (B25) 

n which E 

(2) 
	,k is given by 

 

(2) 
	,k ≡ −

√ 

π

	 ( 	 + 1) ( 4 k + 1) 

U	, k �	 

2 N ( r ) 
D 

(2) 
k . (B26) 
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Equations ( B18 ), ( B22 ), and ( B25 ) demonstrate that, for the three
ypes of discontinuity, the ˆ ag 

2 k coefficients depend on the sinusoidal
unctions of P0 with the same period �	, ∗, but that their amplitude
ollows a linear or constant or reciprocal function of P0 for the Dirac
r Heaviside or ramp type, respectively. 
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