

Central Lancashire Online Knowledge (CLOK)

Title	Reduced risk of colorectal cancer with non-sulfasalazine 5-ASAs in ulcerative colitis and Crohn's disease and anti-TNF therapy in ulcerative colitis: a systematic review and meta-analysis
Type	Article
URL	https://knowledge.lancashire.ac.uk/id/eprint/57708/
DOI	https://doi.org/10.1136/flgastro-2025-103409
Date	2025
Citation	Kefayat, Amirhosein, Porter, Ross J orcid iconORCID: 0000-0001-5043-186X, Churchhouse, Antonia MD, Blackwell, Jonathan, Watson, Eleanor F, Morris, Allan John, Gordon, Morris, Nigam, Gaurav B, East, James E et al (2025) Reduced risk of colorectal cancer with non-sulfasalazine 5-ASAs in ulcerative colitis and Crohn's disease and anti-TNF therapy in ulcerative colitis: a systematic review and meta-analysis. <i>Frontline Gastroenterology</i> . ISSN 2041-4137
Creators	Kefayat, Amirhosein, Porter, Ross J, Churchhouse, Antonia MD, Blackwell, Jonathan, Watson, Eleanor F, Morris, Allan John, Gordon, Morris, Nigam, Gaurav B, East, James E, Rutter, Matthew D, Lamb, Christopher A, Raine, Tim, Ford, Alexander C and Din, Shahida

It is advisable to refer to the publisher's version if you intend to cite from the work.
<https://doi.org/10.1136/flgastro-2025-103409>

For information about Research at UCLan please go to <http://www.uclan.ac.uk/research/>

All outputs in CLOK are protected by Intellectual Property Rights law, including Copyright law. Copyright, IPR and Moral Rights for the works on this site are retained by the individual authors and/or other copyright owners. Terms and conditions for use of this material are defined in the <http://clok.uclan.ac.uk/policies/>

1 **TITLE PAGE**

2

3 **Title:** Reduced Risk of Colorectal Cancer with non-sulfasalazine 5-ASAs in ulcerative colitis
4 and Crohn's disease and Anti-TNF therapy in ulcerative colitis: A Systematic Review and
5 Meta-analysis.

6

7 **Short title:** Association of IBD medications on colorectal cancer risk in patients with IBD.

8

9 **Authors:** Amirhosein Kefayat^{1,2}, Ross J. Porter^{3,4}, Antonia M.D. Churchhouse^{1,2}, Jonathan
10 Blackwell², Eleanor F. Watson², A. John Morris⁴, Morris Gordon⁵, Gaurav B. Nigam⁶, James
11 E. East⁶, Matthew D. Rutter^{7,8}, Christopher A. Lamb^{9,10}, Tim Raine¹¹, Alexander C. Ford^{12,13},
12 Shahida Din^{1,2}

13

14 ¹Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom.

15 ²Edinburgh Inflammatory Bowel Diseases Unit, Western General Hospital, Edinburgh, United
16 Kingdom.

17 ³School of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of
18 Glasgow, United Kingdom.

19 ⁴Department of Gastroenterology, Queen Elizabeth University Hospital, Glasgow UK.

20 ⁵School of Medicine, University of Central Lancashire, Preston, Lancashire, UK.

21 ⁶Translational Gastroenterology Unit, Nuffield Department of Medicine, John Radcliffe
22 Hospital, University of Oxford, Oxford, UK.

23 ⁷Department of Gastroenterology, North Tees and Hartlepool NHS Foundation Trust,
24 Stockton-on-Tees, UK

25 ⁸Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, UK

26 ⁹Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.

27 ¹⁰Gastroenterology, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon
28 Tyne, UK.

29 ¹¹Department of Gastroenterology, Addenbrooke's Hospital, Cambridge University Hospitals
30 NHS Trust, Cambridge, UK.

³¹ ¹²Leeds Gastroenterology Institute, St. James's University Hospital, Leeds, United Kingdom.

³² ¹³Leeds Institute of Medical Research at St. James's, University of Leeds, Leeds, United Kingdom.
³³

34

35 **Grant Support:** None.

36

37 Abbreviations: 5-ASAs 5-Aminosalicylates

38 CD Crohn's disease

39 CI confidence intervals

40 CRC colorectal cancer

41 IBD inflammatory bowel disease

42 JBD-U inflammatory bowel disease-unclassified

43 NOS Newcastle-Ottawa scale

44 RCT randomised controlled trial

45 RR relative risk

46 UC ulcerative colitis

47

48 **Correspondence:** Dr Shahida Din

49 Edinburgh Inflammatory Bowel Diseases Unit

50 Level 1 Anne Ferguson Building

51 Western General Hospital

52 Crewe Road South

53 Edinburgh

54 United Kingdom

55 Email: sdin@ed.ac.uk

56 Telephone +44 (0) 131 537 1758

57 ORCID ID: 0000-0003-2855-3400

58 X: @ShahidaDin1

59

60 **Disclosures:**

61 Amirhosein Kefayat nothing to disclose

62 Ross J. Porter is funded by a Cancer Research UK Fellowship and reports travel and meeting

63 support from Dr Falk and Janssen.

64 Antonia MD. Churchhouse reports funding by Wellcome Trust, Royalties from Elsevier, and
65 reports travel and meeting support from Takeda.

66 Jonathan M. Blackwell reports honoraria or speaker fees from Ferring, Dr Falk, Pfizer and
67 consulting, travel, and meeting support from Takeda.

68 Eleanor F. Watson reports meeting and travel support from Galapagos and Ferring.

69 A.John Morris reports honoraria or speaker fees from AstraZeneca and travel and meeting
70 support from Tillotts.

71 Morris Gordon nothing to disclose

72 Gaurav B, Nigam is funded by an NIHR Fellowship.

73 James E. East is Chair of the BSG IBD colorectal surveillance guideline update 2024 working
74 group and reports honoraria or speaker fees from Dr Falk and Janssen.

75 Matthew D. Rutter is Chair, Joint Advisory Group for Gastrointestinal Endoscopy and
76 Member, British Society of Gastroenterology Endoscopy committee.

77 Christopher A. Lamb was Secretary of the Inflammatory Bowel Disease Section Committee of
78 the British Society of Gastroenterology 2021 to 2024; sits on the Steering Committee and
79 Board of IBD UK, acknowledges research support from the NIHR Newcastle Biomedical
80 Research Centre, Medical Research Council, The Leona M. and Harry B. Helmsley Charitable
81 Trust, Crohn's & Colitis UK, EU Innovative Medicines Initiative, Wellcome Trust, Open
82 Targets, European Bioinformatics Institute (EMBL-EBI), Janssen, Takeda, Abbvie,
83 AstraZeneca, Eli Lilly, Orion, Pfizer, Roche, Sanofi Aventis, UCB, Biogen, Genentech, Bristol
84 Myers Squibb (BMS), GSK and Merck Sharp and Dohme (MSD); has undertaken consultancy
85 for Janssen and BMS; has received honoraria for development and / or delivery of education
86 from Takeda, Ferring, Janssen, Dr Falk, and Nordic Pharma; and has received conference

87 attendance support from Tillotts Pharma UK, Janssen, British Society of Gastroenterology
88 (BSG), International Organisation of IBD (IOIBD) and the European Crohn's & Colitis
89 Organisation (ECCO).

90 Tim Raine is on the ECCO and UEG scientific committee board, reports grants from Abbvie,
91 personal consulting fees from Abbvie, Alfasigma, Arena, Aslan, AstraZeneca, Boehringer-
92 Ingelheim, BMS, Eli Lilly, Ferring, Galapagos, Gilead, GSK, Heptares, LabGenius,
93 MonteRosa, Novartis, Numab, Janssen, Pfizer, Roche, Takeda, UCB and XAP therapeutics,
94 and participation in UCB data safety monitoring board.

95 Alexander C. Ford reports grants from Tillotts Pharma.

96 Shahida Din is Chair of British Society of Gastroenterology Inflammatory Bowel Disease
97 Committee; Scottish Government Lead for Inflammatory Bowel Disease Cancer Surveillance,
98 The Royal College of Physicians of Edinburgh Gastroenterology Specialty Advisor and
99 MHRA Gastroenterology, Rheumatology, Immunology & Dermatology Expert Advisory
100 Group. Reports grants from The Helmsley Charitable Trust, Edinburgh and Lothians Health
101 Foundation, Pathological Society of Great Britain and Northern Ireland, and Lord Leonard and
102 Lady Estelle Wolfson Foundation; consultant to Abbvie, honoraria or speaker fees from
103 Janssen, Takeda, Ferring, and Abbvie and meeting and travel grants from Abbvie, Janssen,
104 Takeda, Lilly, and Dr Falk.

105

106 **Writing assistance:** None

107

108 **Specific Authorship Statements:**

109 SD, ACF and AK conceived and drafted the study. AK and SD literature search and all data
110 collection. ACF analysed the data; AK, ACF and SD, interpreted the data. AK & SD and ACF
111 drafted the manuscript. All authors critically reviewed and approved the final draft of the
112 manuscript. The corresponding author attests that all listed authors meet authorship criteria and
113 that no others meeting the criteria have been omitted.

114

115 **Data Sharing Statement**

116 Study level data are already in the public domain, but we would consider reasonable requests
117 to share the trial level data we extracted with others. No other data are available. The protocol
118 for this systematic review and meta-analysis is available at:
119 https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42024559501 and was
120 update on 15 March 2025.

121

122 **Guarantor:** SD is guarantor.

123

124

125 **Word count:** 4344

126

127

128

129

130

131 **ABSTRACT**

132 **Objective:** The incidence of colorectal cancer remains elevated in the inflammatory bowel
133 disease population. We aimed to examine the association of biologics, 5-aminosalicylates,
134 and immunomodulators with the risk of colorectal cancer and/ or dysplasia (CRC/Dys) in
135 different IBD phenotypes.

136 **Methods:** We searched Web of Science, PubMed, MEDLINE, and EMBASE from inception
137 to 15th March 2025 for all studies assessing the association of biologics, 5-aminosalicylates
138 and immunomodulators on the occurrence of CRC/Dys in adults (≥ 16 years) with IBD. No
139 RCTs were identified. Data were pooled using a random effects model generating relative risk
140 (RR) estimates. The protocol was registered on PROSPERO (CRD42024559501).

141 **Results:** Fifty observational studies containing 29,325 cases of CRC/Dys in 1,434,939 patients
142 with IBD were included. Biologic therapies (RR 0.74; 95% CI 0.64-0.85, $I^2=56.8\%$) and 5-
143 ASAs (RR 0.78; 95% CI 0.70-0.86, $I^2=52.1\%$) were associated with a reduced risk of CRC/Dys
144 in patients with IBD. Immunomodulators were not associated with a reduced risk (RR 0.92;
145 95% CI 0.82-1.02, $I^2=82.7\%$). After stratification for IBD phenotypes, medication subgroups,
146 and CRC outcome, anti-TNF therapies were associated with a reduced risk of CRC in patients
147 with ulcerative colitis (RR 0.78; 95% CI 0.73-0.83, $I^2=0\%$) but not in Crohn's disease. Non-
148 sulfasalazine 5-ASAs were associated with a reduced risk of CRC in ulcerative colitis (RR:
149 0.66; 95% CI 0.45-0.96, $I^2=75.4\%$) and Crohn's disease (RR: 0.84; 95% CI: 0.81-0.87,
150 $I^2=41.9\%$).

151 **Conclusion:** Use of anti-TNF biologics or non-sulfasalazine 5-ASAs are associated with a
152 reduction in colorectal cancer risk in IBD, with differential effects by IBD phenotype.

153 **Key words:** Inflammatory bowel disease, 5-Aminosalicylates, Biologics, Immunomodulators
154 Colorectal cancer.

155 Key Messages**156 What is already known on this topic**

157 Patients with inflammatory bowel disease (IBD) have a higher risk of colorectal cancer (CRC),
158 but the chemopreventive effects of commonly used IBD therapies remain uncertain.

159 What this study adds

160 This study shows that anti-TNF biologics and non-sulfasalazine 5-ASAs are associated with a
161 significantly reduced risk of CRC in ulcerative colitis and non-sulfasalazine 5-ASAs are
162 associated with reduced risk of CRC in Crohn's disease. Immunomodulators were not
163 associated with CRC risk reduction.

164 How this study might affect research, practice or policy

165 These findings may guide evidence-based treatment strategies, inform cost-effective care, and
166 highlight the need for randomised trials assessing impact of IBD therapies on the risk of CRC.

167 INTRODUCTION

168 Patients with colonic inflammatory bowel disease (IBD) have an increased relative risk
169 of colorectal cancer (CRC), estimated to be 1.4 to 1.7 times higher than the general population
170 ¹. This risk has steadily decreased over time, which may reflect better cancer surveillance
171 strategies and / or more effective disease modifying therapies. CRC screening programmes in
172 IBD remain suboptimal, and several key areas for improvement have been proposed recently ²
173 ³. The cumulative impact of chronic active inflammation is a predictable risk factor associated
174 with the development of colorectal cancer ⁴. Durable control of inflammation is associated with
175 improved quality of life, fewer hospitalisations, and reduced need for surgery ⁵ and the
176 reduction in colorectal cancer remains uncertain.

177 The direct impact of specific immunosuppressive therapies on cancer pathways and risk
178 will remain an evolving field due to the high attrition rate of individual therapies ⁶, novel
179 discoveries in immune pathogenesis ^{7 8}, the dynamic mutational landscape, and the absence of
180 an accurate multimodal cancer risk prediction models for IBD ⁹. The absolute cancer risk is
181 low and, therefore, conventional short term randomised controlled trials (RCTs), long-term
182 extension studies, or observational registries insufficiently powered to determine cancer
183 occurrence ^{10 11}. Large scale population-based studies describe time dependent trends ¹²,
184 although these are limited by restrictive data validation at an individual patient level. Moreover,
185 cancer risk increases independently with age and, with an ageing population of patients with
186 IBD ¹³, the interaction of other risk factors is unknown. CRC risk is unevenly distributed in
187 patients with IBD and patients with more severe and extensive disease have greater risk,
188 whereas others may have no increased risk compared with the general non-IBD population ².

189 Chemoprevention refers to the use of a drug or substance to lower individual cancer
190 risk or prevent future cancer reoccurrence. However, no RCTs have been conducted in patients
191 with IBD to assess the impact of chemopreventive medications. The impact of 75 mg of aspirin
192 daily on cancer risk is currently being tested in a placebo-controlled trial in patients with IBD
193 with concomitant primary sclerosing cholangitis over a 5-year period
194 [<https://www.isrctn.com/ISRCTN12358813>].

195 The chemoprevention of 5-aminosalicylates (5-ASAs) is well-established. However,
196 there has been an exponential rise in the use of advanced therapies. The American
197 Gastroenterology Association ¹⁸ and the British Society of Gastroenterology guidelines ¹⁹
198 suggest discontinuation of 5-ASAs therapy in patients with moderate to severe ulcerative colitis
199 once remission has been achieved using advanced therapies, but this is based on the risk of
200 flare, and any association of advanced therapies and CRC has not been established. The BSG
201 IBD CRC surveillance guidelines suggest a protective effect of 5-ASAs when used as the sole

202 therapy for the management of UC³. In addition, these organizations also recommend against
203 the use of 5-ASAs for induction or maintenance therapy in moderate to severe CD^{20 21}. A
204 current research gap is whether 5-ASAs have an additional chemopreventive effect when used
205 in combination with advanced therapies in UC or CD. A previous systematic review assessed
206 the association of tumour necrosis factor- α inhibitors in seven studies, containing around
207 27,000 patients⁴. It did not demonstrate any associated chemoprevention with these drugs and
208 in the intervening 3 years more observational studies have been published. It is crucial to
209 understand if advanced therapies also reduce the risk of CRC to inform current practice as to
210 whether to continue 5-ASAs in combination with these drugs or not.

211 In this study, we examined the association between biologics, 5-ASAs, and
212 immunomodulators and risk of CRC and/or dysplasia in patients with IBD in a
213 contemporaneous systematic review and meta-analysis. The comprehensive stratification
214 demonstrates a differential cancer risk reduction in patients with IBD and defining the cohort
215 who may benefit from potential chemopreventive approaches is an unmet need in IBD-CRC
216 management.

217

218 **METHODS**219 **Data Sources and Search Strategy**

220 An electronic search of the literature was performed using Web of Science, PubMed,
221 MEDLINE, and EMBASE from inception to 15th March 2025, to assess the association of
222 treatment with 5-ASAs, immunomodulators (azathioprine, mercaptopurine and methotrexate
223 only) or biologics on the risk of developing CRC and/ or colonic dysplasia (CRC/Dys) among
224 patients with IBD. The applied medical subject headings or free text terms used in the research
225 are included in the supplementary material.

226 The primary outcome was the occurrence of CRC and dysplasia in patients with IBD
227 stratified by medication type (biologics, 5-ASA, and immunomodulators). Secondary analyses
228 included subgroup comparisons evaluating the association of different medication classes (e.g.,
229 anti-TNFs, non-sulfasalazine 5-ASAs, immunomodulators) and different outcomes including
230 CRC or CRC and/or dysplasia, stratified by IBD phenotype (UC or CD), study design, quality,
231 and adjustment for confounders.

232 The primary outcome was defined as the occurrence of colorectal cancer (CRC) and/or
233 colonic dysplasia. For consistency, we refer to this composite outcome throughout as
234 'CRC/Dys.' Studies reporting CRC alone, dysplasia alone, or a combined endpoint (CRC with
235 dysplasia) were all included under this definition. In pooled analyses (Table 1), these outcomes
236 were grouped together as 'CRC/Dys.' To explore whether outcome definition influenced
237 results, we conducted stratified analyses (Table 2) where studies reporting CRC alone or
238 combined CRC/dysplasia were analysed separately. Thus, the term 'CRC/Dys' always refers
239 to the composite endpoint unless otherwise specified, while 'CRC' or 'dysplasia' denote
240 studies reporting these outcomes individually.

241 The study protocol was registered with the International Prospective Register of
242 Systematic Reviews (CRD42024559501) on 26/09/2024 date for the BSG colorectal cancer

243 guidelines ³ and the search was updated on 15th March 2025. The meta-analysis was performed
244 in accordance with the MOOSE and PRISMA checklists ²².

245

246 **Study Selection**

247 Covidence systematic review software (Veritas Health Innovation, Melbourne,
248 Australia; www.covidence.org) was used and two investigators (SD and AK) evaluated all
249 titles and abstracts of studies identified in the search independently. Duplicate records were
250 identified and removed using Covidence's automated duplicate detection algorithm. Studies
251 that did not meet inclusion criteria were excluded (Supplemental Figure S1). A recursive search
252 of eligible articles' bibliographies and previously published systemic reviews was also
253 performed (Table 3) ⁴. No RCTs were identified in this search. Observational studies, including
254 case-control or cohort studies investigating any exposure to 5-ASAs, immunomodulators, or
255 biologics and reporting risk estimates (odds ratio (OR), relative risk (RR), or hazard ratio (HR))
256 for the occurrence of CRC and / or colonic dysplasia according to whether or not there had
257 been exposure to these drugs were included. If more than one article was published using the
258 same institution and/or registry, only data from the most recent article was included. Any
259 disagreements between investigators were resolved by discussion.

260 **Data Extraction and Quality Assessment**

261 Two investigators (SD and AK) extracted all data from fully published eligible studies
262 independently onto a Microsoft Excel spreadsheet. We extracted the adjusted OR, RR, or HR,
263 with 95% CIs for the occurrence of CRC or dysplasia, wherever possible. For studies where
264 the adjusted OR, RR, or HR were not reported, we used the unadjusted OR, RR, or HR,
265 depending on study reporting, with 95% CIs. If risk estimates were unavailable, these were
266 calculated by the investigators using the raw data extracted from the individual study. Given

267 that the absolute risk of CRC or dysplasia in the included populations was generally low (i.e.,
268 <10%), we applied the rare disease assumption, which permits the approximation of ORs, RRs,
269 or HR due to their convergence under low event rates ²³. This approach allowed us to pool
270 these effect measures as comparable estimates. If the risk of the event were >10%, this
271 approximation would no longer be valid. Additional data fields extracted are included in the
272 supplementary material.

273 The Newcastle-Ottawa scale (NOS) was utilised to assess the quality of included
274 studies (please see the supplementary data 2), with a score of ≥ 6 considered to represent higher
275 quality ²⁴. Discrepancies in data extraction were resolved by discussion among investigators.

276

277 **Data Synthesis and Statistical Analysis**

278 A DerSimonian and Laird inverse variance random effects model was utilised to pool
279 risk estimates with 95% CIs from individual studies, which was done using StatsDirect version
280 3.3.6 (StatsDirect Ltd, Sale, Cheshire, England). The association between biologics, 5-ASAs,
281 or immunomodulators and CRC or dysplasia were expressed as RRs with 95% CIs, where if
282 the RR was less than 1 and the 95% CIs did not cross 1, there was a significantly reduced risk
283 of CRC or dysplasia. Additional subgroup analysis undertaken are included in supplementary
284 material.

285 The Cochrane Q and I^2 statistics were utilised to assess statistical heterogeneity between
286 studies. A P value <0.10 was used to define a significant degree of heterogeneity. The I^2 statistic
287 ranges between 0% and 100%, with values of 25% to 49% considered low, 50% to 74%
288 moderate, and $\geq 75\%$ high heterogeneity ²⁵. The Egger test was applied to funnel plots to assess
289 for possible publication bias, or other small study effects, with a P value <0.05 used to indicate
290 statistically significance, where there were sufficient studies (≥ 10) ^{26 27}.

291

292 **3. RESULTS**

293 Fifty studies containing 29,325 cases of CRC/Dys in 1,434,939 patients with IBD met
294 the predefined eligibility criteria and were included (Figure S1)²⁸⁻⁷⁷. The data from 11, 32, and
295 34 studies were pooled for biologics, 5-ASAs, and immunomodulators, respectively including
296 43 case-control and 34 cohort studies. Detailed characteristics of the pooled studies for each
297 medication group are provided in the Supplementary Tables 2, 3, and 4. Overall, 38 out of 50
298 studies were high-quality according to the NOS scoring system. Nineteen, sixteen, and eight
299 studies provided an adjusted OR, RR, or HR (controlling for different confounding variables
300 including age, disease extent, drug type and dosage, degree of inflammation, and disease
301 duration) for 5-ASAs, immunomodulators, and biologics, respectively.

302

303 **Association of medications and IBD Phenotype on risk of CRC and/or Dysplasia**304 ***Biologics***

305 In the pooled analysis of 11 IBD studies with 8,721 cases of CRC/Dys in 447,637
306 patients with IBD (Supplementary Table 2), biologics (infliximab, adalimumab, certolizumab,
307 golimumab & anti-integrins) were associated with a reduced risk of CRC/Dys in patients with
308 IBD (RR 0.74; 95% CI 0.64 to 0.85, $I^2=56.8\%$) (Table 1). There was moderate heterogeneity
309 between these studies ($I^2=56.8\%$, $P=0.005$) but no evidence of publication bias (Egger test
310 $P=0.99$). When separated by type of biologic (Table 1) in the pooled analysis anti-TNF alone
311 demonstrated a reduction in risk (RR 0.72; 95% CI 0.62 to 0.84, $I^2=66.8\%$); while studies
312 reporting combined data for anti-TNF and anti-integrin (RR 1.00; 95% CI 0.53 to 1.89, $I^2=0\%$)
313 did not. Data was then analysed by IBD phenotype. In the UC studies with 4,254 cases of
314 CRC/Dys in 212,522 patients the reduction in CRC/Dys risk was retained (RR 0.78; 95% CI

315 0.74 to 0.84, $I^2=0\%$) with a similar reduction (RR 0.69; 95% CI 0.66 to 0.72, $I^2=0\%$) in the CD
316 studies with 3,769 cases of CRC/Dys in 235,637 patients (Table 1). For the subgroup analysis
317 by IBD phenotype and biologic type, only the studies reporting UC and anti-TNFs had a
318 reduction in CRC/Dys risk (RR 0.78; 95% CI 0.73 to 0.83, $I^2=0\%$) with low heterogeneity and
319 no evidence of publication bias (Egger test $P=0.12$), or other small study effects.

320 **5-ASAs**

321 Overall, in the pooled analysis of 32 IBD 5-ASAs studies containing 9,847 cases of
322 CRC/Dys in 462,408 patients with IBD (Supplementary Table 3), 5-ASAs were associated
323 with a reduced risk of CRC/Dys in patients with IBD (RR 0.78; 95% CI 0.70 to 0.86; Table 1).
324 There was moderate heterogeneity between studies ($I^2=52.1\%$, $P=0.0002$), but no evidence of
325 publication bias (Egger test, $P=0.11$) or other small study effects. When separated by type of
326 5-ASAs (studies that reported mixed sulfasalazine and non-sulfasalazine 5-ASA data were
327 excluded) in the pooled IBD analysis only those with non-sulfasalazine 5-ASAs demonstrated
328 a reduction in CRC/Dys risk (RR 0.80; 95% CI 0.74 to 0.88, $I^2=41.9\%$); while studies reporting
329 data for sulfasalazine (RR 0.52; 95% CI 0.21 to 1.29, $I^2=74.7\%$) did not. Data was then
330 analysed separately for IBD phenotypes and the reduction in CRC/Dys risk was retained for
331 both UC studies with 8,551 cases of CRC/Dys in 446,032 IBD patients (RR 0.59; 95% CI 0.45
332 to 0.78, $I^2=65.9\%$) and CD studies with 3,741 cases of CRC/Dys in 240,435 IBD patients (RR
333 0.84; 95% CI 0.81 to 0.87, $I^2=0\%$) (Table 1). For the subgroup analysis by IBD phenotype and
334 5-ASAs type, non-sulfasalazine 5-ASAs reduced risk of CRC/Dys for both UC (RR 0.64; 95%
335 CI 0.48 to 0.84, $I^2=58.6\%$) and CD (RR 0.84; 95% CI 0.81 to 0.87 $I^2=0\%$) with no evidence of
336 publication bias or other small study effects.

337 **Immunomodulators**

338 For the 34 immunomodulators studies containing 10,757 cases of CRC in 524,894
339 patients with IBD (Supplementary Table 4) in the pooled IBD analysis, immunomodulators
340 were not associated with a reduction in risk of CRC/Dys in patients with IBD (RR 0.92; 95%
341 CI 0.82 to 1.02; Table 1). There was high heterogeneity between studies ($I^2= 83.1\%$.
342 $P<0.0001$), but no evidence of publication bias, or other small study effects (Egger test,
343 $P=0.33$). Separating the pooled IBD studies by only thiopurines (RR 0.89; 95% CI 0.89 to 1.18,
344 $I^2=0\%$) and other immunomodulators (data combined with methotrexate: RR 0.92; 95% CI
345 0.82 to 1.04, $I^2=87.2\%$) reduced the heterogeneity; however, no reduction in CRC/Dys risk was
346 seen. Additional subgroup analysis by IBD and IMM type decreased the heterogeneity in
347 between studies while the risk of CRC/Dys was still not significant (Table 1). In the Thiopurine
348 + Methotrexate immunomodulators subgroup (This group represents pooled monotherapy
349 immunomodulator exposure groups rather than simultaneous combination therapy.) composed
350 of two studies included CRC only outcome, the pooled estimated effect showed increased risk
351 of CRC for 28% (RR 1.28; 95% CI 1.16 to 1.43, $I^2=8.9\%$) in UC.

352 **Association of different medications subtypes and IBD phenotypes on risk of CRC alone**

353 Some of the studies in this meta-analysis enrolled only IBD patients with CRC, while
354 others combined CRC and dysplasia (CRC/Dys) as their primary outcome. Given the low
355 concordance in the histopathological interpretation of dysplasia between experts and clinical
356 uncertainty surrounding dysplasia ⁷⁸, we evaluated how different outcomes (CRC alone vs
357 CRC/Dys) influenced the pooled risk estimates (Table 2). When the pooled estimates for CRC
358 alone, the studies reporting UC and anti-TNFs had a reduction in risk (RR 0.78; 95% CI 0.73
359 to 0.83, $I^2=0\%$) (Table 2).

360 For 5-ASAs analysis, studies that reported only data for each medication subgroup were
361 included. There was a reduction in CRC risk in UC studies with sulfasalazine (RR 0.18; 95%

362 CI 0.04 to 0.94, $I^2=79.8\%$) with high heterogeneity. When subcategosizing by non-
363 sulfasalazine 5-ASAs, there was a reduction in CRC risk in UC studies (RR 0.66; 95% CI 0.45
364 to 0.96, $I^2=75.4\%$) and CD studies (RR 0.84; 95% CI 0.81 to 0.87, $I^2=41.9\%$). For UC studies
365 there was also a reduction in the combined CRC/Dys risk (RR 0.55; 95% CI 0.37 to 0.82,
366 $I^2=0\%$).

367 The primary analysis by IMM and IBD phenotypes did not demonstrate a reduced risk
368 in the composite outcome of CRC/Dys (Table 1) and similar results were observed for further
369 subgroup analysis (Table 2). Of note, UC studies which reported data for IBD patients taking
370 thiopurines or methotrexate as a subgroup had an increase in CRC risk (RR 1.28; 95% CI 1.16
371 to 1.43, $I^2=8.9\%$) with low heterogeneity and no evidence of publication bias or other small
372 study effects.

373

374 **Association of other variables on composite CRC and/or dysplasia risk in UC and CD**

375 Previous meta-analysis' have suggested that other variables such as study setting, study
376 type, adjustment status, quality of studies according to NOS scoring. We further subdivided
377 each medication class for these factors in UC and CD.

378 For biologics most of the UC and CD data was derived from similar populations this
379 means the overall reduction in overall CRC/Dys risk was the same/similar when separating the
380 data for these variables as evidenced by the low level of heterogeneity (Supplementary Table
381 5).

382 In both UC and CD, non-sulfasalzine 5-ASAs have demonstrated a reduction in CRC
383 risk (Table 2) and the reduction in CRC/Dys risk holds when the data are further restricted by
384 adjustment for other variables (Supplementary Table 6), high quality studies and non-

385 surveillance populations. For UC, there is also a reduced CRC/Dys risk in cohort or hospital-based studies and for CD in population-based studies.

387 IMM studies as anticipated (Supplementary Table 7) , did not show a reduction in
388 CRC/Dys risk regardless of how the UC or CD studies were separated.

389

390

391

392 **DISCUSSION**

393 Although the occurrence of colorectal cancer in patients with IBD has declined over
394 time, it remains a significant concern committing some patients to long-term surveillance
395 programmes³. To date, it has not been possible for the chemoprotective effect of inflammatory
396 bowel disease therapies to be tested in randomised controlled trials and therefore this
397 systematic review and meta-analysis of observational studies assessing the association of
398 biologics, 5-ASAs, or immunomodulators and the occurrence of CRC and dysplasia in patients
399 with IBD is the highest quality evidence to inform modern clinical practice. Cancer risk is not
400 uniformly distributed across the IBD population and this comprehensive stratification revealed
401 important distinctions in chemopreventive association with medication subtypes and IBD
402 phenotypes, reinforcing the need for personalised chemoprevention strategies in IBD.

403 We found the pooled RR of developing CRC was lower in patients prescribed biologics
404 or 5-ASAs in UC and only non-sulfasalazine 5-ASAs in CD but not in those prescribed
405 immunomodulators. The biologic studies included patients exposed to anti-TNF (infliximab,
406 adalimumab, certolizumab, or golimumab) or other biologics (anti-integrins), and no studies
407 included Janus kinase inhibitors or Ustekinumab. We assessed long-term extension studies for

408 cancer occurrence and only the NCT02118584 trial in patients with UC previously enrolled in
409 Etrolizumab Phase II/III Studies ¹¹ reported the outcome of 0.06% (1/1773) colon cancer,
410 0.06% (1/1773) rectal cancer and 0.011% (2/1773) for colonic dysplasia. Biologics are
411 recommended for the induction and maintenance of remission ^{79 80} and as chronic inflammation
412 is a predictor of cancer risk ^{4 79 80}, it is reasonable to assume that effective control of
413 inflammation is the driver for the reduction in CRC. Conversely, although there is no evidence
414 of an overall increased risk of CRC in patients with IBD treated with biologics, the risk of
415 lymphoma and melanoma remains uncertain ^{81 82}.

416 The pooled analysis of studies of 5-ASAs is consistent with previous meta-analyses
417 (Table 3). 5-ASAs are recommended for the induction and maintenance of remission for mild
418 to moderate UC ²¹, but not for CD ^{83 84}. The reduction in cancer risk with 5-ASAs was lower
419 in both patients with UC and CD (disease location was not specified in the studies) when strict
420 case definition criteria where applied. Gupta *et al.*⁴⁶ utilized a histologic activity index to
421 quantify microscopic inflammation over time, demonstrating that increased inflammation
422 scores were associated with a higher risk of advanced neoplasia. However, 5-ASAs
423 chemopreventive effects was neither independently significant, nor did it alter the relationship
424 between inflammation and any neoplasia. Multivariate analysis by Nieminen *et al.* ⁵⁸ using the
425 same inflammation scoring system as Gupta *et al.*, demonstrated independent effect of
426 inflammation to increase risk of CRC but the inter-association with 5-ASAs was not tested.
427 Rubin *et al.*⁶² employed a 6-point histologic inflammatory activity scale to evaluate biopsy
428 samples, finding a strong correlation between higher inflammation scores and CRC risk and
429 after adjusting for inflammation, the protective effect of immunomodulators remained
430 significant, while that of 5-ASAs was no longer observed. This suggests that the reduced CRC
431 risk may primarily reflect control of mucosal inflammation rather than a direct
432 chemopreventive effect of the drug itself. The reduction in cancer risk of 5-ASAs may be

433 explained by similar structural homology to aspirin⁸⁵. Although, preclinical studies have
434 demonstrated that 5-ASAs can directly affect CRC-associated cellular pathways, such as
435 inhibiting COX-2/PGE2⁸⁶, NF- κ B, Wnt/ β -catenin^{87 88}, or EGFR signalling with anti-
436 neoplastic effects⁸⁹, similar to aspirin, however this has not been confirmed in human clinical
437 studies

438 The immunomodulator studies predominantly reported on thiopurine use. The overall
439 association is close to statistical significance and there was a reduced RR in some subgroups,
440 consistent with previous meta-analyses (Table 3). Moreover, moderate to high heterogeneity
441 was detected between studies and, therefore, it is uncertain if the true result demonstrates a
442 chemopreventive benefit or not. Immunomodulators are judiciously recommended in IBD^{21 90}
443 and are also associated with malignancies. The primary objective of many studies included in
444 this meta-analysis was to capture overall malignancy rates and, therefore, they may not have
445 been optimally designed to evaluate CRC risk. It has also not been resolved whether thiopurines
446 can promote CRC which may negate any potential benefits⁸². For these reasons it is not
447 surprising that immunomodulators appear to have no consistent reduction in cancer risk in IBD-
448 CRC.

449 The therapeutic strategy in IBD is now that of “treat to target”⁹¹, with an escalation to
450 modern, effective therapy earlier in the disease course to minimise long-term complications⁹².
451 When patients with UC have achieved prolonged remission and mucosal healing with
452 immunomodulators, biologics, or Janus kinase inhibitors 5-ASAs can be discontinued without
453 an increase in disease-related adverse events⁹³⁻⁹⁵. This has led to some societies recommending
454 5-ASAs withdrawal when on another more potent IBD therapy is controlling disease activity
455 with a reduced risk of flare^{18 96}. However, these recommendations have not previously
456 accounted for, or considered, any potential chemotherapeutic effects of 5-ASAs independent
457 of disease control, which may be a significant reason to continue them, particularly in higher

458 risk patient populations. While modern guidelines do not recommend 5-ASAs for the treatment
459 of CD, they appear to be frequently prescribed. The reduction in cancer risk may reflect mild
460 disease activity or that cancer risk is not increased within these groups. The STATIC (Stopping
461 Aminosalicylate Therapy In Inactive Crohn's Disease) Study: A randomised, open label, non-
462 inferiority trial (<https://www.static-trial.com/>) aims to understand the role of 5-ASAs in the
463 management of CD. Although cancer and dyspepsia are not included as outcomes the
464 occurrence of flares will be recorded which can help to estimate the inflammatory burden.

465 The current data are, unfortunately, unable to distinguish between an independent
466 chemopreventive association of these drugs and effective control of active inflammation. The
467 included studies examined the medications separately and therefore the combination of
468 medications on cancer risk could not be determined. A similar reduction in risk is demonstrated
469 with biologics or 5-ASAs suggesting this is mediated through a general anti-inflammatory
470 action rather than any additional chemopreventive benefit. The “perfect” RCT for determining
471 the impact of any cancer prevention strategy, including medications or colonoscopic
472 surveillance in the context of effective control of inflammation, is challenged by the low event
473 rate, need for a large number of participants, long duration of follow-up, and potentially
474 unethical approach to withholding active treatment in a population at risk of cancer. The gold
475 standard of CRC colonoscopic surveillance was analysed retrospectively in a Cochrane review
476 of five observational studies with 7,199 patients ⁹⁷. The studies found a significantly higher
477 rate of cancer in the no surveillance group compared to the colonoscopy surveillance group.
478 The estimate of the protective effect of colonoscopic surveillance for cancer prevention was
479 greater than the pooled estimates for 5-ASAs or biologics reported in our study. Until a RCT
480 assessing the additional benefit of chemoprevention alongside colonoscopic surveillance in
481 IBD is undertaken, chemoprevention remains an adjunct to, rather than a substitute for,
482 effective cancer surveillance. Additionally, the lack of a prospective accurate IBD-specific

483 CRC prediction tool limits the ability to understand the interaction of multiple dynamic risk
484 factors. This ambitious model has been achieved for sporadic CRC. The increasing investment
485 in prospective IBD disease-specific registries^{98 99}, integrating longitudinal data collection with
486 linkage to cancer registries and medication prescriptions, is a major step towards personalised
487 CRC risk assessment in IBD. A risk model for IBD-CRC derived from historic datasets
488 demonstrates the possibilities, but needs to be matched with an effective implementation plan
489 to support clinical utility¹⁰⁰. Individualised CRC risk assessment could allow all patients to
490 benefit from personalised mitigation strategies, while also accommodating increasing
491 comorbidity and frailty¹⁰¹. The UC-care tool is an example of an online algorithm that
492 estimates the progression to high grade dysplasia and / or CRC in patients with IBD who have
493 low grade dysplasia and can be used to personalise shared decision making¹⁰².

494 There are limitations in interpreting the results of this meta-analysis. All included
495 studies were observational studies, and several confounding variables will be inevitable by the
496 nature of study design and source data including lack of reporting data for mortality, disease
497 location, key confounders associated with CRC risk in IBD patients, such as smoking history,
498 concurrent use of aspirin or statins, family history of CRC, participation in regular surveillance
499 programs, and variability of disease extension report across the studies. Disease extent
500 influences colorectal cancer risk in IBD. However, the included studies did not stratified
501 outcomes by disease extent or provide sufficient quantitative data to allow subgroup analysis
502 by disease extent. As such, a formal analysis was not feasible. The data included in this meta-
503 analysis were derived from studies reporting monotherapy exposure to biologics, 5-ASAs, or
504 immunomodulators. Although combination therapy is increasingly common in clinical
505 practice, the available studies did not provide sufficient data to evaluate the combined use of
506 these agents. As such, our results reflect the effect of individual drug classes used as
507 monotherapy. Future studies with stratified analyses by treatment combination are warranted

508 to better delineate independent drug-specific effects. Some studies were likely underpowered
509 with greater risk estimate size, and wide CIs, suggesting imprecision and this may explain the
510 differences seen between different geographical regions. For the primary outcome of IBD-CRC
511 and / or dysplasia it was uncertain if this was verified at an individual patient level (i.e., whether
512 cancer or dysplasia was considered to be IBD-related or not). Additionally, the grade of
513 dysplasia was not specified-and as low-grade dysplasia has a lower concordance between
514 expert pathologists this may have influenced the differing RR when cancer cases were reported
515 separately from cancer and dysplasia outcomes. Patient compliance and duration of medication
516 at the individual patient-level was not ascertained in these studies, although it is likely to be
517 more reliable for some biologics, as this is recorded as a hospital episode where an infusion is
518 administered. It was also not possible to segregate data by timing and more expanded use of
519 biologics as these will have been adopted at different rates in each country¹⁰³. Moreover, the
520 outcome of CRC/dysplasia was reported by both case-control and cohort studies, thereby
521 combining prevalence and incidence data. While case-control studies primarily capture the
522 prevalence of existing cases at the time of study enrolment, cohort studies evaluate the
523 incidence of new cases over time. These two measures are not strictly interchangeable, as
524 prevalence is influenced by both disease incidence and survival, as well as by surveillance
525 intensity and diagnostic practices¹⁰⁴. By pooling these study designs, our estimates may reflect
526 a mixture of risk of developing CRC/dysplasia and probability of detecting existing cases.
527 Although this approach increases statistical power and reflects the available evidence base, it
528 introduces heterogeneity and should be considered when interpreting the findings.

529 Many of these limitations will only be addressed once RCTs are completed to determine
530 the impact of IBD therapies on cancer risk. Equally, acknowledging that an RCT is nearly
531 impossible in this context we must apply the available methodologies to synthesise and analyse
532 the current data to inform modern clinical practice.

533

534 **CONCLUSION**

535 In conclusion, these new data show that use of anti-TNFs in UC and 5-ASAs in both
536 UC and CD, but not immunomodulators, are associated with a reduced risk of cancer in patients
537 with IBD in the observational studies. However, whether 5-ASAs has any additional
538 chemopreventive benefit, when used in combination with biologics or immunomodulators, will
539 only be addressed in well-designed randomised controlled trials. Ultimately, the optimal
540 integration of chemoprevention into IBD care will require validated, individualized CRC risk
541 prediction tools, greater understanding of drug-specific effects on carcinogenic pathways, and
542 well-designed studies. Until such data are available, clinicians should tailor decisions regarding
543 maintenance therapy with chemopreventive potential based on individual risk profiles and
544 ensure close adherence to surveillance recommendations to mitigate the long-term burden of
545 IBD-associated colorectal cancer.

546 **Contributorship statement**

547 Concept and design: Shahida Din (SD), Alexander C. Ford (ACF), Amirhosein Kefayat (AK).

548 Literature search and data collection: Amirhosein Kefayat (AK), Shahida Din (SD).

549 Data analysis: Alexander C. Ford (ACF).

550 Data interpretation: Amirhosein Kefayat (AK), Alexander C. Ford (ACF), Shahida Din (SD).

551 Manuscript drafting: Amirhosein Kefayat (AK), Alexander C. Ford (ACF), Shahida Din (SD).

552 Critical revision of the manuscript for important intellectual content: All authors.

553 Final approval of the version to be published: All authors.

554 Guarantor: Shahida Din (SD).

555 Funding Statement

556 The funders did not influence any part of this study despite author affiliations with their
557 respective funders.

558 GBN is funded by National Institute for Health and Care Research (Grant number 302607) for
559 a doctoral research fellowship.

560 JEE is funded by the National Institute for Health and Care Research (NIHR) Oxford
561 Biomedical Research Centre.

562 CAL acknowledges support from the NIHR Newcastle Biomedical Research Centre.

563 SD acknowledges funding from NHS Lothian RD.

564 The views expressed are those of the authors and not necessarily those of the National Health
565 Service, the NIHR or the Department of Health.

566 Competing interest statement

567 This is no conflict of interest to declare.

568 References

- 569 1. Wan Q, Zhao R, Xia L, et al. Inflammatory bowel disease and risk of gastric, small bowel and
570 colorectal cancer: a meta-analysis of 26 observational studies. *Journal of cancer research
571 and clinical oncology* 2021;147:1077-87.
- 572 2. Porter RJ, Song M, Gillespie S-L, et al. Real-world retrospective cohort study of inflammatory
573 bowel disease colorectal cancer surveillance. *Frontline Gastroenterology* 2025
- 574 3. East JE, Gordon M, Nigam GB, et al. British Society of Gastroenterology guidelines on colorectal
575 surveillance in inflammatory bowel disease. *Gut* 2025
- 576 4. Wijnands AM, de Jong ME, Lutgens MW, et al. Prognostic factors for advanced colorectal
577 neoplasia in inflammatory bowel disease: systematic review and meta-analysis.
578 *Gastroenterology* 2021;160(5):1584-98.
- 579 5. Noor NM, Lee JC, Bond S, et al. A biomarker-stratified comparison of top-down versus accelerated
580 step-up treatment strategies for patients with newly diagnosed Crohn's disease (PROFILE): a
581 multicentre, open-label randomised controlled trial. *The Lancet Gastroenterology &
582 Hepatology* 2024;9(5):415-27.
- 583 6. Kapizioni C, Desoki R, Lam D, et al. Biologic therapy for inflammatory bowel disease: Real-world
584 comparative effectiveness and impact of drug sequencing in 13 222 patients within the UK
585 IBD BioResource. *Journal of Crohn's and Colitis* 2024;18(6):790-800.

- 586 7. Stankey C, Bourges C, Haag L, et al. A disease-associated gene desert directs macrophage
587 inflammation through ETS2. *Nature* 2024;1-10.
- 588 8. Dart RJ, Zlatareva I, Vantourout P, et al. Conserved $\gamma\delta$ T cell selection by BTNL proteins limits
589 progression of human inflammatory bowel disease. *Science* 2023;381(6663):eadh0301.
- 590 9. Porter RJ, Arends MJ, Churchhouse AM, Din S. Inflammatory bowel disease-associated colorectal
591 cancer: translational risks from mechanisms to medicines. *Journal of Crohn's and Colitis*
592 2021;15(12):2131-41.
- 593 10. Peyrin-Biroulet L, Rahier J-F, Kirchgesner J, et al. I-CARE, a European prospective cohort study
594 assessing safety and effectiveness of biologics in inflammatory bowel disease. *Clinical
595 Gastroenterology and Hepatology* 2023;21(3):771-88. e10.
- 596 11. Study for Participants With Ulcerative Colitis Previously Enrolled in Etrolizumab Phase II/III
597 Studies. <https://clinicaltrials.gov/search?cond=NCT02118584> [
- 598 12. Murthy SK, Tandon P, Matthews P, et al. A Population-Based Matched Cohort Study of Digestive
599 System Cancer Incidence and Mortality in Individuals With and Without Inflammatory Bowel
600 Disease. *Official journal of the American College of Gastroenterology / ACG* 2022;10.14309.
- 601 13. Jones G-R, Lyons M, Plevris N, et al. IBD prevalence in Lothian, Scotland, derived by capture–
602 recapture methodology. *Gut* 2019;68(11):1953-60.
- 603 14. Ishikawa H, Mutoh M, Suzuki S, et al. The preventive effects of low-dose enteric-coated aspirin
604 tablets on the development of colorectal tumours in Asian patients: a randomised trial. *Gut*
605 2014;63(11):1755-59.
- 606 15. Hull MA, Sprange K, Hepburn T, et al. Eicosapentaenoic acid and aspirin, alone and in
607 combination, for the prevention of colorectal adenomas (seAFOod Polyp Prevention trial): a
608 multicentre, randomised, double-blind, placebo-controlled, 2 \times 2 factorial trial. *The Lancet*
609 2018;392(10164):2583-94.
- 610 16. Burn J, Gerdés A-M, Macrae F, et al. Long-term effect of aspirin on cancer risk in carriers of
611 hereditary colorectal cancer: an analysis from the CAPP2 randomised controlled trial. *The
612 Lancet* 2011;378(9809):2081-87.
- 613 17. Grancher A, Michel P, Di Fiore F, Sefrioui D. Colorectal cancer chemoprevention: is aspirin still in
614 the game? *Cancer Biology & Therapy* 2022;23(1):446-61.
- 615 18. Feuerstein JD, Isaacs KL, Schneider Y, et al. AGA clinical practice guidelines on the management
616 of moderate to severe ulcerative colitis. *Gastroenterology* 2020;158(5):1450-61.
- 617 19. Moran GW, Gordon M, Sinopolou V, et al. British Society of Gastroenterology guidelines on
618 inflammatory bowel disease in adults: 2025. *Gut* 2025;74(Suppl 2):s1-s101.
- 619 20. Feuerstein JD, Ho EY, Shmidt E, et al. AGA clinical practice guidelines on the medical
620 management of moderate to severe luminal and perianal fistulizing Crohn's disease.
621 *Gastroenterology* 2021;160(7):2496-508.
- 622 21. Lamb CA, Kennedy NA, Raine T, et al. British Society of Gastroenterology consensus guidelines on
623 the management of inflammatory bowel disease in adults. *Gut* 2019;68(Suppl 3):s1-s106.
- 624 22. Stroup DF, Berlin JA, Morton SC, et al. Meta-analysis of observational studies in epidemiology: a
625 proposal for reporting. *Jama* 2000;283(15):2008-12.
- 626 23. VanderWeele TJ. Optimal approximate conversions of odds ratios and hazard ratios to risk ratios.
627 *Biometrics* 2020;76(3):746-52.
- 628 24. Wells GA, Shea B, O'Connell D, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality
629 of nonrandomised studies in meta-analyses. 2000
- 630 25. Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. *BMJ*
631 2003;327:557-60.
- 632 26. Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias.
633 *Biometrics* 1994;1088-101.
- 634 27. Egger M, Smith GD, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical
635 test. *bmj* 1997;315(7109):629-34.

- 636 28. Alkhayyat M, Abureesh M, Gill A, et al. Lower Rates of Colorectal Cancer in Patients With
637 Inflammatory Bowel Disease Using Anti-TNF Therapy. *INFLAMMATORY BOWEL DISEASES*
638 2021;27(7):1052-60. doi: 10.1093/ibd/izaa252
- 639 29. Ananthakrishnan AN, Cagan A, Cai TX, et al. Statin Use Is Associated With Reduced Risk of
640 Colorectal Cancer in Patients With Inflammatory Bowel Diseases. *CLINICAL*
641 *GASTROENTEROLOGY AND HEPATOLOGY* 2016;14(7):973-79. doi: 10.1016/j.cgh.2016.02.017
- 642 30. Armstrong RG, West J, Card TR. Risk of cancer in inflammatory bowel disease treated with
643 azathioprine: a UK population-based case-control study. *Am J Gastroenterol*
644 2010;105(7):1604-9. doi: 10.1038/ajg.2009.745
- 645 31. Baars JE, Loosman CWN, Steyerberg EW, et al. The risk of inflammatory bowel disease-related
646 colorectal carcinoma is limited: results from a nationwide nested case-control study. *The*
647 *American journal of gastroenterology* 2011;106(2):319-28. doi:
648 <https://dx.doi.org/10.1038/ajg.2010.428>
- 649 32. Bergeron V, Vienne A, Sokol H, et al. Risk factors for neoplasia in inflammatory bowel disease
650 patients with pancolitis. *Am J Gastroenterol* 2010;105(11):2405-11. doi:
651 10.1038/ajg.2010.248
- 652 33. Bernstein CN, Blanchard JF, Metge C, Yogendran M. Does the use of 5-aminosalicylates in
653 inflammatory bowel disease prevent the development of colorectal cancer? *Am J*
654 *Gastroenterol* 2003;98(12):2784-8. doi: 10.1111/j.1572-0241.2003.08718.x
- 655 34. Bernstein CN, Nugent Z, Blanchard JF. 5-aminosalicylate is not chemoprophylactic for colorectal
656 cancer in IBD: a population based study. *Am J Gastroenterol* 2011;106(4):731-6. doi:
657 10.1038/ajg.2011.50
- 658 35. Biancone L, Orlando A, Kohn A, et al. Infliximab and newly diagnosed neoplasia in Crohn's
659 disease: a multicentre matched pair study. *Gut* 2006;55(2):228-33. doi:
660 10.1136/gut.2005.075937
- 661 36. Camus M, Seksik P, Bourrier A, et al. Long-term outcome of patients with Crohn's disease who
662 respond to azathioprine. *Clin Gastroenterol Hepatol* 2013;11(4):389-94. doi:
663 10.1016/j.cgh.2012.10.038
- 664 37. Carrat F, Seksik P, Colombel JF, et al. The effects of aminosalicylates or thiopurines on the risk of
665 colorectal cancer in inflammatory bowel disease. *Aliment Pharmacol Ther* 2017;45(4):533-
666 41. doi: 10.1111/apt.13897
- 667 38. Charkaoui M, Hajage D, Tubach F, et al. Impact of Anti-tumour Necrosis Factor Agents on the Risk
668 of Colorectal Cancer in Patients with Ulcerative Colitis: Nationwide French Cohort Study. *J*
669 *Crohns Colitis* 2022;16(6):893-99. doi: 10.1093/ecco-jcc/jjab184
- 670 39. Cheddani H, Dauchet L, Fumery M, et al. Cancer in Elderly Onset Inflammatory Bowel Disease: A
671 Population-Based Study. *Am J Gastroenterol* 2016;111(10):1428-36. doi:
672 10.1038/ajg.2016.304
- 673 40. Connell WR, Kamm MA, Dickson M, et al. Long-term neoplasia risk after azathioprine treatment
674 in inflammatory bowel disease. *Lancet* 1994;343(8908):1249-52. doi: 10.1016/s0140-
675 6736(94)92150-4
- 676 41. Desai D, Shah S, Deshmukh A, et al. Colorectal cancers in ulcerative colitis from a low-prevalence
677 area for colon cancer. *World J Gastroenterol* 2015;21(12):3644-9. doi:
678 10.3748/wjg.v21.i12.3644
- 679 42. Eaden J, Abrams K, Ekbom A, et al. Colorectal cancer prevention in ulcerative colitis: a case-
680 control study. *Aliment Pharmacol Ther* 2000;14(2):145-53. doi: 10.1046/j.1365-
681 2036.2000.00698.x
- 682 43. Fraser AG, Orchard TR, Robinson EM, Jewell DP. Long-term risk of malignancy after treatment of
683 inflammatory bowel disease with azathioprine. *Aliment Pharmacol Ther* 2002;16(7):1225-32.
684 doi: 10.1046/j.1365-2036.2002.01297.x

- 685 44. Gong W, Lv N, Wang B, et al. Risk of ulcerative colitis-associated colorectal cancer in China: a
686 multi-center retrospective study. *Dig Dis Sci* 2012;57(2):503-7. doi: 10.1007/s10620-011-
687 1890-9
- 688 45. Gordillo J, Cabré E, Garcia-Planella E, et al. Thiopurine Therapy Reduces the Incidence of
689 Colorectal Neoplasia in Patients with Ulcerative Colitis. Data from the ENEIDA Registry. *J
690 Crohns Colitis* 2015;9(12):1063-70. doi: 10.1093/ecco-jcc/jjv145
- 691 46. Gupta RB, Harpaz N, Itzkowitz S, et al. Histologic inflammation is a risk factor for progression to
692 colorectal neoplasia in ulcerative colitis: a cohort study. *Gastroenterology* 2007;133(4):1099-
693 105; quiz 340. doi: 10.1053/j.gastro.2007.08.001
- 694 47. Jess T, Loftus EV, Jr., Velayos FS, et al. Risk factors for colorectal neoplasia in inflammatory bowel
695 disease: a nested case-control study from Copenhagen county, Denmark and Olmsted
696 county, Minnesota. *Am J Gastroenterol* 2007;102(4):829-36. doi: 10.1111/j.1572-
697 0241.2007.01070.x
- 698 48. Jung YS, Han M, Park S, et al. Cancer Risk in the Early Stages of Inflammatory Bowel Disease in
699 Korean Patients: A Nationwide Population-based Study. *JOURNAL OF CROHNS & COLITIS*
700 2017;11(8):954-62. doi: 10.1093/ecco-jcc/jjx040
- 701 49. Kopylov U, Vutcovici M, Kezouh A, et al. Risk of Lymphoma, Colorectal and Skin Cancer in
702 Patients with IBD Treated with Immunomodulators and Biologics: A Quebec Claims Database
703 Study. *Inflamm Bowel Dis* 2015;21(8):1847-53. doi: 10.1097/MIB.0000000000000457
- 704 50. Lakatos L, Mester G, Erdelyi Z, et al. Risk factors for ulcerative colitis-associated colorectal cancer
705 in a Hungarian cohort of patients with ulcerative colitis: Results of a population-based study.
706 *INFLAMMATORY BOWEL DISEASES* 2006;12(3):205-11. doi:
707 10.1097/01.MIB.0000217770.21261.ce
- 708 51. Lashner BA, Provencher KS, Seidner DL, et al. The effect of folic acid supplementation on the risk
709 for cancer or dysplasia in ulcerative colitis. *Gastroenterology* 1997;112(1):29-32. doi:
710 10.1016/s0016-5085(97)70215-4
- 711 52. Lindberg BU, Broomé U, Persson B. Proximal colorectal dysplasia or cancer in ulcerative colitis.
712 The impact of primary sclerosing cholangitis and sulfasalazine: results from a 20-year
713 surveillance study. *Dis Colon Rectum* 2001;44(1):77-85. doi: 10.1007/BF02234825
- 714 53. Lutgens M, Vermeire S, Van Oijen M, et al. A rule for determining risk of colorectal cancer in
715 patients with inflammatory bowel disease. *Clin Gastroenterol Hepatol* 2015;13(1):148-54.e1.
716 doi: 10.1016/j.cgh.2014.06.032
- 717 54. Mak JYW, So J, Tang W, et al. Cancer risk and chemoprevention in Chinese inflammatory bowel
718 disease patients: a population-based cohort study. *Scand J Gastroenterol* 2020;55(3):279-86.
719 doi: 10.1080/00365521.2020.1731760
- 720 55. Matula S, Croog V, Itzkowitz S, et al. Chemoprevention of colorectal neoplasia in ulcerative
721 colitis: the effect of 6-mercaptopurine. *Clin Gastroenterol Hepatol* 2005;3(10):1015-21. doi:
722 10.1016/s1542-3565(05)00738-x
- 723 56. Moody GA, Jayanthi V, Probert CS, et al. Long-term therapy with sulphasalazine protects against
724 colorectal cancer in ulcerative colitis: a retrospective study of colorectal cancer risk and
725 compliance with treatment in Leicestershire. *Eur J Gastroenterol Hepatol* 1996;8(12):1179-
726 83. doi: 10.1097/00042737-199612000-00009
- 727 57. Navaneethan U, Rai T, Venkatesh PGK, Kiran RP. Primary sclerosing cholangitis and the risk of
728 colon neoplasia in patients with Crohn's colitis. *GASTROENTEROLOGY REPORT*
729 2016;4(3):226-31. doi: 10.1093/gastro/gov007
- 730 58. Nieminen U, Jussila A, Nordling S, et al. Inflammation and disease duration have a cumulative
731 effect on the risk of dysplasia and carcinoma in IBD: a case-control observational study
732 based on registry data. *Int J Cancer* 2014;134(1):189-96. doi: 10.1002/ijc.28346
- 733 59. Nowacki TM, Brückner M, Eveslage M, et al. The risk of colorectal cancer in patients with
734 ulcerative colitis. *Dig Dis Sci* 2015;60(2):492-501. doi: 10.1007/s10620-014-3373-2

- 735 60. Pasternak B, Svanström H, Schmiegelow K, et al. Use of azathioprine and the risk of cancer in
736 inflammatory bowel disease. *Am J Epidemiol* 2013;177(11):1296-305. doi:
737 10.1093/aje/kws375
- 738 61. Pinczowski D, Ekbom A, Baron J, et al. Risk factors for colorectal cancer in patients with ulcerative
739 colitis: a case-control study. *Gastroenterology* 1994;107(1):117-20. doi: 10.1016/0016-
740 5085(94)90068-x
- 741 62. Rubin DT, Huo D, Kinnucan JA, et al. Inflammation is an independent risk factor for colonic
742 neoplasia in patients with ulcerative colitis: a case-control study. *Clin Gastroenterol Hepatol*
743 2013;11(12):1601-8.e1. doi: 10.1016/j.cgh.2013.06.023
- 744 63. Rubin DT, LoSavio A, Yadron N, et al. Aminosalicylate therapy in the prevention of dysplasia and
745 colorectal cancer in ulcerative colitis. *Clin Gastroenterol Hepatol* 2006;4(11):1346-50. doi:
746 10.1016/j.cgh.2006.08.014
- 747 64. Rutter M, Saunders B, Wilkinson K, et al. Severity of inflammation is a risk factor for colorectal
748 neoplasia in ulcerative colitis. *Gastroenterology* 2004;126(2):451-9. doi:
749 10.1053/j.gastro.2003.11.010
- 750 65. Satchi M, Korelitz BI, Panagopoulos G, et al. Is treatment with 6-mercaptopurine for colitis
751 associated with the development of colorectal cancer? *Inflamm Bowel Dis* 2013;19(4):785-8.
752 doi: 10.1097/MIB.0b013e318289664c
- 753 66. Setshedi M, Epstein D, Winter TA, et al. Use of thiopurines in the treatment of inflammatory
754 bowel disease is associated with an increased risk of non-melanoma skin cancer in an at-risk
755 population: a cohort study. *J Gastroenterol Hepatol* 2012;27(2):385-9. doi: 10.1111/j.1440-
756 1746.2011.06865.x
- 757 67. Shah SC, Ten Hove JR, Castaneda D, et al. High Risk of Advanced Colorectal Neoplasia in Patients
758 With Primary Sclerosing Cholangitis Associated With Inflammatory Bowel Disease. *Clin
759 Gastroenterol Hepatol* 2018;16(7):1106-13.e3. doi: 10.1016/j.cgh.2018.01.023
- 760 68. Siegel CA, Sands BE. Risk factors for colorectal cancer in Crohn's colitis: a case-control study.
761 *Inflamm Bowel Dis* 2006;12(6):491-6. doi: 10.1097/00054725-200606000-00008
- 762 69. Terdiman JP, Steinbuch M, Blumentals WA, et al. 5-Aminosalicylic acid therapy and the risk of
763 colorectal cancer among patients with inflammatory bowel disease. *Inflamm Bowel Dis*
764 2007;13(4):367-71. doi: 10.1002/ibd.20074
- 765 70. Tung BY, Emond MJ, Haggitt RC, et al. Ursodiol use is associated with lower prevalence of colonic
766 neoplasia in patients with ulcerative colitis and primary sclerosing cholangitis. *Ann Intern
767 Med* 2001;134(2):89-95. doi: 10.7326/0003-4819-134-2-200101160-00008
- 768 71. Ullman T, Croog V, Harpaz N, et al. Progression to colorectal neoplasia in ulcerative colitis: effect
769 of mesalamine. *Clin Gastroenterol Hepatol* 2008;6(11):1225-30; quiz 177. doi:
770 10.1016/j.cgh.2008.05.020
- 771 72. van Schaik FD, van Oijen MG, Smeets HM, et al. Thiopurines prevent advanced colorectal
772 neoplasia in patients with inflammatory bowel disease. *Gut* 2012;61(2):235-40. doi:
773 10.1136/gut.2011.237412
- 774 73. van Staa TP, Card T, Logan RF, Leufkens HG. 5-Aminosalicylate use and colorectal cancer risk in
775 inflammatory bowel disease: a large epidemiological study. *Gut* 2005;54(11):1573-8. doi:
776 10.1136/gut.2005.070896
- 777 74. Velayos FS, Loftus EV, Jr., Jess T, et al. Predictive and protective factors associated with colorectal
778 cancer in ulcerative colitis: A case-control study. *Gastroenterology* 2006;130(7):1941-9. doi:
779 10.1053/j.gastro.2006.03.028
- 780 75. Weimers P, Ankersen DV, Lokkegaard ECL, et al. Occurrence of Colorectal Cancer and the
781 Influence of Medical Treatment in Patients With Inflammatory Bowel Disease: A Danish
782 Nationwide Cohort Study, 1997 to 2015. *INFLAMMATORY BOWEL DISEASES*
783 2021;27(11):1795-803. doi: 10.1093/ibd/izaa340

- 784 76. Zhang Q, Sha S, Xu B, et al. Prevalence of colorectal cancer in patients with ulcerative colitis: A
785 retrospective, monocenter study in China. *J Cancer Res Ther* 2015;11(4):899-903. doi:
786 10.4103/0973-1482.143345
- 787 77. Gomez-Garcia M, Cabello-Tapia MJ, Sanchez-Capilla AD, et al. Thiopurines related malignancies
788 in inflammatory bowel disease: local experience in Granada, Spain. *World journal of*
789 *gastroenterology* 2013;19(30):4877-86. doi: <https://dx.doi.org/10.3748/wjg.v19.i30.4877>
- 790 78. Odze R. Diagnostic problems and advances in inflammatory bowel disease. *Modern pathology*
791 2003;16(4):347-58.
- 792 79. Gordon H, Minozzi S, Kopylov U, et al. ECCO guidelines on therapeutics in Crohn's disease:
793 medical treatment. *Journal of Crohn's and Colitis* 2024;jjae091.
- 794 80. Raine T, Bonovas S, Burisch J, et al. ECCO guidelines on therapeutics in ulcerative colitis: medical
795 treatment. *Journal of Crohn's and Colitis* 2022;16(1):2-17.
- 796 81. Minnis-Lyons SE, Aiken Z, Chow S, Din S. Managing IBD in patients with previous cancers.
797 *Frontline Gastroenterology* 2022;13(e1):e44-e50.
- 798 82. Gordon H, Biancone L, Fiorino G, et al. ECCO guidelines on inflammatory bowel disease and
799 malignancies. *Journal of Crohn's and Colitis* 2023;17(6):827-54.
- 800 83. Lim WC, Wang Y, MacDonald JK, Hanauer S. Aminosalicylates for induction of remission or
801 response in Crohn's disease. *Cochrane Database of Systematic Reviews* 2016(7)
- 802 84. Akobeng AK, Zhang D, Gordon M, MacDonald JK. Oral 5-aminosalicylic acid for maintenance of
803 medically-induced remission in Crohn's disease. *Cochrane database of systematic reviews*
804 2016(9)
- 805 85. Allgayer H. Mechanisms of action of mesalazine in preventing colorectal carcinoma in
806 inflammatory bowel disease. *Alimentary pharmacology & therapeutics* 2003;18:10-14.
- 807 86. Collier H, Francis AA, McDonald-Gibson WJ, Saeed S. Inhibition of prostaglandin biosynthesis by
808 sulphosalazine and its metabolites. *Prostaglandins* 1976;11(2):219-25.
- 809 87. Monteleone G, Franchi L, Fina D, et al. Silencing of SH-PTP2 defines a crucial role in the
810 inactivation of epidermal growth factor receptor by 5-aminosalicylic acid in colon cancer
811 cells. *Cell Death & Differentiation* 2006;13(2):202-11.
- 812 88. Kaiser GC, Yan F, Polk DB. Mesalamine blocks tumor necrosis factor growth inhibition and
813 nuclear factor κ B activation in mouse colonocytes. *Gastroenterology* 1999;116(3):602-09.
- 814 89. Egan LJ, Mays DC, Huntoon CJ, et al. Inhibition of interleukin-1-stimulated NF- κ B RelA/p65
815 phosphorylation by mesalamine is accompanied by decreased transcriptional activity.
816 *Journal of Biological Chemistry* 1999;274(37):26448-53.
- 817 90. Stournaras E, Qian W, Pappas A, et al. Thiopurine monotherapy is effective in ulcerative colitis
818 but significantly less so in Crohn's disease: long-term outcomes for 11 928 patients in the UK
819 inflammatory bowel disease biorepository. *Gut* 2021;70(4):677-86.
- 820 91. Turner D, Ricciuto A, Lewis A, et al. STRIDE-II: an update on the Selecting Therapeutic Targets in
821 Inflammatory Bowel Disease (STRIDE) Initiative of the International Organization for the
822 Study of IBD (IOIBD): determining therapeutic goals for treat-to-target strategies in IBD.
823 *Gastroenterology* 2021;160(5):1570-83.
- 824 92. Gonczi L, Bessisow T, Lakatos PL. Disease monitoring strategies in inflammatory bowel diseases:
825 What do we mean by "tight control"? *World journal of gastroenterology* 2019;25(41):6172.
- 826 93. Ungaro RC, Limketkai BN, Jensen CB, et al. Stopping 5-aminosalicylates in patients with ulcerative
827 colitis starting biologic therapy does not increase the risk of adverse clinical outcomes:
828 analysis of two nationwide population-based cohorts. *Gut* 2019;68(6):977-84.
- 829 94. Chapman TP, Frias Gomes C, Louis E, et al. withdrawal of 5-aminosalicylates in inflammatory
830 bowel disease. *Alimentary pharmacology & therapeutics* 2020;52(1):73-84.
- 831 95. Seo J, Kim S, Hong SW, et al. Continuing or stopping 5-aminosalicylates in patients with
832 inflammatory bowel disease on anti-TNF therapy: A nationwide population-based study.
833 *Alimentary Pharmacology & Therapeutics* 2024

- 834 96. Ko CW, Singh S, Feuerstein JD, et al. AGA clinical practice guidelines on the management of mild-
835 to-moderate ulcerative colitis. *Gastroenterology* 2019;156(3):748-64.
- 836 97. Bye WA, Nguyen TM, Parker CE, et al. Strategies for detecting colon cancer in patients with
837 inflammatory bowel disease. *Cochrane Database of Systematic Reviews* 2017(9)
- 838 98. IBD BioResource <https://www.ibdbioresource.nihr.ac.uk/> [
- 839 99. Gut Reaction <https://www.hdruk.ac.uk/helping-with-health-data/health-data-research-hubs/gut-reaction/> [
- 840 100. Wijnands AM, de Vries BBP, Lutgens MW, et al. Dynamic Prediction of Advanced Colorectal
841 Neoplasia in Inflammatory Bowel Disease. *Clinical Gastroenterology and Hepatology* 2024
- 842 101. Taleban S, Toosizadeh N, Junna S, et al. Frailty assessment predicts acute outcomes in patients
843 undergoing screening colonoscopy. *Digestive diseases and sciences* 2018;63:3272-80.
- 844 102. Curtius K, Kabir M, Al Bakir I, et al. Multicentre derivation and validation of a colitis-associated
845 colorectal cancer risk prediction web tool. *Gut* 2022;71(4):705-15.
- 846 103. Targownik LE, Suissa S. Understanding and avoiding immortal-time bias in gastrointestinal
847 observational research. *Official journal of the American College of Gastroenterology/ ACG*
848 2015;110(12):1647-50.
- 849 104. Noordzij M, Dekker FW, Zoccali C, Jager KJ. Measures of disease frequency: prevalence and
850 incidence. *Nephron Clinical Practice* 2010;115(1):c17-c20.
- 851 105. Nguyen GC, Gulamhusein A, Bernstein CN. 5-aminosalicylic acid is not protective against
852 colorectal cancer in inflammatory bowel disease: a meta-analysis of non-referral
853 populations. *Official journal of the American College of Gastroenterology/ ACG*
854 2012;107(9):1298-304.
- 855 106. Zhao L-N, Li J-Y, Yu T, et al. 5-Aminosalicylates reduce the risk of colorectal neoplasia in patients
856 with ulcerative colitis: an updated meta-analysis. *PLoS one* 2014;9(4):e94208.
- 857 107. O'Connor A, Packey CD, Akbari M, Moss AC. Mesalamine, but not sulfasalazine, reduces the risk
858 of colorectal neoplasia in patients with inflammatory bowel disease: an agent-specific
859 systematic review and meta-analysis. *Inflammatory bowel diseases* 2015;21(11):2562-69.
- 860 108. Qiu X, Ma J, Wang K, Zhang H. Chemopreventive effects of 5-aminosalicylic acid on
861 inflammatory bowel disease-associated colorectal cancer and dysplasia: a systematic review
862 with meta-analysis. *Oncotarget* 2017;8(1):1031.
- 863 109. Bonovas S, Fiorino G, Lytras T, et al. Systematic review with meta-analysis: use of 5-
864 aminosalicylates and risk of colorectal neoplasia in patients with inflammatory bowel
865 disease. *Alimentary pharmacology & therapeutics* 2017;45(9):1179-92.
- 866 110. Gong J, Zhu L, Guo Z, et al. Use of thiopurines and risk of colorectal neoplasia in patients with
867 inflammatory bowel diseases: a meta-analysis. *PLoS one* 2013;8(11):e81487.
- 868 111. Jess T, Lopez A, Andersson M, et al. Thiopurines and risk of colorectal neoplasia in patients with
869 inflammatory bowel disease: a meta-analysis. *Clinical Gastroenterology and Hepatology*
870 2014;12(11):1793-800. e1.
- 871 112. Lu M, Qiu X, Mao X, et al. Systematic review with meta-analysis: thiopurines decrease the risk of
872 colorectal neoplasia in patients with inflammatory bowel disease. *Alimentary pharmacology
873 & therapeutics* 2018;47(3):318-31.
- 874 113. Zhu Z, Mei Z, Guo Y, et al. Reduced risk of inflammatory bowel disease-associated colorectal
875 neoplasia with use of thiopurines: a systematic review and meta-analysis. *Journal of Crohn's
876 and Colitis* 2018;12(5):546-58.
- 877
- 878
- 879
- 880
- 881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

Table 1. Pooled analysis of studies examining biologics*, 5-ASAs, and immunomodulators for risk of CRC or dysplasia outcomes in all the studies and after subcategorizing by IBD phenotypes.

Medications	Subgroups	Pooled risk estimates in different IBD phenotypes					
		All IBD phenotypes		UC		CD	
		RR (95% CI) [n]	<i>I</i> ²	RR (95% CI) [n]	<i>I</i> ²	RR (95% CI) [n]	<i>I</i> ²
B	All	0.74 (0.64 - 0.85) [11]	56.8%	0.78 (0.74 - 0.84) [5]	0%	0.69 (0.66 - 0.72) [3]	0%

	Anti-TNF	0.72 (0.62 - 0.84) [10]	66.8%	0.78 (0.73 - 0.83) [4]	0%	0.64 (0.34 - 1.21) [2]	8.5%
	Anti-TNF + Anti-Integrins	1.00 (0.53 - 1.89) [3]	0%	1.38 (0.56 - 3.44) [1]	0%	0.55 (0.19-1.57) [1]	0%
5-ASAs	All	0.78 (0.70 - 0.86) [32]	52.1%	0.59 (0.45 - 0.78) [18]	65.9%	0.84 (0.81 - 0.87) [4]	0%
	Sulfasalazine	0.52 (0.21 - 1.29) [5]	74.7%	0.52 (0.21 - 1.29) [5]	74.9%	-	-
	Non-Sulfasalazine	0.80 (0.74 - 0.88) [17]	41.9%	0.64 (0.48 - 0.84) [13]	58.6%	0.84 (0.81 - 0.87) [4]	0%
IMM	All	0.92 (0.82 - 1.02) [34]	83.1%	0.97 (0.73 - 1.30) [15]	57.1%	0.79 (0.50 - 1.27) [5]	58.8%
	Thiopurines	0.89 (0.67 - 1.18) [10]	0%	0.83 (0.57 - 1.22) [13]	44.9%	0.56 (0.20 - 1.54) [3]	54.6%
	Other IMM**	0.92 (0.82 - 1.04) [24]	87.2%	1.28 (1.16 - 1.43) [2]	8.9%	1.02 (0.98 - 1.06) [2]	0%

[n]: Number of pooled studies

* Biologics: Anti-TNF (infliximab, adalimumab, certolizumab, golimumab) & anti-Integrins

** Thiopurine plus methotrexate which represents pooled immunomodulator monotherapy exposure groups rather than simultaneous combination therapy.

IBD; Inflammatory bowel disease, N/A; RR; relative risk, not applicable, NOS; Newcastle-Ottawa scale.

- : means no study for this parameter.

Note: Data in **bold font** are statistically significant.

899

900

901

902

903

904

905

906

907

908

909

910

Table 2. Stratified analysis of the studies examining biologics*, 5-ASA, and immunomodulators in patients with IBD for CRC chemoprevention according to outcome definition and IBD phenotypes.

Subgroups	Pooled risk estimates in studies reported different outcomes
-----------	--

		All (CRC + CRC/Dys)		CRC		CRC/Dys	
		RR (95% CI) [n]	<i>I</i> ²	RR (95% CI) [n]	<i>I</i> ²	RR (95% CI) [n]	<i>I</i> ²
Biologics	Anti-TNF	UC: 0.78 (0.73 - 0.83) [4] CD: 0.64 (0.34 - 1.21) [2]	0% 8.5%	UC: 0.78 (0.73 - 0.83) [3] CD: 0.64 (0.34 - 1.21) [2]	0% 8.5%	UC: 1.6 (0.2 -13.8) [1] - -	0% - -
	Anti-TNF + Anti-Integrins	UC: 1.38 (0.56 - 3.44) [1] CD: 0.55 (0.19-1.57) [1]	0% 0%	UC: 1.38 (0.56 - 3.44) [1] CD: 0.55 (0.19-1.57) [1]	0% 0%	- -	- -
5-ASAs	Sulfasalazine	UC: 0.52 (0.21 - 1.29) [5] - -	74.9% - -	UC: 0.18 (0.04 - 0.94) [2] - -	79.8% - -	UC: 1.01 (0.51 - 2.01) [3] - -	15.7% - -
	Non-Sulfasalazine	UC: 0.64 (0.48 - 0.84) [13] CD: 0.84 (0.81 - 0.87) [4]	58.6% 41.9%	UC: 0.66 (0.45 - 0.96) [7] CD: 0.84 (0.81 - 0.87) [4]	75.4% 41.9%	UC: 0.55 (0.37 - 0.82) [6] - -	0% - -
IMM	Thiopurines	UC: 0.83 (0.57 - 1.22) [13] CD: 0.56 (0.20 - 1.54) [3]	44.9% 54.6%	UC: 1.52 (0.86 - 2.67) [5] CD: 0.90 (0.27 - 3.00) [2]	0% 34.3%	UC: 0.65 (0.42 - 1.00) [8] CD: 0.30 (0.13 - 0.7) [1]	44.4% 0%
	Other IMM**	UC: 1.28 (1.16 - 1.43) [2] CD: 1.02 (0.98 - 1.06) [2]	8.9% 0%	UC: 1.28 (1.16 - 1.43) [2] CD: 1.02 (0.98 - 1.07) [2]	8.9% 0%	- -	- -

[n]: Number of studies

* Biologics: Anti-TNF (infliximab, adalimumab, certolizumab, golimumab) & anti-Integrins

** Thiopurine plus methotrexate

IBD; Inflammatory bowel disease, N/A; RR; relative risk, not applicable, NOS; Newcastle-Ottawa scale.

- : no study was for this parameter.

Note: Data in **bold font** are statistically significant.

911

912

913

Table 3. Previously published systematic reviews and meta-analyses in comparison with the current study.

	Authors & publication year [ref]	No. of studies	Pooled estimate (95% CI)	P-value	<i>I</i> ²	IBD patients	CRC cases
5-ASAs	Nguyen et al. 2012 ¹⁰⁵	4	0.95 (0.66 to 1.38)	0.07	58.2%	NR	NR
	Zhao et al. 2014 ¹⁰⁶	17	0.63 (0.48 to 0.84)	<0.001	64.8%	20,193	1,508
	O'Connor et al. 2015 ¹⁰⁷	8	0.6 (0.4 to 0.9)	0.04	60%	NR	867
	Qui et al. 2017 ¹⁰⁸	26	0.58 (0.45 to 0.75)	0.000	58.3%	13,492	1,958
	Bonovas et al. 2017 ¹⁰⁹	31	0.57 (0.45 to 0.71)	<0.001	55%	NR	2,137
	Wijnands et al. 2021 ⁴	20	0.53 (0.39 to 0.72)	<0.00001	67%	NR	NR

	Kefayat <i>et al</i> 2024	32	0.78 (0.70 to 0.86)	< 0.0001	52.1%	462,408	9,847
Immunomodulators	Gong et al. 2013 ¹¹⁰	19	0.71 (0.54 to 0.94)	<0.001	68.0%	NR	NR
	Jess et al. 2014 ¹¹¹	15	0.87 (0.71 to 1.06)	0.01	51.8%	NR	NR
	Lu et al. 2017 ¹¹²	24	0.63 (0.46 to 0.86)	< 0.001	65.5%	76,999	NR
	Zhu et al. 2018 (Cohort studies)* ¹¹³	11	0.96 (0.94 to 0.98)	0.67	0.0%	95,397	NR
	Zhu et al. 2018 (Case-control)* ¹¹³	16	0.49 (0.34 to 0.70)	< 0.001	65.2%	95,397	NR
	Wijnands et al. 2021 ⁴	19	0.55 (0.37 to 0.82)	<0.00001	66%	NR	NR
	Kefayat <i>et al</i> 2024	35	0.91 (0.82 to 1.02)	0.092	82.7%	544,380	10,794
Biologics	Wijnands et al. 2021 ⁴	4	0.71(0.14 to 3.67)	<0.00001	86%	NR	NR
	Kefayat <i>et al</i> 2024	11	0.74 (0.64 to 0.85)	< 0.0001	56.8%	447,637	8,721
NR: not reported; CRC: colorectal cancer; IBD: inflammatory bowel disease;							
* The authors did not report the overall pooled estimates and just reported meta-analyses of case-control and cohort studies separately.							

914

915

916

917

918

919

920

921

922

923

924