

Central Lancashire Online Knowledge (CLOK)

Title	Evaluating rehabilitation and return to play procedures in male professional football: A narrative review.
Type	Article
URL	https://knowledge.lancashire.ac.uk/id/eprint/57784/
DOI	https://doi.org/10.1177/17479541251413466
Date	2025
Citation	Dixon, Benjamin John, Alexander, Jill and Harper, Damian (2025) Evaluating rehabilitation and return to play procedures in male professional football: A narrative review. <i>International Journal of Sports Science & Coaching</i> . ISSN 1747-9541
Creators	Dixon, Benjamin John, Alexander, Jill and Harper, Damian

It is advisable to refer to the publisher's version if you intend to cite from the work.
<https://doi.org/10.1177/17479541251413466>

For information about Research at UCLan please go to <http://www.uclan.ac.uk/research/>

All outputs in CLoK are protected by Intellectual Property Rights law, including Copyright law. Copyright, IPR and Moral Rights for the works on this site are retained by the individual authors and/or other copyright owners. Terms and conditions for use of this material are defined in the <http://clok.uclan.ac.uk/policies/>

1 **Evaluating rehabilitation and return to play procedures in male professional football: A narrative review.**

2

3

4 **Ben Dixon^{1,2}, Jill Alexander¹, Damian Harper¹**

5 ¹ Football Performance Hub, Institute of Coaching and Performance, School of Health, Social Work and Sport,
6 University of Lancashire, Preston, UK.

7 ²Performance and Medical Department, Millwall Football Club, London, UK.

8

9 ***Corresponding Author***

10 **Ben Dixon^{1,2}**

11 **ORCID ID:** [0009-0009-0925-2304](https://orcid.org/0009-0009-0925-2304)

12 **E:** bjdixon@lancashire.ac.uk; bdixon@millwall.co.uk

13 **X:** [@ben_dixon23](https://twitter.com/ben_dixon23)

14

15 **Jill Alexander¹**

16 **ORCID ID** [0000-0002-6492-1621](https://orcid.org/0000-0002-6492-1621)

17

18 **Damian Harper¹**

19 **ORCID ID** [0000-0002-5430-1541](https://orcid.org/0000-0002-5430-1541)

20 **X:** [@DHMov](https://twitter.com/DHMov)

21

22

23

24 **Evaluating rehabilitation and return to play procedures in male professional football: A narrative review.**

25

26 **Abstract**

27 Injuries in male professional football present a multi-faceted and complex challenge for practitioners with
28 significant consequences across performance, psychosocial and financial domains. Medical and performance staff
29 encounter considerable pressure to maximise player availability and advance rehabilitation timeframes, whilst
30 minimising the risk of subsequent injury. Decisions involving increased risk promise, potentially, higher rewards
31 and may significantly influence a player's career and team performance. Therefore, it is crucial that rehabilitation
32 and return to play (RTP) procedures are evidence-informed and strategically designed to mitigate subsequent
33 injury risk. Due to the complex nature of injuries, and the multidisciplinary approach required during the
34 rehabilitation process, a wide range of knowledge and skills are essential to inform a shared decision-making
35 process and successful-RTP. To support the understanding of the competencies required, this narrative review
36 gives an overview of existing aetiological models, decision-making frameworks and RTP approaches within the
37 current literature. The current role of criteria-based progressions in rehabilitation frameworks are evaluated and
38 potential future research, that could improve rehabilitation procedures and inform better RTP decision-making
39 and post-RTP care in the professional football environment, is highlighted.

40

41 **Key Words**

42 injury, aetiological models, decision-making, return to sport, multidisciplinary

43

44

45

46

47

48

49

50 **Introduction**

51 The implications of injury within professional football are multi-faceted, complex and can have significant
52 performance, psychosocial, and financial implications.^{1, 2} Significant pressure is placed upon medical and
53 performance departments to maximise player availability and accelerate rehabilitation. Usually, riskier options
54 promise higher returns and the decision to progress or delay a player's return to play (RTP) may have a significant
55 impact on a player's career and a team's future performances.³ Therefore, it is vital that the support given to player
56 during rehabilitation, and the RTP process, is well informed, timely and minimises the risk of subsequent injury.
57 This dilemma challenges the practitioner to balance multiple processes, influential contextual factors and specific
58 individual needs, by blending 'art' and 'science' through effectively applying current research into practice.⁴

59 Several studies have been conducted globally on injury epidemiology in male professional football.⁵⁻¹³ Reportedly,
60 teams competing at the highest level in Europe typically suffer 50 injuries per season.⁵ Injury incidence studies
61 across male professional football reports ranges between 6.5-9.1/1000hours^{5-12, 14} with injury incidence rates
62 similar between professional leagues and countries.¹⁰ The variation in reported overall incidence may be due to
63 studies reporting single season estimates⁹ compared to others using inter-seasonal differences.^{5, 7, 8, 11} Inter-
64 seasonal changes give important information on injury trends and are critical in the development of injury
65 prevention strategies.¹¹ Furthermore, dense fixture schedules, alongside the increasing physical and psychological
66 demands of the game,¹⁵⁻¹⁷ add complexity to the rehabilitation process, to ensure a player is fully prepared for
67 RTP.

68 Match injuries have a higher incidence (20.9-58/1000 hours), compared to training (2.8-6.8/1000 hours).^{5, 8-12}
69 Lower extremity injury incidence was most frequent (6.8/1000 hours), with muscle and tendon injuries the most
70 frequent type (4.6/1000 hours).¹⁰ It is important to consider the severity of injury and associated time-loss. Severe
71 injuries (>28 days lost) accounted for between 15-23% of injuries sustained with moderate injuries (8-28 days
72 lost) between 33-47%.^{5, 8-11} On average, each player misses 37 days per season meaning approximately 12% of
73 the season is lost due to severe injury,⁵ with the most severe injuries resulting in longer rehabilitation periods and
74 potential threats to player's careers.¹⁸

75 Injury severity can strongly impact the physical and psychosocial characteristics of the player demonstrating the
76 need for a holistic approach to rehabilitation.^{19, 20} High severity of injury can negatively affect individual player
77 performance, across mental, physical and technical domains^{18, 21, 22} with injury burden known to negatively affect
78 team performance and results.^{1, 2} Reportedly, lower injury incidence was correlated with higher league position,

79 more games won, more goals scored and greater total points.² Consequently, this has the potential to influence job
80 security of the head coach, with the average tenure reported to be less than 16 months,²³ or the surrounding
81 multidisciplinary team (MDT).²⁴ The financial implications are significant. For English Premier League teams,
82 an average cost of approximately £45 million per season per team²⁵ has been reported, in Australian football costs
83 range between AUD\$ 187,990 to 332,680 annually,²⁶ for a Brazilian club hamstring injuries alone reportedly
84 caused a potential loss of \$43.2 million USD in a single season²⁷ and the cost of muscle injuries, for Spanish First
85 Division teams, equates to a total monthly cost of €7.3 million.²⁶ This provides professional football clubs with a
86 strong economic incentive to invest and improve injury prevention and rehabilitation processes.

87 An index injury is defined as the first injury to occur or any subsequent injury that is clinically unrelated to the
88 previous injury.²⁸ Reinjury is defined as “an injury of the same type and at the same site as an index injury and
89 which occurs after a player’s return to full participation”.²⁵ Incidence of reinjury is relatively low (1.3/1000 hours),
90 however, they reportedly account for 6.1-18.8% of injuries.^{5, 10, 29} High recurrence rates have been reported for
91 hamstring (12-43%), groin injuries (31-50%), knee sprains (30-40%) and lateral ankle sprains (17%).^{6, 7, 14, 30}
92 These findings demonstrate that some reinjuries are higher risk, however, could be attributable to inadequate
93 rehabilitation or premature RTP.¹⁴ Most identified studies recognise the longer timeframe of rehabilitating a
94 reinjury causing a higher burden than initial injuries.^{5, 8-11, 31} Further considerations are the increased time loss
95 suffered and the psychological impact, including player mental health, faith in the rehabilitation process and the
96 trust between player and practitioner.³² Reinjury anxiety had been identified as a mediating factor in psychological
97 readiness to return.³³⁻³⁵ Therefore, the process from initial injury assessment to final return to performance
98 (RTPerf) is crucial to promote a reduction in subsequent injury and to maintain player performance.

99 Epidemiological data emphasises the importance of effective injury rehabilitation programming, informed through
100 a multidisciplinary approach,^{19, 36, 37} and the need for evidence informed return to training (RTT) and RTP
101 protocols.⁵⁻¹¹ Several rehabilitation and RTP frameworks have been developed in male professional football
102 including the “control-chaos continuum”,³⁸⁻⁴⁰ a five stage on-field program⁴¹ and a criteria-based return to
103 performance pathway.⁴² To continually improve and inform rehabilitation procedures, and RTP decision-making,
104 further development and understanding of objective criteria is vital to minimise the risk of further injury. The
105 factors described provide a clear rationale for the continued advancement of injury prevention and rehabilitation
106 strategies³⁹ to ensure player reintegration post-injury is optimised and reinjury risk minimised.

107 The aim of this narrative review is to give an overview of aetiological models, decision-making frameworks and
108 return to sport (RTS) approaches reported within the current literature. The role of criteria-based progressions in
109 rehabilitation frameworks, and their application within male professional football, are evaluated through the
110 identification of potential future research, that could improve rehabilitation procedures and inform better RTP
111 decision-making and post-RTP care. Common phrases used to describe the 'return' of a player during different
112 phases of rehabilitation in football are defined in table 1 and used within the subsequent sections of this review.

113 **Table 1.** Descriptions of different phases of 'return' of a player during different phases of the rehabilitation process.

114

Phase Term	Abbreviation	Description
Return to Participation	-	The player is participating in rehabilitation, training (modified or unrestricted), or in sport at a lower level than their RTS goal. The player is physically active, but not yet 'ready' (medically, physically and/or psychologically) for full RTS. ⁴³
Return to Sport	RTS	The player has returned to their sport but is not performing at their desired performance level. ⁴³
Return to Training	RTT	<p>The player is gradually exposed to different aspects of team training.⁴²</p> <p>Further RTT subphases include:</p> <ul style="list-style-type: none"> • Partial Team Interaction: introduce the player to partial elements of team training and the club-specific training structure with restrictions agreed.⁴ • Team Interaction: involve player in modified team training, modification of drills/game-based training and training parameters in line with team training content/club-specific structure and in season micro-cycle with restrictions agreed. There is a high level of adaptability in terms of the level of integration and aims to challenge the player before resuming full team training.⁴ • Non-contact Modification: the player is re-integrated into non-contact team training.⁴⁴ • Contact Modification: the player is progressively integrated into team training and exposed to contact.⁴⁴ • Full Integration: the player is fully integrated into team training.⁴⁴ <p>Subphases and level of modification are influenced by injury type, severity, length of absence and potential load increases.⁴</p>
Return to Play	RTP	The player is gradually exposed to competitive match-play. ⁴²
Return to Performance	RTPerf	The player has returned to match-play and is performing at or above their preinjury level. ^{42, 43}

115 **Aetiological Models**

116 An understanding of injury prevention and aetiological models can assist practitioners in discussing possible
117 causes of injury whilst appreciating the complex nature of the event. A mechanism of injury refers to the method
118 by which damage or trauma occurs, and can be defined as the process of considering the forces involved in an
119 injury-causing event.⁴⁵ Injuries in sport are related to some form of overload, either involving direct trauma,
120 mechanical failure through 'stress' or 'strain' or a combination of both.⁴⁶ When the 'stress' (i.e., the internal forces
121 experienced by a structure defined as force per unit of area) and/or 'strain' (i.e., the amount of deformation or
122 length change in the direction of the applied force)⁴⁶ exceeds the maximal strength or failure strain capacity of a
123 particular tissue type, this results in injury.⁴⁶⁻⁴⁸ Traditional injury prevention models have been reductionist in an
124 attempt to simplify multifaceted components, to identify relationships or a sequence of events, but fail to
125 acknowledge injuries involve complex interactions between numerous factors.⁴⁹ Aetiological models have cited
126 the interaction between both intrinsic and extrinsic factors such as age, injury history, neural inhibition, fascicle
127 length alteration, strength deficiencies, neuromuscular fatigue, movement efficiency, training load and
128 competition schedule amongst others.^{50, 51} Therefore a multidisciplinary, holistic approach is vital to accommodate
129 the complex and individual nature of injury and rehabilitation.⁴⁹ An overview of the development of aetiological
130 models is presented in Table 2.

131 **Table 2.** An overview of the development of aetiological models.

Study	Year	Model of Injury Causation	Type	Focus
Ettema ⁵²	1973	Stress-Capacity Model	Balance scale model: stress and capacity seen as static entities and must be balanced to prevent injuries.	<ul style="list-style-type: none"> Developed from preventative medicine identifying risk factors as external (environmental) and internal (capacity by the state of the personal). Stress is determined by external factors and capacity by internal factors. Highlights the potential to manipulate the external environment to reduce risk and the influence of psychosocial factors.
van Mechelen et al. ⁵³	1987	Sequence of Prevention Model	Four-step dynamic loop: <ol style="list-style-type: none"> Establishing the extent of the sports injury problem. Establishing aetiology and mechanism of injuries. Introducing preventive measures Assessing their effectiveness by repeating step 1. 	<ul style="list-style-type: none"> Evaluates the effectiveness of injury prevention interventions. One of the first models to identify injury aetiology as a key component of the process. Influential in the development of sports injury research framework, TRIPP⁵⁴ and was developed to incorporate a socioecological view and addressing the injury in context⁵⁵.
Andersen & Williams ⁵⁶	1988	A Model of Stress and Athletic Injury	Interactional multi-component model of injury presenting the cognitive, physiological, attentional, behavioural, intrapersonal, social, and stress history variables that may influence injury occurrence and prevention.	<ul style="list-style-type: none"> Built around the stress response with four central components: 1) potentially stressful athletic situation, 2) cognitive appraisal of the situation, 3) physiological and attentional responses, 4) potential injury outcome. Above the stress response are three contributing areas: 1) personality factors, 2) history of stressors, 3) coping resources. Model is predicated on the assumption that two mechanisms behind the stress-injury relationship are increases in general muscle tension and deficits in attention during stress. To reduce the impact of these mechanisms two groups of interventions are presented addressing either the cognitive appraisal or the physiological/attentional aspects.
van Dijk et al. ⁵⁷	1990	Stress-Strain-Capacity Model	Time-based three phase sequential model: <ol style="list-style-type: none"> Stress: external load and personal control. Strain: all acute and short-term effects, e.g., acute sports injuries. 	<ul style="list-style-type: none"> Considers the effects of training, overload and behavioural aspects over an extended time period. The model acknowledges that stress and capacity are dynamic units, and an athlete can actively affect stress and strain. An injury is the result of a complex set of interactions of internal and external risk factors.

			<p>3. Long term and permanent effects, e.g., overuse injuries.</p> <p>Capacity is a dynamic value that is the sum of all intrinsic factors allowing an athlete to perform.</p>	
van Mechelen et al. ⁵⁸ (Modified from Backx et al., 1990 ⁵⁹ , Bol et al., 1991 ⁶⁰ , Kok & Bouter, 1990 ⁶¹)	1992	Sports Behaviour Model	<p>Dynamic model on the interrelation between risk factors, the occurrence of injury and subsequent preventative measures.</p>	<ul style="list-style-type: none"> • Illustrates the impact behaviour may have on injury risk. • Determinants are influenced by internal/external factors, personal equipment and load. • Three factors considered determinants of behaviour: <ol style="list-style-type: none"> 1. Attitude: the knowledge and beliefs of a person concerning the consequences of a certain form of behaviour. 2. Social Influence: influence by others. 3. Self-efficacy-cum-barriers: whether one is able to perform the desired behaviour.
Meeuwisse ⁶²	1994	Multifactorial Model	<p>Epidemiological, multifactorial model: Proposes the model should be used to examine various factors and their interrelationships.</p>	<ul style="list-style-type: none"> • Formed from the assessment of causal and associative factors. • Accepts previously identified intrinsic and extrinsic risk factors and adds an inciting event as the final link to injury occurring. • Suggests a different relative contribution of intrinsic and extrinsic factors for acute and overuse injuries.
Williams & Andersen ⁶³	1998	Revised Model of Stress and Athletic Injury	<p>Development on the interactional model of stress-injury.</p>	<ul style="list-style-type: none"> • Highlighted the bidirectional nature directly between personality traits and coping resources and interaction between the three areas of stress response. • Removed medication as a proposed intervention. • Expanded the peripheral narrowing and distractibility variables to include audition.
McIntosh ⁶⁴	2005	Multifactorial and Biomechanical Model	<p>Multifactorial model with a biomechanical focus on tissue properties and injury.</p>	<ul style="list-style-type: none"> • Incorporates multiple intrinsic and extrinsic inputs, and accounts for acute and repeated events. • Introduces the effect of increased or decreased mechanical load alongside the individual load response. • Acknowledges the importance of movement co-ordination and efficiency, and that injury interventions focus on internal and external load modification by reducing load or improving capacity.
Bahr & Krosshaug ⁶⁵	2005	Comprehensive Model	<p>Comprehensive model combining epidemiological and biomechanical</p>	<ul style="list-style-type: none"> • The importance of injury mechanism and the language used to describe injury inciting events is highlighted.

			approaches with a focus on the specific sport.	<ul style="list-style-type: none"> The key component added is a precise, multi-level description of the inciting event. The different levels are categorised: <ol style="list-style-type: none"> Playing situation. Player/opponent behaviour. Gross biomechanical description (i.e., whole body). Detailed biomechanical description (i.e., specific joint).
Meeuwisse et al. ⁶⁶	2007	Dynamic, Recursive Model	Cyclical model based upon a contact injury model ⁶⁷ and incorporating the consequences of repeated sport participation.	<ul style="list-style-type: none"> Evolved the concept that injuries are dynamic and recursive and changes in injury risk with training exposure result in constant variations in injury susceptibility. Ever-changing risk factors are important to acknowledge in injury prevention.
Appaneal & Perna ⁶⁸	2014	Biopsychosocial Model of Stress and Athletic Injury and Health (BMSAIH)	Interactional model proposed as an independent extension to the revised model of stress and athletic injury.	<ul style="list-style-type: none"> Focuses on the dynamic interactions between physiological, psychological and social elements and the collective influence on stress, injury and health. Expands on previous models in three ways: 1) it clarifies mediating physiological pathways between athletes' stress response and adverse health outcomes, 2) it considers other health outcomes and behavioural factors that impact sport participation, 3) it integrates the impact of training upon athlete health. The central component is psychosocial distress (e.g., negative life events) may act synergistically with training-related stress increasing susceptibility.
Bittencourt et al. ⁶⁹	2016	Complex Systems Model	Applies a complex systems approach, to evaluate risk factors, identify interactions and how these interactions contribute to injury, within a dynamic, recursive aetiological model.	<ul style="list-style-type: none"> Proposes sports injuries will be better understood by recognising frequent patterns of interaction among multilevel risk factors. These risk factors are unpredictable interacting units within a complex system resulting in a web of determinants. These interactions form regularities which emerge as either injury or adaptation. This constrains the interactions creating a recursive loop and dynamically shaping further interactions. Risk factors have a different weighting for different physical demands and an individual's tolerance, therefore, looking for existing patterns and identifying relationships is necessary to allow the development of effective interventions to specific risk profiles. Suggests research should move from using isolated risk factors to injury pattern recognition by identifying the complex pattern of interactions.
Windt & Gabbett ⁷⁰	2017	The Workload-Injury Model	Recursive model incorporating workload within the causal chain for injury.	<ul style="list-style-type: none"> This model was the first to explicitly incorporate workloads within the causal chain for injury.

				<ul style="list-style-type: none"> • The dynamic nature of injuries is acknowledged, and the concept that application of workload is the primary process whereby an athlete is exposed to external risk factors and potential inciting events is presented. • Proposes a conceptual framework for 'why' workloads are strongly associated with injuries by continually modifying injury predisposition through either positive or negative physiological adaptations.
O'Brien et al. ⁷¹	2019	The Team-sport Injury Prevention Cycle (TIP)	<p>Three-step continual cycle model:</p> <ol style="list-style-type: none"> 1. (Re)Evaluate: evaluating current injuries and analysing current prevention strategies being used. 2. Identify: exploring the risk factors and mechanisms underpinning the injuries identified during the evaluation phase. 3. Intervene: planning both the content and delivery of injury prevention strategies. <p>Ongoing re-evaluation and modification is required as part of a dynamic, cyclical process.</p>	<ul style="list-style-type: none"> • Considers the application of aetiological models into injury prevention strategies. • TIP reflects the cyclical nature of injury prevention and considers a team's unique/specific context and challenges as part of the process. • A multidisciplinary approach is highlighted, and practitioners can assess injury risk whilst identifying barriers and facilitators that can impact the success of prevention strategies.
Kalkhoven et al. ⁴⁶	2020	Model for Athletic Injury and Framework for Stress-related, Strain-related and Overuse Injury	<p>Conceptual model formed with six interacting levels:</p> <ol style="list-style-type: none"> 1. Causal contextual factors. 2. Individual physiological profile, functioning, mechanical properties and force applied to the body. 3. Load tolerance of structures and loading applied. 4. Specific tissues internal stress and strain experienced. 5. Timeframe of stress/strain application (immediate/repetitive). 6. Injury occurrence. 	<ul style="list-style-type: none"> • Considers the interaction between physiological and mechanical factors and highlights possible causal pathways. • Attempts to establish direct injury causation by investigating how risk factors contribute to injury occurrence. • Considers how individual components interact with other factors that underpin the load tolerance of different structures/tissues, and the loads applied. • Introduces the consideration of different loading patterns resulting in various injury outcomes and defining these as acute stress-related, strain-related, or overuse. • A holistic approach using concepts of load tolerance and application, physiological and mechanical properties of specific tissues and attempting to identify causal pathways had not been previously established.
Liveris ⁷²	2025	System Dynamics Model	Computational modelling method to simulate dynamic, complex systems.	<ul style="list-style-type: none"> • Initially uses Causal Loop Modelling (CLD) to evaluate intrinsic, extrinsic and institutional risk factors interrelationships that lead to injury.

			<ul style="list-style-type: none"> • CLD shows a perspective of risk factors' dynamic, nonlinear association, the connections between elements having a positive or negative effect, and the links create loops characterised as reinforcing or balancing.⁷³ • Further employs Partial Least Squares Structural Equation Modelling to quantitatively assess intrinsic risk factors' interrelationships and their effects on hamstring injuries and frequency of non-contact lower limb injuries.⁷⁴
--	--	--	--

132 Legend: BMSAIH, Biopsychosocial Model of Stress and Athletic Injury and Health; CLD, Causal Loop Modelling; TIP, Team-sport Injury Prevention Cycle; TRIPP,
 133 Translating Research into Injury Prevention Practice framework.

134 Reviewing, understanding and applying aetiological models, can help practitioners to build injury mitigation
135 strategies,^{50, 71} analyse load/response^{75, 76} and inform RTP with the aim of reducing injury risk. It is important to
136 acknowledge the dynamic, recursive and complex nature of interacting internal (e.g., age, sex, physical fitness,
137 psychological factors) and external (e.g., sports rules, environment) risk factors alongside the situational patterns
138 and mechanisms that can lead to injury.⁶⁵ Furthermore, contextual factors, such as team dynamics, coaching
139 philosophy, game model, positional switching, season phase and fixture congestion may impact injury occurrence
140 and rehabilitation processes.⁷⁷ For example, studies have shown, during congested fixture schedules, overall injury
141 incidence to increase from 15.6 to 33.7 per 1000 hours and match injury incidence from 44.8 to 50.3 per 1000
142 hours.⁷⁸ The application of aetiological models into injury prevention frameworks⁷¹ is, therefore, an important
143 consideration for practitioners to understand. It is also important to acknowledge the concept of quaternary
144 prevention⁷⁹ and integrate this into prevention programming and contemporary prevention models. Quaternary
145 prevention aims to protect athletes from interventions that may cause more harm than good, e.g., overdiagnosis
146 (identifying problems that were never going to cause harm), overtreatment (providing unnecessary medical
147 interventions), and overmedication (prescribing too much or unnecessary medication).⁷⁹ Furthermore, it is
148 proposed that rehabilitation programming should implement the principles of quaternary prevention to protect
149 athletes from excessive interventions and use reliable, validated tools and testing protocols to accurately evaluate
150 and help make informed RTP decisions.⁷⁹ Future research into injury associations and causal pathways,
151 acknowledging the complex nature of injury, can further inform the progression of these models, and their role
152 within injury prevention frameworks.

153 **Decision-Making and Multidisciplinary Approaches to Return to Play Procedures**

154 Given the dynamic, recursive nature of injuries, the multiple stakeholders involved, and the financial implications
155 within the rehabilitation process, debate around who is responsible in making the final RTP decision and how that
156 decision is made within a complex environment remains a contemporary topic. Traditionally, medical practitioners
157 have been accountable for injury records within clubs, however, evidence suggests an association with head coach
158 leadership styles and the quality of internal communication.^{32, 80-83} Other important factors include the growing
159 influence and size of medical and performance departments,²⁴ the dynamics of the performance structure, sharing
160 individual expertise, psychologically safe environments, clearly defining problems and applying solutions, the
161 need for fast, intuitive decision-making and the quality of internal communication within the MDT and across
162 departments.⁸³⁻⁸⁵ Therefore, it is important that practitioners develop an understanding of decision-making
163 frameworks, the importance of multidisciplinary approaches and have clear communication procedures to create

164 an informed, shared decision-making process and develop purposeful application of critical thinking skills.⁸³ Table
165 3 presents an overview of decision-making frameworks that are applicable in a sporting environment to guide the
166 RTP decision-making process.

167 Ardern et al.⁸⁶ state that, ideally, decisions are guided by accepted clinical criteria, however, many have little
168 empirical evidence and there is a lack of agreement on the best criteria. It was proposed, a logical step would be
169 a consensus statement on RTS and to ascertain agreement in key areas.^{43, 86} The consensus statement on RTS
170 presented by Ardern et al.⁴³ is divided into 4 main sections: 1) definitions related to RTS, 2) models to guide RTS,
171 3) evidence to inform decision-making and 4) future research. A key concept highlighted is advocating an athlete-
172 centred approach, placing them in the position of active decision-maker, alongside other relevant stakeholders, as
173 part of a shared decision-making process.^{43, 87} The authors cited three models to guide the RTS process: 1) the
174 StARRT framework,⁸⁸ 2) the biopsychosocial model²⁰ and 3) optimal loading.⁸⁹ The authors state that load
175 progression is key and maintaining ‘optimal’ loading, by gradually increasing workload and avoiding ‘spikes’,⁹⁰
176 are important clinical considerations.⁴³ The importance of biological, psychological and social factors influencing
177 decision-making are presented and the role of ‘load’ in rehabilitation and post-RTS were defined.⁴³ The lack of
178 consensus and scientific evidence for RTS criteria for the majority of sport injuries is highlighted and a future
179 priority was identified to address the identification of positive and negative predictive (or prognostic) factors for
180 RTS outcomes.⁴³

181 **Table 3.** An overview of decision-making frameworks that can be used to guide return to play decision-making processes.

Study	Year	Decision-making Framework	Overview	Process
Creighton et al. ⁹¹	2010	Decision-Based Return to Play Model (RTP)	<ul style="list-style-type: none"> Attempts to clarify the processes and provide a structure with a logical rationale when making an RTP decision. Uses an influence diagram incorporating the states of nature elements, decision elements and the contributing information between elements Was the first model to attempt to provide a foundation for the integration of individual factors and components for evidence-based rationale for RTP decision-making. 	<ol style="list-style-type: none"> Evaluation of health status: the stage of healing of the injury. Evaluation of participation risk: the specific demands of the sport and injury. Decision modification: further potential influential factors.
Shrier ⁸⁸	2015	Strategic Assessment of Risk and Risk Tolerance (StARRT)	<ul style="list-style-type: none"> Considers RTP decision-making as a risk assessment. Assessed risk is compared to the risk tolerance of the individual. If assessed risk is greater than the risk tolerance, RTP should not be allowed. The key difference is StARRT identifies tissue health and stresses as decision elements, the role of this in injury and the factors that influence each step. 	<ol style="list-style-type: none"> Assessment of health risk: the stress the tissue can tolerate, i.e., the health of the tissue. Assessment of activity risk: the stress that will be applied during the sporting activity. Assessment of risk tolerance: the threshold for acceptable risk and factors that affect this.
Ardern et al. ⁸⁶	2016	Rearranged StARRT Model	<ul style="list-style-type: none"> The StARRT framework is a biopsychosocial model that highlights key elements in RTP decisions, however, the decision itself is not solved within the model. The StARRT model sits at the intersection of the evidence-based practice pillars. The practitioner integrates evidence with experience and patient/player preference when making decisions. The definition of a successful RTP is considered and, therefore, the decision should be shared between the practitioner and athlete. 	<p>Three evidence-based pillars:</p> <ol style="list-style-type: none"> Evidence: functional tests, physical exam, injury/medical history. Clinician: mask injury, liability, seriousness, ethics/conflict of interest, (re)injury prevention. Patient: competitive level, symptoms, sport, values, position, psychological state, demographics, limb dominance, values.
Dijkstra et al. ⁹²	2017	Shared Decision-making Process	<ul style="list-style-type: none"> Key roles of the healthcare professional, athlete and coach are highlighted with different contributions depending upon the factors influencing the decision. The size and impact of each individual contribution is variable depending on the status or phase of injury. 	<ol style="list-style-type: none"> Choice: making the athlete and coach aware that reasonable options exist. Option: providing more detailed information about the different options.

			<ul style="list-style-type: none"> The importance of effective, consistent and ongoing communication to achieve trust and to make quality RTP decisions is highlighted. 	3. Decision: guiding the athlete and coach to consider their preference and decide what is best.
Yung et al. ^{93, 94}	2022	Complex Systems Perspective	<ul style="list-style-type: none"> Decision support systems can be developed using AI algorithms and machine learning as potential tools that can consider dynamic interaction at multiple levels simultaneously. This may allow practitioners to compare potential outcomes of different decisions (e.g. reinjury likelihood), increase decision efficiency, and identify data patterns that may cause a certain outcome to compliment human decision-making. Evaluating the quality of decision-making is an important aspect and differentiating between the decision and the outcome is important, a high-quality decision does not necessarily warrant a good outcome due to uncertainties. Based upon an adapted decision analysis model the authors outline a three-step framework to make systematic and objective RTP decisions. 	<ol style="list-style-type: none"> 1. Choose appropriate RTP test and synthesise the data in a meaningful way. 2. Understand decision-making theories. 3. Use shared decision-making to eliminate contextual 'blind spots' and improve decision quality.

182 Legend: AI, Artificial intelligence; RTP, return to play; StARRT, Strategic Assessment of Risk and Risk Tolerance.

183 *Shared Decision-Making*

184 Dijkstra et al.⁹² acknowledged multiple individuals are involved in the decision-making process, and including
185 the athlete in the process fulfils psychosocial needs and supports an athlete-centred approach.⁹⁵ The fluid nature
186 of decision-making is acknowledged, however, only three stakeholders (healthcare professional, athlete and
187 coach) are highlighted. Within the context of professional football, medical and performance departments, the
188 player, technical coaches and directors are also involved.⁹⁶ Furthermore, with significant quantities of subjective
189 and objective data available, and influential contextual factors (e.g., player status, match importance), informing
190 RTT and RTP decision-making a flexible structure may be required. Developing a flexible structure, specific to
191 each unique club environment, allows practitioners to incorporate different individual experiences and skillsets,
192 be guided by subjective and objective data and consider the context of the decision to allow an informed, shared
193 approach.

194 Within professional football RTP practices have been investigated and the translation of research into practice has
195 been highlighted to enhance the process.⁹⁷ It was reported that a shared decision-making process was used by 80%
196 of teams although there was a lack of agreement in the level of involvement across phases by different
197 practitioners.⁹⁷ This could be accounted for by potential bias, however, the inconsistency found in the composition
198 raises some potential concerns about the specific dynamics of the communication among staff.⁹⁷ Shared decision-
199 making was demonstrated across the phases of rehabilitation with different weighting of importance given as
200 rehabilitation progressed, however, challenges were acknowledged relating to team hierarchy, particularly as
201 players returned to matches.⁹⁷ This demonstrates a positive use of shared decision-making in football, however,
202 further research into MDT dynamics has demonstrated uncertainty around who makes decisions and how they are
203 made can be an issue.⁸⁴ Additionally, department growth, resulting in more lines of communication, and
204 modernising methods of communication (i.e., mobile phones, email, social media rather than face to face
205 conversations)²⁴ further complicate the shared decision-making process. With leadership styles and
206 communication potentially impacting injury,⁸⁰⁻⁸² clearer processes, communication pathways and RTP decision
207 strategies are evidently important and required.⁸³

208 *Criterion-Based Decision-Making*

209 Whilst respecting biological healing timeframes, a paradigm shift towards criterion-based approach to RTS is
210 evident and studies have shown a reduction in reinjury rates when individuals have passed objective criteria before
211 RTS.⁹⁸ It is evident that practitioners are utilising evidence-based research and testing procedures throughout the

212 rehabilitation process, informing decisions and adapting decision-making frameworks, although further research
213 is required into RTP criteria in practice.^{43, 99} There is consensus for criteria-based RTP factors that a range of
214 clinical, physical, functional and psychological measures should be used.^{43, 100} These influence and inform
215 decision-making, and several studies have investigated their use and role within injury, rehabilitation and decision-
216 making frameworks.^{43, 97-104} In a survey by Dunlop et al.,⁹⁷ the use of criteria-based evaluations and clinical criteria
217 were reported during early phases, with sport-specific functional criteria (e.g., acceleration/deceleration, maximal
218 sprints) assessed across all phases and a greater focus placed on psychological readiness in the latter stages.
219 Despite the translation into practice no information was given to advance knowledge on specific metrics or
220 thresholds to be used within the professional football environment.

221 The development of injury specific criteria is important.^{43, 100, 104, 105} With particular reference to hamstring injuries
222 in professional football five core domains were identified as part of criteria-based rehabilitation progression
223 presented by Zambaldi et al.:¹⁰⁴ 1) functional performance, 2) strength, 3) flexibility, 4) pain and 5) player's
224 confidence. Following this a RTS continuum was proposed for professional athletes in which measures of
225 progression should be tested to progress through six categories: 1) movement and core, 2) strength and endurance,
226 3) power, 4) general and sport conditioning, 5) load performance testing and 6) self-reported outcome.⁹⁸ Criteria-
227 based progressions assist practitioners in being transparent in the decision-making process, however, sporting
228 environments are complex adaptive systems extending into injury and rehabilitation protocols whereby contextual
229 factors play an important role in the development of effective RTS frameworks.

230 The complex and multifactorial nature of RTS decisions provides a significant challenge to practitioners with
231 potential impacts on the athlete's well-being and performance, and the overarching performance of the team. With
232 multiple stakeholders involved it is important to have a clear shared decision-making process with players and
233 coaches active in the process. This may allow for important balance between intuitive and analytical processes,
234 therefore, practitioners are encouraged to adopt models that suit the context and environment to enhance the
235 quality of decision-making.¹⁰⁶ The development of artificial intelligence (AI), data driven algorithms and machine
236 learning techniques, to inform clinical decision-making, is a prominent, and evolving, area of interest in sports
237 medicine. Machine learning models, such as decision trees, Markov processes and neural networks, analyse
238 multidimensional data to identify subtle patterns and potential signs of injury risk and tracking algorithms provide
239 information on body movements in real-time allowing the identification of biomechanical inefficiencies¹⁰⁷ which
240 may prove crucial as part of the rehabilitation process. Due to methodological limitations and high risk of bias,
241 current models cannot be recommended to be used in practice,¹⁰⁸⁻¹¹⁰ however, once these limitations have been

242 addressed, machine learning could provide enhanced systematic analysis that could provide future solutions to the
243 training load/injury paradox.¹¹⁰⁻¹¹² Further advancement of the evidence base supporting injury prediction models,
244 RTS and rehabilitation protocols, may improve the ability of practitioners to make high quality, evidence informed
245 decisions to manage training load and reduce injury-risk.

246 **Return to Sport Models and On-Field Rehabilitation**

247 It is widely accepted the use of competency-based criteria is vital in progressing through different phases of
248 rehabilitation and several factors, such as muscle strength, psychological readiness, sport specific load and
249 cardiovascular fitness, contribute to an athlete's readiness for RTS.^{19, 30, 38, 42, 43, 98-100, 102, 104, 105, 113-115} The traditional
250 notion that RTS is a single decision at a point in time has developed into the concept of an evolving continuum
251 supporting the athlete from the onset of injury to full RTP, whilst mitigating the risk of further injury.^{42, 98, 113} The
252 identified multidisciplinary input throughout the process can result in differing timeframes and objective criteria
253 being recommended depending on the practitioner's specialist area^{87, 99} increasing the relevance of having a
254 reliable shared decision-making process in place.

255 *Return to Sport Clearance Continuum (Draovitch et al., 2022)*

256 To foster efficient progression, Draovitch et al.,⁹⁸ proposed a 'Return to Sport Clearance Continuum' (RTSCC).
257 This continuum consists of 5 sequential phases comprising: 1) repair phase (to minimise swelling, increase range
258 of motion and develop muscle activation), 2) rehabilitation and recovery phase (restoring normal
259 arthrokinematics), 3) reconditioning phase (focusing on skill and force development and load-volume tolerance),
260 4) performance phase (transition to full training), and 5) preseason/training camp phase (to be properly managed
261 for an upcoming season).⁹⁸ The RTSCC states training load should be monitored throughout, to avoid overloading
262 tissues, and testing criteria is suggested to ensure objective progress through the phases.⁹⁸ The scope of practice
263 for staff involved at each phase is not considered as part of the continuum, despite the different skills required.
264 Specialised personnel and team work between the medical and performance departments is important,¹⁹ yet the
265 specific involvement is often unclear.⁹⁷ The RTSCC provided a general framework for RTS processes and
266 decision-making to be developed, although more detail of practitioner responsibilities may be useful to develop
267 an understanding of the specialist skills and knowledge required throughout different phases of rehabilitation.

268 *The Return to Performance Pathway (Mitchell and Gimpel, 2024)*

269 A football specific framework has been initially proposed by Mitchell et al.¹¹³ and developed by Mitchell and
270 Gimpel.⁴² The 'Return to Performance Pathway' includes eleven phases from a diagnosis and planning phase, into
271 an acute phase and then progression through multiple gym and grass phases. A key component of the pathway is
272 the objective exit criteria for each phase in an attempt to ensure safe progression.⁴² Mitchell and Gimpel's⁴²
273 framework demonstrates the importance of a progressive multistage rehabilitation process and has adapted
274 previous frameworks for the end-stage rehabilitation phases known as on-field rehabilitation (OFR).^{38, 41, 42, 116}
275 The RTPerf Pathway framework⁴² provides a comprehensive overview of the rehabilitation process by introducing
276 acute and gym phases prior to starting OFR, whereas previous frameworks had focused primarily on OFR.^{38, 41,}
277¹¹⁶⁻¹¹⁹ These final phases are highlighted as being important to prepare the athlete for re-entry into sport and where
278 the overlap between rehabilitation and RTS processes occurs. This overlap requires specialised personnel, and
279 teamwork between the medical, performance and coaching departments, to transition the athlete and bridge the
280 gap between rehabilitation and sports specific training.^{19, 36} OFR represents these final phases as the athlete needs
281 to be physically prepared for the demands of their sport, from both an injury specific and a general conditioning
282 perspective. A stronger focus is required in these phases to prepare the athlete as there is a lack of validated
283 competency criteria for final RTP protocols, particularly for moderate-severe (>14 days) injuries.^{31, 36, 49, 116, 120}
284 Risk of subsequent injury and inter-injury relationships need to be evaluated and specific player monitoring post-
285 RTP is not considered. In the period following RTP a 'one month risk decay' of subsequent non-contact injuries
286 has been reported.¹²¹ Following return, initial risk of non-contact subsequent injury was about two times higher
287 than baseline. This risk diminished by half after approximately 25 days and levels off afterwards.¹²¹ The severity
288 of injury should be considered with severe injuries showing an increasing injury risk within the first ten days and
289 remaining relatively high thereafter.¹²¹ The continuous hazard curve of non-contact injuries shows a decline
290 towards four weeks post RTP¹²¹ indicating additional phases may be required to assess exposure to pre- and post-
291 RTT loads and to further inform tertiary injury mitigation strategies.¹²²

292 *On-Field Rehabilitation*

293 Table 4 presents conceptual models specific to OFR that have been developed^{38, 41, 116-119} and re-evaluated to ensure
294 rehabilitation processes are representative of most recent evidence and practice design.^{39, 40} The frameworks and
295 studies presented demonstrate the strength of progressive OFR protocols and the impact on reinjury risk and
296 subsequent physical performance. Cited limitations include the prescriptive nature of programmes and the

297 individual nature of injury and responses to load interventions.⁴⁹ These conceptual frameworks can offer increased
298 flexibility to support decision-making and allow for individual criteria-based progression throughout different
299 stages of rehabilitation. This empowers practitioners to continually evolve their practice and understanding of the
300 process.⁴⁹ These frameworks provide a solid conceptual guide for practitioners to utilise during rehabilitation,
301 however, they are based upon expert opinion, inductive reasoning and case study applications.¹²³⁻¹²⁵ There is a
302 need for validation through experimental evidence and testing alongside practical insights into how OFR is
303 currently executed.^{49, 126}

304 *Developing On-Field Rehabilitation*

305 The concept of ‘load’ has been highlighted through the aetiological, decision-making, RTS and OFR frameworks
306 previously described.^{38, 41, 43, 46, 57, 64, 70, 105, 115, 117-119} A survey of practitioners has shown ‘training load’ was one of
307 the most frequently used criteria when progressing through the final stages of rehabilitation⁹⁷ and specific metrics
308 are available, although, more evidence is needed for the practical application of certain thresholds.^{36, 97, 126, 127} This
309 has been further highlighted in a survey by Armitage et al.³⁶ regarding OFR practices within professional football.
310 During OFR, wearable technology, such as global positioning systems (GPS) and heart rate monitors,¹²⁸ was
311 ranked as the most popular monitoring technique and is used daily in 97% of cases. Furthermore, wearable
312 technology was ranked the second most important factor for decision-making between sessions and, as
313 rehabilitation progresses, monitoring techniques shifted from subjective to objective measures with GPS deemed
314 most important.³⁶ This demonstrates the influence of GPS within rehabilitation, particularly during the late OFR
315 phases before RTP, however, there is a lack of consensus with regards to specific metrics and thresholds used.
316 Some practitioners using targets that “are arbitrary (set at a squad level), relative (set at an individual level) or a
317 combination of both”.³⁶ In some cases, there was a change from using absolute to relative units and different
318 thresholds were reported for acceleration and deceleration metrics.³⁶ Despite this, it is widely accepted that
319 systematic load progression/management and the development of tissue tolerance of an injury site is vital
320 alongside restoring sport specific qualities.^{38, 41, 42, 49, 116}

Table 4. An overview of conceptual models for on-field rehabilitation in football.

Study	Year	On-Field Rehabilitation Framework	Overview
Taberner et al. ³⁸⁻⁴⁰	2019	Control-Chaos Continuum	<ul style="list-style-type: none"> Introduces five stages of OFR, moving through 1) high control, 2) moderate control, 3) control to chaos, 4) moderate chaos and 5) high chaos. The stages interlink global positioning system (GPS) variables, progressing volume and intensity, sport-specific conditioning, technical and movement qualities, while progressively increasing perceptual and reactive neurocognitive demands. The application of this framework has been illustrated across different case studies depending on the specific needs of the injury.^{44, 124, 125}
	2025	Evolving the Control-Chaos Continuum: Part 1 – Translating Knowledge to Enhance On-Pitch Rehabilitation	<ul style="list-style-type: none"> Updated model of the control-chaos continuum, utilising research in injury neurophysiology, that integrates practice design and physical-cognitive interactions. The updated framework incorporates elements of visual cognition, attentional challenges, decision-making, and progressive representation of the game model to enhance sport-specific preparation for returning to sport. Increased emphasis on progressively challenging neurophysiological capabilities, skill redevelopment and reducing cognitive demands on RTS by embedding tactical principles and positional responsibilities of the game model earlier in the rehabilitation process.
		Evolving the Control-Chaos Continuum: Part 2 – Shifting ‘Attention’ to Progress On-Pitch Rehabilitation	<ul style="list-style-type: none"> Emphasizes the design and delivery of progressive training in increasingly ‘chaotic’ conditions with the goal to align session and drill objectives to what the player experiences during competition. Adaptable for injury severity, and integrates physical-cognitive load monitoring, and strength and power diagnostics to enhance decision-making throughout RTS. Provides examples of how to adapt the ‘high chaos’ element to facilitate the transition to RTT and return to competition.
Buckthorpe et al. ^{41, 116}	2019	On-field Rehabilitation Part 1: 4 Pillars of High Quality On-field Rehabilitation	<ul style="list-style-type: none"> Divided OFR planning into a two-part series within the context of ACL rehabilitation, however, the frameworks are designed to be applied to severe (>28 days) injuries. The ‘Four Pillars’ of high-quality OFR planning are 1) movement quality, 2) physical conditioning, 3) sport-specific skills and 4) training load. The sequential process begins with restoring movement patterns before gradually increasing metabolic and mechanical load and then integrating specific neurocognitive and perceptual demands. The four pillars contribute across the five stage OFR framework (Part 2).

		On-field Rehabilitation Part 2: A 5-Stage Program for the Soccer Player	<ul style="list-style-type: none"> The stages proposed are 1) linear movement, 2) multidirectional movement, 3) football-specific 4) technical skills and 5) practice simulation. Each stage has specific entry criteria to ensure safe progression through the process while progressively increasing the athlete's exposure to volume and intensity. Highlights criteria for full return should include clinical, functional, biomechanical, psychological and sport-specific factors.
Jiménez-Rubio et al. ^{117, 118}	2019	Rehabilitation and Readaptation Program for Hamstring Injury	<ul style="list-style-type: none"> Developed and validated a functional OFR programme for hamstring strain injury. Presents a thirteen item OFR programme arranged in order of increasing complexity. Upon completion player is declared fit to train with the team. A panel of 15 experts deemed all 13 items of the programme to be valid. 19 players who had suffered a grade two hamstring strain injury returned to play competitively in 22.42 (2.32) days after undergoing the program, and, reportedly, did not suffer a reinjury in a 6 month follow up period.
	2021	Indoor and On-field Reconditioning Program for Adductor Longus Injury	<ul style="list-style-type: none"> Developed and validated an indoor and OFR programme for adductor longus injury. Presents a 16-item indoor programme and 4-item OFR programme arranged in increasing complexity. All 20 items were determined to be valid by a panel of 16 experts. The programme was implemented on 12 players and no reinjuries were reported in the 15-week follow up period.
322 323	Stathas et al. ¹¹⁹	On FI.RE Framework	<ul style="list-style-type: none"> Evaluated an accelerated OFR framework, defined as early initiation of OFR, compared to a traditional framework in male professional football. In the On FI.RE. protocol the criteria for progression, in the early phases of rehabilitation, were higher pain thresholds and ROM targets to initiate on-field training earlier in the process. The same criteria were used in the later stages of rehabilitation for both protocols. The On FI.RE protocol reported a reduced time of 6.5 days to RTT and a reduced risk of subsequent injuries.

Legend: ACL, anterior cruciate ligament; GPS, global positioning system; OFR, on-field rehabilitation; On Fi.Re, On-Field Rehabilitation; RTP, return to play; RTS, return to sport; RTT, return to training.

324 Previous methods of measuring load progressions within rehabilitation have been demonstrated to be
325 ineffective.¹²⁹⁻¹³¹ As part of a progressive rehabilitation, acute loads are ‘high’ due to injured players having no
326 chronic load, therefore, models such as acute:chronic ratio¹³² or percentage change are insufficient due to this
327 divergence.^{129, 131, 133} Based on preinjury data, current running loads and previous injury ‘benchmarks’, chronic
328 load can be developed, taking player tolerance into consideration, with appropriate planning and incremental load
329 progressions.⁷⁷ Lolli et al.¹²⁹ states acute load alone could be a useful predictor of injury in absolute terms and
330 may not require normalisation for chronic load through different statistical approaches, i.e., analysing the actual
331 amount of measurable acute load (e.g., total distance, sprint distance or total accelerations/decelerations) without
332 normalising or comparing it relative to any other factors (e.g., chronic load) may be suitable to assess injury risk.
333 Improving our understanding of ‘load’ within each phase of rehabilitation, and potential progression targets, would
334 aid in the development of RTS frameworks.⁴⁹ In an applied setting, practitioners, through progressive overload,
335 should aim to increase chronic load depending on the severity of the injury and with consideration towards the
336 tissue type and healing process.

337 Research has shown a focus placed on psychological readiness during the latter stages of rehabilitation,⁹⁷ yet, with
338 the reported shift of monitoring from subjective to objective measures through the rehabilitation phases,³⁶
339 practitioners must be cautious not to neglect subjective feedback as the player transitions through RTT, RTP and
340 post-rehabilitation phases. Studies have acknowledged the importance of blending subjective and objective
341 measures to monitor training and rehabilitation loads,^{36, 134} however, physical and psychological readiness may
342 not coincide³⁵ and, therefore, may be overlooked, misinterpreted or misunderstood. Despite the acknowledged
343 importance of psychological readiness there is limited research into the efficacy and effectiveness of psychological
344 strategies specifically facilitating readiness to return.³⁵ Furthermore, with the potential for injury severity to
345 significantly impact mental health,¹³⁵ with anxiety and reinjury concerns being reported as key factors when
346 players are close to RTP,³²⁻³⁵ subjective measures may prove invaluable. Competence (i.e., sense of proficiency in
347 their sporting capabilities), autonomy (i.e., a sense of control over their desired RTS trajectory) and relatedness
348 (i.e., feelings of social connection and affiliation) have been shown to be key components influencing the final
349 stages of rehabilitation,³⁵ therefore, monitoring and strategies to develop these skills are recommended. As sport-
350 specific training is progressed visual-cognitive demands (e.g., high speed decision-making, dual-task processing)
351 increase³⁹ leading to a subsequent increase in mental fatigue. Mental fatigue has been shown to impact physical
352 and technical performance,^{136, 137} therefore, progressive exposure, resilience and recovery from mental fatigue
353 may be important to consider.

354 Several studies cite the importance of progressive sport-specific training in the late stages of rehabilitation and as
355 a key component of OFR frameworks.^{4, 38, 39, 41, 42, 44, 49, 97, 98, 113, 116, 123, 138} Furthermore, the understanding of the
356 physical and cognitive demands of the sport is key in individualising injury risk management strategies throughout
357 different stages of the season.⁵⁰ Within professional football the demands of match-play are well documented, and
358 studies show a variation in demands depending on a number of factors, such as positional differences, formation
359 changes and player status.¹³⁹⁻¹⁴⁶ With studies showing high numbers of matches and increasing intensity the
360 physical and mental load on players is significant.^{15, 16, 147} Furthermore, high-intensity actions (i.e., accelerations,
361 decelerations, sprinting) have been shown to be important in match defining events (i.e., scoring goals) and
362 winning games.¹⁴⁸⁻¹⁵¹ With constantly evolving demands, requiring players to perform more frequent high
363 intensity actions,¹⁵⁻¹⁷ consistent re-evaluation is required to ensure the best support to players during the
364 rehabilitation process. Less fit players have been shown to perform fewer high-intensity actions and a quicker
365 fatigue progression impacting technical performance^{143, 144, 152} and potential injury-risk.¹⁵³ This has motivational
366 connotations for a rehabilitating player and should be a consideration for practitioners when returning players,
367 ensuring an adequate fitness level.

368 There is a significantly increased injury risk in the first match after RTT and ensuring sufficient loads have been
369 achieved and tolerated is an important factor.^{42, 89, 154, 155} Research in Australian rules football has shown
370 subsequent injuries to a different site or tissue were more common than reinjury^{155, 156} and it has been reported
371 that, in professional football, subsequent and recurrent injuries could account for 14% of injuries.¹⁵⁷ The reporting
372 of subsequent injuries in sport is inconsistent and there is a paucity of data regarding severity, type and associated
373 risk factors.^{158, 159} This is an issue for injury prevention strategies, which rely on accurate injury surveillance data,
374 as it does not provide an adequate understanding of injury risk.^{157, 159} It is proposed the mechanism could be a
375 general state of under-loading that predisposes the athlete to subsequent injury.^{155, 156} This raises the question are
376 athletes receiving enough 'general load' prior to RTT or are practitioners placing too much focus solely on 'injury-
377 specific' rehabilitation?

378 Stares et al.¹⁵⁵ demonstrated higher running loads, achieved during rehabilitation, delayed RTP timeframes,
379 however, moderate to high sprint loads could be protective against subsequent injury. The authors proposed that
380 the accumulation of sprint loads increased chronic training load facilitating adaptation and minimising workload
381 spikes, although chronic load was not identified as a significant factor in subsequent injury.¹⁵⁵ This demonstrates
382 the complexity of RTP decision-making as accelerating rehabilitation protocols may not allow sufficient time for
383 progressive overload, however, extending RTP timeframes will result in additional missed games potentially

384 affecting team success.^{1, 2, 155} With medical and performance departments under pressure to ensure efficient RTP,
385 whilst trying to minimise further injury risk, further investigation into accelerated protocols, workload
386 progressions and thresholds is required. The high physical demands of professional football, and the ever-
387 increasing intensity and density of these demands, are important factors in rehabilitation programming. There is
388 a pressing need for further investigation of the final phases of rehabilitation to ensure sufficient conditioning, and
389 to develop specific objective thresholds, to inform progression and the final RTP decision.

390 **Future Research Suggestions**

391 Research acknowledges the importance and development of progressive rehabilitation pathways. Current
392 frameworks,^{38, 39, 41, 42, 116} utilised in professional football, are presented in this review and provide a stepwise
393 progression for practitioners with evidence suggesting their influence in contemporary practice,³⁶ however, a
394 multicomponent model adopting a non-linear, concurrent approach has been proposed for a general population
395 with potential applications for sport models.¹⁶⁰ There has been a paradigm shift towards a criteria-based approach
396 supporting progression and it has been stated an absence of valid objective criteria risks inadequate
397 rehabilitation.^{42, 43, 98, 100, 104} Specific practitioner competencies and knowledge, to provide optimal support,
398 throughout the phases is still unclear and requires further evaluation.^{19, 97} There is a lack of empirical evidence
399 and knowledge of causality between ‘load’ application and successful outcomes in RTP and,⁴⁹ given the protective
400 effects of moderating physical capacities (i.e., developing force-velocity profiles, energy system capacity,
401 movement quality), further investigation is required throughout the rehabilitation process. There are significant
402 challenges for research due to the heterogeneity of injuries, multiple, interacting moderators of risk and limited
403 accessible sample sizes reducing statistical power,¹⁶¹ particularly with athlete populations. Despite this, conceptual
404 frameworks are essential to aid practice¹²⁶ and development, understanding and evaluation of objective criteria
405 informing progression is an important next step. Further informing and validating frameworks^{49, 126} may improve
406 the decision-making process for athletes, practitioners and coaches.

407 *External Load Metrics for Return to Play*

408 Within current OFR frameworks external load metrics are acknowledged as an important objective criterion,^{38, 41,}
409 ^{42, 100, 125} with metrics of interest emerging, such as very high speed running, peak speed, acceleration and
410 deceleration distance,^{162, 163} for specific injury pathologies. However, caution is advised as the metrics suggested
411 lack empirical evidence, are based on anecdotal experiences or there is an absence of post-OFR information or
412 pre-injury data.^{36, 49, 138, 163} When examining the relationship between ‘training load’ and injury risk it is important

413 to acknowledge this is likely to be associative and not causal,^{49, 126, 164} a clear aetiology has not been established¹⁶⁵
414 and many studies have used inadequate analysis.¹²⁶ Insights into applied practice and expertise are crucial in
415 evolving evidence-based practices.^{36, 127, 166} A survey of practitioners suggests that research exploring “reduced
416 risk of reinjury based on achieving specific markers/thresholds” would be beneficial when considered within the
417 complex nature of injury³⁶ and an association with workload and injury risk has been demonstrated in non-injured
418 players.^{75, 167} Although ‘training load’ is associative, these metrics may assist in setting targets for successful RTP
419 and support practitioners and athletes by providing objective information to make informed decisions.¹⁶⁸

420 GPS monitoring is widely used to quantify external load^{36, 138} and theoretical justification for load progression and
421 management within rehabilitation is strong, although the optimal strategy is unknown.¹³⁸ Despite issues within
422 football stadia potentially affecting signal quality,¹⁶⁹ GPS monitoring has been shown to be a reliable and validated
423 measurement tool for evaluating movement demands within sports.¹⁷⁰⁻¹⁷² That said, due to the rapid nature of
424 high-intensity actions (i.e., accelerations and decelerations), the validity of these has been questioned, with
425 sampling rate, minimal effort duration^{173, 174} and signal-filtering techniques important factors to consider.^{172, 175-177}
426 Given the high musculoskeletal forces that can accompany accelerations and decelerations^{178, 179} and the critical
427 importance of these actions for player performance and injury resilience,^{142, 180} further research is necessary to
428 investigate effective rehabilitation assessment, monitoring and programming (i.e., progression of exercises) to
429 ensure players are optimally prepared to meet the demands of these specific actions during RTT and RTP.
430 Furthermore, the role injury site and severity may have on acceleration and deceleration mechanics and the effect
431 this may have on altering tissue forces and properties during, and following, the rehabilitation process requires
432 investigation.

433 There is consensus in using match-specific GPS targets to inform RTP decisions.⁹⁹ Given the high demands a
434 player is returning to, and the variation in physical demands due to playing position, there may be value in
435 targeting individual within-session and acute (7 days) loads prior to RTT. Alongside this, individualised response
436 to ‘load’ (i.e., subjective and objective measures of internal / external load and ‘fatigue monitoring’) and
437 movement quality are important factors alongside training quantity.^{36, 116} Training load has only recently been
438 incorporated into models of injury aetiology^{70, 103} despite being a risk factor for injury within a web of
439 determinants.^{43, 69} Future research should investigate this factor, acknowledging the role of ‘load’ within the
440 complex nature of injuries, and further informing decision-making for RTT in an applied setting.

441 Within professional football, alongside GPS, the external load from specific technical actions can be quantified.¹⁸¹
442 This allows for the analysis of technical actions within rehabilitation in combination with physical output. Further
443 research is required to assess physical and technical outputs, through drill level analysis and positional specific
444 training demands, to help inform the training reintegration process. Achieving load through sport-specific
445 exposure may be beneficial from a physical perspective,¹⁵⁵ improve physical-cognitive capabilities,³⁹ and impact
446 the psychology/perception of the player's readiness to return, potentially allowing an earlier RTT and RTP.

447 *Injury Surveillance and Subsequent Injury*

448 An issue within applied rehabilitation is the lack of consensus and discrepancies in injury tracking/surveillance.¹⁵⁷
449 ¹⁵⁹ These inconsistencies in reporting make it difficult to research and understand subsequent relationships
450 between injuries. Subsequent injury is a poorly defined and reported area within rehabilitation.¹⁵⁸ Further research
451 is required to understand the inter-injury relationship and inform tertiary prevention programming.^{157, 159, 182}
452 Furthermore, workload monitoring to assess a potential association between post-RTT load, player status (i.e.,
453 key, squad or development player) and subsequent injury risk would be beneficial. This may help inform
454 practitioners as to possible optimal loading strategies post-RTT. Understanding subsequent injury risk may
455 provide a timeframe for a 'post-rehabilitation phase' based on the severity of the index injury and improve the
456 development of injury specific monitoring strategies for both reinjury, and possible subsequent injuries, to
457 alternative sites.¹²² Furthermore, mechanism of subsequent injury is a further factor to investigate. Establishing a
458 potential pattern of mechanisms may be beneficial to guide injury prevention programming. Previous injury and
459 subsequent injury associations are rarely considered, despite previous injury modifying the complex interactions
460 between determinants of injury.¹⁵⁸ Further studies are required into current practices within subsequent injury
461 surveillance and specific athlete support post-RTT.

462 *Player Perceptions of Rehabilitation Processes*

463 The role of multiple stakeholders within rehabilitation has been widely acknowledged,^{81, 183} however, despite
464 being part of the decision-making process,^{92, 95} player perception and role within rehabilitation is not thoroughly
465 discussed. A lack of consensus between players and coaches regarding the RTP decision has been previously
466 noted.¹⁸⁴ Players are a key stakeholder in rehabilitation and anxiety, the need for a plan, evaluating the risk of
467 early return, demonstrating progress and social support are important factors in the process.^{32, 35} Furthermore,
468 establishing athlete satisfaction post-injury requires further research.⁴³ Feedback of GPS training data within
469 professional football has been shown to support the coaching process and understanding player feedback

470 preference is key to elicit engagement.¹⁸⁵ However, little exists around RTP procedures and player perceptions
471 regarding the use of specific GPS targets within the rehabilitation setting and feedback of this data.

472 *Injury Specific Metrics*

473 Different load metrics may have varying relationships to injury risk^{126, 186-188} and the specific stress/strain capacity,
474 resilience and adaptation of different tissues.^{46, 165, 189} In a survey of practitioners, “GPS metrics for certain
475 injuries” was referred to as a useful future development in RTP protocols.³⁶ Quantifying the success of a
476 rehabilitation process is an important consideration³⁶ and a continuum of importance for injury specific targets for
477 different injury sites could be developed. These insights could give practitioners greater understanding of key
478 injury specific metrics for load management during rehabilitation and post-RTT, although this should be
479 acknowledged within the complex nature of injury.

480 **Limitations and Perspectives**

481 An acknowledged limitation of the article is the use of a narrative review and, therefore, a clear, systematic search
482 methodology was not utilised resulting in potential bias.¹⁸⁶ The limitations of narrative reviews are documented,¹⁹⁰
483 however, using this method allowed for a wider search strategy exploring interdisciplinary topics and to reflect
484 the complex nature of applied rehabilitation and decision-making for practitioners.

485 The review focuses on literature within the domain of male professional football, however, the frameworks
486 presented may be further applicable to female professional football and developmental players. Research
487 understanding the gender specific differences in injury and rehabilitation is growing,^{191, 192} however, more is
488 warranted specific to female football players and to academy players investigating the potential impact on long-
489 term athlete development programming if an injury occurs. This may help to reduce disparity and improve
490 understanding and application of the frameworks presented. Ultimately, a long-term objective of developing
491 bespoke models for different sports, injury pathologies, age groups and genders, with multidisciplinary inputs, is
492 crucial in future research and applied practices.

493 **Conclusion**

494 The purpose of this review was to give an overview of existing aetiological models, decision-making frameworks
495 and RTS approaches within the current literature and evaluate the role of criteria-based progressions in
496 rehabilitation frameworks and their application within male professional football. General sporting, and football
497 specific models and frameworks are presented to demonstrate approaches and different interpretations of RTP and

498 RTS terminology. Further consensus in terminology used to define phases, and subphases (i.e., RTT subphases),
499 within the rehabilitation procedure is required to help guide intention and impact phase specific monitoring, and
500 performance markers to inform safe return. By understanding injury type, mechanism, severity and location, the
501 demands of the sport and multiple interacting risk factors, evidence based RTP criteria can be used to guide
502 decisions alongside practitioner intuitions and experiences. However, research of subsequent injury risk, and inter-
503 injury relationships, is lacking in male professional football with current RTP frameworks using a stepwise
504 progression through different rehabilitation phases and objective exit criteria to inform decision making.
505 Development of flexible, bespoke frameworks, using validated objective criteria, is required and further research
506 is needed to ensure effective rehabilitation procedures, with successful RTP outcomes, to guide programming, and
507 decision-making, that minimises subsequent injury risk. Through improved practitioner knowledge and
508 understanding of aetiological models, decision-making and rehabilitation frameworks, and the future development
509 of these topic areas, the support of injured athletes can be enhanced during, and following, the rehabilitation
510 process.

511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527

528 **References**

529 1. Hägglund M, Waldén M, Magnusson H, et al. Injuries affect team performance negatively in
530 professional football: an 11-year follow-up of the UEFA Champions League injury study. *Br J Sports Med* 2013;
531 47: 738. doi: [10.1136/bjsports-2013-092215](https://doi.org/10.1136/bjsports-2013-092215).

532 2. Eirale C, Tol JL, Farooq A, et al. Low injury rate strongly correlates with team success in Qatari
533 professional football. *Br J Sports Med* 2013; 47: 807-808. doi: 10.1136/bjsports-2012-091040.

534 3. McCall A, Lewin C, O'Driscoll G, et al. Return to play: the challenge of balancing research and
535 practice. *Br J Sports Med* 2017; 51: 702-703. doi: 10.1136/bjsports-2016-096752.

536 4. Taberner M, Allen T and Cohen DD. Adapting the high chaos phase of the 'control-chaos continuum': a
537 bridge to team training. *Sport Perform Sci Rep* 2020; 109: 1-6.

538 5. Ekstrand J, Hägglund M and Waldén M. Injury incidence and injury patterns in professional football:
539 the UEFA injury study. *Br J Sports Med* 2011; 45: 553. doi: 10.1136/bjsm.2009.060582.

540 6. Hägglund M, Waldén M and Ekstrand J. Exposure and injury risk in Swedish elite football: a
541 comparison between seasons 1982 and 2001. *Scand J Med Sci Sports* 2003; 13: 364-370. doi: 10.1046/j.1600-
542 0838.2003.00327.x.

543 7. Hawkins RD and Fuller CW. A prospective epidemiological study of injuries in four English
544 professional football clubs. *Br J Sports Med* 1999; 33: 196. doi: [10.1136/bjsm.33.3.196](https://doi.org/10.1136/bjsm.33.3.196).

545 8. Hawkins RD, Hulse MA, Wilkinson C, et al. The association football medical research programme: an
546 audit of injuries in professional football. *Br J Sports Med* 2001; 35: 43-47. doi: 10.1136/bjsm.35.1.43.

547 9. Jones A, Jones G, Greig N, et al. Epidemiology of injury in English professional football players: A
548 cohort study. *Phys Ther Sport* 2019; 35: 18-22. doi: [10.1016/j.ptsp.2018.10.011](https://doi.org/10.1016/j.ptsp.2018.10.011).

549 10. López-Valenciano A, Ruiz-Pérez I, García-Gómez A, et al. Epidemiology of injuries in professional
550 football: a systematic review and meta-analysis. *Br J Sports Med* 2020; 54: 711-718. doi: [10.1136/bjsports-2018-099577](https://doi.org/10.1136/bjsports-2018-099577).

552 11. Palmer B, McBride M, Jones G, et al. Injury trends in men's English professional football: An 11-year
553 case series. *J Elite Sport Perform* 2023; 3. doi: 10.54080/FXQS6180.

554 12. Bengtsson H, Ortega Gallo PA and Ekstrand J. Injury epidemiology in professional football in South
555 America compared with Europe. *BMJ Open Sport Exerc Med* 2021; 7: e001172. doi: 10.1136/bmjsem-2021-
556 001172.

557 13. Forsythe B, Knapik DM, Khazi-Syed D, et al. Analysis of injury epidemiology in soccer players in the
558 2019 Confederation of North, Central America and Caribbean association football gold cup as reported by team
559 physicians. *Arthrosc Sports Med Rehabil* 2025; 7: 101074. doi: [10.1016/j.asmr.2024.101074](https://doi.org/10.1016/j.asmr.2024.101074).

560 14. Hägglund M, Waldén M and Ekstrand J. Previous injury as a risk factor for injury in elite football: a
561 prospective study over two consecutive seasons. *Br J Sports Med* 2006; 40: 767. doi:
562 [10.1136/bjsm.2006.026609](https://doi.org/10.1136/bjsm.2006.026609).

563 15. Allen T, Taberner M, Zhilkin M, et al. Running more than before? The evolution of running load
564 demands in the English Premier League. *Int J Sports Sci Coach* 2024; 19: 779-787. doi:
565 [10.1177/17479541231164507](https://doi.org/10.1177/17479541231164507).

566 16. Nassis GP, Massey A, Jacobsen P, et al. Elite football of 2030 will not be the same as that of 2020:
567 Preparing players, coaches, and support staff for the evolution. *Scand J Med Sci Sports* 2020; 30: 962-964. doi:
568 [10.1111/sms.13681](https://doi.org/10.1111/sms.13681).

569 17. Harper DJ, Sandford GN, Clubb J, et al. Elite football of 2030 will not be the same as that of 2020:
570 What has evolved and what needs to evolve? *Scand J Med Sci Sports* 2021; 31: 493-494. doi:
571 [10.1111/sms.13876](https://doi.org/10.1111/sms.13876).

572 18. Della Villa F, Hägglund M, Della Villa S, et al. High rate of second ACL injury following ACL
573 reconstruction in male professional footballers: an updated longitudinal analysis from 118 players in the UEFA
574 Elite Club Injury Study. *Br J Sports Med* 2021; 55: 1350-1357. doi: [10.1136/bjsports-2020-103555](https://doi.org/10.1136/bjsports-2020-103555).

575 19. Buckthorpe M, Frizziero A and Roi GS. Update on functional recovery process for the injured athlete:
576 return to sport continuum redefined. *Br J Sports Med* 2019; 53: 265-267. DOI: [10.1136/bjsports-2018-099341](https://doi.org/10.1136/bjsports-2018-099341).

577 20. Ardern CL, Kvist J and Webster KE. Psychological aspects of anterior cruciate ligament injuries. *Oper
578 Tech Sports Med* 2016; 24: 77-83. doi: [10.1053/j.otsm.2015.09.006](https://doi.org/10.1053/j.otsm.2015.09.006).

579 21. Barth KA, Lawton CD, Touhey DC, et al. The negative impact of anterior cruciate ligament
580 reconstruction in professional male footballers. *The knee* 2019; 26: 142-148. doi: [10.1016/j.knee.2018.10.004](https://doi.org/10.1016/j.knee.2018.10.004).

581 22. Niederer D, Engeroff T, Wilke J, et al. Return to play, performance, and career duration after anterior
582 cruciate ligament rupture: A case-control study in the five biggest football nations in Europe. *Scand J Med Sci
583 Sports* 2018; 28: 2226-2233. doi: [10.1111/sms.13245](https://doi.org/10.1111/sms.13245).

584 23. Stone S. Average top-flight manager tenure across Europe less than 16 months, says Uefa,
585 <https://www.bbc.co.uk/sport/football/66794395> (2023, accessed 4 September 2024).

586 24. Lewin G and Lewin C. The changing landscape of football medicine. *Aspetar Sports Med J* 2018; 7:
587 88-95.

588 25. Eliakim E, Morgulev E, Lidor R, et al. Estimation of injury costs: financial damage of English Premier
589 League teams' underachievement due to injuries. *BMJ Open Sport Exerc Med* 2020; 6: e000675. 20200520. doi:
590 10.1136/bmjsem-2019-000675.

591 26. Nieto Torrejón L, Martínez-Serrano A, Villalón JM, et al. Economic impact of muscle injury rate and
592 hamstring strain injuries in professional football clubs. Evidence from LaLiga. *PLOS ONE* 2024; 19: e0301498.
593 doi: 10.1371/journal.pone.0301498.

594 27. Oliveira-Júnior O, Gabbett TJ, Bittencourt NFN, et al. Potential financial loss and risk factors for
595 hamstring muscle injuries in elite male Brazilian soccer players: a season-long prospective cohort pilot study.
596 *Front Sports Act Living* 2024; 6. doi: 10.3389/fspor.2024.1360452.

597 28. Fuller CW, Ekstrand J, Junge A, et al. Consensus statement on injury definitions and data collection
598 procedures in studies of football (soccer) injuries. *Clin J Sport Med* 2006; 16: 97-106. doi: 10.1097/00042752-
599 200603000-00003.

600 29. Hägglund M, Waldén M and Ekstrand J. Injury recurrence is lower at the highest professional football
601 level than at national and amateur levels: does sports medicine and sports physiotherapy deliver? *Br J Sports
602 Med* 2016; 50: 751. doi: [10.1136/bjsports-2015-095951](https://doi.org/10.1136/bjsports-2015-095951).

603 30. Flore Z, Hambly K, De Coninck K, et al. A rehabilitation algorithm after lateral ankle sprains in
604 professional football (soccer): An approach based on clinical practice guidelines. *Int J Sports Phys Ther* 2024;
605 19. doi: 10.26603/001c.120205.

606 31. Ekstrand J, Krutsch W, Spreco A, et al. Time before return to play for the most common injuries in
607 professional football: a 16-year follow-up of the UEFA elite club injury study. *Br J Sports Med* 2020; 54: 421-
608 426. doi: [10.1136/bjsports-2019-100666](https://doi.org/10.1136/bjsports-2019-100666).

609 32. Taberner M, Distain S, Chance O, et al. Clinical pearls on how practitioners can best support elite
610 soccer players to return to peak performance after injury. *JOSPT Cases* 2021; 1: 126-128. doi:
611 10.2519/josptcases.2021.0103.

612 33. Forsdyke D, Gledhill A and Ardern CL. Psychological readiness to return to sport: three key elements
613 to help the practitioner decide whether the athlete is REALLY ready? *Br J Sports Med* 2017; 51: 555-556. doi:
614 10.1136/bjsports-2016-096770.

615 34. Forsdyke D, Madigan D, Gledhill A, et al. Perceived social support, reinjury anxiety, and psychological
616 readiness to return to sport in soccer players. *J Sport Rehabil* 2022; 31: 749-755. doi: 10.1123/jsr.2021-0181.

617 35. Tranaeus U, Gledhill A, Johnson U, et al. 50 years of research on the psychology of sport injury: a
618 consensus statement. *Sports Med* 2024; 54: 1733-1748. doi: 10.1007/s40279-024-02045-w.

619 36. Armitage M, McErlain-Naylor SA, Devereux G, et al. On-field rehabilitation in football: current
620 practice and perceptions. A survey of the English Premier League and Football League. *Sci Med Footb* 2024: 1-
621 10. doi: 10.1080/24733938.2024.2313529.

622 37. Van Melick N, Van Cingel REH, Brooijmans F, et al. Evidence-based clinical practice update: practice
623 guidelines for anterior cruciate ligament rehabilitation based on a systematic review and multidisciplinary
624 consensus. *Br J Sports Med* 2016; 50: 1506-1515. doi: 10.1136/bjsports-2015-095898.

625 38. Taberner M, Allen T and Cohen DD. Progressing rehabilitation after injury: consider the 'control-chaos
626 continuum'. *Br J Sports Med* 2019; 53: 1132. doi: [10.1136/bjsports-2018-100157](https://doi.org/10.1136/bjsports-2018-100157).

627 39. Taberner M, Allen T, O'Keefe J, et al. Evolving the control-chaos continuum: part 1 – translating
628 knowledge to enhance on-pitch rehabilitation. *J Orthop Sports Phys Ther* 2025: 1-34. doi:
629 10.2519/jospt.2025.13158.

630 40. Taberner M, Allen T, O'Keefe J, et al. Evolving the control-chaos continuum: part 2 – shifting
631 'attention' to progress on-pitch rehabilitation. *J Orthop Sports Phys Ther* 2025; 0: 1-32. doi:
632 10.2519/jospt.2025.13159.

633 41. Buckthorpe M, Della Villa F, Della Villa S, et al. On-field rehabilitation part 2: a 5-stage program for
634 the soccer player focused on linear movements, multidirectional movements, soccer-specific skills, soccer-
635 specific movements, and modified practice. *J Orthop Sports Phys Ther* 2019; 49: 570-575. 20190710. doi:
636 10.2519/jospt.2019.8952.

637 42. Mitchell A and Gimpel M. A return to performance pathway for professional soccer: A criteria based
638 approach to return injured professional players back to performance. *JOSPT Open* 2024: 1-42. doi:
639 10.2519/josptopen.2024.1240.

640 43. Ardern CL, Glasgow P, Schneiders A, et al. 2016 Consensus statement on return to sport from the First
641 World Congress in Sports Physical Therapy, Bern. *Br J Sports Med* 2016; 50: 853-864. doi: 10.1136/bjsports-
642 2016-096278.

643 44. Taberner M, Allen T, Constantine E, et al. From control to chaos to competition: building a pathway for
644 return to performance following ACL reconstruction. *Aspetar Sports Med J* 2020; 9: 84-94.

645 45. Woolley TGD, Dick S and Reid D. Mechanism of injury. In: Lax P (ed) *Textbook of Acute Trauma*
646 *Care*. Cham: Springer International Publishing, 2022, pp.421-433.

647 46. Kalkhoven JT, Watsford ML and Impellizzeri FM. A conceptual model and detailed framework for
648 stress-related, strain-related, and overuse athletic injury. *J Sci Med Sport* 2020; 23: 726-734. doi:
649 10.1016/j.jsams.2020.02.002.

650 47. Edwards WB. Modeling overuse injuries in sport as a mechanical fatigue phenomenon. *Exerc Sport Sci*
651 *Rev* 2018; 46.

652 48. Watson T. Soft tissue wound healing review. 2003.

653 49. Armitage M, McErlain-Naylor SA, Devereux G, et al. On-field rehabilitation in football: Current
654 knowledge, applications and future directions. *Front Sports Active Living* 2022; 4. doi:
655 10.3389/fspor.2022.970152.

656 50. Roe M, Malone S, Blake C, et al. A six stage operational framework for individualising injury risk
657 management in sport. *Inj Epidemiol* 2017; 4. doi: 10.1186/s40621-017-0123-x.

658 51. McCall A, Carling C, Nedelec M, et al. Risk factors, testing and preventative strategies for non-contact
659 injuries in professional football: current perceptions and practices of 44 teams from various premier leagues. *Br*
660 *J Sports Med* 2014; 48: 1352-1357. 20140516. doi: 10.1136/bjsports-2014-093439.

661 52. Ettema JH. Het model belasting en belastbaarheid. *T Soc Geneesk* 1973; 51: 44-54.

662 53. van Mechelen W, Hlobil H and Kemper HC. How can sports injuries be prevented? *Nationaal Instituut*
663 *voor Sport-GezondheidsZorg publicatie* 1987; 25E.

664 54. Finch CF. A new framework for research leading to sports injury prevention. *J Sci Med Sport* 2006; 9:
665 3-9; discussion 10. 20060417. doi: 10.1016/j.jsams.2006.02.009.

666 55. Bolling C, Van Mechelen W, Pasman HR, et al. Context matters: revisiting the first step of the
667 'sequence of prevention' of sports injuries. *Sports Med* 2018; 48: 2227-2234. doi: 10.1007/s40279-018-0953-x.

668 56. Andersen MB and Williams JM. A model of stress and athletic injury: prediction and prevention. *J*
669 *Sport Exerc Psychol* 1988; 10: 294-306. doi: 10.1123/jsep.10.3.294.

670 57. van Dijk F, van Dormolen M, Kompier M, et al. Herwaardering model belasting-belastbaarheid.
671 *Tijdschr Soc Gezondheidsz* 1990; 68: 3-10.

672 58. van Mechelen W, Hlobil H and Kemper HC. Incidence, severity, aetiology and prevention of sports
673 injuries. A review of concepts. *Sports Med* 1992; 14: 82-99. doi: 10.2165/00007256-199214020-00002.

674 59. Backx F, Inklaar H, Koornneef M, et al. FIMS position statement on the prevention of sports injuries.

675 *Geneeskunde en Sport (Special Issue)* 1990; 22-27.

676 60. Bol E, Schmikli SL, Backx FJG, et al. Sportblessures onder de knie: NISGZ publicatie no. 38. In:

677 1991.

678 61. Kok G and Bouter LM. On the importance of planned health education. *Am J Sports Med* 1990; 18:

679 600-605. doi: 10.1177/036354659001800608.

680 62. Meeuwisse WH. Assessing causation in sport injury: a multifactorial model. *Clin J Sport Med* 1994; 4:

681 166-170.

682 63. Williams JM and Andersen MB. Psychosocial antecedents of sport injury: Review and critique of the

683 stress and injury model'. *J Appl Sport Psychol* 1998; 10: 5-25. doi: 10.1080/10413209808406375.

684 64. McIntosh AS. Risk compensation, motivation, injuries, and biomechanics in competitive sport. *Br J*

685 *Sports Med* 2005; 39: 2-3. doi: 10.1136/bjsm.2004.016188.

686 65. Bahr R and Krosshaug T. Understanding injury mechanisms: a key component of preventing injuries in

687 sport. *Br J Sports Med* 2005; 39: 324. doi: <https://doi.org/10.1136/bjsm.2005.018341>.

688 66. Meeuwisse WH, Tyreman H, Hagel BE, et al. A dynamic model of etiology in sport injury: the

689 recursive nature of risk and causation. *Clin J Sport Med* 2007; 17: 215-219.

690 67. Gissane C, White J, Kerr K, et al. An operational model to investigate contact sports injuries. *Med Sci*

691 *Sports Exerc* 2001; 33: 1999-2003. doi: 10.1097/00005768-200112000-00004.

692 68. Appaneal RN and Perna FM. Biopsychosocial model of injury. *Encyclopedia of Sport and Exercise*

693 *Psychology*. Thousand Oaks: SAGE Publications Inc, 2014, p. 74-77.

694 69. Bittencourt NFN, Meeuwisse WH, Mendonca LD, et al. Complex systems approach for sports injuries:

695 moving from risk factor identification to injury pattern recognition-narrative review and new concept. *Br J*

696 *Sports Med* 2016; 50: 1309. doi: [10.1136/bjsports-2015-095850](https://doi.org/10.1136/bjsports-2015-095850).

697 70. Windt J and Gabbett TJ. How do training and competition workloads relate to injury? The workload-

698 injury aetiology model. *Br J Sports Med* 2017; 51: 428. doi: [10.1136/bjsports-2016-096040](https://doi.org/10.1136/bjsports-2016-096040).

699 71. O'Brien J, Finch CF, Pruna R, et al. A new model for injury prevention in team sports: the team-sport

700 injury prevention (TIP) cycle. *Sci Med Footb* 2019; 3: 77-80. doi: 10.1080/24733938.2018.1512752.

701 72. Liveris NI. Applying systems thinking approaches to investigate the complex interrelationships of risk

702 factors affecting acute non-contact lower limb injuries in team sports (PhD Academy Award). *Br J Sports Med*

703 2025: bjsports-2025-2021. doi: 10.1136/bjsports-2025-109742.

704 73. Liveris NI, Papageorgiou G, Tsepis E, et al. Towards the development of a system dynamics model for
705 the prediction of lower extremity injuries. *Int J Exerc Sci* 2023; 16. doi: 10.70252/ojbi8280.

706 74. Liveris NI, Tsarbou C, Papageorgiou G, et al. The complex interrelationships of the risk factors leading
707 to hamstring injury and implications for injury prevention: a group model building approach. *Appl Sci* 2024; 14:
708 6316. doi: 10.3390/app14146316.

709 75. Malone S, Owen A, Mendes B, et al. High-speed running and sprinting as an injury risk factor in
710 soccer: can well-developed physical qualities reduce the risk? *J Sci Med Sport* 2018; 21: 257-262. doi:
711 10.1016/j.jsams.2017.05.016.

712 76. Malone S, Roe M, Doran DA, et al. High chronic training loads and exposure to bouts of maximal
713 velocity running reduce injury risk in elite Gaelic football. *J Sci Med Sport* 2017; 20: 250-254. doi:
714 10.1016/j.jsams.2016.08.005.

715 77. Taberner M, Allen T, O'Keefe J, et al. Contextual considerations using the 'control-chaos continuum'
716 for return to sport in elite football - part 1: load planning. *Phys Ther Sport* 2022; 53: 67-74. 20211103. doi:
717 10.1016/j.ptsp.2021.10.015.

718 78. Page RM, Field A, Langley B, et al. The Effects of Fixture Congestion on Injury in Professional Male
719 Soccer: A Systematic Review. *Sports Med* 2023; 53: 667-685. doi: 10.1007/s40279-022-01799-5.

720 79. Brito J, Mendes R, Figueiredo P, et al. Is it time to consider quaternary injury prevention in sports?
721 *Sports Med* 2023; 53: 769-774. doi: 10.1007/s40279-022-01765-1.

722 80. Ekstrand J, Lundqvist D, Lagerback L, et al. Is there a correlation between coaches' leadership styles
723 and injuries in elite football teams? A study of 36 elite teams in 17 countries. *Br J Sports Med* 2018; 52: 527-
724 531. 20171022. doi: 10.1136/bjsports-2017-098001.

725 81. Ekstrand J, Lundqvist D, Davison M, et al. Communication quality between the medical team and the
726 head coach/manager is associated with injury burden and player availability in elite football clubs. *Br J Sports
727 Med* 2019; 53: 304-308. doi: 10.1136/bjsports-2018-099411.

728 82. Hassanmirzaei B, Schumacher Y, Tabben M, et al. Developing a data-driven multimodal injury and
729 illness prevention programme in male professional football based on a risk management model: the IP2
730 NetWork. *BMJ Open Sport Exerc Med* 2024; 10: e002101. doi: 10.1136/bmjsem-2024-002101.

731 83. King R, McHugh D, Alexander J, et al. Multi-disciplinary team practitioners working in high
732 performance sport: skilled intuitive 'doers' or novel problem-solving innovators. *Eur J Sports Sci* 2024; 3: 15-
733 26.

734 84. King R, Yiannaki C, Kiely J, et al. Multi-disciplinary teams in high performance sport, the what and the
735 how: a utopian view or a darker reality. *J Expertise* 2024; 7: 149-174.

736 85. Ekstrand J, Hägglund M, Waldén M, et al. Higher level of communication between the medical staff
737 and the performance staff is associated with a lower hamstring injury burden: a substudy on 14 teams from the
738 UEFA elite club injury study. *BMJ Open Sport & Exercise Medicine* 2025; 11: e002182. doi: 10.1136/bmjsem-
739 2024-002182.

740 86. Ardern CL, Bizzini M and Bahr R. It is time for consensus on return to play after injury: five key
741 questions. *Br J Sports Med* 2016; 50: 506-508. doi: 10.1136/bjsports-2015-095475.

742 87. Shrier I, Safai P and Charland L. Return to play following injury: whose decision should it be? *Br J
743 Sports Med* 2014; 48: 394. doi: 10.1136/bjsports-2013-092492.

744 88. Shrier I. Strategic assessment of risk and risk tolerance (StARRT) framework for return-to-play
745 decision-making. *Br J Sports Med* 2015; 49: 1311-1315. doi: 10.1136/bjsports-2014-094569.

746 89. Blanch P and Gabbett TJ. Has the athlete trained enough to return to play safely? The acute:chronic
747 workload ratio permits clinicians to quantify a player's risk of subsequent injury. *Br J Sports Med* 2016; 50: 471.
748 doi: [10.1136/bjsports-2015-095445](https://doi.org/10.1136/bjsports-2015-095445).

749 90. Gabbett TJ, Hulin BT, Blanch P, et al. High training workloads alone do not cause sports injuries: how
750 you get there is the real issue. *Br J Sports Med* 2016; 50: 444-445. DOI: 10.1136/bjsports-2015-095567.

751 91. Creighton DW, Shrier I, Shultz R, et al. Return-to-play in sport: a decision-based model. *Clin J Sport
752 Med* 2010; 20: 379-385. doi: 10.1097/JSM.0b013e3181f3c0fe.

753 92. Dijkstra HP, Pollock N, Chakraverty R, et al. Return to play in elite sport: a shared decision-making
754 process. *Br J Sports Med* 2017; 51: 419. doi: [10.1136/bjsports-2016-096209](https://doi.org/10.1136/bjsports-2016-096209).

755 93. Yung KK, Ardern CL, Serpiello FR, et al. A framework for clinicians to improve the decision-making
756 process in return to sport. *Sports Med - Open* 2022; 8. doi: [10.1186/s40798-022-00440-z](https://doi.org/10.1186/s40798-022-00440-z).

757 94. Yung KK, Ardern CL, Serpiello FR, et al. Characteristics of complex systems in sports injury
758 rehabilitation: examples and implications for practice. *Sports Med - Open* 2022; 8. doi: [10.1186/s40798-021-00405-8](https://doi.org/10.1186/s40798-021-00405-8).

760 95. King J, Roberts C, Hard S, et al. Want to improve return to sport outcomes following injury? Empower,
761 engage, provide feedback and be transparent: 4 habits! *Br J Sports Med* 2019; 53: 526. doi: [10.1136/bjsports-2018-099109](https://doi.org/10.1136/bjsports-2018-099109).

763 96. Buchheit M, King R, Stokes A, et al. Return to play following injuries in pro football: insights into the
764 real-life practices of 85 elite practitioners around diagnostics, progression strategies and reintegration processes.
765 *Sport Perform Sci Rep* 2023; 1: 1-20.

766 97. Dunlop G, Ardern CL, Andersen TE, et al. Return-to-play practices following hamstring injury: a
767 worldwide survey of 131 Premier League football teams. *Sports Med* 2020; 50: 829-840. doi: 10.1007/s40279-
768 019-01199-2.

769 98. Draovitch P, Patel S, Marrone W, et al. The return-to-sport clearance continuum is a novel approach
770 toward return to sport and performance for the professional athlete. *Arthrosc Sports Med Rehabil* 2022; 4: e93-
771 e101. doi: 10.1016/j.asmr.2021.10.026.

772 99. Van Der Horst N, Backx F, Goedhart EA, et al. Return to play after hamstring injuries in football
773 (soccer): a worldwide Delphi procedure regarding definition, medical criteria and decision-making. *Br J Sports
774 Med* 2017; 51: 1583-1591. doi: 10.1136/bjsports-2016-097206.

775 100. Bisciotti GN, Volpi P, Alberti G, et al. Italian consensus statement (2020) on return to play after lower
776 limb muscle injury in football (soccer). *BMJ Open Sport Exerc Med* 2019; 5. doi: [10.1136/bmjsem-2018-000505](https://doi.org/10.1136/bmjsem-2018-000505).

778 101. Gabbett TJ, Whyte DG, Hartwig TB, et al. The relationship between workloads, physical performance,
779 injury and illness in adolescent male football players. *Sports Med* 2014; 44: 989-1003. doi: 10.1007/s40279-
780 014-0179-5.

781 102. Hickey JT, Timmins RG, Maniar N, et al. Criteria for progressing rehabilitation and determining return-
782 to-play clearance following hamstring strain injury: a systematic review. *Sports Med* 2017; 47: 1375-1387. doi:
783 10.1007/s40279-016-0667-x.

784 103. Taberner M, Cohen DD, Carter A, et al. 'Where is the load?' revisiting the strategic assessment of risk
785 and risk tolerance (StARRT) framework for return to sport by including an athlete's sport-specific training
786 capacity? *Br J Sports Med* 2022 20220517. doi: 10.1136/bjsports-2022-105573.

787 104. Zambaldi M, Beasley I and Rushton A. Return to play criteria after hamstring muscle injury in
788 professional football: a Delphi consensus study. *Br J Sports Med* 2017; 51: 1221-1226. 20170228. doi:
789 10.1136/bjsports-2016-097131.

790 105. Paton BM, Read P, Van Dyk N, et al. London international consensus and delphi study on hamstring
791 injuries part 3: rehabilitation, running and return to sport. *Br J Sports Med* 2023; 57: 278-291. doi:
792 10.1136/bjsports-2021-105384.

793 106. Yung KK, Ardern CL, Serpiello FR, et al. Judgement and decision making in clinical and return-to-sports decision making: a narrative review. *Sports Med* 2024. doi: 10.1007/s40279-024-02054-9.

795 107. Mateus N, Abade E, Coutinho D, et al. Empowering the sports scientist with artificial intelligence in training, performance, and health management. *Sensors (Basel)* 2025; 25: 20241229. doi: 10.3390/s25010139.

797 108. Bullock GS, Mylott J, Hughes T, et al. Just how confident can we be in predicting sports injuries? A systematic review of the methodological conduct and performance of existing musculoskeletal injury prediction models in sport. *Sports Med* 2022; 52: 2469-2482. doi: 10.1007/s40279-022-01698-9.

800 109. Bullock GS, Hughes T, Sergeant JC, et al. Clinical prediction models in sports medicine: a guide for clinicians and researchers. *J Orthop Sports Phys Ther* 2021; 51: 517-525. doi: 10.2519/jospt.2021.10697.

802 110. Leckey C, Van Dyk N, Doherty C, et al. Machine learning approaches to injury risk prediction in sport: a scoping review with evidence synthesis. *Br J Sports Med* 2024; bjsports-2024-2021. doi: 10.1136/bjsports-2024-108576.

805 111. Majumdar A, Bakirov R, Hodges D, et al. Machine Learning for understanding and predicting injuries in football. *Sports Med - Open* 2022; 8. doi: 10.1186/s40798-022-00465-4.

807 112. Van Eetvelde H, Mendonça LD, Ley C, et al. Machine learning methods in sport injury prediction and prevention: a systematic review. *J Exp Orthop* 2021; 8. doi: 10.1186/s40634-021-00346-x.

809 113. Mitchell A, Waite O, Holding C, et al. The development of a return to performance pathway involving a professional soccer player returning from a multi-structural knee injury: a case report. *Int J Sports Phys Ther* 2023; 18. doi: 10.26603/001c.73317.

812 114. Mendiguchia J, Martinez-Ruiz E, Edouard P, et al. A multifactorial, criteria-based progressive algorithm for hamstring injury treatment. *Med Sci Sports Exerc* 2017; 49: 1482-1492. doi: 10.1249/mss.0000000000001241.

815 115. Estévez Rodríguez JL, Rivilla García J, Jiménez-Sáiz SL, et al. Consensus of return-to-play criteria after adductor longus injury in professional soccer. *Sports* 2025; 13: 134. doi: 10.3390/sports13050134.

817 116. Buckthorpe M, Della Villa F, Della Villa S, et al. On-field rehabilitation part 1: 4 pillars of high-quality on-field rehabilitation are restoring movement quality, physical conditioning, restoring sport-specific skills, and progressively developing chronic training load. *J Orthop Sports Phys Ther* 2019; 49: 565-569. doi: 10.2519/jospt.2019.8954.

821 117. Jiménez-Rubio S, Estévez Rodríguez JL and Navandar A. Validity of a rehab and reconditioning
822 program following an adductor longus injury in professional soccer. *J Sport Rehabil* 2021; 30: 1224-1229. doi:
823 10.1123/jsr.2020-0360.

824 118. Jimenez-Rubio S, Navandar A, Rivilla-Garcia J, et al. Validity of an on-field readaptation program
825 following a hamstring injury in professional soccer. *J Sport Rehabil* 2019; 28. doi: 10.1123/jsr.2018-0203.

826 119. Stathas I, Kalliakmanis A, Kekelekis A, et al. Effectiveness of an on-field rehabilitation framework for
827 return to sports in injured male professional football players: a single-blinded, prospective, randomised
828 controlled trial. *BMJ Open Sport Exerc Med* 2024; 10: e001849. 20240119. doi: 10.1136/bmjsem-2023-001849.

829 120. Ekstrand J, Spreco A, Bengtsson H, et al. Injury rates decreased in men's professional football: an 18-
830 year prospective cohort study of almost 12 000 injuries sustained during 1.8 million hours of play. *Br J Sports
831 Med* 2021; 55: 1084-1091. doi: [10.1136/bjsports-2020-103159](https://doi.org/10.1136/bjsports-2020-103159).

832 121. Zhang G, Brink MS, Aus Der Fünten K, et al. The time course of injury risk after return-to-play in
833 professional football (Soccer). *Sports Med* 2024. doi: 10.1007/s40279-024-02103-3.

834 122. Dixon B, Alexander J and Harper D. 'Post-rehabilitation phase' in professional football: are we
835 optimising player support after return to play? *Br J Sports Med* 2025; 59: 625-627. doi: 10.1136/bjsports-2024-
836 109458.

837 123. Taberner M and Cohen DD. Physical preparation of the football player with an intramuscular hamstring
838 tendon tear: clinical perspective with video demonstrations. *Br J Sports Med* 2018; 52: 1275. doi:
839 [10.1136/bjsports-2017-098817](https://doi.org/10.1136/bjsports-2017-098817).

840 124. Taberner M, O'Keefe J, Dunn A, et al. Return to sport and beyond following intramuscular tendon
841 hamstring injury: A case report of an English Premier League football player. *Phys Ther Sport* 2022; 56: 38-47.
842 20220531. doi: 10.1016/j.ptsp.2022.05.013.

843 125. Taberner M, van Dyk N, Allen T, et al. Physical preparation and return to sport of the football player
844 with a tibia-fibula fracture: applying the 'control-chaos continuum'. *BMJ Open Sport Exerc Med* 2019; 5:
845 e000639. 20191030. doi: 10.1136/bmjsem-2019-000639.

846 126. Impellizzeri FM, Ward P, Coutts AJ, et al. Training load and injury part 2: questionable research
847 practices hijack the truth and mislead well-intentioned clinicians. *J Orthop Sports Phys Ther* 2020; 50: 577-584.
848 doi: 10.2519/jospt.2020.9211.

849 127. Fanchini M, Steendahl IB, Impellizzeri FM, et al. Exercise-based strategies to prevent muscle injury in
850 elite footballers: a systematic review and best evidence synthesis. *Sports Med* 2020; 50: 1653-1666. doi:
851 10.1007/s40279-020-01282-z.

852 128. Benson LC, Räisänen AM, Volkova VG, et al. Workload a-WEAR-ness: monitoring workload in team
853 sports with wearable technology. A scoping review. *J Orthop Sports Phys Ther* 2020; 50: 549-563. doi:
854 10.2519/jospt.2020.9753.

855 129. Lolli L, Batterham AM, Hawkins R, et al. The acute-to-chronic workload ratio: an inaccurate scaling
856 index for an unnecessary normalisation process? *Br J Sports Med* 2019; 53: 1510-1512. 20180613. doi:
857 10.1136/bjsports-2017-098884.

858 130. Impellizzeri FM, Woodcock S, Coutts AJ, et al. What role do chronic workloads play in the acute to
859 chronic workload ratio? Time to dismiss ACWR and its underlying theory. *Sports Med* 2021; 51: 581-592. doi:
860 10.1007/s40279-020-01378-6.

861 131. Impellizzeri FM, Woodcock S, Coutts AJ, et al. Acute to random workload ratio is 'as' associated with
862 injury as acute to actual chronic workload ratio: time to dismiss ACWR and its components. *SportRxiv* 2020.

863 132. Gabbett TJ. The training-injury prevention paradox: should athletes be training smarter and harder? *Br*
864 *J Sports Med* 2016; 50: 273. doi: [10.1136/bjsports-2015-095788](https://doi.org/10.1136/bjsports-2015-095788).

865 133. Coetzee D, Wall C, De Bruin M, et al. Return to play and performance guidelines in rugby union. *S Afr*
866 *J Res Sport Phys Ed Recreat* 2023; 45: 39-61. doi: 10.36386/sajrsper.v45i1.212.

867 134. Akenhead R and Nassis GP. Training load and player monitoring in high-level football: current practice
868 and perceptions. *Int J Sports Physiol Perform* 2016; 11: 587-593. doi: 10.1123/ijsspp.2015-0331.

869 135. Pillay L, Van Rensburg DCJ, Ramkilawon G, et al. Don't forget to mind the mind: a prospective cohort
870 study over 12 months on mental health symptoms in active professional male footballers. *BMC Sports Sci Med*
871 *Rehabil* 2024; 16. doi: 10.1186/s13102-024-01005-1.

872 136. Smith MR, Thompson C, Marcra SM, et al. Mental fatigue and soccer: current knowledge and future
873 directions. *Sports Med* 2018; 48: 1525-1532. doi: 10.1007/s40279-018-0908-2.

874 137. González-Villora S, Prieto-Ayuso A, Cardoso F, et al. The role of mental fatigue in soccer: a systematic
875 review. *Int J Sports Sci Coach* 2022; 17: 903-916. doi: 10.1177/17479541211069536.

876 138. Buckthorpe M. Optimising the late-stage rehabilitation and return-to-sport training and testing process
877 after ACL reconstruction. *Sports Med* 2019; 49: 1043-1058. doi: 10.1007/s40279-019-01102-z.

878 139. Bradley PS, Carling C, Archer D, et al. The effect of playing formation on high-intensity running and
879 technical profiles in English FA Premier League soccer matches. *J Sports Sci* 2011; 29: 821-830. doi:
880 10.1080/02640414.2011.561868.

881 140. Bradley PS, Carling C, Gomez Diaz A, et al. Match performance and physical capacity of players in the
882 top three competitive standards of English professional soccer. *Hum Mov Sci* 2013; 32: 808-821. 20130824. doi:
883 10.1016/j.humov.2013.06.002.

884 141. Di Mascio M and Bradley PS. Evaluation of the most intense high-intensity running period in English
885 FA premier league soccer matches. *J Strength Cond Res* 2013; 27: 909-915. doi:
886 10.1519/JSC.0b013e31825ff099.

887 142. Harper DJ, Carling C and Kiely J. High-intensity acceleration and deceleration demands in elite team
888 sports competitive match play: a systematic review and meta-analysis of observational studies. *Sports Med*
889 2019; 49: 1923-1947. doi: 10.1007/s40279-019-01170-1.

890 143. Hostrup M and Bangsbo J. Performance adaptations to intensified training in top-level football. *Sports
891 Med* 2023; 53: 577-594. doi: 10.1007/s40279-022-01791-z.

892 144. Mohr M, Krustrup P and Bangsbo J. Match performance of high-standard soccer players with special
893 reference to development of fatigue. *J Sports Sci* 2003; 21: 519-528. doi: 10.1080/0264041031000071182.

894 145. Morgans R, Radnor J, Fonseca J, et al. Match running performance is influenced by possession and
895 team formation in an English Premier League team. *Biol Sport* 2024; 41: 275-286. 20240212. doi:
896 10.5114/biolsport.2024.135414.

897 146. Chaize C, Allen M and Beato M. Physical performance is affected by players' position, game location,
898 and substitutions during official competitions in professional championship English football. *J Strength Cond
899 Res* 2024 20240814. doi: 10.1519/jsc.0000000000004926.

900 147. Bradley PS, Archer DT, Hogg B, et al. Tier-specific evolution of match performance characteristics in
901 the English Premier League: it's getting tougher at the top. *J Sports Sci* 2016; 34: 980-987. doi:
902 10.1080/02640414.2015.1082614.

903 148. Faude O, Koch T and Meyer T. Straight sprinting is the most frequent action in goal situations in
904 professional football. *J Sports Sci* 2012; 30: 625-631. 20120306. doi: 10.1080/02640414.2012.665940.

905 149. Sarajarvi J, Volossovitch A and Almeida CH. Analysis of headers in high-performance football:
906 evidence from the English Premier League. *Int J Perform Anal Sport* 2020; 20: 189-205. doi:
907 10.1080/24748668.2020.1736409.

908 150. Rhodes D, Valassakis S, Bortnik L, et al. The effect of high-intensity accelerations and decelerations on
909 match outcome of an elite English league two football team. *Int J Environ Res Public Health* 2021; 18: 9913.
910 doi: 10.3390/ijerph18189913.

911 151. Martínez-Hernández D, Quinn M and Jones P. Linear advancing actions followed by deceleration and
912 turn are the most common movements preceding goals in male professional soccer. *Sci Med Footb* 2023; 7: 25-
913 33. doi: 10.1080/24733938.2022.2030064.

914 152. Rampinini E, Impellizzeri FM, Castagna C, et al. Technical performance during soccer matches of the
915 Italian Serie A league: Effect of fatigue and competitive level. *J Sci Med Sport* 2009; 12: 227-233. doi:
916 10.1016/j.jsams.2007.10.002.

917 153. Eliakim E, Doron O, Meckel Y, et al. Pre-season fitness level and injury rate in professional soccer – a
918 prospective study. *Sports Med Int Open* 2018; 02: E84-E90. doi: 10.1055/a-0631-9346.

919 154. Bengtsson H, Ekstrand J, Walden M, et al. Few training sessions between return to play and first match
920 appearance are associated with an increased propensity for injury: a prospective cohort study of male
921 professional football players during 16 consecutive seasons. *Br J Sports Med* 2020; 54: 427-432. 20190829. doi:
922 10.1136/bjsports-2019-100655.

923 155. Stares J, Dawson B, Peeling P, et al. How much is enough in rehabilitation? High running workloads
924 following lower limb muscle injury delay return to play but protect against subsequent injury. *J Sci Med Sport*
925 2018; 21: 1019-1024. 20180410. doi: 10.1016/j.jsams.2018.03.012.

926 156. Finch CF, Cook J, Kunstler BE, et al. Subsequent injuries are more common than injury recurrences: an
927 analysis of 1 season of prospectively collected injuries in professional Australian football. *Am J Sports Med*
928 2017; 45: 1921-1927. doi: 10.1177/0363546517691943.

929 157. Pucciarelli A, Swain M, Lystad R, et al. Subsequent and recurrent injuries in football players: a
930 systematic review. *J Sci Med Sport* 2023; 26: S107-S108. doi: 10.1016/j.jsams.2023.08.130.

931 158. Toohey LA, Drew MK, Cook JL, et al. Is subsequent lower limb injury associated with previous
932 injury? A systematic review and meta-analysis. *Br J Sports Med* 2017; 51: 1670-1678. 20170807. doi:
933 10.1136/bjsports-2017-097500.

934 159. Bitchell CL, Varley-Campbell J, Robinson G, et al. Recurrent and subsequent injuries in professional
935 and elite sport: a systematic review. *Sports Med - Open* 2020; 6. doi: 10.1186/s40798-020-00286-3.

936 160. Cranswick I, Jones A, Brogden C, et al. Rehabilitation remodelled: a narrative review of injury
937 rehabilitation models and proposal of a multi-component MSK rehabilitation model. *Res Sports Med* 2025; 1-
938 29. doi: 10.1080/15438627.2025.2547191.

939 161. Bleakley C, Klempel N, Wagemans J, et al. Statistical power in musculoskeletal research: A meta-
940 review of 266 randomised controlled trials. *Sports Med - Open* 2025; 11. doi: 10.1186/s40798-025-00908-8.

941 162. Estévez Rodríguez JL, Rivilla García J and Jiménez-Rubio S. Return to performance of a soccer player
942 with an adductor longus injury: A case report. *Medicina* 2024; 60: 1998. doi: 10.3390/medicina60121998.

943 163. Picinini F, Della Villa F, Tallent J, et al. High return to competition rate after on-field rehabilitation in
944 competitive male soccer players after ACL reconstruction: GPS tracking in 100 consecutive cases. *Orthop J*
945 *Sports Med* 2025; 13. doi: 10.1177/23259671251320093.

946 164. McCall A, Fanchini M and Coutts AJ. Prediction: The modern-day sport-science and sports-medicine
947 "quest for the holy grail". *Int J Sports Physiol Perform* 2017; 12: 704-706. doi: 10.1123/ijsspp.2017-0137..

948 165. Kalkhoven JT, Watsford ML, Coutts AJ, et al. Training load and injury: Causal pathways and future
949 directions. *Sports Med* 2021; 51: 1137-1150. doi: 10.1007/s40279-020-01413-6.

950 166. Coutts AJ. Challenges in developing evidence-based practice in high-performance sport. *Int J Sports*
951 *Physiol Perform* 2017; 12: 717-718. doi: 10.1123/ijsspp.2017-0455.

952 167. Buchheit M, Settermbre M, Hader K, et al. From high-speed running to hobbling on crutches: a
953 machine learning perspective on the relationships between training doses and match injury trends. *Sport*
954 *Perform Sci Rep* 2023: 1-11.

955 168. Impellizzeri FM, Menaspà P, Coutts AJ, et al. Training load and its role in injury prevention, part i:
956 back to the future. *J Athl Train* 2020; 55: 885-892. doi: 10.4085/1062-6050-500-19.

957 169. Shergill AS, Twist C and Highton J. Importance of GNSS data quality assessment with novel control
958 criteria in professional soccer match-play. *Int J Perform Anal Sport* 2021; 21: 820-830. doi:
959 10.1080/24748668.2021.1947017.

960 170. Theodoropoulos JS, Bettle J and Kosy JD. The use of GPS and inertial devices for player monitoring in
961 team sports: a review of current and future applications. *Orthop Rev* 2020; 12. DOI: 10.4081/or.2020.7863.

962 171. Johnston RJ, Watsford ML, Kelly SJ, et al. Validity and interunit reliability of 10 Hz and 15 Hz GPS
963 units for assessing athlete movement demands. *J Strength Cond Res* 2014; 28: 1649-1655. doi:
964 10.1519/JSC.0000000000000323.

965 172. Delaney JA, Wileman TM, Perry NJ, et al. The validity of a global navigation satellite system for
966 quantifying small-area team-sport movements. *J Strength Cond Res* 2019; 33: 1463-1466. doi:
967 10.1519/jsc.0000000000003157.

968 173. Ellens S, Carey D, Gastin P, et al. Changing the criteria applied to acceleration and deceleration efforts
969 changes the types of player actions detected. *Sci Med Footb* 2024; 8: 52-59. doi:
970 10.1080/24733938.2022.2137575.

971 174. Ellens S, Middleton K, Gastin PB, et al. Techniques to derive and clean acceleration and deceleration
972 data of athlete tracking technologies in team sports: A scoping review. *J Sports Sci* 2022; 40: 1772-1800. doi:
973 10.1080/02640414.2022.2054535.

974 175. Buchheit M and Simpson BM. Player-tracking technology: half-full or half-empty glass? *Int J Sports
975 Physiol Perform* 2017; 12: S2-35-S32-41. doi: 10.1123/ijspp.2016-0499.

976 176. Delaney JA, Cummins CJ, Thornton HR, et al. Importance, reliability, and usefulness of acceleration
977 measures in team sports. *J Strength Cond Res* 2018; 32: 3485-3493. doi: 10.1519/jsc.0000000000001849.

978 177. Varley MC, Fairweather IH and Aughey RJ. Validity and reliability of GPS for measuring instantaneous
979 velocity during acceleration, deceleration, and constant motion. *J Sports Sci* 2012; 30: 121-127. 20111129. doi:
980 10.1080/02640414.2011.627941.

981 178. Fitzwilliam E, Steventon-Lorenzen N, Opar D, et al. Lower limb joint mechanics during maximal
982 accelerative and decelerative running. *Med Sci Sports Exerc* 2024; 56.

983 179. Verheul J, Harper D and Robinson MA. Forces experienced at different levels of the musculoskeletal
984 system during horizontal decelerations. *J Sports Sci* 2024: 1-12. doi: 10.1080/02640414.2024.2428086.

985 180. McBurnie AJ, Harper DJ, Jones PA, et al. Deceleration training in team sports: another potential
986 'vaccine' for sports-related injury? *Sports Med* 2022; 52: 1-12. doi: 10.1007/s40279-021-01583-x.

987 181. Lewis G, Towlson C, Roversi P, et al. Quantifying volume and high-speed technical actions of
988 professional soccer players using foot-mounted inertial measurement units. *PLOS ONE* 2022; 17. doi:
989 10.1371/journal.pone.0263518.

990 182. Toohey LA, Drew MK, Fortington LV, et al. Comparison of subsequent injury categorisation (SIC)
991 models and their application in a sporting population. *Inj Epidemiol* 2019; 6. doi: 10.1186/s40621-019-0183-1.

992 183. Ekstrand J. Keeping your top players on the pitch: the key to football medicine at a professional level.
993 *Br J Sports Med* 2013; 47: 723. doi: [10.1136/bjsports-2013-092771](https://doi.org/10.1136/bjsports-2013-092771).

994 184. Loose O, Achenbach L, Fellner B, et al. Injury prevention and return to play strategies in elite football:
995 no consent between players and team coaches. *Arch Orthop Trauma Surg* 2018; 138: 985-992. doi:
996 10.1007/s00402-018-2937-6.

997 185. Nosek P, Brownlee TE, Drust B, et al. Feedback of GPS training data within professional English
998 soccer: a comparison of decision making and perceptions between coaches, players and performance staff. *Sci
999 Med Footb* 2021; 5: 35-47. doi: 10.1080/24733938.2020.1770320.

1000 186. Bowen L, Gross AS, Gimpel M, et al. Spikes in acute:chronic workload ratio (ACWR) associated with
1001 a 5-7 times greater injury rate in English Premier League football players: a comprehensive 3-year study. *Br J
1002 Sports Med* 2020; 54: 731-738. doi: 10.1136/bjsports-2018-099422.

1003 187. Bowen L, Gross AS, Gimpel M, et al. Accumulated workloads and the acute:chronic workload ratio
1004 relate to injury risk in elite youth football players. *Br J Sports Med* 2017; 51: 452-459. doi: 10.1136/bjsports-
1005 2015-095820.

1006 188. Jaspers A, Kuyvenhoven JP, Staes F, et al. Examination of the external and internal load indicators'
1007 association with overuse injuries in professional soccer players. *J Sci Med Sport* 2018; 21: 579-585. DOI:
1008 10.1016/j.jsams.2017.10.005.

1009 189. Gabbett TJ and Oetter E. From Tissue to System: What constitutes an appropriate response to loading?
1010 *Sports Med* 2024. DOI: 10.1007/s40279-024-02126-w.

1011 190. Impellizzeri FM and Bizzini M. Systematic review and meta-analysis: a primer. *Int J Sports Phys Ther*
1012 2012; 7: 493-503.

1013 191. Abed V, Dupati A, Hawk GS, et al. Return to play and performance after anterior cruciate ligament
1014 reconstruction in the national women's soccer league. *Orthop J Sports Med* 2023; 11: 232596712311649. doi:
1015 10.1177/23259671231164944.

1016 192. Hallén A, Tomás R, Ekstrand J, et al. UEFA women's elite club injury study: a prospective study on
1017 1527 injuries over four consecutive seasons 2018/2019 to 2021/2022 reveals thigh muscle injuries to be most
1018 common and ACL injuries most burdensome. *Br J Sports Med* 2024; 58: 128-136. doi: 10.1136/bjsports-2023-
1019 107133.

1020

1021

1022

1023 **Acknowledgements**

1024 Not applicable.

1025 **Author Contributions**

1026 BD was responsible for the conception and writing of the review. DH and JA contributed and provided supervision

1027 and feedback throughout. All authors critically reviewed the manuscript and approved the final version.

1028

1029 **Statements and Declarations**

1030 **Ethics Considerations**

1031 Not applicable.

1032 **Consent to Participate**

1033 Not applicable.

1034 **Consent for Publication**

1035 Not applicable.

1036 **Conflicts of Interest**

1037 The authors declare no competing interests.

1038 **Funding**

1039 No funding was received for this research.

1040 **Data Availability**

1041 Not applicable.

1042