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Abstract: To promote sustainability in concrete production,
this study investigates the combined use of glass powder
(GP) and rubber fine aggregates (RF) as partial replacements
for cement and natural fine aggregates (NF), respectively.
The study aligns with several Sustainable Development
Goals (SDGSs). Ten mixtures were developed using Central
Composite Design (CCD) within the Response Surface Meth-
odology (RSM) framework, with GP and RF replacement
levels ranging from 0 % to 35 %. Replacing cement with 15 %
GP improved compressive strength, tensile strength, and
stiffness due to pozzolanic reactivity and packing effects,
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while higher levels (25-35 %) reduced performance because
of increased water demand and dilution. RF replacement up
to 15 % maintained workability and strength; beyond this,
mechanical properties declined due to RF’s low specific
gravity (1.06 g/cm®), weak bonding, and higher porosity. The
optimal mix, GP15RF15, achieved a slump of 92 mm, 28-day
compressive strength of 40.1MPa, tensile strength of
5.3 MPa, and modulus of elasticity of 25,914.5 MPa, compa-
rable to the control mix. Correlation analysis showed strong
positive relationships among compressive strength, tensile
strength, and stiffness (r 2 0.99), while RF content had strong
negative correlations (r = —0.75 to —0.77). Optimization using
the desirability function yielded a score of 1.000, with pre-
diction errors below 1.35 %. The results confirm the viability
of GP-RF concrete as a durable and eco-efficient alternative
for non-prestressed structural components and general
infrastructure.

Keywords: glass waste powder; rubber waste; sustainable
concrete; response surface methodology; sustainable devel-
opment goals (SDGs); mechanical properties

Abbreviations

GP glass powder

RF rubber fine aggregates

NF natural fine aggregates

OPC ordinary Portland cement

RSM response surface methodology
Cccb central composite design

SCM supplementary cementitious material
XRF X-ray fluorescence

CA coarse aggregates

SP superplasticizer

[OPC-GP]% (X4)
[NF-RF]% (Xy)

replacement level of cement with glass powder (%)
replacement level of natural fine aggregates with
rubber fine aggregates (%)
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1 Introduction

Concrete is a widely used material in modern construction
and is primarily valued for its high compressive strength.
However, its inherent brittleness and limited tensile ca-
pacity remain major drawbacks for structural applications
[1, 2]. With growing emphasis on sustainable construction
practices, incorporating recycled and industrial waste
materials into concrete has become a practical approach
to minimizing the environmental impact of conventional
production [3, 4]. Among these materials, glass powder
(GP), used as a partial cement replacement, and rubber fine
aggregates (RF), applied as a substitute for natural fine
aggregates (NF), have gained considerable interest for their
potential to improve performance while addressing solid
waste management.

GP, which is obtained from post-consumer glass waste,
is rich in reactive silica and displays pozzolanic activity.
Several studies have confirmed that GP contributes to the
enhancement of compressive strength and durability,
particularly when used at low replacement levels [5-9].
Navaneetha, et al. [10] demonstrated that adding 5 % GP to
sugarcane bagasse ash in ternary concrete improved
compressive strength, thermal resistance, and chloride
durability due to enhanced C-S-H gel formation and
interfacial bonding. However, the same study reported
reduced strength at higher GP contents, primarily due to
dilution effects. Similarly, strength improvements with GP
incorporation were reported by Shekhawat and Aggarwal
[11]. Ramakrishnan et al. [12], Mithanthaya and Bhava-
nishankar Rao [13], Nassar and Abo [14], and Raydan et al.
[15] observed increased tensile strength and improved
crack resistance. However, GP contents exceeding 25 %
have often been associated with increased water demand,
reduced workability, and lower early-age strength [16-18].

RF, which is derived from recycled waste tires, has been
extensively evaluated for its influence on the mechanical
and durability properties of concrete. Letelier et al. [19]
reported that RF improves workability, toughness, and
energy absorption capacity. However, the inclusion of RF at
higher replacement ratios has often been associated with
reductions in compressive strength and modulus of elasticity
due to its low specific gravity and poor interfacial bond with
the cement matrix [20-22]. Despite these limitations, the use
of RF has been shown to enhance ductility and increase post-
crack load-bearing capacity in several studies [12—-15].

Jia et al. [23] examined the durability of lightweight
concrete incorporating waste glass powder (GP) and found
that 20-30 % GP significantly improved corrosion resis-
tance and microstructural densification under marine-like
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exposure conditions. These improvements were attributed to
refined pore structures and enhanced steel passivation,
although a slight reduction in early-age strength was
observed. Similarly, Nia et al. [24] evaluated the replacement
of silica fume with GP in ultra-high-performance concrete
(UHPC) using Portland limestone cement and reported
enhanced long-term compressive strength, improved
permeability resistance, and better workability. These effects
were primarily due to delayed pozzolanic activity, which led
to the development of additional calcium silicate hydrate
(C-S-H) and increased matrix density. Yuan et al. [25] further
demonstrated that combining GP with eggshell powder
improved frost resistance and compressive strength in high-
strength concrete by refining the microstructure, reducing
pore size, and promoting C-S-H formation. Tahwia et al. [26]
showed that high-volume GP improved flowability and
reduced permeability in UHPC by increasing pozzolanic
reactivity and optimizing particle packing. Likewise, Su and
Xu [27] confirmed that incorporating GP with rice husk ash
enhanced compressive strength, cyclic loading resistance, and
shear capacity, although a marginal increase in porosity was
observed at higher replacement levels.

Despite extensive individual research on GP and RF,
their combined application remains relatively underex-
plored. To address this, researchers have begun exploring
their synergy, particularly in terms of mechanical behavior,
durability, and microstructural refinement. Their individual
effects on concrete performance differ significantly. GP
enhances strength, durability, and matrix densification due
to its pozzolanic activity and filler effect. RF contributes to
toughness and energy dissipation, but often leads to a
reduction in compressive strength and stiffness. Achieving a
balanced use of both materials requires a careful mix design
strategy, supported by robust optimization tools capable of
analyzing the complex interactions between variables
affecting fresh and hardened properties.

Response Surface Methodology (RSM) has emerged as a
powerful statistical tool for optimizing concrete mixtures
involving multiple interacting variables. It allows re-
searchers to assess the effects of individual components and
their interactions while reducing the number of experi-
mental trials. Aldahdooh et al. [28-33] successfully used
Central Composite Design (CCD)-based RSM (CCD-RSM) to
optimize binder contents in ultra-high-performance fiber-
reinforced cementitious composites, improving structural
efficiency in retrofitting applications. Aldahdooh et al. [34]
applied CCD-RSM to assess the effects of different types of
plastic waste on concrete, validating the model predictions
with experimental results. Almaawali et al. [35] used a
customized Single-Factor RSM to optimize coarse recycled
aggregate content in conventional concrete.
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Other researchers have employed similar optimization
frameworks to evaluate various recycled and industrial
waste materials. Ali et al. [36] optimized mixtures containing
waste foundry sand using CCD-RSM, while Ali et al. [37]
applied the same design to optimize lightweight concrete
with pumice. Hurtado-Alonso et al. [38] used RSM with
desirability analysis for mixtures incorporating wind
turbine blade waste and recycled aggregates. Abdellatief
et al. [39] used a simplex centroid mixture design to optimize
alkali-activated concrete made with recycled medical glass.
Other researchers have also explored pozzolanic waste-
based materials like pumice and rice straw ash in geo-
polymer systems to balance strength and durability,
emphasizing sustainability [40]. Further studies by Habibi
et al. [41] and Rezaei et al. [42], and Gopalakrishna and
Dinakar [43] focused on optimizing nano-silica and supple-
mentary cementitious materials in recycled aggregate con-
crete using CCD-RSM.

RSM has also been effectively applied in diverse sus-
tainable concrete systems. Lovato et al. [44] optimized me-
chanical and durability properties in recycled aggregate
concrete. Ahmed et al. [45] used RSM to evaluate the influ-
ence of polypropylene fibers and silica fume on recycled
concrete performance. Zhang et al. [46] employed a Box-
Behnken design to optimize porosity and compressive
strength in pervious concrete. Aghajanzadeh et al. [47]
applied RSM for the multi-objective optimization of alkali-
activated slag concrete. Francioso et al. [48] used RSM to
model thermal conductivity under various moisture and
temperature conditions. Kareem et al. [49] optimized hybrid
fiber-reinforced concrete containing waste steel and rubber
fibers using Box—Behnken design, achieving improvements
in strength, water resistance, and reduced CO, emissions.
Matos et al. [50] applied CCD-RSM to optimize ternary
mixtures of waste glass powder and limestone filler in white
high-performance concrete, leading to improved mechani-
cal properties and environmental benefits.

Although machine learning (ML) methods such as arti-
ficial neural networks (ANN) have shown high prediction
accuracy in concrete research [51, 52], RSM remains more
accessible and suitable for experimental optimization. As Ji
etal. [53] and Zhao et al. [54] emphasized that ML approaches
require large datasets and advanced computational infra-
structure, which can limit practical application. Hammoudi
et al. [55] compared RSM and ANN for strength prediction
and concluded that RSM provided efficient and reliable re-
sults. Alahmari et al. [56] combined RSM and ML to identify
optimal waste glass powder contents, improving strength
and microstructure. Other studies such as those by Asif et al.
[57-62], Ullah et al. [63], Miao et al. [64], and Ishaq et al. [65]
further supported the high accuracy of ML models but
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acknowledged the complexity of implementation in small-
scale experimental studies.

Only a limited number of studies have examined the
combined use of GP and RF in concrete. Letelier et al. [19]
explored cementitious mortars containing both crumb rub-
ber and GP, and observed reductions in porosity and water
absorption as well as improved thermal insulation, although
strength losses persisted due to the inclusion of rubber. Mo
et al. [66], Ramdani et al. [67], and Zhai et al. [68] showed that
ultrafine GP improved the mechanical performance and
microstructure of crumb rubber concrete by enhancing
rubber-matrix bonding and refining pore characteristics. E1
Marzak et al. [69] and Song, Peng [78] demonstrated that
combinations of GP with treated rubber or recycled aggre-
gates led to increased strength and improved durability.
Additional investigations by Katebi et al. [70], Chen et al. [71],
Chen, Yang [81], and Mei et al. [72] supported the use of GP
and RF in improving impact resistance, energy absorption,
and structural performance in various concrete systems.
Subramaniam [84] reviewed the effects of waste glass pow-
der and crushed glass in pervious concrete and reported
increased mechanical strength, permeability, and eco-
efficiency. Mhaya et al. [73] and Parghi and Shahria Alam
[74] studied lightweight and geopolymer mortars containing
GP, RF, and supplementary binders. Mhaya et al. [73] reported
that incorporating up to 15 % waste rubber powder (WRP) with
glass powder and metakaolin achieved a 28-day compressive
strength of 27.47MPa with a 7.2% reduction in density.
Microstructural analysis showed improved pore refinement,
increased gel formation (C-A-S-H and N-A-S-H), and a
denser interfacial transition zone (ITZ). Although rubber in-
clusion raised water absorption slightly due to weak bonding,
the pozzolanic activity of metakaolin compensated by
enhancing matrix densification. These findings indicate the
potential for improved durability and support the viability of
combining GP and RF in lightweight, sustainable concrete
systems.

Building on the above studies, this work aims to address
the remaining research gap by integrating GP and RF into a
unified optimization framework. Using CCD-RSM, the pre-
sent study provides a holistic evaluation of their combined
effects on multiple concrete properties. Despite the indi-
vidual and limited combined studies on GP and RF in con-
crete, there remains a significant research gap in applying
data-driven optimization techniques to balance their effects
on multiple performance parameters. Letelier et al. [19]
evaluated the combined use of GP and rubber in mortars,
focusing on thermal insulation and microstructural
behavior, without addressing structural-grade concrete or
statistical optimization. Mo et al. [66] explored mechanical
and shrinkage performance in rubberised glass concrete
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with silica fume, but did not employ response surface
modeling or explore broader performance interactions.
Although Matos et al. [50] applied RSM to optimize ternary
blends in high-performance white concrete using GP and
limestone filler, they did not examine rubber aggregates or
apply a Central Composite Design (CCD) approach. In
contrast, the present study uniquely integrates GP and RF
into structural concrete and utilizes CCD-based RSM to
optimize a broader set of responses, including slump,
compressive strength, splitting tensile strength, and
modulus of elasticity. This integrated, model-driven frame-
work offers a novel contribution to sustainable concrete mix
design by providing statistically validated guidance for
balancing mechanical performance and material circularity,
offering practical applicability for industry adoption.

While the primary focus is on fresh and mechanical
properties, the known microstructural densification effects
of GP and the energy dissipation capacity of RF suggest po-
tential benefits for long-term durability, such as reduced
permeability and improved crack resistance, which merit
future investigation.

Building on the identified research gap, this study aims
to optimize the combined use of GP and RF in structural
concrete by evaluating their effects on four key performance
indicators: slump, compressive strength, splitting tensile
strength, and modulus of elasticity. A Central Composite
Design (CCD)-based Response Surface Methodology (RSM) is
employed to systematically investigate the influence of GP
and RF replacement levels, ranging from 0% to 35 %. The
objective is to identify sustainable concrete mixtures that
achieve optimal performance while promoting material
circularity, as illustrated in Figure 1.

2 Materials and methods
2.1 Materials

2.1.1 Portland cement

Ordinary Portland cement (OPC) CEM I (42.5 N) was used as
the primary binder in this study. The cement was tested in
accordance with the Egyptian Standard Specification ESS
4756-1/2007 [75] to ensure compliance with quality stan-
dards. The chemical analysis showed that the cement con-
tains 63.2 % calcium oxide (Ca0), 22.45 % silica (SiO,), 4.8 %
alumina (Al,03), and 3.2 % iron oxide (Fe,03), with a loss on
ignition (LOI) of 2.25 %, confirming its suitability for concrete
production (Table 1).
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2.1.2 Glass powder (GP)

In this study, GP was used to partially replace OPC at 15 %,
25%, and 35 % by weight. GP was produced from locally
sourced post-consumer clear glass bottles through cleaning,
drying, crushing, grinding, and sieving to achieve cement-
like fineness (Figure 2). The chemical composition of GP was
conducted to determine the composition of the produced GP,
and the results are presented in Table 1. The analysis
confirmed a high SiO, content (73.0 %) along with notable
amounts of CaO (10.8 %) and Na,0 (11.4 %). X-ray diffraction
(XRD) analysis confirmed the amorphous structure of GP,
supporting its pozzolanic reactivity and suitability as a
supplementary cementitious material.

2.1.3 Rubber fine aggregates

Rubber fine aggregates (RF) were used as a partial replace-
ment for natural fine aggregates (NF) at levels of 15 %, 25 %,
and 35 % by weight. RF was obtained from discarded tires,
which were pre-processed to remove steel wires and con-
taminants, shredded, ground, and sieved through a 4.76 mm
mesh to achieve uniform particle size (Figure 4). The phys-
ical properties of NF and RF are summarized in Table 2. RF
exhibited a significantly lower specific gravity (1.06 g/cm®)
compared to NF (2.62 g/cm®). While NF showed an absorption
capacity of 0.82 %, RF displayed negligible water absorption
due to its non-porous surface. A sieve analysis (Figure 5)
confirmed that the particle size distribution of RF was
comparable to that of NF. The surface texture of the raw RF
material is shown in Figures 3-5.

2.2 Mix design and data analysis using RSM

The experimental program aimed to evaluate the influence
of replacing cement with GP and NF with RF in concrete
mixtures while maintaining essential mechanical and
workability properties. This optimization uses RSM with a
CCD approach implemented through Design-Expert® 6.0.7
software. The replacement levels of OPC with GP ([OPC-
GP]%, X;) and NF with RF ([NF-RF]%, X,) were systematically
varied at four levels (0 %, 15 %, 25 %, and 35 %), as outlined in
Table 3. OPC with a constant content of 420 kg/m3 was used,
and the water-to-binder ratio was fixed at 0.4. Fine aggre-
gates consisted of NF and RF. Crushed dolomite with a
maximum size of 10 mm was used as the coarse aggregate. To
maintain the desired workability without increasing the
water content, a high-range water-reducing admixture
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GP Preparation Waste glass bottles were cleaned,
crushed, ground, and sieved to
cement-like fineness.
Characterized using XRF and

XRD.

y

N
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for more details (Figure 2)

RF Preparation Discarded tires were cleaned,
shredded, ground, and sieved
(<4.76 mm). Evaluated using

sieve, and physical tests.

:

for more details (Figure 4)

Mix Design-RSM Ten concrete mixes with varying
GP and RF levels were developed

using CCD-RSM

DESIGNEXPERT

:

VERSION I3

for more details (Section 2.2)

Mixing & Slump Test Dry mixing (2 min), staged water
+ SP addition, wet mixing (3 min).

Slump tested per ASTM C143.

S

i

rY

for more details (Figure 6)

Casting & Curing Concrete was cast in molds,
demolded after 24 + 2 hours, and
water-cured at 23 + 2°C as per

ASTM Standards.

RY

for more details (Figure 6)

Mechanical Testing Concrete specimens were tested
for compressive strength, tensile
strength, and modulus of elasticity
at 7 and 28 days per BS and

ASTM standards.

:

59

for more details (Figure 6)

Correlation and ANOVA validated
RSM models. Desirability function
identified optimal GP and RF
levels for balanced workability and
strength.

Data Analysis,
Heatmap Correlation
Analysis, ANOVA
Analysis, and RSM
Optimization

Table 1: Chemical composition of OPC and GP (by weight %).

Oxide OPC (%) GP (%)
SiO, - silicon dioxide 22.45 73.00
Al;053 - aluminium oxide 4.80 1.80
Fe, 05 - ferric oxide 3.20 0.60
MgO - magnesium oxide 1.60 1.30
TiO; - titanium dioxide - 0.03
Ca0 - calcium oxide 63.20 10.80
K,0 - potassium oxide - 0.56
SOz - sulfur trioxide 2.50 -
Na,O - sodium oxide - 11.40
LOI - loss on ignition 2.25 0.60

(Type G), Sikament®R-2004, was incorporated at 2% by
weight of the binder. Sikament®R-2004 is a brown liquid

for more details (Sections 3)

Figure 1: Methodological framework for
sustainable concrete mix design incorporating
GP and RF.

with a density of 1.20 g/cm® at 20 °C, composed of modified
synthetic dispersion. It complies with ASTM C496/C496M [76]
and BS 5075-3: 1985 [77]. The admixture provides up to 20 %
water reduction, enhances early and ultimate compressive
strength, improves workability, and controls slump loss
without causing segregation or adverse shrinkage. A con-
stant water-to-binder ratio of 0.40 was maintained across all
mixes, resulting in slump values between 80 and 93 mm, as
presented in Table 3.

The experiment involved 10 concrete mixtures designed
to examine relationships between the input factors (X; and
X,) and response variables, including slump (Y3), compres-
sive strength at 7 days (Y,), compressive strength at 28 days
(Y), splitting tensile strength at 28 days (Y,), and modulus of
elasticity at 28 days (Ys). The responses were modeled using
the quadratic equation:
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E . i S LIS . //I . Ly \
Step 1: collection of empty Step 2: washing the bottles Step 3: removal of labels
bottles and ads
! o

Step 4: grinding the glass Step 5: final collection of

into powder glass powde (GP) Figure 2: Production process of GP.

Table 2: Physical properties of the aggregates. k k k k
Y=B,+YBXi+YBXi+) 2 BiXiX; + e @

i=1 i=1 i J

Aggregate types Specific gravity (g/cm® Absorption (%) '

Natural fine aggregates (NF) 262 0.82 Eq. (2) represents the matrix notation of the model:

Rubber fine aggregates (RF) 1.06 NA Y=XBte 2

Here, Y represents the predicted responses, X is the coded
input factors, § denotes the regression coefficients, and ¢
accounts for random errors. This quadratic model enabled
accurate predictions of the responses and helped identify
optimal replacement levels of GP and RF to achieve desirable
concrete performance characteristics.

S th surf; . P
mooth surtace 2.2.1 Analysis and optimization process

The optimization process involved evaluating the effects of

Figure 3: Raw rubber material showing a smooth surface texture before [OPC-GP]% and [NF-RF]% on slump, compressive strength at
processing into rubber fine aggregates. 7 and 28 days, splitting tensile strength, and modulus of

Step 1: collection of used Step 2: pre-processing of Step 3: factory waste
tires waste tires preparation

Step 4: grinding process Step 5: rubber fine Figure 4: Production process of rubber fine
aggregates (RF) production aggregates (RF).



DE GRUYTER

100.00 it
90.00 .
80.00 /
70.00 f
60.00 /
50.00 /
4000
30.00 /
2000 /
10.00 51/
0.00 La=="
0.1 1 10 100

Sieve no. (mm)

Percent passing (%)

—d—  NF
RF

- -

Figure 5: Sieve analysis of NF and RF.

elasticity at 28 days using ANOVA. Statistical significance was
determined through R? values, p-values, t-tests, and diag-
nostic plots to ensure model adequacy. Each response was
transformed into a desirability value (0-1) based on how
well it met predefined performance criteria. Constraints
were defined for all responses, and four optimization trials
were conducted using varying goal settings to assess
robustness (Table 7). A composite desirability index was
used for multi-response optimization. Desirability plots
(Figure 14) revealed that values near 1.0 consistently
occurred when both [OPC-GP]% and [NF-RF]% exceeded
15 %. Based on this, Trial 1 was selected at 15 % GP and 15 %
RF, achieving a desirability score of 1.000. Its optimality
within the design space was confirmed through the ramp
function graph (Figure 15). A comparison of all trials is
provided in Table 9. The Trial 1 mix was then validated
experimentally, with percentage errors for all responses
remaining below 1.5% (Table 10), confirming the model’s
predictive accuracy. This approach ensures a balanced mix
in terms of mechanical performance and workability,

Table 3: CCD and mix proportions of concrete mixtures.
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supporting a systematic approach for optimizing sustainable
concrete mixtures.

2.3 Sample preparation and testing
procedure

In this study, saturated surface-dry CAs were mixed with dry
OPC, GP (Figure 2), NF, and RF (Figure 4) in a pan mixer for
2min. Then, 70-80 % of the total mixing water was added,
followed by the remainder premixed with SP. Wet mixing
continued for 3min to ensure homogeneity. The complete
mixing and testing procedure is illustrated in Figure 6.
Immediately after mixing, the slump test was performed in
accordance with ASTM C143/C143M [78], using a standard
slump cone (300 mm height, 200 mm base diameter, 100 mm
top diameter), and the results were recorded in millimeters
(mm). The fresh concrete was cast into standard molds in
two layers and compacted using a vibrating table or tamping
rod. Specimens were demolded after 24 + 2h and cured in
water at 23 + 2°C as per ASTM C192/C192M [79]. Mechanical
properties were evaluated at 7 and 28 days. Compressive
strength was tested on 150 mm cube specimens in accor-
dance with BS 1881 [80], with three specimens per age (Ta-
ble 4). The splitting tensile strength and modulus of elasticity
were measured at 28 days using 150 x 300 mm cylindrical
specimens, following ASTM (C496/C496M-17 [76] and ASTM
C469/C469M-14 [81], respectively. Modulus of elasticity re-
sults were further validated using Egyptian Standard Spec-
ifications ESS 203-2018 [37, 38]. Testing three specimens for
each mechanical property ensured consistency and reli-
ability in evaluating the concrete mixtures’ workability and
mechanical performance.

Mixture ID CCD run # Factors (CCD coded factors) Mix proportions (kg/m3)

X, X, OPC GP NF RF CA w SP

[OPC-GP]% [NF-FA]%

GPORFO 1 0(-1.0) 0(-1.0) 420 0 693.1 0 1,039.6 168 8.4
GP15RFO 2 15 (-0.143) 0(-1.0) 357 15 589.14 103.97 1,039.6 168 8.4
GP25RFO 3 25 (0.429) 0(-1.0) 315 25 519.83 173.28 1,039.6 168 8.4
GP35RFO 4 35(1.0) 0(-1.0) 273 35 450.52 242.59 1,039.6 168 8.4
GPORF15 5 0(-1.0) 15 (-0.143) 357 15 589.14 103.97 1,039.6 168 8.4
GPORF25 6 0(-1.0) 25 (0.429) 315 25 519.83 173.28 1,039.6 168 8.4
GPORF35 7 0(-1.0) 35(1.0) 273 35 450.52 242.59 1,039.6 168 8.4
GP15RF15 8 15 (-0.143) 15 (-0.143) 357 15 589.14 103.97 1,039.6 168 8.4
GP15RF25 9 15 (-0.143) 25 (0.429) 315 25 519.83 173.28 1,039.6 168 8.4
GP15RF35 10 15 (-0.143) 35(1.0) 273 35 450.52 242.59 1,039.6 168 8.4

[OP(] refers to the Portland cement, [GP] refers to the glass powder, [NF] refers to the natural fine, [RF] refers to the rubber fine aggregates, [CA] refers to
the coarse aggregates, [W] refers to the water content, [SP] refers to the superplasticizer, [OPC-GP]% refers to the replacement level of OPC with GP, [NF-
RF]% refers to the replacement level of NS with RF, [GPORFO] refers to the control mixture with no replacement, and [GP15RF25] indicates a mixture with

15 % GP and 25 % RF.
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Binders and
Aggregates

Dry mixing
(2 minutes)

Wet mixing (3
minutes)

Slump Test (ASTM
C143/C143M)

Mechanical Tests (compressive strength,
splitting tensile strength, modulus of elasticity)

Curing (maintained
at 23 £ 2°C)

Table 4: Summary of mechanical test methods and standards.

Figure 6: Concrete mixing and testing
procedure.

Casting (Demolding
time: 24 + 2 hours)

Property Specimen type

Dimensions

Age of testing (days) Standard method

(diameter x height or side)

Compressive strength Cube 150 mm x 150 mm x 150 mm 7 and 28 BS 1881 [80]
Splitting tensile strength Cylinder 150 mm (D) x 300 mm (H) 28 ASTM C496/C496M-17 [76]
Modulus of elasticity Cylinder 150 mm (D) x 300 mm (H) 28 ASTM C469/C469M-14 [81],

ESS 203-2018 [37, 38]

3 Experimental results and
discussions

This section presents the results of tests conducted on con-
crete mixtures, evaluating the influence of GP and RF as
partial replacements for cement and natural fine aggregates,
respectively, at levels of 15 %, 25 %, and 35 %. The responses
include slump (Y;), compressive strength at 7 days (Y3),
compressive strength at 28 days (Y3), splitting tensile

Table 5: Experimental results for each mixture.

strength (Y,), and modulus of elasticity (Ys). Table 5 sum-
marizes the results based on the factors X; ((OPC-GP]%) and
X, (INF-RF]%).

3.1 Slump test results

The workability of fresh concrete mixtures was evaluated
using the standard slump test. Results are summarized in
Table 5 and illustrated in Figure 7. Slump values ranged from

Mixture ID CCD run # Factors Responses (average values)
X Xz Ya £} 16} Ya Ys
(%) (%) (mm) (MPa) (MPa) (MPa) (MPa)
GPORFO 1 0 0 95 32.89 40.37 55 26,221.3
GP15RFO 2 15 0 90 32.09 41.8 5.8 26,581.4
GP25RFO 3 25 0 85 30.28 39.6 53 25,896.5
GP35RF0 4 35 0 82 27.41 35.97 4.6 24,112.3
GPORF15 5 0 15 95 29.5 38.6 5.08 25,724.5
GPORF25 6 0 25 91 27.08 36.6 4.62 24,552.5
GPORF35 7 0 35 85 25.3 33.7 4.21 23,7341
GP15RF15 8 15 15 92 30.5 40.1 53 25,914.5
GP15RF25 9 15 25 89 28.54 374 4.8 24,827.7
GP15RF35 10 15 35 84 27.2 34.2 4.32 23,831.2

[GPORFO] refers to the control mixture, [V1] refers to the slump (mm), [¥,] refers to the compressive strength (MPa) at 7 days, [5] refers to the compressive
strength (MPa) at 28 days, [Y,] refers to the splitting tensile strength (MPa) at 28 days, [Vs] refers to the modulus of elasticity (MPa) at 28 days, [X;] refers to

the [OPC-GP]% and [X>] refers to the [NF-RF]%.
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82mm to 95mm, all within the acceptable range for con-
ventional concrete and below the 150 mm threshold typically
associated with highly flowable mixes. Relative slump
values, normalized to the control mixture (GPORF0), ranged
from 86.32 % to 100 %.

The control mixture (GPORF0), composed entirely of OPC
and NF, recorded the highest slump value of 95mm. A
gradual decline in slump was observed as the replacement
level of OPC with GP increased. For example, slump
decreased to 82 mm in the GP35RF0 mixture. This reduction
is attributed to the high fineness and surface area of GP,
which increase internal friction and water demand. As
shown in Table 1, GP contains 73.0 % SiO, and has an
amorphous structure, which enhances its pozzolanic reac-
tivity while also increasing paste viscosity and reducing
flowability. These observations are consistent with Sun et al.
[82], who reported that high-surface-area materials reduce
workability due to increased internal friction.

RF exhibited a more complex influence on slump. At a
15 % replacement level (GPORF15), RF maintained the same
slump as the control (95 mm), likely due to its smooth texture
and elastic properties, which may improve particle move-
ment at lower contents. However, higher RF contents (e.g.,
25% and 35 %) led to reduced slump values of 91 mm and
85 mm, respectively. According to Table 2, RF has a signifi-
cantly lower specific gravity (1.06 g/cm®) compared to NF
(2.62 g/cm?®), and negligible water absorption. These proper-
ties reduce packing density and moisture retention,
increasing internal resistance and decreasing workability.
This behavior is consistent with the findings of Mehta and
Gandhi [83] and Yu et al. [84], who demonstrated that higher-
density aggregates improve flow by reducing internal fric-
tion, while lower-density materials impair workability.

Mixtures combining both GP and RF (e.g., GP15RF15 to
GP15RF35) showed cumulative effects, with slump
decreasing from 92 mm to 84 mm, indicating the combined
impact of GP’s high water demand and RF’s low density and

hydrophobic nature. Although a superplasticizer (SP), Sika-
ment® R-2004, was included at a constant dosage of 2 % by
binder weight in all mixtures, it primarily served to main-
tain workability across all mixes, rather than significantly
improving flow, especially in mixtures with high GP and RF
content.

In summary, although the inclusion of GP and RF
influenced fresh concrete workability, no mixture exceeded
a slump value of 95 mm. All mixtures remained within a
consistent and controlled range suitable for casting and
compaction. These results are in line with previous findings
regarding the role of aggregate density, surface character-
istics, and internal friction in determining concrete work-
ability [41, 83, 84].

3.2 Mechanical properties
3.2.1 Compressive strength results

The compressive strength of all mixtures was evaluated at 7
and 28 days, as shown in Table 5 and illustrated in Figures 8
and 9. The reference mixture (GPORF0), composed of 100 %
OPC and NF, achieved 32.89 MPa at 7 days and 40.37 MPa at
28 days. It also recorded the highest slump value of 95 mm
(Figure 7), indicating good workability and cohesiveness.
When OPC was partially replaced with GP (GP15RFO to
GP35RF0), compressive strength progressively declined with
increasing replacement levels. At 28 days, strength
decreased from 41.8 MPa (103.54 %) in GP15RFO0 to 39.6 MPa
(98.09 %) in GP25RF0 and 35.97 MPa (89.10 %) in GP35RFO.
Slump values also declined, from 90 mm in GP15RF0 to
85 mm in GP25RF0 and 82 mm in GP35RF0 (Figure 7). These
results suggest that the reduction in CaO content (10.8 % in
GP vs. 63.2 % in OPC, Table 1) and the increased fineness of
GP likely raised water demand and limited effective hydra-
tion at higher replacement levels. This interpretation is
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consistent with findings by Matos et al. [50] and Nia et al. [24],
who reported that high GP dosages can reduce strength due
to cement dilution and increased water demand from fine
particles, despite the pozzolanic benefits at moderate levels.
The higher strength in GP15RFO may be attributed to
pozzolanic activity and improved particle packing at a
moderate GP content, an effect also observed by Ramdani
et al. [67] and Su and Xu [27], who highlighted the positive
influence of GP on strength and densification when used in
limited amounts. However, reduced flowability and higher
internal friction at elevated GP levels may have hindered
compaction efficiency, consistent with Mehta and Monteiro
[85] and further supported by El Marzak et al. [69], who
demonstrated that excess fines from SCMs and rubber can
impair rheology and thus affect strength. This behavior is
reflected in Figure 9, where GP35RF0 exhibited more brittle
and irregular failure surfaces than GP15RF0.

Replacing NF with RF (GPORF15 to GPORF35) also resul-
ted in reduced compressive strength. At 28 days, strength
decreased from 38.6 MPa (95.62 %) in GPORF15 to 36.6 MPa
(90.66 %) in GPORF25 and 33.7 MPa (83.48 %) in GPORF35.
Slump values also declined from 95mm to 91mm and
85 mm, respectively (Figure 7). According to Table 2, RF has a

Figure 9: Failure behavior of concrete samples

GP15RF35 under compression.

lower specific gravity (1.06 g/cm® and negligible water
absorption compared to NF (2.62 g/cm®, 0.82 %), which may
reduce packing density and influence the aggregate—paste
interaction. The elastic and smooth surface of RF (Figure 3)
may also reduce mechanical interlock. These effects are
consistent with the findings of Letelier et al. [19] and Mo et al.
[66], who showed that rubber particles introduce internal
voids, reduce stiffness, and weaken the interfacial transition
zone (ITZ), ultimately leading to strength loss. As shown in
Figure 9, GPORF35 exhibited more extensive surface
cracking than GPORF15. These outcomes also align with Dils
et al. [86] and Horszczaruk et al. [87], who reported that
deformable rubber aggregates impair structural integrity
by reducing packing efficiency and introducing high
deformability zones.

Mixtures combining GP and RF (GP15RF15 to GP15RF35)
exhibited similar trends. GP15RF15 achieved a 28-day
strength of 40.1 MPa (99.33 %), close to the reference.
Strength declined to 37.4 MPa (92.64 %) in GP15RF25 and
34.2 MPa (84.72 %) in GP15RF35. Slump values also decreased,
from 92 mm in GP15RF15 to 89 mm and 84 mm, respectively
(Figure 7). The performance of GP15RF15 indicates a
balanced effect, where moderate GP and RF contents
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maintained strength and workability. This result is in
agreement with Ramdani et al. [67] and Mo et al. [66], who
found that combining rubber and GP can offset strength
losses caused by rubber alone due to the densifying and
pozzolanic action of GP. However, increasing RF further
resulted in lower strength and more fragmented fracture
surfaces, as seen in Figure 9 for GP15RF35, reflecting a
threshold beyond which the weakening effects of rubber
dominate. This trend was also noted by El Marzak et al. [69].

In summary, compressive strength decreased with
increasing GP and RF content, particularly beyond 15 %. This
trend corresponded with lower slump values (Figure 7),
indicating reduced flowability and compaction efficiency.
The GP15RF15 mixture maintained strength comparable to
the control with consistent failure behavior. These findings
are in strong agreement with recent literature, including
Letelier et al. [19], Mo et al. [66] and Matos et al. [50], which
collectively confirm that moderate substitution levels of GP
and RF can be optimized to retain structural performance,
while excessive use negatively affects both workability and
compressive strength due to microstructural inefficiencies.

3.2.2 Splitting tensile strength

The tensile strength results at 28 days are summarized in
Table 6 and illustrated in Figure 10. The control mixture
(GPORFO0) achieved the highest tensile strength of 5.5 MPa
(100 %). Replacing cement with 15 % glass powder (GP15RF0)
slightly improved the tensile strength to 5.8 MPa (105.45 %),
which can be attributed to the filler effect of GP and its high
SiO, content (73.0 %) (Table 1). These characteristics enhance
matrix density and particle packing, thereby improving
tensile behavior at lower replacement levels. This result
aligns with the findings of Navaneetha et al. [10] and Matos
et al. [50], who reported improved mechanical performance
at moderate GP levels due to increased pozzolanic activity
and refined pore structure. Similarly, Nia et al. [24]
confirmed that GP enhances long-term strength through
delayed pozzolanic reactions and additional C-S-H gel
formation.

However, increasing the GP content to 25 % and 35 % led
to reduced tensile strength values of 5.3 MPa (96.36 %) and
4.6 MPa (83.64 %), respectively. This decline is likely due to
the higher water demand and delayed pozzolanic activity at
elevated GP levels, which reduce the matrix’s early-age
strength. These trends are consistent with the dilution
effects and strength reductions reported by Jia et al. [23]
and Tahwia et al. [26] at higher GP levels.

When replacing NFs with RFs, tensile strength
decreased progressively with increasing RF content.
GPORF15 achieved a tensile strength of 5.08 MPa (92.36 %),
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while GPORF25 and GPORF35 decreased further to 4.62 MPa
(84.00 %) and 4.21 MPa (76.55 %), respectively. This reduction
is primarily attributed to the lower specific gravity of RF
(1.06 g/cmS, Table 2), which weakens the interfacial bond
between the cement paste and the aggregates, thereby
reducing load transfer efficiency. Additionally, the irregular
shape and elastic nature of RF particles increase void con-
tent and hinder stress distribution. These observations are
consistent with findings by Letelier et al. [19], Mo et al. [66]
and El Marzak et al. [69], who reported strength reductions
in rubberized mixes due to poor interfacial bonding and
increased porosity.

In combined replacement scenarios, the mixture
GP15RF15 maintained a relatively high tensile strength of
5.35MPa (97.27 %), suggesting a synergistic effect between
moderate GP content and RF inclusion. This balance en-
hances matrix compactness while partially mitigating the
negative impact of RF. Such synergy was also observed by
Ramdani et al. [67] and Letelier et al. [19], who found that
GP’s pozzolanic and filler effects can compensate for the
mechanical weaknesses introduced by rubber aggregates.
However, as RF content increased further in mixes GP15RF25
and GP15RF35, tensile strength declined to 4.8 MPa (87.27 %)
and 4.32 MPa (78.55 %), respectively. These reductions can be
attributed to the lower stiffness, hydrophobic surface, and
poor interfacial bonding of rubber particles, which nega-
tively affect stress transfer and crack resistance.

The trends presented in Figure 10 confirm that tensile
strength generally decreases as the replacement levels of
both GP and RF increase. The reduction is more pronounced
at higher RF levels due to its low density, deformability, and
bond-disrupting characteristics. These findings underscore
the importance of balancing GP and RF content to achieve an
optimal trade-off between mechanical performance and
sustainability. A moderate replacement level, such as 15 %
GP and 15 % RF, proves effective in maintaining acceptable
structural performance while promoting eco-efficiency.

3.2.3 Modulus of elasticity

The modulus of elasticity results at 28 days are presented in
Figure 11. The control mixture (GPORF0) recorded the highest
modulus value of 26,221.3 MPa (100 %). When 15 % of cement
was replaced with glass powder (GP15RF0), the modulus
slightly increased to 26,581.4 MPa (101.37 %). This improve-
ment can be attributed to the high SiO, content of the glass
powder (73.0 %, Table 1), which enhances particle packing
and contributes to matrix densification. Similar findings
were reported by Matos et al. [50] and Nia et al. [24], who
observed improved microstructure and stiffness in mixtures
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Table 6: ANOVA results for response surface quadratic model parameters.
Response Source Sum of squares df Mean square F-Value p-Value
Slump (mm) Model 190.33 4 47.58 187.61 <0.0001 Significant
Xq 30.03 1 30.03 118.41 0.0001
X2 16.97 1 16.97 66.92 0.0004
X1X2 14.81 1 14.81 58.4 0.0006
x3 33.21 1 33.21 130.95 <0.0001
Residual 1.27 5 0.2536
Cor total 191.6 9
Compressive strength @ 7 days (MPa) Model 51.8 4 12.95 209.49 <0.0001 Significant
X1 1.17 1 1.17 18.85 0.0074
X2 10.16 1 10.16 164.35 <0.0001
X1X2 2.5 1 2.5 40.44 0.0014
x% 2.91 1 291 47.02 0.001
Residual 0.3091 5 0.0618
Cor total 52.11 9
Compressive strength @ 28 days (MPa) Model 66.09 4 16.52 209.86 <0.0001 Significant
Xq 13.38 1 13.38 169.88 <0.0001
X2 59.19 1 59.19 751.75 <0.0001
x% 16.1 1 16.1 204.51 <0.0001
x3 2.99 1 2.99 38 0.0016
Residual 0.3937 5 0.0787
Cor total 66.48 9
Splitting tensile strength @ 28 days (MPa) Model 247 4 0.6167 168.84 <0.0001 Significant
X1 0.5833 1 0.5833 159.7 <0.0001
X2 2.24 1 2.24 614.23 <0.0001
x2 0.6466 1 0.6466 177.03 <0.0001
x3 0.0237 1 0.0237 6.47 0.0516
Residual 0.0183 5 0.0037
Cor total 2.49 9
Modulus of elasticity 28 days (MPa) Model 9.82E+06 4 2.45E+06 93.39 <0.0001 Significant
X1 2.99E+06 1 2.99E+06 113.67 0.0001
X2 8.77E+06 1 8.77E+06 333.82 <0.0001
x2 2.56E+06 1 2.56E+06 97.45 0.0002
x3 2.78E+05 1 2.78E+05 10.56 0.0227
Residual 1.31E+05 5 26,281.24
Cor total 9.95E+06 9
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incorporating moderate glass powder due to its pozzolanic
activity and filler effect.

However, higher GP replacement levels (GP25RFO and
GP35RF0) resulted in reduced modulus values of 25,896.5 MPa
(98.76 %) and 24,112.3 MPa (91.96 %), respectively. These re-
ductions align with observations by Matos et al. [50] and Nia
et al. [24], who reported that excessive GP content may lead to
a dilution effect and delayed pozzolanic reaction, which in
turn lowers stiffness and overall matrix integrity.

For rubber fine aggregate (RF) replacements, the
modulus of elasticity consistently decreased with increasing
RF content. The modulus values for GPORF15, GPORF25, and
GPORF35 were 25,724.5 MPa (98.11 %), 24,552.5 MPa (93.64 %),
and 23,734.1 MPa (90.51 %), respectively. This trend is consis-
tent with findings from Mo et al. [66] and E1 Marzak et al. [69],
and Zhai et al. [68], who highlighted that rubber particles
exhibit low stiffness, high deformability, and weak bonding at
the interfacial transition zone (ITZ), all of which contribute to
reduced elastic performance. The irregular surface and low
specific gravity (1.06 g/cm®, Table 2) of RF also disrupt the
matrix continuity and contribute to stiffness loss.

In the case of combined GP and RF replacements, the
mixture GP15RF15 demonstrated a modulus of 25,914.5 MPa
(98.83 %), indicating a favorable synergy between moderate
GP content and limited RF replacement. Ramdani et al. [67]
and Letelier et al. [19] reported similar observations, where
glass powder improved the microstructure and partially
compensated for the adverse effects of rubber inclusion on
mechanical performance.

However, higher RF contents in the combined mixes,
such as GP15RF25 and GP15RF35, led to further reductions in
modulus to 24,827.7MPa (94.69%) and 23,831.2MPa
(90.88 %), respectively. These findings are in line with those
of Mo et al. [66] and El Marzak et al. [69], who confirmed that
beyond certain thresholds, rubber content dominates the
mechanical response, resulting in reduced stiffness and
weaker structural behavior.

Overall, the trend in modulus of elasticity is consistent
with the patterns observed in compressive and tensile
strength, supporting the correlation between elastic stiffness
and load-bearing capacity. The GP15RF15 mixture exhibited
the most balanced performance, combining improved ma-
trix densification from GP with an acceptable level of rigidity
despite RF inclusion. These results emphasize the need to
optimize the proportions of GP and RF to maintain me-
chanical performance while promoting sustainability in
concrete production (as concluded in Section 3.2).

3.2.4 Heatmap correlation analysis and results

A heatmap correlation analysis was conducted to examine
the relationships between [OPC-GP]%, [NF-RF]%, and key
performance indicators: slump, compressive strength,
splitting tensile strength, and modulus of elasticity. The
correlation matrix, generated using Python and visualized
with Seaborn (Figure 12), provided insights into how changes
in material composition influence both fresh and hardened
concrete properties.

The analysis showed a strong negative correlation be-
tween [OPC-GP]% and slump (r = —0.67), which aligns with
the reduced workability observed in Section 3.1 as glass
powder content increased. For instance, slump values
decreased from 95 mm in GPORFO to 82 mm in GP35RF0. This
reduction is attributed to the high surface area and fineness
of the glass powder, which elevates water demand and in-
ternal friction. These findings are consistent with the con-
clusions of Sun et al. [82], who reported that high-
surface-area materials lower workability due to increased
internal resistance.

[OPC-GP]% exhibited minimal correlation with
compressive strength at 7 days (r = 0.01), compressive
strength at 28 days (r = 0.04), Splitting tensile strength at
28 days (r = 0.04), and modulus of elasticity at 28 days
(r = -0.07). These weak associations suggest that the impact
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of glass powder on mechanical properties is nuanced,
depending on the balance between pozzolanic reactivity and
cement dilution. Conversely, [NF-RF]% displayed strong
negative correlations with all mechanical properties:
compressive strength at 7 days (r = —0.74), compressive
strength at 28 days (r = —0.75), splitting tensile strength at
28 days (r = —0.77), and modulus of elasticity at 28 days
(r = =0.71). These results are aligned with experimental
outcomes discussed in Sections 3.2.1-3.2.3, where increasing
rubber aggregate content reduced performance due to its
low specific gravity, elastic nature, and limited bonding
abhility (see Table 2 and Figure 3).

Slump correlated positively with compressive strength
at 7 days (r = 0.60), compressive strength at 28 days (r = 0.61),
tensile strength at 28 days (r = 0.57), and modulus of elasticity
at 28 days (r = 0.66). These moderate to strong correlations
underscore the role of adequate workability in enhancing
mechanical performance through improved compaction and
reduced voids. For example, GP15RFO and GP15RF15, with
slump values of 90mm and 92mm, recorded high
compressive strength values of 41.8 MPa and 40.1 MPa at
28 days, respectively.

Compressive strength at 7 days strongly correlated
with compressive strength at 28 days (r = 0.94), tensile
strength at 28 days (r = 0.96), and modulus of elasticity at
28 days (r = 0.95), indicating consistent strength progres-
sion. Similarly, compressive strength at 28 days correlated
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Modulus of Elasticity (MPa) @ 28 days

Figure 12: Correlation heatmap; factors and
response metrics.

Splitting Tensile Strength (MPa) @ 28 days

almost perfectly with splitting tensile strength (r = 0.99)
and modulus of elasticity (r = 0.99), reinforcing its reli-
ability as a predictor of other mechanical outcomes.
Moreover, tensile strength and modulus of elasticity at
28 days showed a near-perfect correlation (r = 0.98),
highlighting the intrinsic link between tensile behavior
and material stiffness. This further supports the observa-
tions in Section 3.2.3 and emphasizes the importance of
integrated mix design.

In summary, the correlation analysis confirms that
moderate GP levels improve compressive strength and
modulus of elasticity, likely due to enhanced pozzolanic ac-
tion and particle packing. This is supported by Mhaya et al.
[73], who showed that GP refines pore structure and den-
sifies the matrix, reducing chloride penetration, enhancing
corrosion resistance, and lowering capillary permeability in
GP-rubber concretes. GP also promotes cohesive ITZ for-
mation and C-S-H development, contributing to long-term
durability. Conversely, higher RF content correlates with
reduced mechanical performance due to its deformability,
low specific gravity, and weak matrix bonding. However,
RF’s hydrophobic and elastic nature can mitigate crack
propagation and water absorption, as evidenced by reduced
surface erosion in GP-RF blends. These findings underscore
the importance of optimizing GP and RF ratios to achieve
both mechanical strength and durability, supporting sus-
tainable concrete design.
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3.3 RSM mathematical modeling and
statistical insights

The relationships between process factors x; (replacement
level of cement with glass powder [OPC-GP]%) and X,
(replacement level of natural fine aggregates with rubber
fine aggregates [NF-RF]%) and the responses (slump,
compressive strength at 7 and 28 days, splitting tensile
strength, and modulus of elasticity) were analyzed using
RSM. Quadratic prediction models were developed using
actual data, eliminating insignificant terms to enhance pre-
diction accuracy. The predicted responses were modeled as
quadratic functions of the factors, incorporating linear (x;,
X7), interaction (x1x,), and quadratic (x3, x2) terms. The final
prediction models for each response are expressed as
follows:

Slump = 95.13818 — 0.379266x; + 0.210915x;
+0.009532x1x; — 0.014513x% 3)

Compressive strength @ 7days (MPa)
= 32.82507 + 0.044851x; — 0.220183x; + 0.005275x1.x;
- 0.005727x @)

Compressive strength @ 28 days (MPa)
= 40.53924 + 0.218163x; — 0.050989x; — 0.010004x%
- 0.004355x; ®)

Splitting tesnile strength @ 28 days (MPa)
= 5.54451 + 0.042607x; — 0.02605x, — 0.002005x>
- 0.000387x; (6)

Modulus of elasticity @ 28 days (MPa)
= 26338.36827 + 77.27164x; — 31.89193x, — 3.98995)(%
- 1.32629x5 ™

3.3.1 ANOVA results and model significance

The statistical significance of the developed models was
assessed using Analysis of Variance (ANOVA), as summa-
rized in Table 6. All models were highly significant, with
p-values less than 0.0001, confirming strong correlations
between the process factors ((OPC-GP]% and [NF-RF]%) and
the responses. For slump, the model showed an F-value of
187.61, with significant contributions from both linear and
quadratic terms, especially [NF-RF]% (F = 130.95). The
compressive strength at 7 days model achieved an F-value of
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209.49, where the quadratic term of [OPC-GP]% had a
dominant influence (F = 164.35). For compressive strength
at 28 days, the model demonstrated an F-value of 209.86,
with the linear term of [NF-RF]% exerting the most sub-
stantial effect (F = 751.75). Similarly, the splitting tensile
strength at 28 days model recorded an F-value of 168.84,
dominated by the linear and quadratic terms of [NF-RF]%
(F = 614.23 and F = 177.03, respectively). The modulus of
elasticity at 28 days achieved an F-value of 93.39, with sig-
nificant contributions from the linear term of [NF-RF]%
(F=333.82) and the quadratic terms. The low residual mean
square values across all models further confirm their pre-
cision and reliability in predicting the behavior of concrete
mixtures with varying levels of glass powder and rubber
fine aggregates.

3.3.2 Model validation

The accuracy and reliability of the models were validated
using statistical metrics, including R adjusted R, predicted
R% and adequate precision, as summarized in Table 7. All
responses exhibited R* values greater than 0.99, indicating
that the models explain more than 99 % of the variability in
the responses. The adjusted R values were closely aligned
with the R? values, confirming the models’ robustness even
after accounting for the number of predictors. The predicted
R* values ranged between 0.93 and 0.98, demonstrating
strong predictive accuracy for unseen data. Additionally, the
adequate precision values for all responses exceeded 26,
signifying an adequate signal-to-noise ratio, which ensures
the models can effectively navigate the design space. The low
coefficients of variation (C.V.%), ranging from 0.78 % to 2.5 %,
further highlight the consistency and precision of the
models. These results validate the models’ reliability for
predicting the slump, compressive strength, splitting tensile
strength, and modulus of elasticity of concrete mixtures with
varying levels of glass powder and rubber fine aggregates. It
is important to note that while the developed RSM models
show excellent predictive accuracy within the tested range
(0-35 % replacement levels) for both factors, their applica-
tion beyond this domain may be limited. RSM is inherently
sensitive to the experimental range, and extrapolation
should be approached with caution to avoid unreliable
predictions.

3.3.3 Diagnostics and surface plots
The reliability of the RSM models was validated using

diagnostic and response surface plots, as shown in Figure 13.
The normal probability plots of studentized residuals
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Table 7: Model validation for all responses.

DE GRUYTER

Fit Slump Compressive strength @ Compressive strength @ Splitting tensile strength @ Modulus of elasticity @
statistics 7 days 28 days 28 days 28 days
Std. dev. 0.504 0.25 0.28 0.06 162.11
Mean 88.8 29.08 37.83 4.95 25,139.6
CV.% 0.57 0.86 0.74 1.22 0.64
R? 0.99 0.99 0.99 0.99 0.99
Adj. R 0.99 0.99 0.99 0.99 0.98
Pred. R? 0.98 0.98 0.97 0.95 0.93
Adeq. P. 37.28 43.83 41.03 36.83 26.19

[Std. Dev.] refers to the standard deviation; [Mean] refers to the average value; [C.V. %] refers to the coefficient of variation; [R”] refers to the proportion of
variance explained; [Adj. R*] refers to the adjusted R? considering predictors; [Pred. R?] refers to the predicted R%; [Adeq P.] refers to the signal-to-noise ratio

(Adeq precision).

(Figure 13-I) confirm normally distributed residuals,
ensuring unbiased predictions. The predicted versus actual
plots (Figure 13-I) demonstrate strong linear correlations,
validating the models’ accuracy. The perturbation plots
(Figure 13-III) highlight the sensitivity of responses to
changes in individual factors ([OPC-GP]% and [NF-RF]%),
emphasizing the dominant influence of quadratic terms,
particularly on compressive strength and modulus of
elasticity.

The 3D surface plots (Figure 13-IV) illustrate the inter-
action effects of [OPC-GP]% and [NF-RF]% on key responses.
For Slump, workability decreases with increasing [OPC-
GP]% and [NF-RF]%, consistent with Section 3.2.1, where
higher glass powder content increased water demand and
rubber aggregates disrupted matrix continuity. For
compressive strength, surface plots at 7 and 28 days show a
parabolic trend: moderate [OPC-GP]% (15%) enhances
strength due to the pozzolanic activity of glass powder, while
excessive [NF-RF]% reduces strength due to poor bonding
and elastic deformability, aligning with Sections 3.2.1 and
3.2.3. Similarly, splitting tensile strength peaks at balanced
levels of 15 % GP and 15 % RF (GP15RF15), achieving 5.35 MPa,
as discussed in Section 3.2.2. For modulus of elasticity, sur-
face plots mirror compressive strength trends, with peak
values at 15% GP and low RF content. Higher RF levels
reduce stiffness due to their lower specific gravity and elastic
nature, as highlighted in Section 3.2.3 and the correlation
heatmap.

In summary, the 3D surface plots visualize the
nonlinear interactions between [OPC-GP]% and [NF-RF]%,
confirming earlier trends. Balanced replacement levels of
15 % GP and 15 % RF provide the best compromise between
mechanical performance and workability, as supported
by statistical models, experimental data, and correlation
analysis.

3.3.4 Multiple response optimization

Multiple response optimization was performed using the
desirability function to determine the optimal replace-
ment levels of GP and RF for balanced concrete perfor-
mance. The responses evaluated included slump,
compressive strength at 7 and 28 days, splitting tensile
strength, and modulus of elasticity at 28 days. Table 8
summarizes the constraints applied across four optimi-
zation trials, with goals set to either maintain values
within specified ranges or maximize performance. All
input factors and responses were assigned equal weights
and high importance.

The desirability plots (Figure 14) show that values near
1.0 consistently occur when both [OPC-GP]% and [NF-RF]%
exceed 15 %, establishing this threshold as a minimum for
satisfying all performance criteria. Below this level, desir-
ability declines sharply due to unmet targets. Based on this,
Trial 1 was designed using 15 % GP and 15 % RF, marking the
beginning of a stable optimal region. Trial 1 achieved a
desirability score of 1.000, with strong performance across
all responses: slump (91.49 mm), compressive strength at
28 days (39.82 MPa), splitting tensile strength (5.26 MPa), and
modulus of elasticity (25,822.91 MPa). Trial 3 yielded a com-
parable mix (14.70 % GP and 15.61 % RF) with similar results.
Trial 2 showed the highest strength and stiffness but
excluded RF, reducing its sustainability contribution, with a
desirability score of 0.987. Trial 4, which used the highest GP
and RF content (25.19 % and 28.80 %), prioritized material
substitution but resulted in lower mechanical performance
and a desirability score of 0.770. A full comparison is pro-
vided in Table 9.

Considering both performance and sustainability, Trial
1 is recommended as the most balanced mix. The ramp
function graph (Figure 15) illustrates its optimal position
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Figure 13: Diagnostics plots: (I) normal plot of the studentized residual, (II) predicted versus actual values plot, (III) perturbation plot, and (IV) 3D surface
plot, for: (a) slump, (b) compressive strength at 7 days (c) compressive strength at 28 days, (d) splitting tensile strength at 28 days, (e) modulus of elasticity
at 28 days.
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Table 8: Optimization constraints for all trials using desirability function.

Name Goal/Trial 1  Goal/Trial2  Goal/Trial 3  Goal/Trial 4  Lower limit  Upper limit  Importance
A: [OPC-GP]% Isin range Isin range Isin range Maximize Varies (0/15) 35 +++
B: [NF-RF]% Isin range Isin range Isin range Maximize Varies (0/15) 35 +++
Slump Isin range Isinrange Isin range Isin range 82 95 +++
Compressive strength @ 7 days Isin range Maximize Isin range Is in range 25.3 32.89 +++
Compressive strength @ 28 days Isin range Maximize Isin range Isin range 33.7 41.8 +++
Splitting tensile strength @ 28 days  Is in range Maximize Isin range Isin range 4.21 5.8 +++
Modulus of elasticity @ 28 days Isinrange Maximize Isinrange Isin range 23,7341 26,581.4 +++

Desirability
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Figure 14: Desirability function plots showing optimal design region: (a) 2D contour and (b) 3D surface.

Table 9: Comparison of optimal mixture results across all trials.

Trial [OPC-GP]% [NF-RF]%  Slump Compressive Compressive Tensile Modulus of Desirability Status
(mm) strength @ strength @ strength (MPa) elasticity (MPa)
7 days (MPa) 28 days (MPa)
Trial 1 15 15 91.49 30.09 39.82 5.26 25,822.91 1.000 Selected
Trial 2 9.174 0.0 91.66 32.76 41.70 5.77 26,711.45 0.987
Trial 3 14.697 15.613 91.51 30.02 39.73 5.24 25,790.93 1.000
Trial 4 25.191 28.802 86.54 27.81 34.61 4.27 23,734.10 0.770

within the design space. For validation, the Trial 1 mix was modulus of elasticity were 0.55 %, 1.34 %, 0.70 %, 0.94 %, and
experimentally tested and compared with model predictions  0.35 %, respectively. These low errors confirm the model’s
(Table 10). Percentage errors for slump, compressive accuracy in predicting the performance of the optimized
strength (7 and 28 days), splitting tensile strength, and sustainable concrete mixture.
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Figure 15: Ramp function graph for optimum responses (Trial 1) using desirability function.

Table 10: Comparison of predicted and experimental results for optimal
mix (Trial 1) with corresponding percentage errors.

Response Optimal solution

Predicted  Actual Residual %

value value error

Slump (mm) 91.49 92 051 0.55%
Compressive strength (MPa) 30.09 30.5 041 1.34%
@7 day
Compressive strength (MPa) 39.82 40.1 0.28 0.70%
@ 28 day
Tensile strength (MPa) 5.25 53 0.05 0.94%
@ 28 days
Modulus of elasticity (MPa) 25,823 25,914.5 91.5 035%
@ 28 days

4 Conclusions

This study investigated the combined use of glass powder
(GP) and rubber fine aggregates (RF) as partial replacements
for cement and natural fine aggregates (NF), respectively, in

concrete. This study aligns with several Sustainable
Development Goals (SDGs), no (9 and 11). Using a Central
Composite Design (CCD) within the Response Surface
Methodology (RSM) framework, 10 concrete mixtures were
prepared with GP and RF replacement levels ranging from
0% to 35 %. The mixtures were experimentally evaluated
and statistically optimized. The key conclusions are as
follows:

Moderate GP replacement (15 %) enhanced mechanical
properties due to its pozzolanic reactivity and filler
effect, increasing matrix density. However, higher GP
levels (25-35%) reduced performance, likely due to
increased water demand, dilution of cementitious con-
tent, and reduced early-age hydration.

The inclusion of RF at 15% maintained acceptable
strength and workability, while higher RF levels
(25-35 %) consistently reduced all mechanical proper-
ties. This reduction is attributed to RF’s low specific
gravity (1.06 g/cm®) and elastic texture, which weakened
bonding at the interfacial transition zone (ITZ) and
increased internal voids.
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— Correlation analysis revealed that compressive strength
at 28 days strongly correlates with splitting tensile
strength (r = 0.99) and modulus of elasticity (r = 0.99),
indicating consistent mechanical performance. GP con-
tent showed weak positive correlations with strength
(r = 0.04), whereas RF content showed strong negative
correlations with compressive strength (r = —0.75), ten-
sile strength (r = —0.77), and modulus of elasticity
(r = =0.71). Slump was moderately correlated with all
mechanical parameters (r = 0.57-0.66), underscoring the
importance of fresh concrete workability in achieving
reliable strength and stiffness.

— Multiple-response optimization using the desirability
function identified GP15RF15 as the optimal mix, with a
desirability score 0f 1.000. Predicted values were in close
agreement with experimental results, with percentage
errors below 1.35 % for all key responses, validating the
model’s accuracy and robustness.

— The optimal mix (GP15RF15) achieved a slump of 92 mm,
compressive strength of 40.1 MPa, splitting tensile
strength of 5.3MPa, and modulus of elasticity of
25,9145 MPa at 28 days, demonstrating performance
comparable to the control mix (GPORF0) while signifi-
cantly improving sustainability.

— Fracture surface analysis indicated that mixes with high
RF content exhibited more brittle and irregular cracking
patterns. In contrast, GP15RF15 showed cohesive and
uniform failure behavior, reflecting improved internal
bonding and stress distribution.

This study presents a data-driven concrete mix incorporating
15 % glass powder (GP) and 15 % rubber fine aggregates (RF),
offering a structurally viable and sustainable solution for
pavements, non-prestressed structural components, and
general infrastructure. The findings support circular econ-
omy principles by enabling the reuse of post-consumer waste
without compromising mechanical performance. Although
durability testing was beyond the scope of this study, the
microstructural effects of GP and RF observed in the literature
suggest potential improvements in durability-related aspects
such as alkali-silica reaction resistance, permeability, and
cracking behavior. These potential benefits, which are linked
to the pozzolanic activity of GP and the energy absorption
capacity of RF, warrant further investigation under long-term
environmental exposure conditions.
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