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The Gut Microbiome at the Onset of Inflammatory Bowel Disease:
A Systematic Review and Unified Bioinformatic Synthesis
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Gastroenterology

BACKGROUND & AIMS: Few studies describe gut microbiome
signatures in treatment-naive new-onset inflammatory bowel
disease (IBD). We present a novel secondary bioinformatic
reanalysis of sequence outputs mapped to the latest microbial
taxonomy. METHODS: MEDLINE and Embase searches were
performed for microbiome studies in treatment-naive IBD.
Appraisal was completed with Risk Of Bias In Non-randomized
Studies - of Exposures (ROBINS-E). Available 16S ribosomal
RNA sequence data sets were downloaded and missing data
sets requested. Integrated data were run through a unified
QIIME2 bioinformatics pipeline. Multivariable models adjusting
for methodologic differences were developed using MaAsLin2.
RESULTS: There were 36 eligible studies; 18 contributed to
bioinformatic reanalysis and 24 to supplementary meta-analysis.
Samples from 1743 patients were included, comprising 678 from
individuals with Crohn’s disease (CD), 399 with ulcerative colitis
(UC), 130 healthy controls (HCs), and 405 symptomatic controls
(SCs); 990 of which were biopsy samples. Alpha diversity was
reduced: feces-pediatric UC vs SCs, adult CD and UC vs HCs, and
pediatric SCs vs HCs; pediatric biopsy samples-CD vs SCs, CD vs
UC, and UC vs SCs. Beta diversity demonstrated clear distinctions
between fecal and mucosal biopsy communities, least evident in
UC, in addition to community separation by geography. Multi-
variate modeling revealed depletion of anaerobic and enrichment
of aerobic and facultative anaerobic bacteria, alongside enrich-
ment of oral genera across both CD and UC. CONCLUSIONS: Core

microbial perturbations at onset of CD and UC are depletion of an-
aerobes and enrichment of oxygen-tolerant, orally associated bac-
teria. As we place greater emphasis on early diagnosis and
prediction of IBD risk, this finding may support innovative diag-
nostic approaches. Microbiome-targeted intervention and alteration
of luminal oxygen availability may offer novel therapeutic avenues
for new-onset patients and identified high-risk groups.

Keywords: Microbiota; Crohn’s Disease; Ulcerative Colitis;
Treatment-Naive.

I nflammatory bowel disease (IBD) comprises a group
of heterogenous chronic immune-mediated inflam-
matory disorders of the gut. Crohn’s disease (CD) and

*Authors share co-first authorship; SAuthors share co-senior authorship.

Abbreviations used in this paper: adj, adjusted; CD, Crohn’s disease; Cl,
confidence interval; HC, healthy control; IBD, inflammatory bowel dis-
ease; OF, observed feature; SC, symptomatic control; SCFA, short-chain
fatty acid; SMD, standardized mean difference; UC, ulcerative colitis.
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ulcerative colitis (UC) are the most common subtypes. They
often follow a relapsing-remitting course that can be
significantly debilitating and require lifelong medical
intervention, sometimes involving surgical resection. IBD
incidence is rapidly increasing, particularly in developing
counties and linked to “Westernization.”'® The global
prevalence of IBD exceeds 0.3%, presenting an increasing
health care burden. Hence the importance of ongoing
research to understand pathogenetic mechanisms and
develop novel therapies.*

The underlying etiology of IBD is not fully understood,
but theories focus on the interplay between multiple con-
tributors, including disruption of the gut microbiota, bar-
rier dysfunction, genetic predisposition, and environmental
factors.”® Alterations in the gut microbiome have been
widely reported in IBD, particularly reduced bacterial di-
versity.” The importance of bacteria in IBD pathogenesis
has long been postulated, with early studies looking for
specific causative pathogens.” The first study linking IBD
with microbial community imbalance, using culture-based
techniques, was published in 1968."° Although culture
bias previously limited our understanding of complex mi-
crobial communities, the advent of molecular (DNA-based)
methodologies has led to a wealth of compelling evidence
in this regard.'*

Microbiome perturbations in IBD are characterized by
loss of microbial balance/harmony between commensal
and pathogenic bacteria, resulting in a breakdown of ho-
meostasis and dysregulated immune responses.'” This
paradigm describes a reduction in bacterial richness/
evenness (assessed using alpha diversity indices),
increased pathogenic bacterial numbers, and reduced
beneficial bacterial species.'*>'*  Although oxygen-
dependent shifts in the gut microbial community are
described in IBD, with depletion of obligate anaerobic
bacteria and enrichment of facultative anaerobes and aer-
obes, establishing the cause or consequence significance of
such changes is hampered by a paucity of studies of pa-
tients with newly diagnosed, treatment-naive disease.'”
Patients who are posttreatment do not provide an adequate
surrogate because IBD therapy and disease duration are
important confounders.*®

Published studies of treatment-naive disease have
shown reduced bacterial diversity, more so in patients with
CD than UC."***'7 However, reported patterns of disrup-
tion vary across studies, with inconsistent methodologies
and quality control having an unquantified influence on
results.'® Studies in healthy individuals, and the largest
study of patients with treatment-naive CD, also noted sig-
nificant differences between fecal and gut mucosal micro-
biome profiles."*'? Furthermore, most IBD studies using
mucosal biopsy specimens are reliant on control pop-
ulations with symptoms necessitating colonoscopy, rather
than true “healthy” individuals. In the limited treatment-
naive data currently published, these factors prevent
confident understanding of presenting microbial changes.
Faecalibacterium prausnitzii, discussed extensively within
the literature, illustrates this well. Eight studies reported its
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WHAT YOU NEED TO KNOW

BACKGROUND AND CONTEXT

Microbiome disruption has been reported at inflammatory
bowel disease (IBD) onset, though studies show
inconsistent patterns, and integrated analysis of the
original sequence datasets has not been performed in
treatment-naive patients.

NEW FINDINGS

Methodological inconsistency rendered traditional meta-
analysis unreliable, though through secondary biocinformatic
reanalysis and modeling (2000 samples from 1700+
individuals) we demonstrated broad depletion of
anaerobic bacteria across IBD subtypes. Conversely, a
diverse pattern of enrichment is seen across aerobic,
facultative anaerobic and microaerophilic bacteria,
emphasizing genera associated with the oral cavity, in
IBD.

LIMITATIONS

Some studies contributed disproportionately, with
sequence data and high-quality metadata from others
unobtainable. The scarcity of treatment-naive
metagenomic data in the literature meant analyses
lacked the granularity to go beyond genus level or
comment on microbial function.

CLINICAL RESEARCH RELEVANCE

While historically relevant, enrichment of oxygen-tolerant
bacteria and depletion of anaerobes has not previously
been demonstrated so starkly at disease onset and
across multiple studies. Research targeting such
perturbations at diagnosis might alter subsequent
disease course and should be a priority. Further work is
required to understand the processes driving the
migration and apparent colonization of oral genera
within the gut in IBD.

BASIC RESEARCH RELEVANCE

Our approach shifts the paradigm in assessing published
microbiome datasets. We highlight the paucity of data
from adult patients, and from parts of the world where
IBD is increasing most rapidly. Future work must aim to
establish an international repository of amalgamated
and curated sequence to facilitate more rapid advances

in our understanding of the role of gut microbiota in IBD.

142026 \whereas 3 re-

depletion in patients at IBD onset,
ported enrichment.'**7%®

The importance of the gut microbiota in patients who
are newly diagnosed is underlined by its potential to aid in
prediction of prognosis and therapeutic responses. For
example, in patients with treatment-naive UC, elevated
levels of Veillonella dispar and Haemophilus parainfluenzae
have been linked to colectomy within 12 months, whereas
enrichment of Roseburia in CD has been linked to reduced
disease severity and improved response to therapy.”®*’

The erratic methodologic approaches and conflicting
microbial signals within the literature highlight the potential
limitations of conventional systematic review in the study of
the microbiome. Previous attempts to undertake integrated
analysis of published microbiome sequence data have been
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made.*° To date, comparisons between groups with het-
erogeneous treatment histories and the absence of multi-
variable adjustment in analyses prevent such works from
truly identifying the core microbial perturbations at IBD
onset. To bring us closer to this goal, we performed a novel
secondary analysis of pooled treatment-naive amplicon
sequencing data using a unified bioinformatic pipeline.

Materials and Methods
Search Strategy

At conceptualization, this review was registered on
PROSPERO (Registration ID: CRD42022371173, October 28,
2022). The study was performed in line with the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) guidelines.®* Searches (Supplementary Materials)
were conducted on October 30, 2022, and updated December
23, 2024, across MEDLINE, Embase, and the Cochrane Gut
register. Free-text and medical subject heading terms were
both used. Searches were conducted from database inception
to the date of the search. To reduce publication bias, ongoing
relevant research studies were sought from controlled-trials.
com, ClinicalTrials.gov, and online supplementary material.
Abstract-only publications were eligible if sufficient informa-
tion to judge inclusion was provided. Hand searching was
undertaken of references in articles reviewed and relevant
gray literature. Conference proceedings over the preceding 12
months were screened.

Study Selection and Eligibility

All experimental and nonexperimental study designs
involving all ages were considered. Studies undertaking
analysis of the gastrointestinal microbiome in patients with
confirmed newly diagnosed, treatment-naive IBD cohorts
were eligible. The treatment-naive state was defined by
sampling before the initiation of conventional IBD therapy.
Suitable sample types for microbial analysis included fecal
samples, mucosal biopsy specimens, gastrointestinal
washings, and oral samples. Both healthy asymptomatic
control populations (HCs) and symptomatic “non-IBD”
populations (SCs), whereby gastrointestinal symptoms
were present but IBD had been excluded, were used as
comparators. In cases where insufficient data were avail-
able to judge inclusion, primary authors were contacted for
further information. Only those based on next-generation
or high-throughput sequencing were included. Studies
were screened independently in duplicate (by 2 of P.R,, G.S,,
M.G., T.H.I,, and R.H.), with disagreement resolved by dis-
cussion and consensus.

Outcome Assessment

Primary outcomes were to establish and quantify pertur-
bations in the gastrointestinal microbiome at IBD diagnosis
and across disease phenotypes. This included:

e Population-based changes in alpha and beta diversity, and

e Specific microbial taxa abundance differences between
IBD subtypes and controls.
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Secondary outcomes included:

e Quantification of methodologic variation across included
studies and their impact on bioinformatic output.

Data Extraction

Data were extracted independently in duplicate by 2 re-
searchers (P.R, G.S., T.H.I,, and R.H.) (Supplementary Table 1).
Given the uniform case-control nature of the included studies,
appraisal for studies was not performed for the purposes of
guiding inclusion decision-making. Instead, the methods data
were extracted; especially surrounding bioinformatics, source
of samples, and control type to guide analysis on methods
basis.

Quality Assessment

The Risk Of Bias In Non-randomized Studies—of Exposure
(ROBINS-E) tool examined the strength of evidence about
presence of or nature of the potential effect of exposure (IBD)
on outcomes.>” A priori, key potential confounders were
agreed, including age, sex, body mass index, baseline diet, and
prior antibiotic use. Outcomes for signaling questions and
overall risk of bias judgement were reported. Funnel plots
reporting study effect size and standard error are presented as
supplementary data.

Data Synthesis

Two forms of data synthesis were undertaken, specifically
meta-analysis of published alpha diversity data and integrated
bioinformatics analysis of available original amplicon
sequencing output.

Meta-analysis of diversity data. Presented alpha
diversity measures were extracted, and where sufficient,
including measures of central tendency and spread, meta-
analysis was undertaken. Different diversity measures
were not combined in analysis. Where plots were presented
without values, these were inferred using a web-plot digi-
tizer.*> We performed random-effects meta-analyses where
>2 studies were available using the same diversity measure
and patient groups and outcomes were sufficiently similar.
We expressed the diversity measure as standardized mean
difference (SMD) with 95% confidence intervals (Cls).
Inconsistency was quantified and represented by the I?
statistic according to Cochrane: <40% not important, 40%
to 75% may represent heterogeneity, and >75% consider-
able heterogeneity.>* Statistical analyses were performed
using Cochrane Review Manager 5.4 (The Cochrane
Collaboration).*”

Integrated bioinformatics on pooled sequence
data. Where available, amplicon sequencing data sets and
metadata were downloaded. Unavailable data were requested
from corresponding authors via email on 2 occasions a week
apart. Once raw data and metadata were pooled, a bio-
informatic pipeline was run on the combined data set. A
quality control check was undertaken on amplicon data with
dada2 embedded in qiime2.***” Host contamination was
removed using Bowtie 2 (version 2.4.2).>® Only samples
providing >10,000 clean reads were included. Taxonomy


http://controlled-trials.com
http://controlled-trials.com
http://ClinicalTrials.gov

4 Rimmer et al

annotation was performed using the giime2 feature classifier
plugin with the SILVA taxonomy release 138.2. R 4.2.2 (R
Foundation for Statistical Computing) packages giimeZ2R and
phyloseq were used for diversity analyses.>**° Mann-Whitney-
Wilcoxon and Kruskal-Wallis were applied in the comparison
of feature abundance and alpha diversity measures between
groups. Shannon alpha diversity was calculated to align with
the meta-analysis, whereas observed features (OFs) present a
simpler measure of richness.

Adonis was used, based on Bray-Curtis distance, to inves-
tigate the effect of metadata factors on microbial composi-
tion.*! MaAsLin2 analyses were performed to determine the
multivariable association between microbial signatures and
clinical data using the R package MaAsLin2 1.20.0.** Specif-
ically, “fixed-effects” were sample type, pediatric vs adult, and
diagnosis subtype (analysis repeated with HCs and SCs as
reference). Age-group was chosen rather than actual age due
to inconsistent patient-level data. “Random-effects” were
sample geography (continent), target 16S domain, and subject.
P values were adjusted for multiple testing where appropriate
by Benjamini-Hochberg method, represented by Padj.43 The
plots were constructed mainly in ggplot2 package.** Hierar-
chical clustering followed Ward’s method (Ward D2).**

Results

Search Screening and Inclusion

As presented in the PRISMA flow diagram (Figure 1),
the search strategy identified 15,256 studies, with 9
located from other sources.*® After 1,471 duplicates were
excluded, 13,794 abstracts were screened, with 0.4% (59
of 13,794) requiring consensus discussion. Thereafter,
233 studies (224 from the search and 9 other) were
sought for full-text screening. Of these, 2 could not be
retrieved, with another 195 excluded (Supplementary
Table 2). Altogether, 36 studies were included. ROBINS-E
judgements were completed (Supplementary Table 3).
Studies were largely at low risk, although 4 had some
concerns of bias, and 3 were at high risk due to poor
control of confounders, for example, comparing adults and
children directly. There was a paucity of metagenomic
data, with only 3 studies containing data of this type.
Consequently, presented data are based on amplicon
sequencing only.

Meta-analysis of Published Shannon Alpha
Diversity at Inflammatory Bowel Disease Onset

Bacterial diversity indices from IBD and controls were
reported in 26 studies. IBD was stratified by subtype and
controls by the presence of symptoms; 9 studies presented
data from CD, 4 UC, and 6 from both CD and UC. All studies
using mucosal biopsy samples compared against SCs. For
studies of fecal samples, 14 studies (93%) compared with
HCs, although 2 used healthy family members as controls
(Supplementary Table 4). Shannon alpha diversity scores
were available in 23 studies (88%), and this was chosen for
the meta-analysis,'*202%2%2527.2847-62 Apalyses were split
by sample type (Supplementary Figure 1).
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Analysis of fecal samples demonstrated significant re-
ductions in diversity in IBD (SMD, —0.59; 95% CI, —0.94
to —0.24), CD (SMD, —0.94; 95% CI —1.22 to —0.66), and
UC (SMD, —0.70; 95% CI, —1.06 to —0.33) relative to
controls. This gave a pooled SMD of —0.84 (95% CI, —1.12
to —0.56, P < .00001) with acceptable levels of heteroge-
neity observed (I = 23.9%). Regarding mucosal data from
biopsy samples, neither CD (SMD, —0.16; 95% CI, —0.45 to
0.12; P = .25, I> = 27%) nor UC (SMD, —0.00; 95% CI —0.30
to 0.30; P = .99, I* = 0%) demonstrated a significant dif-
ference compared with SCs.

Considering the 26 included studies, methodologic
variation was marked: 2 sample types (feces and biopsy
specimens) from 4 continents, DNA extracted using 12
different Kkits, sequencing performed on 4 platforms tar-
geting 8 16S ribosomal RNA hypervariable regions, and
analyses reported using 4 reference databases. This alone
generated 12,288 potential methodologic combinations
before counting the 29 different analytic pipelines used.
Inconsistent and incomplete reporting prevented adequate
stratification of data, for example, by disease extent or
severity (Supplementary Figure 1). Funnel plots high-
lighted greater asymmetry and significant outliers within
fecal samples (Supplementary Figure 2).

Secondary Bioinformatic Analysis of Pooled
Sequencing Data

Raw sequencing data and associated metadata were
retrieved for 25 studies. After data processing and clean-
up, 7 were excluded (in 3 all samples failed clean read
cutoff, 2 failed denoising, 1 was metagenomic data,
and 1 author shared an unanalyzable file format
(Table 1),13142023-2527-29,4849,51,53,5657,63-72 The  final
presented analysis of 18 studies included 2160 samples
(881 CD, 509 UC, 1 IBD unclassified, 122 IBD “not-speci-
fied,” 130 HCs, 509 SCs, and 8 familial controls), originating
from 1743 unique individuals (678 CD, 399 UC, 1 IBD-
unclassified, 122 IBD “not-specified,” 130 HCs, 405 SCs, 8
familial controls). There were 168 participants who pro-
vided both biopsy specimens and feces, and 249 provided
biopsy samples from >1 site. For samples from patients
with CD, 99 (11%) were from those with ileal disease, 47
(5%) colonic, 126 (14%) ileocolonic, 4 (<1%) upper
gastrointestinal, and in 605 (69%), the subphenotype was
not reported. For samples from patients with UC, 369
(73%) had extensive disease, 71 (14%) left-sided, 48 (9%)
proctosigmoiditis, and in 21 (4%) it was not reported. Bi-
opsy location was reported for 979 samples (99%), but
inflammation status was not (Supplementary Table 5). All
analyses were undertaken using the latest microbial
taxonomy.73

Overall Comparison of Sample Types

Foremost, sample type was studied. There were no data
from HCs from mucosal biopsy samples. In the remaining
patients, mucosal biopsy samples were characterized by
enrichment of Bacteroidota and Pseudomonadota, alongside
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Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 flow diagram for new sys-
tematic reviews that included searches of databases and registers only. NGS, next-generation sequencing.

depletion of Actinomycetota and Bacillota compared with
feces (Figure 2).14,20,23,25,27—29,49,53,57,64,65—69,7l There was a
significant reduction in alpha diversity in mucosal biopsy
samples relative to feces, with a significant difference in
Bray-Curtis community structure. Although this was
observed across disease subtypes, community structure
between feces and biopsy samples was most closely
matched in UC. Because most published studies came from
pediatric cohorts, which have distinct features compared

with adult disease, we undertook an analysis of adult vs
pediatric studies.”*’® In analyses grouping all sample
types and diagnoses, a significant reduction in Shannon
alpha diversity was observed in children relative to adults
(pediatric, mean 2.18; adult, mean 2.50; effect size, 0.21;
P,g; < .001).

There was also significant separation in beta diversity
(R* = 0.0402; P,4; < .001). Plots of beta diversity, split by
chosen 16S sequence domain showed significant differences



Table 1.Studies Contributing Raw 16S rRNA Sequence Data to the Pooled Bioinformatic Pipeline, Including Proportion Passing Quality Control

Number of Overall risk
samples passing of bias
Depth Age (overall in study) Number of bioinformatic QC (assessed
(mean patients with with
unless samples + Reason for loss  ROBINS-E
Author Sample type  Extraction kit Platform Domain stated) Country  Age group  Mean (SD) Median (IQR) metadata n (%) of sample output tool)*?
Kaakoush et al Feces Bioline ISOLATE Roche 454 V1-3 2609 Australia Pediatric CD 11.6 (2.5) CD 20 0 All samples raw Low
2012% fecal DNA kit HC 9.5 (4.2) HC 22 reads <10,000
Hansen et al Mucosal Qiagen QlAamp Roche 454 V3-4 21691 Scotland Pediatric CD 14.2 (ND) CD 11 0 Failed in the Low
2012'° biopsy mini kit UC 13 (ND) uc 11 denoise step
SC 11.4 (ND) SC 12
Gevers et al” Mucosal Qiagen AllPrep lllumina MiSeq V4 29914 USA Pediatric CD 12.4 (3.0) Feces 851 (46.89)" Metagenomic Low
2014 biopsy and mini kit SC 12 3.7) CD 166 samples excluded®
feces SC 17
Biopsy
CD 347
SC 217
Perez-Brocal Mucosal Qiagen QIAMP Roche 454 V1-3 10043 Spain Adult CD 45.4 (18.1) Feces 2 (3.85) Majority <10,000 Some
et al 2015°° biopsy and DNA stool mini kit CD 14 clean reads concern
feces SC 33.5 (14.4) HC 24
Biopsy
CD 14
Assa et al Mucosal FastDNA Spin Kit lllumina HiSeq V6 292215 Canada Pediatric CD 14 (4.75) CD 11 26 (100) Low
2016”" biopsy SC 14 (2) SC 15
Grover et al™” Mucosal ND lllumina MiSeq V6-8 ND Australia Pediatric ND ND CD 23 44 (51.76)° Some
2016%° biopsy sCe concern
Mottawea et al Mucosal FastDNA Spin Kit lllumina HiSeq V6 200000 Canada Pediatric CD 14 (3.25) lllumina 131 (83.44) Mucosal-luminal Low
2016 luminal UC 15 (4.5) CD 65 aspirates excluded
interface SC 14 (6) ucC 23 from analyses
aspirate Roche 454 V6 13313 SC 43 stratified by sample
Roche type as contribution
cDs8 only from one study
ucs
SC9
Shah et al Mucosal Qiagen “buffers” lllumina MiSeq V4-6 2350 rarefied USA Pediatric ucC 12.9 (3.7) uc 9 5 (22.73) Other samples Low
2016 biopsy SC 13.9 (1.8) SC 13 <10,000 reads
Shaw et al Feces Not stated lllumina MiSeq V4 66000 USA Pediatric ND ND CD 11 23 (95.83) High
2016" median ucs
HC 4
FC6
Ashton et al Feces MP biomedical lllumina MiSeq V4 ND England Pediatric CD 13.6 (2.1) CD3 8 (100) Some
2017°° feces extraction kit uc 10.1 uc 1 concern
IBDU 12.6 IBD-U 1
FC ND FC3
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Table 1.Continued

Number of Overall risk
samples passing of bias
Depth Age (overall in study) Number of bioinformatic QC (assessed
(mean patients with with
unless samples + Reason for loss  ROBINS-E
Author Sample type  Extraction kit Platform Domain stated) Country  Age group  Mean (SD) Median (IQR) metadata n (%) of sample output tool)*?
Douglas et al” Feces ND lllumina MiSeq V6-8 13815 Scotland Pediatric CD 12.7 (2.4) CD 20 20 (17.39) Some <10,000 Low
2018%" SC 12.8 (2.4) SC 20 reads
Metagenomic data
excluded®
Schirmer et al® Mucosal Bx lllumina MiSeq V4 3000 USA Pediatric UC 12.8 (3.3) Biopsy 395 (83.16) Low
2018%° biopsy + feceRiagen AllPrep mini kit rarefied ucC 211
Feces Feces
Chemagic DNA blood UC 264
kit
Xu et al Mucosal Qiagen QlAamp lllumina HiSeq V3-4 ND China Adult UC 48 (14) uc 10 2 (10)* Majority <10,000 Low
2018°8 biopsy stool mini kit clean reads
Kansal et al Mucosal Qiagen AllPrep lllumina MiSeq V2 9188 Australia Pediatric CD 12 (ND) CD 88 0 File format incorrect Low
2019°" biopsy mini kit SC 12.3 (ND) SC 66
Levine et al Feces Mobio PowerFecal ND V4-5 ND Israel Pediatric CD 14.1 (2.6) CD 59 57 (96.61) Low
2019%° DNA kit Canada
Lloyd-Price et al” Mucosal Qiagen AllPrep lllumina MiSeq V4 10000 USA Mixed CD 20.2 (11.3) Biopsy 130 (68.4)" Low
2019 biopsy mini kit rarefied UC 24.7 (15.3) CD 56
+ feces SC ND uc 23
SC 22
Feces
CD 14
uc7
SC 3
Diederen et al Feces FastDNA spin kit lllumina MiSeq V1-2 4237 Netherlands Pediatric CD 14 (3) CD 27 22 (52.38) Low
2020%° HC 13 (5) HC 15
Hart et al Feces Mixed methods lllumina MiSeq V3 103341 Canada Pediatric CD 11.9 (3.2) CD 19 0 After filtering Low
2020° UC 13.4 (2.0) uc s features with low
abundance or
observed in very few
samples, zero
remaining features
Wang X et al Feces EZNA soil DNA kit lllumina MiSeq V3-4 ND China Pediatric “IBD” 10 (5.3) “IBD” 80 142 (91.61) No metadata to Low
2021%° SC 48 identify IBD
HC 7.1 (3.8) HC 27 subtype; excluded
from subgroup
analyses
Wang Y et al Feces Qiagen QlAamp lllumina NovaSeq V3-4 186189 China Pediatric CD 13 (3) CD 23 0 All samples have Low
2021 stool mini kit HC 12 (2) HC 20 clean reads <10,000
Galipeau et al Feces Qiagen QlAamp lllumina MiSeq V4 12510 Canada Adult UC 19.7 (7.2) uc7z 7 (100) Low
2021%° stool mini kit FC 20.3 (7.3)
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Table 1.Continued

Number of Overall risk
samples passing of bias
Depth Age (overall in study) Number of bioinformatic QC (assessed
(mean patients with with
unless samples + Reason for loss  ROBINS-E
Author Sample type  Extraction kit Platform Domain stated) Country  Age group  Mean (SD) Median (IQR) metadata n (%) of sample output tool)*?
Paljetak et al Mucosal MasterPure DNA lllumina MiSeq V3-4 7916 Croatia Adult CD 46 (ND) Biopsy 0 Failed in the denoise Low
2022°° biopsy purification kit median UC 31 (ND) CD 10 step
SC 31 (ND) uc 13
SC 26
Feces
CD 10
ucC 12
SC 26
Rimmer et al’ Feces Qiagen QlAamp lllumina MiSeq V4 45079 England Adult CD 37.3 (16.3) CD 53 145 (99.32) Low
2022°7 stool mini kit UC 40.5 (14.8) uc 41
SC 38 (12.4) SC 52
Rausch et al Feces Qiagen QlAamp lllumina MiSeq Vi-2 11800 Malta Adult CD 37.8 (16.6) “IBD” 56 150 (98.68) No metadata to Low
2023"" stool mini kit UC 47.4 (16.6) HC 96 identify IBD
HC 44.7 (16) subtype; excluded
from subgroup
analyses
Ning et al Feces HiPure stool DNA  lllumina NovaSeq NA ND China Adult ND ND “IBD” 87 NA Metagenomic Low
202372 mini kit HC 45 samples excluded®
Total samples All samples Feces Mucosal biopsies

included in
final dataset
(% from
pediatric
patients)

Number of
variations in
methods

All IBD 1513 (87%)°
CD 881 (91%)
UC 509 (86%)
IBD-U 1 (100%)

All controls 647 (71%)
HC 130 (27%)
SC 509 (82%)
FC 8 (100%)

Location: 11 countries of origin
Sample type: 3

All IBD 770 (79%)°
CD 367 (85%)
UC 280 (83%)

IBD-U 1 (100%)
All controls 269 (45%)
HC 130 (27%)

SC 131 (60%)

FC 8 (100%)

Extraction kit: 11
Sequencing type: 1

Al IBD 655 (93%)
CD 449 (95%)
UC 206 (89%)

All controls 335 (88%)
All control samples from symptomatic controls

It was not possible to determine the age of patient for 39 SC

Sequencing platform: 4
Sequence domain (if amplicon): 10

CD, Crohn’s disease; FC, familial control; HC, healthy control; IBD, inflammatory bowel disease patients where metadata did not allow stratification to disease subtype;
IBD-U, inflammatory bowel disease unclassified; IQR, interquartile range; ND, data not presented; QC, quality control; SC, symptomatic control; SD, standard deviation;
UG, ulcerative colitis.
2Some individuals provided >1 sample (eg, fecal and biopsy).
bData published in abstract only but expanded and shared by the authors.
°Analysis not undertaken for metagenomic data due to a paucity of raw sequences and/or metadata.
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Figure 2. The difference between the microbial community identified in mucosal biopsy samples and feces.'#2%-23:25:27~

29,49,53,57,63,65-69.71 Al panels exclude HCs (no mucosal biopsy specimens). Panels A-C are derived from 901 feces sam-
ples (367 CD, 280 UC, 122 “IBD,” and 131 SCs) and 990 mucosal biopsy specimens (CD, n = 449; UC, n = 206; SC, n = 335).
Panel D includes only those where stratification is possible. The original pipeline data output are presented separately
(Supplementary data set). (A) Microbial taxa bar plots at the phylum level. Mucosal biopsy specimens are characterized by a
lower percentage of Actinomycetota and Bacillota, with a higher proportion of Bacteroidota (feces, 28%; biopsy specimen,
44%; effect size (EF), 0.33; P,q; < .001) and Pseudomonadota than in feces. (B) Increased alpha diversity is shown in fecal
communities compared with biopsy samples. The boxes indicate the 25th percentile (bottom border), median (center line),
and 75th percentile (top border), and the vertical lines show the maximum and minimum ranges excluding outliers. (C) An
overall Bray-Curtis beta diversity principal coordinates analysis plot shows clear separation between feces and biopsy
samples. (D) Bray-Curtis beta diversity PC analysis plots split by diagnostic subtype show a significant separation according
to sample type across diagnoses, although this difference is smallest in UC. PCH1, first principal component; PC2, second
principal component.

(Supplementary Figure 3), although the relevance of this
diminished given the different composition of cohorts across
included studies.

Influence of Geography

Geographic origin has been shown to impact micro-
biome data.”® Differences in community structure were
observed across continents, particularly in fecal sample
data. Comparisons were challenging due to an uneven
spread of adult and pediatric patients among areas,

with most samples originating from North America
. 7 23 7 -7 3 - —-69
(Figure 3).14,20,25,17 29,49,53,57,63,65-69

Alpha Diversity

In pediatric fecal samples, significantly lower Shan-
non diversity was observed in UC relative to SCs but not
in CD (Figure 4).'%2329:49,53,57,63,66.67.69 por OF analysis,
diversity was significantly lower for both UC and CD
compared with SCs. In adults, significantly lower alpha
diversity was seen CD, UC, and SCs relative to HCs
(Figure 4). Differences between both CD and UC
compared with SCs were not significant by Shannon but
CD diversity by OF was significantly less than SCs. In
pediatric patients, a distinct pattern was seen in controls,
with significantly increased diversity by OF in SCs rela-
tive to HCs.
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For mucosal biopsy specimens, most analyses were
based on pediatric samples, with no adult SC data available.
Alpha diversity was significantly lower in pediatric CD
compared with SCs and UC and significantly higher in UC vs
SCs. In the smaller adult cohort, no significant difference was
observed between CD and UC (Figure 5).}*%02327-29,6568

A .

PC2 (10.55%)

Gastroenterology Vol. m, Iss. m

Microbial Community Structure

Beta diversity assessment of fecal samples in pediatric
CD and UC was significantly different from SCs and HCs. A
similar pattern was observed in adults, although differ-
ences between CD and SCs did not reach significance. For
mucosal samples, significant differences were observed
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with SCs in both pediatric CD and UC (Supplementary
Figure 4).

Differential Microbial Abundance

Differential abundance across sample types and di-
agnoses, adjusting for methodologic variations, were
interrogated using MaAsLin2. All differentially abundant
genera with a false discovery rate adjusted P value <.05
were considered in detail, and data regarding morphology,
metabolism, and short-chain fatty acid (SCFA) production
were documented (Supplementary Tables 6 and 7). Across
IBD subgroups, depleted bacteria were obligate anaerobes,
except for Sutterella in both CD and UC against HCs.
Depletion of Alistipes, Roseburia, and Phascolarctobacterium
were observed in both CD and UC compared with all con-
trols  (Figure 6).14,20,23,27—29,48,49,53,57,63,65—69 Although
these, and many other depleted genera, are known SCFA
producers, many of the bacteria enriched in IBD also pro-
duce SCFAs. Enriched bacterial genera included aerobic
(Pseudomonas and Schaalia), microaerophilic (Campylo-
bacter and Dialister), and facultative anaerobic, including
Haemophilus, Enterococcus, and Rothia. This pattern was
seen across comparisons with both HCs and SCs. Enrich-
ment of multiple genera found in the oral cavity was also
seen, including Fusobacterium, Peptostreptococcus, Haemo-
philus, Veillonella, and Granulicatella.

Discussion

This study sought to improve understanding of the role
the gut microbiota plays in newly diagnosed IBD by
applying a unified bioinformatics analysis approach to
existing published data sets. Leveraging the collective po-
wer of existing data sets is fundamental if we are to fully
understand disease pathogenesis, identify new microbial
therapeutic treatment avenues, and develop prognostic
tools. This study is the first of its kind in the microbiome
field to focus on treatment-naive IBD. It brings together a
vast sequence data set that has been fastidiously compiled,
rigorously analyzed, and updated to the latest taxonomy to
describe the core microbial perturbations at IBD onset.

Significant methodologic variation was identified across
studies, whereas other important factors, such as sample
acquisition/storage were poorly reported.”” Some studies

Pl
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did not present standard diversity indices and used novel
approaches without describing the underpinning parame-
ters."**? Contrasts in published data sets were also, in part,
driven by using different control groups for different
sample types. This rendered attempts to generate tradi-
tional cross-study comparisons, such as meta-analysis,
largely futile; therefore, stepping back to the raw data
stage was necessary to effectively combine data sets. By
using a unified bioinformatics approach with consistent
quality control standards, we were able to quantify, control,
and account for impacts from methodologic factors.

Our approach to assessing gut microbiome study data
has reinforced some established views but refuted others.
There were clear differences between feces and mucosal
biopsy samples, with reduced microbial diversity in biopsy
samples compared with feces. These findings are compat-
ible with previous work in healthy individuals.">’® How-
ever microbial community structure is more closely aligned
between feces and biopsy samples in UC than in CD. This is
likely partly attributable to the more distal inflammation in
UC and perhaps greater mucosal shedding. Confirmation of
this would require consistent availability of disease extent
and severity reporting in metadata. Awareness of this
similarity in UC may facilitate use of feces as a closer proxy
to the mucosal microbiota in future studies.

Lower microbial diversity in children compared with
adults has been previously described.”* In our pediatric data,
fecal Shannon diversity was reduced in UC compared with
SCs but not HCs, with no significant reduction seen in CD. In
adults, reductions in fecal alpha diversity were observed in
comparisons of both UC and CD with HCs but in neither when
compared with SCs. In mucosal biopsy specimens, alpha di-
versity indices were reduced in pediatric CD but increased in
UC compared with SCs. These divergent patterns are likely
multifactorial. As above, the microbial communities of feces
compared with biopsy samples are more closely matched in
UC. Furthermore, CD mucosal samples can be obtained
directly from the site of inflammation rather than using a
fecal sample as a distal surrogate. Also, given the closer as-
sociation with distal colonic disease, in UC, mucosal samples
may be less impacted by dietary and environmental factors,
including transit time.””

Recent studies suggest the oral microbiome contributes
to IBD.®® Oral-gut transmission is considered to occur

«

Figure 3.The difference between microbial community structure, stratified by diagnosis and geography.

14,20,23,27-

29.49,53.,57.63.65-69 Thg original pipeline data output is presented separately (Supplementary data set). (A) A Bray-Curtis prin-
cipal coordinates analysis plot splits fecal samples by diagnosis and continent of origin. This includes 367 patients with CD
(Europe: 55 adult and 21 pediatric, Asia: 44 pediatric, North America: 247 pediatric), 280 with UC (Europe: 40 adult and 1
pediatric, North America: 232 pediatric and 7 adult), 131 SCs (Europe: 52 adult, Asia: 48 pediatric, North America: 31 pe-
diatric), and 130 HCs (Europe: 95 adult and 4 pediatric, Asia: 27 pediatric, North America: 4 pediatric). Variations in age group
compositions render meaningful comparisons challenging. Where comparable, separation sits just outside of significance
when corrected for multiple testing. For example, patients with CD from Asia and North America (100% pediatric) (R® =
0.0398, P,q; = .055) and SCs from Asia and North America (100% pediatric) (R? = 0.0706; Paqj = .055). PC1, first principal
component; PC2, second principal component. (B) An equivalent principal coordinates analysis plot for mucosal biopsy
samples includes 449 patients with CD (Europe: 90 pediatric, Australasia: 34 pediatric, North America: 385 pediatric and 21
adult), 206 patients with UC (North America: 184 pediatric and 20 adult, Asia: 2 adult), and 335 SCs (Europe: 11 pediatric
Australasia: 10 pediatric, North America: 275 pediatric, and 39 where age could not be determined). Comparable populations
are seen in CD, where statistically significant separation is observed in CD from Australasia and both Europe and North
America.
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A Phylum taxa bar plot and alpha diversity plots for faecal samples from grouped adult and paediatric patients
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Figure 4. Fecal alpha diversity of pooled patients with treatment-naive IBD patients and controls,'*23:29:49.53,57.63,66,67.69 Thg

original pipeline data output is presented separately (Supplementary data set). (A) A phylum-level taxa bar plot and alpha
diversity plots are shown for the Shannon index and OF. All are derived from fecal samples from both adult and pediatric
patients (CD, n = 367; UC, n = 280; SCs, n = 131; HCs, n = 130). The bar plot demonstrates prominent expansion Fuso-
bacteriota and Pseudomonadota in UC over SCs and HCs. In CD, enrichment of Fusobacteriota is again observed compared
with HCs and SCs. Bacteroidota are depleted in CD vs all comparators. For the Shannon index, significant reductions in alpha
diversity are seen in CD and UC vs HCs but neither vs SCs. The boxes indicate the 25th percentile (bottom border), median
(center line), and 75th percentile (top border), and the vertical lines show the maximum and minimum ranges excluding
outliers. (B) Alpha diversity from pediatric patients (CD, n = 312; UC, n = 233; SCs, n = 79; HCs, n = 35) is presented. The
Shannon index is significantly reduced in UC vs SCs. Significant reductions in OF are observed between CD and UC
compared with SCs. HCs in pediatric patients and adults have differing patterns of diversity. (C) A nonsignificant reduction is
observed in HC children relative to SCs, whereas in adults, HCs have significantly increased alpha diversity vs SC. Alpha
diversity plots are shown for adult patients (CD, n = 55; UC, n = 47; SCs, n = 52; HCs, n = 95). SCs now have significantly
reduced alpha diversity relative to HCs. For patients with CD and UC, Shannon alpha diversity is reduced relative to HCs. In
the OF plot, reductions comparing CD with SCs do not stand after false discovery rate correction (Paq; = .10).

regularly, potentially markedly increasing during dis- but has arguably fallen from favor.'® The relevance of this

ease.”®> We confirmed consistent increases in bacteria
associated with the oral cavity in the gut of patients with CD
and UC. Additionally, we have shown this across samples of
diverse geographic origin and age. Although the oral cavity
may serve as a reservoir for pathobionts, further work is
required to understand the processes driving the migration
and apparent colonization of these genera within the gut.
Within the multivariate model, the contrast between
almost universal depletion of anaerobic bacteria with
mixed enrichment, including aerobic, facultative anaerobic,
and microaerophilic bacteria across IBD, was striking. The
“oxygen hypothesis” has long been a point of discussion,

hypothesis has not previously been demonstrated so
starkly in new-onset disease. Understanding the role of
oxygen (and other altered luminal ecological factors) in the
microbial etiopathogenesis of IBD is fundamental to our
understanding of disease biology. Crucially, altering luminal
oxygen availability may offer a novel therapeutic strategy
of relevance to both new-onset patients and relatives
considered at high risk of subsequent IBD development. As
we enter an era of greater prediction of IBD risk, the
development of novel non-immunosuppressant approaches
aimed at avoiding progression to disease attains increasing
importamce.%'84
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A Phylum taxa bar plot and alpha diversity plots for mucosal biopsies from grouped adult and paediatric patients
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Figure 5. Mucosal alpha diversity of pooled patients with treatment-naive IBD patients and controls.
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14,20,28,27-29,65,68 The

original pipeline data output is presented separately (Supplementary data set). (A) A taxa bar plot at phylum level and alpha
diversity plots for the Shannon index and OF are shown. All are derived from gut mucosal biopsy specimens, with samples
from both adult and pediatric patients (CD, n = 449; UC, n = 206; SCs, n = 335). The taxa bar plot demonstrates expansion of
Fusobacteriota in CD vs SCs, but not UC. Enrichment of Pseudomonadota and depletion of Bacteroidota is observed in CD
and UC vs SCs, but differential abundance is discordant for Bacillota and Actinomycetota (both depleted in CD and enriched
in UC vs SCs). Alpha diversity is reduced in CD. For the Shannon index, this is the case vs both UC and SCs. Shannon index
in UC is significantly higher than in SCs. (B) Data are shown for pediatric patients (CD, n = 428; UC, n = 184; SCs, n = 296).
SCs are lost from Lloyd-Price et al®® because the metadata did not allow the stratification of controls by age-group. CD had
significantly lower Shannon diversity than UC or SC. Diversity in UC was significantly higher than SC. The boxes indicate the
25th percentile (bottom border), median (center line), and 75th percentile (top border), and the vertical lines show the
maximum and minimum ranges excluding outliers. (C) Data are shown for adult patients. There is a paucity of mucosal biopsy
specimen data with no controls. There is no significant difference in alpha diversity between UC and CD.

To address in methodologic inconsistency, generalized
linear and mixed models were applied by treating batch
effects, geographic origin (continent), and sequencing re-
gions as covariates in models to statistically control for
technical variability. The random effects in the model help
account for heterogeneity across studies, therefore
reducing bias and improving comparability. Dispropor-
tionately large contributions from some studies may in-
fluence conclusions. For example, 1 paper contributed 341
mucosal biopsy samples and 223 fecal samples from CD.**
This represents 76% of biopsy samples and 61% of fecal
samples for CD. A paucity of data from adults, particularly
biopsy samples, limited targeted analyses, and enriching
their availability should be another priority for the
research community. Despite a move toward data avail-
ability and transparency, sequence data and high-quality

metadata proved unobtainable in some cases. The scar-
city of treatment-naive metagenomic data in the literature
meant our work could not reliably determine abundance
beyond genus level, and data regarding microbial function
or nonbacterial microbial domains were not available. The
absence of metadata reporting inflammation status in
mucosal specimens prevented reliable comparison of mi-
crobial composition between sites. Metadata for disease
severity and treatment outcomes was inconsistently re-
ported, precluding integrated analysis.

Greater unification of methodology and reporting ap-
proaches used in microbiome research is urgently needed.
Reporting guidelines may exist, but future work should
focus on defining best practice and aligning this with what
is consistently deliverable in the microbiome field.”” In the
interim, establishing an international repository of
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amalgamated and curated sequence data sets with mini-
mum requirements for metadata should be developed in a
format that is usable and analyzable.

Conclusion

Through fastidious attention to detail and the deploy-
ment of multivariable modeling to correct for methodologic
inconsistency, we have identified the core microbial per-
turbations at IBD onset. The depletion of anaerobes and
enrichment of oxygen-tolerant bacteria, alongside enrich-
ment of oral bacteria, may reveal novel diagnostic and
therapeutic avenues for patients with new-onset disease or
those in identified high-risk groups.

Supplementary Material

Note: To access the supplementary material accompanying
this article, visit the online version of Gastroenterology at
www.gastrojournal.org, and at https://doi.org/10.1053/j.
gastro.2025.09.014.
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