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Abstract

This paper presents a methodology for simulating 3D printing pro-
cesses from G-code, generating accurate layer-by-layer visualiza-
tions, and aligning virtual camera views with physical setups for
real-time monitoring, error detection, and in-process correction.
By parsing G-code, extracting extrusion commands, and simulat-
ing toolpath trajectories, a detailed 3D representation of the print
process is created. To enhance realism, real image data—such as
noise, brightness variations, and contrast adjustments—is incor-
porated, improving alignment between simulated and captured
images. Additionally, camera field-of-view alignment is achieved
using rotation matrices and translation vectors, bridging the gap
between simulation and real-world observations. The proposed
methods enable real-time error detection and correction, stream-
lining simulation and visualization workflows to enhance additive
manufacturing processes.

CCS Concepts

« Computing methodologies — Simulation evaluation; Model
verification and validation; « Hardware — Emerging tools and
methodologies.
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1 Introduction

The adoption of 3D printing, particularly Fused Filament Fabri-
cation (FFF), has grown significantly due to its flexibility, cost-
effectiveness, and ability to fabricate complex geometries [1]. How-
ever, challenges such as print failures and inaccuracies persist, often
arising from material deposition errors and misalignment between
simulated and actual prints [2]. To address these issues, various
error detection methods have been explored, including touch probe,
acoustic, and camera-based approaches. While touch probes and
acoustic methods have inherent limitations, camera-based tech-
niques have emerged as the most promising. These methods can be
broadly classified into comparison-based and pre-trained network-
based error detection techniques [3].

This paper focuses on using a visual representation of the object
to compare it with the actual object captured by a camera. Some
previous studies have utilized existing visualization toolboxes, such
as the OctoPrint visualizer toolbox, to capture screenshots for anal-
ysis [4]. Simulating individual layers enables monitoring of the
outer shape contour and internal structures, such as infill and pock-
ets, as long as the shapes remain 2D projections perpendicular to
the Z-axis [5]. However, most existing methods do not incorporate
real-time compensation or correction of 3D printing failures during
the printing process. Extracting the contour from the simulated
G-code and applying it to the actual printed object allows for de-
tecting material displacement. This method enables corrections or
process termination when dealing with concave 3D shapes. How-
ever, a key limitation is an inherent delay, as corrections cannot be
applied to the current layer in real-time [6]. Simulating 3D printing
from G-code provides a powerful way to visualize and validate the
manufacturing process before execution [7]. However, aligning
contours or layer parameters on a 3D object is challenging, and
binary comparison can fail to detect errors when the object has
concavities. Instead of directly comparing the simulated toolpath
to the camera-captured object, this approach analyses structural
differences between corresponding layers in the simulated toolpath
and the actual printed object. This method enhances accuracy by
enabling rapid and precise identification of discrepancies.

This paper proposes a methodology involved in parsing G-code,
simulating toolpaths, and reconstructing 3D objects, along with
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techniques for aligning simulated views with physical camera ob-
servations to improve accuracy. The correction process is applied
to errors that can be corrected during printing. The results section
presents a comparison between the simulated and actual frames,
demonstrating how closely the simulated output aligns with the
real-world print. Finally, the conclusion outlines future work, limi-
tations, and key successes.

2 Methodology

The proposed system is a comparison-based error detection and cor-
rection system. It utilises the G-code file to generate a 3D simulated
view of the corresponding section of the print. Simultaneously, the
system captures an image of the actual printed section after each
layer. Both the camera image and the simulated image undergo pre-
processing steps, including cropping, background subtraction, and
gray scaling. Once the images are standardized, a Between-layer
Structural Similarity (BLSS) process can be applied. This process
includes a structural similarity measure that compares the current
frame to the previous frame, identifying differences between the
layers [3]. These differences are then analysed in the frequency
domain, resulting in a quantified output. This output is used to
establish upper and lower boundary limits of acceptable results. If
the result falls within the threshold value, the printing continues
to the next layer (if applicable). If the result exceeds the threshold,
the system alerts the operator to assess whether the print can be
salvaged. If the error is deemed irreparable, the print is terminated.
If it is repairable, the system evaluates whether the error notifi-
cation was a false alarm or if the issue can be addressed during
post-processing. For errors requiring immediate repair, the printer
reprints the current layer using the material’s maximum allowable
nozzle temperature and reduces the printing speed to 5%. This
approach ensures that missing material is deposited accurately. Ex-
cess material, if any, can be removed during post-processing. The
entire process is summarised in the flowchart shown in Figure 1.

3 Art of Simulation

The simulation of a 3D printing toolpath involves extracting data
from G-code, interpreting movement commands, visualising the
print layer by layer, and generating structured images for anal-
ysis. This method ensures an accurate digital reconstruction of
the printing process and allows alignment with real-world camera
views.

G-code is a standard instruction language that defines printer
movements, extrusion commands, and operational settings. The
process begins with reading the G-code file and determining the
extrusion mode (absolute or relative), which is essential for cor-
rectly interpreting extrusion values. The system then identifies
layer change markers based on slicer-specific conventions, such
as “BEFORE_LAYER_CHANGE” (PrusaSlicer) or “;LAYER:” (Cura),
ensuring compatibility across different slicing software. Once the
layer markers are identified, the simulation proceeds iteratively.
Each layer’s commands are extracted from the G-code and pro-
cessed sequentially. Movements defined by GO (non-extrusion) and
G1 (extrusion) are analysed to track the toolhead’s position in X,
Y, and Z coordinates. The parser accumulates movement data to
distinguish between travel paths and extrusion paths, ensuring an
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Figure 1: 3D Printing error detection and correction flow-
chart

accurate representation of the deposited material. For each layer,
a 3D plot is created, and the extracted toolpath coordinates are
plotted dynamically. The system continuously checks extrusion
activity, accumulating tool head positions where the material is
deposited. Once an entire layer’s extrusion paths are processed,
plot limits and labels are applied, ensuring that each visualisation
aligns with the defined build plate dimensions. After completing a
layer, the simulation saves an image (Layer_X_model.png) within
an output directory named after the model. The system then de-
termines whether there are more layers left to process. If so, it
loops back to extract and simulate the next layer. Otherwise, the
process concludes, and the final set of visualisations is generated,
the workflow represented in Figure 2.

Visualization of the toolpath is achieved by plotting the extracted
coordinates. Figure 3A presents the camera-captured image of the
object at Layer 100 of the 3D Benchy. The goal is to reconstruct the
model in the best possible way to match the simulation. Extrusion
paths are rendered as continuous 3D lines, highlighted in red, while
non-extrusion moves are made transparent to avoid affecting fea-
ture post-processing. The toolpath for each layer is plotted similarly
to Layer 100, as shown in Figure 3B. Stacking these single-colour
toolpaths layer by layer forms the overall object; however, only
the outer shape remains visible, while internal features are lost.
To ensure visibility of internal structures and line connections, it
is necessary to add contours to the lines. This is achieved during
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Figure 3: A) Camera image of the 100" layer, B) Simulated 1002 layer, C) Simulated model view at layer 100.

toolpath plotting by rendering each layer twice using two differ-
ent shades of the same colour, with one slightly wider than the
other. This approach enhances the visibility of internal details, as
demonstrated in the single-layer toolpath view in Figure 3C.

3.1 Camera view scene reconstruction

Camera alignment is essential for validating the simulation against
real-world observations. Camera calibration was carried out us-
ing the MATLAB Camera Calibration Toolbox [8]. The intrinsic
parameters—including focal length, principal point, and distortion
coefficients- define the internal characteristics of the camera, while
the extrinsic parameters (rotation matrix and translation vector)
describe the camera’s position and orientation relative to the build
plate. See Figure 4 for calibration results.

The proposed methodology was evaluated using various 3D mod-
els, ranging from simple geometries like cubes to more complex
shapes such as low-poly animal models. In each test, simulated
toolpaths were compared against physical prints to assess accuracy.
The low-poly fox model demonstrated the system’s ability to handle
intricate geometries, with high-resolution simulations capturing
subtle deviations in layer alignment (Figure 5.).

3.2 Preprocessing and BLSS

To accurately calculate the similarity between the simulated data
and the camera images, both sets of images must undergo a prepro-
cessing stage. If the simulated image is not already in a perpendic-
ular view from one of the axes, it needs to be rotated accordingly.
Meanwhile, camera images require distortion correction using the
camera calibration data mentioned in the previous section, as well
as perspective rotation if necessary. After these corrections, both
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Figure 4: A) Camera calibration using an A4 checkerboard
with 10 mm square size and 20 images. C) Pose estimation
and reprojection error analysis. D) Mean reprojection error
of 0.45 pixels.

the simulated and camera images are cropped around the build
surface edges to eliminate unnecessary background features, en-
suring a consistent comparison framework. Now that both images
represent the same section, the next step is to bring them closer
in terms of visual properties. Although the 3D view is generated
using different contours, the simulated images lack the same char-
acteristics as the camera images. Unlike real images, simulated
images have no noise, exhibit perfect contours, and have uniform
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Figure 5: A) Top view of a calibration cube, B) Angle view
of a calibration cube, C) Top view of a 3D Benchy, D) Angle
view of a 3D Benchy, E) Top view of a low poly fox, F) Angle
view of a low poly fox

brightness. To ensure the simulation attains a similar level of image
detail, an algorithm extracts key properties from the current camera
frame and applies them back to the cropped simulated image. This
process standardizes the image properties. Using a preset masking
approach on all three colour channels, the build plate is subtracted,
leaving only the object visible. The image is then converted to
grayscale. Once in grayscale, the object’s minimum and maximum
values—previously extracted during simulation—are used alongside
the build plate’s dimensions to calculate the pixel-per-millimetre
ratio. With this information, the object’s maximum boundary is
determined, allowing for precise cropping coordinates. Ensuring
both images are of the same size simplifies future processing and
comparison.

The grayscale images first undergo Structural Similarity Index
Measure (SSIM) [9] analysis, which is applied to subsequent frames
within each dataset to generate a difference map over time. Af-
ter obtaining these difference maps, Fast Fourier Transform (FFT)
[10] is applied to transform the images into the frequency domain,
allowing for a more detailed comparison of structural variations.
Following this, Normalized Cross-Correlation (NCC) [11] is used
to quantify the similarity between the transformed difference maps
of corresponding frames from the simulated and camera datasets,
displayed in Figure 6. [3].

3.3 Simulation Adjustment Using
Camera-Derived Parameters
To achieve a closer similarity between the simulated and camera

images, it is essential to transfer noise parameters from the orig-
inal camera image to the simulated images. The process begins
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with capturing real-world images using a camera and extracting
key visual features such as entropy, edge density, noise, contrast,
and brightness. To ensure accurate mapping, the camera image is
divided into a grid, with each section proportionally matched to
the simulated image. Iterative adjustments are then applied to the
simulation, aligning its features with the extracted camera data by
modifying entropy through histogram equalization [12], enhanc-
ing edges using Sobel filtering [13], regulating noise with Gaussian
adjustments [14], and normalizing brightness and contrast. A blend-
ing factor is incorporated to ensure smooth transitions between
modified regions. The pseudocode is displayed in Figure 7.

After adjustment, the simulation is converted back to RGB using
the LAB colour model. The final step involves evaluating object sim-
ilarity by comparing outlines and computing a similarity score to
verify alignment. This approach ensures that the simulated image
accurately replicates real-world conditions while maintaining struc-
tural integrity. In Figure 8, the original simulated SSIM values are
represented by the blue line, while the simulated SSIM values with
noise parameters are shown in green. The SSIM values from actual
camera images, captured from subsequent frames, are depicted in
orange. When noise parameters are added to the simulated im-
ages, the SSIM values align much more closely with those from the
camera images, demonstrating the effectiveness of this approach.

3.4 On-the-fly 3D printing correction

Some errors can be corrected if detected in time during the 3D
printing process, particularly material misplacement and extrusion-
related issues. When a layer shift is detected, the algorithm reads the
previous layer number and modifies the G-code for the incorrectly
printed layer.

The adjusted parameters include reducing the print speed to 5%
and increasing the nozzle temperature to the maximum the mate-
rial can handle. With these modifications, the misprinted layer is
reprinted, effectively ironing out excess material where it is not
needed and depositing new material in areas where it was previ-
ously missing. To ensure accuracy, the coordinate system is verified
during the homing of the X and Y axes. This approach prevents print
failures, facilitates post-processing for excess material removal, and
ensures a correct surface, ultimately reducing material costs and
manufacturing time.

3.5 Experimental Configuration

All experiments were conducted on a Creality Ender 3 V1 running
Marlin firmware, connected via OctoPrint. A 1.0 mm nozzle was
used with a 0.5 mm layer height and 1.0 mm line width, and ‘thin
wall” printing was enabled in the slicer. All 3D models were uni-
formly scaled to 300% to ensure sufficient resolution and feature
visibility. PLA was selected for consistency, and MATLAB handled
image acquisition, simulation, and print control via the OctoPrint
AP, including pause/resume and layer reprint commands. To iso-
late the computer vision workflow, all tests used a fixed hardware-
material setup; broader parameter variations are proposed as future
work.
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Figure 6: Flowchart of the quantification process between the simulated and the actual camera image difference
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Figure 9: Full print with BLLS generated similarity values throughout the Low Poly Fox layer-shift correction

4 Results

The evaluation of the proposed system begins by assessing the sim-
ilarity between successive camera images to establish a baseline
for detecting variations during printing. Once consistency within
the camera images is confirmed, the next step is to compare the
simulated and camera images to determine their structural align-
ment. This analysis is performed using FFT and NCC, allowing for
a frequency-domain comparison that highlights differences in spa-
tial features. To validate the system’s ability to detect print errors,
a controlled experiment was conducted using a fox print, where
a deliberate layer shift was introduced at Layer 100. This serves
as a benchmark case to assess the detection accuracy of the BLSS
process and the subsequent adjustments applied to the simulation.
The following subsections present the comparative analysis of real
and simulated prints, noise integration effects, and the impact of
on-the-fly corrections. To quantify the similarity between the sim-
ulated and camera images across layers, NCC was used as a metric.
Figure 9. presents the NCC values for each layer, where the vertical
axis represents the similarity percentage, and the horizontal axis
corresponds to the layer numbers. The graph shows consistently
high NCC values across most layers, indicating strong alignment
between the simulated and real images. However, a significant
drop in similarity is observed at Layer 100, where an artificial layer
shift was introduced. This deviation highlights the system’s capa-
bility to detect print anomalies effectively. The results confirm that
the simulation accurately reflects real-world printing conditions
while preserving structural consistency. Figure 9. also shows that
the system requires approximately five additional frames after the
correction to stabilize and return to normal similarity levels. This
does not indicate a limitation in continuous monitoring; rather, if a
new error occurs, it would result in a much more pronounced drop,
ensuring effective real-time detection. Furthermore, the results con-
firm that this error detection method is not limited to identifying a
single error. Once an error is corrected, it will no longer be flagged
and any new errors arising during the process will still be detected,
ensuring ongoing quality control throughout the print.

190

A layer shift can ruin a printed part, leading to material waste and
increased production time. However, these errors can be corrected
during the printing process if detected in time. Once a layer shift
is identified, the X and Y axes can be re-homed, and the faulty
layer can be reprinted before continuing the print. This corrective
approach minimises waste and prevents the need for a full reprint
of the part. Figure 10. displays three cases: a perfectly printed
fox, a fox with an induced layer shift, and a cube after the layer
shift was detected and corrected. The results demonstrate that by
modifying the G-code to reprint the misaligned layer with adjusted
parameters, the shifted material can be redistributed, ensuring
structural integrity.

Although minor surface irregularities may remain, post-
processing techniques, such as sanding, can further refine the print,
making it functionally accurate while saving material and print
time. The post-processed fox and correctly printed fox were both
scanned using structured light scanning technology. A surface com-
parison test was then conducted using GOM Inspection, revealing
only slight deviations in the surface, all less than 1 mm, displayed
in Figure 11.

5 Conclusion

This paper presents a novel approach for layer-by-layer toolpath
simulation in 3D printing, integrating real-time monitoring and
error detection using structural similarity measures. By aligning
simulated toolpaths with actual printed layers and incorporating
real image parameters, the proposed method enhances detection
accuracy beyond standard simulation-based approaches. The study
demonstrates that adding noise parameters from real images im-
proves similarity analysis and error identification, enabling effective
correction of defects such as layer shifts. Experimental results vali-
date the system’s ability to detect errors through SSIM, FFT, and
NCC analysis, ensuring real-time intervention and correction. The
method successfully identifies and corrects layer misalignment,
significantly reducing material waste and improving print qual-
ity. Additionally, post-correction analysis confirms that errors do
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Figure 10: Actual looks of the Low Poly Fox A) Correct Fox B) Layer shift in Fox C) Repaired Fox
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Figure 11: Surface deviation between a correctly printed cali-
bration cube and an altered print of a calibration cube

not propagate once rectified, highlighting the robustness of the
approach.

Although the primary experiments were conducted using PLA
and a 1.0 mm nozzle, additional prints were also tested with 0.8
mm, 0.6 mm, and 0.4 mm nozzles, as well as with ABS and PETG
materials. No significant visual differences in system performance
were observed, but further testing is planned to evaluate limitations
across varying materials and printer setups.
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Future work will also focus on enhancing real-time processing
efficiency, exploring multi-camera perspectives for improved accu-
racy, and integrating machine learning for more advanced defect
prediction. By refining these techniques, this research contributes
to the development of more autonomous and reliable additive man-
ufacturing processes, reducing human intervention while ensuring
consistent print quality.

References

[1] Royal Academy of Engineering (Great Britain), Additive manufacturing: oppor-
tunities and constraints: a summary of a roundtable forum held on 23 May 2013
hosted by the Royal Academy of Engineering.

T. D. Ngo, A. Kashani, G. Imbalzano, K. T. Q. Nguyen, and D. Hui, “Additive
manufacturing (3D printing): A review of materials, methods, applications and
challenges,” Jun. 15, 2018, Elsevier Ltd. doi: 10.1016/j.compositesb.2018.02.012.
M. Sumegi, W. Quan, H. L. Brooks, and L. K. Shark, “Real-time Monitoring of 3D
Printing Using Between-layer Structural Similarity (BLSS),” in ACM International
Conference Proceeding Series, Association for Computing Machinery, Jan. 2024,
pp. 278-285. doi: 10.1145/3647649.3647694.

A. Aburaia, C. Holzgethan, C. Ambros, K. Stuja, and B. Katalinic, “Online Vision-
based Error Detection for Fused Filament Fabrication,” 2021, pp. 193-212. doi:
10.2507/daaam.scibook.2021.16.

Li, W. Quan, L. K. Shark, and H. Laurence Brooks, “A Vision-based Monitoring
System for Quality Assessment of Fused Filament Fabrication (FFF) 3D Printing,”
in ACM International Conference Proceeding Series, Association for Computing
Machinery, Jan. 2022, pp. 242-250. doi: 10.1145/3512388.3512424.

L. Petsiuk and J. M. Pearce, “Open source computer vision-based layer-wise
3D printing analysis,” Addit Manuf, vol. 36, Dec. 2020, doi: 10.1016/j.ad-
dma.2020.101473.

F. Schindler, M. Aburaia, B. Katalinic, M. Lackner, and K. Stuja, “Computer Vision
Based Analysis for Fused Filament Fabrication Using a G-Code Visualization
Comparison,” 2023, pp. 356-371. doi: 10.1007/978-3-031-20875-1_33.
Mathworks, “Camera Calibration,” [Online] Available: https://uk.mathworks.
com/help/vision/camera-calibration.html. [Accesed: Dec, 2024]

R. Dosselmann and X. D. Yang, “A comprehensive assessment of the structural
similarity index,” Signal Image Video Process, vol. 5, no. 1, pp. 81-91, Mar. 2011,
doi: 10.1007/s11760-009-0144-1.

E. 0 Brigham and R. E. Morrow, “The fast Fourier transform.”

F. Zhao, Q. Huang, and W. Gao, “IMAGE MATCHING BY NORMALIZED CROSS-
CORRELATION”

K. Okarma and J. Law Fastowicz, “Quality Assessment of Photographed 3D
Printed Flat Surfaces Using Hough Transform and Histogram Equalization,” Arti-
cle in JOURNAL OF UNIVERSAL COMPUTER SCIENCE, 2019, doi: 10.3217/jucs-
025-06-0701.

N. Kanopulos, N Vasanthavada and R. L. Baker “Design of an Image Edge Detec-
tion Filter Using the Sobel Operator.” 1988

A. Foi, M. Trimeche, V. Katkovnik, and K. Egiazarian, “Practical Poissonian-
Gaussian noise modelling and fitting for single-image raw-data,” IEEE Trans-
actions on Image Processing, vol. 17, no. 10, pp. 1737-1754, 2008, doi:
10.1109/T1P.2008.2001399

[2]

[3]

[4]

5

[

[6

—_

7

—

[8

=

[o

=

[10]
(1]

(12]

(13]

(14]


https://uk.mathworks.com/help/vision/camera-calibration.html
https://uk.mathworks.com/help/vision/camera-calibration.html

	Abstract
	1 Introduction
	2 Methodology
	3 Art of Simulation
	3.1 Camera view scene reconstruction
	3.2 Preprocessing and BLSS
	3.3 Simulation Adjustment Using Camera-Derived Parameters
	3.4 On-the-fly 3D printing correction
	3.5 Experimental Configuration

	4 Results
	5 Conclusion
	References

