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Simple Summary

The limited efficacy and severe side effects of traditional anti-tumor therapies prompted
a paradigm shift in practical oncology in the past decade. This includes innovative ap-
proaches like cancer immunotherapy that aims to exploit the anti-cancer capacity of the
innate immune system. Accordingly, numerous new concepts of immune oncology have
been developed in recent years, including the use of immune checkpoint inhibitors or ge-
netically engineered T lymphocytes. However, the observed variable clinical effectiveness
calls for further developments like those that rely on dendritic cells, master regulators
of lymphocyte activation through antigen presentation. Here, we review these efforts,
including the ongoing clinical trials and potential future directions of the use of them in
clinical practice.

Abstract

Dendritic cells (DCs) are a heterogeneous population known for antigen presentation and
immune modulation, playing a key role in priming a T cell response against pathogens
and tumor cells. Despite their putative therapeutic value, their scarcity in peripheral blood
limited their direct use in therapeutic applications until recently. The discovery that DCs
can be generated from circulating monocytes ex vivo, however, gave a boost of extensive
research in the use of DCs in clinical applications. Still, despite the numerous clinical
trials, the introduction of DCs in the everyday clinical oncology practice is delayed. In this
narrative review, we provide an updated summary of the field covering the theoretical
and practical aspects of the concept of the use of DCs in adoptive cellular immunotherapy
and the completed or ongoing clinical trials for the use of these species in clinical oncology
practice. To better understand the current developments of the field, we included those
clinical trial reports that published evaluable data to date. Based on our literature survey,
DC-based adoptive cellular therapy is a safe therapeutic intervention with valuable clinical
potential. Its widespread implementation, however, is likely delayed due to a number
of factors that make meaningful evaluation of clinical trial results complicated. These
include the great variety of preclinical trial concepts, difficult and heterogenous patient
cohorts, and the diversity of intervention techniques applied. Since these factors might
hinder the routine implementation of DC-based applications in the more widespread
forms of immunotherapy, one of the urgent short-term future directions seems to be the
standardization of the DC-based methodologies.
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1. Introduction
In 2022, cancer was considered to be responsible for one in every six deaths (16.8%)

world-wide, representing one of the top three leading causes of premature death in the
majority of surveyed countries [1,2]. This accounted for an estimated 20 million new cases
and 9.7 million deaths in 2022 [1]. Assuming unchanged cancer rates, a 77% increase in
cancer incidence is predicted by 2050, accounting for up to 35 million new cases. This
would almost double cancers deaths with the currently available therapeutic tools calling
for new approaches.

Indeed, the cellular plasticity and heterogenicity of tumors, in particular the presence
of therapy-induced senescence under current therapeutic regimes, makes the efficacy of
standard, canonical, not-individualized treatments limited [3,4]. Moreover, canonical thera-
peutic applications directly deteriorate the endogenous anti-tumor immunity, eliminating a
critical factor of natural measures counteracting neoplasms [5]. With our expanding knowl-
edge on genomics, this notion led to a recent paradigm shift from canonical histology-based
cancer type-specific modalities to biomarker-centric approaches [6]. The emerging tumor-
agnostic philosophy of biomarker-driven approaches in precision medicine attempts to treat
patients on the basis of the particular genetic or molecular signatures of their tumor cells,
regardless of their histological origin or the anatomical location of the neoplasm [7,8]. Al-
though it also faces challenges due to co-occurring mutations, distinct microenvironments
and therapy-induced resistance, this genome-informed and -oriented approach apparently
redefines practical oncology, including the rapid implementation of immuno-oncology
methodologies [9].

Immuno-oncology is a type of cancer treatment that utilizes, enhances, or modifies a
patient’s own immune system to attack cancer cells. In contrast to traditional anti-cancer
interventions, that rather deplete immunocompetent species, immuno-oncology treatments
focus on a patient’s immune ecosystem to exploit the endogenous immune cells’ capacity
to discover and eliminate transformed cells [5,10]. Stimulation of the anti-cancer immune
machinery is believed to ensure specificity and immune memory that allows defense
against cancer neoantigens even after therapy is discontinued, a critical therapeutic aspect
considering the immune system-escaping strategies of cancer cells [4,11].

The first immuno-oncology approaches widely implemented in the clinical practice
were centered around immune checkpoint inhibitors that deliberate immune cells para-
lyzed by cancer species, allowing them to become reactive against neoantigen-harboring
cancer cells [11]. While combining immune checkpoint inhibitors with chemotherapy
has expanded treatment options for cancers, this approach has shown no clinical ben-
efit in immune desert, also referred to “cold”, neoplasms characterized by the lack of
reactive lymphocytes, or in patients with dysfunctional or exhausted T cells [11,12]. To
address this challenge, professional antigen-presenting cellular elements of the immune
system—like the dendritic cells (DC), capable of bridging the innate and adaptive immune
systems—have been explored as a promising platform for novel therapeutic interventions.

In this narrative review, we provide an updated summary of the field covering
the theoretical and practical aspects of the concept of the use of DCs in adoptive cel-
lular immunotherapy and the completed or ongoing clinical trials that have published
evaluable results.
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2. Dendritic Cells
2.1. Microscopic Characteristics of Dendritic Cells

Dendritic cells were first described by Steinman and Cohn as a small population
of cells morphologically distinct from known lymphoid species and named after their
unique stellate shape (Figure 1) [13]. They were found to be most abundant in mice spleen,
accommodating for around 1–1.5% of all nucleated cells, though they were also found in
Peyer’s patches and lymph nodes [13].

This new class of cells were shown to have large nuclei and mitochondria with a per-
inuclear region usually filled with the Golgi apparatus, few small lysosomes with varying
contents, and numerous rough and smooth-surfaced vesicles surrounded by a smooth cell
surface without any microprojections. The most distinguishing characteristic of dendritic cells
was reported to be their relatively electron-lucent ground cytoplasm, which sets them apart
from other nucleated leukocytes, especially from lymphocytes (Figure 1) [13].

2.2. Ontogeny of Dendritic Cells

DC development originates in the bone marrow from hematopoietic stem cells [14].
Granulocyte-monocyte-DC progenitors give rise to monocyte/DC progenitors, which have
the potential to develop into all DC subsets [14] (Figure 2). Analyses of their molecular
makeup revealed that typical DCs show elevated expression of major histocompatibility
complex class II molecules and integrin CD11c but do not display the typical surface
markers found on B cells, T cells, macrophages, or granulocytes (Figure 1) [15,16]. Further
studies revealed that DCs can be divided into functionally different subsets like the CD11c+

CD123− conventional myeloid and CD11c− CD123+ plasmacytoid lymphoid DCs [17,18].
When monocyte/DC progenitors differentiate into common DC progenitors, first, they lose
their capacity to become monocytes [14]. This species, then, can differentiate into either
plasmacytoid DCs or circulating pre-conventional DC progenitors. The latter ones can
further differentiate into conventional DCs (cDC) by lineage-determining transcription
factor-orchestrated processes [14]. cDC can be further classified into two subsets, con-
ventional type 1 DCs (cDC1) expressing CD141 (BCDA3) and conventional type 2 DCs
(cDC2) expressing CD1c (BDCA1) and CD11b (Figure 2) [19–21]. The development of the
former one is strictly dependent on the basic leucine zipper ATF-like transcription factor 3
(BATF3), while the development of the latter one is linked to transcription factors Interferon
Regulatory Factor 2 and -4 (IRF2 and IRF4) [22–24].

2.3. Antigen Capture and Processing by Dendritic Cells

Physiologically, DCs play the central role in triggering immune reactions via the
process called antigen presentation (Figure 3). Differentiated DCs capture, process, and
present antigens to T cells [25]. In case of exogenous antigens, this process begins with
the internalization of antigens via non-selective macropinocytosis, selective phagocytosis
(e.g., of apoptotic bodies or opsonized particles), or receptor-mediated endocytosis (tar-
geting smaller or soluble antigens) [13,26]. The constitutive, non-selective macropinocy-
tosis is mediated by aquaporins like AQP3 and AQP7 that are expressed in immature
DCs and ensure the uptake of large quantities of solutes that may contain soluble extra-
cellular antigens [27]. In contrast, selective antigen uptake is mediated by a variety of
receptors, including Fc receptors, complement receptors, C-type lectins, and scavenger
receptors [26,28–30].

Following antigen internalization, dendritic cells generate macropinosomes, phago-
somes, and endosomes. These early endocytic vesicles subsequently fuse with late endoso-
mal compartments containing MHC II molecules, initiating the degradation of internalized
proteins [31,32]. Within these vesicles, the chaperone HLA-DM catalyzes the exchange
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of the MHC II-associated CLIP fragment for high-affinity antigenic peptides [33]. Once
bound, the MHC II-peptide complex is transported to the plasma membrane for antigen
presentation [34].

 

 

Figure 1. (A) Schematic comparison of the molecular and structural characteristics of dendritic cells
and monocytes. Circulating monocytes display high expression of either CD14 or CD16, as well as
CD11b, ICAM-1, and CD62L, and are characterized by STAT3 and IRF4-driven gene expression. They
primarily secrete pro-inflammatory cytokines like IL-1β, IL-6, and TNF-α. (B–E) In contrast, dendritic
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cells exhibit CD11c/CD18, CD86, FLT3, CD83, CCR7, and CD209 and are transcriptionally marked
by BATF3 (Basic Leucine Zipper ATF-like Transcription Factor 3), IRF8 (Interferon Regulatory Factor
8), and ZBTB46 (Zinc Finger and BTB Domain Containing 46). DCs preferentially secrete IL-10, IL-12,
and type I interferons (e.g., IFN-α) along with demonstrating enhanced antigen capture and T cell
priming functions. Subset-specific regions further delineate DC phenotypes: (C) classical type 1 DCs
(cDC1) express CLEC9A, CD141, and XCR1; (D) classical type 2 DCs (cDC2) express CD1c, CD172a
(SIRPα), and CD11b; (E) while plasmacytoid DCs (pDCs) express CD123, CD303, and CD304. The
figure was created with Biorender.com. (F) Representative image of dendritic cells differentiated
from monocytes in vivo. Monocytes were isolated from PBMC using CD14-magnetic beads and
differentiated into dendritic cells with the addition of GM-CSF and IL-4. Dendritic cells were collected
on the 5th day of differentiation and plated on a fibrinogen-coated coverslip. Microfilaments and
nuclei were stained with phalloidin-Alexa488 (Molecular Probes, Invitrogen, Cat A12379, Eugene,
OR, USA) and Hoechst 33342 (Thermo Fisher Scientific Cat. #62249, Carlsbad, CA, USA), respectively.
Confocal microscopy images were collected using an alpha Plan-Apochromat 63x/1.46 Oil Corr M27
objective of a Zeiss LSM800 Axio Observer Z1/7 system (Carl Zeiss AG, Oberkochen, Germany).
Courtesy of Szilvia Lukacsi.

Figure 2. Histological origin of dendritic cells. Hematopoietic stem cells (HSCs) in the bone marrow
differentiate into granulocyte-macrophage progenitors (GMPs) via intermediate species termed com-
mon myeloid progenitors (CMPs). Under the influence of specific cytokines (SCF, FL, IL-3, CSF-1,
GM-CSF), GMPs give rise to monocyte-dendritic cell progenitors (MDPs) from which differentiation
can branch into two main lineages: the monocyte lineage, which gives rise to monocyte-derived
dendritic cells (mDCs) and macrophages in peripheral tissues via monocytes, and the conventional
DC lineage, in which MDPs differentiate into common dendritic cell precursors (CDP). These can
directly give rise to plasmacytoid dendritic cells (pDCs) through E2-2 (TCF4)-dependent transcrip-
tional programming or to pre-conventional dendritic cells (pre-cDCs) upon the activity of FLT3L
signaling which subsequently differentiate into cDC1 or cDC2 subsets. The figure was created
with Biorender.com.
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Figure 3. Antigen capture, processing, and presentation by dendritic cells. Dendritic cells have
the capacity to present both endo- and exogenous antigens, thereby enabling immune surveillance
against extracellular and intracellular factors. During the exogenous antigen presentation, major
histocompatibility complex class II (MHC II) molecules are assembled in the endoplasmic reticulum
(ER) in association with the invariant chain containing the class II-associated invariant chain peptide
(CLIP) and form late endosomes. Dendritic cells can internalize exogenous antigens through selective
phagocytosis, macropinocytosis, or receptor-mediated endocytosis. Antigen-transporting primary
endosomes fuse with MHC II-marked late endosomes where the proteolytic degradation of the
engulfed cargo occurs. Exchange of CLIP for peptides generated from processed antigens is mediated
by HLA-DM, resulting in stable MHC II-peptide complexes that are, eventually, delivered to the cell
membrane for presentation to CD4+ T helper (Th) cells. In the endogenous pathway, in contrast,
cytosolic proteins are degraded by the proteasome and the resulting peptides are transported into the
ER via transporter associated with antigen processing (TAP) and loaded onto MHC I proteins. The
complex, then, is transported to the cell surface to be recognized by CD8+ cytotoxic T (Tc) cells. In
both cases, effective T cell activation requires additional costimulatory signaling like CD80/86-CD28
connection. The figure was created with Biorender.com.

In case of endogenous proteinaceous antigens, polypeptides undergo degradation via
the ubiquitin-proteasome pathway, and the resulting peptide fragments are transported
to the endoplasmic reticulum (ER) by the transporter associated with antigen processing
(TAP) molecule [35,36]. Peptides of appropriate size, usually 8 to 10 amino acids, and
sequence bind to MHC I molecules with the assistance of the peptide-loading complex
which includes TAP and the chaperon Tapasin proteins [37]. The MHC I-peptide complex
is then transferred by vesicular transport, first, through the Golgi and, then, via secretory
vesicles to the plasma membrane (Figure 3) [38].
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2.4. Antigen Presentation by Dendritic Cells

Matured, antigen-presenting DCs facilitate T cell activation through multiple signals
in the lymph nodes. The MHC II-peptide complex activates CD4+ T cells (helper T cells,
Th), while the MHC I-peptide complex activates CD8+ T cells (cytotoxic T cells, Tc) through
their T cell receptors (TCR) [39,40]. These interactions are further stabilized by CD4 and
CD8 co-receptors and additional stimulatory factors like CD80-CD28 engagement [41]. In
terms of antigen presentation, dendritic cells have a unique ability to present exogenous
antigens on MHC I, a process termed cross-presentation. This process allows DCs to acti-
vate CD8+ T cells against exogenous antigens like neoantigens of cancer cells by protecting
exogenous antigens from immediate degradation. Upon cross-presentation, antigens stored
within endosomal compartments are degraded by intra-endosomal proteases or, alterna-
tively, transported to the cytosol and processed by immunoproteasomes [42–45]. From the
cytosolic pathway, these peptides are TAP-dependently imported back into endosomal
compartments or the ER for loading onto MHC I molecules, after which the peptide-MHC I
complex is transferred to the plasma membrane [46,47]. Besides these physical interactions,
DC-derived cytokines are also important regulators of the DC-triggered differentiation of
T cells into distinct Th or Tc subtypes (recently reviewed in [48]).

During their lifespan, DCs exist in immature and mature states. In the immature stage,
they are scattered through peripheral non-lymphoid tissues and act as the body’s first line
of defense, constantly monitoring the local environment [49]. They exhibit low expression
of MHC I and -II, and the costimulatory molecules CD80, CD83, and CD86 [49]. Being
exposed to pathogens, they pick them up and process their antigens to eventually move
to lymphoid tissues. Through maturation, cDCs upregulate expression of CD80, CD83,
and CD86; increase production of immunostimulatory cytokines (IL-12, TNF-alpha, IL-10);
and increase surface stability and expression of antigenic peptide-MHC complexes [49].
Consequently, cDCs lose their ability to pick up further antigens and eventually become
mature immunostimulatory cells and strong activators of naïve CD4+ and CD8+ T cells
via direct antigen presentation [49]. As one can expect, the gene expression patterns
dynamically change during the complex process of dendritic cell maturation [50]. CD11c−

DCs mature using CD40L and IL-3 and do not upregulate genes like TUBA1A, TUBB, SPP1,
or GPNMB that are typically associated with mature conventional DCs [50]. In accordance,
most DC-associated genes such as MMP12, Z39Ig, GPNMB, and SPP1 are low in immature
DCs and increase with maturation. Only a few genes, like CCL17 in monocyte-derived DCs
(detailed below), HLA-DRA in all DC subclasses, or CD1B in monocytes and CD1a+ DCs,
have been reported to be constitutively overexpressed in immature DC species [50].

Following exposure to activators like microbes, cDCs secrete pro-inflammatory cy-
tokines like IL-12, IL-23, and IL-10 that, along with surface molecules like OX40-L or ICOS-l,
trigger maturation of naïve T cells into their effector Th1, Th2, Treg, or Th17 counter-
parts [51–55]. IL-12 plays a pivotal role in cDC physiology as it allows them to mature
into antigen-presenting cells and elicit their functions [56]. Expression of some of these
cytokines, however, shows cell-type specificity like the IL-10 that has been reported to be
expressed only in interstitial DCs [57].

cDC1s specialize in cross-presentation and exogenous antigen presentation on MHC
class I molecules to activate naïve CD8+ T cells that can develop into cytotoxic T lympho-
cytes. For this activity, cDC1s uniquely express endocytic receptor CLEC9A and chemokine
receptor XCR1, which enables antigen capturing, cross-presentation, and T cell activa-
tion, respectively [22,58]. cDC2s, in contrast, primarily present antigens on MHC class II
molecules to prime naïve CD4+ T cells and provide the necessary costimulatory signals [19].
Data indicate that IRF4 regulates the antigen processing capacity and the MHC class II-
linked antigen presentation of cDC2s, leading to more robust CD4+ T cell proliferation
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compared to cDC1s [59]. cDC2 also promotes Th2 and Th17 response in contrast to cDC1s
that, under standard physiological conditions, do not promote Th2 responses [60].

Plasmacytoid dendritic cells (pDC) do not express CD11c in humans but are positive
for CD123 and CD303 [61–63]. The key transcription factor responsible for pDC devel-
opment is the E-protein transcription factor E2-2 [64]. pDCs express a range of Toll-like
receptors (TLRs), including TLR7/8 and TLR9, which enable them to detect viral nucleic
acids, including single-stranded RNAs and unmethylated CpG-rich DNAs [64]. One of
the pDC key functions is the rapid secretion of type I interferons (IFN) and promotion of
survival of antigen-activated T cells [64,65]. It is believed that the rapid kinetics of pDC
activation is mediated by their high secretory capacity and elevated basal expression of
transcription factor IRF7 [66]. In contrast to cDCs, pDCs have minimal antigen-presenting
abilities [56,67].

The significantly different gene expression profiles of conventional and plasmacytoid
DCs underpin the functional differences [50]. Genes highly expressed in myeloid cDCs
like SPP1 (for osteopontin protein), FTL (for ferritin L-chain), TUBA1A and TUBB (for α-
and β-tubulin), ENO1 (for enolase-1), ANXA2 (for annexin A2), CCL2, CCL13 (for MCP-1
and MCP-4), and LAMP3 (for DC-LAMP protein) are associated with antigen uptake and
processing, lysosomal function, chemotaxis, and cytoskeletal remodeling, reflecting the
phagocytic and migratory capacity of these species [50]. Genes preferentially expressed in
pDCs, like IRF4, in contrast, are rather essential for Type 1 interferon production.

Thus, our current understanding is that DCs play a pivotal role in triggering various
immune cascades, while they can also contribute to the maintenance of the inflammatory
state via promotion of cytokine-mediated pro-inflammatory signals. These characteristics
make them particularly attractive for cellular immunomodulatory therapies.

3. DC Isolation and Culturing
Since DCs represent a small proportion of human blood mononuclear cells; their

therapeutic use is believed to require enrichment [68]. Historically, first, this was achieved
from peripheral blood mononuclear cells (PBMC) by their separation from lymphocytes,
monocytes, and macrophages followed by buoyant density gradient centrifugation using
metrizamide as density medium (Figure 4) [68]. DC populations can also be generated from
monocyte populations of peripheral blood that can be obtained via various methods. On
one hand, monocytes can be purified from PBMC using immunorosetting techniques, which
deplete unwanted lymphocyte populations via erythrocyte crosslinking. On the other, they
can be purified through cell surface marker-based purification approaches that typically
use the combination of antibody-mediated immunomagnetic selections and sterile, closed-
system flow cytometric sorting. Alternatively, the size, density, and surface-adherent
characteristics of monocytes can also be exploited via counter-flow centrifugal elutria-
tion and their exposure to tissue culture plastics under standard conditions, respectively
(Figure 4) [68,69]. Surveying available clinical trials reveals that monocyte enrichment is
most commonly performed either by adherence or by counter-flow elutriation, which to-
gether constitute the two dominant approaches in current clinical practice. It is noteworthy,
however, that data also indicate that preparation techniques influence the immunogenic
potency of in vitro generated DCs. Indeed, autologous DC preparations derived from
plastic-adherent monocyte populations induced superior T cell proliferation than those
DCs that were differentiated from monocytes following CD14+ selection [70,71]. Incubating
them in the presence of GM-CSF and IL-4 in vitro, isolated monocytes differentiate into
immature DCs within 5 to 7 days. Since the final number of DCs depends entirely on
the number of monocytes that are far more numerous in the peripheral blood than DCs,
this method produces much higher yields of DCs in comparison to isolating naturally
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occurring DCs [68]. Independently of the chosen technique, CD83 is routinely used to
assess enrichment of mature DC populations [72].

Figure 4. Strategies for dendritic cell enrichment from peripheral blood. (A) Peripheral blood
mononuclear cells (PBMC) can be isolated from whole blood via ficoll density gradient centrifugation.
(B) From PBMC, circulating DCs can be enriched following the removal of mono- and lymphocytes
and metrizamide-based density centrifugation. Alternatively, DCs can be generated in vitro from
monocytes. Monocytes can be purified from PBMC via (C) erythrocyte rosetting when lympho-
cytes are crosslinked to erythrocytes for subsequent removal, (D) by immunomagnetic separation
using either negative or positive selection strategies, or (E) with fluorescent activated cell sorting.
Monocyte enrichment can also be achieved through (F) centrifugal elutrition or (G) adherence-based
selection of monocytes after the removal of non-adherent PBMCs. (H) Isolated monocytes, then,
can be differentiated into dendritic cells resulting in a high yield of DCs. The figure was created
with Biorender.com.

Following differentiation, exposure to proinflammatory cytokines, like TNF-alpha
and IL-1beta or TLR agonists (e.g., LPS, Poly-I:C, R848), for an additional 1–2 days allows
differentiated species to obtain their full antigen-presenting functionality, a process termed
maturation [68]. In vitro, DCs can be modified before or during their maturation process to
enhance their functional properties. Indeed, exposing murine bone marrow-derived DCs
to CCL3 and CCL19 leads to an increased and preserved antigen uptake and processing
capacity, even after maturation, which then allows a more robust and durable immune
response [73]. Moreover, because DCs can phagocytose apoptotic tumor cells and thus allow
tumor antigen cross-presentation, they are believed to be able to exert anti-tumor responses
following their preconditioning to tumor antigens [74]. Technically, this can be achieved by
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peptide-pulsing, co-incubation with tumor cells, or transfection with tumor antigen-related
mRNAs [75]. The latter method involves in vitro-transcribed mRNAs encoding tumor-
associated antigens that, following their intracellular translation and processing, DCs can
present on their surface [76]. This MHC-mediated display of immunogenic tumor-specific
peptides is believed to enable DCs to effectively activate tumor-specific T cells, initiating a
targeted immune response against neoplasms. Another potential benefit of preconditioning
is the ability to enhance DC migration from peripheral tissues to lymphoid tissues. It has
been shown that PGE2-preconditioned human monocyte-derived DCs have significantly
higher CCR7 expression accompanied by an enhanced chemotaxis towards lymph node
chemokines CCL19/CCL21 [74,77]. This has been exploited in a number of clinical trials
using ex vivo-matured DC preparations [78–82].

It is noteworthy, however, that cytokine dosages and quality-control criteria are sig-
nificantly inconsistent across publications. Similarly, the reported levels of differenti-
ation exhibit up to a two-fold variation, and maturating stimuli also substantially dif-
fer between studies. In addition, some studies describe marker expression qualitatively
(e.g., ‘low,’ ‘moderate,’ or ‘high’), while others provide a wide range of phenotypic or
functional attributes. Sterility requirements are similarly inconsistent; trials usually re-
port results of mycoplasma, endotoxin, Gram staining, or general bacterial contamination
without providing specifics of the assays used.

After isolating and culturing, DCs are reported to be suitable for being stored frozen
without losing their functionality. Although several cryoprotectants were tested, 10%
dimethylsulfoxide (DMSO)-containing freezing media remains the most commonly used
one, sometimes reduced to 5% to minimize DMSO-induced cytotoxicity [83–86]. The cryop-
reservation vehicle generally relies on autologous serum-based formulations, sometimes
combined with culture media or human serum albumin to support cellular stability during
freezing [87–90]. To further improve post-thaw viability, additives, like glucose in 2–5%
final concentration or 12% working concentration of hydroxymethyl starch, are also used
alongside DMSO even in GMP-compatible settings [78,91–93]. There are considerable
efforts to eliminate DMSO as a cryopreservative; studies have evaluated trehalose and
a combination of sucrose, isoleucin, and glycerol, but these approaches remain largely
preclinical [94,95]. Despite the relative variety in terms of the cryopreservation medium
components, protocols are consistent with the 1 ◦C per minute freezing until reaching
−80 ◦C. Although the literature data indicate that cryopreserved DCs retain both viability
and functionality for at least 24 months even at −80 ◦C in a solution containing 6% hy-
droxyethyl starch, 5% dimethyl sulfoxide, and 4% human serum albumin, the industrial
standard long-term storage is in liquid nitrogen [96].

Being able to culture them in vitro and successively store them for long terms sup-
ported the exploration of the use of DCs as tools of the cell-based immunotherapies [73].

4. Therapeutic Use of DCs
Exploration of antigen-presenting cell (APC)-based therapies has led to the registration

of the first FDA-approved cellular advanced therapy medicinal product (ATMP) that has the
goal to boost the anti-tumor immunity via autologous APCs. Sipuleucel-T is an autologous
active cellular immunotherapy approved for the treatment of metastatic castration-resistant
prostate cancer [97]. The vaccine consists of the patient’s own peripheral blood mononu-
clear cells, including APCs, which are ex vivo activated using the recombinant PA2024,
a fusion protein of prostatic acid phosphatase (a prostate tumor-associated antigen) and
GM-CSF [97]. Since the approval of Sipuleucel-T, a number of clinical trials have been
exploring the use of antigen-presenting cell-based solutions either as monotherapy or in
combination with more canonical chemo-, radio-, or immune checkpoint inhibitor therapies.
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A comprehensive list of clinical trials that have already published results is provided in
Table S1. More than two hundred clinical trials on the use of APCs have been published
or registered to date, and more than 60% have published evaluable data. Despite the
diversity in targeted neoplasms and clinical scenarios, there are characteristic principles
they commonly share.

One of these is that the vast majority of trials used monocyte-derived species generated
by incubation using GM-CSF and IL-4. The mode of monocyte enrichment, concentration of
the applied cytokines, and term of differentiation, however, are very diverse, and the latter
two factors are, apparently, rather empirical. Monocytes are purified from venous blood-
derived mononuclear cells most commonly by exploiting their plastic adherent nature.
The second most common technique for monocyte isolation is their immunomagnetic
separation exploiting their CD14 positivity, while in a small number of trials monocytes are
separated from PBMC by elutriation (Table S1).

In terms of their maturation, protocols are similarly diverse, though they can be
classified into few major groups. In a number of trials, DCs are incubated with tumor cells
during their maturation, aiming to engage them toward the patient’s own tumor cells. This
approach has been tested for various cancers with varied outcomes. In a phase I/II trial
with stage IV or recurrent melanoma patients, for instance, administration of autologous
DCs co-cultured with autologous tumor cells showed excellent long-term outcomes with
median overall survival of almost 50 months, with more than 40% of the patients being
alive at five years [98]. This concept led to remarkable clinical outcomes in malignant
glioma cases, almost doubling the median overall survival time, but failed to deliver similar
results in other trials targeting metastatic conditions, probably reflecting on the dynamic
nature of cell surface neoantigen repertoire of cancer cells [99–102].

One of the possible solutions to address this challenge is the use of autologous tumor
cell lysates for priming the therapeutic DCs population. Interestingly, while this technique
seems to be working in melanomas and glioblastomas, it did not improve the clinical
outcome of metastatic conditions, for instance, in renal cell carcinomas where this model
was studied extensively [103–105].

Similarly, although it significantly decreased PSA levels in prostate cancer patients,
autologous DCs preconditioned with apoptotic tumor cell lysates did not improve overall
survival despite that it was reported to induce significant CD4+ and CD8+ T cell prolifera-
tion without affecting immunosuppressive FOXP3+ regulatory T cells [106]. To improve
immunogenicity, autologous tumor cell lysates coupled to immunogenic carriers like yeast
wall particles have also been tested and were found to dramatically improve survival of
clinically disease-free, stage III/IV melanoma patients upon their vaccination with autol-
ogous DCs preconditioned with yeast wall particle-linked lysate, suggesting a possible
direction to improve tumor lysate-based protocols [107].

Another regular approach to boost the effectiveness of both the conventional and APC-
mediated therapies is the implementation of DC vaccines in traditional chemo- and/or
radiotherapy regimes. This has been studied in a number of trials using autologous
tumor lysate-pulsed DCs in combination with radio- or chemotherapy, showing successful
induction of tumor-specific immunity in glioblastoma patients, resulting in longer survival
without major adverse events [108–111].

Another major class of methods to direct DCs against the desired neoplasm is their load
with predefined tumor-related proteins or peptides upon their maturation process. These
include a wide range of putative tumor antigens from naturally occurring endogenous
biomarkers through their fusion formats to synthetic tumor-associated peptides. The
immunogenic nature of these peptides has been confirmed in a number of trials. Indeed,
successful induction of T cell-mediated anti-tumor immunogenicity has been recorded upon

https://doi.org/10.3390/cancers18010123

https://doi.org/10.3390/cancers18010123


Cancers 2026, 18, 123 12 of 27

the use of DCs loaded with peptides from the immune stimulatory T cell receptor alternate
reading frame protein (TARP) in prostate cancer patients [112–114]. Similarly, monocyte-
derived, conventional, type 1-polarized DCs loaded with synthetic glioma-associated
antigen peptides evoked anti-tumor immune responses in nearly two-thirds of malignant
glioma patients [115]. This strategy has been widely studied, targeting well-known tumor
biomarkers like HER-2, MUC-1, or p53.

HER-2-pulsed DCs have been reported to show clinical benefits in patients bearing
HER-2-positive breast cancer, reaching nearly 20% complete elimination of disease or, in the
presence of residual cancers, repression of HER-2 expression [116]. Even in metastatic breast
neoplasms, administration of HER-2-pulsed DCs showed clinical benefits accompanied
with immune activation against HER-2 in around one-third of the patients [117]. An inde-
pendent randomized double-blind phase II trial involving a larger cohort of glioblastoma
patients led to comparable conclusions using autologous DCs pulsed with six synthetic
peptide epitopes derived from glioblastoma-associated antigens MAGE-1, IL13Rα2, AIM-
2, TRP-2, gp100, and HER-2 [118]. Study results also indicated correlation between the
progression-free survival and the tumor HLA pattern, suggesting that HLA profiling of the
target tumor tissues might improve the efficiency of DC-based therapeutic approaches.

Interestingly, however, clinical trials applying the preconditioning strategy using HER-
2, CEA, WT1, MAGE2, and Survivin antigen-overexpressing apoptotic tumor cells did
not show comparable efficiency in lung cancer patients, raising the question of whether
implementation of the use of DCs can deliver similar clinical advantages in distinct cancer
types [119]. Indeed, when metastatic colorectal cancer patients were exposed to DC isolates
expressing MUC-1, an O-glycosylated membrane-bound protein that plays an essential
role in forming protective mucous barriers on epithelial surfaces, DC-treated patients had
higher survival rates [120]. However, when another MUC-1-preconditioned DC isolate
was used in ovarian cancer patients, no significant improvement of their progression-free
survival was observed [121]. Similarly, modest or no clear, universal clinical benefits have
been recoded upon the use of TP53-overexpressing DC in both a small cell lung cancer
and a heterogenous cancer cohort trial, either as a standalone treatment or along with the
indoleamine 2,3-dioxygenase (IDO) inhibitor indoximod, respectively [122,123].

A variation of the peptide-mediated maturation of DCs is the forced endogenous
expression of the desired tumor-associated protein following electroporation, transfection,
or transduction. An example of these studies examined the use of antigen-loaded autolo-
gous dendritic cells in combination with traditional cytostatic monotherapy in castration-
resistant metastatic prostate cancer [124,125]. In this trial, autologous monocytes were ma-
tured into DCs by transfections with mRNAs encoding PSA, the prostate tumor-associated
antigen Prostatic Acid Phosphatase (PAP), Survivin, and hTERT. Patients were treated
either with chemotherapy alone or in combination with DCs, and data indicate that 23%
more patients showed decline in serum prostate-specific antigen (PSA) levels, a liquid
biopsy measure of the tumor progression, in response to the combinatorial autologous DC
treatment compared to chemotherapy alone [124,125].

Besides classical radio- and/or chemotherapy, more recent platforms have also been
tested in combination with DCs. For instance, autologous DCs targeting vascular antigens
in combination with the tyrosine kinase inhibitor dasatinib were tested in patients suffer-
ing from immune checkpoint inhibitor-refractory melanoma, showing nearly half of the
patients showed immunological and clinical responses [126]. In contrast, however, clinical
evaluation of the putative synergy between the anti-PD-L1 monoclonal antibody-based
immunotherapy and the use of autologous DCs in metastatic colorectal cancer patients
resulted in only modest clinical benefits, highlighting the importance of further refinements
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of clinical criteria and type of DC isolates to be applied upon the use of DCs in oncology
treatments [80].

Finally, some study results suggest that the route of administration of DC isolates
may also impact the clinical response, apparently, in a cancer-type specific manner. Indeed,
intratumoral DC injections of soft tissue sarcomas have been reported to lead to long-term
disease control [127]. The same application of pre-activated allogeneic DCs in patients
suffering from metastatic renal cell carcinoma, however, led to ambiguous results, with
some patients having increased CD8+ T cell infiltration in the tumors and others showing
no objective tumor response at all [104].

5. Discussion
Advances in anti-cancer immunotherapy have fundamentally been reforming clinical

oncology in the past decade. At the frontline of this paradigm shift is the implementation
of immune checkpoint inhibitors (ICI) into the clinical practice that aim to uplift the tumor
cell-mediated molecular blockade on the endogenous anti-tumor activity of the patient’s
immune system [128]. Despite the great results of their use in certain clinical settings, like
some hematological tumors or melanomas, the introduction of ICI therapy did not solve
the problem of human neoplasms like gliomas or pancreatic cancer [129–132]. Moreover,
even some initially responding conditions develop resistance to ICI over time, underlining
the limitations of this approach [133]. In addition, while their use in monotherapy shows
clinical benefit in just approximately 20% of the patients, the combinatorial use of ICI is often
limited due to the higher risk of severe, sometime fatal, autoimmune complications that can
occur even after months of their administration [134,135]. These challenges suggest that to
achieve the effective but safe activation of the cytotoxic T lymphocyte-mediated anti-tumor
activity in distinct clinical scenarios, complementary approaches might be implemented
in the ICI-based therapeutic regimes. These could be the APC-based approaches that are
predominantly relied on for the use of various dendritic cell preparations.

Indeed, the central role of dendritic cells in the activation of immune effector species
prompted the concept of their use in clinical applications. The relative scarcity of them
in the circulation, however, hindered the swift implementation of endogenous DCs in
clinical immunotherapy, calling for the development of in vitro solutions like the monocyte-
derived autologous DC preparations. These have been extensively studied in both adult and
pediatric clinical settings in recent years with promising, although sometimes ambiguous,
results, so their genuine efficacy is still to be determined [136–140]. One of the most
important steps in this task seems to be the standardization of protocols applied since
current clinical data are incompatible to one another due to the diversity of the application
routes, patient cohorts, and, probably most importantly, the DC preparations used in past
clinical trials.

Indeed, the more accurate identification of DC subtypes suitable for anti-cancer appli-
cations in distinct clinical settings is a critical question to be solved. Increased amounts of
plasmacytoid DCs, for instance, seem to correlate with better prognoses among pancreatic
cancer patients, while they are rather associated with worse prognosis in breast cancer,
hepatocellular cancer, melanoma, and ovarian cancer [141–145]. However, observations
that worse prognoses show association with the expression of inhibitory markers like the
lymphocyte-activation gene 3 (LAG-3), PD-1, and CTLA-4, immunosuppressive cytokines
like IL-10 and TGF-β, and the accumulation of regulatory T cells raise the question of
whether the use of ICI in these cases supports APC-mediated actions and enhances the
therapeutic effect of ex vivo-raised APCs [141,146–148]. This is a particularly interesting
question considering the observations that the long-term DC-mediated anti-tumor immu-
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nity, at least in certain clinical settings, is, apparently, rather mediated by NK- than T cell
populations upon some combinatorial treatments [149].

Moreover, while the majority of contemporary studies use in vitro-raised, monocyte-
derived DCs, some data suggest that neogenesis of DCs for therapeutic purposes is not
always the clinically most efficient solution. A randomized trial that aimed to evaluate clin-
ical and immune responses to a multipeptide-preconditioned DC preparation in melanoma
patients showed that the use of in vitro-generated DCs along with the administration of
GM-CSF produced stronger T cell responses and more clinical tumor regressions com-
pared to the standalone administration of dendritic cells [150]. The potential benefits of
the mobilization of endogenous DC populations have further been strengthened by the
report showing enhanced T cell and antibody responses upon the use of FMS-like tyrosine
kinase 3 ligand (FLT3L), a known cytokine stimulating DC progenitors, in patients with
resected melanoma [151–153]. These data indicate that more details are needed on the
environmental factors that support the genesis of DCs that can, then, effectively support
anti-tumor immunity.

Independently of their origin, the ultimate goal of the use DCs is the activation of the
anti-neoplastic immunity via antigen presentation to immunocompetent elements. One of
the major disadvantages of the mobilization of endogenous DCs is the lack of control over
their tumor antigen recognition, internalization, and presentation. To address this challenge,
various efforts have been made to expose ex vivo-raised DCs to a wide range of possible
antigens, from purified known tumor antigens to complex tumor cell lysates [102,154]. The
disadvantage of the former method is that it cannot adapt to the dynamic antigen landscape
of tumors, while the latter solution requires tumor material. These issues call for further
developments like the one recently published by Ghasemi et al., who successfully enhanced
anti-tumor immunity in melanoma mouse models using DC progenitors engineered to
internalize cancer cell-released extracellular vesicles for facilitating more effective in vivo
tumor antigen presentation without the need to know the exact tumor antigens or have
cancerous tissue to be lysed available [155].

6. Conclusions
Despite the broadly accepted practical potential of the concept of anti-cancer im-

munotherapy, its widespread clinical breakthrough is yet to fully unfold. It seems to be,
now, clear that the use of measures like immune checkpoint inhibitors or genetically engi-
neered T lymphocytes in monotherapy have limitations that shifted the focus of current
innovations toward the combinatorial use of immunotherapy tools. This fueled a number
of trials on dendritic cells resulting in variable, sometime even contradicting reports on the
clinical outcome. Reviewing published data, apparently this is due to a number of factors,
including the diversity of clinical trial concepts, difficult and often very limited patient
cohorts, or the incomparable techniques of interventions applied [79,122,156]. Considering
the heterogeneous nature of both the endogenous and ex vivo-generated dendritic cell
populations, the latter issue seems to be the key problem for the appropriate assessment of
the clinical benefit of DCs in immunotherapy. This challenge would certainly profit from
an optimized and, at least to a certain extent, standardized consensual protocol of ex vivo
manipulations including isolation, differentiation, and maturation. In addition, current
discrepancies in quality-control assessments and sterility testing in monocyte-derived
dendritic cell-based therapies underscore the critical need for harmonized manufacturing
protocols and standardized phenotypic and functional characterization panels that would
enhance reproducibility and enable more meaningful cross-trial comparisons.
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