

# Automated Detection of Unexploded Ordnance (UXO) Using Bespoke Unmanned Aerial Vehicles Equipped with Magnetometer Sensors and Virtual Reality Interface

1<sup>st</sup> Benjamin Watkinson

*School of Engineering and Computing  
 University of Lancashire  
 Preston, UK  
 BJWatkinson1@lancashire.ac.uk*

2<sup>nd</sup> Kaya Kuru

*School of Engineering and Computing  
 University of Lancashire  
 Preston, UK  
 https://orcid.org/0000-0002-4279-4166*

3<sup>rd</sup> Darren Ansell

*School of Engineering and Computing  
 University of Lancashire  
 Preston, UK  
 https://orcid.org/0000-0003-2818-3315*

4<sup>th</sup> David Jones

*School of Engineering and Computing  
 University of Lancashire  
 Preston, UK  
 DJones38@lancashire.ac.uk*

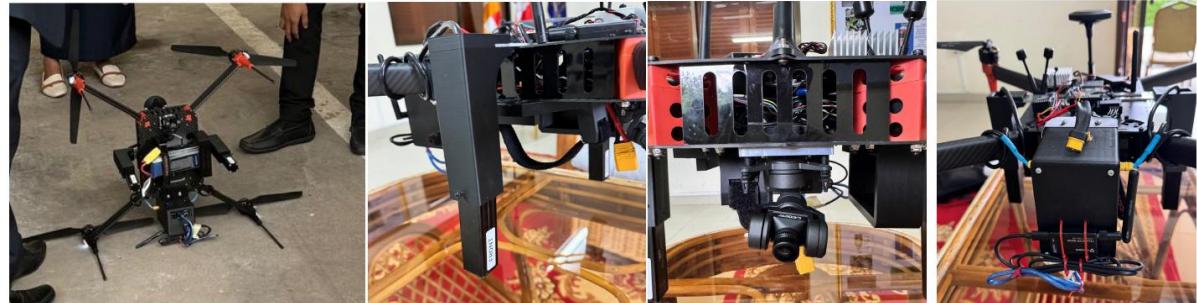
5<sup>th</sup> Alexander Thomas Morrison

*School of Engineering and Computing  
 University of Lancashire  
 Preston, UK  
 atmorrison@lancashire.ac.uk*

6<sup>th</sup> John Michael Pinder

*School of Engineering and Computing  
 University of Lancashire  
 Preston, UK  
 JMPinder@lancashire.ac.uk*

7<sup>th</sup> Ridha Hamila


*Department of Electrical Engineering  
 Qatar University  
 Doha, Qatar  
 hamila@qu.edu.qa*

8<sup>th</sup> Claire Tinker-Mill

*School of Engineering and Computing  
 University of Lancashire  
 Preston, UK  
 CLTinker-Mill@lancashire.ac.uk*

9<sup>th</sup> Robert William Walsh

*School of Engineering and Computing  
 University of Lancashire  
 Preston, UK  
 RWWalsh@lancashire.ac.uk*



(a) The UASvrUXO (bottom view). (b) With dual magnetometers. (c) With VR camera. (d) UASvrUXO (top view).

Fig. 1: The components of the UASvrUXO from multiple views.

## Abstract

The ongoing presence of unexploded ordnance (UXO) continues to impose serious humanitarian socio-economic and environmental burdens on post-conflict regions across the globe. Conventional ground-based detection methods are often slow, labour-intensive, and expose operators to substantial risk. To address these challenges, this study presents the development of a small-scale, bespoke unmanned aerial system (UAS) (Fig. 1) designed for the rapid detection of UXO using an integrated magnetometer sensor suite and a virtual reality (VR), enabled human–machine interface with intelligent automated techniques (Figs. 2 and 3). The proposed platform, the so-called UASvrUXO, combines low-altitude autonomous flight, real-time magnetic field (MF) sensing, wireless data streaming, and a human-in-the-loop (HITL) operational framework to enhance safety and operational efficiency. Extensive lab and field trials in the UK and Cambodia demonstrate the system’s ability to detect magnetic disturbances associated with metallic components of subsurface UXO while enabling remote operator supervision and intervention through a VR interface. The results indicate that the proposed approach provides a safe, flexible, and cost-effective alternative to conventional UXO survey techniques, with strong potential for humanitarian demining applications.

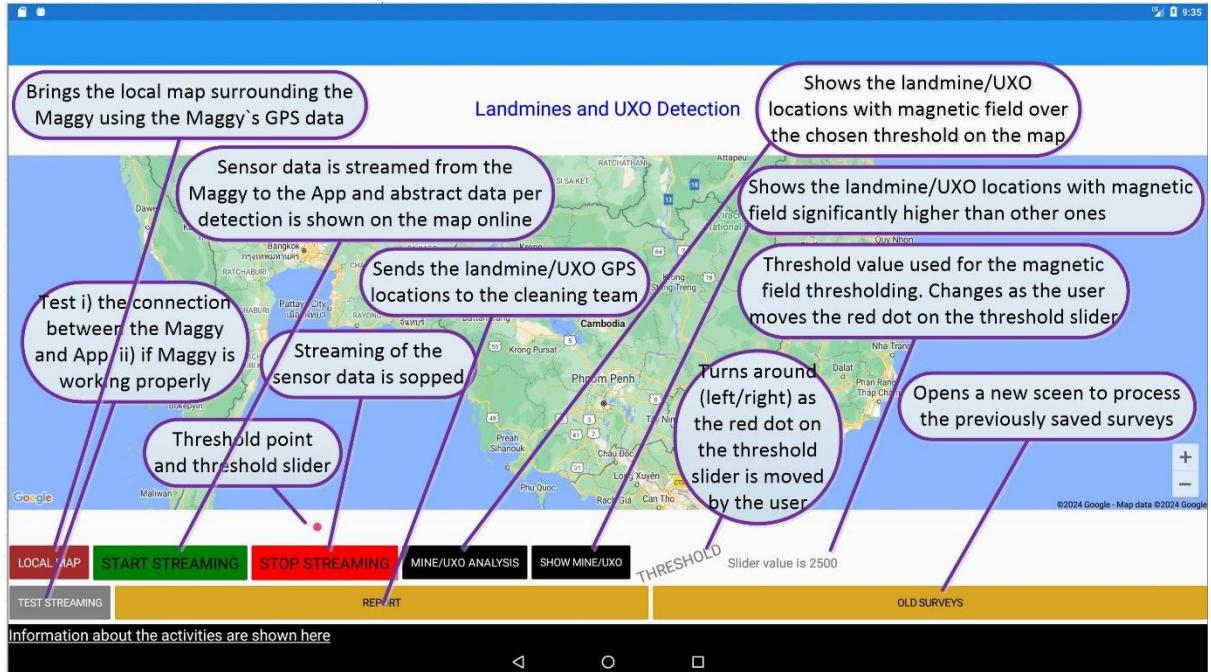



Fig. 2: Main interface of the Android tablet/smartphone application and its functions.

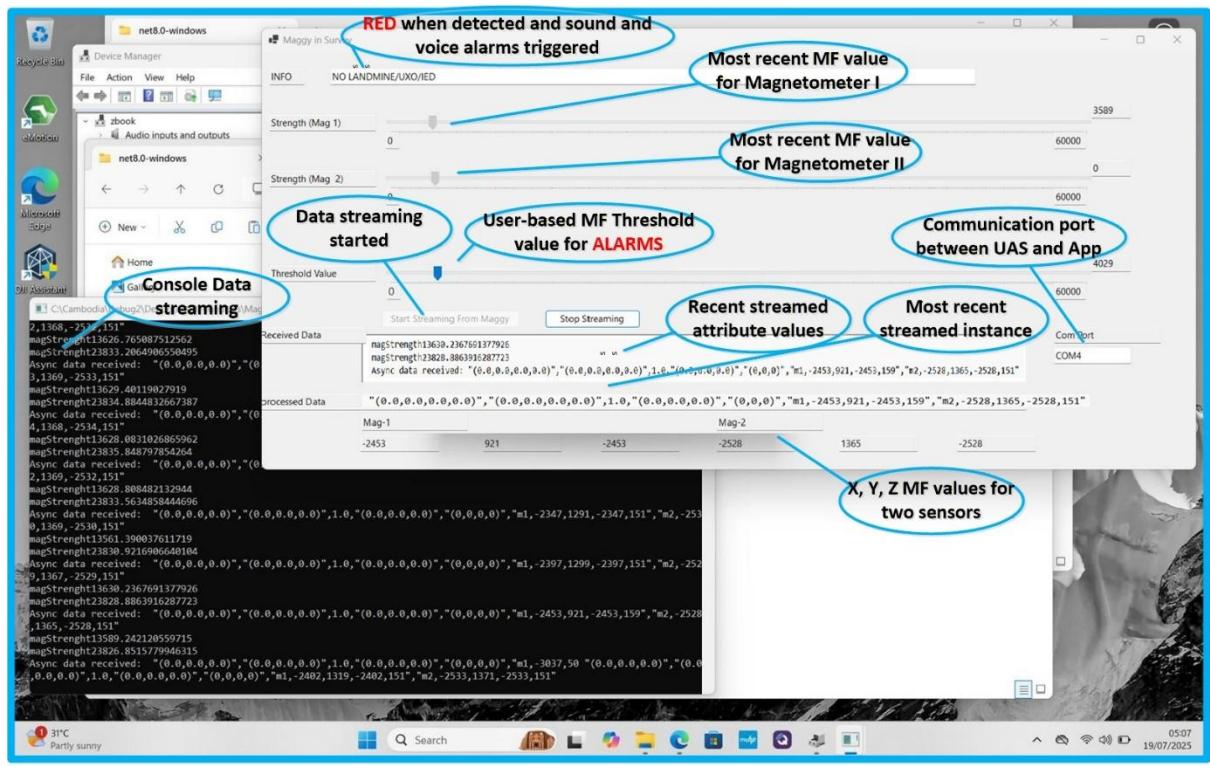



Fig. 3: Main interface of the Windows application and its basic functions.

**Index Terms**— Unexploded Ordnance (UXO), Improvised Explosive Devices (IED), landmines, Unmanned Aerial Systems (UAS), Virtual Reality (VR), magnetometers, airborne demining.

**REFERENCES**

- [1] H. Aoyama et al., "Development of mine detection robot system," *International Journal of Advanced Robotic Systems*, vol. 4, no. 2, p. 25, 2007.
- [2] S. B. i Badia et al., "A biologically based chemo-sensing uav for humanitarian demining," *Int. J. Adv. Robot. Syst.*, vol. 4, no. 2, p. 21, 2007.
- [3] ICBL-CMC, "Landmine monitor 2015," International Campaign to Ban Landmines- Cluster Munition Coalition, Canada, , 2015.
- [4] I. Makki, R. Younes, C. Francis, T. Bianchi, and M. Zucchetti, "A survey of landmine detection using hyperspectral imaging," *ISPRS Journal of Photogrammetry and Remote Sensing*, vol. 124, pp. 40 – 53, 2017.
- [5] D. Guelle et al., "South-east europe interim report field trial croatia: Itepproject systematic test and evaluation of metal detectors - stemd," BAM, Berlin, Germany, Tech. Rep., 2007.
- [6] C. Castiblanco, J. Rodriguez, I. Mondrag' on, C. Parra, and J. Colorado, *Air Drones for Explosive Landmines Detection*, 01 2014, vol. 253, pp. 107–14.
- [7] W. Rafique, D. Zheng, J. Barras, S. Joglekar, and P. Kosmas, "Predictive analysis of landmine risk," *IEEE Access*, vol. 7, pp. 107 259–69, 2019.
- [8] J. Colorado et al., "Geomapping and visual stitching to support landmine detection using a lowcost uav," *Int. J. Adv. Robot. Syst.*, vol. 12, no. 9, p. 125, 2015.
- [9] K. Kuru et al., "Analysis and optimization of unmanned aerial vehicle swarms in logistics: An intelligent delivery platform," *IEEE Access*, vol. 7, pp. 15 804–31, 2019.
- [10] K. Kuru, "Planning the future of smart cities with swarms of fully autonomous unmanned aerial vehicles using a novel framework," *IEEE Access*, vol. 9, pp. 6571–6595, 2021.
- [11] K. Kuru et al., "Intelligent airborne monitoring of livestock using autonomous uninhabited aerial vehicles," in *ECPLF2024*, 2024.
- [12] K. Kuru et al., "Toward mid-air collision-free trajectory for autonomous and pilot-controlled unmanned aerial vehicles," *IEEE Access*, vol. 11, pp. 100 323–100 342, 2023.
- [13] K. Kuru et al., "Intelligent airborne monitoring of irregularly shaped man-made marine objects using statistical machine learning techniques," *Ecological Informatics*, vol. 78, p. 102285, 2023.
- [14] ——, "Wildetect: An intelligent platform to perform airborne wildlife census automatically in the marine ecosystem using an ensemble of learning techniques and computer vision," *Expert Systems with Applications*, vol. 231, p. 120574, 2023.
- [15] L.-S. Yoo et al., "Application of a drone magnetometer system to military mine detection in the demilitarized zone," *Sensors*, vol. 21, no. 9, 2021.
- [16] L.-S. Yoo et al., "A drone fitted with a magnetometer detects landmines," *IEEE Geoscience and Remote Sensing Letters*, vol. 17, no. 12, pp. 2035–2039, 2020.
- [17] K. Kuru and W. Khan, "Novel hybrid object-based non-parametric clustering approach for grouping similar objects in specific visual domains," *Applied Soft Computing*, vol. 62, pp. 667–701, 2018.
- [18] K. Kuru et al., "Intelligent, automated, rapid, and safe landmine, improvised explosive device and unexploded ordnance detection using maggy," *IEEE Access*, vol. 12, pp. 165 736–55, 2024.
- [19] N. Walsh and W. Walsh, "Rehabilitation of landmine victims – the ultimate challenge," *Bulletin of the World Health Organization*, vol. 81, pp. 665–70, 02 2003.
- [20] M. Ihab, "Hyperspectral imaging for landmine detection," Master's Thesis, Politecnico Di Torino, XXX, 2017.
- [21] X. Zhang, J. Bolton, and P. Gader, "A new learning method for continuous hidden markov models for subsurface landmine detection in ground penetrating radar," *IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing*, vol. 7, no. 3, pp. 813–9, 2014.
- [22] C. P. Gooneratne et al., "A review of sensing technologies for landmine detection: Unmanned vehicle based approach," pp. 401–407, December 2004.
- [23] P. Gao and L. M. Collins, "A two-dimensional generalized likelihood ratio test for land mine and small unexploded ordnance detection," *Signal Processing*, vol. 80, no. 8, pp. 1669 – 1686, 2000.
- [24] M. Schindler and A. Connell, "Mine action and food security: The complexities of clearing ukraine's agricultural lands," *The Journal of Conventional Weapons Destruction*, vol. 27, no. 2, pp. 13–24, 2022.
- [25] K. Kuru and H. Yetgin, "Transformation to advanced mechatronics systems within new industrial revolution: A novel framework in automation of everything (aoe)," *IEEE Access*, vol. 7, pp. 41 395–41 415, 2019.
- [26] K. Kuru et al., "Non-invasive detection of landmines, improvised explosive devices and unexploded ordnances using bespoke unmanned aerial systems," in *2024 International Conference on Electrical and Computer Engineering Researches (ICECER)*, 2024, pp. 1–6.
- [27] K. Kuru and D. Ansell, "Vision-based remote sensing imagery datasets from benkovac landmine test site using an autonomous drone for detecting landmine locations," 2023.
- [28] L. He et al., "Adaptive multimodality sensing of landmines," *IEEE Transactions on Geoscience and Remote Sensing*, vol. 45, no. 6, pp. 1756–1774, June 2007.
- [29] V. Kovalenko et al., "A novel clutter suppression algorithm for landmine detection with gpr," *IEEE Trans. Geosci. Remote Sens.*, vol. 45, no. 11, pp. 3740–51, 2007.
- [30] Y. Sun et al., "Adaptive learning approach to landmine detection," *IEEE Transactions on Aerospace and Electronic Systems*, vol. 41, no. 3, pp. 973–985, July 2005.
- [31] A. Nikulin, T. de Smet, J. Baur, W. Frazer, and J. Abramowitz, "Detection and identification of remnant pfm-1 "butterfly mines" with a uav-based thermal-imaging protocol," *Remote Sensing*, vol. 10, no. 11, p. 1672, Oct 2018.
- [32] Jirigalatu, V. Krishna, E. Lima Sim˜oes da Silva, and A. Dossing, "Experiments on magnetic interference for a portable airborne magnetometry system using a hybrid unmanned aerial vehicle (uav)," *Geosci. Instrum. Methods Data Syst.*, vol. 10, no. 1, pp. 25–34, 2021.
- [33] L. E. Tuck, C. Samson, J. Lalibert'e, and M. Cunningham, "Magnetic interference mapping of four types of unmanned aircraft systems intended for aeromagnetic surveying," *Geoscientific Instrumentation, Methods and Data Systems*, vol. 10, no. 1, pp. 101–112, 2021.
- [34] K. Kuru et al., "Treatment of Nocturnal Enuresis Using Miniaturized Smart Mechatronics With Artificial Intelligence," in *IEEE Journal of Translational Engineering in Health and Medicine*, vol. 12, pp. 204–214, 2024.
- [35] K. Kuru et al., "Feasibility study of intelligent autonomous determination of the bladder voiding need to treat bedwetting using ultrasound and smartphone ML techniques: Intelligent autonomous treatment of bedwetting," *Medical & biological engineering & computing* 57 (2019): 1079-1097.
- [36] K. Kuru et al., "Intelligent autonomous treatment of bedwetting using non-invasive wearable advanced mechatronics systems and MEMS sensors: Intelligent autonomous bladder monitoring to treat NE," *Medical & biological engineering & computing* 58 (2020): 943-965.
- [37] K. Kuru et al., "Smart Wearable Device for Nocturnal Enuresis," in *2023 IEEE EMBS Special Topic Conference on Data Science and Engineering in Healthcare, Medicine and Biology*, pp. 95–96. IEEE, 2023.
- [38] D. Ansell et al., "Mypad: A pre-void alarm device for the treatment of nocturnal enuresis (ne)," (2019).
- [39] K. Kuru et al., "MyPAD: An Intelligent Wearable Medical Device to Treat Incontinence," in *IEEE EMBS International Conference on Data Science and Engineering in Healthcare, Medicine & Biology*, 7th–9th December. 2023.
- [40] D. Ansell et al., "Methods and Apparatuses for Estimating Bladder Status," U.S. Patent Application 17/875,004, filed May 25, 2023.
- [41] D. Ansell et al., "Method and apparatus for estimating bladder status," JP2018528041A, 2018.
- [42] D. Ansell et al., "Method and apparatus for estimating bladder condition," CN201680053526.3A, 2018.
- [43] K. Kuru et al., "Toward Mid-Air Collision-Free Trajectory for Autonomous and Pilot-Controlled Unmanned Aerial Vehicles," in *IEEE Access*, vol. 11, pp. 100323-100342, 2023, doi: 10.1109/ACCESS.2023.3314504.
- [44] K. Kuru, et al., "Aitl-wing-hitl: Telemanipulation of autonomous drones using digital twins of aerial traffic interfaced with wing." *Robotics and Autonomous Systems*, 11, 2026.
- [45] K. Kuru et al., "Technical Report: Non-Invasive Detection of Explosives Using Bespoke Unmanned Aerial Systems." (2025).
- [46] K. Kuru et al., "Automated Airborne Ordnance Detection Using Data Fusion of Magnetometer and Ground Penetrating Radar." *2025 Interdisciplinary Conference on Electrics and Computer (INTCEC)*. Institute of Electrical and Electronics Engineers (IEEE), 2025.
- [47] K. Kuru et al., "TECHNICAL REPORT: Automated Airborne Ordnance Detection Via Data Fusion of Ground Penetrating Radar and Magnetometers." (2025).
- [48] K. Kuru and W. Khan, "A Framework for the Synergistic Integration of Fully Autonomous Ground Vehicles With Smart City," in *IEEE Access*, vol. 9, pp. 923-948, 2021, doi: 10.1109/ACCESS.2020.3046999.
- [49] K. Kuru et al., "Platform to Test and Evaluate Human-in-the-Loop Telemanipulation Schemes for Autonomous Unmanned Aerial Systems," *2024 20th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA)*, Genova, Italy, 2024, pp. 1-8, doi: 10.1109/MESA61532.2024.10704856.
- [50] K. Kuru et al., "IoTfauav: Intelligent remote monitoring of livestock in large farms using autonomous unmanned aerial vehicles with vision-based sensors." *Biosystems Engineering* (2024).
- [51] K. Kuru et al., "Detecting and Clearing Explosive Devices (ladmines/UXO/IDE) Using Small-Scale Customised Drone-Part I." *Coordinates* 21.2 (2025): 9-20.
- [52] K. Kuru et al., "Detecting and Clearing Explosive Devices (ladmines/UXO/IDE) Using Small-Scale Customised Drone-Part II." *Coordinates* 21.3 (2025): 5-15.
- [53] K. Kuru, "Conceptualisation of Human-on-the-Loop Haptic Teleoperation With Fully Autonomous Self-Driving Vehicles in the Urban Environment," in *IEEE Open Journal of Intelligent Transportation Systems*, vol. 2, pp. 448-469, 2021, doi: 10.1109/OJITS.2021.3132725.
- [54] K. Kuru, "Human-in-the-loop telemanipulation schemes for autonomous unmanned aerial systems," in *2024 4th IEEE Interdisciplinary Conference on Electrics and Computer (INTCEC)*, 2024, pp. 1–6.
- [55] K. Kuru, "Management of geo-distributed intelligence: Deep insight as a service (DINSaaS) on forged cloud platforms (FCP)," *Journal of Parallel and Distributed Computing*, vol. 149, pp. 103–118, Mar. 2021.
- [56] K. Kuru, "Technical report: Analysis of intervention modes in human-in-the-loop (hitl) teleoperation with autonomous unmanned aerial systems." (2024).
- [57] O. Maidanyk, Y. Meleshko, and S. Shymko, "Study of influence of quadrocopter design and settings on quality of its work during monitoring of ground objects," *Adv. Inf. Syst.*, vol. 5, no. 4, p. 64–9, 2021