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This paper proposes computationally tractable methods for selecting the appropriate spatial weighting matrix in the context of
a spatial quantile regression model. This selection is a notoriously difficult problem even in linear spatial models and is even
more difficult in a quantile regression setup. The proposal is illustrated by an empirical example and manages to produce tractable
models. One important feature of the proposed methodology is that by allowing different degrees and forms of spatial dependence
across quantiles it further relaxes the usual quantile restriction attributable to the linear quantile regression. In this way we can
obtain a more robust, with regard to potential functional misspecification, model, but nevertheless preserve the parametric rate of
convergence and the established inferential apparatus associated with the linear quantile regression approach.

1. The Spatial Quantile Regression Model

The spatial quantile regression model [1] is a straightforward
quantile regression generalisation of the popular, in spatial
econometrics, linear spatial lag model. More specifically it
can be written as

𝑦 = 𝜆 (𝜏)𝑊𝑦 + 𝑋𝛽 (𝜏) + 𝑢, (1)

where 𝑊𝑦 is a spatially lagged dependent variable, specified
via a predetermined spatial weighting matrix 𝑊, 𝑋 is the
design matrix containing the independent variables (covari-
ates), and 𝑢 is a residuals vector. Here we only have one
spatially lagged dependent variable but this is not an essential
assumption, and more than one spatial weighting matrix can
be easily incorporated. This representation is similar to the
linear spatial lag regression model, but here coefficients are
allowed to vary with the quantile, rather than being assumed
fixed.

This model has some attractive properties. First, the
original motivation for Kostov’s [1] proposal is to alleviate
the potential bias arising from inappropriate functional form
assumptions in a spatial model. In simple terms the underly-
ing logic is as follows. Omitting spatial dependence typically
introduces estimation bias in the presence of spatial lag

dependence when the wrong functional form specification is
employed. Hence a natural way to circumvent the problem is
to estimate the underlying function nonparametrically. The
sample sizes used in many empirical studies are however
often too small for efficient application of nonparametric
methods. Semiparametric methods could then be used to
alleviate the problem.The linear quantile regression is such a
semi-parametric method. Although it cannot be guaranteed
to entirely eliminate the adverse effects of functional form
assumptions, such methods can greatly reduce them. In
particular Kostov [1] argues that for a typical hedonic model
the (linear) quantile restriction is appropriate.

A major advantage of the quantile regression approach is
the opportunity to estimate a flexible semiparametric model,
which is nevertheless characterised by parametric rate of
convergence, thus making it suitable for empirical analysis in
small sample cases. Furthermore a well-developed set of tools
for efficient inference is available (see [1] for details).

Spatial modelling has however been focused mostly on
estimation issues. For example, Kostov [1] assumes that the
exact formof the process generating the spatial dependence is
given.This is a typical assumption of an “estimation focused”
approach to spatial modelling in that the spatial weighting
matrix used to specify the model is known. The spatial
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weighting matrix is however a part of the specification pro-
cess. It needs to be prespecified. There could be cases where
the underlying theoretical model provides some guidance
but more often than not this is not the case. Consequently
in empirical applications of spatial models the selection of
spatial weight matrices is characterised by a great deal of
arbitrariness.This arbitrariness presents a serious problem to
the inference in such models since estimation results have
been shown to critically depend on the choice of spatial
weighting matrix [2–4]. Even more importantly, there is an
interplay between spatial weighting matrix and functional
form choice. Using the wrong spatial weighting matrix has
broadly speaking the same implications as ignoring existing
spatial dependence. Therefore functional form and spatial
weighting matrix specification have to be considered simul-
taneously. The problem is not as severe in nonparametric
models, becausemost nonparametric estimationmethods are
typically consistent even in the presence of spatial depen-
dence. The wrong spatial weighting matrix however would
still introduce inefficiency in the non-parametric estimates,
which with smaller samples can seriously impede inference.
In a parametric setup, the wrong spatial weighting matrix
introduces bias even when the right functional form is used.

2. Selection of Spatial Weighting Matrix

Owing to these considerations it would be advantageous to
have methods to choose an appropriate spatial weighting
matrix. Selecting the “right” spatial weighting matrix can
serve twofold purpose. First, it will increase the efficiency of
the model estimates, as discussed previously. Second, when
the nature of the process generating spatial dependence is of
particular interest (e.g., in social interactionmodels) the form
of the spatial weighting matrices consistent with that data
generation process becomes a major inferential problem. In
such cases we need to find the appropriate spatial weighting
matrix, since this is the explicit subject of the research
problem. In this paper we consider the issue in a spatial
quantile regression framework.

In the following we will briefly review some approaches
designed to reduce the arbitrariness of spatial weighting
matrix choice (mostly) in linear models.Then we will discuss
the possible extensions to the spatial quantile regression.
The approach taken in this paper falls in the framework
of selecting the spatial weighting matrix either implicitly or
explicitly from a pre-defined set of candidates.

Holloway and Lapar [5] used a Bayesian marginal like-
lihood approach to select a neighbourhood definition (cut-
off points for the neighbourhood), but one can consider
their approach as a general model selection approach, which
could be applied to any other set of competing models.
A particularly active strand of research is concerned with
Bayesian model averaging (BMA) approaches. LeSage and
Parent [6] proposed a BMA procedure for spatial model
which incorporates the uncertainty about the correct spatial
weighting matrix. LeSage and Fischer [7] extended the latter
approach into an MC3 (Markov Chan Monte Carlo Model
Composition) method to select an inverse distance nearest
neighbour type of spatial weighting matrix for the linear

spatial model. Crespo-Cuaresma and Feldkircher [8] further
extend this procedure to deal with different types of spatial
weighting matrices by introducing Bayesian model averaging
inference conditional on a given spatial weighting matrix.
Crespo-Cuaresma and Feldkircher [8] use spatial filtering
to resolve the endogeneity issue and in this way focus on
the regression part of the model rather than on the spatial
dependence itself. The approach above implicitly assumes
that the spatial dependence can be characterised by a single
spatial weighting matrix. This assumption can be relaxed
but at a considerable computational cost. Eicher et al. [9]
proposed instrumental variables Bayesian model averaging
procedure which is essentially a hierarchical Bayesian coun-
terpart to the frequentist two-step estimation that accounts
formodel uncertainty in both steps. Although Eicher et al. [9]
do not deal with spatial dependence, but only with the more
general issue of endogeneity, since spatial lag dependence is a
particular type of endogeneity, their approach can be readily
applied to spatial lag models.

Finally from a non-Bayesian point of view Kostov [10]
suggested a two-step procedure for selecting spatial weighting
matrix that is applicable to a wide range of prespecified candi-
dates. This procedure is motivated by considerations specific
to spatial models (and the proposed computational algo-
rithms are tuned for this purpose), but otherwise it deals with
the endogeneity problem in the same way as Eicher et al. [9].

3. Proposal Outline

This paper proposes extending the methodology adopted in
Kostov [10] to a quantile regression setting. Inwhat followswe
will first briefly explain the previously mentioned approach.
We will then highlight the particularities of the extension of
this procedure to quantile regression models. Furthermore
we will briefly comment on the different alternative options
and the reasons for the specific choices we adopt. Our
contribution is twofold. First we adapt the approach of Kostov
[10] to a (linear) quantile regression model. Second, since as
we will explain later, the original approach has a prediction
focus, we further expand it to focus on structure discovery
(i.e., identifying the “true sparsity pattern”).

Kostov’s [10] approach is based on Kelejian and Prucha’s
[11] two-stage least squares method to estimate spatial mod-
els. In this method, spatially lagged independent variables are
used as instruments for the spatially lagged dependent vari-
able.The first step (instrumentation) is a least squares regres-
sion of the lagged dependent variable on the lagged inde-
pendent variables. In the second step, the fitted values from
the first stage regression replace the original endogenous vari-
able in the estimation of the model’s coefficients. Kostov [10]
retains the first step of this procedure (which projects the
spatially lagged dependent variable in the vector space of
the instruments). He however suggests implementing this
first step for a number of different spatial weighting matrices
resulting in an augmented second stage model that includes
a large number of transformed, in the first step, variables
(instead of the original spatial weighting matrices) to be con-
sidered. In this way the problem of choice of spatial weight-
ing matrix becomes a variable selection problem (amongst
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the previously mentioned transformed variables). The other
interesting feature of Kostov’s [10] paper is the application of
a component-wise boosting algorithm as a variable selection
method in the second step. Any other variable selection
method could be used but Kostov’s [10] choice is mainly
motivated by computational considerations in dealing with
large number of potential alternatives.

In a nutshell the approach of Kostov [10] amounts to
transforming the spatial weighting matrix selection problem
into a high-dimensional (due to the potentially large number
of alternatives) variable selection problem, for which “stan-
dard” methods could be applied.The crucial point is Kostov’s
[10] approach to establish equivalence between the two-stage
spatial least squares method and the proposed component-
wise boosting alternative. Therefore in order to extend the
same logic to a spatial quantile regression model we need to
find a variable selection equivalent to a quantile regression
estimationmethod.Wewill deal with these two issues in turn.

The first issue is the estimation method for spatial quan-
tile regression. We are aware of two main approaches able to
consistently estimate such models. The first is the application
of Zietz et al. [12] who use the results of Kim and Muller [13]
for quantile regression estimation under endogeneity. The
other approach is presented inKostov [1] who builds upon the
methods developed by Chernozhukov andHansen [14, 15]. In
Kostov’s [1] application one minimises a matrix norm over a
range of values for the spatial dependence parameter. This is
convenient when there is a single spatial weighting matrix.
Withmany candidates however this would involve suchmin-
imisation over amultidimensional grid, whichmakes such an
approach prohibitively expensive in terms of computational
requirements, particularly when the number of potential
spatial weighting matrices is large. Alternatively the methods
developed in Chernozhukov and Hong [16] could be used to
estimate such a model, but this will still involve considerable
computational costs, and we will not pursue this option
here. Furthermore, the main appeal of this procedure over
the two-stage quantile regression is the availability of robust
inference tools, since it is computationally more demanding
(see [1] for detailed comparison). Here we are interested in
selecting the model specification, rather than estimating a
prespecified model. With view to this simpler methods are
preferable. Once the final model specification is established
and inference is themain focus, any estimationmethod could
be applied, depending on the purpose of the analysis.

TheZietz et al. [12] approach on the other hand represents
a simple two-stage quantile regression. As such it is very
similar to the spatial two-stage least squares approach of
Kelejian and Prucha [11], which is being used in Kostov [10].
Therefore using the theoretical results of Kim andMuller [13]
we can extend their two-stage quantile regression estimator
to include variable selection, using essentially the same
arguments as Kostov [10]. Such an extension however comes
at a cost.Theprevious approachuses two consecutive quantile
regression estimators defined at the same quantiles at both
steps. In the context of selecting spatial weighting matrices
the first stepwould carry considerable computational burden,
mainly because of the large number of alternatives to be
considered.Thismeans that the computational burdenwill be

increased since separate first step estimationwould need to be
carried over each quantile that is to be considered. It would
therefore have been very useful if one could have replaced the
first step with, for example, least squares estimation, because
this would then only need to be carried once.There have been
empirical applications of two-stage estimation where the
estimators used in the first and the second stage are different.
For example, Arias et al. [17] and Garcia et al. [18] used least
squares in the first step followed by quantile regression in the
second. Unfortunately in general settings such an approach
could induce asymptotic bias in the overall estimator (see
[13] for details). In simple terms the robustness of two-
stage estimators could be lost when the first stage applies
an estimator that is not robust. Owing to this we consider
here only estimators that employ the same type of estimator
for both steps. This means that we will have to use quantile
regression in both steps. The use of quantile regression for
each estimated quantile greatly increases the computational
costs of the method compared to the linear model.

The proposal of Kostov [10] translates into using vari-
able selection algorithm in the second stage estimation. As
discussed previously this variable selection algorithm needs
to be the same type as the one in the original two-stage
estimator. Therefore we need a quantile regression variable
selection method.There are several possibilities for the latter.
First, the component-wise boosting approach used in Kostov
[10] can be adapted to do variable selection in a quantile
regression setting. At this end Fenske et al. [19] demonstrated
that using the check function used to define the quantile
regression as an empirical loss function leads to an alternative
quantile regression estimator. Using this approach looks like a
natural extension to the logic of Kostov [10], particularly since
he doesmention the potential use of alternative empirical risk
functions.

Another option is to use regularised (i.e., penalised)
quantile regression to select covariates. Two of the most pop-
ular regularisation approaches, namely the least absolute
shrinkage and selection operator (lasso) of Tibshirani [20]
and the smoothed clipped absolute deviations (SCAD)
method of Fan and Li [21] have already been considered
in quantile regression setting (see [22–24]. In general these
papers have established the consistency of such regularised
estimators for quantile regression problems, subject to appro-
priately chosen “optimal” penalty parameter(s).

So, a straightforward generalisation of the approach of
Kostov [10] to quantile regression involves a similar two-
step procedure. In the first step a number of quantile regres-
sions are implemented (for each candidate spatial weighting
matrix) regressing the spatially lagged dependent variable on
the spatially lagged independent variables. The fitted values
from the first step are then used as additional explanatory
variables (thus augmenting the original set of covariates).
This second step is estimated using variable selection meth-
ods to effectively select the appropriate spatial weightingmat-
rix.

There are several important features of such implemen-
tation. First, since it is based on a consistent two-stage esti-
mator (the two-stage quantile regression estimator of Kim
and Muller [13]) it should retain the consistency properties
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of the original estimator as long as the second step is also
consistent. As already discussed the price we have to pay
for maintaining such consistency is the need to estimate
separate first step quantile regression for each quantile con-
sidered. Second, similarly to other the two-step procedures,
standard errors, or indeed any inference based solely on the
second step estimation would be invalid. One could consider
asymptotic inference based on the results of Kim and Muller
[13]. Alternatively the overall (two-step) estimator could be
bootstrapped. Note however that due to the computational
costs of the first step (details of which we present later on)
such an implementation would be prohibitively expensive.
The best option is to follow the suggestion of Kostov [10] and
only use the proposed estimator to select the structure of the
model, which can then be estimated using standardmethods.

4. Variable Selection Step

From now on we will take the first (instrumentation) step
as given and will focus entirely on the variable selection
step. We will argue that in order to obtain efficient inference
it is desirable that in the second step a variable selection
procedure characterised by the so-called oracle property is
implemented. In simple words if an estimator possesses the
oracle property this means that the asymptotic distribution
of the obtained estimates is the same as this of the “oracle
estimator,” that is, an estimator constructed from a priori
knowledge of which coefficients should be zero. Therefore
estimators possessing the oracle property can be used for both
variable selection and inference. Here we deviate consider-
ably from Kostov [10] who claimed that since the proposed
procedure is only to be used for selecting the model struc-
ture, the oracle property in not essential. Actually the brief
discussion provided in Kostov [10] implies (without explicitly
mentioning it) that instead of consistency, the weaker condi-
tion of persistence [25] would be sufficient. While the oracle
property aims at minimising prediction error, the persistence
tries to avoid wrongly excluding significant variables.

Therefore using persistent estimator implicitly includes a
measure of uncertainty very much in the spirit of Bayesian
methods. The actual aim in many typical applications how-
ever would be to discover the “true sparsity pattern.” For such
purposes a combination of consistent and oracle estimators
have been shown to be able to discover the underlying
structure and retain the oracle property. This idea has been
formalised and theoretically developed in Fan and Lv [26].
Their methodology consists of a screening step (using a
consistent variable selection method) followed by an oracle
method (estimation step) to produce the final model. Even
if both methods used in such a combination do not possess
the oracle property the overall procedure will gain from
improved convergence rates and can still be consistent subject
to some additional conditions (see e.g., [27] for detailed
discussion and simulation evidence). Here however we prefer
to avoid imposing such additional conditions and would
prefer applying a method possessing the oracle property in
the estimation step.

An additional advantage of combining screening and esti-
mation steps is the reduction in computational requirements

and improved convergence rates. The convergence rates of
estimators possessing the oracle property depend on the
relative (to the complexity of the employed model) sample
size. Owing to this it would be desirable if the size of the
initial model is reduced. Applying an estimator possessing
the oracle property to such a reducedmodel will improve this
estimator’s efficiency (compared to the case when it is applied
directly to the larger, unrestricted model). In addition to
the theoretical efficiency gain, this could bring considerable
practical gains in greatly reducing the computational require-
ments of the selection algorithm(s) involved. Such a reduced
model can be produced by using any consistent estimator
(i.e., an estimator that (asymptotically) retains the important
variables (i.e., variables with nonzero coefficients)). In simple
terms the combination of screening and estimation steps
reduces the false positive discovery rate (i.e., falsely retaining
unimportant variables) and hence is tuned to structure dis-
covery. Retaining such unimportant variables often improves
prediction accuracy or uncertainty measures and hence can
result in larger models (see [27], for a detailed discussion).

So we propose applying a combination of screening and
estimation steps to the already transformed model. Such a
proposal can be viewed as unnecessary complication to an
already involved procedure. Nevertheless it has significant
advantages. First, as we will show, it nests within itself the
straightforward implementation of theKostov’s [10] proposal.
Second since the combination of screening and estimation
steps is equivalent to a single step estimation, but has better
convergence rates, one can potentially further reduce the
set of potential spatial weighting matrices by maintaining
the consistency of the overall estimation procedure. The
previously mentioned equivalency means that the overall
proposed spatial model estimator which comprises three
distinct steps (instrumentation, screening, and estimation) is
still equivalent to the two-step method used to motivate it
(i.e., the two-step quantile regression).

As discussed previously using either a boosting or reg-
ularisation approach can be viewed as different implemen-
tations of the same idea, namely, implementing a variable
selection step in a two-stage quantile regression estimator. In
order to ascertain the relative merits of these two alternatives
let us first consider their relative computational requirements.
The boosting approach is considerably less intensive in terms
of computation. It has another important, in the context
of spatial weighting matrix selection, advantage over the
regularisation approach. Since the component-wise boosting
approach processes the candidate variables one by one (see
the next section for description of the component-wise boost-
ing algorithm), high degrees of correlation amongst variables
(and therefore singularity issues due to a highly nonorthogo-
nal design) do not present significant problem to effectively
reduce the set of alternatives. The nature of the spatial
weighting matrix selection problem could involve simulta-
neous consideration of numerically very similar alternatives,
which could be infeasible in the regularisation approach.
Furthermore although extensively studied and shown to be
consistent it is unclear whether the boosting approach pos-
sesses the oracle property. It is therefore desirable to imple-
ment the component-wise boosting as a screening method.
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Then an oracle property regularisation approach can be
implemented in the estimation step. Note that if we stop
after the screening step, we obtain a straightforward quantile
regression generalisation of the approach of Kostov [10].

Due to the fact that component-wise boosting is much
faster than direct implementation of any regularisation
approach, the previous strategy achieves considerable reduc-
tion in the computational requirements andmakes the overall
approach computationally feasible. Note that in addition
to the computational requirements, direct application of a
regularisation estimator could be infeasible in many spatial
problems, simply because of the nature of the spatial weight-
ing matrices to be considered. When a large number of such
matrices is considered (as in [10]), the resulting transformed
variables could be quite similar numerically.This could result
in singularities that would prevent direct application of a
regularised quantile regression estimation of the transformed
problem.

In addition to the approach outlined previously we will
also consider adopting the stability selection approach of
Meinshausen and Bühlmann [28] to the boosting estimation.
Strictly speaking stability selection is not an estimator per se,
but application of a combination of subsamplings (although
other forms of bootstrap could be used) and a variable
selection algorithm. It provides a measure of how often a
variable is selected, and therefore by using a threshold only
persistent variables can be selected.

5. Technical Implementation Details

The screening step will use component-wise boosting estima-
tion of quantile regression, following Fenske et al. [19]. Con-
sider the general linear quantile regression model:

𝑦 = 𝜂 (𝑋) + 𝜉 = 𝛽
0
(𝜏) +

𝑘

∑

𝑗=1

𝛽
𝑗
(𝜏) 𝑥
𝑗
+ 𝜉, (2)

where 𝑦 and 𝑥
𝑗
are the dependent and independent variables

(the latter collected in the matrix 𝑋) and 𝜏 is the quantile of
interest.

Boosting can be viewed as a functional gradient descent
method that minimises the constrained empirical risk func-
tion (1/𝑛)∑

𝑛

𝑖=1
𝐿(𝑦
𝑖
, 𝜂(𝑋)), where 𝐿(⋅) is some suitable loss

function. The 𝜏th quantile regression is obtained when the
so-called check function is used as empirical risk:

𝐿
𝜏
(𝑦
𝑖
, 𝜂 (𝑋)) = 𝜌

𝜏
(𝑦
𝑖
− 𝜂 (𝑋)) ,

𝜌
𝜏
(𝑢) = {

𝑢𝜏 𝑢 ≥ 0

𝑢 (𝜏 − 1) 𝑢 < 0.

(3)

In the a notationmentioned we intentionally use the gen-
eral additive predictor 𝜂(⋅) since it allows for generalisation
of the approach to nonlinear and indeed nonparametric
versions of the quantile regression problem. Since the check
function is used to define the conventional linear quantile
regression estimator of Koenker and Basett [29], using it as an
empirical risk function solves an equivalent optimisation pro-
blem.

The boosting algorithm is initialised by an initial value
for 𝜂, for example, 𝜂

0
. This implies an initial evaluation for

the underlying function 𝑓
0
. In this case all underlying func-

tions will be linear. Typically one starts with an offset set to
the unconditional mean of the response variable, but in the
quantile regression the unconditional median is used instead
(see [19] for details and justification of this choice).

Let 𝑔
𝑗,𝑚

and 𝑓
𝑗,𝑚

denote the evaluations of the corre-
sponding learners (in this case linear functions) for compo-
nent 𝑗 at iteration 𝑚. 𝑔

𝑗,𝑚
represents the learner (i.e., linear

function) fitted to the current “residuals” while 𝑓
𝑗,𝑚

is the
“global” evaluation of the same function (see the following
algorithm).

Then the component-wise boosting algorithm iteratively
goes through the following steps.

(1) Compute the negative gradient of the empirical risk
function evaluated at the current function estimate
(𝜂
𝑚
for every step from𝑚 = 1, . . .):

𝑢
𝑖
= −

𝜕𝜌
𝜏
(𝑦
𝑖
− 𝜂 (𝑥

𝑖
))

𝜕𝜂

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜂=𝜂
𝑚−1
(𝑥
𝑖
)

for 𝑖 = 1, 2, . . . , 𝑛. (4)

(2) Use the previous calculated negative gradients to fit
the underlying function 𝑔

𝑗,𝑚
(⋅) for each dependent

variable (component). Here 𝑔
𝑗,𝑚

(⋅) is fitted to the cur-
rent residuals value of the used function at iteration
𝑚.
Find the best fitting base learner 𝑗

∗
=

argmin
1≤𝑗≤𝑘

∑
𝑛

𝑖=1
(𝑢
𝑖
− 𝛽
𝑗,𝑚

𝑥
𝑖
)
2

.
(3) Update the best fitting base learner for a given step

size 𝜈:

𝑓
𝑗
∗
,𝑚

= 𝑓
𝑗
∗
,𝑚−1

+ 𝜈𝑔
𝑗
∗
,𝑚 (⋅)

𝑓
𝑗,𝑚

= 𝑓
𝑗,𝑚−1

for ∀𝑗 ̸= 𝑗
∗

(5)

The algorithm iterates between steps (1 and 3) until a
maximum number of iterations are reached. The algorithm
described above needs an updating step 𝜈. In this application
we will use 𝜈 = 0.3. See Kostov [10] and references therein
for a discussion about this choice and demonstration that
the final results are insensitive to a wide range of choices.
The other element of interest is the criterion used to decide
which is the “best fitting” component in step (2). Here we
use 𝐿2 norm (see the aforementioned), but other choices are
also possible. The greatest advantage of 𝐿2 norm is that the
base learners can be updated by simple least squares fitting,
which is computationally fast and convenient (see [19]). In
this particular case, since we use linear quantile regression,
updating the base learners amounts to applying univariate
least squares.

A regularised linear quantile regression estimator can be
formally defined as

min
𝛽
𝜏

𝑛

∑

𝑖=1

𝜌
𝜏
(𝑦
𝑖
− 𝑋
𝑇
𝛽
𝜏
) + 𝜆𝐽 (𝑋

𝑇
𝛽
𝜏
) , (6)
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where 𝛽
𝜏
is the vector of the linear coefficients pertaining to

the covariates, that is, 𝛽
𝜏
= (𝛽
1𝜏
, 𝛽
2𝜏
, . . . , 𝛽

𝑑𝜏
)
𝑇, and 𝐽(⋅) is a

given penalty function.
The shrinkage effect is determined by the positive penalty

parameter 𝜆, that needs to be chosen according to some
criterion (typically information criterion or cross-validation).

The SCAD penalty is symmetric around the origin (i.e.,
𝜃 = 0). It is defined as follows:

𝑝
𝜆
(𝜃) =

{{{{{{{{

{{{{{{{{

{

𝜆 |𝜃| if 0 ≤ |𝜃| ≤ 𝜆

−
𝜃
2
− 2𝑎𝜆 |𝜃| + 𝜆

2

2𝑎 − 1
if 𝜆 < |𝜃| < 𝑎𝜆

(𝑎 + 1) 𝜆
2

2
if 𝑎𝜆 ≤ 𝜃,

(7)

where 𝑎 > 2 and𝜆 > 0 are tuning parameters. In this paperwe
will set 𝑎 = 3.7, following Zou and Yuan [30], which would
help us avoid searching for optimal tuning parameters over
two-dimensional grid and for this reason suppress 𝑎 in the
notation previous.

The SCAD estimator can then be formally defined as

min
𝛽
𝜏

𝑛

∑

𝑖=1

𝜌
𝜏
(𝑦
𝑖
− 𝑋
𝑇
𝛽
𝜏
) +

𝑑

∑

𝑗=1

𝑝
𝜆
(𝛽
𝑗𝜏
) . (8)

Straightforward implementation of regularised estima-
tors is however computationally demanding. The main issue
is that expensive repeated optimisation calls are needed to
select the regularisation parameter(s) typically via some form
of cross-validation. Furthermore the nonconvex nature of
the SCAD optimisation problem can lead to considerable
increase of the computation time at some quantiles, partic-
ularly when larger number of spatial weighting matrices are
retained by the screening step, which is consistent with the
results of Wu and Liu [23]. In order to select the optimal
amount of regularisation we need some criterion. Given
the computational costs of SCAD estimation, information
criteria would be preferable. Here we will employ the g-
prior Minimum Description Length (gMDL) criterion used
in Kostov’s [10] boosting application. This choice is however
dictated mostly by computational reasons, and up to the best
of our knowledge there is no evidence (such as simulation
studies) to ascertain the performance of this criterion in
empirical studies of nonlinear models.

The adaptive lasso estimator for the linear quantile
regression can be defined as a weighted lasso problem in the
following way:

min
𝛽
𝜏

𝑛

∑

𝑖=1

𝜌
𝜏
(𝑦
𝑖
− 𝑋
𝑇
𝛽
𝜏
) + 𝜆

𝑑

∑

𝑗=1

𝑤
𝑗

󵄨󵄨󵄨󵄨󵄨
𝛽
𝑗𝜏

󵄨󵄨󵄨󵄨󵄨
, (9)

where | ⋅ | denotes the 𝐿1 norm, while the weights are given by
𝑤
𝑗
= 1/|𝛽

𝑗𝜏
|
𝛾

for some 𝛾 > 0, where 𝛽
𝑗𝜏
are initial estimates

for the parameters. In this case 𝛽
𝑗𝜏

will be obtained by an
unpenalised quantile regression. The conventional lasso esti-
mator is a particular case when all weights are equal, rather
than adaptively chosen.

The adaptive lasso when implemented in a quantile
regression setting retains the oracle property [30] similarly
to the mean regression case. Therefore the adaptive lasso
estimator is a reasonable choice in this setting, particularly
bearing in mind the computational cost associated with the
transformation step. Furthermore 𝐿1 norm estimators are
by far the most widely studied regularisation estimators for
quantile regression (see, e.g., [23, 24, 30] for variable selection
applications).

Li and Zhu [22] proposed an algorithm to estimate
the whole regularisation path for lasso type of quantile
regression problem. Their proposal is potentially valuable
since it can be applied to non- (or semi-) parametric additive
quantile regression models and therefore results in a much
more general approach, intrinsically immune to functional
form misspecification. The advantage to such algorithms is
that since they exploit the piecewise linear property of the
regularisation path, the latter can be obtained at a fraction of
the computational cost of the overall regularised estimator.
This facilitates implementation of cross-validation and/or
information criteria.

The elastic net [31] penalty is a combination of 𝐿1 and 𝐿2
norms, and for the quantile regression the resulting estimator
can be written as

min
𝛽
𝜏

𝑛

∑

𝑖=1

𝜌
𝜏
(𝑦
𝑖
− 𝑋
𝑇
𝛽
𝜏
) + 𝜆
1

𝑑

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝛽
𝑗𝜏

󵄨󵄨󵄨󵄨󵄨
+ 𝜆
2

𝑑

∑

𝑗=1

𝛽
2

𝑗𝜏
. (10)

An important property of the elastic net penalty is that
the inclusion of the 𝐿2 norm induces a grouping effect in that
correlated variables are grouped together. This would help
avoid spuriously selecting only one variable from a group
of highly correlated variables. Given that in many empirical
problems the spatial weighting matrices considered can
lead to highly correlated designs, it would be desirable to
avoid such a pitfall. One should note however that elastic
net penalisation could be expected to retain more variables
compared to the other approaches.

The least squares approximation (LSA) estimator [32] is
given by:

min
𝛽

{

{

{

(𝛽 − 𝛽)
𝑇

Σ̃
−1
(𝛽 − 𝛽) + 𝜆

𝑑

∑

𝑗=1

𝑤
𝑗

󵄨󵄨󵄨󵄨󵄨
𝛽
𝑗

󵄨󵄨󵄨󵄨󵄨

}

}

}

, (11)

where Σ̃
−1

= 𝑛
−1
(𝜕
2
ℓ(𝛽)/𝜕𝛽) is the second derivative at

the unpenalised loss function, evaluated at the unregularised
estimates 𝛽. It is technically obtained as an approximation
based on first order Taylor series expansion (see [32]).

In the case of quantile regression, the respective loss
function (i.e., the check function 𝜌

𝜏
(⋅)) is not sufficiently

smooth. Nevertheless, as long as Σ̃, which is in principle any
consistent covariancematrix estimate pertaining to the unpe-
nalised problem, can be obtained, the corresponding LSA
estimator, defined in (11) exists. Furthermore when regulari-
sation parameters are chosen optimally it possesses the oracle
property (see [32] for a formal proof). Since (11) is essentially
a linear lasso type of problem, it can be estimated using
standardmethods. In particular the computationally efficient
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least angle regression algorithm (LARS) of Efron et al. [33]
can be used to compute the regularisation path. Here we will
apply the BIC-type tuning parameter selector of Wang et al.
[34] to select the optimal amount of shrinkage. Application of
the LSA to a quantile regression requires a covariance matrix
estimator for the latter. Any consistent estimator would
be appropriate. In this paper we will use the kernel-based
covariance estimator proposed in Newey and Powell [35].

6. Study Design and Implementation Details

For comparative purposes we follow closely the design out-
lined in Kostov [10]. This involves using the same dataset,
model specification as well as a set of competing alternative
spatial weighting matrices. Since all these are discussed in
some detail in Kostov [10] we will only briefly sketch them
here.

The corrected version of the popular Boston housing
dataset [36] is used. It consists of 506 observations and
incorporates some corrections and additional latitude and
longitude information, due to Gilley and Pace [37]. This
dataset contains one observation for each census tract in the
Boston Standard Metropolitan Statistical Area. The variables
comprise of proxies for pollution, crime, distance to employ-
ment centres, geographical features, accessibility, housing
size, age, race, status, tax burden, educational quality, zoning,
and industrial externalities. A detailed description of the
variables, to be used in this study, is presented in Table 1.

The basic model as implemented in Kostov [10] is as
follows:

log (MEDV) = 𝑓 {CRIM,ZN, INDUS,CHAS,NOX2,

RM2,AGE, log (DIS) , log (RAD) ,

TAX,PTRATIO,B, log (LSTAT)} .
(12)

The basic specification mentioned previously is aug-
mentedwith alternative candidate spatial weightingmatrices,
constructed using the longitude and latitude information.
The set of alternative spatial weighting matrices is con-
structed using inverse distance raised on a power weights
specification and nearest neighbours definition of the neigh-
bourhood scheme. We will adopt the naming conventions
used in Kostov [10] combining the codes for the neighbour-
hood definition and the weighting scheme to refer to the
corresponding spatial weighting matrix and the resulting
additional variables to be included in the boosting model.
All these variables are named using the following convention:
nxwy, where x is the number of neighbours and y is the
weighting parameter (which is the inverse power of the
weight decay). For example, the spatial weighting matrix
with the nearest 50 observations as neighbours and inverse
squared distance weights as well as the resulting transformed
variable will be denoted as n50w2. We employ all values for
number of neighbours from 1 to 50 and evaluate w in the
interval [0.4, 4] using increments of 0.1. In simple words this
means that we are combining 50 possible neighbourhood
definitions with 37 alternatives for the weighting parameter

Table 1: Description of variables.

Variable Description

MEDV Median values of owner-occupied housing in
thousands of USD

LON Tract point longitude in decimal degrees
LAT Tract point latitude in decimal degrees
CRIM Per capita crime

ZN Proportion of residential land zoned for lots over
25,000 sq. ft per town

INDUS Proportion of nonretail business acres per town

CHAS An indicator: 1 if tract borders Charles River;
0 otherwise

NOX Nitric oxides concentration (parts per 10 million) per
town

RM Average number of rooms per dwelling

AGE Proportions of owner-occupied units built prior to
1940

DIS Weighted distance to five Boston employment centres
RAD Index of accessibility to radial highways per town
TAX Property-tax rate per USD 10,000 per town
PTRATIO Pupil-teacher ratio per town

B Calculated as 1000∗(Bk−0.63)2 where Bk is the
proportion of blacks

LSTAT Percentage of lower status population

resulting in 1,850 alternative spatial weighting matrices to be
considered simultaneously.

Kostov [10] projects the spatially weighted dependent
variable into the columnvector space of the spatiallyweighted
independent variables, by taking the fitted values from a
least-squares regression to obtain the transformed variables,
named according to the previous convention. As discussed
before here we need to replace this first step with a quantile
regression defined over a pre-determined quantile to obtain a
model augmented with the alternative spatial weighting mat-
rices. The second stage is then implemented in two consecu-
tive steps. First we apply a component-wise boosting quantile
regression, defined over the same quantile (as in the first
stage) to the augmentedmodel.This is the screening step that
reduces the set of variables to be considered in the model.
Then a regularized quantile regression (defined over the same
quantile) is applied to the screened dataset. The previous
three steps (transformation, screening and estimation) can
be run over any prespecified quantile, and their consecutive
implementation defines our estimator.

In the present setting some caution should be exercised in
applying the estimation step. Note that in conditionally para-
metric models, there is a certain trade-off between variables
and spatial dependence. The spatial dependence structure
could approximate the effect of missing variables, pro-
vided these are spatially correlated.Therefore simultaneously
shrinking the coefficients of both variables and spatial lags
will be a manifestation of this trade-off. Whenever the
model contains such related terms in both the spatial part
(i.e., spatial weighting matrices) and in the regression part
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(variables the effect of which could be approximated by these
spatial weighting matrices) simultaneous shrinkage is unde-
sirable. The danger here is that one can spuriously exclude
important variables and approximate their effect by addi-
tional spatial terms. Note however that if we assume that
the regression part is given, this trade-off will disappear.
Ideally one would want to eliminate this trade-off. In order
to avoid the impact of the approximation on this trade-off
we suggest a two-step implementation of the estimation step.
In the initial step only the spatial lag coefficients are pen-
alised, while in the following final step all coefficients are
penalised. In this way the initial step should select the
appropriate spatial dependence structure, while the final step
would perform final variable selection. Hence the initial step
makes structural inference about the spatial part conditional
on the regression part of the model. If the screening step
has produced a model that is reasonably close to the true
one, then the proposed approach should be able to discover
the true underlying structure. Alternatively one may wish
to implement an iterative estimation in which the estimator
alternates between steps in which only the spatial structure
is penalised and steps with only the regression part are
penalised until convergence (defined in terms of obtaining
a stable structure in that no more terms are eliminated).
Such steps can be viewed as conditioning one part (spatial
or regression) of the model on the other hence avoiding the
trade-off. The latter approach would however be computa-
tionally more expensive.

Another issue is the highly correlated design of the spatial
quantile regression model, when there are large number of
potential spatial weighting matrices. Since in principle the
variable selection methods rely upon marginal correlations,
they could fail to perform in such highly correlated designs.
For themean regressionmodel recent contributions byWang
[38] and Cho and Fryzlewicz [39] have suggested alternative
methods that overcome such a reliance on marginal correla-
tions and hence are applicable to highly correlated designs.
It is however unclear how such methods can be extended to
the quantile regression case. The two-step approach adopted
in this paper conditions selection for the spatial and hedonic
variables on the other part of the model and hence reduces
this trade-off. Such an approach is justified if the regression
part of the model is correctly specified, but could be sub-
optimal if this is not the case. This is of course an area that
deserves further investigation.

7. Results

We implement the proposed estimator for the 0.1 to 0.9 quan-
tiles with a step of 0.1 (i.e., 9 different quantile regressions).
Table 2 presents comparative computational time details for
the different procedures. All these are calculated from the first
of the considered quantiles (i.e., the 0.1th one) and are given
as a guidance only since the actual computational time could
vary according to the nature of the optimisation problem
that can change over different quantiles. All computations
are undertaken using the statistical programming language
R [40] on Intel Core2 2.13 GHz processor with 2Gb RAM,
not using any parallel computation. Parallelising some of

Table 2: Typical computational details for different procedures.

Procedure Time (seconds)
Instrumentation step (1850Ws) 1850.33
5000 boosting iterations on all data 5.41
gMDL criterion calculation 1108.42
5000 boosting iterations on reduced data 2.71
stability selection 106.35
LSA step 1 0.55
LSA step 2 0.05
Full path step 1 (with 5-fold CV) 9.08
Full path step 2 (with 5-fold CV) 79.11
SCAD step 1 (with gMDL, 50 penalty values) 2.18
SCAD step 2 (with gMDL, 50 penalty values) 2.88
Elastic net step 1 1.11
Elastic net step 2 7.00
Elastic net single step 7.82

the more computationally demanding tasks and/or using
compiled code could considerably reduce the computational
time. Furthermore it cannot be claimed that the actual
implementation of these procedure is optimised in terms of
computational time.

The instrumentation step is the most time-consuming
task. In our implementation it takes over 30 minutes for 1850
spatial weighting matrices. In many empirical problems one
would probably considermuch smaller number of alternative
spatially weightingmatrices. Furthermoremost of the time in
this step is spent on creating the spatially weighted dependent
and independent variables, rather than fitting the actual
quantile regressions.

The actual boosting procedure requires running the
boosting algorithm for a large number of iterations and then
calculating a stopping criterion to decide upon the esti-
mated structure. The boosting algorithm is very efficient
computationally. The stopping criterion calculation however
takes considerable time. Efficient parallel implementations
for the latter exist, and these can considerably reduce the
computation time.

The time needed to calculate the stopping criterion is
directly proportional to the number of boosting steps (which
is effectively the number of alternative “models” for which it
is calculated). Since in this case at all considered quantiles we
need at least three times less iterations than the 5,000 used
here, practical implementationwould have taken 6-7minutes
rather than 18 as reported in Table 2.

We apply the stability selection to the already reduced (in
the instrumentation step) dataset. Yet again this is relatively
time-consuming procedure, but it can be parallelised for
further computational gains.

One has to be careful in directly comparing these imple-
mentations of the estimation step, as the instrumentation step
mentioned previously demonstrates; calculating the stopping
criterion (i.e., the optimal penalty parameters) is by far the
most computationally demanding part of these procedures
and the reported implementations use different methods for
this.
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Table 3: Stability selection-derived inclusion probabilities for spa-
tial weighting matrices.

Quantiles
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

n1w0.4 0.56
n2w0.5 0.80
n2w4 0.28
n3w0.4 0.56 0.52 0.40
n3w1.2 0.72
n3w1.7 0.24
n3w1.8 0.80
n4w3 0.28
n4w0.4 0.16
n4w0.7 0.56
n4w3.4 0.24
n5w0.4 0.24 0.28 0.52
n5w0.5 0.68
n5w0.6 0.96
n5w0.7 0.56
n5w1.3 0.40
n6w0.4 0.32 0.48 0.44 1.00 0.80 0.32
n6w0.5 0.20 0.84 0.76
n6w0.6 0.44
n6w1.1 0.80
n6w1.9 0.20
n7w0.4 0.28 0.28 0.76
n7w1.2 0.72
n7w1.3 0.56
n8w0.4 0.28
n8w0.5 0.36 0.60
n8w0.6 0.16
n8w0.7 0.32
n8w0.9 0.32
n8w2.6 0.32
n9w3.9 0.28
n10w2.5 0.20
n12w3.9 0.28
n12w0.4 0.56 0.20
n16w0.4 0.36
n19w0.4 0.24

With regard to the estimation methods we report sep-
arately the computation times for step one (where only
the spatial weighting matrix coefficients are penalised) and
the consecutive second step where all the coefficients are
penalised.As it is to be expected the LSA is the fastestmethod.
This is due to two underlying facts. The first is that it uses
the efficient least angle regression algorithm [33] while the
other refers to use of the BIC-type tuning parameter selector
of Wang et al. [34] which is easy to compute.

The full path estimation for adaptive lasso, accompanied
by cross-validation to choose the optimal amount or regular-
ization, appears to be the most computationally demanding

estimationmethod.Most of the computational costs however
come from the use of cross-validation. Furthermore this is the
most universally applicable method in the sense that many
of the other methods can run into difficulties during the
optimisation (at different quantiles) which can considerably
inflate their computational costs.

We present computational details for implementing
SCADwith gMDLover a predefined grid of 50 penalty values.
Although the computational times appear acceptable, one has
to take into account some caveats. The nonconvex nature of
the SCAD optimisation problem means that in some cases
the actual computation time can increase considerably (with a
factor of over 100 in some cases). Furthermore we have opted
to fix one of the regularisation parameters which artificially
reduces the computational time. Another important point
to make is that no set of penalisation parameters is ex ante
guaranteed to span the whole regularisation path. In our
implementation we run a preliminary SCAD estimation over
a range of such values designed to identify a feasible set
that does span most of the regularisation path and then
manually select the grid of such values. In cases where
the optimisation is difficult, this can lead to considerable
increase of computational time. Therefore a path estimation
algorithm for the SCAD estimator for quantile regression is
essential if a reliable implementation of this method is to be
designed. The use of the gMDL as an optimality criterion is
also somehow ad hoc in that there is no firm evidence on
its performance for this type of problems, and it is mostly
dictated by computational reasons (since cross-validation, for
example, would be very costly).

The elastic net implementation is reasonably efficient.
Both the BIC and the generalised approximate cross-
validation yield the same models. The reported computa-
tional costs refer to the routines that compute internally both
of the above criteria, but this only marginally increases the
computational costs. Most of the computational load comes
from the double regularisation needed to solve for the two
underlying penalties.

The component-wise boosting algorithm manages to
achieve considerable reduction in the model space. It retains
between three and eleven spatial weighting matrices across
the different quantiles.Wewill not present these intermediate
results here for brevity reasons, but details are available
upon request. This intermediate step yields a reduced model
space that can be explored for the underlying structure as
discussed in the methodology section. Table 3 presents the
results from the stability selection applied to the prescreened
model (i.e., after the boosting application). Typically stability
selection applies a prespecified probability threshold to select
variables. Here instead of proper stability selectionwe present
the corresponding inclusion probabilities for the spatial
weighting matrices. We omit spatial weighting matrices with
inclusion probability less than 10%. Full results are available
upon request. Table 3 provides a background against which
the actual estimation results can be evaluated. If one was to
use a threshold of 0.6, most quantiles would have resulted in
a single spatial weightingmatrix being selected. Such a choice
would however have been base solely on the component-
wise boosting algorithm, which as already discussed may
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Table 4: Estimation results at the 0.1th quantile.

LSA Full path SCAD
Coefficient P value Coefficient P value Coefficient P value

Intercept 1.591 0.000 1.493 0.000 0.975 0.025
CRIM −0.010 0.000 −0.011 0.000 −0.010 0.000
ZN 0.000 0.568 0.000 0.795
INDUS −0.001 0.803 0.004 0.193
CHAS 0.033 0.342
NOX2

−0.006 0.973
RM2 0.011 0.000 0.012 0.000 0.015 0.000
AGE −0.001 0.032 −0.002 0.021 −0.002 0.013
log (DIS) −0.091 0.001 −0.118 0.008 −0.039 0.405
log (RAD) 0.036 0.073 0.041 0.058 0.042 0.063
TAX 0.000 0.096 0.000 0.071 0.000 0.035
PTRATIO −0.007 0.245 −0.006 0.389 −0.006 0.297
B 0.001 0.000 0.001 0.001 0.001 0.000
log (LSTAT) −0.153 0.003 −0.123 0.028 −0.057 0.292
n1w0.4 0.066 0.458
n5w0.6 0.478 0.000 0.385 0.014 0.442 0.000
n12w0.4 0.094 0.481

Table 5: Estimation results at the 0.2th quantile.

LSA Full path SCAD
Coefficient P value Coefficient P value Coefficient P value

Intercept 2.013 0.000 1.663 0.000 1.390 0.000
CRIM −0.013 0.000 −0.012 0.000 −0.012 0.000
ZN 0.000 0.683 −0.001 0.288
INDUS −0.001 0.777 0.003 0.265
CHAS 0.041 0.196
NOX2

−0.180 0.153
RM2 0.013 0.000 0.014 0.000 0.016 0.000
AGE −0.001 0.019 −0.002 0.009 −0.001 0.015
log (DIS) −0.144 0.000 −0.133 0.000 −0.025 0.544
log (RAD) 0.052 0.003 0.049 0.006 0.032 0.106
TAX 0.000 0.010 0.000 0.009 0.000 0.041
PTRATIO −0.009 0.056 −0.004 0.423 −0.009 0.096
B 0.000 0.001 0.000 0.000 0.000 0.003
log (LSTAT) −0.151 0.000 −0.138 0.001 −0.094 0.020
n3w1.8 0.439 0.000
n5w0.5 0.133 0.571
n6w0.4 0.397 0.000 0.309 0.164

not possess the oracle property and therefore may be inap-
propriate for structure discovery purposes. The estimation
results from the least squares approximation (LSA), full-
path adaptive lasso (full path), and smoothly clipped absolute
deviations (SCAD) by quantile are presented in Tables 4–12.
The elastic net results are not presented. In simple terms due
to the implicit correlation penalty, the elastic net possesses
a grouping property in that it groups together correlated
variables. In this case due to the highly correlated nature
of the spatial weighting matrices the elastic net groups
them together and cannot exclude spatial weighting matrices

whenever they are similar to the ones already included in the
model.

Bearing in mind the relative computational cost for the
different estimation approaches, it is useful to determine
whether the LSA results differ substantially from the other
approaches. Table 4 presents the results at the 0.1th quantile.
With regard to the main (i.e., hedonic) variables the results
are comparable across estimation methods. Where a variable
is omitted by one of these methods, it is either dropped by the
other methods or found to be statistically insignificant. With
regard to the spatial weighting matrices the stability selection
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Table 6: Estimation results at the 0.3th quantile.

LSA Full path SCAD
Coefficient P value Coefficient P value Coefficient P value

Intercept 1.904 0.000 1.973 0.000 1.553 0.000
CRIM −0.014 0.000 −0.014 0.000 −0.011 0.207
ZN 0.000 0.452 0.000 0.591
INDUS 0.003 0.158 0.004 0.041
CHAS 0.024 0.441
NOX2

−0.106 0.344 −0.187 0.132
RM2 0.013 0.000 0.014 0.000 0.015 0.000
AGE −0.001 0.033 −0.001 0.052 −0.001 0.055
log (DIS) −0.119 0.000 −0.110 0.002 −0.067 0.073
log (RAD) 0.053 0.003 0.061 0.002 0.045 0.037
TAX 0.000 0.034 0.000 0.014 0.000 0.013
PTRATIO −0.009 0.039 −0.012 0.010 −0.011 0.011
B 0.000 0.000 0.000 0.000 0.000 0.000
Log (LSTAT) −0.159 0.000 −0.163 0.000 −0.131 0.000
n3w0.4 0.221 0.048 0.141 0.202 0.192 0.384
n6w0.4 0.186 0.101 0.245 0.032
n8w0.5 0.259 0.078

Table 7: Estimation results at the 0.4th quantile.

LSA Full path SCAD
Coefficient P value Coefficient P value Coefficient P value

Intercept 2.020 0.000 2.151 0.000 1.697 0.000
CRIM −0.007 0.000 −0.010 0.242 −0.007 0.000
ZN 0.000 0.518 0.000 0.827
INDUS 0.003 0.088 0.003 0.074
CHAS 0.014 0.653 0.021 0.478
NOX2

−0.231 0.059
RM2 0.012 0.000 0.014 0.000 0.015 0.000
AGE −0.001 0.186 −0.001 0.074
log (DIS) −0.079 0.000 −0.112 0.002 −0.070 0.044
log (RAD) 0.036 0.031 0.053 0.011 0.044 0.015
TAX 0.000 0.004 0.000 0.012 0.000 0.001
PTRATIO −0.010 0.013 −0.013 0.003 −0.010 0.010
B 0.000 0.001 0.000 0.000 0.000 0.000
log (LSTAT) −0.206 0.000 −0.169 0.000 −0.150 0.000
n3w0.4 0.055 0.643 0.184 0.246 0.160 0.145
n5w1.3 0.157 0.362
n6w0.4 0.263 0.016
n6w0.5 0.340 0.004

approach (see Table 3) determined that three such matrices
have inclusion probability of over 0.5, but one such matrix,
namely, n5w0.6 has a very high inclusion probability of 0.96.
The estimation results reflect this in that n5w0.6 is selected
by all methods, while the full path and the SCAD estimators
also include another spatial weighting matrix. It hence
looks like the LSA chooses a slightly more parsimonious
model. One should note however that the additional spatial

weighting matrices chosen by the other two methods are
statistically insignificant. Therefore all methods point to the
same underlying model structure.

Table 5 presents the results for the 0.2th quantile. Again
the LSA closely approximates the full path solution. The
additional spatial weighting matrix selected by the full path
estimation is insignificant, and bothmethods lead to the same
conclusions.The SCADestimation however produces slightly
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Table 8: Estimation results at the 0.5th quantile.

LSA Full path SCAD
Coefficient P value Coefficient P value Coefficient P value

Intercept 1.991 0.000 1.948 0.000 1.799 0.000
CRIM −0.007 0.000 −0.007 0.000 −0.007 0.000
ZN 0.000 0.290 0.000 0.518
INDUS 0.002 0.216 0.003 0.178
CHAS 0.012 0.712
NOX2

RM2 0.013 0.000 0.013 0.000 0.014 0.000
AGE −0.001 0.102 −0.001 0.206 −0.001 0.096
log (DIS) −0.111 0.000 −0.102 0.001 −0.082 0.013
log (RAD) 0.054 0.002 0.057 0.001 0.050 0.007
TAX 0.000 0.001 0.000 0.000 0.000 0.002
PTRATIO −0.009 0.021 −0.009 0.027 −0.010 0.020
B 0.000 0.000 0.000 0.000 0.000 0.000
log (LSTAT) −0.189 0.000 −0.187 0.000 −0.164 0.000
n5w0.4 0.256 0.296
n6w0.4 0.406 0.000 0.146 0.547 0.416 0.000

Table 9: Estimation results at the 0.6th quantile.

LSA Full path SCAD
Coefficient P value Coefficient P value Coefficient P value

Intercept 2.235 0.000 2.091 0.000 1.907 0.000
CRIM −0.007 0.002 −0.006 0.013 −0.006 0.087
ZN 0.000 0.379 0.000 0.980
INDUS 0.001 0.418 0.002 0.343
CHAS 0.001 0.965
NOX2

RM2 0.013 0.000 0.013 0.000 0.015 0.000
AGE −0.001 0.047 −0.001 0.047 −0.001 0.066
log (DIS) −0.120 0.000 −0.110 0.000 −0.072 0.035
log (RAD) 0.035 0.043 0.048 0.007 0.041 0.023
TAX 0.000 0.004 0.000 0.001 0.000 0.003
PTRATIO −0.012 0.003 −0.009 0.029 −0.013 0.003
B 0.000 0.000 0.000 0.000 0.001 0.000
log (LSTAT) −0.195 0.000 −0.190 0.000 −0.152 0.000
n4w3.4 −0.143 0.203
n6w0.4 0.390 0.000
n6w0.6 0.510 0.000 0.388 0.000

different results. Most notably it chooses a different spatial
weighting matrix. In terms of implementation the SCAD
optimisation problem at this quantile did take longer to solve.
Nevertheless, the selected by SCAD spatial weighting matrix
is the one characterised by highest inclusion probability,
according to the stability selection. Due to the somewhat ad
hoc implementation of the SCAD estimation in this paper
(because it is evaluated over a grid, instead of computing
the whole regularisation path and the use of the gMDL as
stopping criterion) it is however difficult to evaluate the latter

result. As far as the LSA is concerned however, it provides
a reliable approximation of the adaptive lasso estimator at a
fraction of its computational cost.

The results for the 0.3th quantile (Table 6) are broadly
similar across different methods. LSA and the adaptive lasso
select the same spatial weightingmatrices and although these
show some small differences in terms of statistical signifi-
cance for the latter, the structural inference is essentially the
same. Once again SCAD results yield a small difference with
regard to the preferred spatial weighting matrices.
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Table 10: Estimation results at the 0.7th quantile.

LSA Full path SCAD
Coefficient P value Coefficient P value Coefficient P value

Intercept 2.134 0.000 2.408 0.000 2.205 0.000
CRIM −0.004 0.016 −0.007 0.018 −0.007 0.003
ZN 0.000 0.967 0.000 0.790
INDUS 0.000 0.902
CHAS
NOX2

RM2 0.011 0.000 0.013 0.000 0.014 0.000
AGE −0.001 0.022 −0.001 0.041
log (DIS) −0.109 0.000 −0.126 0.000 −0.096 0.003
log (RAD) 0.053 0.002 0.046 0.008
TAX 0.000 0.025 0.000 0.003 0.000 0.012
PTRATIO −0.010 0.027 −0.014 0.001 −0.012 0.004
B 0.001 0.000 0.001 0.001 0.001 0.000
log (LSTAT) −0.240 0.000 −0.185 0.000 −0.170 0.000
n3w0.4 0.308 0.000
n5w0.7 0.320 0.003
n8w0.9 0.413 0.000

Table 11: Estimation results at the 0.8th quantile.

LSA Full path SCAD
Coefficient P value Coefficient P value Coefficient P value

Intercept 3.456 0.000 3.404 0.000 1.573 0.022
CRIM −0.010 0.000 −0.010 0.000 −0.009 0.000
ZN 0.000 0.926 0.000 0.492
INDUS −0.002 0.284 −0.003 0.208
CHAS 0.084 0.073 0.083 0.075 0.098 0.156
NOX2

−0.506 0.000 −0.475 0.000 0.270 0.353
RM2 0.010 0.000 0.010 0.000 0.012 0.000
AGE −0.001 0.187 −0.001 0.167 −0.001 0.191
log (DIS) −0.217 0.000 −0.232 0.000 −0.081 0.119
log (RAD) 0.042 0.007 0.044 0.006 0.008 0.713
TAX
PTRATIO −0.026 0.000 −0.024 0.000 −0.002 0.829
B
log (LSTAT) −0.257 0.000 −0.253 0.000 −0.189 0.000
n6w1.1 0.236 0.000 0.252 0.000 0.573 0.027
n9w3.9 −0.051 0.817

At the 0.4th quantile (Table 7) all methods choose n3w0.4
together with a slightly different second spatial weighting
matrix. With regard to the second retained spatial weighting
matrix LSA is very similar to the SCAD (n6w0.5 versus
n6w0.4) while the adaptive lasso selection is slightly different.
Hence although LSA results are comparable to the other
methods, the approximation to the adaptive lasso is not as
close as at the previously considered quantiles. One can note
that in this case out of the 8 spatial weighting matrices
originally retained by the boosting algorithm, 7 have a model
inclusion probability exceeding 0.1 (see Table 3). Therefore
one can tentatively conclude that LSA provides a reasonable

approximation to the adaptive lasso for quantile regression
whenever there are relatively few competing spatial weighting
matrices. This property is to be expected given the trade-off
between the spatial and the regression parts in a quantile
regression model, that was discussed in the methodology
section. It is possible that if one applies a different method to
control for this trade-off, instead of the two-step implementa-
tion of the oracle estimator, implemented here, the quality of
the LSA approximation may not deteriorate with increasing
dimension of the spatial weighting matrices space.

The estimation results for the 0.5th quantile (see Table 8)
are similar across the different methods. The adaptive lasso
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Table 12: Estimation results at the 0.9th quantile.

LSA Full path SCAD
Coefficient P value Coefficient P value Coefficient P value

Intercept 3.804 0.000 2.374 0.000 1.608 0.017
CRIM −0.010 0.000 −0.002 0.789 −0.010 0.000
ZN −0.001 0.048 0.000 0.975
INDUS 0.001 0.716 −0.002 0.300
CHAS 0.068 0.286
NOX2

−0.818 0.000
RM2 0.007 0.000 0.008 0.001 0.012 0.000
AGE
log (DIS) −0.248 0.000 −0.069 0.164
log (RAD) 0.068 0.000 0.050 0.014
TAX
PTRATIO −0.029 0.000 −0.012 0.158 0.000 0.995
B −0.279 0.000
log (LSTAT) −0.263 0.000 −0.168 0.000
n2w0.5 −0.098 0.549 0.152 0.140
n7w0.4 0.026 0.920 0.329 0.024
n8w2.6 0.517 0.069
n10w2.5 0.260 0.000

finds it difficult to discriminate between n5w0.4 and n6w0.4,
but since these two are very difficult to distinguish between
one can conclude that the methods agree. Interestingly
although SCAD produces the same spatial weighting matrix
as LSA, the technical difficulty in discriminating between two
very similar spatial weightingmatrices results in considerable
increase in computational time.

Similarly at the 0.6th quantile (Table 9) results are consis-
tent across methods. The LSA and adaptive lasso both select
n6w0.6 with LSA also selecting another spatial weighting
matrix, which is however statistically insignificant.TheSCAD
selects n6w0.4, which by the way is the highest inclusion
probability spatial matrix, according to the stability selection
results (see Table 3). This again raises the issue of the
comparative performance of SCAD and adaptive lasso, but
the results are nevertheless qualitatively similar.

Table 10 shows the estimation result for the 0.7th quantile.
This is where there are considerable differences between the
different methods. There is disagreement about the sign of
TAX between SCAD and the other two methods. Further-
more all three methods choose different spatial weighting
matrices. Once again the source for such difference is proba-
bly the size of the (screened) spatial weightingmatrices space,
which consists of 11 such matrices, 8 of which have stability
selection-derived inclusion probability of at least 0.2.

At the 0.8th quantile all methods select n6w1.1 (see
Table 11). SCAD selects another spatial weighting matrix,
which leads to some differences in the regression part.
However since this additional spatial weighting matrix is
not statistically significant, omitting it would produce results
consistent with the other methods.

Finally Table 12 presents the results for the 0.9th quantile
which differ considerably amongstmethods.Themain reason
for these differences is that different main hedonic variables
are selected by different methods which results in differences
for the spatial part. The latter raises the issue of the trade-off
between the regression part and the spatial dependence.

8. Conclusions

This paper proposes methods for selecting spatial weighting
matrix in a quantile regression context. We build upon
previous work in this area. In discussing our proposal we
outline the different alternatives and the potential different
implementations of the same set of ideas. Our proposals
are designed to reduce the arbitrariness of choice of spatial
weighting matrix and the impact of the trade-off between
functional form and spatial dependence specifications. The
spatial quantile regression is already a quite flexible model
allowing for different impacts, across different quantiles.
Our procedure introduces additional flexibility in not only
different degrees of spatial dependence but also different
spatial weighting matrices for different quantiles, resulting
in potentially interesting inferences about the nature of the
underlying process.

Themethodology proposed in this paper consists of three
steps: instrumentation, screening, and estimation. Several
different alternative methods for the estimation step are
explored. This allows for conclusions to be drawn with
regard to the performance of these estimators in different
circumstances. In general terms, the proposed methods are
tractable with small and moderate size samples, where the
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advantages of the spatial quantile regression model are most
pronounced.
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