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Abstract  31 

 32 

A systematic review and meta-analysis of available RCTs was conducted to evaluate the effect of 33 

zinc (Zn) intake on serum/plasma Zn status in infants. Out of 5500 studies identified through 34 

electronic searches and reference lists, 13 RCTs were selected after applying the 35 

exclusion/inclusion criteria. The influence of Zn intake on serum/plasma Zn concentration was 36 

considered in the overall meta-analysis. Other variables were also taken into account as possible 37 

effect modifiers: doses of Zn intake, intervention duration, nutritional status and risk of bias. 38 

RESULTS: The pooled β of status was 0.09 (CI 0.05 to 0.12). However, a substantial heterogeneity 39 

was present in the analyses (I²= 98%; p=0.00001). When we performed a meta-regression, the 40 

effect of Zn intake on serum/plasma Zn status changed depending on the duration of the 41 

intervention, the dose of supplementation and the nutritional situation (p ANCOVA= 0.054; <0.001 42 

and <0.007 respectively). After stratifying the sample according to the effect modifiers the results 43 

by duration of intervention showed a positive effect when Zn intake was provided during medium 44 

and long periods of time (4-20 weeks and >20 weeks). A positive effect was also seen when doses 45 

ranged from 8.1 to 12 mg/day. In all cases, the pooled β showed high evidence of heterogeneity. 46 

CONCLUSION: Zn supplementation increases serum/plasma Zn status in infants, although high 47 

evidence of heterogeneity was found. Further standardized research is urgently needed to reach 48 

evidence-based conclusions to clarify the role of Zn supplementation upon infant serum/plasma Zn 49 

status, particularly in Europe. 50 

 51 

 52 

Keywords: EURRECA, zinc intake, serum/plasma Zn status, infants 53 

 54 

 55 

 56 

 57 

 58 

 59 

 60 

 61 

 62 

 63 

 64 

 65 

Page 2 of 25Maternal & Child Nutrition



For Peer Review

3 

 

Introduction 66 

 67 

Zinc (Zn) is an essential nutrient, present in all body tissues and fluids. The biologic role of Zn is 68 

now recognized in the structure and function of proteins, including more than 300 enzymes, 69 

transcription factors, hormonal receptor sites, and biologic membranes. Zn has numerous central 70 

roles in DNA and RNA metabolism (MacDonald 2000), and it is involved in signal transduction, 71 

gene expression, and apoptosis. Zn enzymes are involved in nucleic acid metabolism and cellular 72 

proliferation, differentiation, and growth (Chesters 1978).                                                                                                     73 

Plasma Zn accounts for only about 0.1 per cent of the total body content. Zn has a rapid turnover, 74 

and its level appears to be under close homeostatic control. There is no ‘store’ for Zn in the 75 

conventional sense (Milne et al. 1983) and it is present in the body almost exclusively as Zn2+ 76 

bound to cellular proteins (Makonnen et al. 2003).                                                                                   77 

Assessment of the Zn nutriture of individuals is complicated by the fact that no generally accepted, 78 

sensitive and specific biomarker of serum/plasma Zn status exists (King 1990). Although it is true 79 

that serum/plasma Zn concentrations decrease within several weeks of the introduction of a diet 80 

containing a severely restricted amount of Zn (Baer et al. 1985), serum/plasma Zn concentrations 81 

are generally maintained within the normal range with small or moderate reductions in Zn intake. 82 

Moreover, factors unrelated to the level of Zn nutriture, such as recent meals, time of day, infection, 83 

tissue catabolism, and pregnancy, can also affect serum/plasma Zn concentrations (King 1990; 84 

Hambidge & Krebs 1995). Thus, the serum/plasma Zn concentration may not always be a reliable 85 

indicator of an individual’s true Zn status (Brown et al. 2002). Nevertheless a recent systematic 86 

review concluded that serum/plasma Zn concentration was responsive to both Zn supplementation 87 

and depletion and it remains the most widely used biomarker for Zn (Lowe et al. 2009). 88 

 89 

Infants have a relatively high requirement of Zn per unit body weight during a sensitive period of 90 

rapid growth and development (Hermoso et al. 2010). Recommendations for Zn intake during 91 

infancy vary widely across Europe, ranging from 1 mg/day up to 5 mg/day (Hermoso et al. 2010). 92 

The EURRECA project attempts to consolidate the basis for the definition of micronutrient 93 

requirements across Europe, taking into account relationships among intake, status and health 94 

outcomes, in order to harmonise these recommendations (Ashwell et al. 2008). This paper presents 95 

a systematic review of the data from all available randomized controlled trials (RCTs) meeting 96 

EURRECA’s quality standard (Matthys et al. 2011), which investigated Zn intake and biomarkers 97 
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of Zn status in infants, and combines these studies in meta-analyses to model Zn concentrations in 98 

serum or plasma as a function of Zn intake.  99 

 100 

Materials and Methods 101 

Search strategy 102 

 103 

This research was conducted within the framework of the European Micronutrient 104 

Recommendations Aligned (EURRECA) Network of Excellence that aims to identify the 105 

micronutrient requirements for optimal health in European populations (www.eurreca.org). This 106 

review was part of a wider review process to identify studies assessing the effect of Zn intake on 107 

different outcomes (biomarkers of Zn status and health outcomes). The wider searches were 108 

performed of literature published up to and including February 2010, and an updated search was 109 

carried out in January 2013. The databases MEDLINE, EMBASE and Cochrane using search terms 110 

for “study designs in humans” and “zinc” and “intake”. Both indexing and text terms were used and 111 

languages included were restricted to those spoken in the EURRECA Network (English, Dutch, 112 

French, German, Hungarian, Italian, Norwegian, Polish, Spanish, Greek, and Serbian.). The Ovid 113 

MEDLINE search strategy can be found in Table 1. Reference lists of retrieved articles and 114 

published literature reviews were also checked for relevant studies.  The procedure for the 115 

identification, selection of articles and data extraction is illustrated in Figure 1. 116 

Selection of articles 117 

Titles of articles identified from the searches were entered into an EndNote library. Papers were 118 

considered eligible for inclusion if they were RCTs, conducted in human infants (aged 0-12 119 

months), and studied the effect of supplements, fortified foods or micronutrient intake from natural 120 

food sources, and assessed Zn concentrations in serum / plasma. Zn intake was assessed from breast 121 

milk, infant formula and food sources (e.g. complementary foods), fortified foods (e.g. fortified 122 

formula or cereal) and supplements. 123 

Exclusion criteria applied were: studies conducted in animals; combined interventions e.g. >1 124 

micronutrient or micronutrient + lifestyle intervention which did not study the effect of the 125 

micronutrient separately; non primary studies (e.g. letters & narrative literature reviews); duplicate 126 

publications; studies where the Zn intake – status relationship was not reported or biomarkers of Zn 127 

other than serum / plasma Zn were used. 128 
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Briefly, titles and abstracts of the 10% of the library were screened in duplicate for eligibility by 129 

two reviewers and any discrepancies were discussed and resolved before screening the remaining 130 

references. Only when both reviewers agreed that titles and abstracts met the inclusion criteria were 131 

the articles included. When a title and abstract could not be included with certainty, the full text of 132 

the article was obtained and then further evaluated. The remaining 90% was distributed among the 133 

two reviewers in even parts. Following the initial screening process, full-text articles were obtained. 134 

Further inclusion and exclusion criteria were then applied. Papers were only included in the meta-135 

analysis if they were: randomised controlled trials; had an intervention duration of at least 2 weeks; 136 

and reported baseline data for all outcome measures. Non-randomised controlled trials, uncontrolled 137 

trials or trials reporting insufficient or unclear data were excluded. Data were extracted from each 138 

study and organized in a Microsoft Access database file (Microsoft Corp, Redmond, WA). 139 

 140 

Data synthesis  141 

When Zn status in serum/plasma was measured at different time points within the same population, 142 

we used the measures as different estimations (Bates et al. 1993; Makonnen et al. 2003 I/II). One 143 

study reported data from the total of infants included, between males and females separately, and 144 

according to age (<11 months and > 11 months) (Sazawal et al. 1996; 2004) and it was treated as 145 

five estimations within the meta-analysis. One study reported data from two groups of infants 146 

(stunted and non stunted) and these were treated as two different estimations (Umeta et al. 2000). 147 

One study reported data from two groups according to the form of Zn supplementation (tablets or 148 

liquid) and these were treated as two estimations within the meta analysis (Wessells  et al. 2012). Of 149 

the selected studies, two RCTs were companion papers (Makonnen et al. 2003 I; Sazawal et al. 150 

2004).  If dietary intake of Zn (in addition to the intervention) was not reported in the RCTs, we 151 

imputed a value of 1.3 mg/day, the mean dietary intake level of the RCTs that did report dietary Zn 152 

intake. As mean baseline serum/plasma Zn concentrations were infrequently reported in the RCTs, 153 

most of the RCTs assumed no differences in baseline serum/plasma Zn concentrations (n= 12). 154 

Only one study, Bates et al. 1993, failed to report anything regarding baseline serum /plasma Zn 155 

concentrations.  156 

 157 

Exposure and outcome and other covariates assessment: 158 

 159 

The influence of Zn intake on serum/plasma Zn concentrations was considered in the overall meta-160 

analysis. Other variables were also taken into account as possible effect modifiers. We considered 161 

doses of Zn intake (1 to 4 mg, 4.1 to 8 mg, 8.1 to 12 mg, and >12.1 mg), intervention duration (1 to 162 
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3 weeks, 4 to 20 weeks, and > 20 weeks), nutritional situation (healthy, nutritionally at risk, and 163 

poor nutritional status) and risk of bias (low, moderate or high).  164 

 165 

Assessment of nutritional situation in included studies 166 

 167 

Nutritionally at risk was defined as infants who lived in low income families with a low 168 

socioeconomic situation and poor nutritional status was defined as infants with protein energy 169 

malnutrition (PEM) but without congenital abnormalities or cerebral palsy or heart disease or 170 

infants with low birth weight during their first year. PEM occurs characteristically in children under 171 

5 years of age in circumstances where the diet is poor in protein, calories and micronutrients, and 172 

insufficient to satisfy the body's nutritional needs. It remains one of the most common causes of 173 

morbidity and mortality among children worldwide (WHO, 1999).  174 

 175 

Assessment of risk of bias in included studies 176 

Risk of bias was assessed in order to evaluate the quality of the studies included. The following 177 

indicators of internal validity specific to the RCT methodology were collected during data 178 

extraction: 1) method of sequence generation and 2) adequate allocation, 3) blinding, 4) number of 179 

participants at start, dropouts and dropout reasons, 5) outcome data complete, 6) funder adequate 7) 180 

other potential funding bias . Based on these indicators, two reviewers assessed the overall risk of 181 

bias. Disagreements were resolved by discussion. The criteria for judging these indicators were 182 

adapted from the Cochrane Handbook for Systematic Reviews (Higgins & Green 2009) (Table 2). 183 

 184 

Statistical analyses 185 

 186 

Mean and standard deviation (SD) or standard errors (SE) of the outcome (serum/plasma Zn) were 187 

assessed. From the mean and SD of each study beta values (β) and their SE were calculated because 188 

the statistical model that we used to estimate the relation between Zn intake (x-variable) and 189 

serum/plasma Zn (y- variable) is based on the assumption that this intake-serum/plasma Zn status 190 

curve is a logarithmic function and that both intake and serum/plasma Zn status follow a log-normal 191 

distribution (the natural logarithm of intake and serum/plasma Zn status have a normal distribution). 192 

Thus, the expected value of the serum/plasma Zn status score is expressed as: 193 

µy = β * µx + intercept, where µy represents the mean of the natural logarithm of the y–variable (= 194 

serum/plasma Zn status score), β represents the regression coefficient, and µx represents the mean 195 

of the natural logarithm of the x-variable (= Zn intake). The method used to systematically review 196 
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differences was a formal meta–analysis (Greenland 1998). A random-effects model was considered 197 

to be more appropriate than a fixed-effects model. We used the DerSimonian and Laird’s 198 

(DerSimonian & Laird 1986) to pool the estimates of betas across studies. Under this model, the 199 

pooled effect was the beta in the status parameter (serum / plasma), for an increment of 1 unit in Zn 200 

intake. A pooled beta estimate was calculated as a weighted average of the beta reported in each 201 

study. 202 

The formula we used to estimate the weighted effect size was (Hedges 1982): 203 

β pooled = ∑ βi wi  ⁄ ∑ wi 204 

where β pooled is the pooled estimate of the beta in status parameters; the weight (wi) of each study 205 

was computed as:  206 

wi = 1 / Vi + 207 ²ح 

where V is the variance of each study and ح   ²  is the inter study variance. 208 

Besides this, we calculated a 95% confidence interval for the pooled estimated of effect size:     209 

95% CI= β pooled ± (1.96 x SE pooled) 210 

where SE is the standard error of the pooled estimate (Greenland 1998). 211 

 212 

A test of heterogeneity was calculated, estimating Q statistics, which follows a chi-square 213 

distribution with degrees of freedom n-1, n being the number of studies included in the analysis. 214 

The I² Index measures the extent of the heterogeneity. A low P value for this statistic (lower than 215 

0.05) indicates the presence of heterogeneity, which somewhat compromises the validity of the 216 

pooled estimates (Takkouche et al. 1999). Because significant heterogeneity was clearly evident in 217 

the pooled beta estimates for all studies combined in each outcome, we evaluated potential sources 218 

of heterogeneity by linear meta-regressions (Greenland 1998). We fitted a meta-regression using the 219 

duration of the intervention, the doses of Zn intake, the risk of bias, and the nutritional situation as 220 

independent variables. The betas of the different status parameters according to Zn intake were used 221 

as the dependent variable.  Statistical differences in multivariate adjusted mean beta values between 222 

each possible heterogeneity sources were determined by ANCOVA.  Additionally we carried out 223 

additional meta-analyses by subgroups considering only those groups which provided significant 224 

values in the meta-regression.  Microsoft Excel Version (7.0), SPSS 10.0 for Windows and Review 225 

Manager 5.1, were used to conduct the statistical analyses. 226 

 227 

Results 228 

 229 

Five thousand five hundred articles were identified in the initial search strategy. After applying the 230 

exclusion / inclusion criteria, 344 articles from the search appeared to be potentially relevant. After 231 
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applying the additional eligibility criteria and grouping the studies by outcome, 9 randomized 232 

controlled trials (17 estimations) were selected (Walravens et al. 1989; Bates et al. 1993; Sazawal et 233 

al. 1996, 2004; Umeta et al. 2000; Osendarp et al. 2002; Lind et al. 2003; Makonnen  et al. 2003; 234 

Wasantwisut  et al. 2006; Chang et al 2010). The 2013 update of the original search identified 4 235 

additional articles (Berger et al. 2006; Mazariegos et al. 2010; Ba Lo et al.  2011; Wessells et al. 236 

2012), providing a total of 13 articles (22 estimates) for meta-analysis (Figure 1). 237 

 238 

Descriptive characteristics of the studies included in the meta-analysis are presented in Table 2. Of 239 

the 13 studies included, only six comply strictly with the age infants (0 to 12 months) (Umeta et al. 240 

2000; Osendarp et al. 2002; Lind et al. 2003; Berger et al. 2006; Wasantwisut et al. 2006; 241 

Mazariegos et al. 2010). The other seven studies included this age among their sample, but did not 242 

clarify how many are actually aged 0 to 12 months (Walravens et al. 1989; Bates et al. 1993; 243 

Sazawal et al. 1996, 2004; Makonnen et al. 2003; Chang et al 2010; Ba Lo et al. 2011; Wessells et 244 

al. 2012). None of the ages extended beyond 27 months, except Makonnen et al. 2003 which 245 

included children up to 5 years. Thus the age range of the studies included was from 3 weeks to 60 246 

months. 247 

 248 

Six studies were conducted in Asia, one in North America, one in Latin America and the Caribbean 249 

and five in Africa. The duration of the interventions ranged from 2 to 24 weeks. Doses of Zn intake 250 

ranged from 2.5 to 20 mg per day. The nutritional situation of infants also varied between studies: 251 

six studies were conducted in healthy infants (Bates et al. 1993; Umeta et al. 2000; Osendarp et al. 252 

2002; Lind et al. 2003; Wasantwisut et al. 2006; Wessells et al. 2012), six studies were conducted 253 

on infants who were nutritionally at risk (Walravens et al. 1989; Sazawal et al. 1996, 2004; Berger 254 

et al. 2006; Chang et al 2010; Mazariegos et al. 2010; Ba Lo et al. 2011;), and one study was 255 

conducted on infants with poor nutritional status (Makonnen et al. 2003).  256 

Table 3 summaries the internal validity of the included studies, assessed as described in the data 257 

synthesis section. The risk of bias was high in two studies (Bates et al. 1993; Umeta et al. 2000), 258 

five had a moderate risk (Sazawal et al. 1996; 2004; Osendarp et al. 2002; Makonnen et al. 2003; 259 

Berger et al. 2006; Wessells et al. 2012) and six had a low risk of bias (Walravens et al. 1989; Lind 260 

et al 2003; Wasantwisut et al. 2006; Chang et al 2010; Mazariegos et al. 2010; Ba Lo et al. 2011). 261 

 262 

In general, most of the studies found a significant and direct association between Zn intake and 263 

serum/plasma Zn status, with β values ranged from 0.031 and 0.233. Only four studies reported no 264 

statistically significant association between Zn intake and serum/plasma Zn status (Walravens et al. 265 
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1989; Bates et al. 1993; Makonnen et al. 2003; Wessells et al. 2012 (a) Tablets group). In order to 266 

summarize the results we performed a formal meta-analysis (Figure 2). 267 

 268 

Differences between serum/plasma Zn status measured according to the intervention group in each 269 

particular study and in the pooled analysis are shown in Figure 2. The pooled β was 0.09 (95%CI 270 

0.05, 0.12). However, a substantial heterogeneity was present in the analyses (I² for status = 98%). 271 

In order to investigate which variables may be potential effect modifiers, we performed a meta-272 

regression (Table 4). The effect of Zn intake on serum/plasma Zn status changed depending on the 273 

duration of the intervention, the dose of supplementation and the nutritional situation (p 274 

ANCOVA= 0.054; <0.001 and <0.007) respectively. After stratifying the sample according to the 275 

effect modifiers identified in the meta-regression (Table 5) the results by duration of intervention 276 

showed no significant effect when the duration was short (1 to 3 weeks) (β = 0.02; CI 95% -0.03 to 277 

0.07). Nevertheless, a positive effect was shown when Zn intake was provided over medium (4 to 278 

20 weeks)( β = 0.09; CI 95% 0.06 to 0.13) and long periods of time (>20 weeks) (β = 0.12; CI 95% 279 

0.07 to 0.16). However these pooled β still revealed high evidence of statistically significant 280 

heterogeneity (I²= 91 and 96 %) respectively. When doses of Zn ranged from 4.1 to 8 mg/day, there 281 

was no significant effect of Zn intake on the serum/plasma Zn; whereas a positive effect was seen 282 

when doses ranged from 8.1 to 12 mg/day (β = 0.12; CI 95% 0.09 to 0.16). For doses higher than 12 283 

mg/day we found no effect. However high evidence of heterogeneity was observed (I²= from 77 to 284 

96 %). When studies were categorised by nutritional situation, those studies based on healthy 285 

infants and on infants at nutritional risk reported a positive association between Zn intake and 286 

serum/plasma Zn status (β= 0.19; CI 95% 0.04 to 0.13 and β= 0.10; CI 95% 0.05 to 0.15) 287 

respectively. However, no association was found when the nutritional situation was poor (β= 0.05; 288 

CI 95% -0.02 to 0.12). Once again, the pooled β still showed high evidence of heterogeneity (I²= 289 

from 95 to 99 %).  Due to the high heterogeneity found in all the analyses, we decided to avoid 290 

calculating the dose-response relationship between Zn intake and serum/plasma Zn status. 291 

 292 

Discussion 293 

 294 

Our results indicate that Zn supplementation increases serum/plasma Zn status in infants, as 295 

suggested by most of the individual studies. However the results obtained in the meta-analyses were 296 

highly heterogeneous. Moreover, after carrying out several subgroup analyses, the pooled β for each 297 

sub analysis still showed high evidence of heterogeneity. We argue that conducting a meta-analysis 298 

with such data is important in order to highlight the differences between the results of the studies 299 
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available, rather than to present a unifying synthesis (Delgado-Rodríguez & Sillero Arenas in 300 

press). 301 

 302 

The interpretation of these results should be carefully considered for a number of reasons. First, the 303 

number of studies that were eligible for inclusion in this meta-analysis was small, which limited the 304 

statistical power of the analyses to examine the relation between status responses to Zn 305 

supplementation. Thus, the small effect size we found may be explained by the limited amount of 306 

available information.  Also, it is well acknowledged that when many statistical comparisons are 307 

carried out, one or more might reach significance due to chance alone (Bland & Altman 1995). It is 308 

also important to consider the scientific quality of included studies. Although meta-analyses are 309 

increasingly used to consolidate results from multiple studies of the same topic and to develop 310 

evidence-based policies for clinical practice and public health programmes, the reliability of 311 

reached conclusions depend on the methodological quality of the original studies, the 312 

appropriateness of the study inclusion criteria, and the thoroughness of the review and synthesis of 313 

information (Brown et al. 2002). While strict systematic review protocols were followed adhering 314 

to EURRECA’s quality standards (Matthys et al 2011), an assessment of the risk of bias of included 315 

studies revealed that the majority (n=7) had a high to moderate risk of bias.  316 

 317 

Positive effects of Zn supplementation on mean serum Zn concentrations have also been reported in 318 

previous meta-analyses conducted in children, pregnant women and adults (Brown et al. 2002; Hess 319 

et al. 2007; Hall Moran et al 2012a, Hall Moran et al 2012b; Lowe et al 2012). In these meta-320 

analyses, there was a significantly positive effect of Zn supplementation over the mean serum Zn 321 

concentrations of the studied population. However, to our knowledge, meta-analytical methods have 322 

not yet been used to model serum/plasma Zn status as a function of Zn intake levels in infants. 323 

Understanding the relationship between dietary intake and micronutrient status is essential for 324 

deriving dietary recommendations. 325 

 326 

Population mean concentration of serum Zn is a useful indicator of the successful delivery and 327 

absorption of Zn supplements in infants. Both serum and plasma Zn concentrations are the most 328 

widely used biochemical indicators of serum/plasma Zn status but their levels are not necessarily 329 

identical. For instance, several biochemical studies designed to compare plasma and serum Zn 330 

concentrations observed higher levels of Zn in serum than in plasma (Kasperek et al. 1981; English 331 

& Hambidge 1988). These differences may have occurred because serum samples were separated 332 

from blood cells after a longer period of time than plasma samples, so more Zn went out from the 333 

cells into serum than into plasma. By controlling both, the amount of blood collected and the time 334 

Page 10 of 25Maternal & Child Nutrition



For Peer Review

11 

 

of cell separation, no differences were found in the Zn concentrations of serum and plasma (English 335 

& Hambidge 1988). For the sake of simplicity, this paper referred to “serum/plasma Zn” without 336 

making any distinction between them.  337 

 338 

Some confounders should be considered in evaluating the effect of Zn intake on infant 339 

serum/plasma Zn status. Those confounders include low birth weight, breastfeeding, protein energy 340 

malnutrition, poverty and social deprivation. The pre-existing serum/plasma Zn status of the study 341 

subjects, the content and bioavailability of Zn in the local diets, and the incidence of common 342 

infections that can affect individual’s serum/plasma Zn status are others important confounders to 343 

take into account. Moreover, methodological aspects of these studies, such as variations in the dose, 344 

chemical form, method of administration of Zn and duration of supplementation, may have 345 

influenced their results (Brown et al. 2002). However, with the exception of Bates et al (1993), all 346 

the RCTs included in the meta-analysis assumed no baseline differences in serum/plasma Zn. As all 347 

the studies included in our meta-analysis are RCTs we may assume that the randomization has been 348 

correct and these factors should not bias the results. 349 

 350 

Age of the study populations considered in this meta-analysis was another important point. We 351 

believe that there was no reason to exclude any study that did not adhere exclusively to the group of 352 

0 to 12 months of age. For this reason, we took into account all the studies which included this age 353 

group in the study, even if they were not analysed according to their age group (Walravens et al. 354 

1989; Bates et al. 1993; Makonnen et al. 2003; Sazawal et al. 2004, 1996; Chang et al. 2010; Ba Lo 355 

et al. 2011; Wessells et al. 2012) and assumed the consequences of this possible bias. Another 356 

confounding factor that might explain the inconsistency in our findings is that serum Zn 357 

concentrations vary according to the time of day, proximity of previously consumed meals, and 358 

occurrence of recent physical activity or other forms of stress, fluctuating by as much as 20% 359 

during a 24-hour period (Hambidge et al. 1989). The diurnal variation in circulating Zn 360 

concentration is largely a result of metabolic changes after meal consumption, although some 361 

variation may occur as a result of normal circadian variation in metabolism (Guillard et al. 1979; 362 

Wallock et al. 1993). Meal consumption results in a decrease in serum/plasma Zn concentrations, 363 

which add up following repeated meals (Goode 1991; Wallock et al. 1993), whereas overnight and 364 

daytime fasting result in increased circulating Zn concentrations (Wallock et al. 1993).  Of the 365 

studies included in our meta-analyses, those conducted by Walravens et al. 1989, Umeta et al. 2000, 366 

Osendarp et al. 2002, Berger et al. 2006, Wasantwisut et al. 2006, Ba lo et al. 2011 and Wessells et 367 

al. 2012 reported the time of the day when the blood samples were collected (during the morning). 368 
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Due to small numbers it was not possible to conduct a subgroup analysis on the time of the day that 369 

the samples were collected. 370 

 371 

Infection and inflammation can decrease serum/plasma Zn values, with the magnitude of change 372 

depending on the severity and stage of infection (Brown 1998). In community- based surveys, the 373 

reductions in serum/plasma Zn concentration due to infection average ~10% to 12% compared with 374 

healthy reference groups (Thurnham et al. 2005). Several other factors, such as low serum albumin, 375 

elevated white blood cell counts, use of hormones, can also affect serum/plasma Zn levels and must 376 

be considered in the interpretation of laboratory results (IZiNCG 2004). In our meta-analysis, all 377 

studies accounted for the presence of disease over the duration of the intervention and whether or 378 

not Zn levels were affected by that.  379 

 380 

Infants suffering from protein-energy malnutrition have low concentrations of Zn in serum/plasma, 381 

muscle and liver (Hansen & Lehman 1969; Cheek et al. 1970). Because Zn is needed for tissue 382 

synthesis during nutritional rehabilitation, the amount required may exceed dietary supply (Castillo-383 

Duran et al. 1987; Gibson et al. 1998). Makonnen et al 2003 were the only authors in our meta-384 

analysis which included infants with PEM. In this study, improvement in serum/plasma Zn status 385 

became evident only after 60 days. In children with PEM it takes over one month for serum levels 386 

to increase significantly, so this could explain the limited effect Zn supplementation had on 387 

serum/plasma Zn levels at 30 days. Inclusion of a study conducted in malnourished children might 388 

have contributed to the lack of significance in the present meta-analysis.  Finally, most of the 389 

studies were carried out among low-income populations of Asia and Africa and some of them were 390 

based on nutritionally at risk subjects so the generalization of the reported estimations to European 391 

populations could be compromised. 392 

 393 

In conclusion, a positive significant association was found between Zn intake and serum/plasma Zn 394 

status in infants. The magnitude of effect we found was in all cases rather small.  Based on this 395 

limited group of studies and their heterogeneity, we found insufficient current information to 396 

suggest that supplementation of Zn has a positive effect on infants’ serum/plasma Zn status or to 397 

recommend mean serum/plasma Zn concentration of a given population as a useful predictor of 398 

response to Zn supplementation. Further standardized research is urgently needed to reach 399 

evidence-based conclusions to clarify the role of Zn supplementation upon infant serum/plasma Zn 400 

status, particularly in Europe and other affluent societies. 401 

 402 

 403 
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Figure 1: Flow diagram for the systematic review. 
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Figure 2: Forest Plot of RCTs evaluating the effect of zinc intake on serum/plasma zinc    
                   status in infants 
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Table 1: Search strategy: MEDLINE February 2010  

 

(MEDLINE  home page. Available online: http://www.ncbi.nlm.nih.gov/pubmed/) 

No.  Search term 

 

Results 

1 randomized controlled trial.pt. 280,821 

  

2 controlled clinical trial.pt. 79,998  

 

3 randomised.ab. 196,604  

 

4 placebo.ab. 117,891  

 

5 clinical trials as topic.sh. 146,242  

 

6 randomly.ab. 145,491  

 

7 trial.ab. 203,467  

 

8 randomised.ab. 38,423  

 

9 6 or 3 or 7 or 2 or 8 or 1 or 4 or 5 734,511  

 

10 (animals not (human and animals)).sh. 4,482,479  

 

11 9 not 10 642,665  

 

12 (cohort* or ''case control*'' or cross-sectional* or ''cross sectional'' or case-control* or prospective or ''systematic 

review*'').mp. 

768,885  

 

 

13 exp meta-analysis/ or expmulticenter study/ or follow-up studies/ or prospective studies/ or intervention studies/ 

or epidemiologic studies/ or case-control studies/ or exp cohort studies/ or longitudinal studies/ or cross-

sectional studies/ 

1,013,635 

 

  

 

14 13 or 12 1,203,767  

   

15 14 not 10 1,154,385  

 

16 11 or 15 1,599,094 

  

17 ((zinc or zn or zinc sulphate or zinc gluconate or zinc acetate or methionine or zinc isotope*) adj3 (intake* or 

diet* or supplement* or deplet* or status or serum or plasma or leukocyte or concentration* or expos* or fortif* 

or urine or hair)).ti,ab. 

16,681 

 

 

 

18 Nutritional Support/ or Dietary Supplements/ or nutritional requirements/ or Breast feeding/ or exp infant food/ 

or bottle feeding/ or infant formula/ 

63,098  

 

 

19 exp Nutritional Status/ or exp Deficiency Diseases/ or supplementation/ or diet supplementation/ or dietary 

intake/ or exp diet restriction/ or exp mineral intake/ or Diet/ or Food, Fortified/ or nutrition assessment/ or 

Nutritive Value/ 

176,014  

 

 

 

20 (intake* or diet* or supplement* or deplet* or status or serum or plasma or leukocyte or concentration* or 

expos* or fortif* or urine or hair).ti,ab. 

3,166,092  

 

 

21 18 or 19 or 20 3,263,114  

 

22 zinc/ 41,027  

 

23 22 and 21 20,745  

 

24 23 or 17 26,943  

 

25 24 and 16 2410  
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Table 2:  Characteristics of the 13 (22 estimations) Status studies included in the meta-analysis 

Author Study 

year 

Country Sample 

Age range or Mean (SD) 

Number of 

Infants (n) 

Doses of Zinc/ 

day 

Time of the 

intervention 

Outcome 

(measure) 

Nutritional situation Risk of bias ² 

   Zn ¹ C¹ 

Ba Lo 2011 Senegal 9 to 17 months 33 32 6 mg 15 days Status (plasma) Nutritionally at risk Low risk 

   Bates   (a)        

               (b)                                                

1993 Gambia 5.7 to 27 months 30         

46 

28            

44 

20 mg 2 weeks               

8  weeks 

Status (plasma) Healthy  High risk 

Berger 2006 Vietnam 4 to 7 month 161 155 10 mg 24  weeks Status (serum) Nutritionally at risk Moderate  risk 

Chang 2010 Bangladesh 6 to 18 months 85 89 2,5 mg 24  weeks Status (serum) Nutritionally at risk Low risk 

Lind 2003 Indonesia 6.1 (0.5) months 134 143 10 mg 24  weeks Status (serum) Healthy Low risk 

                       (a) 

  Makonnen (b) 

                     (c) 

2003 Lesotho 6 to 60 months 142 

141 

138 

121 

119 

116 

10 mg         4  weeks 

8  weeks 

12 weeks 

Status (serum) Poor nutritional status Moderate  risk 

Mazariegos 

 

2010 Guatemala 6 to 12 months 24 29 5 mg 24  weeks Status (plasma) Nutritionally at risk Low risk 

Osendarp 2002 Bangladesh 3 to 5 weeks 138 133 5 mg 20  weeks Status (serum) Healthy  Moderate  risk 

   Sazawal   (a) 

                      (b) 

                    (c) 

                    (d) 

                    (e) 

1996- 

2004³ 

India 6 to 35 months 

6 to 11 months 

> 11 months 

Females 

Males 

223 

78 

69 

115 

108 

224 

78 

73 

106 

118 

10 mg 16  weeks 

 

Status (plasma) Nutritionally at risk Moderate  risk 
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 (a - e): Estimations                                                                                                                                                                                                                                                                                                                                                                 

¹Zn: Zinc group / ¹C: Control group                                                                                                                                                                                                                                                                                                                                                  

² Low risk of bias meant that the study was randomized, the randomization method was at least partially described, reasons for and numbers of dropouts were stated (or there were no dropouts), and the 

method used to assess compliance and some assessment of compliance were reported. All others studies were considered as moderate when they meet any of the above criteria or high risk of bias when they 

meet any of the criteria. (Higgins 2009, Cochrane Handbook)                                                                                                                                                                                                                                                                           

³Companion paper 

 

              (a) 

       Umeta 

             (b) 

2000 Ethiopia Zinc stunted                  9.5 (2.0) mo 

Placebo stunted           9.7 (2.0) mo  

Zinc non stunted           9.3 (2.1) mo  

Placebo non stunted    9.2 (2.0) mo 

25 

 

25 

25 

 

25 

8,57 mg  24  weeks 

 

Status (serum) 

 

Healthy  

 

High risk 

Walravens 1989 USA 8 to 27 months 16 25 5,7 mg         24  weeks Status (plasma) Nutritionally at risk Low risk 

Wasantwisut 2006 Thailand 4 to 6 months 58 66 10 mg 24  weeks Status (serum) Healthy  Low risk 

Wessells  

         (a)Tablets 

(b)Liquid 

2012 Burkina 

Faso 

6 to 23 month  

149        

146 

150 5 mg 3 weeks Status (plasma) Healthy Moderate  risk 
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Table 3: Assessment of internal validity in RCTs of serum/plasma Zn status. 

 

 

 

Author, Year 

Method of 

sequence 

generation 

Adequate 

allocation 
Blinding adequate 

Number at start, 

dropouts & 

dropouts reasons 

Outcome data 

complete 

Funder adequate  
Others potential 

funding bias 

 

Overall risk of 

bias 

 

Ba Lo 2011 

Bates  1993 

Berger 2006 

Chang 2010 

Lind  2003 

Makonnen  2003 

Mazariegos 2010 

Osendarp  2002 

Sazawal  1996-2004 

Umeta 2000 

Walravens 1989 

Wasantwisut  2006 

Wessells 2012 

 

Yes 

Yes 

Unclear 

Yes 

Yes 

Yes 

Yes 

Unclear 

Unclear 

Unclear 

Yes 

Yes 

Yes 

 

Yes 

No 

Unclear 

Yes 

Yes 

Unclear 

Yes 

Unclear 

Unclear 

Unclear 

Unclear 

Yes 

Yes 

 

Yes 

Unclear 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

No 

 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Unclear 

Yes 

Unclear 

Unclear 

Yes 

Yes 

Yes 

 

Yes 

No 

Yes 

Yes 

Yes 

Unclear 

Yes 

Yes 

Yes 

Unclear 

Yes 

Yes 

Yes 

 

Yes 

No 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

 

Low risk 

High risk 

Moderate risk 

Low risk 

Low risk 

Moderate risk 

Low risk 

Moderate risk 

Moderate risk 

High risk 

Low risk 

Low risk 

Moderate risk 

 

Page 23 of 25 Maternal & Child Nutrition



For Peer Review

Table 4:  Meta-regression. Multivariate adjusted mean beta for Status (95% confidence interval) by different characteristics of the  

                studies included in the meta-analysis 

 
 

 n  Mean Beta’s CI (95%) P Ancova* 

Status     

By duration of the intervention     

1 to 3 weeks 4 0.0221            -0.0752  to  0.1194  

4 to 20 weeks 10 0.0543 0.0142  to 0.0943  

> 20 weeks 8                      0.1331 0.0805  to 0.1858  

    0.054 

By Dose     

1 to 4 mg 1 -0.1025 -0.2081 to 0.0031  

4,1 to 8 mg 6 0.1893  0.1021 to 0.2764  

8,1 to 12 mg  13 0.1070  0.0650 to 0.1491  

> 12 mg 2 0.0855  0.0215 to 0.1495  

    <0.001 

By Nutritional situation     

Healthy 9 0.0456  0.0048 to 0.0863  

Nutritionally at risk 10 0.1184  0.0686 to 0.1681  

Poor nutritional situation 3 0.0456  0.0048 to 0.0863  

    <0.007 

By Risk of Bias     

Low 6 0.0978 0.0351 to 0.1606  

Moderate 12 0.0558 0.0140 to 0.0976  

High 4 0.0558 0.0140 to 0.0976  

    0.255 

 

* Adjusted for the rest of variables in the table 
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Table 5: Pooled beta (95% confidence intervals) in Status according to the intervention group.  

               Subgroup analyses. 

 

 

 

 Pooled estimates (β) Chi² (df, P) I² 

Status    

All Studies (n=22 ) 0.09 (0.05 to 0.12) 1166.30 (21,  < 0.00001) 98% 

By duration of the intervention    

1 to 3 weeks (n=4)   0.02 (-0.03 to 0.07) 31.78 (3,  < 0.00001) 91% 

4 to 20 weeks (n=10) 0.09 (0.06 to 0.13) 141.21 (9,   < 0.00001) 94% 

> 20 weeks (n=8)   0.12 (0.07 to 0.16) 162.64 (7,   < 0.00001) 96% 

By dose    

1 to 4 mg (n=1)  0.04 (0.01 to 0.07)   

4,1 to 8 mg (n=6)   0.04 (-0.01 to 0.09) 22.08  (5,   0.0005) 77% 

8,1 to 12 mg (n=13) 0.12 (0.09 to 0.16) 341.12  (12,   < 0.00001) 96% 

> 12 mg (n=2) 0.02 (-0.01 to 0.05) 7.21 (1,   0.007) 86% 

By Nutritional Situation    

Healthy (n=9) 0.09 (0.04 to 0.13) 220.90 (8,   < 0.00001) 96% 

Nutritionally at risk (n=10) 0.10 (0.05 to 0.15)  615.54 (9,   < 0.00001) 99% 

Poor nutritional status (n=3)  0.05 (-0.02 to 0.12)  39.26 (2,   < 0.00001) 95% 

 

*I² Index measures the extent of the heterogeneity 
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