

Central Lancashire Online Knowledge (CLoK)

Title	Effect of zinc intake on serum/plasma zinc status in infants: A meta-analysis
Type	Article
URL	https://clok.uclan.ac.uk/id/eprint/6857/
DOI	https://doi.org/10.1111/mcn.12045
Date	2013
Citation	Nissensohn, M, Sánchez Villegas, A, Fuentes Lugo, D, Henríquez Sánchez, P, Doreste Alonso, J, Lowe, Nicola M, Moran, Victoria Louise, Skinner, Annalouise, Warthon-medina, Marisol et al (2013) Effect of zinc intake on serum/plasma zinc status in infants: A meta-analysis. Maternal And Child Nutrition, 9 (3). pp. 285-298. ISSN 1740-8695
Creators	Nissensohn, M, Sánchez Villegas, A, Fuentes Lugo, D, Henríquez Sánchez, P, Doreste Alonso, J, Lowe, Nicola M, Moran, Victoria Louise, Skinner, Annalouise, Warthon-medina, Marisol and Serra-Majem, L

It is advisable to refer to the publisher's version if you intend to cite from the work. https://doi.org/10.1111/mcn.12045

For information about Research at UCLan please go to http://www.uclan.ac.uk/research/

All outputs in CLoK are protected by Intellectual Property Rights law, including Copyright law. Copyright, IPR and Moral Rights for the works on this site are retained by the individual authors and/or other copyright owners. Terms and conditions for use of this material are defined in the http://clok.uclan.ac.uk/policies/

Effect of zinc intake on serum/plasma zinc status in infants: A meta-analysis.

Journal:	Maternal & Child Nutrition
Manuscript ID:	MCN-08-12-RA-0777.R2
Manuscript Type:	Review Article
Keywords:	Epidemiology, Infant and Child Nutrition, Micronutrients, Nutritional Status, Systematic Review, Zinc

1	Effect of zinc intake on serum/plasma zinc status in infants: A meta-analysis.
2	
3	Nissensohn M¹'2*, Sánchez Villegas A¹'2, Fuentes Lugo D³, Henríquez Sánchez P¹'2, Doreste
4	Alonso J ¹ , Lowe NL ⁴ , Hall Moran V ⁵ , Skinner AL ⁴ , Warthon Medina M ⁴ , Serra-Majem L ¹ ²
5	
6	¹ Department of Clinical Sciences, University of Las Palmas de Gran Canaria, P.O. Box 550
7	35080 Las Palmas de Gran Canaria, Spain (MN mnissensohn@acciones.ulpgc.es; ASV
8	asanchez@dcc.ulpgc.es; PHS phenriquez@dcc.ulpgc.es; JDA jdoreste@dcc.ulpgc.es; LSM
9	lserra@dcc.ulpgc.es)
10	² Ciber Fisiopatología Obesidad y Nutrición (CIBEROBN, CB06/03), Instituto de Salud Carlos III, Spain (MN
11	mnissensohn@acciones.ulpgc.es; ASV asanchez@dcc.ulpgc.es; PHS phenriquez@dcc.ulpgc.es
12	LSM <u>lserra@dcc.ulpgc.es</u>)
13	³ Faculty of Health Sciences, Unacar, Ciudad del Carmen, Mexico (DFL daniel.fuentes@mac.com)
	⁴ International Institute of Nutritional Sciences and Food Safety Studies, University of Centra
	Lancashire, Preston PR1 2HE, UK (NL NMLowe@uclan.ac.uk; ALS ASkinner@uclan.ac.uk
	MWM MWathonmedina1@uclan.ac.uk)
14	⁵ Maternal & Infant Nutrition & Nurture Unit, University of Central Lancashire, Preston PR1 2HE
15	UK. (VHM vlmoran@uclan.ac.uk)
16	*Corresponding Author:
17	Nissensohn Mariela, Department of Clinical Sciences, University of Las Palmas de Gran Canaria
18	Las Palmas de Gran Canaria, Spain
19	phone: 0034 928 459816
20	fax: 0034 928 451416
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	

Abstract

A systematic review and meta-analysis of available RCTs was conducted to evaluate the effect of zinc (Zn) intake on serum/plasma Zn status in infants. Out of 5500 studies identified through electronic searches and reference lists, 13 RCTs were selected after applying the exclusion/inclusion criteria. The influence of Zn intake on serum/plasma Zn concentration was considered in the overall meta-analysis. Other variables were also taken into account as possible effect modifiers: doses of Zn intake, intervention duration, nutritional status and risk of bias. RESULTS: The pooled β of status was 0.09 (CI 0.05 to 0.12). However, a substantial heterogeneity was present in the analyses (I²= 98%; p=0.00001). When we performed a meta-regression, the effect of Zn intake on serum/plasma Zn status changed depending on the duration of the intervention, the dose of supplementation and the nutritional situation (p ANCOVA= 0.054; <0.001 and <0.007 respectively). After stratifying the sample according to the effect modifiers the results by duration of intervention showed a positive effect when Zn intake was provided during medium and long periods of time (4-20 weeks and >20 weeks). A positive effect was also seen when doses ranged from 8.1 to 12 mg/day. In all cases, the pooled β showed high evidence of heterogeneity. CONCLUSION: Zn supplementation increases serum/plasma Zn status in infants, although high evidence of heterogeneity was found. Further standardized research is urgently needed to reach evidence-based conclusions to clarify the role of Zn supplementation upon infant serum/plasma Zn status, particularly in Europe.

Keywords: EURRECA, zinc intake, serum/plasma Zn status, infants

Introduction

67

66

- 68 Zinc (Zn) is an essential nutrient, present in all body tissues and fluids. The biologic role of Zn is
- 69 now recognized in the structure and function of proteins, including more than 300 enzymes,
- 70 transcription factors, hormonal receptor sites, and biologic membranes. Zn has numerous central
- 71 roles in DNA and RNA metabolism (MacDonald 2000), and it is involved in signal transduction,
- 72 gene expression, and apoptosis. Zn enzymes are involved in nucleic acid metabolism and cellular
- proliferation, differentiation, and growth (Chesters 1978).
- Plasma Zn accounts for only about 0.1 per cent of the total body content. Zn has a rapid turnover,
- and its level appears to be under close homeostatic control. There is no 'store' for Zn in the
- conventional sense (Milne et al. 1983) and it is present in the body almost exclusively as Zn2+
- bound to cellular proteins (Makonnen et al. 2003).
- Assessment of the Zn nutriture of individuals is complicated by the fact that no generally accepted.
- sensitive and specific biomarker of serum/plasma Zn status exists (King 1990). Although it is true
- 80 that serum/plasma Zn concentrations decrease within several weeks of the introduction of a diet
- 81 containing a severely restricted amount of Zn (Baer et al. 1985), serum/plasma Zn concentrations
- are generally maintained within the normal range with small or moderate reductions in Zn intake.
- Moreover, factors unrelated to the level of Zn nutriture, such as recent meals, time of day, infection,
- 84 tissue catabolism, and pregnancy, can also affect serum/plasma Zn concentrations (King 1990;
- 85 Hambidge & Krebs 1995). Thus, the serum/plasma Zn concentration may not always be a reliable
- 86 indicator of an individual's true Zn status (Brown et al. 2002). Nevertheless a recent systematic
- 87 review concluded that serum/plasma Zn concentration was responsive to both Zn supplementation
- and depletion and it remains the most widely used biomarker for Zn (Lowe et al. 2009).

- 90 Infants have a relatively high requirement of Zn per unit body weight during a sensitive period of
- 91 rapid growth and development (Hermoso et al. 2010). Recommendations for Zn intake during
- 92 infancy vary widely across Europe, ranging from 1 mg/day up to 5 mg/day (Hermoso et al. 2010).
- 93 The EURRECA project attempts to consolidate the basis for the definition of micronutrient
- 94 requirements across Europe, taking into account relationships among intake, status and health
- outcomes, in order to harmonise these recommendations (Ashwell et al. 2008). This paper presents
- a systematic review of the data from all available randomized controlled trials (RCTs) meeting
- 97 EURRECA's quality standard (Matthys et al. 2011), which investigated Zn intake and biomarkers

of Zn status in infants, and combines these studies in meta-analyses to model Zn concentrations in serum or plasma as a function of Zn intake.

Materials and Methods

Search strategy

This research was conducted within the framework of the European Micronutrient Recommendations Aligned (EURRECA) Network of Excellence that aims to identify the micronutrient requirements for optimal health in European populations (www.eurreca.org). This review was part of a wider review process to identify studies assessing the effect of Zn intake on different outcomes (biomarkers of Zn status and health outcomes). The wider searches were performed of literature published up to and including February 2010, and an updated search was carried out in January 2013. The databases MEDLINE, EMBASE and Cochrane using search terms for "study designs in humans" and "zinc" and "intake". Both indexing and text terms were used and languages included were restricted to those spoken in the EURRECA Network (English, Dutch, French, German, Hungarian, Italian, Norwegian, Polish, Spanish, Greek, and Serbian.). The Ovid MEDLINE search strategy can be found in Table 1. Reference lists of retrieved articles and published literature reviews were also checked for relevant studies. The procedure for the identification, selection of articles and data extraction is illustrated in Figure 1.

Selection of articles

- Titles of articles identified from the searches were entered into an EndNote library. Papers were considered eligible for inclusion if they were RCTs, conducted in human infants (aged 0-12 months), and studied the effect of supplements, fortified foods or micronutrient intake from natural food sources, and assessed Zn concentrations in serum / plasma. Zn intake was assessed from breast milk, infant formula and food sources (e.g. complementary foods), fortified foods (e.g. fortified formula or cereal) and supplements.
- Exclusion criteria applied were: studies conducted in animals; combined interventions e.g. >1
 micronutrient or micronutrient + lifestyle intervention which did not study the effect of the
 micronutrient separately; non primary studies (e.g. letters & narrative literature reviews); duplicate
 publications; studies where the Zn intake status relationship was not reported or biomarkers of Zn
 other than serum / plasma Zn were used.

130

131

132

133

134

135

136

137

138

139

Briefly, titles and abstracts of the 10% of the library were screened in duplicate for eligibility by two reviewers and any discrepancies were discussed and resolved before screening the remaining references. Only when both reviewers agreed that titles and abstracts met the inclusion criteria were the articles included. When a title and abstract could not be included with certainty, the full text of the article was obtained and then further evaluated. The remaining 90% was distributed among the two reviewers in even parts. Following the initial screening process, full-text articles were obtained. Further inclusion and exclusion criteria were then applied. Papers were only included in the meta-analysis if they were: randomised controlled trials; had an intervention duration of at least 2 weeks; and reported baseline data for all outcome measures. Non-randomised controlled trials, uncontrolled trials or trials reporting insufficient or unclear data were excluded. Data were extracted from each study and organized in a Microsoft Access database file (Microsoft Corp, Redmond, WA).

140141

Data synthesis

142 When Zn status in serum/plasma was measured at different time points within the same population, 143 we used the measures as different estimations (Bates et al. 1993; Makonnen et al. 2003 I/II). One 144 study reported data from the total of infants included, between males and females separately, and 145 according to age (<11 months and > 11 months) (Sazawal et al. 1996; 2004) and it was treated as 146 five estimations within the meta-analysis. One study reported data from two groups of infants 147 (stunted and non stunted) and these were treated as two different estimations (Umeta et al. 2000). 148 One study reported data from two groups according to the form of Zn supplementation (tablets or 149 liquid) and these were treated as two estimations within the meta analysis (Wessells et al. 2012). Of 150 the selected studies, two RCTs were companion papers (Makonnen et al. 2003 I; Sazawal et al. 151 2004). If dietary intake of Zn (in addition to the intervention) was not reported in the RCTs, we 152 imputed a value of 1.3 mg/day, the mean dietary intake level of the RCTs that did report dietary Zn 153 intake. As mean baseline serum/plasma Zn concentrations were infrequently reported in the RCTs, 154 most of the RCTs assumed no differences in baseline serum/plasma Zn concentrations (n= 12). 155 Only one study, Bates et al. 1993, failed to report anything regarding baseline serum /plasma Zn 156 concentrations.

157

158

Exposure and outcome and other covariates assessment:

159

The influence of Zn intake on serum/plasma Zn concentrations was considered in the overall metaanalysis. Other variables were also taken into account as possible effect modifiers. We considered doses of Zn intake (1 to 4 mg, 4.1 to 8 mg, 8.1 to 12 mg, and >12.1 mg), intervention duration (1 to

163	3 weeks, 4 to 20 weeks, and > 20 weeks), nutritional situation (healthy, nutritionally at risk, and
164	poor nutritional status) and risk of bias (low, moderate or high).

Assessment of nutritional situation in included studies

Nutritionally at risk was defined as infants who lived in low income families with a low socioeconomic situation and poor nutritional status was defined as infants with protein energy malnutrition (PEM) but without congenital abnormalities or cerebral palsy or heart disease or infants with low birth weight during their first year. PEM occurs characteristically in children under 5 years of age in circumstances where the diet is poor in protein, calories and micronutrients, and insufficient to satisfy the body's nutritional needs. It remains one of the most common causes of morbidity and mortality among children worldwide (WHO, 1999).

- 176 Assessment of risk of bias in included studies
- Risk of bias was assessed in order to evaluate the quality of the studies included. The following indicators of internal validity specific to the RCT methodology were collected during data extraction: 1) method of sequence generation and 2) adequate allocation, 3) blinding, 4) number of participants at start, dropouts and dropout reasons, 5) outcome data complete, 6) funder adequate 7) other potential funding bias. Based on these indicators, two reviewers assessed the overall risk of bias. Disagreements were resolved by discussion. The criteria for judging these indicators were adapted from the Cochrane Handbook for Systematic Reviews (Higgins & Green 2009) (Table 2).

Statistical analyses

- Mean and standard deviation (SD) or standard errors (SE) of the outcome (serum/plasma Zn) were assessed. From the mean and SD of each study beta values (β) and their SE were calculated because the statistical model that we used to estimate the relation between Zn intake (x-variable) and serum/plasma Zn (y- variable) is based on the assumption that this intake-serum/plasma Zn status curve is a logarithmic function and that both intake and serum/plasma Zn status follow a log-normal distribution (the natural logarithm of intake and serum/plasma Zn status have a normal distribution). Thus, the expected value of the serum/plasma Zn status score is expressed as:
- $\mu y = \beta * \mu x + \text{intercept}$, where μy represents the mean of the natural logarithm of the y-variable (= serum/plasma Zn status score), β represents the regression coefficient, and μx represents the mean of the natural logarithm of the x-variable (= Zn intake). The method used to systematically review

- differences was a formal meta-analysis (Greenland 1998). A random-effects model was considered
- 198 to be more appropriate than a fixed-effects model. We used the DerSimonian and Laird's
- 199 (DerSimonian & Laird 1986) to pool the estimates of betas across studies. Under this model, the
- 200 pooled effect was the beta in the status parameter (serum / plasma), for an increment of 1 unit in Zn
- intake. A pooled beta estimate was calculated as a weighted average of the beta reported in each
- 202 study.
- 203 The formula we used to estimate the weighted effect size was (Hedges 1982):
- 204 $\beta pooled = \sum \beta i wi / \sum wi$
- where β pooled is the pooled estimate of the beta in status parameters; the weight (wi) of each study
- was computed as:
- 207 $wi = 1 / Vi + \tau^2$
- where V is the variance of each study and z^2 is the inter study variance.
- Besides this, we calculated a 95% confidence interval for the pooled estimated of effect size:
- 210 95% CI= β pooled \pm (1.96 x SE pooled)
- where SE is the standard error of the pooled estimate (Greenland 1998).
- 212
- 213 A test of heterogeneity was calculated, estimating Q statistics, which follows a chi-square
- distribution with degrees of freedom n-1, n being the number of studies included in the analysis.
- 215 The I² Index measures the extent of the heterogeneity. A low P value for this statistic (lower than
- 216 0.05) indicates the presence of heterogeneity, which somewhat compromises the validity of the
- pooled estimates (Takkouche et al. 1999). Because significant heterogeneity was clearly evident in
- the pooled beta estimates for all studies combined in each outcome, we evaluated potential sources
- of heterogeneity by linear meta-regressions (Greenland 1998). We fitted a meta-regression using the
- duration of the intervention, the doses of Zn intake, the risk of bias, and the nutritional situation as
- independent variables. The betas of the different status parameters according to Zn intake were used
- as the dependent variable. Statistical differences in multivariate adjusted mean beta values between
- 223 each possible heterogeneity sources were determined by ANCOVA. Additionally we carried out
- additional meta-analyses by subgroups considering only those groups which provided significant
- values in the meta-regression. Microsoft Excel Version (7.0), SPSS 10.0 for Windows and Review
- Manager 5.1, were used to conduct the statistical analyses.
- 227
- 228 Results
- 229
- Five thousand five hundred articles were identified in the initial search strategy. After applying the
- exclusion / inclusion criteria, 344 articles from the search appeared to be potentially relevant. After

232	applying the additional eligibility criteria and grouping the studies by outcome, 9 randomized
233	controlled trials (17 estimations) were selected (Walravens et al. 1989; Bates et al. 1993; Sazawal et
234	al. 1996, 2004; Umeta et al. 2000; Osendarp et al. 2002; Lind et al. 2003; Makonnen et al. 2003;
235	Wasantwisut et al. 2006; Chang et al 2010). The 2013 update of the original search identified 4
236	additional articles (Berger et al. 2006; Mazariegos et al. 2010; Ba Lo et al. 2011; Wessells et al.
237	2012), providing a total of 13 articles (22 estimates) for meta-analysis (Figure 1).
238	
239	Descriptive characteristics of the studies included in the meta-analysis are presented in Table 2. Of
240	the 13 studies included, only six comply strictly with the age infants (0 to 12 months) (Umeta et al.
241	2000; Osendarp et al. 2002; Lind et al. 2003; Berger et al. 2006; Wasantwisut et al. 2006;
242	Mazariegos et al. 2010). The other seven studies included this age among their sample, but did not
243	clarify how many are actually aged 0 to 12 months (Walravens et al. 1989; Bates et al. 1993;
244	Sazawal et al. 1996, 2004; Makonnen et al. 2003; Chang et al 2010; Ba Lo et al. 2011; Wessells et
245	al. 2012). None of the ages extended beyond 27 months, except Makonnen et al. 2003 which
246	included children up to 5 years. Thus the age range of the studies included was from 3 weeks to 60
247	months.
248	
249	Six studies were conducted in Asia, one in North America, one in Latin America and the Caribbean
250	and five in Africa. The duration of the interventions ranged from 2 to 24 weeks. Doses of Zn intake
251	ranged from 2.5 to 20 mg per day. The nutritional situation of infants also varied between studies:
252	six studies were conducted in healthy infants (Bates et al. 1993; Umeta et al. 2000; Osendarp et al.
253	2002; Lind et al. 2003; Wasantwisut et al. 2006; Wessells et al. 2012), six studies were conducted
254	on infants who were nutritionally at risk (Walravens et al. 1989; Sazawal et al. 1996, 2004; Berger
255	et al. 2006; Chang et al 2010; Mazariegos et al. 2010; Ba Lo et al. 2011;), and one study was
256	conducted on infants with poor nutritional status (Makonnen et al. 2003).
257	Table 3 summaries the internal validity of the included studies, assessed as described in the data
258	synthesis section. The risk of bias was high in two studies (Bates et al. 1993; Umeta et al. 2000),
259	five had a moderate risk (Sazawal et al. 1996; 2004; Osendarp et al. 2002; Makonnen et al. 2003;
260	Berger et al. 2006; Wessells et al. 2012) and six had a low risk of bias (Walravens et al. 1989; Lind
261	et al 2003; Wasantwisut et al. 2006; Chang et al 2010; Mazariegos et al. 2010; Ba Lo et al. 2011).
262	
263	In general, most of the studies found a significant and direct association between Zn intake and
264	serum/plasma Zn status, with β values ranged from 0.031 and 0.233. Only four studies reported no
265	statistically significant association between Zn intake and serum/plasma Zn status (Walravens et al.

1989; Bates et al. 1993; Makonnen et al. 2003; Wessells et al. 2012 (a) Tablets group). In order to summarize the results we performed a formal meta-analysis (Figure 2).

268

266

267

269 Differences between serum/plasma Zn status measured according to the intervention group in each 270 particular study and in the pooled analysis are shown in Figure 2. The pooled β was 0.09 (95%CI 271 0.05, 0.12). However, a substantial heterogeneity was present in the analyses (I² for status = 98%). 272 In order to investigate which variables may be potential effect modifiers, we performed a meta-273 regression (Table 4). The effect of Zn intake on serum/plasma Zn status changed depending on the 274 duration of the intervention, the dose of supplementation and the nutritional situation (p 275 ANCOVA= 0.054; <0.001 and <0.007) respectively. After stratifying the sample according to the 276 effect modifiers identified in the meta-regression (Table 5) the results by duration of intervention 277 showed no significant effect when the duration was short (1 to 3 weeks) ($\beta = 0.02$; CI 95% -0.03 to 278 0.07). Nevertheless, a positive effect was shown when Zn intake was provided over medium (4 to 279 20 weeks)($\beta = 0.09$; CI 95% 0.06 to 0.13) and long periods of time (>20 weeks) ($\beta = 0.12$; CI 95% 280 0.07 to 0.16). However these pooled β still revealed high evidence of statistically significant 281 heterogeneity (I²= 91 and 96 %) respectively. When doses of Zn ranged from 4.1 to 8 mg/day, there 282 was no significant effect of Zn intake on the serum/plasma Zn; whereas a positive effect was seen 283 when doses ranged from 8.1 to 12 mg/day ($\beta = 0.12$; CI 95% 0.09 to 0.16). For doses higher than 12 284 mg/day we found no effect. However high evidence of heterogeneity was observed (I²= from 77 to 285 96 %). When studies were categorised by nutritional situation, those studies based on healthy 286 infants and on infants at nutritional risk reported a positive association between Zn intake and 287 serum/plasma Zn status (β = 0.19; CI 95% 0.04 to 0.13 and β = 0.10; CI 95% 0.05 to 0.15) 288 respectively. However, no association was found when the nutritional situation was poor (β = 0.05; 289 CI 95% -0.02 to 0.12). Once again, the pooled β still showed high evidence of heterogeneity (I²= 290 from 95 to 99 %). Due to the high heterogeneity found in all the analyses, we decided to avoid 291 calculating the dose-response relationship between Zn intake and serum/plasma Zn status.

292

Discussion

293294295

296

297

298

299

Our results indicate that Zn supplementation increases serum/plasma Zn status in infants, as suggested by most of the individual studies. However the results obtained in the meta-analyses were highly heterogeneous. Moreover, after carrying out several subgroup analyses, the pooled β for each sub analysis still showed high evidence of heterogeneity. We argue that conducting a meta-analysis with such data is important in order to highlight the differences between the results of the studies

available, rather than to present a unifying synthesis (Delgado-Rodríguez & Sillero Arenas in press).

The interpretation of these results should be carefully considered for a number of reasons. First, the number of studies that were eligible for inclusion in this meta-analysis was small, which limited the statistical power of the analyses to examine the relation between status responses to Zn supplementation. Thus, the small effect size we found may be explained by the limited amount of available information. Also, it is well acknowledged that when many statistical comparisons are carried out, one or more might reach significance due to chance alone (Bland & Altman 1995). It is also important to consider the scientific quality of included studies. Although meta-analyses are increasingly used to consolidate results from multiple studies of the same topic and to develop evidence-based policies for clinical practice and public health programmes, the reliability of reached conclusions depend on the methodological quality of the original studies, the appropriateness of the study inclusion criteria, and the thoroughness of the review and synthesis of information (Brown et al. 2002). While strict systematic review protocols were followed adhering to EURRECA's quality standards (Matthys et al 2011), an assessment of the risk of bias of included studies revealed that the majority (n=7) had a high to moderate risk of bias.

Positive effects of Zn supplementation on mean serum Zn concentrations have also been reported in previous meta-analyses conducted in children, pregnant women and adults (Brown et al. 2002; Hess et al. 2007; Hall Moran et al 2012a, Hall Moran et al 2012b; Lowe et al 2012). In these meta-analyses, there was a significantly positive effect of Zn supplementation over the mean serum Zn concentrations of the studied population. However, to our knowledge, meta-analytical methods have not yet been used to model serum/plasma Zn status as a function of Zn intake levels in infants. Understanding the relationship between dietary intake and micronutrient status is essential for deriving dietary recommendations.

Population mean concentration of serum Zn is a useful indicator of the successful delivery and absorption of Zn supplements in infants. Both serum and plasma Zn concentrations are the most widely used biochemical indicators of serum/plasma Zn status but their levels are not necessarily identical. For instance, several biochemical studies designed to compare plasma and serum Zn concentrations observed higher levels of Zn in serum than in plasma (Kasperek et al. 1981; English & Hambidge 1988). These differences may have occurred because serum samples were separated from blood cells after a longer period of time than plasma samples, so more Zn went out from the cells into serum than into plasma. By controlling both, the amount of blood collected and the time

of cell separation, no differences were found in the Zn concentrations of serum and plasma (English & Hambidge 1988). For the sake of simplicity, this paper referred to "serum/plasma Zn" without making any distinction between them.

337338

339

340

341

342

343

344

345

346

347

348

349

335

336

Some confounders should be considered in evaluating the effect of Zn intake on infant serum/plasma Zn status. Those confounders include low birth weight, breastfeeding, protein energy malnutrition, poverty and social deprivation. The pre-existing serum/plasma Zn status of the study subjects, the content and bioavailability of Zn in the local diets, and the incidence of common infections that can affect individual's serum/plasma Zn status are others important confounders to take into account. Moreover, methodological aspects of these studies, such as variations in the dose, chemical form, method of administration of Zn and duration of supplementation, may have influenced their results (Brown et al. 2002). However, with the exception of Bates et al (1993), all the RCTs included in the meta-analysis assumed no baseline differences in serum/plasma Zn. As all the studies included in our meta-analysis are RCTs we may assume that the randomization has been correct and these factors should not bias the results.

350351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

Age of the study populations considered in this meta-analysis was another important point. We believe that there was no reason to exclude any study that did not adhere exclusively to the group of 0 to 12 months of age. For this reason, we took into account all the studies which included this age group in the study, even if they were not analysed according to their age group (Walravens et al. 1989; Bates et al. 1993; Makonnen et al. 2003; Sazawal et al. 2004, 1996; Chang et al. 2010; Ba Lo et al. 2011; Wessells et al. 2012) and assumed the consequences of this possible bias. Another confounding factor that might explain the inconsistency in our findings is that serum Zn concentrations vary according to the time of day, proximity of previously consumed meals, and occurrence of recent physical activity or other forms of stress, fluctuating by as much as 20% during a 24-hour period (Hambidge et al. 1989). The diurnal variation in circulating Zn concentration is largely a result of metabolic changes after meal consumption, although some variation may occur as a result of normal circadian variation in metabolism (Guillard et al. 1979; Wallock et al. 1993). Meal consumption results in a decrease in serum/plasma Zn concentrations, which add up following repeated meals (Goode 1991; Wallock et al. 1993), whereas overnight and daytime fasting result in increased circulating Zn concentrations (Wallock et al. 1993). Of the studies included in our meta-analyses, those conducted by Walravens et al. 1989, Umeta et al. 2000, Osendarp et al. 2002, Berger et al. 2006, Wasantwisut et al. 2006, Ba lo et al. 2011 and Wessells et al. 2012 reported the time of the day when the blood samples were collected (during the morning).

Due to small numbers it was not possible to conduct a subgroup analysis on the time of the day that the samples were collected.

Infection and inflammation can decrease serum/plasma Zn values, with the magnitude of change depending on the severity and stage of infection (Brown 1998). In community- based surveys, the reductions in serum/plasma Zn concentration due to infection average ~10% to 12% compared with healthy reference groups (Thurnham et al. 2005). Several other factors, such as low serum albumin, elevated white blood cell counts, use of hormones, can also affect serum/plasma Zn levels and must be considered in the interpretation of laboratory results (IZiNCG 2004). In our meta-analysis, all studies accounted for the presence of disease over the duration of the intervention and whether or not Zn levels were affected by that.

Infants suffering from protein-energy malnutrition have low concentrations of Zn in serum/plasma, muscle and liver (Hansen & Lehman 1969; Cheek et al. 1970). Because Zn is needed for tissue synthesis during nutritional rehabilitation, the amount required may exceed dietary supply (Castillo-Duran et al. 1987; Gibson et al. 1998). Makonnen et al 2003 were the only authors in our meta-analysis which included infants with PEM. In this study, improvement in serum/plasma Zn status became evident only after 60 days. In children with PEM it takes over one month for serum levels to increase significantly, so this could explain the limited effect Zn supplementation had on serum/plasma Zn levels at 30 days. Inclusion of a study conducted in malnourished children might have contributed to the lack of significance in the present meta-analysis. Finally, most of the studies were carried out among low-income populations of Asia and Africa and some of them were based on nutritionally at risk subjects so the generalization of the reported estimations to European populations could be compromised.

In conclusion, a positive significant association was found between Zn intake and serum/plasma Zn status in infants. The magnitude of effect we found was in all cases rather small. Based on this limited group of studies and their heterogeneity, we found insufficient current information to suggest that supplementation of Zn has a positive effect on infants' serum/plasma Zn status or to recommend mean serum/plasma Zn concentration of a given population as a useful predictor of response to Zn supplementation. Further standardized research is urgently needed to reach evidence-based conclusions to clarify the role of Zn supplementation upon infant serum/plasma Zn status, particularly in Europe and other affluent societies.

404	
405	
406	ACKNOWLEDGEMENTS: This research was undertaken as an activity of the European
407	Micronutrient Recommendations Aligned (EURRECA) Network of Excellence (www.eurreca.org)
408	funded by the European Commission Contract Number FP6 036196-2 (FOOD).
409	The original concept of the systematic review was undertaken by the EURRECA Network and
410	coordinated by partners based at Wageningen University (WU), the Netherlands, and the University
411	of East Anglia (UEA), United Kingdom. Susan Fairweather-Tait (UEA), Lisette de Groot (WU)
412	Pieter van' t Veer (WU), Kate Ashton (UEA), Amélie Casgrain (UEA), Adriënne Cavelaars (WU)
413	Rachel Collings (UEA), Rosalie Dhonukshe-Rutten (WU), Esmée Doets (WU), Linda Harvey
414	(UEA) and Lee Hooper (UEA) designed and developed the review protocol and search strategy.
415	The authors would also like to thank Lisa Verberne, Catarina Oliveira, Noé Brito García, María de
416	Rosario García Luzardo, Noemí Rodríguez Calcines and Yurena García Santos for their assistance
417	with the selection of studies and the extraction of data.
418	The authors' responsibilities were as follows: MN: analysis of the data and writing the manuscript
419	ALS & MN: review the papers, MWM: contribution to selection of papers and data extraction
420	ASV: support in data-analysis, DFL, PHS, JDA, NL, VMH and LSM provision of significan
421	advice. All authors directly participated in the planning, execution or analysis of the study and
422	reviewed the manuscript.
423	
424	reviewed the manuscript. CONFLICT OF INTEREST: Authors declare no conflicts of interest.
425	
426	CONFLICT OF INTEREST: Authors declare no conflicts of interest.
427	
428	
429	
430	References
431	Ashwell M, Lambert J.P, Alles M.S, Branca F, Bucchini L, Brzozowska A, et al.; EURRECA
432	Network (2008) How we will produce the evidence-based eurreca toolkit to support nutrition and
433	food policy. Eur J Nutr 47, 2-16.
434 435	Baer MT, King JC, Tamura T, Margen S, Bradfield RB, Weston WL, et al. (1985) Nitrogen
436	utilization, enzyme activity, glucose intolerance and leukocyte chemotaxis in human experimenta
437	zinc depletion. Am JClin Nutr 41 , 1220–35.
438	

- 439 Ba Lo N, Aaron GJ, Hess SY, Guiro AT, Wade S, Brown KH. (2011) Plasma zinc concentration
- increases within 2 weeks in healthy Senegalese men given liquid supplemental zinc, but not zinc-
- 441 fortified wheat bread. J Nutr 141(7):1369-74.
- Bates CJ, Evans PH, Dardenne M, Prentice A, Lunn PG, Northrop-Clewes CA, et al. (1993) A trial
- of zinc supplementation in young rural Gambian children. Br J Nutr **69**, 243–55.

- Berger J, Ninh NX, Khan NC, Lien DK, Trung NQ, Khoi HH (2006) Efficacy of combined iron and
- 246 zinc supplementation on micronutrient status and growth in Vietnamese infants. Eur J Clin Nutr
- 447 60(4): 443-54.

448

- Bland JM, Altman DG (1995) Multiple significance tests: the Bonferroni method. BMJ 21, 310
- 450 (6973):170.

451

- Brown KH (1998) Effect of infections on plasma zinc concentration and implications for zinc status
- assessment in low-income countries. Am J Clin Nutr **68**, suppl 2, 425–9S.

454

- Brown KH, Peerson JM, Rivera J, Allen LH (2002) Effect of supplemental zinc on the growth and
- 456 serum zinc concentrations of prepubertal children: a meta-analysis of randomized controlled trials.
- 457 Am J Clin Nutr **75**, 1062–1071.

458

- Castillo-Duran C, Heresi G, Fisberg M, Uauy R (1987) Controlled trial of zinc supplementation
- during recovery from malnutrition: effects on growth and immune function. Am J Clin Nutr 45,
- 461 602–8.

462

- Chang S, El Arifeen S, Bari S, Wahed MA, Rahman KM, Rahman MT, et al. (2010) Supplementing
- 464 iron and zinc: double blind, randomized evaluation of separate or combined delivery. Eur J Clin
- 465 Nutr **64** (2), 153-60.

466

- 467 Cheek DB, Hill DE, Cordano A, Graham GG (1970) Malnutrition in infancy. Changes in muscle
- and adipose tissue before and after rehabilitation. Pediatr Res 4, 135–44.

469

Chesters JK (1978) Biochemical functions of zinc in animals. World Rev Nutr; Diet **32**, 135–64.

471 472

472 DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin. Trials 7, 177–188.

473

- 474 Delgado-Rodríguez M, Sillero Arenas M. Revisión sistemática y metaanálisis. En Martinez
- 475 Gonzalez MA, Alonso A, Guillén Grima F, Sanchez-Villegas A, Tomás Obrador Vera G (eds).
- 476 Conceptos de salud Pública y estrategias preventivas. Manual para ciencias de la Salud. Elsevier
- 477 España S.L. 2012 (en prensa). p 55 61.

478

- 479 English JL, Hambidge KM (1988) Plasma and serum zinc concentrations: effect of time between
- 480 collection and separation. Clin Chim Acta 175, 211–5.

481

- 482 Gibson RS, Yeudall F, Drost N, Mtitimuni B, Cullinan T(1998) Dietary interventions to prevent
- zinc deficiency. Am J Clin Nutr **68** (Suppl): 484S–7S.

- 485 Goode HF, Robertson DA, Kelleher J, Walker BE (1991) Effect of fasting, self-selected and
- isocaloric glucose and fat meals and intravenous feeding on plasma zinc concentrations. Ann Clin 486
- 487 Biochem **28**(5), 442–5.

488

489 Greenland S (1998) Meta-analysis. In Modern Epidemiology. eds. K.J. Rothman, & S.S. Greenland 490 pp. 643–673. Philadelphia: Lippincott Raven.

491

492 Guillard O, Piriou A, Gombert J, Reiss D (1979) Diurnal variations of zinc, copper and magnesium 493 in the serum of normal fasting adults. Biomedicine **31**, 193–4.

494

495 Hall Moran V, Skinner A, Warthon Medina M, Patel S, Dykes F, Souverein OW, Dullemeijer C, 496 Lowe NM (2012) The relationship between zinc intake and serum/plasma zinc concentration in 497 pregnant and lactating women: a systematic review with dose-response meta-analyses. Journal of Trace Elements in Medicine and Biology 26, 74–79.

498

- 499
- 500 Hall Moran V, Skinner A, Warthon Medina M, Patel S, Dykes F, Souverein OW, Dullemeijer C,
- 501 Pérez-Rodrigo C, Serra-Majem L, Nissensohn M, Lowe NM (2012) The Relationship between
- Zinc Intake and Serum/Plasma Zinc Concentration in Children: A Systematic Review and Dose-502
- 503 Response Meta-Analysis. *Nutrients* 4(8), 841-858.

504 505

- 506 Hambidge KM, Goodall MJ, Stall C, Pritts J (1989) Post-prandial and daily changes in plasma zinc.
- 507 J Trace Elem Electrolytes Health Dis 3, 55–7.

508

509 Hambidge M, Krebs N (1995) Assessment of zinc status in man. Indian J Pediatr 62, 157–68.

510

- 511 Hansen DJL, Lehman BH (1969) Serum Zn and copper concentrations in children with protein
- 512 calorie malnutrition. S Afr Med J 43, 1248-51.

513

- 514 Hedges LV (1982) Estimation of effect size from a series of independent experiments. Psychol. Bull
- 515 **92**, 490–499.
- 516 Hermoso M, Tabacchi G, Iglesia-Altaba I, Bel-Serrat S, Moreno-Aznar LA, García-Santos Y, et al.
- 517 (2010) The nutritional requirements of infants. Towards EU alignment of reference values: the
- 518 EURRECA network. Maternal & Child Nutrition 6, suppl 2, 55-83.
- 519 Hess SY, Peerson JM, King JC, Brown KH (2007) Use of serum zinc concentration as an indicator
- 520 of population zinc status. Food Nutr Bull 28, S403–S429.

521

- 522 Higgins JPT, Green S (editors) (2009) Cochrane Handbook for Systematic Reviews for
- 523 Interventions Version 5.0.2. The Cochrane Collaboration;
- 524 http://www.cochrane.org/training/cochrane-handbook

525

- 526 International Zinc Nutrition Consultative Group (IZiNCG) (2004) Assessment of the risk of zinc
- 527 deficiency in populations and options for its control. Hotz C. Brown KH, ed. Food Nutr Bull 25,
- 528 suppl 2, S94-S203.

- 530 Kasperek K, Kiem J, Iyengar GV, Feinendegen LE (1981) Concentration differences between
- serum and plasma of the elements cobalt, iron, mercury, rubidium, selenium and zinc determined by
- neutron activation analysis. Sci Total Environ 17, 133–43.

534 King JC (1990) Assessment of zinc status. J Nutr **120**, 1474–9.

535

- Lind T, Lönnerdal B, Stenlund H, Ismail D, Seswandhana R, Ekström EC, et al. (2003) A community-based randomized controlled trial of iron and zinc supplementation in Indonesian
- infants: interactions between iron and zinc. Am J Clin Nutr 77, 883–90.

539

Lowe NM, Fekete K, Decsi T (2009) Methods of assessment of zinc status in humans: A systematic review. Am J Clin Nutr **89**, 2040S-2051S.

542

- Lowe NM, Warthon Medina M, Skinner A, , Patel S, , Souverein OW, Dullemeijer C, Serra-Majem
 L, Nissensohn M, Hall Moran V (2012) The relationship between zinc intake and serum/plasma
 zinc concentration in adults. A systematic review and dose-response meta-analysis by the
- 546 EURRECA Network. *B J Nutr* 108, 1962–1971

547548

- MacDonald RS (2000) The role of zinc in growth and cell proliferation. J Nutr 130 Suppl 55.
- 550 1500S-8S.

551

- Makonnen B, Venter A, Joubert G (2003) A randomized controlled study of the impact of dietary
- zinc supplementation in the management of children with protein–energy malnutrition in Lesotho I:
- Mortality and morbidity. J Trop Pediatr **49**, 340–52.

555

- Makonnen B, Venter A, Joubert G (2003) A randomized controlled study of the impact of dietary
- zinc supplementation in the management of children with protein-energy malnutrition in Lesotho.
- 558 II: Special investigations. J Trop Pediatr 49, 353-60.

559

Matthys C, van 't Veer P, de Groot L, Hooper L, Cavelaars AE, Collings R, et al. (2011): Eurreca's approach for estimating micronutrient requirements. International J Vit and Nutr Res **81**, 256-263.

562

- Mazariegos M, Hambidge KM, Westcott JE, Solomons NW, Raboy V, Das A, Goco N, Kindem M,
- Wright LL, Krebs NF (2010) Neither a zinc supplement nor phytate-reduced maize nor their
- combination enhance growth of 6- to 12-month-old Guatemalan infants. J Nutr 140(5):1041-8.

566

- Milne DB, Canfield WK, Mahalko JR, Sandstead HH (1983) Effect of dietary zinc on whole body surface loss of zinc: impact on estimation of zinc retention by balance method. Am J Clin Nutr **38**,
- 569 181–86.

570

- Osendarp SJ, Santosham M, Black RE, Wahed MA, van Raaij JM, Fuchs GJ (2002) Effect of zinc
- 572 supplementation between 1 and 6 mo of life on growth and morbidity of Bangladeshi infants in
- 573 urban slums. Am J Clin Nutr **76**(6), 1401-8.

575	Prasad AS (1991): Discovery of human zinc deficiency and studies in an experimental human
576	model. Am J Clin Nutr 53 , 403–12.
577	
578	
579	Sazawal S, Black RE, Bhan MK, Jalla S, Bhandari N, Sinha A, Majumdar S (1996) Zinc
580	supplementation reduces the incidence of persistent diarrhea and dysentery among low
581	socioeconomic children in India. J Nutr 126 (2), 443-50.
582	
583	Sazawal S, Malik P, Jalla S, Krebs N, Bhan MK, Black RE (2004) Zinc supplementation for four
584	months does not affect plasma copper concentration in infants. Acta Paediatr 93(5), 599-602.
585	
586	
587	Takkouche B, Cadarso-Suarez C, Spiegelman D (1999) Evaluation of old and new tests of
588	heterogeneity in epidemiologic meta-analysis. Am. J. Epidemiol 150, 206–215.
589	
590	Thurnham DI, Mburu AS, Mwaniki DL, De Wagt A (2005) Micronutrients in childhood and the
591	influence of subclinical inflammation. Proc Nutr Soc 64 , 502–9.
592	
593	Umeta M, West CE, Haider J, Deurenberg P, Hautvast JG (2000) Zinc supplementation and stunted
594	infants in Ethiopia: a randomized controlled trial. Lancet 355, 2021–6.
595	
596	Wallock LM, King JC, Hambidge KM (1993) Meal-induced changes in plasma, erythrocyte, and
597	urinary zinc concentrations in adult women. Am J Clin Nutr 58 , 695–701.
598	
599	Walravens PA, Hambidge KM, Koepfer DM (1989) Zinc supplementation in infants with a
600	nutritional pattern of failure to thrive: a double-blind controlled study. Pediatrics 83, 532–38.
601	
602	Wasantwisut E, Winichagoon P, Chitchumroonchokchai C, Yamborisut U, Boonpraderm A,
603	Pongcharoen T, et al.(2006) Iron and zinc supplementation improved iron and zinc status, but not
604	physical growth, of apparently healthy, breast-fed infants in rural communities of northeast
605	Thailand. J Nutr 136 (9), 2405-11.
606	

Wessells KR, Ouédraogo ZP, Rouamba N, Hess SY, Ouédraogo JB, Brown KH (2012) Short-term zinc supplementation with dispersible tablets or zinc sulfate solution yields similar 608 positive effects on plasma zinc concentration of young children in Burkina Faso: a randomized 609 controlled trial. J Pediatr 160(1):129-35. 610

611

607

World Health Organization. Nutrition for health and development. WHO, Geneva, 1999. 612

Figure 1: Flow diagram for the systematic review.

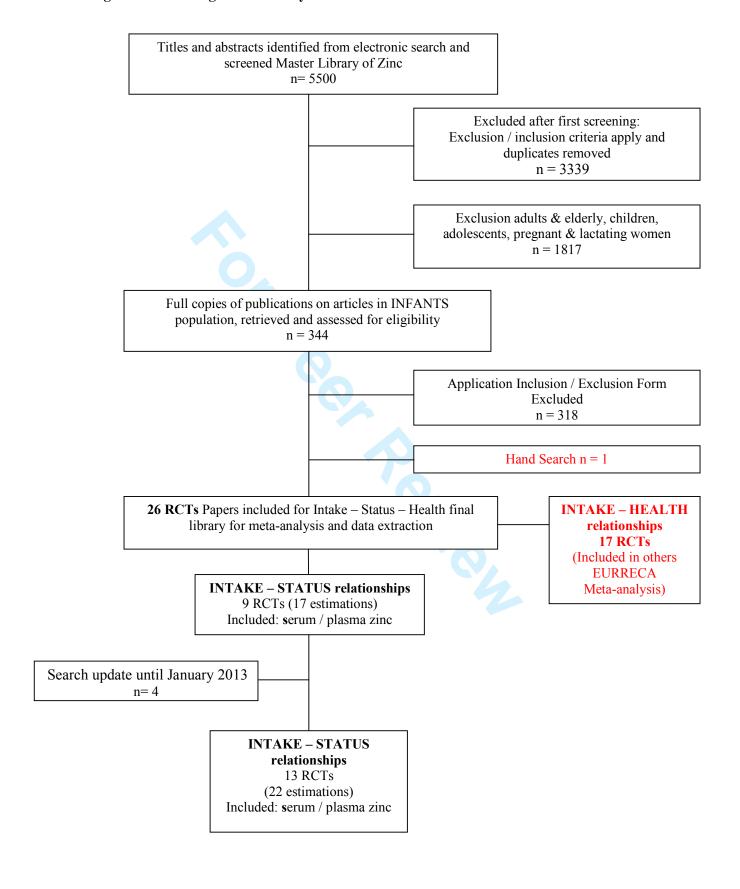


Figure 2: Forest Plot of RCTs evaluating the effect of zinc intake on serum/plasma zinc status in infants

				BETA	BETA
Study or Subgroup	BETA	SE	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Ba Lo 20011	0.05921769	0.003973	5.1%	0.06 [0.05, 0.07]	•
Bates, 1993a	-0.00051974	0.0105164	5.0%	-0.00 [-0.02, 0.02]	,
Bates, 1993b	0.03166414	0.0057522	5.1%	0.03 [0.02, 0.04]	*
Berger 2006	0.17533735	0.0029027	5.1%	0.18 [0.17, 0.18]	
Chang, 2010	0.03736004	0.0153694	4.9%	0.04 [0.01, 0.07]	-
Lind, 2003	0.1145842	0.0072846	5.1%	0.11 [0.10, 0.13]	
Makonnen, 2003a	-0.00907326	0.0124158	5.0%	-0.01 [-0.03, 0.02]	-
Makonnen, 2003b	0.05789898	0.0153531	4.9%	0.06 [0.03, 0.09]	-
Makonnen, 2003c	0.11079844	0.0148662	4.9%	0.11 [0.08, 0.14]	
Mazariegos 2010	0.04677569	0.0725893	2.6%	0.05 [-0.10, 0.19]	50 V 25 34
Osendrap, 2002	0.12128316	0.0138216	4.9%	0.12 [0.09, 0.15]	λγ . *
Sazawal, 1996 - 2004a	0.16376497	0.0236563	4.6%	0.16 [0.12, 0.21]	
Sazawal, 1996 - 2004b	0.08166184	0.0257183	4.6%	0.08 [0.03, 0.13]	<u>₹ * 0</u>
Sazawal, 1996 - 2004c	0.14984787	0.0243767	4.6%	0.15 [0.10, 0.20]	
Sazawal, 1996 - 2004d	0.1134876	0.018524	4.8%	0.11 [0.08, 0.15]	
Sazawal, 1996 - 2004e	0.13542532	0.0210504	4.7%	0.14 [0.09, 0.18]	33
Umeta, 2000a	0.17332506	0.0284875	4.5%	0.17 [0.12, 0.23]	
Umeta, 2000b	0.09082382	0.030659	4.4%	0.09 [0.03, 0.15]	(C. 1)
Walravens, 1989	-0.07779454	0.064586	2.9%	-0.08 [-0.20, 0.05]	2 4 5 4
Wasantwisut, 2006	0.23362817	0.0208732	4.7%	0.23 [0.19, 0.27]	4 0.
Wessells 2012 a (Tablets)	-0.01835255	0.0445956	3.7%	-0.02 [-0.11, 0.07]	-
Wessells 2012 b (liquid)	0.00400245	0.0451927	3.7%	0.00 [-0.08, 0.09]	
Total (95% CI)			100.0%	0.09 [0.05, 0.12]	•
Heterogeneity: Tau ^z = 0.01; ≀ Test for overall effect: Z = 5.1			0.00001);	I²= 98% -	-0.2 -0.1 0 0.1 0.2

Table 1: Search strategy: MEDLINE February 2010

(MEDLINE home page. Available online: http://www.ncbi.nlm.nih.gov/pubmed/)

No.	Search term	Results
1	randomized controlled trial.pt.	280,821
2	controlled clinical trial.pt.	79,998
3	randomised.ab.	196,604
4	placebo.ab.	117,891
5	clinical trials as topic.sh.	146,242
6	randomly.ab.	145,491
7	trial.ab.	203,467
8	randomised.ab.	38,423
9	6 or 3 or 7 or 2 or 8 or 1 or 4 or 5	734,511
10	(animals not (human and animals)).sh.	4,482,479
11	9 not 10	642,665
12	(cohort* or "case control*" or cross-sectional* or "cross sectional" or case-control* or prospective or "systematic review*").mp.	768,885
13	exp meta-analysis/ or expmulticenter study/ or follow-up studies/ or prospective studies/ or intervention studies/ or epidemiologic studies/ or case-control studies/ or exp cohort studies/ or longitudinal studies/ or cross-sectional studies/	1,013,635
14	13 or 12	1,203,767
15	14 not 10	1,154,385
16	11 or 15	1,599,094
17	((zinc or zn or zinc sulphate or zinc gluconate or zinc acetate or methionine or zinc isotope*) adj3 (intake* or diet* or supplement* or deplet* or status or serum or plasma or leukocyte or concentration* or expos* or fortif* or urine or hair)).ti,ab.	16,681
18	Nutritional Support/ or Dietary Supplements/ or nutritional requirements/ or Breast feeding/ or exp infant food/ or bottle feeding/ or infant formula/	63,098
19	exp Nutritional Status/ or exp Deficiency Diseases/ or supplementation/ or diet supplementation/ or dietary intake/ or exp diet restriction/ or exp mineral intake/ or Diet/ or Food, Fortified/ or nutrition assessment/ or Nutritive Value/	176,014
20	(intake* or diet* or supplement* or deplet* or status or serum or plasma or leukocyte or concentration* or expos* or fortif* or urine or hair).ti,ab.	3,166,092
21	18 or 19 or 20	3,263,114
22	zinc/	41,027
23	22 and 21	20,745
24	23 or 17	26,943
25	24 and 16	2410

Table 2: Characteristics of the 13 (22 estimations) Status studies included in the meta-analysis

Author	Study year	Country	Sample Age range or Mean (SD)	Number of Infants (n)		Doses of Zinc/ day	Time of the intervention	Outcome (measure)	Nutritional situation	Risk of bias ²
			g g (.)	Zn ¹	C ¹					
Ba Lo	2011	Senegal	9 to 17 months	33	32	6 mg	15 days	Status (plasma)	Nutritionally at risk	Low risk
Bates (a)	1993	Gambia	5.7 to 27 months	30	28	20 mg	2 weeks	Status (plasma)	Healthy	High risk
(b)			OA	46	44		8 weeks			
Berger	2006	Vietnam	4 to 7 month	161	155	10 mg	24 weeks	Status (serum)	Nutritionally at risk	Moderate risk
Chang	2010	Bangladesh	6 to 18 months	85	89	2,5 mg	24 weeks	Status (serum)	Nutritionally at risk	Low risk
Lind	2003	Indonesia	6.1 (0.5) months	134	143	10 mg	24 weeks	Status (serum)	Healthy	Low risk
(a)	2003	Lesotho	6 to 60 months	142	121	10 mg	4 weeks	Status (serum)	Poor nutritional status	Moderate risk
Makonnen (b)				141	119		8 weeks			
(c)				138	116		12 weeks			
Mazariegos	2010	Guatemala	6 to 12 months	24	29	5 mg	24 weeks	Status (plasma)	Nutritionally at risk	Low risk
Osendarp	2002	Bangladesh	3 to 5 weeks	138	133	5 mg	20 weeks	Status (serum)	Healthy	Moderate risk
Sazawal (a)	1996-	India	6 to 35 months	223	224	10 mg	16 weeks	Status (plasma)	Nutritionally at risk	Moderate risk
(b)	2004³		6 to 11 months	78	78					
(c)			> 11 months	69	73					
(d)			Females	115	106					
(e)			Males	108	118					

(a)	2000	Ethiopia	Zinc stunted 9.5 (2.0) mo Placebo stunted 9.7 (2.0) mo	25	25	8,57 mg	24 weeks	Status (serum)	Healthy	High risk
Umeta			, ,							
(b)			Zinc non stunted 9.3 (2.1) mo Placebo non stunted 9.2 (2.0) mo	25	25					
Walravens	1989	USA	8 to 27 months	16	25	5,7 mg	24 weeks	Status (plasma)	Nutritionally at risk	Low risk
Wasantwisut	2006	Thailand	4 to 6 months	58	66	10 mg	24 weeks	Status (serum)	Healthy	Low risk
Wessells	2012	Burkina Faso	6 to 23 month	1.10	150	5 mg	3 weeks	Status (plasma)	Healthy	Moderate risk
(a)Tablets (b)Liquid			0	149 146						

(a - e): Estimations

¹Zn: Zinc group / ¹C: Control group

² Low risk of bias meant that the study was randomized, the randomization method was at least partially described, reasons for and numbers of dropouts were stated (or there were no dropouts), and the method used to assess compliance and some assessment of compliance were reported. All others studies were considered as moderate when they meet any of the above criteria or high risk of bias when they meet any of the criteria. (Higgins 2009, Cochrane Handbook)

³Companion paper

Table 3: Assessment of internal validity in RCTs of serum/plasma Zn status.

Author, Year	Method of sequence generation	Adequate allocation	Blinding adequate	Number at start, dropouts & dropouts reasons Outcome data complete	Funder adequate	Others potential funding bias	Overall risk of bias
Ba Lo 2011	Yes	Yes	Yes	Yes	Yes	Yes	Low risk
Bates 1993	Yes	No	Unclear	Yes	No	No	High risk
Berger 2006	Unclear	Unclear	Yes	Yes	Yes	Yes	Moderate risk
Chang 2010	Yes	Yes	Yes	Yes	Yes	Yes	Low risk
Lind 2003	Yes	Yes	Yes	Yes	Yes	Yes	Low risk
Makonnen 2003	Yes	Unclear	Yes	Yes	Unclear	Yes	Moderate risk
Mazariegos 2010	Yes	Yes	Yes	Unclear	Yes	Yes	Low risk
Osendarp 2002	Unclear	Unclear	Yes	Yes	Yes	Yes	Moderate risk
Sazawal 1996-2004	Unclear	Unclear	Yes	Unclear	Yes	Yes	Moderate risk
Umeta 2000	Unclear	Unclear	Yes	Unclear	Unclear	Yes	High risk
Walravens 1989	Yes	Unclear	Yes	Yes	Yes	Yes	Low risk
Wasantwisut 2006	Yes	Yes	Yes	Yes	Yes	Yes	Low risk
Wessells 2012	Yes	Yes	No	Yes	Yes	Yes	Moderate risk

Table 4: Meta-regression. Multivariate adjusted mean beta for Status (95% confidence interval) by different characteristics of the studies included in the meta-analysis

	n	Mean Beta's	CI (95%)	P Ancova*
Status				
By duration of the intervention				
1 to 3 weeks	4	0.0221	-0.0752 to 0.1194	
4 to 20 weeks	10	0.0543	0.0142 to 0.0943	
> 20 weeks	8	0.1331	0.0805 to 0.1858	
				0.054
By Dose				
1 to 4 mg	1	-0.1025	-0.2081 to 0.0031	
4,1 to 8 mg	6	0.1893	0.1021 to 0.2764	
8,1 to 12 mg	13	0.1070	0.0650 to 0.1491	
> 12 mg	2	0.0855	0.0215 to 0.1495	
				< 0.001
By Nutritional situation				
Healthy	9	0.0456	0.0048 to 0.0863	
Nutritionally at risk	10	0.1184	0.0686 to 0.1681	
Poor nutritional situation	3	0.0456	0.0048 to 0.0863	
			7(8)	< 0.007
By Risk of Bias				
Low	6	0.0978	0.0351 to 0.1606	
Moderate	12	0.0558	0.0140 to 0.0976	
High	4	0.0558	0.0140 to 0.0976	
				0.255

^{*} Adjusted for the rest of variables in the table

Table 5: Pooled beta (95% confidence intervals) in Status according to the intervention group. Subgroup analyses.

	Pooled estimates (β)	Chi ² (df, P)	\mathbf{I}^2	
Status				
All Studies (n=22)	0.09 (0.05 to 0.12)	1166.30 (21, < 0.00001)	98%	
By duration of the intervention	OA			
1 to 3 weeks (n=4)	0.02 (-0.03 to 0.07)	31.78 (3, < 0.00001)	91%	
4 to 20 weeks (n=10)	0.09 (0.06 to 0.13)	141.21 (9, < 0.00001)	94%	
> 20 weeks (n=8)	0.12 (0.07 to 0.16)	162.64 (7, < 0.00001)	96%	
By dose				
1 to 4 mg (n=1)	0.04 (0.01 to 0.07)			
4,1 to 8 mg (n=6)	0.04 (-0.01 to 0.09)	22.08 (5, 0.0005)	77%	
8,1 to 12 mg (n=13)	0.12 (0.09 to 0.16)	341.12 (12, < 0.00001)	96%	
> 12 mg (n=2)	0.02 (-0.01 to 0.05)	7.21 (1, 0.007)	86%	
By Nutritional Situation				
Healthy (n=9)	0.09 (0.04 to 0.13)	220.90 (8, < 0.00001)	96%	
Nutritionally at risk (n=10)	0.10 (0.05 to 0.15)	615.54 (9, < 0.00001)	99%	
Poor nutritional status (n=3)	0.05 (-0.02 to 0.12)	39.26 (2, < 0.00001)	95%	

^{*}I² Index measures the extent of the heterogeneity